
z/OS
2.4

MVS Programming:
Workload Management Services

IBM

SC34-2663-40

Note

Before using this information and the product it supports, read the information in “Notices” on page
953.

This edition applies to Version 2 Release 4 of z/OS (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2021-02-21
© Copyright International Business Machines Corporation 1988, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... xi

Tables.. xiii

About this information.. xix
Who should use this information.. xix
Where to find more information.. xix
Information updates on the web...xix
How to read syntax diagrams...xx

Symbols...xx
Syntax items..xx
Syntax examples.. xxi

How to send your comments to IBM... xxiii
If you have a technical problem.. xxiii

Summary of changes.. xxv
Summary of changes for z/OS Version 2 Release 4 (V2R4).. xxv
Summary of changes for z/OS Version 2 Release 3 (V2R3)... xxvi
Summary of changes in z/OS Version 2 Release 2 (V2R2) as updated March 2017............................. xxvi
Summary of changes in z/OS Version 2 Release 2 (V2R2) as updated December 2015..................... xxvii
Summary of changes for z/OS Version 2 Release 2 (V2R2).. xxvii
Changes made in z/OS Version 2 Release 1 (V2R1) as updated December 2013............................... xxvii
Changes made in z/OS Version 2 Release 1...xxvii

Part 1. Using the workload management services... 1

Chapter 1. Introduction to the workload management services..3
Services for subsystem work managers.. 3

Why use the work manager services.. 3
Why use the execution delay monitoring services...4
Why use the enclave services...6
Why use the queueing manager services...8
Why use the routing manager services.. 10
Why use the scheduling environment services..11
Why use the sysplex routing services.. 11
Why use the query system information service... 12

Services for performance monitors... 12
Why use the workload reporting services.. 13
Getting information from SMF type 99 records... 14

Services for application programs... 14
WLM services that support 64-bit addressing...15

Chapter 2. Using the subsystem work manager services...19
Considerations for using the services..19
Suggested services for a single address space transaction manager.. 20

Using the execution delay monitoring services... 22
Suggested services for a work manager that calls a data manager..24
Services for multiple address space work managers..25

 iii

Execution delay monitoring services for multiple address space work managers.......................27
Services for work managers that distribute work requests.. 28

Determining the subsystem name and type.. 29
Using IWMWMCON when distributing work in a sysplex...29

Chapter 3. Creating and using enclaves..31
Why would you use an enclave?.. 31

SRBs in enclaves...32
Tasks in enclaves.. 32
Comparison of enclaves and execution delay services... 33

Creating an enclave.. 33
Comparison between independent, dependent, and work-dependent enclaves........................ 33
Registering an enclave..34
Multisystem enclaves... 34
Scheduling an SRB in an independent enclave..36
Joining tasks to an independent enclave...38
Using dependent enclaves... 40
Using a multisystem enclave.. 42
Performance management of address spaces with enclaves... 44
Using ENQ/DEQ or latch manager services with enclaves.. 46

Enclave resource accounting... 46
Managing the performance of work in enclaves..49

Using independent enclaves.. 49
Using dependent enclaves... 50
Using work-dependent enclaves..50

Querying an enclave's classification information..50
Querying a dispatchable unit's enclave status..50
Deleting an enclave.. 51

Chapter 4. Participating in Enterprise Workload Management.. 53
Enclave Services and EWLM...53

Modelling your business transactions..54
Connecting with WLM as an EWLM participant..55
Disconnecting from WLM..55
Creating an enclave.. 56
Deleting an enclave...56
Classifying work requests...56
Explicitly starting and stopping work requests..57
Continuing a work request at another application...57
Blocking and unblocking work requests.. 57
Enclave services and the ARM API...58

Instrumenting a C application for ARM..58
Using the ARM services for instrumenting applications and for managing ARM transactions

on z/OS...58
Compiling an ARM-instrumented application..63
Binding an ARM-instrumented application.. 63
Running an ARM-instrumented application...64

Chapter 5. Using the queueing manager services.. 65
Example of using the queueing manager services.. 65

Managing the number of server instances per server address space...70
Directing work requests to a specific server region...71

Updating a service definition with application environment information...71
Using the queueing manager connect exit.. 72

Chapter 6. Using the routing manager services..75
A routing manager model...75
Using the routing server connect exit.. 78

iv

Chapter 7. Using the scheduling environment services... 81
Obtaining scheduling environment definitions..81
Manipulating resource state settings.. 82
A model work flow..83

Chapter 8. Using the sysplex routing services.. 87
Why use the sysplex routing services?.. 87
When to use the sysplex routing services... 87

Registering as an eligible server...87
Determining where to route work...88
Deregistering as an eligible server... 88

Example of using the sysplex routing services..88
WLM sysplex workload distribution... 90
Calculation of server weights...90

Chapter 9. Using the workload reporting services..93
When to use the workload reporting services... 93
Using ENF signals to guide data collection..93

ENF event code 41..94
Using the IWMRCOLL service...94

Using the information in IWMWRCAA.. 95
Using the subsystem work manager delay state information... 96
Using delay states to report subsystem interactions.. 98
Using the response time information...100
Interpreting report class data.. 100

Using the IWMRQRY service.. 101
Using the IWM4QTNT service..102

Chapter 10. Using the administrative application services..103
Installing a service definition...103

Mapping a service definition...103
Adding program-specific extensions to a service definition... 103
Checking a service definition using IWMDINST...106
Recommended validity checking... 106
Preventing service definition overlays... 107
Example of using IWMDINST to install a service definition.. 107

Extracting a service definition... 108
Example of using IWMDEXTR to extract a service definition.. 108

Activating a service policy..109
Example of activating a policy using IWMPACT...109

Querying the active classification rules...109
Example of IWMCQRY.. 109

Chapter 11. Using SMF record type 99... 111
When to start SMF record type 99...111

Starting SMF record type 99...112
Identifying work in SMF type 99 records.. 112

Identifying server service classes..112
Identifying internal service classes... 112

Interpreting trace table entries... 113
Policy adjustment... 113
Resource adjustment..113
Receivers and donors... 113
Performance index..114
Receiver value...114
Net value... 114
Small processor consumer...114

 v

Storage housekeeping.. 114
Reverse housekeeping... 115

Interpreting management policy data...115
Dispatching priority.. 115
MPL targets... 115
Swap protect time.. 116
Storage target... 116
Cap slices.. 116
I/O priority.. 116
Number of server address spaces..116
Buffer pool management data... 116

Interpreting plots... 116
System paging delay plot... 117
Period MPL delay plot...117
Period ready user average plot.. 117
Period swap delay plot... 118
Period paging rate plot... 118
Period proportional aggregate speed plot... 118
I/O delay plot.. 118
Queue delay plot...119
Address space paging plots... 119
I/O velocity plot.. 120
Buffer pool hit ratio plot... 120

Interpreting priority table data.. 120
Interpreting lack of action... 120
Examples of interpreting SMF record type 99...121

Action trace example..121
MPL policy example..123

Part 2. Reference: Workload Management Services.. 127

Chapter 12. Workload management services...129
IWMCNTN — WLM contention notification.. 129
IWMCQRY — Query classification attributes... 137
IWMDEXTR — Extract WLM service definition...142
IWMDINST — Install a service definition...150
IWMEBLK — Work request blocked... 158
IWMEDREG — Deregister a WLM enclave..164
IWMEGCOR — Retrieve a correlator.. 168
IWMEJOIN — Join WLM enclave..175
IWMELEAV — Leave WLM enclave... 182
IWMEQTME — Query enclave CPU time.. 188
IWMEREG — Register a WLM enclave..194
IWMERES — Change an enclave.. 199
IWMESQRY — Query enclave state..207
IWMESTOP — Stop a work request..211
IWMESTRT — Start a work request..217
IWMEUBLK — Work request no longer blocked.. 224
IWMEXPT — Export a WLM enclave...230
IWMGCORF — Get correlator flags.. 236
IWMIMPT — Import an enclave... 238
IWMMXDC — Exit for resource data collection..244
IWMMXRA — Exit for resource adjustment... 249
IWMPACT — Activate service policy.. 254
IWMPQRY — Query active service policy...260
IWMQCXIT — Queue manager connect exit..265
IWMRCOLL — Collect workload activity data.. 271

vi

IWMRESET — Change a job..278
IWMRQRY — Collect address space delay information...285
IWMSCORF — Set correlator flags... 291
IWMSCXIT — Server manager connect exit.. 294
IWMSEDES — Scheduling environments determine execution service... 300
IWMSEQRY — Scheduling environments query service..305
IWMSESET — Scheduling environments set resource service... 310
IWMSEVAL — Scheduling environments validate service...315
IWMSINF — WLM server manager inform service...320
IWMSRDNS — Get sysplex routing location list...326
IWMSRDRS — Deregister a server for sysplex routing.. 332
IWMSRFSV — Sysplex routing find server routine...337
IWMSRSRG — Register a server for sysplex routing... 344
IWMSRSRS — Sysplex routing information... 351
IWMUEXPT — WLM undo export..361
IWMUIMPT — WLM undo import... 367
IWMWMCON — WLM modify connect..372
IWMWQRY — Query service... 378
IWMWQWRK — Query work service.. 382
IWMWSYSQ — Query system information... 388
IWM4AEDF — WLM define dynamic application environments..395
IWM4CLSY — Classify work... 404
IWM4CON — Connect to workload management... 416
IWM4DIS — Disconnect from workload management..432
IWM4ECRE — Create an enclave... 438
IWM4EDEL — Delete an enclave..451
IWM4EQRY — Query an enclave.. 457
IWM4HLTH — Setting server health indicator... 464
IWM4MABN — Monitor environment abnormal event.. 471
IWM4MCHS — Change the state of a work request.. 476
IWM4MCRE — Create delay monitoring environment...485
IWM4MDEL — Delete delay monitoring environment... 496
IWM4MDRG — Deregister a resource from monitoring...502
IWM4MGDD — Define descriptions for generic delay states.. 507
IWM4MINI — Monitoring environment initialization...513
IWM4MNTF — Notify of work execution completion.. 527
IWM4MREG — Register a resource for monitoring..536
IWM4MRLT — Relate monitoring environments (PBs)..542
IWM4MSTO — Stops a work unit... 551
IWM4MSTR — Indicate the start of a work unit.. 558
IWM4MSWC — Monitoring environment switch..564
IWM4MUPD — Update data for a work unit...571
IWM4MXFR — Monitoring environment transfer...577
IWM4MXTR — Monitoring environment extract service... 584
IWM4OPTQ — Query IEAOPTxx parameters...591
IWM4QDE — Delete a request from the queue for an execution address space............................. 596
IWM4QHLT — Query server health indicators... 601
IWM4QIN — Insert a request onto the queue for an execution address space...............................607
IWM4QTNT — Query tenant resource group consumption...618
IWM4RPT — Report response time... 624
IWM4SLI — Application environment limit service...636
IWM4SRSC — Obtain server-specific routing information..642
IWM4SSL — Select a request from a caller's work manager queue...652
IWM4SSM — WLM server select secondary service..658
IWM4STBG — WLM begin server transaction service... 663
IWM4STEN — End a request from a caller's work manager queue.. 671
IWM4TAF — WLM temporal affinity service.. 676

 vii

Appendix A. SMF type 99 action codes... 683

Appendix B. Application validation reason codes..709

Appendix C. Structure of the XML service definition (DTD)...................................725

Appendix D. C language interfaces for workload management services............... 729
Interfaces for sysplex routing services... 731
Interface for querying a virtual server.. 732

Appendix E. WLM services supporting 31-bit addressing only............................. 733
IWMAEDEF — Defining Dynamic Application Environments to Workload Management.......................733
IWMCLSFY — Classify work request... 740
IWMCONN — Connect to workload management...753
IWMDISC — Disconnect from workload management... 769
IWMECQRY — Query enclave classification attributes... 775
IWMECREA — Create an enclave...780
IWMEDELE — Delete an enclave... 789
IWMEQRY — Enclave query... 796
IWMMABNL — Record abnormal event...802
IWMMCHST — Monitor change state of work unit.. 806
IWMMCREA — Create delay monitoring environment.. 813
IWMMDELE — Delete the monitoring environment.. 821
IWMMEXTR — Monitoring environment extract..825
IWMMINIT — Initialize monitoring environment..831
IWMMNTFY — Notify of work execution completion..844
IWMMRELA — Relate monitoring environment service..851
IWMMSTOP — Stop a work unit...859
IWMMSTRT — Indicate the start of a work unit.. 865
IWMMSWCH — Switch monitoring environment.. 871
IWMMUPD — Update data for a work unit.. 875
IWMMXFER — Transfer monitoring environment... 880
IWMQDEL — Delete a request from the queue for an execution address space................................... 887
IWMQINS — Insert a request onto the queue for an execution address space.................................... 893
IWMRPT — Report on work request completion.. 903
IWMSLIM — Application environment limit service..913
IWMSSEL — Select a request from a caller's work manager queue...919
IWMSSEM — WLM server select secondary service... 925
IWMSTBGN — Begin a request from a caller's work manager queue..930
IWMSTEND — End a request from a caller's work manager queue... 937
IWMTAFF — WLM temporal affinity service.. 942

Appendix F. Accessibility... 949
Accessibility features.. 949
Consult assistive technologies.. 949
Keyboard navigation of the user interface.. 949
Dotted decimal syntax diagrams...949

Notices..953
Terms and conditions for product documentation... 954
IBM Online Privacy Statement.. 955
Policy for unsupported hardware..955
Minimum supported hardware..955
Programming interface information..956
Trademarks.. 956

viii

Index.. 957

 ix

x

Figures

1. Sequence of functions in a single address space transaction manager.. 20

2. Work manager services for a single address space transaction manager...21

3. Work manager and delay monitoring services for a single address space transaction manager............. 23

4. Services for a work manager that uses a database manager...24

5. Sequence of function in a multiple address space work manager.. 26

6. Example of services that monitor work across multiple address spaces..28

7. Creating an independent enclave and scheduling an SRB...37

8. Creating an enclave and joining tasks to it... 39

9. Using dependent enclaves..41

10. Using a multisystem enclave.. 42

11. Example of performance management of non-enclave work with IEAOPT parameter
ManageNonEnclaveWork=YES...46

12. Typical synchronous application flow between applications on the same z/OS system........................59

13. Sub-buffer arm_subbuffer_zos_connect_t)... 60

14. Sub-buffer arm_subbuffer_zos_classify.. 62

15. Sample JCL for compiling an ARM-instrumented application in MVS batch...63

16. Sample JCL for binding an ARM-instrumented application in MVS batch...64

17. Services for a queueing manager... 66

18. Exploiting IWMSINF..70

19. Example of routing manager services.. 76

20. Obtaining scheduling environments...82

21. Manipulating resource state settings... 83

22. Scheduling environment flow... 84

 xi

23. Example of using sysplex routing services...89

24. Using states for presenting CICS delay information.. 97

25. Combining state information for a sysplex view.. 98

26. Combining state information for a service class.. 99

27. Combining state information across subsystems.. 99

28. Mixed-class-indication timestamp in relation to the time interval... 101

29. IWMSVDEF mapping for a service definition with workload extensions...105

30. Subtype 2: Service class TSO period data..124

31. Subtype 1: Trace data output... 124

32. Subtype 3: Swap delay plot.. 124

33. Subtype 2: Dispatching priority data..125

34. MPL delay plot...125

xii

Tables

1. Syntax examples... xxi

2. Work manager services... 4

3. Execution delay monitoring services.. 5

4. Enclave services.. 7

5. Queueing manager services..9

6. Routing manager services...10

7. Scheduling environment services...11

8. Sysplex routing services..12

9. Summary of workload reporting services...13

10. Administrative application services... 15

11. Overview of WLM services supporting 64-bit and 31-bit addressing... 16

12. Performance management of address spaces with enclaves... 45

13. Enclave characteristics and resource accounting..47

14. Starting and stopping work requests..55

15. WLM Enclave Services and ARM APIs.. 58

16. Sample commands for compiling applications under z/OS UNIX Systems Services..............................63

17. Sample commands for binding applications under z/OS UNIX... 64

18. CPU consumption table.. 91

19. Using ENF event code 41 to guide data collection for policy changes..94

20. Using IWMRCOLL with the workload reporting services on a single system.. 94

21. Self-defining response time distributions for service class XYZ... 100

22. Using IWMRQRY with the workload reporting services...102

23. Using IWM4QTNT with the workload reporting services...102

 xiii

24. SERVD validation reason codes..106

25. Work unit IDs.. 133

26. Return and Reason Codes for the IWMCNTN Macro... 135

27. Return and Reason Codes for the IWMCQRY Macro..141

28. Return and Reason Codes for the IWMDEXTR Macro..148

29. Return and Reason Codes for the IWMDINST Macro.. 156

30. Return and Reason Codes for the IWMEBLK Macro.. 162

31. Return and Reason Codes for the IWMEDREG Macro... 168

32. Return and Reason Codes for the IWMEGCOR Macro... 173

33. Return and Reason Codes for the IWMEJOIN Macro.. 180

34. Return and Reason Codes for the IWMELEAV Macro...186

35. Return and Reason Codes for the IWMEQTME Macro... 194

36. Return and Reason Codes for the IWMEREG Macro..198

37. Return and Reason Codes for the IWMERES Macro.. 205

38. Return and Reason Codes for the IWMESQRY Macro..210

39. Return and Reason Codes for the IWMESTOP Macro.. 215

40. Return and Reason Codes for the IWMESTRT Macro.. 222

41. Return and Reason Codes for the IWMEUBLK Macro..229

42. Return and Reason Codes for the IWMEXPT Macro.. 234

43. Return and Reason Codes for the IWMIMPT Macro.. 242

44. Return and Reason Codes for the IWMMXDC Macro... 249

45. Return and Reason Codes for the IWMMXRA Macro... 254

46. Return and Reason Codes for the IWMPACT Macro.. 258

47. Return and Reason Codes for the IWMPQRY Macro..264

48. Return and Reason Codes for the IWMQCXIT Macro.. 271

xiv

49. Return and Reason Codes for the IWMRCOLL Macro.. 276

50. Return and Reason Codes for the IWMRESET Macro.. 283

51. Return and Reason Codes for the IWMRQRY Macro..290

52. Return and Reason Codes for the IWMSCXIT Macro...299

53. Return and Reason Codes for the IWMSEDES Macro.. 303

54. Return and Reason Codes for the IWMSEQRY Macro..308

55. Return and Reason Codes for the IWMSESET Macro.. 314

56. Return and Reason Codes for the IWMSEVAL Macro...318

57. Return and Reason Codes for the IWMSINF Macro...325

58. Return and Reason Codes for the IWMSRDNS Macro... 330

59. Return and Reason Codes for the IWMSRDRS Macro..336

60. Return and Reason Codes for the IWMSRFSV Macro.. 341

61. Return and Reason Codes for the IWMSRSRG Macro..350

62. Return and Reason Codes for the IWMSRSRS Macro.. 359

63. Return and Reason Codes for the IWMUEXPT Macro..365

64. Return and Reason Codes for the IWMUIMPT Macro..370

65. Return and Reason Codes for the IWMWMCON Macro... 376

66. Return and Reason Codes for the IWMWSYSQ Macro...393

67. Return and Reason Codes for the IWM4AEDF Macro..401

68. Return and Reason Codes for the IWM4CLSY Macro.. 415

69. Return and Reason Codes for the IWM4CON Macro... 427

70. Return and Reason Codes for the IWM4DIS Macro...437

71. Return and Reason Codes for the IWM4ECRE Macro.. 447

72. Return and Reason Codes for the IWM4EDEL Macro.. 456

73. Return and Reason Codes for the IWM4EQRY Macro..462

 xv

74. Return codes and reason codes for the IWM4HLTH Macro...469

75. Return and reason codes for the IWM4MABN macro..475

76. Return and Reason Codes for the IWM4MCHS Macro...485

77. Return and Reason Codes for the IWM4MCRE Macro... 494

78. Return and Reason Codes for the IWM4MDEL Macro... 500

79. Return and Reason Codes for the IWM4MDRG Macro...506

80. Return and Reason Codes for the IWM4MGDD Macro.. 512

81. Return and Reason Codes for the IWM4MINI Macro.. 526

82. Return and Reason Codes for the IWM4MNTF Macro... 534

83. Return and Reason Codes for the IWM4MREG Macro...540

84. Return and Reason Codes for the IWM4MRLT Macro..549

85. Return and Reason Codes for the IWM4MSTO Macro... 556

86. Return and Reason Codes for the IWM4MSTR Macro... 563

87. Return and Reason Codes for the IWM4MSWC Macro.. 570

88. Return and Reason Codes for the IWM4MUPD Macro...576

89. Return and Reason Codes for the IWM4MXFR Macro... 583

90. Return and Reason Codes for the IWM4MXTR Macro... 590

91. Return codes and reason codes for the IWM4OPTQ macro..595

92. Return and Reason Codes for the IWM4QDE Macro..600

93. Return and reason codes for the IWM4QHLT macro... 606

94. Return and Reason Codes for the IWM4QIN Macro.. 614

95. Return and Reason Codes for the IWM4QTNT Macro..622

96. Return and Reason Codes for the IWM4RPT Macro.. 634

97. Return and Reason Codes for the IWM4SLI Macro... 640

98. Return and Reason Codes for the IWM4SRSC Macro.. 651

xvi

99. Return and Reason Codes for the IWM4SSL Macro...656

100. Return and Reason Codes for the IWM4SSM Macro... 662

101. Return and Reason Codes for the IWM4STBG Macro..668

102. Return and Reason Codes for the IWM4STEN Macro..674

103. Return and Reason Codes for the IWM4TAF Macro.. 680

104. SMF record type 99 action codes...683

105. SERVD application validation reason codes.. 709

106. Valid name spaces and corresponding functionality levels.. 728

107. C language interfaces... 729

108. C language interfaces for WLM sysplex routing services...731

109. Return and Reason Codes for the IWMAEDEF Macro..738

110. Return and Reason Codes for the IWMCLSFY Macro.. 752

111. Return and Reason Codes for the IWMCONN Macro...764

112. Return and Reason Codes for the IWMDISC Macro...773

113. Return and Reason Codes for the IWMECQRY Macro... 779

114. Return and Reason Codes for the IWMECREA Macro..787

115. Return and Reason Codes for the IWM4EDEL Macro.. 795

116. Return and Reason Codes for the IWMEQRY Macro..801

117. Return and Reason Codes for the IWM4MCHS Macro...812

118. Return and Reason Codes for the IWMMCREA Macro...820

119. Return and Reason Codes for the IWMMEXTR Macro... 830

120. Return and Reason Codes for the IWMMINIT Macro.. 843

121. Return and Reason Codes for the IWMMNTFY Macro... 849

122. Return and Reason Codes for the IWMMRELA Macro... 858

123. Return and Reason Codes for the IWMMSTOP Macro... 864

 xvii

124. Return and Reason Codes for the IWMMSTRT Macro... 870

125. Return and Reason Codes for the IWMMUPD Macro...880

126. Return and Reason Codes for the IWMMXFER Macro... 886

127. Return and Reason Codes for the IWMQDEL Macro..891

128. Return and Reason Codes for the IWMQINS Macro.. 899

129. Return and Reason Codes for the IWMRPT Macro.. 911

130. Return and Reason Codes for the IWMSLIM Macro.. 917

131. Return and Reason Codes for the IWMSSEL Macro...923

132. Return and Reason Codes for the IWMSSEM Macro..929

133. Return and Reason Codes for the IWMSTBGN Macro... 935

134. Return and Reason Codes for the IWMSTEND Macro... 941

135. Return and Reason Codes for the IWMTAFF Macro...946

xviii

About this information

This document supports z/OS (5650-ZOS). This document describes the z/OS® workload management
services. The services are intended for programmers who write authorized programs.

This document is divided into two main parts:

• Part 1, “Using the workload management services,” on page 1, which provides an overview of the
WLM services and how to use them

• Part 2, “Reference: Workload Management Services,” on page 127, which describes each service in
detail, including syntax, parameters, and usage examples

Who should use this information
Programmers using assembly language can use the macros described in this document to invoke the
services they need. This document includes some guidance information and detailed information, such as
the function, the syntax, and the parameters needed to code the macros. To understand the information
in this document, programmers should have read z/OS MVS Planning: Workload Management.

Where to find more information
Where necessary, this document references information in other documents, using shortened versions of
the document title. For complete titles and order numbers of the documents for all products that are part
of z/OS, see z/OS Information Roadmap.

Title Order number

z/OS MVS Planning: Workload Management SC34-2662

z/OS Data Areas, Vol 1 (ABEP-DCCB) n/a

z/OS Data Areas, Vol 2 (DCCD-IEFDOKEY) n/a

z/OS Data Areas, Vol 3 (IEFDORC-ISGYQCBP) n/a

z/OS Data Areas, Vol 4 (ISGYQUAA-MCHEAD) n/a

z/OS Data Areas, Vol 5 (MCSCSA-SNAPX) n/a

z/OS MVS Initialization and Tuning Guide SA23-1379

z/OS MVS Initialization and Tuning Reference SA23-1380

z/OS MVS Programming: Authorized Assembler Services Guide SA23-1371

z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG SA23-1373

z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO SA23-1375

z/OS MVS System Management Facilities (SMF) SA38-0667

z/OS XL C/C++ Runtime Library Reference SC14-7314

Information updates on the web
For the latest information, see IBM Workload Manager for z/OS (www.ibm.com/systems/z/os/zos/
features/wlm).

© Copyright IBM Corp. 1988, 2021 xix

http://www.ibm.com/systems/z/os/zos/features/wlm
http://www.ibm.com/systems/z/os/zos/features/wlm

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram symbols, items that may
be contained within the diagrams (keywords, variables, delimiters, operators, fragment references,
operands) and provides syntax examples that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that comprise a
command statement. They are read from left to right and from top to bottom, following the main path of
the horizontal line.

For users accessing the Information Center using a screen reader, syntax diagrams are provided in dotted
decimal format.

Symbols
The following symbols may be displayed in syntax diagrams:
Symbol

Definition
►►───

Indicates the beginning of the syntax diagram.
───►

Indicates that the syntax diagram is continued to the next line.
►───

Indicates that the syntax is continued from the previous line.
───►◄

Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:

• Keywords - a command name or any other literal information.
• Variables - variables are italicized, appear in lowercase, and represent the name of values you can

supply.
• Delimiters - delimiters indicate the start or end of keywords, variables, or operators. For example, a left

parenthesis is a delimiter.
• Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal (=), and other

mathematical operations that may need to be performed.
• Fragment references - a part of a syntax diagram, separated from the diagram to show greater detail.
• Separators - a separator separates keywords, variables or operators. For example, a comma (,) is a

separator.

Note : If a syntax diagram shows a character that is not alphanumeric (for example, parentheses, periods,
commas, equal signs, a blank space), enter the character as part of the syntax.

Keywords, variables, and operators may be displayed as required, optional, or default. Fragments,
separators, and delimiters may be displayed as required or optional.
Item type

Definition
Required

Required items are displayed on the main path of the horizontal line.
Optional

Optional items are displayed below the main path of the horizontal line.
Default

Default items are displayed above the main path of the horizontal line.

xx About this information

Syntax examples
The following table provides syntax examples.

Table 1. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the
horizontal line. You must specify these items.

KEYWORD required_item

Required choice.

A required choice (two or more items) appears in
a vertical stack on the main path of the horizontal
line. You must choose one of the items in the
stack.

KEYWORD required_choice1

required_choice2

Optional item.

Optional items appear below the main path of the
horizontal line.

KEYWORD

optional_item

Optional choice.

An optional choice (two or more items) appears
in a vertical stack below the main path of the
horizontal line. You may choose one of the items
in the stack.

KEYWORD

optional_choice1

optional_choice2

Default.

Default items appear above the main path of the
horizontal line. The remaining items (required or
optional) appear on (required) or below (optional)
the main path of the horizontal line. The following
example displays a default with optional items.

KEYWORD

default_choice1

optional_choice2

optional_choice3

Variable.

Variables appear in lowercase italics. They
represent names or values.

KEYWORD variable

Repeatable item.

An arrow returning to the left above the main
path of the horizontal line indicates an item that
can be repeated.

A character within the arrow means you must
separate repeated items with that character.

An arrow returning to the left above a group of
repeatable items indicates that one of the items
can be selected,or a single item can be repeated.

KEYWORD repeatable_item

KEYWORD

,

repeatable_item

Fragment.

The fragment symbol indicates that a labelled
group is described below the main syntax
diagram. Syntax is occasionally broken into
fragments if the inclusion of the fragment would
overly complicate the main syntax diagram.

KEYWORD fragment

fragment

,required_choice1

,required_choice2

,default_choice

,optional_choice

About this information xxi

xxii z/OS: z/OS MVS Programming: Workload Management Services

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important : If your comment regards a technical question or problem, see instead “If you have a
technical problem” on page xxiii.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM® Knowledge Center function
If your comment or question is about the IBM Knowledge Center functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Knowledge Center
Support at ibmkc@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS MVS Programming: Workload Management

Services, SC34-2663-50
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 1988, 2021 xxiii

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmkc@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xxiv z/OS: z/OS MVS Programming: Workload Management Services

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

Summary of changes for z/OS Version 2 Release 4 (V2R4)
The following changes are made for z/OS Version 2 Release 4 (V2R4). All technical changes for z/OS V2R4
are indicated by a vertical line to the left of the change.

New
Prior to February 2021 refresh

• For APAR OA52611, new SMF type 99 action code 109 is added in Appendix A, “SMF type 99 action
codes,” on page 683.

• A functionality level in Table 106 on page 728.
• The IWM4QTNT service provides CPU service consumption of tenant resource groups defined in the

WLM service definition. See “Using the IWM4QTNT service” on page 102.
• IWM4QTNT is the interface reporting products should use to obtain CPU service consumption of

tenant resource groups defined in the WLM service definition. See “IWM4QTNT — Query tenant
resource group consumption” on page 618.

Changed
February 2021 refresh

• The descriptions of the ANSAREA and INFO=ALL parameters for the IWMRQRY service are updated
in “IWMRQRY — Collect address space delay information” on page 285.

Prior to February 2021 refresh

• For service class periods with an average response time goal or a response time goal with
percentile, the lowest goal that can be specified is changed from 15 milliseconds to 1 millisecond.
The description of reason code 0508, in section SVDEFPDA, is changed. See Appendix B,
“Application validation reason codes,” on page 709.

• New fields in IWMWSYSQ describe the remaining time before capping for defined capacity limit and
group capacity limit for all systems in the sysplex. For more information about IWMWSYSQ, see
“IWMWSYSQ — Query system information” on page 388.

• Tenant report classes have been added to report class data. See “Interpreting report class data” on
page 100.

• IWMSVDEF now maps tenant report classes and tenant resource groups. See “Mapping a service
definition” on page 103.

• New sections SVDEFGRP, SVDEFRCL, and SVDCRRUL have been added to the Application validation
reason codes. See Appendix B, “Application validation reason codes,” on page 709.

• Tenant resource groups and tenant report classes have been added to the Structure of the XML
service definition (DTD). See Appendix C, “Structure of the XML service definition (DTD),” on page
725.

• SMF record type 99 information is updated in Chapter 11, “Using SMF record type 99,” on page 111.

© Copyright IBM Corp. 1988, 2021 xxv

Summary of changes for z/OS Version 2 Release 3 (V2R3)
The following changes are made for z/OS Version 2 Release 3 (V2R3). All technical changes for z/OS V2R3
are indicated by a vertical line to the left of the change.

New
• For APAR OA52611, new SMF type 99 action code 109 is added in Appendix A, “SMF type 99 action

codes,” on page 683.
• A functionality level in Table 106 on page 728.
• The IWM4QTNT service provides CPU service consumption of tenant resource groups defined in the

WLM service definition. See “Using the IWM4QTNT service” on page 102.
• IWM4QTNT is the interface reporting products should use to obtain CPU service consumption of tenant

resource groups defined in the WLM service definition. See “IWM4QTNT — Query tenant resource group
consumption” on page 618.

Changed
• For service class periods with an average response time goal or a response time goal with percentile,

the lowest goal that can be specified is changed from 15 milliseconds to 1 millisecond. The description
of reason code 0508, in section SVDEFPDA, is changed. See Appendix B, “Application validation reason
codes,” on page 709.

• New fields in IWMWSYSQ describe the remaining time before capping for defined capacity limit and
group capacity limit for all systems in the sysplex. For more information about IWMWSYSQ, see
“IWMWSYSQ — Query system information” on page 388.

• Tenant report classes have been added to report class data. See “Interpreting report class data” on
page 100.

• IWMSVDEF now maps tenant report classes and tenant resource groups. See “Mapping a service
definition” on page 103.

• New sections SVDEFGRP, SVDEFRCL, and SVDCRRUL have been added to the Application validation
reason codes. See Appendix B, “Application validation reason codes,” on page 709.

• Tenant resource groups and tenant report classes have been added to the Structure of the XML service
definition (DTD). See Appendix C, “Structure of the XML service definition (DTD),” on page 725.

• “IWM4CLSY — Classify work” on page 404 is updated.

Summary of changes in z/OS Version 2 Release 2 (V2R2) as
updated March 2017

Changed
“IWMPACT — Activate service policy” on page 254 is updated to reflect the new CHECKHISTORY
parameter, which specifies the criteria that WLM applies to decide whether or not to discard historical
data for service class periods, due to changes that come into effect with a reactivated WLM policy.

Appendix C, “Structure of the XML service definition (DTD),” on page 725 is updated to reflect
HonorPriority and MemoryLimit, which support new function that allows WLM administrators to prevent
the overflow of specialty-engine-intensive work, in individual service classes, to standard processors.

xxvi z/OS: z/OS MVS Programming: Workload Management Services

Summary of changes in z/OS Version 2 Release 2 (V2R2) as
updated December 2015

Changed
Several topics are updated for WLM support of mobile pricing. This support allows WLM administrators to
classify transactions in the WLM service definition so that they can benefit from mobile application
pricing. The updated topics include the following:

• “Suggested services for a single address space transaction manager” on page 20
• “Suggested services for a work manager that calls a data manager” on page 24
• “Services for multiple address space work managers” on page 25
• “Execution delay monitoring services for multiple address space work managers” on page 27
• “Using the information in IWMWRCAA” on page 95
• “Using the response time information” on page 100
• Appendix C, “Structure of the XML service definition (DTD),” on page 725

Summary of changes for z/OS Version 2 Release 2 (V2R2)
The following changes are made for z/OS Version 2 Release 2 (V2R2). All technical changes for z/OS V2R2
are indicated by a vertical line to the left of the change.

New
The following new information is added in this publication:

• Service “IWM4OPTQ — Query IEAOPTxx parameters” on page 591
• Service “IWM4QHLT — Query server health indicators” on page 601

Changes made in z/OS Version 2 Release 1 (V2R1) as updated
December 2013

Changed
• The order number for z/OS Version 2 Release 1 (5650-ZOS) has been corrected.
• New SMF type 99 action codes 111-123 and 125-127 have been added in Appendix A, “SMF type 99

action codes,” on page 683.

Changes made in z/OS Version 2 Release 1
See the following publications for specific enhancements for z/OS Version 2 Release 1:

• z/OS Release Upgrade Reference Summary
• z/OS Introduction and Release Guide
• z/OS Planning for Installation
• z/OS Upgrade Workflow

This document contains information previously presented in z/OS MVS™ Programming: Workload
Management Services, SA22-7619-21 which supports z/OS Version 1 Release 13.

New information
The descriptions of the following new macros supporting 64-bit addressing were added.

Summary of changes xxvii

• IWM4CLSY (see “IWM4CLSY — Classify work” on page 404)
• IWM4EQRY (see “IWM4EQRY — Query an enclave” on page 457)
• IWM4MABN (see “IWM4MABN — Monitor environment abnormal event” on page 471)
• IWM4MDEL (see “IWM4MDEL — Delete delay monitoring environment” on page 496)
• IWM4MXTR (see “IWM4MXTR — Monitoring environment extract service” on page 584)
• IWM4MNTF (see “IWM4MNTF — Notify of work execution completion” on page 527)
• IWM4MRLT (see “IWM4MRLT — Relate monitoring environments (PBs)” on page 542)
• IWM4MSTO (see “IWM4MSTO — Stops a work unit” on page 551)
• IWM4MSTR (see “IWM4MSTR — Indicate the start of a work unit” on page 558)
• IWM4MSWC (see “IWM4MSWC — Monitoring environment switch” on page 564)
• IWM4MUPD (see “IWM4MUPD — Update data for a work unit” on page 571)
• IWM4MXFR (see “IWM4MXFR — Monitoring environment transfer” on page 577)
• IWM4RPT (see “IWM4RPT — Report response time” on page 624)

Updated information
• The descriptions of the IWMDEXTR, IWMESTRT, IWMPACT, and IWM4ECRE macros are updated.

Moved information
The descriptions of the following macros were moved to Appendix E, “WLM services supporting 31-bit
addressing only,” on page 733.

• IWMCLSFY (see “IWMCLSFY — Classify work request” on page 740).
• IWMECQRY (see “IWMECQRY — Query enclave classification attributes” on page 775).
• IWMRPT (see “IWMRPT — Report on work request completion” on page 903).
• IWMMABNL (see “IWMMABNL — Record abnormal event” on page 802).
• IWMMDELE (see “IWMMDELE — Delete the monitoring environment” on page 821).
• IWMMEXTR (see “IWMMEXTR — Monitoring environment extract” on page 825).
• IWMMNTFY (see “IWMMNTFY — Notify of work execution completion” on page 844).
• IWMMRELA (see “IWMMRELA — Relate monitoring environment service” on page 851).
• IWMMSWCH (see “IWMMSWCH — Switch monitoring environment” on page 871).
• IWMMXFER (see “IWMMXFER — Transfer monitoring environment” on page 880).
• IWMMSTOP (see “IWMMSTOP — Stop a work unit” on page 859).
• IWMMSTRT (see “IWMMSTRT — Indicate the start of a work unit” on page 865).
• IWMMXFER (see “IWMMXFER — Transfer monitoring environment” on page 880).

xxviii z/OS: z/OS MVS Programming: Workload Management Services

Part 1. Using the workload management services
These topics provide an overview of the workload management services.

© Copyright IBM Corp. 1988, 2021 1

2 z/OS: z/OS MVS Programming: Workload Management Services

Chapter 1. Introduction to the workload management
services

The workload management services enable MVS to cooperate with subsystem work managers to achieve
installation-defined goals for work, to distribute work across a sysplex, to manage servers and to provide
meaningful feedback on how well workload management has achieved those goals. They also allow
programs to create an interface to define a service definition.

To change from resource-based performance management to goal-oriented workload management, many
transaction managers, data managers, and performance monitors and reporters need to take advantage
of the services MVS workload management provides.

This introduction describes the services available for subsystem work managers, performance monitors,
and administrative application programs.

Services for subsystem work managers
The workload management services for subsystem work managers allow an installation to process work
towards performance goals defined in a service policy. Workload management uses the information
provided by the subsystem work managers through the services to match system resources to work to
meet goals.

A service policy contains performance goals for all kinds of MVS-managed work expressed in the same
terms. A service level administrator identifies and categorizes all of an installation's work and assigns the
work performance goals in the workload management service policy. For information about how to set up
and use a service policy, see z/OS MVS Planning: Workload Management.

The services provide workload management with the information it needs to dynamically adapt to match
resources to work to meet the performance goals.

Workload management matches system resources to meet the performance goal assigned to a service
class. This management involves handling address space-related resources, such as processor storage,
multiprogramming level (MPL), dispatching, and I/O queueing.

The services for subsystem work managers can be grouped into the following categories:

• Work manager services
• Execution delay services
• Enclave services
• Queueing manager services
• Routing manager services
• Scheduling environment services
• Sysplex routing services
• Query system information service

Why use the work manager services
Work manager services allow MVS to recognize:

• A subsystem work manager and the transactions it processes.
• The service class goals associated with the transactions.
• The address spaces that are processing the transactions.

Based on this information, workload management can determine whether goals are being met, and which
work needs resources to meet the goals.

© Copyright IBM Corp. 1988, 2021 3

The work manager services allow:

• Your customers to define performance goals to your subsystem work manager's transactions.
• MVS to recognize the goals, and match resources to the work to meet the goals.
• Your customers to get reports from performance monitors like RMF on how well work is executing and

whether the goals are being met.

Using the work manager services in your product allows your customers to specify goals for your work the
same way they specify them for MVS-managed work.

The work manager services allow workload management to associate incoming work with a service class.
When the work is associated with a service class, MVS knows the performance goal and importance level
associated with the work, as well as understanding which address spaces are involved in processing the
work request.

If your work manager has a client-server structure and has any of the following objectives, consider using
either the queueing manager, the routing manager, or enclave services instead of the work manager
services:

• Dynamic management of server address spaces, or
• Management of server work requests as part of the originating unit of work,
• Resource management and/or reporting of individual requests, or
• Balancing workload among servers across a sysplex,

Table 2 on page 4 summarizes the work manager services.

Table 2. Work manager services

Service Purpose Information

IWM4CLSY Associate an arriving work request with a
service class defined in a service policy.

“IWM4CLSY — Classify work” on page
404

IWMWMCON Override the subsystem name and type
previously provided on IWM4CON.

“IWMWMCON — WLM modify connect”
on page 372

IWMWQRY Obtain a service class goal. “IWMWQRY — Query service” on page
378

IWM4CON Obtain token that authorizes caller to
use other work manager services, and
optionally, to supply additional topology
information.

“IWM4CON — Connect to workload
management” on page 416

IWM4DIS Disconnect from workload management. “IWM4DIS — Disconnect from workload
management” on page 432

Why use the execution delay monitoring services
From the execution delay monitoring services, workload management knows how well work is executing,
and where any delays are occurring. The execution delay monitoring services are for complex work
manager configurations that process across systems in a sysplex, but do not allow MVS to individually
manage resource consumption of the transactions. The services allow MVS to recognize additional
address spaces that are processing transactions.

When the execution delay monitoring services are used, MVS can allocate resources for address spaces
based on the behavior of the transactions being serviced by them. The services also provide execution
delay information, so that your customers can determine where work is being delayed. They can then
adjust the work manager configuration to consistently meet the goals. Only response time goals can be
used with execution delay services. If you need to use velocity goals, discretionary goals, or period switch,
consider using enclave services instead. Execution delay monitoring is mutually exclusive with enclaves in
the same address space so you must choose whichever function best suits your needs. Enclave services

4 z/OS: z/OS MVS Programming: Workload Management Services

provide more granular resource control and reporting than execution delay monitoring services, but do
not provide the capability for the work manager to report its own view of transaction states.

The subsystem work manager uses the execution delay monitoring services to tell workload management
about their view of the current state of a work request, such as ready state, idle state, or waiting state. The
actual state may be different. For example, a work request may be active from the subsystem's view, but
might be delayed by a page fault, or for CPU access. The information is kept in performance blocks, also
called monitoring environments.

The monitoring environments represent work wherever it executes: across multiple dispatchable units,
address spaces, and systems.

Table 3 on page 5 summarizes the execution delay monitoring services.

Table 3. Execution delay monitoring services

Service Purpose Information

IWMWQWRK Identify where transactions are
executing.

“IWMWQWRK — Query work service” on
page 382

IWM4ECRE Create an enclave. “IWM4ECRE — Create an enclave” on
page 438

IWM4EQRY Query enclave attributes. “IWM4EQRY — Query an enclave” on
page 457

IWM4MABN Indicate that an abnormal event has
occurred for the work request
represented by the input monitoring
environment.

“IWM4MABN — Monitor environment
abnormal event” on page 471

IWM4MCHS Record the state (such as ready, waiting,
idle) of a work request.

“IWM4MCHS — Change the state of a
work request” on page 476

IWM4MCRE Create a monitoring environment, also
called performance block.

“IWM4MCRE — Create delay monitoring
environment” on page 485

IWM4MDEL Delete a delay monitoring environment “IWM4MDEL — Delete delay monitoring
environment” on page 496

IWM4MINI Initialize monitoring environment with
information about a work request.

“IWM4MINI — Monitoring environment
initialization” on page 513

IWM4MNTF Notify MVS that the execution phase for
a work request associated with a
monitoring environment has just
completed.

“IWM4MNTF — Notify of work execution
completion” on page 527

IWM4MRLT Relate two different monitoring
environments that are associated with
the same work request.

“IWM4MRLT — Relate monitoring
environments (PBs)” on page 542

IWM4STBG Begin a request from a caller's work
manager queue.

“IWM4STBG — WLM begin server
transaction service” on page 663

IWM4MSTO Stop a work unit which has been started
by IWM4MSTR.

“IWM4MSTO — Stops a work unit” on
page 551

IWM4MSTR Indicate that a work unit is beginning
execution.

“IWM4MSTR — Indicate the start of a
work unit” on page 558

Chapter 1. Introduction to the workload management services 5

Table 3. Execution delay monitoring services (continued)

Service Purpose Information

IWM4MSWC Indicate that the delay information for a
work request may now also reside in
another monitoring environment which
is not related to the current environment
(Continue) or that there is no further
information for the current work request
beyond the current environment
(Return).

“IWM4MSWC — Monitoring environment
switch” on page 564

IWM4MUPD Update data about a work unit which has
been started by IWM4MSTR.

“IWM4MUPD — Update data for a work
unit” on page 571

IWM4MXFR Indicate that the delay information for a
work request may now also reside in a
dependent monitoring environment
(CONTINUE) OR that delay information is
no longer present in a dependent
monitoring environment (RETURN).

“IWM4MXFR — Monitoring environment
transfer” on page 577

IWM4MXTR Extract information about the monitoring
environment which was previously
passed through IWM4MINI/IWM4MRLT.

“IWM4MXTR — Monitoring environment
extract service” on page 584

IWM4RPT Allow MVS to obtain the total response
time for a completed work request and
its corresponding service class and
(when customer specified) its report
class.

“IWM4RPT — Report response time” on
page 624

Why use the enclave services
An enclave is an anchor for a transaction that can be spread across multiple dispatchable units in multiple
address spaces. These multiple address spaces can even span across multiple systems in a parallel
sysplex. The value of using an enclave to represent a transaction is that the resources used to process the
transaction can be accounted to the transaction itself, rather than to the address space or spaces that the
transaction runs in. In addition, you can assign a performance goal to the enclave, which means that as a
transaction consumes system resources, it can switch periods to run with a new goal.

Any number of tasks and SRBs can be grouped together in an enclave:

• Enclave SRBs offer the advantage that they are preemptable and will not tie up the system.

SRBs in enclaves work well for higher volume, small requests, as SRBs have very little overhead
compared to tasks. The subsystem can create an enclave using the IWM4ECRE macro, and then
schedule SRBs to run in the enclave using the IEAMSCHD macro.

• Tasks in enclaves automatically associate the enclave with the address spaces where they are
dispatched, so workload management can manage the storage of those address spaces to meet the
goal of the enclave. The enclave can perform functions that require a task environment, such as
supervisor calls. Tasks can dynamically leave and join an enclave as they finish one piece of work and
begin another. The subsystem creates an enclave using the IWM4ECRE macro, and then the task joins
the enclave using the IWMEJOIN macro.

Comparison to other services
Enclaves should not be run in the same address space with execution delay monitoring environments.
Unpredictable workload management actions could result.

6 z/OS: z/OS MVS Programming: Workload Management Services

Although enclaves have some characteristics that are similar to those of execution delay monitoring,
there are some important differences. These differences should be considered before choosing which set
of services to use. Enclaves support all types of performance goals; delay monitoring supports only
response time goals. Enclaves allow period switching; delay monitoring does not. Enclaves can span
address spaces in multiple systems in a parallel sysplex; delay monitoring cannot. Enclaves allow the
separate management of work units that run in the same address space but have different performance
goals; a delay monitoring environment can only be managed at the address space level. One advantage of
delay monitoring is that it does enable a work manager to report its own view of transaction states.

Enclaves are required to be used with queueing manager services. For more information, see “Why use
the queueing manager services” on page 8.

Table 4 on page 7 summarizes the enclave services.

Table 4. Enclave services

Service Purpose Information

IEAMSCHD Schedule an SRB into the enclave. z/OS MVS Programming: Authorized
Assembler Services Guide

IWM4EQRY Query the classification information
associated with an enclave.

“IWM4EQRY — Query an enclave” on
page 457

IWMEDREG Deregister an enclave. “IWMEDREG — Deregister a WLM
enclave” on page 164

IWMEJOIN Join an enclave (task only). Once a task
has joined an enclave, all future
processing is on behalf of the
transaction represented by the enclave.

“IWMEJOIN — Join WLM enclave” on
page 175

IWMELEAV Leave an enclave (task only). “IWMELEAV — Leave WLM enclave” on
page 182

IWMEREG Register an enclave. “IWMEREG — Register a WLM enclave”
on page 194

IWMESQRY Query whether or not the current
dispatchable unit is associated with an
enclave.

“IWMESQRY — Query enclave state” on
page 207

IWMEXPT Export an enclave to all systems in a
parallel sysplex.

“IWMEXPT — Export a WLM enclave” on
page 230

IWMGCORF Check whether or not certain Application
Response Measurement (ARM) flags in a
provided EWLM correlator are set.

“IWMGCORF — Get correlator flags” on
page 236

IWMIMPT Import an enclave that has been
exported to all systems in a parallel
sysplex.

“IWMIMPT — Import an enclave” on
page 238

IWM4MSTO Stop a work unit which has been started
by IWMMSTRT.

“IWM4MSTO — Stops a work unit” on
page 551

IWM4MSTR Indicate that a work unit is beginning
execution.

“IWM4MSTR — Indicate the start of a
work unit” on page 558

IWM4MUPD Update data about a work unit which has
been started by IWMMSTRT.

“IWM4MUPD — Update data for a work
unit” on page 571

IWMRQRY Obtain information about enclave
resource consumption and delays.

“IWMRQRY — Collect address space
delay information” on page 285

Chapter 1. Introduction to the workload management services 7

Table 4. Enclave services (continued)

Service Purpose Information

IWMSCORF Set or clear certain Application
Response Measurement (ARM)
correlator flags in a provided EWLM
correlator.

“IWMSCORF — Set correlator flags” on
page 291

IWMUEXPT Undo an export of an enclave to all
systems in a parallel sysplex.

“IWMUEXPT — WLM undo export” on
page 361

IWMUIMPT Undo an import of an enclave. “IWMUIMPT — WLM undo import” on
page 367

IWM4ECRE Create an enclave. “IWM4ECRE — Create an enclave” on
page 438

IWM4EDEL Delete a previously created enclave. “IWM4EDEL — Delete an enclave” on
page 451

SYSEVENT
ENCASSOC

Allows an enclave running SRBs to be
associated with an address space. This
way the storage-related resources of the
server address space can be managed to
the enclave's performance goal.

z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO

SYSEVENT
ENCSTATE

Indicate that an enclave will be idle for
an extended period of time, exempting
the enclave from active resource
management.

z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO

Enterprise Workload Manager (EWLM)
With enclave services, work managers that use enclaves to manage and report individual business
transactions can become Enterprise Workload Manager (EWLM) participants. EWLM allows you to define
business-oriented performance goals for an entire domain of servers across a variety of platforms (z/OS,
AIX®, i5/OS, Windows, Solaris and Linux®), and then get an end-to-end view of actual performance relative
to those goals. You can use enclave services to:

• Connect a calling address space to WLM as an EWLM participant
• Classify work requests in order to assign an EWLM transaction class
• Indicate the start and end of an EWLM work request
• Block work requests while waiting for the completion of a work request in another application.

Why use the queueing manager services
A queuing manager is a subsystem or application that queues work requests to workload management for
execution by one or more server address spaces.

Queueing manager services allow MVS to:

• Dynamically start and stop server address spaces based on workload.
• Control the number of server instances per server address space.
• Manage the work queues associated with the server address spaces to meet the performance goals set

by the customer.

With the dynamic management of server address spaces, an installation does not need to calculate the
proper number of address spaces to process work, nor do they have to monitor workload fluctuations that
change the number of address spaces needed. Customers can segregate work requests into different
server address spaces if this is important for security or integrity.

8 z/OS: z/OS MVS Programming: Workload Management Services

Enclaves are required to be used with the queueing manager services. This means that customers can
define velocity and discretionary goals for work as well as response time goals. Multiple period control is
also available for work running in enclaves.

Queueing manager services may provide incentive to subsystems who run with multiple tasks in one
address space to switch to multiple address spaces. The queueing manager services make it easier for
installations to isolate individual work requests from each other, by running only one in each execution
address space, with workload management managing the number of execution address spaces.

Table 5 on page 9 summarizes the queueing manager services.

Table 5. Queueing manager services

Service Purpose Information

IWM4AEDF Define a dynamic application
environment.

“IWM4AEDF — WLM define dynamic
application environments” on page 395

IWM4CON With the QUEUE_MANAGER=YES
parameter, establish the caller as a
queueing manager so it can begin
queueing work requests to its server
address spaces.

“IWM4CON — Connect to workload
management” on page 416

IWM4CON With the SERVER_MANAGER=YES
parameter, establish the caller as a
server address space so it can begin
receiving work requests from the
queueing manager.

“IWM4CON — Connect to workload
management” on page 416

IWM4DIS Remove the caller as a queueing
manager or server manager.

“IWM4DIS — Disconnect from workload
management” on page 432

IWM4ECRE Create an enclave. This can be done by
the queue manager itself or by its caller.
It can be a dependent or independent
enclave.

“IWM4ECRE — Create an enclave” on
page 438

IWM4EDEL Delete an enclave. “IWM4EDEL — Delete an enclave” on
page 451

IWMESQRY Query whether or not the current
dispatchable unit is associated with an
enclave.

“IWMESQRY — Query enclave state” on
page 207

IWM4QDE Delete a work request from the queue
for an execution address space.

“IWMQDEL — Delete a request from the
queue for an execution address space”
on page 887

IWM4QIN Insert a work request onto workload
management queues so its execution in
a server address space can be managed
by workload management. The enclave
token obtained with the IWM4ECRE
service is passed into workload
management by IWM4QIN.

“IWM4QIN — Insert a request onto the
queue for an execution address space”
on page 607

IWMSINF Obtain the number of server instances to
be started by workload management.

“IWMSINF — WLM server manager
inform service” on page 320

Chapter 1. Introduction to the workload management services 9

Table 5. Queueing manager services (continued)

Service Purpose Information

IWM4SLI Immediately after invoking IWM4CON,
optionally establish a maximum and/or
minimum number of server instances
that can be started for a given
application environment.

“IWM4SLI — Application environment
limit service” on page 636

IWM4SSL Select a work request from workload
management queues for execution in a
server address space. This must be done
under a task.

“IWM4SSL — Select a request from a
caller's work manager queue” on page
652

IWM4SSM Select the next secondary work request
from the queue associated with the
caller's server task.

“IWM4SSM — WLM server select
secondary service” on page 658

IWM4STBG Join the invoking task to the enclave
associated with the work request
represented by WUTOKEN (which was
obtained on a prior call to IWM4SSL) and
optionally check the authorization of the
request. The server address space is
beginning to process the work request.
This must be done under a task.

“IWM4STBG — WLM begin server
transaction service” on page 663

IWM4STEN Leave the enclave that was joined in
IWM4STBG. The server address space
has completed its processing of the work
request.

“IWM4STEN — End a request from a
caller's work manager queue” on page
671

IWM4TAF Tell workload management when a
temporal affinity begins and when it
ends.

“IWM4TAF — WLM temporal affinity
service” on page 676

Why use the routing manager services
A routing manager is a subsystem that establishes and manages connections between a client and a
server address space.

Routing manager services perform two main functions:

• Automatically starting and maintaining server address spaces as needed by the workload across the
sysplex.

• Balancing the workload among the servers in the sysplex by deciding on the best server and providing
the server routing information when a server is requested by the routing manager.

Table 6 on page 10 summarizes the routing manager services.

Table 6. Routing manager services

Service Purpose Information

IWM4CON With the ROUTER=YES parameter,
establish the caller as a routing manager
so it can begin requesting server routing
information through IWMSRFSV.

“IWM4CON — Connect to workload
management” on page 416

10 z/OS: z/OS MVS Programming: Workload Management Services

Table 6. Routing manager services (continued)

Service Purpose Information

IWM4CON With the SERVER_MANAGER=YES and
SERVER_TYPE=ROUTING parameters,
establish the caller as an eligible server
for requests coming from a routing
manager. Workload management will
balance the workload among the eligible
servers.

“IWM4CON — Connect to workload
management” on page 416

IWM4DIS Remove the caller as a routing manager. “IWM4DIS — Disconnect from workload
management” on page 432

IWM4ECRE Create an enclave. This is done in a
server address space.

“IWM4ECRE — Create an enclave” on
page 438

IWM4EDEL Delete an enclave. “IWM4EDEL — Delete an enclave” on
page 451

IWMSRFSV Find the best server for a work request.
If no server exists for a request, start
one.

“IWMSRFSV — Sysplex routing find
server routine” on page 337

Why use the scheduling environment services
A scheduling environment is a list of resource requirements, allowing you to ensure that units of work are
sent to systems that have the appropriate resources to handle them. Resources can represent actual
physical entities, such as a data base or a peripheral device, or they can represent intangible qualities
such as a certain period of time (like second shift or weekend).

These resources are listed in the scheduling environment according to whether they must be set to ON or
set to OFF. A unit of work can be assigned to a specific system only when all of the required resource
states are satisfied.

Table 7 on page 11 shows a summary of the scheduling environment services.

Table 7. Scheduling environment services

Service Purpose Information

IWMSEDES Determine if a scheduling environment is
available on a specified system.

“IWMSEDES — Scheduling environments
determine execution service” on page
300

IWMSEQRY Obtain scheduling environment
definitions and status.

“IWMSEQRY — Scheduling environments
query service” on page 305

IWMSESET Modify the state setting of a resource. “IWMSESET — Scheduling environments
set resource service” on page 310

IWMSEVAL Validate a scheduling environment
name.

“IWMSEVAL — Scheduling environments
validate service” on page 315

Why use the sysplex routing services
The sysplex routing services allow work associated with a server to be distributed across a sysplex. They
are intended for use by clients and servers when the incoming work requests have not been classified by
workload management at the time the routing decision is being made.

The sysplex routing services enable distributed client/server environments to balance work among
multiple servers. These services help distributed programs make the routing decisions, rather than having

Chapter 1. Introduction to the workload management services 11

each installation make these decisions. Unlike the routing manager services described earlier, sysplex
routing services do not automatically start server address spaces as needed.

A client is any subsystem work manager, application or product, in the network that requests a service.
The service could be a request for data, a program to be run, or access to a database or application. In
terms of the sysplex routing services, a client is any program routing work to a server. A server is any
subsystem address space that provides a service on an MVS image.

The sysplex routing services provide information for more intelligent routing. They do not route or
distribute work requests. The server must use its existing routing mechanisms.

Table 8 on page 12 summarizes the sysplex workload balancing services.

Table 8. Sysplex routing services

Service Purpose Information

IWMSRDNS Provide the caller with list of location
names for all registered servers known
to the system on which the service is
invoked.

“IWMSRDNS — Get sysplex routing
location list” on page 326

IWMSRDRS Deregister a server. “IWMSRDRS — Deregister a server for
sysplex routing” on page 332

IWMSRSRG Register an eligible server. “IWMSRSRG — Register a server for
sysplex routing” on page 344

IWMSRSRS Provide the caller with a list of registered
servers and the number of requests that
should be routed to each server.

“IWMSRSRS — Sysplex routing
information” on page 351

IWM4SRSC Provide the caller with server-specific
routing information to allow for balanced
routing decisions.

“IWM4SRSC — Obtain server-specific
routing information” on page 642

Why use the query system information service
The query system information service, IWMWSYSQ, returns a list of systems running in goal mode and
information related to available CPU capacity and resource constraints. Applications that schedule work
across multiple systems in an MVS sysplex can use this service to:

• Locate the “best” (fastest or most idle) system in a sysplex for scheduling specific work
• Avoid scheduling additional work to systems already critically overloaded
• Factor workload management business importance level information into scheduling decisions.

The output of this service is a data area mapped by the IWMWSYSI macro, that provides a point-in-time
snapshot of each system workload management is managing in the sysplex. A scheduling application can
interpret and use this information to schedule one or more types of work to systems with specific
operating characteristics.

See “IWMWSYSQ — Query system information” on page 388 for more information about this service.

Services for performance monitors
The workload reporting services are intended for use by monitoring or reporting products to collect
performance data. These services replace some of the existing methods of collecting data, and provide as
complete a picture of performance information as possible.

A workload management ISPF application contains an installation's goals for work in a service policy. The
reporting services access the service policy information, and report on how well the installation is doing in
processing towards the goals in the policy. The services report information based on the service classes

12 z/OS: z/OS MVS Programming: Workload Management Services

defined in the service policy. They also provide delay information on work managed by subsystems using
the execution delay monitoring services.

Because the system collects performance data continually, there is no set reporting interval. So, unlike
earlier releases of MVS, multiple performance monitors can request the services at the same time. And,
performance monitors can collect the data based on their own reporting intervals. When the performance
monitor invokes a service to collect performance data, the data is provided in a cumulative fashion.

When a significant change occurs in workload management, such as a policy activation, the data
collection is stopped and restarted. At such times, performance monitors should also stop and restart
their reporting intervals. For each time that data collection is stopped and restarted in workload
management, an event notification facility (ENF) signal notifies listeners of the change.

Why use the workload reporting services
The workload reporting services provide information for performance monitors to report on how well an
installation is doing in meeting performance goals.

Prior to z/OS V1R3, workload reporting services were available to systems running in either goal or
compatibility mode. Some of the collected data was different for each mode. The performance monitor
should realize the system will now be running exclusively in goal mode, and be able to locate and use the
collected performance data appropriately.

For goal mode, with the cooperation of subsystem work managers, the service can provide more
performance data than previously reported. They provide information about work that is processed by
many address spaces, and allow for a view of subsystem transactions, not just address spaces and
enclaves. The data includes:

• Response time information
• Response time distributions
• Execution delay state information for transactions
• Information about service classes that different address spaces are serving.

The services allow a performance monitor to show the goal for a service class period, how well the system
is doing to meet the goal, and if it is not meeting the goal, why it is delayed. The performance monitor can
show this goal vs. actual data in terms that are consistent for all MVS-managed work.

Table 9 on page 13 summarizes the workload reporting services, and where the information about them
is documented.

Table 9. Summary of workload reporting services

Service Purpose Information

IWMPQRY • Provides the active service policy.
• Use it with IWMRCOLL for goal vs.

actual information

“IWMPQRY — Query active service
policy” on page 260

IWMRCOLL Collects:

• Workload activity information
• Response time information
• General delay information
• Execution delay state information

“IWMRCOLL — Collect workload activity
data” on page 271

Chapter 1. Introduction to the workload management services 13

Table 9. Summary of workload reporting services (continued)

Service Purpose Information

IWMRQRY Provides address space related
information:

• Server information
• Velocity information
• General delay information

– MPL delay
– Swap-in
– Resource group capping
– CPU delay

• Enclave information

“IWMRQRY — Collect address space
delay information” on page 285

SYSEVENTs
REQASD and
REQFASD

Provide information about an address
space:

• Whether it is a server
• Whether its goal is being honored
• Whether it was quiesced
• Service class, report class
• Performance group, report

performance group

z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO

SYSEVENT
REQSRMST

To quickly check:

• Active service policy
• Installed service definition

z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO

Getting information from SMF type 99 records
SMF record type 99 provides detailed audit information. You can use the type 99 records for analyzing
performance characteristics of work. The records contain performance data for each service class period,
a trace of SRM actions, the data SRM used to decide which actions to take, and the internal controls SRM
uses to manage work.

This can help you determine in detail what SRM is doing to meet your work's goals with respect to other
work, and the types of delays the work is experiencing.

Attention : Be aware that the SMF type 99 records are written frequently. The SMF type 99 records
are for detailed audit information only. You should make sure you do not write SMF type 99 records
unless you want them.

Chapter 11, “Using SMF record type 99,” on page 111 explains how to use the information provided in
SMF type 99 records. For a mapping of the records, see z/OS MVS System Management Facilities (SMF).

Services for application programs
The administrative application services are intended for programs which provide a user interface to define
and edit a workload management service definition.

Table 10 on page 15 summarizes the administrative application services.

14 z/OS: z/OS MVS Programming: Workload Management Services

Table 10. Administrative application services

Service Purpose Information

IWMCQRY Query the classification rules in effect. “IWMCQRY — Query classification
attributes” on page 137

IWMDINST Install a service definition on the WLM
couple data set.

“IWMDINST — Install a service
definition” on page 150

IWMDEXTR Extract a service definition from the
WLM couple data set.

“IWMDEXTR — Extract WLM service
definition” on page 142

IWMPACT Activate a service policy. “IWMPACT — Activate service policy” on
page 254

WLM services that support 64-bit addressing
Several WLM services support 64-bit environments. These services run in both 31-bit and 64-bit address
mode.

To use 64-bit services, change the names of the services in your application program to invoke the 64-bit
versions of the services. For example, change IWMCONN to IWM4CON. The prefix of all 64-bit services
names is IWM4.

Generally, the services that run in 64-bit address mode support the same parameters as their equivalents
in 31-bit address mode. Note that the only exception is the PLISTVER parameter, which has slightly
changed. The 64-bit services only support PLISTVER=0, in case a PLIST version is explicitly used. The
following example shows how to use the PLISTVER keyword for 31-bit services:

...
12345678 SPACE 1 DS 0H
 IWMxxxxx ETOKEN=ETOKEN
 RSNCODE=RSNCODE,
 PLISTVER=2

...
ETOKEN DS F
RSNCODE DS F

where xxxxx is the name of the 31-bit service.

The following example shows how to use the PLISTVER keyword for 64-bit services:

...
12345678 SPACE 1 DS 0H
 IWM4xxxx ETOKEN=ETOKEN
 RSNCODE=RSNCODE,
 PLISTVER=0

...
ETOKEN DS F
RSNCODE DS F

where xxxx is the name of the 64-bit service.

Table 11 on page 16 lists the WLM services that support 64-bit addressing and their equivalents for 31-
bit addressing only:

Chapter 1. Introduction to the workload management services 15

Table 11. Overview of WLM services supporting 64-bit and 31-bit addressing

WLM service name
(31-bit only)

WLM service name
(31-bit and 64-bit)

Purpose

IWMAEDEF. For more
information, see “IWMAEDEF —
Defining Dynamic Application
Environments to Workload
Management” on page 733.

IWM4AEDF. For more
information, see “IWM4AEDF —
WLM define dynamic application
environments” on page 395.

Define a dynamic application
environment to Workload
Manager.

IWMCONN. For more
information, see “IWMCONN —
Connect to workload
management” on page 753.

IWM4CON. For more information,
see “IWM4CON — Connect to
workload management” on page
416.

Connect to Workload Manager.

IWMCLSFY. For more
information, see “IWMCLSFY —
Classify work request” on page
740.

IWM4CLSY. For more
information, see “IWM4CLSY —
Classify work” on page 404

Associate an arriving work request
with a service class defined in a
service policy.

IWMDISC. For more information,
see “IWMDISC — Disconnect
from workload management” on
page 769.

IWM4DIS. For more information,
see “IWM4DIS — Disconnect
from workload management” on
page 432.

Disconnect from Workload
Manager.

IWMECREA. For more
information, see “IWMECREA —
Create an enclave” on page 780.

IWM4ECRE. For more
information, see “IWM4ECRE —
Create an enclave” on page 438.

Create an enclave.

IWMEDELE. For more
information, see “IWMEDELE —
Delete an enclave” on page 789.

IWM4EDEL. For more
information, see “IWM4EDEL —
Delete an enclave” on page 451.

Delete an enclave.

IWMEQRY. For more information,
see “IWMEQRY — Enclave query”
on page 796.

IWM4EQRY. For more
information, see “IWM4EQRY —
Query an enclave” on page 457.

Query enclave attributes.

IWMMABNL. For more
information, see “IWMMABNL —
Record abnormal event” on page
802.

IWM4MABN. For more
information, see “IWM4MABN —
Monitor environment abnormal
event” on page 471

Indicate that an abnormal event
has occurred for the work request
represented by the input
monitoring environment.

IWMMCHST. For more
information, see “IWMMCHST —
Monitor change state of work
unit” on page 806.

IWM4MCHS. For more
information, see “IWM4MCHS —
Change the state of a work
request” on page 476.

Change state of work request
service.

IWMMCREA. For more
information, see “IWMMCREA —
Create delay monitoring
environment” on page 813.

IWM4MCRE. For more
information, see “IWM4MCRE —
Create delay monitoring
environment” on page 485.

Create monitoring environment
service.

IWMMDELE. For more
information, see “IWMMDELE —
Delete the monitoring
environment” on page 821.

IWM4MDEL. For more
information, see “IWM4MDEL —
Delete delay monitoring
environment” on page 496

Delete a delay monitoring
environment.

IWMMINIT. For more
information, see “IWMMINIT —
Initialize monitoring
environment” on page 831.

IWM4MINI. For more
information, see “IWM4MINI —
Monitoring environment
initialization” on page 513.

Monitor environment initialization.

16 z/OS: z/OS MVS Programming: Workload Management Services

Table 11. Overview of WLM services supporting 64-bit and 31-bit addressing (continued)

WLM service name
(31-bit only)

WLM service name
(31-bit and 64-bit)

Purpose

IWMMNTFY. For more
information, see “IWMMNTFY —
Notify of work execution
completion” on page 844 .

IWM4MNTF. For more
information, see “IWM4MNTF —
Notify of work execution
completion” on page 527

Notify MVS that the execution
phase for a work request
associated with a monitoring
environment has just completed.

IWMMRELA. For more
information, see “IWMMRELA —
Relate monitoring environment
service” on page 851 .

IWM4MRLT. For more
information, see “IWM4MRLT —
Relate monitoring environments
(PBs)” on page 542

Relate two different monitoring
environments that are associated
with the same work request.

IWMMSTOP. For more
information, see “IWMMSTOP —
Stop a work unit” on page 859

IWM4MSTO. For more
information, see “IWM4MSTO —
Stops a work unit” on page 551

Stop a work unit which has been
started by IWMMSTRT.

IWMMSTRT. For more
information, see “IWMMSTRT —
Indicate the start of a work unit”
on page 865

IWM4MSTR. For more
information, see “IWM4MSTR —
Indicate the start of a work unit”
on page 558

Indicate that a work unit is
beginning execution.

IWMMSWCH. For more
information, see “IWMMSWCH —
Switch monitoring environment”
on page 871

IWM4MSWC. For more
information, see “IWM4MSWC —
Monitoring environment switch”
on page 564

Indicate that the delay
information for a work request
may now also reside in another
monitoring environment which is
not Related to the current
environment (Continue) OR that
there is no further information for
the current work request beyond
the current environment (Return).

IWMMUPD. For more
information, see “IWMMUPD —
Update data for a work unit” on
page 875

IWM4MUPD. For more
information, see “IWM4MUPD —
Update data for a work unit” on
page 571

Update data about a work unit
which has been started by
IWMMSTRT.

IWMMXFER. For more
information, see “IWMMXFER —
Transfer monitoring
environment” on page 880

IWM4MXFR. For more
information, see “IWM4MXFR —
Monitoring environment transfer”
on page 577

Indicate that the delay
information for a work request
may now also reside in a
dependent monitoring
environment (CONTINUE) OR that
delay information is no longer
present in a dependent monitoring
environment (RETURN).

IWMMEXTR. For more
information, see “IWMMEXTR —
Monitoring environment extract”
on page 825

IWM4MXTR. For more
information, see “IWM4MXTR —
Monitoring environment extract
service” on page 584

Extract information about the
monitoring environment which
was previously passed through
IWM4MINI/IWM4MRLT.

IWMQDEL. For more information,
see “IWMQDEL — Delete a
request from the queue for an
execution address space” on
page 887.

IWM4QDE. For more information,
see “IWM4QDE — Delete a
request from the queue for an
execution address space” on
page 596.

Delete a request from the queue
for an execution address space.

Chapter 1. Introduction to the workload management services 17

Table 11. Overview of WLM services supporting 64-bit and 31-bit addressing (continued)

WLM service name
(31-bit only)

WLM service name
(31-bit and 64-bit)

Purpose

IWMQINS. For more information,
see “IWMQINS — Insert a
request onto the queue for an
execution address space” on
page 893.

IWM4QIN. For more information,
see “IWM4QIN — Insert a
request onto the queue for an
execution address space” on
page 607.

Insert a request to the queue for
an execution address space.

IWMRPT. For more information,
see “IWMRPT — Report on work
request completion” on page 903

IWM4RPT. For more information,
see “IWM4RPT — Report
response time” on page 624

Allow MVS to obtain the total
response time for a completed
work request and its
corresponding service class and
(when customer specified) its
report class.

IWMSLIM. For more information,
see “IWMSLIM — Application
environment limit service” on
page 913.

IWM4SLI. For more information,
see “IWM4SLI — Application
environment limit service” on
page 636.

Application environment limit
service.

IWMSSEL. For more information,
see “IWMSSEL — Select a
request from a caller's work
manager queue” on page 919.

IWM4SSL. For more information,
see “IWM4SSL — Select a
request from a caller's work
manager queue” on page 652.

Select a request from a caller's
work manager queue.

IWMSSEM. For more information,
see “IWMSSEM — WLM server
select secondary service” on
page 925.

IWM4SSM. For more information,
see “IWM4SSM — WLM server
select secondary service” on
page 658.

WLM server select secondary
service.

IWMSTBGN. For more
information, see “IWMSTBGN —
Begin a request from a caller's
work manager queue” on page
930.

IWM4STBG. For more
information, see “IWM4STBG —
WLM begin server transaction
service” on page 663.

Begin a request from a caller's
work manager queue.

IWMSTEND. For more
information, see “IWMSTEND —
End a request from a caller's
work manager queue” on page
937.

IWM4STEN. For more
information, see “IWM4STEN —
End a request from a caller's
work manager queue” on page
671.

End a request from a caller's work
manager queue.

IWMTAFF. For more information,
see “IWMTAFF — WLM temporal
affinity service” on page 942.

IWM4TAF. For more information,
see “IWM4TAF — WLM temporal
affinity service” on page 676.

WLM temporal affinity service.

18 z/OS: z/OS MVS Programming: Workload Management Services

Chapter 2. Using the subsystem work manager
services

You can use many different combinations of the workload management services. Which ones and which
combination you choose to use depends on the benefit you expect from using them, whether your
programming environment allows you to use them, and the structure of the subsystem work manager
using the services. The following section describes some suggested uses of the MVS workload
management services.

If you need to manage a transaction separately from the address space in which it runs, or you want to
use velocity goals, discretionary goals, or period control, use enclaves. For more information about using
enclave services, see Chapter 3, “Creating and using enclaves,” on page 31.

Considerations for using the services
Before you use the subsystem work manager and the execution delay monitoring services, consider the
following questions:

• What “type” of subsystem work manager do you need?

__ – Transaction processing system
__ – Data or resource manager

• What benefits do you expect to reap from using the WLM services?

__ – Do you want your customers to be able to specify goals for transactions?
__ – Do you plan to get reporting information for goals defined in the MVS workload management

service definition?
• What kinds of address spaces does the subsystem work manager consist of?
• What is the definition of a transaction or work request, from your customer's perspective?
• What kind of functions do the address spaces provide?

__ – Control address spaces
__ – Transaction level dispatching
__ – Other execution regions
__ – Other supporting address spaces

• What environments does the subsystem work manager run in?

__ – Authorization, including PSW key
__ – Dispatchable unit mode
__ – Cross memory mode
__ – AMODE
__ – ASC mode
__ – Interrupt status
__ – Locks

• Does the subsystem work manager use other products, such as a data manager?
• Does the work cross MVS system (MVS image) boundaries?
• Does the work cross MVS sysplex boundaries?

© Copyright IBM Corp. 1988, 2021 19

Suggested services for a single address space transaction manager
A single address space subsystem work manager performs functions similar to those functions shown in
Figure 1 on page 20. It goes through address space initialization and startup routines. It receives a work
request, processes the work request, receives another work request, and so on. At some point, it
processes some address space cleanup and termination routines.

Figure 1. Sequence of functions in a single address space transaction manager.

If you have a single address space transaction manager, consider using the services that are shown in
Figure 2 on page 21 for the following functions in workload management:

• Associate work that is coming into the subsystem with a service class
• Have MVS match resources to the work to meet the service class goal
• Provide goal versus actual information for reporting

20 z/OS: z/OS MVS Programming: Workload Management Services

• Provide response time information and, optionally, processor consumption data for work requests

The services that are shown in Figure 2 on page 21 show when a single address space manager could
invoke the appropriate workload management services. They are the minimum set of services a work
manager can use to achieve the listed objectives.

Note : You can instead use enclave services for a single address space transaction manager. For more
information about using enclave services, see Chapter 3, “Creating and using enclaves,” on page 31.

Figure 2. Work manager services for a single address space transaction manager.

You issue the IWM4CON service at address space initialization time. This connect service returns a token
that is required by the IWM4CLSY and IWM4RPT services. When the address space receives a work
request, it should issue the classify (IWM4CLSY) macro to associate arriving work with a service class.
The subsystem work manager can issue IWM4CLSY in either problem state or supervisor state, in any
PSW key. The PSW key, however, must be compatible with the key specified when IWM4CON was issued.

IWM4CLSY passes WLM information that identifies the work request. This information includes, among
other things, the following:

• Subsystem environment and name (used on IWM4CON)
• Transaction/job name
• Transaction/job class
• User ID
• Accounting information
• LU name
• Network ID

These are called work qualifiers. For a complete list of work qualifiers, see the topic about Defining
classification rules in z/OS MVS Planning: Workload Management. IWM4CLSY also supports a product-

Chapter 2. Using the subsystem work manager services 21

specific parameter, called the subsystem parameter. If none of the available qualifier types defines your
subsystem work manager's work requests, you can use the subsystem parameter.

The transaction manager should document which work qualifiers they use on the IWM4CLSY service, so
that a customer knows how to define the classification rules that are defined in the workload management
ISPF application. Also, because your transaction manager might not support all of the qualifier types, you
should recommend that your customers customize the list of qualifiers for your subsystem type in the
WLM ISPF application.

After receiving the work request and classifying it, the transaction manager then processes the work
request. When it completes the request, it should issue IWM4RPT. The report service provides the arrival
time and, optionally, completion information about the work request and processor consumption data.
Only normal completions are included in the response time information, so the information is not skewed
by abnormal completions. The transaction manager should issue IWM4RPT only once per work request.

Then, at address space cleanup and termination time, the transaction manager should issue a IWM4DIS,
to disconnect from workload management services.

Using the execution delay monitoring services
If you have a single address space subsystem work manager and would like the following functions from
workload management, consider using the services shown in Figure 3 on page 23:

• Associate work coming into the subsystem with a service class
• Goals vs. actual information for reporting
• Response time information and, optionally, processor consumption data for work requests
• Execution delay information about work for reporting and for MVS management purposes

The execution delay monitoring services support response time goals only. If you want your customers to
assign velocity or discretionary goals, or if you want to support period switching, consider using enclaves
instead. For information about using enclave services, see Chapter 3, “Creating and using enclaves,” on
page 31

It is important to use the IWM4CHST service together with the IWM4RPT service, otherwise the delay
information is not meaningful.

22 z/OS: z/OS MVS Programming: Workload Management Services

Figure 3. Work manager and delay monitoring services for a single address space transaction manager.

At address space initialization, the address space issues the IWM4CON service to establish authorization
for subsequent services. It then issues the IWM4MCRE (create) service. Create establishes a monitoring
environment to keep track of the execution delays encountered by a work request. If the transaction
manager sets up multiple tasks to process work, you should create one monitoring environment per task,
assuming each task is dedicated to one work request. Similarly, if the task processes multiple work
requests at the same time, then it should issue one IWM4MCRE for each work request that may be
running under that task at one time. You can use the REQUEST=MULTIPLE parameter on the IWM4MCRE
service to create a pool of monitoring environments at initialization time. This saves the repeated system
overhead of issuing a single IWM4MCRE service for each monitoring environment needed.

The IWM4MCRE service also defines the PSW key in which the transaction manager is to run. Because
monitoring environments are not initially associated with a work request, the IWM4MCRE sets the state of
the monitoring environment to “free”.

When you create a monitoring environment, workload management establishes recovery at both the task
and address space level. If the address space or the task that created the monitoring environment fails,
workload management cleans up the resources associated with the monitoring environment.

When the transaction manager receives a work request, it should issue the IWM4CLSY service to
associate an incoming work request with a service class. At that time, the transaction manager should
issue an IWM4MINI to initialize the monitoring environment. The IWM4MINI service with the
MODE=RESET parameter sets the state of the monitoring environment to “active”, and associates the
monitoring environment with the work request.

Whenever that work request encounters a different state, such as waiting on a conversation, waiting on a
lock, or for I/O, the transaction manager should issue the IWM4MCHS (change state of work request)
service. Since IWM4MCHS is an inline expansion, there is very little overhead, and you can issue it
frequently. Workload management can then update the monitoring environment to reflect these changes,
and represent the execution delays the work request encountered.

Chapter 2. Using the subsystem work manager services 23

When the transaction manager has completed processing the work request, it should issue the IWM4RPT
service. The transaction manager should delete all created monitoring environments at address space
cleanup and termination, and disconnect from workload management services.

Suggested services for a work manager that calls a data manager
If you have a work manager that calls a data manager on the same MVS image, you can use the
combination of services that are described in this topic. If you want to do any of the following, consider
using the services that are shown in Figure 4 on page 24:

• Associate work that is coming into the subsystem with a service class
• Goals versus actual information for reporting
• Response time information and, optionally, processor consumption data for work requests
• Execution delay information about work
• Track work from a work manager to a data manager

Figure 4. Services for a work manager that uses a database manager.

Because the transaction manager is using the work manager services, it must issue the IWM4CON at
address space initialization. In this example, the transaction manager is using monitoring environments,
so it issues an IWM4MCRE at address space initialization time to create the monitoring environment.
Similarly, the database manager is also using monitoring environments, so it issues IWM4MCRE at its
address space initialization.

Assuming that the database manager uses a dedicated dispatchable unit, it should also create one
monitoring environment per task or SRB that it uses. The transaction manager and the database manager
might be running in different tasks, or in the same tasks. The tasks in the figure (one in the work manager,
and one in the database manager) might be the same one.

However, the database manager, instead of using IWM4MINI, issues IWM4MRLT (relate monitoring
environment) when it is called by the transaction manager task. The relate monitoring environment

24 z/OS: z/OS MVS Programming: Workload Management Services

service associates the database manager's monitoring environment for the work request to the
transaction manager's monitoring environment for the same work request. Because the relate service
requires the token and key that identifies the transaction manager's monitoring environment, the
transaction manager should pass the token and key to the database manager. In this example, the
transaction manager monitoring environment is called the parent environment, and the database
manager that issues the relate service is called the dependent environment.

After the database manager has related to the work manager, it can be called to process a specific
database request. Each such call should begin with a transfer (IWM4MXFR) service with a
FUNCTION=CONTINUE parameter, and end with a transfer (IWM4MXFR) with a FUNCTION=RETURN
parameter.

When the work manager issues a call to the database manager, the database manager issues an
IWMMXFER. The work manager state can be either active, or waiting throughout the transfer. The
IWM4MXFR FUNCTION=CONTINUE parameter indicates that the real state for the work request now
resides in the data manager monitoring environment. From that point on, the database manager should
use change state (IWM4MCHS) as its view of the work request changes. You should issue IWM4MRLT and
IWM4MXFR in pairs for each database call or return.

The transfer with the FUNCTION=RETURN parameter resets the dependent monitoring environment state
to free. At this point, workload management recognizes that the dependent monitoring environment no
longer represents the work request. The parent and dependent monitoring environments are still related,
for any future transfers, such as with a second call to the database manager. When the database manager
is done with any work requests that require related monitoring environments between the parent and the
dependent, it should issue the IWM4MRLT with the FUNCTION=DELETE parameter. This disassociates the
parent and dependent monitoring environments.

Services for multiple address space work managers
The structure of the subsystem work manager dictates which workload management services can be
used. A multiple address space work manager normally consists of three kinds of address spaces: router,
execution, and supporting. The router address space receives incoming work requests, and passes them
off to execution address spaces, which might use the services of supporting address spaces. Figure 5 on
page 26 shows the sequence of functions in a multiple address space work manager.

Chapter 2. Using the subsystem work manager services 25

Figure 5. Sequence of function in a multiple address space work manager.

Several groups of services are useful to a multiple address space work manager. They are described in the
following topics:

• Chapter 3, “Creating and using enclaves,” on page 31

The enclave services let you manage transactions across multiple address spaces in the same service
class as the original request. The customer can assign a response time, discretionary, or a velocity goal
to work, and can define period switching.

• Chapter 5, “Using the queueing manager services,” on page 65

The queuing manager services make it possible for the system to dynamically start and stop server
address spaces based on the workload, and manage the work queues associated with the server
address spaces to meet service class goals. The customer can assign a response time, discretionary, or
a velocity goal to work, and can define period switching.

• “Execution delay monitoring services for multiple address space work managers” on page 27.

The execution delay monitoring services let you associate a service class with work, and the customer
can assign a response time goal. You can also get response time and delay information about how well
the work did to meet the goal. Optionally, processor consumption data can be provided. However, if you
want to have the advantages of enclaves (such as having a single transaction that spans multiple
address spaces and is managed to the goal of the originating address space), use enclave services
rather than execution delay monitoring services.

26 z/OS: z/OS MVS Programming: Workload Management Services

Execution delay monitoring services for multiple address space work
managers

The structure of the multiple address space subsystem work manager determines which workload
management services you can use to monitor work in multiple address spaces across a sysplex. The
relate (IWM4MRLT), transfer (IWM4MXFR), and switch (IWM4MSWC) services provide a way for the work
manager to indicate that a transaction is continuing execution somewhere else.

Some questions to help determine which services are appropriate include the following:

• Are the router, execution, and support address spaces all on one MVS image, or can they be distributed
across MVS images?

How many MVS images are involved influences the choice of the relate/transfer pair or switch service.
IWM4MXFR requires both monitor environments to be on the same image, and knowledge of the parent
monitoring environment. IWM4MSWC indicates that the continuation of this work is “somewhere else,”,
either waiting within the MVS image, or in the sysplex, or the network. In addition, it indicates that the
work request is waiting for the continuation to return.

• What are the addressability requirements?

Connect (IWM4CON) and create (IWM4MCRE) identify the key in which future services are issued, and
IWM4MRLT requires addressability to the parent monitoring environment. IWM4MXFR requires
updating the dependent monitoring environment, and requires addressability and key update access to
the parent monitoring environment.

• What are the dispatchable units in the servers and support address spaces?

You must specify the dispatchable unit type on the INIT and RELATE services.
• When are the “arrival time” and the work qualifiers (name, user ID, and so on) known?

The arrival time for the work request is required for INIT, and the work qualifiers are required for
CLASSIFY.

• What is the current communication between the router, servers, and the support address spaces, so
that new data can be passed?

The participating subsystem work managers might want to pass the service class token that is returned
from the IWM4CLSY service, together with the work request using their own communication methods.

Figure 6 on page 28 shows some suggested services for a multiple address space work manager that
take into account the considerations that were discussed previously.

Chapter 2. Using the subsystem work manager services 27

Figure 6. Example of services that monitor work across multiple address spaces.

In the figure, the router might be like a CICS® TOR that routes off the work to an AOR, the execution
address space, for processing. There might be some supporting address space involved that help process
the work requests. The router would issue the IWM4CON macro to connect to workload management. It
would also issue the IWM4CLSY service to associate the arriving work with a service class. Because it also
receives the work request back once it has been processed, it also issues the IWM4RPT service to report
the completion, and the IWM4DIS at address space termination.

The execution address spaces would issue the IWM4MCRE to create the monitoring environments and
record information about the work with the IWM4MCHS service. It would issue the IWM4MNTF to signify
that the execution phase of work request execution is complete and, optionally, to provide processor
consumption data. Then, at address space termination, it would issue the IWM4MDEL service to delete
the monitoring environments.

The supporting address spaces would also use monitoring environments, so they would issue IWM4MCRE
and IWM4MDEL. To show that the information they are keeping in the performance block reflects the
same work request as the monitoring environment created by the execution address spaces, they issue
the IWM4MRLT and IWM4MXFR services.

IWM4MRLT and IWM4MXFR require the supporting address space to be on the same MVS image, and that
the monitoring token is passed from the execution address space to the supporting address space.

Services for work managers that distribute work requests
Some work managers distribute work across systems in a sysplex. Distributed work may originate from
one subsystem work manager, and be processed by another. For example, a work manager may send
work to a data base manager for processing. Other work managers may split up complex work into
smaller pieces and distribute the pieces to other systems in the sysplex for processing.

Whether the work is distributed, or split and distributed, you may still want to keep the work classified
according to the subsystem originating the work request. Not all classification information may be
available to the receiving subsystem. For example, suppose JES has distributed a batch job to a data base
system. The data base system issues IWM4CLSY when it receives the batch job. Because it is not the
same subsystem environment, the batch job is now classified into a service class representing the data
base work, and not to a service class representing batch jobs.

28 z/OS: z/OS MVS Programming: Workload Management Services

A work manager can use the IWMWMCON macro when it receives work and wants it to be classified using
the originator's subsystem environment, and not its own. The IWMWMCON macro lets a caller modify the
subsystem type and subsystem name previously provided on the IWM4CON macro.

Once the receiving subsystem has issued the IWMWMCON macro, the subsystem can issue the
IWM4CLSY macro. The work is then classified according to the modified environment. Note that any other
macro that requires subsystem name, subsystem type, or service class name is affected by the change.
Those macros are:

• IWM4CLSY, which returns a service class based on the modified subsystem environment attributes. See
“IWM4CLSY — Classify work” on page 404 for a complete description.

• IWM4ECRE, which creates an enclave based on the parameter list from IWM4CLSY. See Chapter 3,
“Creating and using enclaves,” on page 31.

• IWM4RPT, which reports on the completion of the work associated with the service class received from
IWM4CLSY. See “IWM4RPT — Report response time” on page 624 for a complete description.

For details about the IWMWMCON macro, see “IWMWMCON — WLM modify connect” on page 372.

Determining the subsystem name and type
A caller must provide a subsystem name and type on the IWMWMCON macro. To determine the
subsystem name or type, a caller can use the REQASCL SYSEVENT. The REQASCL SYSEVENT provides
information about an address space's classification information. The originating subsystem should issue
REQASCL, and pass the information with the work request.

For information about how to use the REQASCL SYSEVENT, see z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO.

Using IWMWMCON when distributing work in a sysplex
The expected use of the IWMWMCON service is in a multiple system work environment, where work is
received by a work router and distributed to other systems in the sysplex. In this case, the enclave or
address space transaction of the originator cannot be used to manage the work request, because a
transaction has a single system scope. When a request or a part of a request is distributed to a different
system, it must run under a new transaction. The example below shows how IWMWMCON can be used in
conjunction with the IWM4ECRE service to create an independent enclave on the system receiving the
work request. For details on using enclaves, see Chapter 3, “Creating and using enclaves,” on page 31.

Example of using IWMWMCON
Suppose a subsystem work manager called DISS splits complex work requests into pieces and distributes
the split work to six data base manager address spaces, called DB1 through DB6, each running on a
separate system in the sysplex. DISS might communicate with the data base address spaces through a
shared queue on DASD or a coupling facility, or through sysplex services. The DISS subsystem does the
following:

1. Receives a work request
2. Determines the work requestor's classification attributes using the SYSEVENT REQASCL macro
3. Splits the request and distributes pieces to DB1 through DB6, passing the information returned by

REQASCL

Each data base subsystem, DB1 through DB6, does the following:

1. Receives the split work request along with its classification attributes
2. Obtains a latch or lock prior to issuing IWMWMCON to serialize the use of the work manager connect

environment
3. Modifies the connect environment by issuing IWMWMCON with the subsystem name and type passed

by DISS

Chapter 2. Using the subsystem work manager services 29

4. Builds a classification parameter list with the attributes passed by DISS using the modify form of the
IWM4CLSY macro

5. Creates an independent enclave using the IWM4ECRE macro to manage the split work request
6. Restores the previous connect environment using the IWMWMCON macro with the previous

subsystem type and name
7. Releases the latch or lock being used to serialize the connect environment
8. Processes the work by joining tasks to the enclave and/or scheduling SRBs into it
9. When the work is finished, deletes the enclave using the IWM4EDEL macro

30 z/OS: z/OS MVS Programming: Workload Management Services

Chapter 3. Creating and using enclaves

An enclave is a transaction that can span multiple dispatchable units (SRBs and tasks) in one or more
address spaces and is reported on and managed as a unit. The enclave is managed separately from the
address spaces it runs in. CPU and I/O resources associated with processing the transaction are managed
by the transaction's performance goal, accounted to the transactions, and reported to the transaction. A
program can create an enclave, schedule SRBs into it, or join tasks to it. A multisystem work manager can
process a transaction on multiple systems by using a multisystem enclave.

Use the following services to work with enclaves:

• The IWM4ECRE macro allows you to create an enclave.
• The IWMEREG macro allows you to register an enclave to prevent it from premature deletion.
• The IWMEDREG macro allows you to deregister an enclave.
• The IEAMSCHD macro allows you to schedule an SRB into the enclave.

For information about using the IEAMSCHD macro, see z/OS MVS Programming: Authorized Assembler
Services Guide.

• The SYSEVENT ENCASSOC macro allows an enclave running SRBs to be associated with an address
space. This way the storage-related resources of the server address space can be managed to the
performance goal of the enclave.

For information about using the SYSEVENT ENCASSOC macro, see z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO.

• The SYSEVENT ENCSTATE macro allows the creator of an enclave to notify SRM when the enclave is idle,
so that its state is sampled correctly.

For information about using the SYSEVENT ENCSTATE macro, see z/OS MVS Programming: Authorized
Assembler Services Guide.

• The IWMEJOIN macro allows a task to join an enclave.
• The IWMELEAV macro allows a task to leave an enclave.
• The IWMEXPT macro allows you to export an enclave to all systems in a parallel sysplex.
• The IWMUEXPT macro allows you to undo an export.
• The IWMIMPT macro allows you to import an enclave that has been exported.
• The IWMUIMPT macro allows you to undo an import.
• The IWM4EQRY macro allows a program to query the classification information associated with an

enclave.
• The IWMESQRY macro provides a program with information about whether the current dispatchable

unit is associated with an enclave.
• The IWM4EDEL macro allows a program to delete a previously created enclave.

Why would you use an enclave?
Use an enclave when you have a transaction that spans multiple tasks or SRBs in one or more address
spaces, and you want to manage it as a unit. An enclave allows you to manage and report on resource
consumption in the enclave based on a performance goal unrelated to the performance goal(s) of the
address space(s) in which the enclave's dispatchable units execute.

An independent enclave represents a complete transaction. Its performance goal is assigned based on
the service class to which it is classified when the enclave is created. Each independent enclave starts in

© Copyright IBM Corp. 1988, 2021 31

period 1 of its service class and switches periods based on the service consumed by the dispatchable
units belonging to the enclave.

A work-dependent enclave represents a continuation of an existing independent enclave's transaction. It
inherits its classification and performance goals from the independent enclave. Service consumed by a
work-dependent enclave is treated as if it was consumed by the independent enclave, and can cause the
independent enclave (including all associated work-dependent enclaves) to switch into later periods.

A dependent enclave represents the continuation of an existing address space transaction under a new
set of dispatchable units. Its performance goal is inherited from the existing address space transaction
based on the service class (or PGN) and period being used to manage the address space at the instant the
dependent enclave is created. CPU service consumed by a dependent enclave is treated as if it were
consumed by the address space transaction, and can cause the address space along with the dependent
enclave to switch into later periods.

If your work manager does not use enclaves, work can only be managed on an address space basis, tied
to the address space the work runs in. If you have a transaction that spans multiple address spaces, use
an enclave to manage the transaction as a unit.

If you have an address space that executes multiple transactions, use enclaves to isolate the transactions
so they can be reported on and managed individually.

SRBs in enclaves
Enclave SRBs offer advantages over local and global SRBs in that they are preemptable and can be run at
a lower major dispatching priority than tasks in the same address space.

SRBs in enclaves work well for transactions having short durations, not issuing supervisor calls, and not
otherwise requiring a task environment. SRBs have very little startup overhead compared to tasks. The
subsystem can create an enclave using the IWM4ECRE macro, and then schedule SRBs to run in the
enclave using the IEAMSCHD macro.

The SYSEVENT ENCASSOC macro is used to indicate that an enclave and an address space are related for
storage management purposes. The ENCASSOC sysevent is necessary only when SRBs are used. A task
that joins an enclave automatically associates the home address space with the enclave.

Note : It is not required to use SYSEVENT ENCASSOC when you run SRBs in enclaves. It is an
improvement for storage management but it is not recommended when the address space into which the
SRB is scheduled runs other significant work because the association may change the goal management
for the target address space.

For more information about the SYSEVENT macro, see z/OS MVS Programming: Authorized Assembler
Services Reference SET-WTO.

For more information about SRBs and how to use them, see z/OS MVS Programming: Authorized
Assembler Services Guide.

For more information about the IEAMSCHD macro, see z/OS MVS Programming: Authorized Assembler
Services Reference EDT-IXG.

Tasks in enclaves
Using tasks in enclaves offers all the advantages of enclaves and allows the enclave to perform functions
that require a task environment, such as supervisor calls. Unlike SRBs, tasks can dynamically leave and
join an enclave as they finish one piece of work and begin another.

A subsystem can create an enclave using the IWM4ECRE macro, join the task to the enclave using the
IWMEJOIN macro, process the work request, and remove the task from the enclave using the IWMELEAV
macro. If a task joins an enclave and subsequently attaches subtasks, the subtasks are automatically
joined to the enclave. The interactions between enclaves and attach/detach are summarized as follows:

• Subtasks attached while the mother task belongs to an enclave inherit membership in the same
enclave.

32 z/OS: z/OS MVS Programming: Workload Management Services

• Subtasks that already exist when the mother task joins an enclave are not automatically made part of
the enclave although they may explicitly join and leave the enclave using IWMEJOIN and IWMELEAV.

• Tasks which inherit membership in an enclave can only leave the enclave by terminating or by deleting
the entire enclave.

• Mother tasks with subtasks that inherited enclave membership cannot leave the enclave until all such
subtasks terminate.

Comparison of enclaves and execution delay services
You cannot use tasks in enclaves and execution delay services in the same address space. This same
restriction applies to SRBs in enclaves if you use the SYSEVENT ENCASSOC to associate the enclave with
an address space. When deciding which set of services to use for a work manager, you should consider
the following advantages of enclaves over execution delay services:

• Isolation of transactions

Enclaves allow separate dispatching priorities to be assigned to work running in the same address
space. Therefore, workload management can manage this work to different performance goals. Without
enclaves, all work in an address space runs at the same major dispatching priority.

• Period control

Enclaves can run in a service class with multiple periods. Because resource consumption is tracked for
individual enclaves, the enclave can move from one period to the next as it consumes CPU resource.
The goals for the periods can be chosen to favor short transactions over long ones within a single
address space.

• Full goal support

Enclaves support response time, velocity, and discretionary goals, whereas transactions reported using
execution delay services can be managed only to response time goals.

• Server address space management

Enclaves are independent from an address space, so a transaction that moves from the originating
address space to one or more server address spaces can be managed as a single transaction.

• Multisystem scope

Enclaves can span address spaces on multiple systems in a parallel sysplex, whereas transactions
supported using execution delay services are constrained to a single system.

Creating an enclave
A subsystem uses the IWM4ECRE service to create an enclave. You can define independent enclaves,
work-dependent enclaves, or dependent enclaves.

Comparison between independent, dependent, and work-dependent
enclaves

You use independent, dependent and work-dependent enclaves for different purposes, as follows:

• Independent enclaves

Use an independent enclave to represent a new transaction. The TYPE=INDEPENDENT parameter on
IWM4ECRE is the default. An independent enclave must be classified into a service class or
performance group when it is created, so the caller must provide classification qualifiers as input to
IWM4ECRE. The home address space when IWM4ECRE is issued is the owner of an independent
enclave. CPU service consumed by the enclave is accumulated in the SMF type 30 record of the owning
address space and the SMF type 72 record of the enclave's service class or performance group period.

For an independent enclave, the connect token provided with the CLSFY keyword of macro IWM4ECRE
must not be associated with a user key (as specified with the CONNTKNKEY parameter of IWM4CON, or
IWMCONN).

Chapter 3. Creating and using enclaves 33

For examples showing how to use independent enclaves, see “Scheduling an SRB in an independent
enclave” on page 36 and “Joining tasks to an independent enclave” on page 38.

• Dependent enclaves

Use a dependent enclave when you have an existing address space defined with its own performance
goal that you wish to extend to programs running under dispatchable units in other address spaces. For
a dependent enclave that is created with TYPE=DEPENDENT specified on IWM4ECRE, the owner will
become the home address space at the time the service is invoked. The owner address space of a
dependent enclave, resulting from IWM4ECRE with TYPE=WORKDEPENDENT specified, will be the
creating enclave's (that is, the enclave the TCB/SRB was running in when it called IWM4ECRE) owner. A
dependent enclave derives its performance goal from the owning address space, and all CPU service
consumed by the enclave is accumulated in the SMF type 30 record of the owning address space and
the SMF type 72 record of the owning address space's service class or performance group period.

The TYPE=MONENV parameter creates a dependent enclave owned by the address space of a specified
monitoring environment. Note that this dependent enclave is managed to the goal established for the
owning address space, not the response time goal that might have been established for the monitoring
environment.

For an example showing how to use dependent enclaves, see “Using dependent enclaves” on page 40.
• Work-dependent enclaves

Use a work-dependent enclave to extend an existing independent enclave's transaction. A work-
dependent enclave inherits its classification and its owner address space from the independent enclave
it extends. CPU service consumed by the enclave is accumulated in the SMF type 30 record of the
owning address space and the SMF type 72 record of the enclave's service class.

For more specific differences between independent, work-dependent, and dependent enclaves, see Table
13 on page 47.

Registering an enclave
Enclave transactions do not only exist within a subsystem, but also across subsystems. Enclaves can be
deleted by any subsystem at any time. So, it might happen that a subsystem deletes an enclave that is still
used by another subsystem. To avoid premature deletion, you can register an enclave. The registration
indicates to the system that an enclave must not be deleted until the registering subsystem deregisters it.

The new service, IWMEREG, allows an enclave to be registered in order to prevent it from premature
deletion until the enclave is deregistered. The new service, IWMEDREG, allows the registration for an
enclave to be undone and deleted

The registration is owned by the job step task of the home address space at the time IWMEREG is
invoked. If the job step task or the address space terminates, the system implicitly deregisters the
enclave.

Only subsystems which utilize enclaves created by other subsystems need to register interest in an
enclave while using it. If a subsystem only uses enclaves that it created itself, there is no need to register
interest in the enclave.

Multisystem enclaves
Some work managers split large transactions across multiple systems in a Parallel Sysplex, improving the
transaction's overall response time. These work managers can use multisystem enclaves to provide
consistent management and reporting for these types of transactions.

Note : The use of multisystem enclaves requires the definition of a coupling facility structure named
SYSZWLM_WORKUNIT in the CFRM policy. Once the CFRM policy with this structure definition is
activated, then WLM will automatically connect to the structure, enabling the use of multisystem
enclaves. See z/OS MVS Planning: Workload Management for more information.

Among the benefits of using multisystem enclaves:

34 z/OS: z/OS MVS Programming: Workload Management Services

• All parts of a split transaction are managed using the same service class. If the service class has
multiple periods, the CPU usage of the entire transaction is used to switch periods.

• The enclave owner's SMF type 30 record includes CPU time accumulated by all of the multisystem
enclaves it owns, for all systems on which they executed. Remote system service is reported by
individual system within the SMF type 30 record.

A multisystem enclave begins as either an independent or dependent enclave on a single system. This
enclave is called the original enclave. Note that WLM does not allow you to export work-dependent
enclaves. If the work manager decides to involve other systems in the processing of the work unit, it
issues IWMEXPT to export the enclave to other systems in the parallel sysplex. The export token it
receives back from IWMEXPT is a sysplex-wide unique name that it must now pass along with the work
request to other systems.

Each work manager in the supporting address spaces on other systems can now issue IWMIMPT to
import the enclave onto its system. It passes the export token and receives a special enclave token that is
valid for its system only. This new, supporting enclave is called a foreign enclave. The original enclave and
the foreign enclaves are all referred to as one unit called a multisystem enclave.

When work has completed in a foreign enclave, the supporting work manager issues IWMUIMPT to
unimport the enclave, and then signals its completion to the original work manager. When all of the
supporting work managers have unimported their enclave, the original work manager issues IWMUEXPT
to unexport the original enclave. When all work is finished, the original work manager that created the
original enclave deletes it.

If your subsystem uses an enclave that it did not create for its processing, then you should use the
registration services (IWMEREG, IWMEDREG) to protect the enclave against deletion by its owner while
your subsystem is using it. The IWMUIMPT service delays the physical deletion of an enclave as long as
the enclave is registered by any subsystem

Each work manager must first connect to WLM using the IWM4CON service, specifying EXPTIMPT=YES to
enable exporting and importing. IWMEXPT, IWMIMPT, IWMUIMPT, and IWMUEXPT must all be invoked
from the address space that connected.

WLM will automatically undo a work manager's export and import requests when:

• The work manager disconnects from WLM
• The work manager's connecting task or address space ends
• The work manager's system fails

If an export is undone, whether by the original work manager's request or due to WLM's recovery action,
before all of the supporting work managers have completed their work in the foreign enclaves, the
outstanding imports are handled as follows:

• An outstanding import on the same system as the original enclave is automatically undone. (When a
work manager on the same system as the original work manager attempts to import the original
enclave, it receives the original enclave token. It is not really exported at all.) The only effect will be a
warning return code when the work manager attempts to unimport the enclave.

• An outstanding import on a foreign system will remain in effect. WLM provides no notification to the
supporting work manager that the export has ended. The supporting work manager must learn of the
failure through its own mechanisms and then terminate the work on its own.

• New import requests are rejected. The supporting work manager should terminate any work being done
on behalf of the original work manager.

As a transaction flows from one work manager to another, it is possible that more than one work manager
will split its processing across multiple systems. In this way, an original enclave can be exported multiple
times, both by the original work manager and by other work managers. Each export request is tracked
separately, and requires a corresponding unexport request. Multiple concurrent exports all share the
same export token.

Chapter 3. Creating and using enclaves 35

If a work manager on the original system attempts to import the original enclave, it will receive the
enclave token of the original enclave. The work manager can schedule SRBs into or join tasks to the
original enclave just as it would any other enclave on the same system.

Just as an enclave can be exported multiple times, it can also be imported multiple times by one or more
supporting work managers. Each import request is tracked separately, and requires a corresponding
unimport request. Multiple concurrent imports on a single system all share a single foreign enclave.

A foreign enclave cannot be exported—in other words, once an enclave has been imported onto a foreign
system, it cannot be exported again from that system. If a work manager invokes IWMEXPT for a foreign
enclave, it will receive a warning code along with the existing export token for that enclave.

For an example showing how to use multisystem enclaves, see “Using a multisystem enclave” on page
42.

Scheduling an SRB in an independent enclave
Suppose an address space representing a subsystem uses the specialized processing services of a
supporting address space to satisfy a work request. The subsystem creates an independent enclave that
is used by an SRB executing in the supporting address space on behalf of the work request. Part of the
work request executes under an SRB in the subsystem address space, so that SRB uses the same enclave.

Figure 7 on page 37 shows the two address spaces.

36 z/OS: z/OS MVS Programming: Workload Management Services

Figure 7. Creating an independent enclave and scheduling an SRB

Figure 7 on page 37 illustrates the following sequence:

1. Connect as a work manager

Subsystem address space A issues IWM4CON to connect to workload management with
WORK_MANAGER=YES specified or defaulted. This makes work management services, including
enclave services, available to the connecting address space.

2. Create enclave Z

Subsystem address space A wants to manage multiple SRBs (SRBs 1 and 2) as a unit, so address
space A creates an independent enclave Z by issuing IWM4ECRE. Subsystem address space A is the
home address space, and is the owner of enclave Z. Any work that the subsystem and its supporting
address space B process can be managed as an enclave. Classification information is passed in with

Chapter 3. Creating and using enclaves 37

IWM4ECRE so workload management can assign the enclave to a service class or performance group
and manage to those goals.

For more information, refer to “Performance management of address spaces with enclaves” on page
44.

3. Schedule SRB 1 into enclave Z

The subsystem address space then schedules an SRB, SRB 1, to execute in its own address space and
to be managed as part of enclave Z, using the IEAMSCHD macro:

IEAMSCHD ENV=PRIMARY,
 EPADDR=entry_point_address,
 PRIORITY=ENCLAVE,
 ENCLAVETOKEN=tokenZ

Where the subsystem address space has defined:

tokenZ FL4 The enclave token for enclave Z

4. Schedule SRB 2 into enclave Z

The subsystem address space then schedules an SRB (SRB 2) to execute in supporting address space
B and to be managed as part of enclave Z, using the IEAMSCHD macro:

IEAMSCHD ENV=STOKEN,
 TARGETSTOKEN=tokenB,
 EPADDR=entry_point_address,
 PRIORITY=ENCLAVE,
 ENCLAVETOKEN=tokenZ

5. Wait for the SRBs to complete and delete enclave Z

The subsystem waits for the SRBs to complete the request, then deletes the enclave using the
IWM4EDEL macro and returns to the caller.

Joining tasks to an independent enclave
An address space representing a subsystem is using a supporting address space for part of the processing
for a unit of work. The subsystem address space creates an independent enclave, and a task in the
supporting address space joins the enclave. A task in subsystem address space can also join the enclave
when it is processing on behalf of the unit of work.

Figure 8 on page 39 shows how this works.

38 z/OS: z/OS MVS Programming: Workload Management Services

Figure 8. Creating an enclave and joining tasks to it

Figure 8 on page 39 illustrates the following sequence:

1. Connect as work manager.

Subsystem address space A issues IWM4CON to connect to workload management with
WORK_MANAGER=YES specified or defaulted. This makes work management services, including
enclave services, available to the connecting address space.

2. Create enclave X.

Subsystem address space A wants to manage work in multiple address spaces as a unit, so address
space A creates independent enclave X by issuing IWM4ECRE. Subsystem address space A is the
home address space, and is the owner of the enclave. IWM4ECRE passes back the enclave token
tokenX to the subsystem. Any work that the subsystem and its supporting address space B process can
be managed together as an enclave. Classification information is passed in with IWM4ECRE so
workload management can assign the enclave to a service class or performance group and manage to
those goals.

For further information, refer to “Performance management of address spaces with enclaves” on page
44.

Chapter 3. Creating and using enclaves 39

3. Task 1: Join enclave X.

The subsystem passes the work to its supporting address space B along with the enclave token tokenX
from IWM4ECRE. Before Task 1 in address space B runs the work passed in by the subsystem, it joins
the enclave by issuing the IWMEJOIN service with enclave token tokenX. Now the work running under
Task 1 is managed to the goal of the enclave.

Although this example shows only one enclave, the subsystem can create an enclave for each new unit
of work that arrives. These enclaves can be running work simultaneously in the subsystem and the
supporting address space, with each unit of work being managed to its own unique goal.

4. Task 1: Attach subtask; detach subtask.

In address space B, Task 1, which now belongs to enclave X, issues the ATTACH macro to create a
subtask. This subtask will also, automatically, be part of enclave X and be managed to the enclave's
goal. When the subtask is detached, it automatically leaves the enclave. The subtask cannot use
IWMELEAV to do this. Each subtask attached by Task 1 after it joins the enclave must be detached
before Task 1 leaves the enclave.

5. Task 1: Leave enclave X.

Task 1 finishes its processing and leaves the enclave by issuing the IWMELEAV service with the
enclave token tokenX specified. Any processing in Task 1 after it leaves the enclave is managed to the
goal of the address space, not of the enclave.

6. Task 2: Join enclave X.

If the subsystem itself has work to do on behalf of the unit of work, it can join a task, Task 2, to the
same enclave as the supporting address space used. It uses the same enclave token, tokenX, on
IWMEJOIN. The work in Task 2 is now managed to the enclave's goal. Task 1 and 2 can be run
concurrently or in sequence. At any point in time, an enclave can have multiple tasks and/or SRBs
running in it across multiple address spaces, and they are all managed to the same enclave goal.

7. Task 2: Leave enclave X

Task 2 finishes its processing for the transaction and leaves the enclave. The task is now managed to
the address space goal.

8. Delete enclave X.

The transaction is now complete, so the subsystem deletes the enclave using IWM4EDEL with enclave
token tokenX. Note that the address space that deletes the enclave need not be the same one that
created it.

Using dependent enclaves
When a unit of work is processed in multiple address spaces, you can use dependent enclaves to tie the
work done in a supporting (server) address space back to the originating client address space. The
dependent enclave represents the continuation of an existing address space transaction under a new set
of dispatchable units in another address space.

Figure 9 on page 41 shows how this works.

40 z/OS: z/OS MVS Programming: Workload Management Services

Figure 9. Using dependent enclaves

Figure 9 on page 41 illustrates the following sequence:

1. Request subsystem function.

The originating address space, address space A, sends a work request to subsystem address space B,
for example, by issuing a space-switching PC.1 Address space A could be a TSO, batch job, or started
task. The address space's performance goal is used to manage the transaction while running in
address space A and also when running in the dependent enclave.

2. Determine if an enclave exists.

Subsystem address space B uses IWMESQRY to determine whether the caller is already in an enclave.
If it is in an enclave, it would use that enclave and schedule SRBs to the enclave, or join tasks to the
enclave.

3. Create dependent enclave Y.

If the caller is not in an enclave, the subsystem creates a dependent enclave using IWM4ECRE with
the TYPE=DEPENDENT parameter. The home space when IWM4ECRE is issued, in this example
address space A, is the owner of the dependent enclave. No classification information is required on
IWM4ECRE for a dependent enclave. The service class or performance group of the owning address
space A is used to manage the work in the enclave. The subsystem does not need to connect to
workload management (using IWM4CON) to create a dependent enclave.

4. Pass enclave token.

The subsystem posts Task 1 in the supporting address space, address space C, to join the enclave,
passing it the enclave token tokenY passed back by IWM4ECRE. The subsystem can also schedule

1 A space-switching PC isn't required—it is used here only as an example. A nonspace-switching PC or other
linkage can be used so long as the originating space remains the home space.

Chapter 3. Creating and using enclaves 41

SRBs into the same enclave. The work running in the dependent enclave executes in address space C
but is managed to the goal of the owning address space A.

5. Join enclave Y.

Task 1 joins enclave Y using the enclave token passed from the subsystem. The work running under
Task 1 is now managed to the goal of address space A.

For further information, see “Performance management of address spaces with enclaves” on page
44.

6. Attach subtask; detach subtask.

Task 1 may attach one or more subtasks while it is joined to enclave Y. These subtasks are
automatically joined to enclave Y and also managed to address space A's goal.

7. Leave enclave Y.

When Task 1 completes the work request, it leaves the enclave. It reverts back to being managed to
address space C's goal.

8. Delete the enclave.

The subsystem waits for the tasks, and any SRBs, to complete the request, then deletes the enclave (if
it created it) and returns to the caller.

Using a multisystem enclave
In this case, a work manager will process a work request using one or more supporting address spaces on
different systems in a Parallel Sysplex.

Figure 10 on page 42 shows how this works.

Figure 10. Using a multisystem enclave

Figure 10 on page 42 illustrates the following sequence:

1. Connect as work manager.

42 z/OS: z/OS MVS Programming: Workload Management Services

The work manager issues IWM4CON, with WORK_MANAGER=YES specified or defaulted so that it can
create independent enclaves, and EXPTIMPT=YES specified to allow for exporting the enclaves.

Note : It is assumed here that the CFRM policy already contains the coupling facility structure
SYSZWLM_WORKUNIT, which is required for the use of multisystem enclaves. If the coupling facility
structure is not available, IWM4CON will succeed, but export and import requests will return errors.
See z/OS MVS Planning: Workload Management for more information.

2. Create original enclave E.

The work manager creates an independent enclave in address space A on system 1 by issuing
IWM4ECRE. Address space A is the owner of the original enclave. Classification information is passed
in with IWM4ECRE so workload management can assign the enclave to a service class or
performance group. IWM4ECRE passes back the enclave token tokenE to the work manager.

3. Address space A on System 1: Export enclave E.

The work manager exports enclave E to all other systems in the parallel sysplex by issuing IWMEXPT
with the enclave token tokenE. IWMEXPT passes back the export token tokenX. The work manager
can now pass this sysplex-wide unique export token to supporting address spaces on other systems,
using its own communication mechanism.

4. Address space B on System 2: Import enclave E'.

Once an enclave has been exported, a work manager in the supporting address space B can import
the enclave by issuing IWMIMPT with the export token tokenX. A foreign enclave E' is created. It
receives back an enclave token tokenE' that is valid on system 2 only.

Although this example shows only one supporting address space on one separate system, the
enclave can be imported by several address spaces on several different systems in the parallel
sysplex. These foreign enclaves can all be running work simultaneously, with each unit of work being
managed to the goals of the original enclave.

5. Task J: Join foreign enclave E'.

Task J in address space B on system 2 joins the foreign enclave by issuing IWMEJOIN with the
enclave token tokenE'.

6. Task J: Leave foreign enclave E'

Task J in address space B on system 2 leaves the foreign enclave by issuing IWMELEAV with the
enclave token tokenE'. Any further processing in Task J after it leaves the enclave is now managed to
the goal of the address space B, not of the enclave.

7. Task K: Join original enclave E

If work is to be done in the original enclave at the same time that work is being done in the foreign
enclaves, task J in address space A on system 1 can join the original enclave by issuing IWMEJOIN
with the enclave token tokenE. The work in Task K is now managed to the goals of the original
enclave. At any point in time, a multisystem enclave can have multiple tasks and/or SRBs running in it
across multiple address spaces on multiple systems, and they are all managed to the original
enclave's goal.

8. Task K: Leave original enclave E.

Task K in address space A on system 1 leaves the original enclave by issuing IWMELEAV with the
enclave token tokenE. Any further processing in Task K after it leaves the enclave is now managed to
the goal of the address space A, not of the enclave.

9. Address space B on System 2: Unimport enclave E'.

Once the task has left the foreign enclave, the work manager in the supporting address space B
unimports the enclave by issuing IWMUIMPT with the export token tokenX. This deletes the foreign
enclave E'. The supporting work manager now reports its completion and any results to the original
work manager using its own communication mechanism.

10. Address space A on System 1: Unexport enclave E'.

Chapter 3. Creating and using enclaves 43

After every supporting work manager has reported its completion, the original work manager
unexports the enclave by issuing IWMUEXPT with the export token tokenX.

11. Delete enclave X.

The transaction is now complete, so the work manager deletes the enclave using IWM4EDEL with
enclave token tokenE.

Performance management of address spaces with enclaves
Table 12 on page 45 describes the performance management of address spaces with enclaves in terms
of MPL level, paging, dispatching, and I/O priorities.

Address spaces with enclaves (dependent enclaves or independent enclaves) are managed either
towards the performance goal of the address space or towards the performance goal of the enclave
depending on how the program associates the enclave with the address space. In either case, the
enclave’s dispatching priority is always managed towards the performance goal of the enclave.

44 z/OS: z/OS MVS Programming: Workload Management Services

Table 12. Performance management of address spaces with enclaves

Managing performance towards the performance
goal of the address space

Managing performance towards the performance
goal of the enclave

Address spaces are managed towards the
performance goal of the address space if an
enclave SRB was scheduled to run in this address
space without the enclave being associated to the
address space (the SRB did not issue SYSEVENT
ENCASSOC).

In this case, the non-enclave work is also
managed towards the performance goal of the
address space.

Note : An address space must be non-swappable if
it has enclave SRBs dispatched and SYSEVENT
ENCASSOC has not been issued.

Address spaces are managed towards the
performance goal of the enclave, if one of the
following is true:

• At least one task of the address space has joined
an enclave by the services IWMEJOIN or
IWM4STBG having been issued, or

• At least one enclave SRB was scheduled to run in
this address space that has issued the SYSEVENT
ENCASSOC to associate the enclave with this
address space.

Note that the performance management of the
non-enclave work depends on the specification of
the IEAOPT parameter ManageNonEclaveWork:

• For ManageNonEnclaveWork=NO (and for
releases earlier than z/OS V1R12): It is assumed
that no work consuming significant CPU service is
running in the address space outside of an
enclave. The CPU consumption of work running
outside of enclaves is not included when
Workload Management assesses the impact of
CPU adjustments for the enclave work.

• For ManageNonEnclaveWork=YES: The non-
enclave work of an address space is performance
managed towards the first service class period of
the address space goal. Based on this expanded
performance management it is recommended to
verify the performance goals for the service class
of the address spaces which process enclave
work. See Figure 11 on page 46 for an example.

Note : The non-enclave work of the address
space is not performance managed if the service
class of the address space is a system-provided
service class other than SYSOTHER, even if the
ManageNonEnclaveWork=YES IEAOPT
parameter was specified.

Refer to z/OS MVS Initialization and Tuning
Reference for further information about the OPT
parameter.

Figure 11 on page 46 shows an example of how the non-enclave work of Task F is managed towards the
first period of the service class A (SC A) which is the address space goal.

Chapter 3. Creating and using enclaves 45

Figure 11. Example of performance management of non-enclave work with IEAOPT parameter
ManageNonEnclaveWork=YES

Using ENQ/DEQ or latch manager services with enclaves
There are some considerations to be aware of when using enclaves for tasks or SRBs that serialize on
resources using the ENQ macro or the latch manager callable services. A task cannot change its
transaction status, that is, cannot join or leave an enclave, while holding a resource using ENQ or the latch
manager; an SRB cannot issue SYSEVENT ENCASSOC while holding a resource using the latch manager.
Otherwise, enqueue promotion processing may not work properly. The recommended sequence is:

1. Task: Join an enclave using IWMEJOIN or IWM4STBG. SRB: Associate enclave with an address space
using SYSEVENT ENCASSOC.

2. Obtain resource with ENQ or latch manager.
3. Release resource.
4. Task: Leave an enclave using IWMELEAV or IWM4STEN. SRB: Disassociate enclave from the address

space using SYSEVENT ENCASSOC.

In addition, to ensure correct enqueue promotion processing, a task executing in an enclave should not
make the following types of ENQ requests:

• Directed enqueues, that is, issuing the ENQ macro with the TCB parameter
• Matching task enqueues, that is, issuing the ENQ macro with the MASID and MTCB parameters

Enclave resource accounting
The accounting for resources consumed by an enclave depends on whether it is an independent, work-
dependent, dependent, or a foreign enclave.

A dependent enclave is a logical continuation of the transaction already active in a client's address space.
Therefore, CPU and MSO service for a dependent enclave is included in the SMF type 30 record of the
owning address space, and in the SMF type 72 record for the address space's transaction. MSO service for
the enclave is calculated based on the frame count of the owning address space, not on frame usage in
the address space(s) where the enclave is executing.

For an independent enclave and for work-dependent enclaves, CPU service is included in the SMF type 30
record of the owning address space, and in the SMF type 72 record for the enclave's service class or
performance group period. MSO service is not calculated for either kind of enclave.

46 z/OS: z/OS MVS Programming: Workload Management Services

For dependent, work-dependent and independent enclaves, IOC service is included in the SMF type 30
and 72 records associated with the address space where the enclave work is executing. SRB service for
enclaves is always zero.

For a foreign enclave, CPU time is included in the SMF type 30 record of the owning address space on the
originating system. It is reported separately from local CPU time. CPU service is also included in the SMF
type 72 record on each system where the enclave executed.

Because CPU time used by foreign enclaves is included in the owner's SMF type 30 record, it is not
included in the SMF type 30 records on the other systems where it actually executed. In order for those
other systems to have some record of the CPU time used by foreign enclaves, an SMF type 97 record is
written for each SMF global recording interval. This SMF type 97 record identifies the CPU time used by
foreign enclaves during that interval, broken down by originating system. The installation can review the
originating system's SMF type 30 records to identify the specific jobs that consumed the CPU time in the
foreign enclaves. Note that because data is collected asynchronously for the SMF type 30 records, and
because SMF intervals can vary from system to system, it may not be possible to exactly match the times
on SMF type 30 records with those on SMF type 97 records from one global interval to another.

Table 13 on page 47 compares control characteristics and resource accounting for independent, work-
dependent, dependent, and foreign enclaves.

Table 13. Enclave characteristics and resource accounting. (a.s. = address space)

Independent
enclave

Dependent enclave Foreign enclave Work-
dependent
enclave

Dispatchable
unit type

SRBs and/or
tasks

SRBs and/or tasks SRBs and/or
tasks

SRBs and/or
tasks

New
transaction?

Yes No No No

Owner Home space at
the time
IWM4ECRE is
issued

Depends on the TYPE parameter
passed to IWM4ECRE:

• If TYPE=DEPENDENT, the home
a.s. at the time the service was
issued.

• If TYPE=WORKDEPENDENT, the
creating (dependent) enclave's
home a.s.

• If TYPE=MONENV, the a.s.
associated with the monitoring
environment - see Note 1

Owner of the
original enclave

Owner a.s. of the
creating
independent
enclave

Server a.s. where
enclave work is
dispatched

a.s. where enclave work is
dispatched

a.s. where
enclave work is
dispatched

a.s. where
enclave work is
dispatched

Service class/
report class

Assigned based
on attributes
passed to
IWM4ECRE (see
Note 2)

Same as owner. Same service &
report class as
original enclave.

Same as owning
independent
enclave's

Chapter 3. Creating and using enclaves 47

Table 13. Enclave characteristics and resource accounting. (a.s. = address space) (continued)

Independent
enclave

Dependent enclave Foreign enclave Work-
dependent
enclave

CPU time Owner's
SMF30Cpt (total)
owner's
SMF30Enc
(independent
and work-
dependent
enclaves only)

Owner's SMF30Cpt (total) owner's
SMF30Det (dependent enclave
only)

Owner's
SMF30MRI (for
foreign ind.
enclave) owner's
SMF30MRD (for
foreign
dependent
enclave)

Owner's
SMF30Cpt (total)
owner's
SMF30Enc
(independent
and work-
dependent only)

CPU service by
a.s.

Owner's
SMF30Csu (total)
owner's
SMF30Esu
(independent
and work-
dependent
enclaves only)

Owner's SMF30Csu (total) CPU time/
SMF30MRA/256
* CPU coefficient
(CPU coefficient
can be obtained
from SMF 72
record)

Owner's
SMF30Csu (total)
owner's
SMF30Esu
(independent
and work-
dependent only)

CPU service by
period

Enclave's
R723Ccpu

Owner's R723Ccpu Enclave's
R723Ccpu

Enclave's
R723Ccpu

DASD I/O
connect time by
a.s. (see Note 3)

Owner's
SMF30Eic
(independent
and work-
dependent
enclaves only)

Owner's SMF30Aic (dependent
enclave + a.s.)

n/a Owner's
SMF30Eic
(independent
and work-
dependent only)

DASD I/O
connect time by
period (see Note
3)

Enclave's
R723Cict

Owner's R723Cict Enclave's
R723Cict

Enclave's
R723Cict

DASD I/O
counts by a.s.

Owner's
SMF30Eis
(independent
and work-
dependent
enclaves only)

Owner's SMF30Eis (independent
and work-dependent enclaves only)

n/a Owner's
SMF30Eis
(independent
and work-
dependent only)

DASD I/O
counts by period

Enclave's
R723Circ

Owner's R723Circ Enclave's
R723Circ

Enclave's
R723Circ

Page delay
samples, with
storage mgt.
(see Note 4)

Enclave's
R723Cspv

Owner's R723Cspv Enclave's
R723Cspv

Enclave's
R723Cspv

Page delay
samples,
without storage
mgt. (see Note
4)

Enclave's
R723Caxm

Owner's R723Caxm Enclave's
R723Caxm

Enclave's
R723Caxm

IOC service Server's SMF 30
and 72 records

Server's SMF 30 and 72 records Server's SMF 30
and 72 records

Server's SMF 30
and 72 records

48 z/OS: z/OS MVS Programming: Workload Management Services

Table 13. Enclave characteristics and resource accounting. (a.s. = address space) (continued)

Independent
enclave

Dependent enclave Foreign enclave Work-
dependent
enclave

SRB service n/a n/a n/a n/a

MSO service n/a Owner's SMF30Mso, based on
owner's frame count

n/a n/a

Notes :

1. The address space associated with the monitoring environment is one of the following:

• The address space related to the monitoring environment via the IWMMRELA service
• If there is no related space, the home space at the time IWM4MINI was issued

2. The attributes passed to IWM4ECRE are used with the classification rules in the active service policy to
assign a service class and/or report class to the enclave.

3. Connect time is used as an example here. Other measures associated with I/O in the SMF records are:

• DASD I/O disconnect time in fields SMF30EID, SMF30AID, R723CIDT, and SMF72IDT.
• DASD I/O wait time in fields SMF30EIW, SMF30AIW, R723CIWT, and SMF72IWT.

4. Storage management is in effect for an enclave if either of the following is true:

• The enclave includes one or more tasks.
• The enclave includes at least one SRB which has issued the SYSEVENT ENCASSOC to associate itself

with an address space.

Managing the performance of work in enclaves
This information describes how to classify the work running in enclaves:

• Using independent enclaves
• Using dependent enclaves
• Using work-dependent enclaves

Using independent enclaves
You define a service class and a goal for work that is processed by the subsystem using the independent
enclaves. Workload management then dynamically manages resource controls based on the goal.

For more information about defining performance characteristics for enclaves, see z/OS MVS Planning:
Workload Management.

Example
Suppose your installation has a subsystem called DDF that uses enclaves for its distributed work
requests. Your installation is running in goal mode with an active policy. To define the performance
characteristics for the work scheduled to an enclave, you do the following:

• Define a workload and a service class for DDF work using the WLM ISPF application:

 Service Class: DDF_ALL
 Goal: 5 second response time
 Importance: 3

• Using the WLM ISPF application, define a classification rule for the DDF subsystem type where all work
goes into the DDF_ALL service class.

Chapter 3. Creating and using enclaves 49

 Subsystem Type.: DDF

 ---------Class----------
 Service Report
 DEFAULTS: DDF_ALL____ _______

• Install the service definition.
• Activate the service policy.

Using dependent enclaves
Dependent enclaves are managed to the performance goal of the owning address space, so there is no
need to separately classify dependent enclaves, or to define separate service classes or performance
groups for them.

Using work-dependent enclaves
Work-dependent enclaves inherit their classification from the owning independent enclave and are thus
managed to the independent enclave's performance goal.

Querying an enclave's classification information
A caller can use the IWM4EQRY macro to determine the classification information about an enclave. The
classification information is that information passed on the IWM4CLSY macro for an independent enclave
or inherited from the owning address space for a dependent enclave. For details on IWM4CLSY, see
“IWM4CLSY — Classify work” on page 404.

Example
To determine the classification attributes associated with an enclave represented by ETOKEN, first issue
IWM4EQRY to determine the length of the storage required to contain the classification information. The
length of the area is dependent on the MVS release. Specify the following:

IWM4EQRY ETOKEN=etoken,
 ANSAREA=ansarea,
 ANSLEN=anslen,
 QUERYLEN=querylen

where the calling program has defined the following, and ansarea and anslen are set to zero:

etoken DS FL4 enclave token
ansarea DS A Area to contain address of
 classification
anslen DS A Length of the answer area
querylen DS A Length of storage required

Obtain the amount of storage passed back in querylen and set anslen equal to querylen. Set ansarea to
point to the storage and issue IWM4EQRY again for the enclave classification information:

IWM4EQRY ETOKEN=etoken,
 ANSAREA=ansarea,
 ANSLEN=anslen,
 QUERYLEN=querylen

Querying a dispatchable unit's enclave status
A caller can use the IWMESQRY macro to determine whether the current dispatchable unit is associated
with an enclave. If the dispatchable unit is associated with an enclave, the service returns the enclave
token.

50 z/OS: z/OS MVS Programming: Workload Management Services

Deleting an enclave
A caller can delete an enclave using the IWM4EDEL macro. If the enclave is registered, it is only logically
deleted. That is, it remains available until it is no longer registered by any subsystem.

When the enclave is deleted, the following occurs for each remaining dispatchable unit:

• SRBs:

Each SRB belonging to the enclave is changed to a preemptable SRB and run at the dispatching priority
of the current home address space (the address space into which the SRB was scheduled). The
subsystem can purge SRBs using the PURGEDQ macro when the enclave still exists in the system. In
most cases, this prevents the SRB from existing beyond the life of the enclave. For information on how
to use PURGEDQ, see z/OS MVS Programming: Authorized Assembler Services Guide.

• Tasks:

If an enclave ends with tasks still joined to the enclave, the tasks revert back to ordinary non-enclave
tasks.

A foreign enclave is deleted using the IWMUIMPT macro. Work-dependent enclaves are implicitly deleted
when the owning independent enclaves get deleted.

For information about the IWM4EDEL macro, see “IWM4EDEL — Delete an enclave” on page 451.

Example
To delete an enclave, specify the following:

IWM4EDEL ETOKEN=etoken,
 RETCODE=retcode,
 RSNCODE=rsncode

where the calling program has defined the following:

etoken DS FL4 Enclave token
retcode DS CL4 Return code
rsncode DS CL4 Reason code

Chapter 3. Creating and using enclaves 51

52 z/OS: z/OS MVS Programming: Workload Management Services

Chapter 4. Participating in Enterprise Workload
Management

Enterprise Workload Manager (EWLM) is a systems service of the IBM Virtualization Engine™.
Virtualization Engine is a set of technologies and systems services that allow system administrators to
access and manage resources across multiple platforms (z/OS, AIX, i5/OS, Windows, Solaris and Linux).
The EWLM systems service allows you to define business-oriented performance goals for an entire
domain of servers across multiple platforms, and then provides an end-to-end view of actual performance
relative to those goals.

For example, a multi-platform environment might include:

• A Web server tier running Windows
• An application server tier running AIX
• A database tier running z/OS

To ensure that work requests are performing as expected in this environment, you must be able to track
the performance of those requests across server and subsystem boundaries. EWLM allows you to do that.

EWLM uses middleware that has been instrumented with the Open Group's Application Response
Measurement (ARM) 4.0 standard. ARM 4.0 provides a set of interfaces that an application calls; these are
then used by EWLM to calculate the response time and status of work processed by the application.

In a multi-tiered environment, what is perceived as one transaction may be implemented as many sub-
transactions across several different applications. To relate the sub-transactions with one another, ARM
4.0 uses correlators. Relationships are established by passing the correlator of a parent sub-transaction
to its child sub-transactions. The correlator for a parent sub-transaction, that is, a correlator that is
passed from the sending application tier, is called a parent correlator. A correlator for its child sub-
transaction is called a current correlator.

Ordinarily, applications that participate in EWLM use standard instrumentation based on the ARM 4.0
Java™, C or C++ language bindings. However, because applications that use the WLM enclave services are
already instrumented, WLM provides support for EWLM through a set of new and enhanced enclave
services.

The WLM support for EWLM is effective only if the ARM agent is enabled and an EWLM policy is installed.
Operators can control the state of the ARM agent by disabling or enabling the function from an operator
console at any time with the F WLM,AM command. Additionally, the current state of the ARM agent can be
displayed by the operator command D WLM,AM. For more information, see z/OS MVS System Commands.

For more information on Virtualization Engine and EWLM, including using the ARM APIs to instrument an
application, see the eServer Information Center on the Internet at http://publib.boulder.ibm.com/eserver/
v1r1/en_US/index.htm?info/icmain.htm

For more information on enclaves, see Chapter 3, “Creating and using enclaves,” on page 31.

Enclave Services and EWLM
The enclave services related to EWLM are:

• IWM4CON

This service connects a calling address space to WLM and optionally indicates that this work manager
will participate in EWLM.

• IWM4DIS

This service allows the caller to disconnect from WLM. If the caller is connected as an EWLM participant,
particpation with EWLM is terminated.

© Copyright IBM Corp. 1988, 2021 53

• IWM4CLSY

This service associates a service class and possibly a report class with an arriving work request. With
respect to EWLM, this service allows you to specify the correlator of a parent work request to start a
new sub-work request, either implicitly, when creating an enclave, or explicitly, with the use of the
IWMESTRT service.

• IWM4ECRE

This service creates an enclave. An optional parameter indicates whether the work manager starts a
new EWLM work request implicitly.

• IWM4EDEL

This service stops all existing work requests that are still active and then deletes an enclave.
• IWMESTRT

This service allows work managers that participate in EWLM to explicitly indicate the start of an EWLM
work request.

• IWMESTOP

This service allows work managers that participate in EWLM to explicitly indicate the end of an EWLM
work request and all of its sub-work requests.

• IWMEBLK

This service allows work managers that participate in EWLM to indicate that processing of a work
request is blocked while it waits for a sub-work request in another application to complete.

• IWMEUBLK

This service allows work managers that participate in EWLM to indicate that processing of a work
request is no longer blocked.

• IWMEGCOR

This service allows work managers that participate in EWLM to retrieve the correlator for a given work
request handle or the maximum length of a correlator.

Modelling your business transactions
With the introduction of support for EWLM, there are two ways of modelling your business transactions:

• Using enclaves without EWLM participation
• Mapping EWLM work requests, either closely or loosely, to enclaves

Using enclaves without EWLM participation
With this model, a business unit of work is represented by the lifetime of the enclave under which it will
be processed, that is, from the time the enclave is created until it is deleted. At the time the enclave is
created, the business unit of work is classified and assigned a WLM service class. The work manager does
not further interact with EWLM to identify when such a business unit of work starts and stops, and the
work manager is not an EWLM participant.

Mapping EWLM work requests to enclaves
With the EWLM model, a business transaction is measured by the EWLM ARM agent and may be referred
to as a work request. A work request lasts from the time it is started until the time that it is stopped. Only
EWLM participants can start and stop work requests. Work requests are mapped to an enclave, as the
enclave is the MVS means to manage (with SRM) transactions directly across address space boundaries.

Work requests may be started and stopped explicitly by the EWLM-participant application. In this case,
the work requests can be said to be loosely mapped to enclaves. Alternatively, work requests may be
started implicitly when the enclave is created, and stopped implicitly when the enclave is deleted. In this

54 z/OS: z/OS MVS Programming: Workload Management Services

case, the work requests can be said to be closely mapped to enclaves. Note that such work requests do
not differ from the non-EWLM model, except that:

• EWLM is notified about the work request’s start and stop time.
• EWLM may optionally classify the work request based on its end-to-end policy.

It is also possible to combine the explicit and implicit starting and stopping of work requests. For
example, a work request my be started explicitly but stopped implicitly. The possibilities, along with the
associated WLM services, are shown in Table 14 on page 55.

Table 14. Starting and stopping work requests

Start WLM service Stop WLM service

Implicit IWM4ECRE Implicit Work request is stopped by
IWM4EDEL

Explicit IWMESTOP

Explicit IWM4ECRE with
ESTRT=EXPLICIT and
subsequent IWMESTRT

Implicit Work request is stopped by
IWM4EDEL

Explicit IWMESTOP

IWM4ECRE with
ESTRT=EXPLICIT_SINGLE and
subsequent IWMESTRT

Implicit Work request is stopped by
IWM4EDEL

Explicit IWMESTOP

An EWLM participant can process multiple single work requests under the same enclave. The underlying
assumption is that an enclave can only process one work request at a time. Within a work request,
however, processing of sub-work requests is allowed. The ARM transaction model requires that nested
sub-work requests be completed before the nesting work request completes. WLM enforces this
requirement.

Connecting with WLM as an EWLM participant
A work manager becomes an EWLM participant when it connects to WLM through the IWM4CON service
with the following options:

• WORK_MANAGER=YES
• EWLM=YES

An optional GROUPNM parameter specifies an application group to which the work manager belongs.

The IWM4CON service connects a subsystem to WLM so that workload manager services can be used.
Note that the default for the EWLM parameter is NO, which indicates that:

• The work manager interacts only with WLM. No interaction with EWLM takes place.
• The use of the IWMESTRT and IWMESTOP services, as well as the use of the ESTRT parameter on the

IWM4ECRE service, is not permitted.

For more information, see “IWM4CON — Connect to workload management” on page 416.

Disconnecting from WLM
The IWM4DIS service allows the caller to disconnect from the workload management services and, thus,
also terminate EWLM participation. For more information, see “IWM4DIS — Disconnect from workload
management” on page 432.

Chapter 4. Participating in Enterprise Workload Management 55

Creating an enclave
The IWM4ECRE service creates an enclave. The optional ESTRT parameter indicates whether the work
manager implicitly starts an EWLM work request. The ESTRT values can be:

• IMPLIED specifies that a work request is started implicitly when the enclave is created.
• EXPLICIT specifies that the work manager explicitly indicates the start of an EWLM work request by

invoking the IWMESTRT service.
• EXPLICIT_SINGLE specifies the same as option ESTRT=EXPLICIT and, in addition, the application

ensures that only one work request is active. No nested calls to IWMESTRT are allowed.

If the EXPLICIT_SINGLE option is specified, the CPU consumption on all EWLM enclave services
(IWMEGCOR, IWMESTRT, IWMESTOP, IWMEBLK, IWMEUBLK) will be reduced.

For details, see the corresponding macro descriptions.
• NEVER specifies that this enclave will never use any EWLM-related enclave services (IWMEGCOR,

IWMESTRT, IWMESTOP, IWMEBLK, IWMEUBLK) after the enclave has been created, even if the work
manager has registered (IWM4CON or IWMCONN) with EWLM=YES. Also, IWM4ECRE will not start an
EWLM work request on the enclave and will not do any EWLM-related processing.

The use of the ESTRT parameter is allowed only when the work manager previously connected to WLM
with IWM4CON EWLM=YES.

An optional WORKREQ_HDL parameter allows the caller to get the work request handle of an implicitly
created work request. The handle can be used subsequently with any of the other new services
(IWMEBLK, IWMEUBLK, IWMESTOP and IWMEGCOR). The WORKREQ_HDL parameter is valid only with
ESTRT=IMPLIED.

For more information, see “IWM4ECRE — Create an enclave” on page 438.

Deleting an enclave
The IWM4EDEL service stops all existing work requests that are still active and then deletes an enclave.

Classifying work requests
For WLM management and reporting purposes, classification is done when an enclave is created. The
resulting service class is assigned to the enclave and remains until the enclave is deleted.

For EWLM purposes, classification for an EWLM-participant work request is always done at the first hop,
that is, the first application tier in a domain that accepts a request. Subsequent tiers usually do not
classify the work request again unless the domain border has been crossed or different EWLM policies are
installed on the sending and receiving tier. However, each time a new work request is started, a new
correlator is created that must be obtained and forwarded to each subsequent application tier, if any. To
obtain the correlator, you use the IWMEGCOR service.

If the work manager represents the first hop, the classification structure mapped by the IWM4CLSY
service is used to classify the work request. To specify the EWLM correlator associated with the parent
correlator, you use the EWLM_CORR parameter on the IWM4CLSY service.

The parent correlator is the correlator that is passed from the sending application tier. It contains, among
other information, the transaction class of the work request. When a sub-work request is started, the
parent correlator must be used to indicate to EWLM that a sub-work request is to be started, and the
current correlator can be derived from the parent correlator. Otherwise, the current correlator is
generated by classifying the new work request.

z/OS passes classification attributes to ARM as property names. These attributes are used in case EWLM
classification on z/OS is required, for example, because no correlator was passed into an EWLM
participant, or the work manager represents the first hop. For EWLM classification it is critical that these
names are in upper case in the EWLM policy. The attribute value, however, can be upper or lower case.

The classification attributes passed to ARM are:

56 z/OS: z/OS MVS Programming: Workload Management Services

• ACCTINFO
• COLLECTION
• CONNECTION
• CORRELATION
• LUNAME
• NETID
• PACKAGE
• PERFORM
• PLAN
• PRCNAME
• PRIORITY
• PROCESSNAME
• SCHEDENV
• SUBCOLN
• SUBSYSPM
• TRXCLASS
• TRXNAME
• USERID

For details on the attributes, see “IWM4CLSY — Classify work” on page 404.

Explicitly starting and stopping work requests
WLM services allow work managers that are EWLM participants to explicitly indicate the start and end of
an EWLM work request:

• To start: IWMESTRT
• To stop: IWMESTOP

Required parameters for each service specify the enclave under which the work request is processed and
the handle that represents the work request. On IWMESTRT, you also specify classification attributes and
a parent correlator when a sub-work request should be started.

For more information, see “IWMESTRT — Start a work request” on page 217 and “IWMESTOP — Stop a
work request” on page 211.

Continuing a work request at another application
To continue a work request at another application, a work manager must pass the correlator of the current
work request to that application. To retrieve the correlator for a given work request handle, you use the
IWMEGCOR service. The service can also be used to return the maximum length of a correlator. The
receiving application would in turn use this correlator as the parent correlator to start a sub-work request.

Blocking and unblocking work requests
Services are provided for the blocking and unblocking of work requests. You would block the processing
of a work request when it is waiting for a work request in another application to complete.

• IWMEBLK indicates that processing of a work request is blocked.
• IWMEUBLK indicates that processing of a work request is no longer blocked.

For more information, see “IWMEBLK — Work request blocked” on page 158 and “IWMEUBLK — Work
request no longer blocked” on page 224.

Chapter 4. Participating in Enterprise Workload Management 57

Enclave services and the ARM API
For a work manager that is an EWLM participant, the enclave services internally invoke the ARM services.
A work manager becomes an EWLM participant when it connects to WLM through the IWM4CON service
with EWLM=YES. Table 15 on page 58 shows the ARM services that are invoked by the enclave services.

Table 15. WLM Enclave Services and ARM APIs

Enclave service Description ARM service Parameters

IWM4CON Connect to WLM, identify
the work manager as an
EWLM participant

arm_register_application app_name = SUBSYS

arm_register_transaction

arm_start_application app_group_name = GROUPNM
app_instance_name =
SUBSYSNM

IWM4ECRE with
ESTRT(IMPLIED)

Create an enclave arm_start_transaction

IWMESTRT Start a work request arm_start_transaction

IWMESTOP Stop a work request arm_stop_transaction

IWMEBLK Indicate that processing of
a work request is blocked

arm_block_transaction

IWMEUBLK Indicate that processing of
a work request is no longer
blocked

arm_unblock_transaction

IWMEDELE Delete an enclave arm_stop_transaction (if
applicable)

IWM4DIS Disconnect from WLM arm_destroy_application

Instrumenting a C application for ARM
For information on how to instrument an application for ARM refer to http://publib.boulder.ibm.com/
infocenter/eserver/v1r1/en_US/info/ewlminfo/armguide.pdf.

The topics in this section describe how to instrument, compile, bind and run an ARM-instrumented
application on z/OS.

Using the ARM services for instrumenting applications and for managing
ARM transactions on z/OS

This information describes the support for ARM transaction management and WLM management.

Supporting transaction management
The services arm_start_transaction and arm_stop_transaction indicate the beginning and the
end of an ARM transaction and support the use of enclaves. Thus, ARM transactions can be managed
individually on z/OS.

To allow for transaction management, you must code the arm_bind_thread and arm_unbind_thread
services in their applications to indicate that the current thread (TCB) is now performing on behalf of a
specified transaction. Only when you use the arm_bind_thread and arm_unbind_thread services,
WLM is able to track the thread. WLM can then assign the necessary resources to that unit of work to help
the transaction to reach its goals.

58 z/OS: z/OS MVS Programming: Workload Management Services

Note : The z/OS implementation of arm_bind_thread and arm_unbind_thread conform to the
original EWLM R1 semantic specifications. For example, threads are implicitly unbound by
arm_stop_transaction or arm_discard_transaction.

A sample C-program IWMSARM4 that demonstrates the usage of the services and the new sub-buffers is
available in SYS1.SAMPLIB(IWMSARM4). A sample JCL to compile, bind and run this application is
provided in SYS1.SAMPLIB(IWMCARM4).

To understand the management of ARM transactions on z/OS it is important to understand that a
distributed transaction on a single z/OS system is managed as a whole, even if it spans several address
spaces, as shown in Figure 12 on page 59.

Application A1 (AS1)

DoLoop (until termination):

/* Wait for work */
arm_start_transaction (in=c0,out=c1);

arm_bind_thread(); /* Do some
processing … */
arm_block_transaction(); /* give
control to next hop and suspend
this thread*/

arm_unblock_transaction(); /* Do
more processing ... */
arm_unbind_thread(); /* optional */
arm_stop_transaction();

End DoLoop

Request, accompanied by
correlator c0 (optional)

Response

Request for A2
flow c1

Application A2 (AS2)

DoLoop (until termination): /
* Wait for work */

arm_start_transaction
(in=c1,out=c2);
arm_bind_thread(); /* :
Do some processing : */
arm_unbind_thread();
arm_stop_transaction();

End DoLoop

Figure 12. Typical synchronous application flow between applications on the same z/OS system

When WLM running on a z/OS system first detects of an ARM-instrumented transaction (when the first
application A1 performs an arm_start_transaction in the example in the figure) a management
control block (enclave) is created. Later on, when application A2 performs its arm_start_transaction
call, the same control block (enclave) is used to track the transaction. Of course, it is necessary to pass
the current_correlator c1 from the arm_start_transaction call in A1 to application A2 and use that
correlator as the parent_correlator in the arm_start_transaction call in A2 (and equally so for
additional applications A3, A4, and so on). The correlator is used by WLM to find out that A1 and A2 are
working on behalf of the same transaction.

Each application in a transaction call sequence needs to indicate that it wants its transactions to be
managed towards transaction goals (see next chapter). For example, if A1 has indicated transaction
management, but A2 has not, and just because A1 passes a correlator to A2, A2 will not be managed
towards transaction goals.

In an A1→A2→A3 scenario, where every application correlates properly but only A1 and A3 have indicated
transaction management, A1 and A3 are managed together, but A2 is not.

z/OS ARM sub-buffers to support WLM management
Two z/OS-specific ARM sub-buffers support ARM-instrumented application on z/OS. The first one is for
arm_register_application and the second is for arm_start_transaction.

Chapter 4. Participating in Enterprise Workload Management 59

The sub-buffers are defined in header file <armewlm.h> and are located in data set
SYS1.SIEAHDRV.H(ARM4EWLM). The sub-buffers have the following names:

• arm_subbuffer_zos_connect_t
• arm_subbuffer_zos_classify_t

These sub-buffers provide WLM with the information that it needs to connect to WLM for management
purposes and to specify WLM classification attributes.

Sub-buffer arm_subbuffer_zos_connect
Use the arm_subbuffer_zos_connect sub-buffer to specify the attributes for the connection of the ARM-
instrumented address space (application) to WLM. It can be provided as a sub-buffer with the
format_id= ARM_SUBBUFFER_ZOS_CONNECT (-30400) on an arm_register_application service
call. WLM needs this sub-buffer to manage individual transactions.

Figure 13 on page 60 shows the layout of the sub-buffer and the parameters which can be passed to the
arm_register_application service, where:

• The subsys and subsysName parameters are required
• groupName is an optional parameter

Specify all character parameters in the character set that the application uses (arm_charset_t). There is
no restriction for an application using EBCDIC (IBM-1047) or US-ASCII encoding. For UTF8 and UTF16,
the strings are restricted to characters from the US-ASCII (codepoints 0..127) subset.

buffer4Ptr

subbuffer_array

count = 3

*groupName

*subSysName

*subsys

format_id= -30400

subbuffer-2

subbuffer-3

subbuffer-1

subsys

subsysName

groupName

Figure 13. Sub-buffer arm_subbuffer_zos_connect_t)

The subsys parameter also determines the subsystem type parameter that can be specified in the WLM
administrative application. For example, the sample application in SYS1.SAMPLIB(IWMSARM4) refers to
a subsystem type of STOK that could be defined in the WLM classification rules as follows:

60 z/OS: z/OS MVS Programming: Workload Management Services

 Subsystem Type Selection List for Rules
Command ===> ___

Action Codes: 1=Create, 2=Copy, 3=Modify, 4=Browse, 5=Print, 6=Delete,
 /=Menu Bar
 ------Class-------
Action Type Description Service Report
 __ CICS C.I.C.S. regions
 __ DB2 Local DB/2
 __ DDF Distributed DB/2
 __ EWLM EWLM pseudo-subsystem SCLASS1
 __ IMS Information Management System
 __ JES JES Rules SYSSTC
 __ OMVS OMVS Rules SYSSTC1
 __ STC STC rules SYSTEM
 __ STOK Subsystem for IWMSARM4 sample STOCKDEF
 __ TSO TSO rules

Sub-buffer arm_subbuffer_zos_classify
ARM service arm_start_transaction can associate a starting transaction to a WLM enclave. The new
enclave has to be classified to a WLM service class. This is accomplished by passing the WLM
classification attributes in an optional z/OS sub-buffer arm_subbuffer_zos_classify with
format_id=ARM_SUBBUFFER_ZOS_CLASSIFY (-30401). The values of the classification attributes can
then be used in classification rules of the WLM administrative application to associate a specific service
class with a transaction. If the sub-buffer is not present but arm_subbuffer_zos_connect has been
specified on the arm_register_application call, the transaction will be assigned the default service
class for the subsystem.

Figure 14 on page 62 shows the layout of this sub-buffer and the parameters which can be passed to the
arm_start_transaction service. The parameters are the same as those specified on the WLM
IWM4CLSY service. Specify all character parameters in the character set that the application uses
(arm_charset_t). There is no restriction for an application using EBCDIC (IBM-1047) or US-ASCII
encoding. For UTF8 and UTF16 the strings are restricted to characters from US-ASCII (codepoints 0..127)
subset.

Chapter 4. Participating in Enterprise Workload Management 61

Figure 14. Sub-buffer arm_subbuffer_zos_classify

62 z/OS: z/OS MVS Programming: Workload Management Services

Compiling an ARM-instrumented application
When compiling an ARM-instrumented application, the application should use #include "arm4.h" to
include the ARM header file. As a result, the arm4.h header file library, SYS1.SIEAHDRV.H, must be
included in the SEARCH/LSEARCH path.

Using the C/C++ compiler in batch
Figure 15 on page 63 shows sample JCL that illustrates the required options to compile an ARM-
instrumented 31-bit XPLINK application in MVS batch.

/MYJOB jobcard
//*
// JCLLIB ORDER=CBC.SCCNPRC
//*
//COMPILE EXEC CBCC,
// CPARM='OPTF(DD:OPTIONS)',
// INFILE='mysource(mymember)',
// OUTFILE='myobjectdeck(mymember),DISP=SHR'
//COMPILE.OPTIONS DD *
 LSEARCH(//'SYS1.SIEAHDRV.+')
 SEARCH(//'SYS1.SIEAHDRV.+')
 LANGLVL(EXTENDED)
 XPLINK Non-XPLINK: omit, 64BIT: LP64
 SOURCE
 other options

Figure 15. Sample JCL for compiling an ARM-instrumented application in MVS batch

For a 31-bit non-XPLINK application, omit XPLINK (third line from the bottom in the example).

For a 64-bit application, specify the LP64 option instead of XPLINK. (The LP64 option is supported by the
C/C++ compiler on z/OS V1R6 or later.)

Using the C/C++ compiler under z/OS UNIX System Services
Run the c89 or c++ z/OS UNIX System Services shell command to compile your program and store the
object. For C++ compiles add the -+ option. Table 16 on page 63 shows examples of compiling under
z/OS UNIX System Services in the various environments.

Table 16. Sample commands for compiling applications under z/OS UNIX Systems Services

Environment Sample command

31-bit XPLINK c++ –c –o mymain.o -Wc,"DLL,XPLINK,LANGLVL(EXTENDED)" \
 -I//"'SYS1.SIEAHDRV.+'" mymain.c

31-bit non-
XPLINK c++ -c -o mymain.o -Wc,"DLL,LANGLVL(EXTENDED)" \

 -I//"'SYS1.SIEAHDRV.+'" mymain.c

64-bit c++ -c -o mymain.o -Wc,"DLL,LP64,LANGLVL(EXTENDED)" \
 -I//"'SYS1.SIEAHDRV.+'" mymain.c

Binding an ARM-instrumented application
This information describes using the binder under z/OS UNIX System Services and in MVS batch.

Using the binder in batch
Figure 16 on page 64 shows sample JCL that illustrates the required options to compile an ARM-
instrumented, 31-bit XPLINK application in MVS batch.

Chapter 4. Participating in Enterprise Workload Management 63

//MYJOB jobcard
//*
// JCLLIB ORDER=CBC.SCCNPRC
//*
//BIND EXEC CBCXB, Non-XPLINK: CBCB, 64BIT: CBCQB
// BPARM='CALL,NOMAP,RENT,DYNAM=DLL',
// OUTFILE='myloadlib,DISP=SHR',
// INFILE='myobject(mymain)'
//BIND.ARMSIDE DD DISP=SHR,DSN=SYS1.SIEASID
//BIND.MYOBJ DD DISP=SHR,DSN=myobject
//SYSIN DD * INCLUDE MYOBJ(mymem2, ...)
 INCLUDE ARMSIDE(LARM43X)
 ENTRY CEESTART 64BIT: CELQSTRT
 NAME mymain(R)

Figure 16. Sample JCL for binding an ARM-instrumented application in MVS batch

For 31-bit non-XPLINK applications, use the procedure CBCB, rather than CBCXB (line 5 in the example),
and specify SIEASID member LARM431, rather than LARM43X (third line from the bottom in the example).

For 64-bit applications (compiled with compiler option LP64) use the procedure CBCQB, rather than
CBCXB (line 5 in the example), and specify SIEASID member LARM464, rather than LARM43X (third line
from the bottom). In addition, specify an ENTRY point for the binder of CELQSTRT, instead of CEESTART
(second line from the bottom in the example).

Using the binder under z/OS UNIX System Services
Run the c89 or c++ command specifying the appropriate side-deck for the ARM DLL and the correct
binder options. Table 17 on page 64 shows sample commands for 31-bit and 64-bit environments.

Table 17. Sample commands for binding applications under z/OS UNIX

Environment Sample command

31-bit XPLINK c++ –o mymain -Wl,"DLL,XPLINK" mymain.o mymem2.o \
 /usr/lib/libarm4_3x.x

31-bit non-
XPLINK c++ –o mymain -Wl,"DLL" mymain.o mymem2.o \

 /usr/lib/libarm4_31.x

64-bit c++ –o mymain -Wl,"LP64,DLL" mymain.o mymem2.o \
 /usr/lib/libarm4_64.x

Running an ARM-instrumented application
An ARM-instrumented application can run:

• In batch or as a started task
• Under z/OS UNIX System Services

Running an application in batch or as a started task
To run an ARM application in batch or as a started task, you must ensure that either:

• The data set SYS1.SIEALNKE is in the system LINKLIST. This is the default, and is the recommended
approach.

• The library is in the application’s STEPLIB or JOBLIB, as appropriate.

Running an application under z/OS UNIX System Services
To run an ARM application under z/OS UNIX System Services, you must ensure that the path /usr/lib is
in the application’s LIBPATH.

64 z/OS: z/OS MVS Programming: Workload Management Services

Chapter 5. Using the queueing manager services

The queueing manager services are intended for queueing managers to use to manage server (execution)
address spaces and the work requests they process to meet service class performance goals. Through
queueing manager services, workload management maintains the queues for passing work requests from
the queueing manager to its servers. A queuing manager is a subsystem that queues work requests to
workload management for execution in server address spaces.

Workload management dynamically starts and maintains server address spaces as required to meet the
queueing managers workload. Therefore, installations do not have to manage the address spaces
manually, nor do they have to monitor workload fluctuations that change the number of address spaces
needed for the work to meet its goals. Workload management automatically adjusts to changes in the
workload.

For queue managers using the services, workload management spreads the work across multiple address
spaces, providing workload isolation and greater scalability based on workload demands. For a queueing
manager that queues and executes work all in the same address space, sometimes encountering storage
overlay problems, the services provide an incentive to change to a multiple address space configuration.

This chapter describes how to use the queueing manager services, and suggests the information you
should provide to your customers so they can properly set up the required service definitions.

Note : The queueing manager services uses application environments. (See “Updating a service definition
with application environment information” on page 71 for a discussion of defining policy for application
environments.)

Example of using the queueing manager services
This section describes how a queueing manager can use the services to:

• Isolate different types of requests into separate server address spaces for integrity, security, and
operational reasons.

• Classify work into service classes according to business goals.
• Manage the application execution in the server address space as a continuation of the originating unit of

work.
• Specify dynamic management of server address spaces, and other resources to meet the service class

goals of the work requests.
• Report service class goals against actual service class performance.
• Report response time information.

Figure 17 on page 66 shows an example of how a queueing manager can use the services. The example
shows the services used to achieve the objectives listed above. The services are intended to be used with
the enclave services, and must be used independently of the execution delay monitoring services.

© Copyright IBM Corp. 1988, 2021 65

Figure 17. Services for a queueing manager

Figure 17 on page 66 shows a queueing manager address space starting up, connecting to workload
management, and queueing work requests to workload management. The server address spaces are
created dynamically by workload management as needed. When the server initializes, it connects to
workload management, which allows it to select work from the queues. The server address space
indicates to workload management when each request starts and ends, so the work request can be
properly managed and its performance statistics reported. The following steps describe the flow
illustrated in Figure 17 on page 66.

1. Establish the queueing manager.

The queueing manager address space starts up through either a manual start or customer automation.
During its initialization, it issues the IWM4CON service with the QUEUE_MANAGER=YES parameter, and
provides the subsystem type (SUBSYS parameter), the subsystem name (SUBSYSNM parameter), and,
optionally, the node name (NODENM parameter) to identify the type of work associated with the
queueing manager. If you need to create an independent enclave, then the queueing manager should
also specify WORK_MANAGER=YES (the default) on IWM4CON. If you are creating dependent enclaves,
you do not need to specify WORK_MANAGER=YES.

If the queueing manager needs to take some action when workload management deletes work
requests that the queueing manager previously queued, specify a connect exit routine on the
QMGR_EXIT@ parameter. Workload management deletes all queue requests when the queue manager
disconnects from workload management or the application environment is deleted. This exit gets
control when workload management has deleted a work element from its queue. Input to the exit is
mapped by the list form of the IWMQCXIT macro. For information about the IWMQCXIT exit, see

66 z/OS: z/OS MVS Programming: Workload Management Services

“Using the queueing manager connect exit” on page 72. Workload management provides the exit
with the information passed to workload management when a work element is queued and an
indication that the work element has been removed from the queue.

2. Define the dynamic application environment.

Optionally, you can define a dynamic application environment using the IWM4AEDF service. The scope
of this newly defined DAE only applies to the queuing manager that invoked this service. For further
information, refer to “IWM4AEDF — WLM define dynamic application environments” on page 395.

3. Create an enclave.

The queueing manager receives a work request and must use an enclave to manage it. Depending on
the environment, the queueing manager can use an existing enclave or create a new enclave, either
dependent or independent, using the IWM4ECRE service.

If running under the requestor's dispatchable unit, IWMESQRY can be used to determine whether the
requestor belongs to an enclave and if so, which enclave. If running under a different dispatchable
unit, it is the subsystem's responsibility to pass information on any existing enclave along with the
work request. For example, the subsystem could pass information it obtained from IWMESQRY while
running under the requestor's dispatchable unit.

If the requestor does not belong to an enclave but has an address space transaction (for example, it is
a TSO user or a batch job), the queueing manager can create a dependent enclave to represent a
continuation of the requestor's transaction. This requires that the requestor be the home address
space.

If there is no existing enclave or address space transaction, such as when the requestor is on another
system, the queueing manager must create an independent enclave to begin a new transaction. This
requires the queueing manager to classify the work request.

4. Queue a work request.

The queueing manager uses the IWM4QIN service to add the work request to a workload management
queue. The application environment, enclave token, and optional user ID for resource access control
are provided as input to workload management. The service class is determined from the enclave
token, and the request is added to a queue associated with that service class within the specified
application environment. You can optionally pass information to the server address space when it
selects this work request. Workload management does not read or modify this data in any way.

Workload management stages work requests between the queueing manager address space and the
server(s), but the queueing manager is still responsible for managing the flow of work requests and
handling timeout and abnormal conditions where servers are failing to properly process requests.
Workload management detects and reacts to certain error conditions such as JCL errors in the
procedure used to start the server and repeated, unexpected terminations of the server address
space. For more information, see “Defining Application Environments” in z/OS MVS Planning: Workload
Managementlo.

If the queueing manager needs to remove a work request that it previously queued through the
IWM4QIN service before it has been processed by the server, it uses the IWM4QDE service. This
service is provided for exceptional circumstances, such as:

• Timeout of the work request
• An external request to cancel a queued request
• Queueing manager recovery

A queueing manager must not insert requests for a dynamic and static application environment with
the same application environment name concurrently.

5. Establish a server address space.

When the first request is queued to an application environment, workload management detects that
there are no active servers for the request, and automatically starts one. The MVS procedure name and
start parameters are taken from the application environment definition in the service definition. As the

Chapter 5. Using the queueing manager services 67

workload fluctuates, workload management adjusts the number of server address spaces so the goals
of the work are met.

When the server initializes, it must establish itself as a server address space using the IWM4CON
service with SERVER_MANAGER=YES parameter, and indicate which application environment it is
servicing. The subsystem type and name specified on the server connect must match the values
specified on the associated queueing manager connect.

Workload management creates as many server address spaces as are needed to meet the goals of the
work running in the servers, unless the application has limited the number of server instances that
workload management can create using IWM4SLI.

Immediately after invoking IWM4CON, you have the option of using IWM4SLI to control the number of
server instances that WLM will create. Use the AE_SERVERMAX parameter to establish a maximum
number—this is particularly useful for applications, such as IBM MQ Workflow, that connect to backend
applications supporting a limited number of parallel connections. Use the AE_SERVERMIN parameter
to establish a minimum number—this allows an application to keep a number of servers active, even
during low utilization periods. In addition, you can specify AE_SPREADMIN=YES to ensure that the
defined minimum number of servers are distributed evenly across all of the service classes used to
execute work requests in the application environment.

There will be at least as many servers for an application environment as there are unique service
classes associated with the work requests, even if the workload is low. This is so workload
management can separately manage work with different service class goals.

Applications can optionally give workload management the control about the number of server
instances per server address space. Directly after IWM4CON, you can use IWMSINF to obtain
recommendations from workload management about the number of server instances to be started.
WLM will pass the number of instances to be started in addition to the already running server instances
to the server address space. The caller must have previously connected to WLM using the IWM4CON
service specifying SERVER_MANAGER=YES, SERVER_TYPE=QUEUE, and MANAGER_TASKS=YES. See
“Managing the number of server instances per server address space” on page 70 for a more detailed
explanation on using IWMSINF.

Because the workload management services used by server address spaces are available to problem
programs, a SAF call is made as part of the connection process to allow the installation to protect
against malicious use or damage due to incorrect startup definitions. This SAF check permits the
server address space to be totally unauthorized (no APF authorization required). The RACF-supported
resource for this call is of the SERVER class and has the name:

sstype.subsys.applenv[.nodenm]

where:
sstype

is the subsystem type.
subsys

is the subsystem name of the queueing manager address space.
applenv

is the name of the application environment being serviced
nodenm

is an optional qualifier of the queuing manager

Workload management picks up these values from the IWM4CON parameters, SUBSYS, SUBSYSNM,
APPLENV, and NODENM, respectively. For more information, see “Workload management migration” in
z/OS MVS Planning: Workload Management.

6. Process the work request.

The server uses the IWM4SSL service to remove a work request from the queue associated with its
application environment and service class. If no requests are queued, workload management
suspends the task issuing the IWM4SSL until work is available. After a request is selected, the server

68 z/OS: z/OS MVS Programming: Workload Management Services

uses the IWM4STBG service to indicate the processing of the request is beginning. At this point the
task joins the enclave identified when the work was queued through IWM4QIN. When the server is
finished processing the request, it uses the IWM4STEN service to cause the task to leave the enclave.

Almost all of the processing in a server address space should be on behalf of a work request and occur
between the IWM4STBG and IWM4STEN calls. A server address space should not have other tasks
performing unrelated processing as this could interfere with effectively managing the enclave to its
goals.

If the queueing manager provided a user ID on the IWM4QIN service, IWM4STBG sets up a SAF
environment for the work request to control access to resources.

Alternative task structures: This example shows a single task issuing the IWM4SSL, IWM4STBG, and
IWM4STEN services: one task within the server address space selects work from the queue, processes
the request, then loops back to select more work. Queueing manager services does not impose any
rules limiting the ways a server can organize its tasks. The following task structures are also possible:

• Multiple tasks with single thread execution

One task selects work from the queue, selects a “worker” subtask to process the request, posts the
worker task, and then waits to be posted by the worker task when the processing of the request is
complete.

• Multiple tasks with parallel work selection and execution

There is a set of “worker” subtasks within the server address space, each of whom selects work from
the queue, processes the request, and loops back to obtain a new request.

At the time the server connects to workload management (IWM4CON), the server must specify how
many tasks will execute work in parallel (PARALLEL_EU).

7. Delete the enclave.

The server address space informs the queueing manager using its own interface that a work request is
complete. If the queueing manager had previously created an enclave for the work request, it
determines if there are other work requests active for the same enclave. If there are none, the
queueing manager deletes the enclave and returns to the originator of the request.

8. Terminate the server address space.

Under normal circumstances, it is expected that a server address space will continue to select work
until told by workload management that the space is no longer needed through a return and reason
code (x'0C14') on the IWM4SSL service. The server is then expected to complete any work requests
already selected, clean up, disconnect from workload management through the IWM4DIS service, and
terminate. Possible reasons for this IWM4SSL return code are:

• The operator entered one of the following commands for the application environment:

– VARY WLM,APPLENV=applenvname,QUIESCE
– VARY WLM, DYNAPPL=applenvname,QUIESCE or
– VARY WLM,APPLENV=applenvname,REFRESH
– VARY WLM,DYNAPPL=applenvname,REFRESH

• A policy was activated from a new service definition which no longer includes the application
environment associated with the server.

• WLM determines that the server is not needed to meet the goals of the enclave's service class.

The server should make reasonable recovery attempts when errors occur. If the server encounters a
failure that forces it to terminate, it should disconnect from workload management as part of its
shutdown. If the server address space terminates without explicitly disconnecting from workload
management, workload management detects the termination and performs the IWM4DIS processing
at that time. If workload management detects five unexpected server disconnects or address space
terminations within ten minutes, it will put the application environment into a STOPPED state. This
means that no new servers are created for the application environment until the VARY
WLM,APPLENV=applenvname,RESUME or VARY WLM, DYNAPPL=applenvname,RESUME command

Chapter 5. Using the queueing manager services 69

is issued for it. Existing server address spaces continue to run work while the application environment
is in the STOPPED state, as long as they are operating normally.

9. Terminate the queueing manager address space.

When the queueing manager terminates normally, it is expected to quiesce its activities, drain its
queues of pending work, and disconnect from workload management using the IWM4DIS service. If
the queueing manager address space terminates without first disconnecting from workload
management, workload management detects the termination and performs the IWM4DIS processing
at that time.

Workload management returns control immediately to the caller of IWM4DIS, and asynchronously
performs server clean up. It purges all queued, but unselected, requests and attempts to terminate all
associated server address spaces. Because workload management depends on server address spaces
to terminate voluntarily when requested, and because workload management must wait for a server to
request work prior to telling it to terminate, server address spaces could remain for a significant
amount of time after the queueing manager terminates.

Managing the number of server instances per server address space
A server address space contains one or multiple server instances which all select work requests from a
work queue. Without using the new interface IWMSINF, the server address space must tell WLM during
start up how many server instances will be started (PARALLEL_EU parameter on IWM4CON).

The IWMSINF interface allows the application to obtain the number of server instances from WLM. Figure
18 on page 70 shows an example of how the server manager address space can use IWMSINF.

Figure 18. Exploiting IWMSINF

1. To use the IWMSINF interface, the server manager address space connects to WLM with IWM4CON
specifying the MANAGE_TASK=YES option. All server address spaces that connect to the same
application environment must specify the same setting of MANAGE_TASK. The SERVER_MANAGER=YES
and SERVER_TYPE=QUEUE options must also be defined.

2. After connecting, the server manager address space must invoke the IWMSINF service to obtain the
number of server instances to be started initially.

3. The server address space starts the server instances which select work from WLM by using IWM4SSL.
4. The server manager address space again invokes IWMSINF to listen for recommendations from WLM

for the number of tasks to start.
5. IF WLM wants to terminate one or multiple server instances, it resumes IWM4SSL with a new return

code telling the server instance to terminate.
6. If WLM wants to terminate the server address space, it resumes IWM4SSL and IWMSINF with a return

code that tells the server to terminate.

70 z/OS: z/OS MVS Programming: Workload Management Services

Note : WLM can only manage the number of server instances per server address space if there is a linear
relationship between the number of instances in an address space and the virtual storage consumed in
the address space. This implies that all instances allocate about the same amount of virtual storage.

Directing work requests to a specific server region
Existing workload manager interfaces allow a control region to queue work requests to a pool of server
regions for a service class. The underlying assumption is that each work request represents one or
multiple contiguous transactions. This transaction is represented by an enclave which is created when the
work request is inserted and which is removed when the application completed its processing for the
work request. It is assumed that no information is left in any temporary structure in the system for
following work requests.

But there are cases where information must be preserved across multiple "independent" work requests.
The information left behind lives only in the virtual storage of the address space. Following work requests
requiring this information must now be directed to the server region which has this information.

The solution is that the server region is able to obtain a region token at select time (IWM4SSL) or connect
(IWM4CON) and passes this region token to the queue manager. The queue manager is now able to route
subsequent requests directly to this server region by specifying the region token on IWM4QIN. The
IWM4TAF interface allows the server or control region to mark the server region as being needed by
follow-on work requests. WLM will ensure that server region stays alive until all temporal affinities have
been removed.

Note :

1. The requests which are directly routed to server regions are outside of the control scope of WLM.
Therefore WLM is not able to manage the number of server regions properly if the majority of requests
is directly routed to the regions and not queued for being picked up by the WLM managed server pool.
It is assumed that requests which are outside of the scope of WLM represent only a minor portion of all
work requests processed by the application.

2. The application should carefully use the IWM4TAF interface. WLM will not terminate a server region if
it is marked of having a temporal affinity. This can significantly delay the behavior of WLM operator
commands such as refresh and quiesce for these application environments. It is assumed that
temporal affinities live only a short period (a few minutes) in the system and that they do not represent
the majority of the work requests of the application (see also Note 1.)

Updating a service definition with application environment
information

When a customer installs a subsystem that makes use of the queueing manager services, the service
administrator must define one or more application environments in the workload management service
definition. An application environment is a group of application functions requested by a client which
execute in a server address space. Workload management dynamically adjusts the number of address
spaces servicing the application environment to meet the goals of the work.

If you use the queueing manager services, make sure to document the information needed by the
customer's service administrator to define the application environments. For example, you should provide
the following:

• A technique for grouping work into application environments

Each application environment should represent a named group of server functions that require access
to the same application libraries. Having a named group facilitates library security, application program
change control, performance management, and system operation.

For example, a set of related payroll applications might be grouped into one application environment
because of their similar runtime requirements. The customer can name the application environment for
these payroll applications in the service definition. Workload management then starts and stops server
address spaces to process the work in the payroll applications.

Chapter 5. Using the queueing manager services 71

• The queueing manager subsystem type

The queueing manager specifies the subsystem type in the SUBSYS parameter of the IWM4CON service.
A service administrator defines the subsystem type when specifying the application environment in the
service definition. Make sure you do not use a subsystem type already in use by another subsystem.

• Samples of JCL start procedures and start parameters for a server address space

You should provide your customer with sample procedures and start parameters for the server address
spaces.

For more information about how to define an application environment and a list of subsystem types
currently used, see z/OS MVS Planning: Workload Management.

Note : When defining an application environment, you must specify whether or not workload management
can start multiple address spaces for the subsystem. In the case of a queueing manager, you can only
choose Option 1, Managed by WLM, or Option 2, Limited to a single address space per system. For more
information, see the “Defining Application Environments” chapter in z/OS MVS Planning: Workload
Management.

Using the queueing manager connect exit
A queueing manager can optionally provide the name of an exit routine on the QMGR_EXIT@ parameter of
IWM4CON when it connects to workload management. Through this exit, the queueing manager is
informed when workload management has had to delete queued work requests associated with the
queueing manager. Workload management deletes all queued requests when:

• The installation deletes the application environment (that is, activates a service policy that does not
contain the application environment).

• The queueing manager address space disconnects.

When the exit routine is invoked, register 1 contains the address of a parameter list mapped by the list
form of the IWMQCXIT macro. The parameter list includes an indicator of what action workload
management has taken and the input values specified previously by the queueing manager when it
queued the work request using IWM4QIN.

The execute and standard form of IWMQCXIT are intended for use only by the operating system.

Exit routine environment
The queueing manager connect exit routine receives control in the following environment:

Authorization Supervisor state and PSW key 0

Dispatchable unit mode Task

Cross-memory mode Any PASN, any HASN, any SASN

AMODE 31-bit

ASC mode Primary

Interrupt status Enabled for I/O and external interrupts

Locks No locks held

Serialization None

Location The connect exit must be a resident routine callable from any
address space and must remain available after the queueing
manager disconnects or terminates. Input parameter list is in the
primary address space.

The input parameter list is in pageable storage addressable in the
primary address space, but should not be changed by the exit.

72 z/OS: z/OS MVS Programming: Workload Management Services

Exit Recovery The system may discontinue calling the exit upon repetitive,
abnormal completions, that is, where an error within the exit
percolates to the system recovery routine. The exit may optionally
establish a functional recovery routine (FRR) or ESTAEX for any
needed recovery or cleanup of its resources.

Register usage
Upon entry to the exit, the register contents are as follows:

0
Not defined

1
Address of the input parameter list

2-13
Not defined

14
Return address

15
Entry point address

Upon entry to the exit, the access register contents are undefined.

Upon return from the exit, the register contents are expected to be:
0

Reason code if GR15 return code is non-zero
1-14

Not defined (need not be restored to value on entry)
15

Return code

Upon return from the exit, the access register contents are unchanged.

Restrictions
The exit routine should not invoke functions or suspend execution which could prevent return to the caller
for a protracted period. This includes the use of system services which either explicitly or implicitly give
control back to the system. In this context, “protracted period” means durations of one second or longer.
When such processing is required, the exit should use asynchronous techniques.

Example
The following example shows how to invoke the IWMQCXIT macro instruction and the resulting
parameter list mapping. This parameter list is passed to the queueing manager connect exit specified on
the QMGR_EXIT@ parameter of IWM4CON.

 IWMQCXIT MF=(L,MYQCXITPL)

MYQCXITPL DS 0D ++ IWMQCXIT PARAMETER LIST
MYQCXITPL_XVERSION DS XL1 ++ INPUT
MYQCXITPL_XRSV0001 DS CL1 ++ RESERVED
MYQCXITPL_XPLISTLEN DS XL2 ++ INPUT
MYQCXITPL_XACTION DS BL.8 ++ ACTION INDICATORS
MYQCXITPL_XACTION_QDEL EQU B'10000000'
 ++ INDICATES QUEUE ELEMENT DELETED
MYQCXITPL_XRSV0005 DS CL2 ++ RESERVED
MYQCXITPL_XSECUSER_OPTIONS DS BL.8
 ++ OPTIONS USED ON IWM4QIN
MYQCXITPL_XSECUSER_YES EQU B'10000000'
 ++ SECUSER=YES USED ON IWM4QIN
MYQCXITPL_XETOKEN DS CL8 ++ ETOKEN VALUE FROM IWM4QIN

Chapter 5. Using the queueing manager services 73

MYQCXITPL_XUSERDATA DS CL16 ++ USERDATA FROM IWM4QIN
MYQCXITPL_XRSV0020 DS CL4 ++ RESERVED
MYQCXITPL_XAPPLENV_ADDR DS A ++ ADDR OF APPLICATION ENVIRONMENT
MYQCXITPL_XUSERID DS CL8 ++ USERID FROM IWM4QIN
MYQCXITPL_XRSV0030 DS CL8 ++ RESERVED
MYQCXITPLL EQU *-MYQCXITPL ++ LENGTH OF PARAMETER LIST

74 z/OS: z/OS MVS Programming: Workload Management Services

Chapter 6. Using the routing manager services

A routing manager is a subsystem that establishes and manages connections between a client and a
server address space. The routing manager handles these connections rather than individual work
requests; the requests are processed only after they arrive in the server address space. The routing
manager is responsible for balancing the client connections across a set of eligible servers, with the
assistance of the routing manager services.

Routing manager services perform two main functions:

• Automatically starting and maintaining server address spaces as needed by the workload across the
sysplex. Installations then do not have to manage the address spaces manually, nor do they have to
monitor workload fluctuations that change the number of address spaces needed. Workload
management automatically adjusts to changes in the workload.

• Balancing the workload among the servers in the sysplex by deciding on the best server and providing
the server routing information when a server is requested by the routing manager.

Routing manager services differ from sysplex routing services in the following ways:

• Routing manager services provide automatic management of address spaces.
• Routing manager services include the server's performance index when selecting the best available

servers.
• With routing manager services, workload management decides on a server and passes its identity to the

routing manager, instead of offering the routing manager a choice of several servers.

This chapter presents a model of how the routing manager services are intended to be used. Routing
manager services combine the use of the “find server” function with application environments and
enclaves. See “Updating a service definition with application environment information” on page 71 for a
discussion of defining policies for application environments.

Note : When defining an application environment, you must specify whether workload management can
start multiple or single address spaces for the subsystem. In the case of a routing manager, both Option
1, Managed by WLM, and Option 3, Limited to a single address space per sysplex are valid. For more
information, see the “Defining Application Environments” chapter in z/OS MVS Planning: Workload
Management.

It is strongly recommended that server address spaces associated with a routing manager use enclave
services to manage the work requests according to goals set by the customer. Be aware that enclaves are
mutually exclusive with the execution delay monitoring services described in earlier chapters. For a
discussion of enclaves and a comparison to delay monitoring, see Chapter 3, “Creating and using
enclaves,” on page 31.

A routing manager model
This section presents a model of a routing manager which uses workload management services to
accomplish the following objectives:

• Isolate different types of requests into separate server address spaces for integrity, security, and
operational reasons.

• Have MVS adjust the number of server address spaces to meet the goals of the workload.
• Have MVS balance the workload across a sysplex by selecting the best system on which to start a

server.
• Associate work coming into the server with a service class goal.
• Report goals versus actuals.
• Report response time information.

© Copyright IBM Corp. 1988, 2021 75

Figure 19 on page 76 shows the suggested services for a routing manager for managing server address
spaces and balancing workload.

Figure 19. Example of routing manager services

Figure 19 on page 76 shows a routing manager connecting to workload management and establishing
itself as a routing manager. It then issues a “find server” for each client request for server location.
Workload management is then able to create server address spaces as needed and keep track of the
servers across the sysplex. When the client contacts the server, the server creates an enclave on behalf of
the client so the work request can be managed to the customer goals.

The detailed sequence of events in Figure 19 on page 76 is:

1. Establish the routing manager.

The routing manager address space starts up through either a manual start or customer automation.
During its initialization, it issues the IWM4CON service with the ROUTER=YES parameter to indicate the
intent to use routing manager services. The routing manager supplies the subsystem type (SUBSYS

76 z/OS: z/OS MVS Programming: Workload Management Services

parameter) and subsystem name (SUBSYSNM parameter). These parameters identify the type of work
associated with the routing manager.

2. Request server routing information.

Once initialized in step 1, the routing manager is ready to receive requests to locate servers. In
response to such a request, the routing manager calls the IWMSRFSV service, passing the desired
application environment name (via the APPLENV parameter). The output returned will be the routing
information needed for the client to contact the selected server directly. (The specific content of this
information is defined by the client and passed by the server via the SERVER_DATA parameter, as
described in step 3.)

If no eligible servers exist, workload management will proceed to step 3 to start a server.
3. Establish the server.

If this step is necessary, the client program will be suspended until the new server address space is
created (possibly on another MVS image). For an application environment defined for a routing server,
workload management starts at most one server address space per system instance in the sysplex.
The first server is started on the system with the most available capacity at the lowest importance
level. Subsequent servers are started on other systems in the sysplex when the work running in the
existing servers is not meeting its goals. However, if the workload diminishes for a routing manager,
workload management does not decrease the number of servers in the sysplex. The number of servers
remains at the high water mark.

It is possible to run more than one instance of a subsystem in the sysplex, meaning they have the
same subsystem type, and therefore the same application environments, but different subsystem
names as specified on IWM4CON. The above rules for starting servers apply separately to each
subsystem instance. In other words, for each instance, you can have up to one server per system per
application environment.

During server initialization, the server invokes the IWM4CON service with the SERVER_MANAGER=YES
and SERVER_TYPE=ROUTER parameters, and information in the SERVER_DATA parameter to uniquely
identify the server. The subsystem type and name specified must match that of the associated routing
manager instances which will route clients to the server (as defined in step 1). The WORK_MANAGER
parameter must remain the default YES so that the server can create independent enclaves in the next
step. In addition, the address of an exit routine must be identified on the SRV_MGR_EXIT parameter.
See “Using the routing server connect exit” on page 78. Workload management invokes this exit to
initiate the shutdown of the server address space. The exit is expected to initiate the shutdown of the
server address space. Input to the exit is mapped by the list form of the IWMSCXIT macro instruction.
For more information on the quiesce process for an application environment, see step 6 below, as well
as the “Defining Application Environments” chapter in z/OS MVS Planning: Workload Management.

4. Create an enclave.

The server address space receives a work request directly from the client and uses the IWM4ECRE
service to create an enclave (normally one per request, depending on the definition of the request).

For the duration of the processing of a request, the client task is joined to the enclave via the
IWMEJOIN service so that it can be managed to the installation performance objectives. While the task
is part of the enclave, it should only be doing work on behalf of the enclave. Upon completion of the
request, the task leaves the enclave via the IWMELEAV service.

Note : While IWM4STBG and IWM4STEN are similar in many ways to IWMEJOIN and IWMELEAV, they
cannot be used here, as queueing services are not involved.

5. Delete the enclave.

When work is completed, the server address space informs workload management via the IWM4EDEL
service.

6. Terminate the server address space.

Under normal circumstances, it is expected that a server address space terminates only when directed
to do so by workload management through the connect exit. Possible reasons for the exit being
invoked could be:

Chapter 6. Using the routing manager services 77

• The operator entered a VARY WLM,QUIESCE or VARY WLM,REFRESH command.
• A policy was activated from a new service definition which no longer includes the application

environment associated with the server.
• WLM determined that the server is not needed to meet the goals of the enclave's service class.

The server is expected to complete any active work requests, clean up, and then disconnect and
terminate from workload management through the IWM4DIS service.

If the server encounters a failure that forces it to terminate, it should disconnect from workload
management as part of its shutdown. If the server address space terminates without explicitly
disconnecting from workload management, workload management detects the termination and
performs the IWM4DIS processing at that time.

7. Terminate the routing manager address space.

When the routing manager terminates normally, it is expected to quiesce its activities and disconnect
from workload management using the IWM4DIS service. If the routing manager address space
terminates without first disconnecting from workload management, workload management detects
the termination and performs the IWM4DIS processing at that time. The disconnect and termination of
a routing manager does not cause the related server address spaces to terminate. It is the
responsibility of the subsystem to coordinate termination processing between the routing manager
address space and the servers.

Using the routing server connect exit
A routing server must provide the name of an exit routine on the SRV_MGR_EXIT@ parameter of
IWM4CON when it connects to workload management. The exit is invoked when workload management
needs to inform the server to terminate during quiesce or refresh processing. When the exit routine is
invoked, register 1 contains the address of a parameter list mapped by the list form of the IWMSCXIT
macro instruction. The parameter list includes an indicator of the action the exit is to take and the connect
token associated with the IWM4CON macro issued previously by the server.

The execute and standard form of IWMSCXIT are intended for use only by the operating system.

Exit routine environment
The server connect exit routine receives control in the following environment:

Authorization Supervisor state key 0

Dispatchable unit mode SRB

Cross-memory mode PASN=HASN=SASN with the current home address space the same
as when the server issued the IWM4CON macro instruction.

AMODE 31-bit

ASC mode Primary

Interrupt status Enabled for I/O and external interrupts

Locks No locks held

Serialization It is possible for the exit to be called before the caller has received
control back from IWM4CON. The exit or any program it drives
(synchronously or asynchronously) must synchronize with the
program issuing IWM4CON to ensure that IWM4CON has returned a
connect token prior to issuing IWM4DIS (disconnect) or any other
service that requires the connect token.

78 z/OS: z/OS MVS Programming: Workload Management Services

Location The server exit must be a resident routine callable from the server
address space and must remain available after the server manager
disconnects or after the termination of the server task which issued
the IWM4CON. The exit need not persist after termination of the
server address space.

The input parameter list is in pageable storage addressable in the
primary address space, but should not be changed by the exit.

Exit Recovery The system may cause the server to become ineligible to be
recommended by IWMSRFSV (find server) if there have been
repetitive errors in calling the exit. The exit may optionally establish a
functional recovery routine (FRR) or ESTAEX for any needed recovery
or cleanup of its resources.

Register usage
Upon entry to the exit, the register contents are as follows:
0

Not defined
1

Address of the input parameter list
2-13

Not defined
14

Return address
15

Entry point address

Upon entry to the exit, the access register contents are undefined.

Upon return from the exit, the register contents are expected to be:
0

Reason code, if GR15 return code is non-zero
1-14

Not defined (need not be restored to value on entry)
15

Return code

Upon return from the exit, the access register contents are unchanged.

Example
The following example shows how to invoke the IWMSCXIT macro instruction and the resulting parameter
list mapping. This is the parameter passed to the routing server exit routine specified on the
SRV_MGR_EXIT@ parameter of IWM4CON.

 IWMSCXIT MF=(L,MYSCXITPL)

+MYSCXITPL DS 0D ++ IWMSCXIT PARAMETER LIST
+MYSCXITPL_XVERSION DS XL1 ++ INPUT
+MYSCXITPL_XRSV0001 DS CL1 ++ RESERVED
+MYSCXITPL_XPLISTLEN DS XL2 ++ INPUT
+MYSCXITPL_XACTION DS BL.8 ++ ACTION INDICATORS
+MYSCXITPL_XACTION_QUIESCE EQU B'10000000'
+ ++ INDICATES QUIESCE ACTION
+MYSCXITPL_XACTION_RESUME EQU B'01000000'
+ ++ RESUME (NOT USED IN OS/390 R3)
+MYSCXITPL_XRSV0005 DS CL3 ++ RESERVED
+MYSCXITPL_XCONNTKN DS BL.32 ++ CONNECT TOKEN FROM IWM4CON

Chapter 6. Using the routing manager services 79

+MYSCXITPL_XRSV000C DS CL4 ++ RESERVED
+MYSCXITPLL EQU *-MYSCXITPL ++ LENGTH OF PARAMETER LIST

80 z/OS: z/OS MVS Programming: Workload Management Services

Chapter 7. Using the scheduling environment
services

A scheduling environment is a list of resource requirements and their required states. It allows you to
manage the scheduling of work in an asymmetric sysplex where the systems differ in installed
applications or installed hardware facilities. If an MVS image satisfies all of the requirements in the
scheduling environment associated with a given unit of work, then that unit of work can be assigned to
that MVS image. If any of the resource requirements are not satisfied, then that unit of work cannot be
assigned to that MVS image. See z/OS MVS Planning: Workload Management for information on using the
WLM application to define scheduling environments.

Obtaining scheduling environment definitions
Use the IWMSEQRY service to obtain scheduling environment and resource definitions and status on each
system in the sysplex. This service can be used by a program to produce alternative displays to those
provided by the DISPLAY WLM command.

In Figure 20 on page 82, IWMSEQRY returns the resource requirements in the DB2LATE scheduling
environment (DB2A must be ON, PRIMETIME must be OFF), and the resource state settings on each of the
four systems in the sysplex. Because DB2A is set to ON and PRIMETIME is set to OFF on SYS2, that
system is identified as the appropriate system for work associated with the DB2LATE scheduling
environment.

© Copyright IBM Corp. 1988, 2021 81

WLM

ANS1

Customer-provided Program

Scheduling Environments

Obtain scheduling
environment and its
status on each system

Scheduling environments,
according to service definition

DB2LATE

IWMSEQRY

ANSAREA=ANS1

WLM CDS

Definition

OFF OFF

OFF

OFF

PRIMETIME PRIMETIME

PRIMETIME

PRIMETIME

DB2A DB2A

DB2A

DB2A DB2A

ON ON

ON

ON

ON

SYS1 SYS2 SYS3 SYS4

PRIMETIME

RESET

OFF OFF

OFF

PRIMETIME PRIMETIMEPRIMETIME

DB2A DB2ADB2A DB2A

ON ONON

ON

SYS1 SYS2 SYS3 SYS4

PRIMETIME

RESET

DB2LATE

OFF

PRIMETIME

DB2A

ON

Figure 20. Obtaining scheduling environments

Manipulating resource state settings
Use the IWMSESET service to change resource state settings. The resource state can be changed only on
the system in which the program is executing.

The resource states can be set to:

• ON, which will satisfy a resource state requirement of ON.
• OFF, which will satisfy a resource state requirement of OFF.
• RESET, which will not satisfy any resource state requirement.

In Figure 21 on page 83, a program executing on SYS3 invokes IWMSESET to change the value of DB2A
from OFF to ON. SYS3 now satisfies the DB2LATE resource requirements shown in Figure 20 on page 82
(DB2A ON and PRIMETIME OFF).

82 z/OS: z/OS MVS Programming: Workload Management Services

Customer-Provided
Program on

Manipulate resource
state setting:

IWMSEDES

RESOURCE=DB2A

STATE=ON

OFF OFF

OFF

OFF

PRIMETIME PRIMETIME

PRIMETIME

PRIMETIME

DB2A DB2A

DB2A

DB2A DB2A

ON ON

ON

ON

ON

SYS1 SYS2 SYS3

SYS3

SYS3

SYS4

PRIMETIME

RESET

Figure 21. Manipulating resource state settings

A model work flow
Figure 22 on page 84 shows how a multisystem work scheduler can use the IWMSEVAL and IWMSEDES
services to implement support of scheduling environments.

Chapter 7. Using the scheduling environment services 83

Figure 22. Scheduling environment flow

In Figure 22 on page 84, work request ZJOB9 is submitted and associated with the DB2LATE scheduling
environment.

84 z/OS: z/OS MVS Programming: Workload Management Services

The scheduler calls the IWMSEVAL service to verify that the scheduling environment name is valid. If
there is no such scheduling environment known to workload management, then the scheduler fails the
work request. If the scheduling environment name is valid, then the scheduler accepts the work request.

The scheduler creates a queue element for the work request. The scheduling environment name is
included in that queue element, as well as a resource affinity mask. For each system in the sysplex,
IWMSEDES will indicate whether that system satisfies the scheduling environment in question. The
scheduler can then build the resource affinity mask, which is simply a 32-bit string of ones and zeros. A
one means that the system satisfies the scheduling environment, and a zero means that the system does
not satisfy the scheduling environment. The scheduler must keep an ordered list of system names
corresponding to the bit positions in the mask.

In Figure 22 on page 84, the resource affinity mask for DB2LATE reads 0100, because only SYS2 satisfies
the DB2LATE scheduling environment.

Scheduling environment definitions and resource state settings can change at any moment. The scheduler
must be aware of these changes so that it can adjust its decision making accordingly. The scheduler
listens for two ENF event codes, 41 and 57, which signal these changes:
Code

Event description
41

A new service definition has been activated.

When a new service definition is activated, resource names can be added to, or removed from, a
scheduling environment. A particular scheduling environment or resource name may even have been
deleted from the service definition altogether. (See note below.)

57
A scheduling environment has changed state on a system.

Either it was previously not available and is now available, or vice versa.

For more information about ENF, see z/OS MVS Programming: Authorized Assembler Services Guide.

For either event, the scheduler must reevaluate the status of each work request on the queue. It must
rebuild the resource affinity masks to reflect the new scheduling environment definitions or the new
resource state settings.

If a scheduling environment no longer exists, the scheduler can either delete the associated work
requests or place them in a hold state for installation action. The latter choice is appropriate if it is
important for the installation to be able to recover the work requests. The installation could recover by
installing a new service definition that includes the deleted scheduling environment.

The final step in this work flow is when the work request moves from the queue to the appropriate system
for execution. In Figure 22 on page 84, the ZJOB9 work request is scheduled on SYS2, as that is the only
system that satisfies the DB2LATE scheduling environment.

Chapter 7. Using the scheduling environment services 85

86 z/OS: z/OS MVS Programming: Workload Management Services

Chapter 8. Using the sysplex routing services

The sysplex routing services allow work associated with a server to be distributed across a sysplex. They
are intended for use by clients and servers.

A client is any application or product in the network that requests a service. The service could be a
request for data, a program to be run, or access to a database or application. In terms of the sysplex
routing services, a client is any program routing work to a server. A server is any subsystem address space
that provides a service on an MVS image.

The sysplex routing services provide the following functions:

• The IWMSRSRG macro lets a caller register as a server.
• The IWMSRSRS macro provides a caller with a list of registered servers and the number of requests that

should be routed to each server.
• The IWMSRDRS macro lets a caller deregister when it is no longer available as a server.
• The IWMSRDNS macro provides the caller with list of location names for all registered servers known to

the system on which the service is invoked.
• The IWM4SRSC macro provides the caller with server-specific information about the performance and

capacity of a specific server before work gets routed to it from WLM. This information can be used for
balanced routing decisions.

Why use the sysplex routing services?
The sysplex routing services enable distributed client/server environments to balance work among
multiple servers. These services help the distributed programs make the routing decisions, rather than
having each installation have to make the decisions.

The sysplex routing services provide information for more intelligent routing. They do not route or
distribute work requests. The server must use its existing routing mechanisms.

When to use the sysplex routing services
When a server is available to receive work requests, it issues the IWMSRSRG macro to register. You
should issue IWMSRSRG once per initialization of a server. The system makes this information available
asynchronously to all MVS images in the sysplex.

When a client wants to route work to a server, it issues the IWMSRSRS macro for a list of registered
servers. To help the client decide where to route the request, IWMSRSRS returns the relative number of
work requests that can be routed to each server in the list.

When a server is no longer available to receive work requests, it issues the IWMSRDRS macro to
deregister. A server should issue IWMSRDRS once per address space termination.

The following section explains each of the services in more detail.

Registering as an eligible server
A server can use IWMSRSRG to register that it is available for receiving work requests. A server should
issue IWMSRSRG at address space initialization time. The server identifies itself by a triplet consisting of
the following:

• Location name
• Network id
• LU name

© Copyright IBM Corp. 1988, 2021 87

Servers with the same location name are considered to be related and to provide equal service. The
server must also specify an address space token (STOKEN) identifying the server address space token.
Because the propagation of registration to all systems in the sysplex is asynchronous, a newly registered
server is not immediately available for selection on other systems.

For complete information about the IWMSRSRG macro, see “IWMSRSRG — Register a server for sysplex
routing” on page 344.

Determining where to route work
The IWMSRSRS macro returns a list of eligible servers, and for each server, an associated weight. From
this list, a client can determine where to route work. See z/OS MVS Data Areas, Vol 3 for the mapping.

The weights provided allow changes in system conditions and server availability to be factored into the
distribution of work. The weights represent the relative number of requests each server should receive.
Various capacity considerations are used to calculate the weights.

A client can route the work to the servers as ordered in the list, and can route the number of requests as
suggested for each server. A caller should be aware of other clients in the sysplex issuing the IWMSRSRS
macro, and route work properly.

For example, consider the following list of servers and weights:

 Server Weight
 ------ ------
 NETID1.LUNAMEA 3
 NETID2.LUNAMEB 8
 NETID3.LUNAMEC 2

The client should route the first three requests to NETID1.LUNAMEA, the next eight to NETID2.LUNAMEB,
and so on. When the client has gone through the list, the client can either invoke IWMSRSRS again for a
refreshed list, or rotate through the list again.

Acceptable weights are from 1 to 64. If a server is busy and not available to receive any work requests, it
will not appear in the list. If work is routed to the server and it is not able to process the request, the
request is not processed.

Clients should issue this macro on a regular basis, so that the list is refreshed every one to three minutes.
This way, a client can stay current with changing system loads and server viability.

For complete information about the IWMSRSRS macro, see “IWMSRSRS — Sysplex routing information”
on page 351.

Deregistering as an eligible server
When a server is no longer available for processing work, the server should issue the IWMSRDRS macro to
deregister. A server should issue IWMSRDRS at address space termination. This makes the system aware
that the server is no longer a candidate for future work requests, and can remove it from the list of eligible
servers.

For complete information about the IWMSRDRS macro, see “IWMSRDRS — Deregister a server for sysplex
routing” on page 332.

Example of using the sysplex routing services
Figure 23 on page 89 shows an example of the sysplex routing services.

88 z/OS: z/OS MVS Programming: Workload Management Services

Figure 23. Example of using sysplex routing services

In the figure, there are three servers, and one client program. Each of the servers registers at address
space initialization using the IWMSRSRG macro. Suppose the first server registered, with the following
defined:

LOCATION1 DS CL18 location
NETWORKID1 DS CL8 network id
LUNAME1 DS CL8 LU name
STOKEN1 DS CL8 token of server address space

The first server uses the IWMSRSRG macro as follows:

IWMSRSRG LOCATION=location1,
 NETWORK_ID=networkid1,
 LUNAME=luname1,
 STOKEN=stoken1

Meanwhile, the client program wants the list of address spaces available for processing work. The client
issues IWMSRSRS once for the length of the area required for the list. The length required is in the
QUERYLEN output parameter. The client issues:

IWMSRSRS SYSINFO_BLOCK=sysinfo_block,
 ANSLEN=anslen,
 QUERYLEN=querylen,
 LOCATION=location

Note : The QUERYLEN value is a snapshot taken when IWMSRSRS is issued. That value can change
between calls due to other servers registering. To compensate, it is recommended that you add a few
entries extra length to the size resulting from the first IWMSRSRS call.

The client then obtains the required amount of storage, and issues IWMSRSRS again for the list of eligible
servers and their weights:

IWMSRSRS SYSINFO_BLOCK=sysinfo_block,
 ANSLEN=anslen,
 QUERYLEN=querylen,
 LOCATION=location

The caller receives the list, mapped by IWMWSYSR, as follows:

 Server Weight
 ------ ------
 NETID3.LUNAME3 4
 NETID1.LUNAME1 6
 NETID2.LUNAME2 2

The client routes the first 4 work requests it receives to NETID3.LUNAME3, the first in the list. The client
routes the next 6 requests to NETID1.LUNAME1, and then the following 2 to NETID2.LUNAME2. The client

Chapter 8. Using the sysplex routing services 89

opted to issue the IWMSRSRS macro every three minutes. Once the client has received 12 requests, it will
route the 13th through the 16th requests to NETID3.LUNAME3, and go down the list again until the three
minutes are over.

WLM sysplex workload distribution
When WLM is called by DNS or sysplex distributor for advice on where to route work in a sysplex, WLM
returns a list of eligible servers with a weight assigned to each server. Work is then routed to the server
proportionally to its weight so the higher weight servers receive more work. For example, if four servers A,
B, C, and D are returned by WLM with weights of 2, 2, 4, and 8 respectively, DNS will route one-eight of
the requests to each of servers A and B, one-fourth of the requests to server C, and one-half the requests
to server D.

The weights are calculated as follows. WLM first assigns a weight to each system, with a higher weight to
systems with the most available capacity. The weights are proportional to the amount of available
capacity on each system. Then WLM divides the weight for a system equally among the registered servers
on that system. In the case of DNS, there can be multiple servers registered with WLM per system image.
For sysplex distributor, however, the WLM server registration is done by the TCP/IP stack so there is only
one server per system image. This means the server weight always equals the system weight for sysplex
distributor. If all systems are running at or near 100% utilization, then higher weights are given to the
systems running less important work. The objective is to send work where there is available capacity or, if
there is no available capacity, where the least important work will be displaced. Servers on systems that
are in a serious storage shortage (SQA, fixed frame, auxiliary storage) are not recommended unless all
systems are in a shortage.

Calculation of server weights
The basis for WLM's weight calculation is the CPU consumption table (see Table 18 on page 91) for each
goal-mode system in the sysplex. More than half of the systems in the sysplex need to be in goal mode for
WLM to calculate weights. Otherwise, all weights are set equal to one. The table has one row for each
level of work in the system. The levels are:
Level

Usage
0

Service consumed by the system
1-5

Externally defined importance levels
6

Discretionary work
7

Unused service (equivalent number of service units)

Each row contains the following fields:

• Number of service units (SUs) consumed in three minutes at the given importance level and below.
• Percentage of total capacity consumed in three minutes at given importance level and below. For

example, Level 4 in the table has the service units consumed by importance 4, importance 5, and
discretionary work plus unused capacity.)

WLM calculates weights as:

1. WLM scans the rows in the table in reverse starting with Level 7 until it finds a level where one or more
systems have at least 5% cumulative service units of capacity. WLM then uses this table level for all
goal mode systems to assign relative weights.

2. WLM calculates a system weight for each system in the sysplex using the SU value in the selected row
in the table, as:

90 z/OS: z/OS MVS Programming: Workload Management Services

 SUs for this system at selected level × 64
 System weight = ---
 total SUs for all systems at selected level

3. WLM calculates a server weight, as:

 System weight
 Server weight = ---------------------------------
 number of servers on system

Example
For this example, consider the consumption table shown in Table 18 on page 91.

Table 18. CPU consumption table

System A System B System C

Level SUs Percent SUs Percent SUs Percent

0 2000 100 2000 100 2000 100

1 1800 90 1900 95 1840 92

2 1600 80 1500 75 1600 80

3 1100 55 1500 75 800 40

4 400 20 1200 60 800 40

5 200 10 400 20 40 2

6 80 4 20 1 0 0

7 0 0 0 0 0 0

There are three goal-mode systems in the sysplex, all running at 100% CPU utilization. Each system has
two DNS servers running for a particular application. To assign weights to the three systems, WLM scans
the CPU consumption table from the bottom up, looking for a level where at least one system has 5% or
greater cumulative CPU consumption.

In this case, the Level 5 row is used because System A exceeds the 5% minimum (and so does System B).
Level 5 is then used to calculate the weight for all systems including System C. So, the system weights are
determined by the amount of importance 5 and discretionary work each system is running. Because there
are two servers on each system, the server weight is the system weight divided by 2.

System weight Server weight

System A weight = 200 × 64 / 640 = 20 Server weight = 20 / 2 = 10

System B weight = 400 × 64 / 640 = 40 Server weight = 40 / 2 = 20

System C weight = 40 × 64 / 640 = 4 Server weight = 4 / 2 = 2

The IWMSRSRS service supports the function code SPECIFIC, which allows for calculated weights to
also take the server-specific information into account. If the IWMSRSRS service is called with
FUNCTION=SPECIFIC, then the weight calculated as previously described is additionally multiplied by a
Performance Index (PI) factor and a queue time factor. The value of these two factors is calculated as:
PI factor

is 1 if the server has a PI <= 1, which means that it achieves its goals. The PI factor will become < 1 if
the PI indicates that the server does not achieve its goal.

Queue time factor
becomes < 1 if the server is the owner of enclaves and those enclaves have reported queue times
relative to their total elapsed times. This means that their arrival time differs from the enclaves create
time, when the enclave was created.

Chapter 8. Using the sysplex routing services 91

A health factor is also multiplied into the weight calculation. The health factor is set for the server address
space either by the IWMSRSRG registration service or by the IWM4HLTH health service. For more
information about these services, see to “IWMSRSRG — Register a server for sysplex routing” on page
344 and “IWM4HLTH — Setting server health indicator” on page 464.

92 z/OS: z/OS MVS Programming: Workload Management Services

Chapter 9. Using the workload reporting services
The workload reporting services are intended for monitoring or reporting products to collect performance
data. They replace some of the existing methods of collecting data, and provide a means to collect data
for the goal-oriented processing with the service policy.

When to use the workload reporting services
Because the data collection is cumulative, performance monitors can collect information based on their
own reporting intervals. But the collection is stopped and re-started when a significant change occurs in
workload management, such as when a new policy is activated, or a system failure occurs. Performance
monitors should “bookend” their intervals when such a significant change occurs in workload
management. For each of these events, event notification facility (ENF) signals are issued. SRM samples
the states of address spaces, and an ENF signal is issued when a new set of samples is available. The
performance monitor can use the ENF signals to guide its reporting interval. For example, when an ENF
code for a new policy activation is issued, the performance monitor can end its last reporting interval, and
start the next reporting interval for the newly activated service policy.

To enable the performance monitor to know when a workload reporting change is taking place, such as
when a policy is activated, there is a ENF system event code. ENF event code 41 and its related qualifiers
indicate when changes are taking place related to service policies. ENF code 41 guides the performance
monitor's reporting intervals, and helps it to issue the services at the appropriate times.

Using ENF signals to guide data collection
Because all performance data is continually collected until a significant change takes place in workload
management, the performance monitor must know when the collection is reset. Workload management
resets its collecting when:

• A service policy is activated (VARY WLM,POLICY)
• A system error occurs

ENF signals are issued for these events, and for each ENF, a listener is notified synchronously at the start
of a change, and at the completion of a change. There is an ENF code qualifier indicating a change started,
an ENF code qualifier indicating a change completed, and an ENF code qualifier indicating a change has
failed.

When a change is started, workload management captures a last copy of workload data. The performance
monitor can listen for the “start” event code, and then invoke IWMRCOLL to get the last available data.
The workload data remains the same until either the change completes, or the change fails. Based on the
“start” event code, the performance monitor should save this data, end its current interval, and wait for
the next code.

Note : Because the ENF signal is issued synchronously, the listener should complete processing as
quickly as possible. For example, if the ENF is issued broadcasting the start of policy activation, the policy
activation is held up until all listeners for that ENF have relinquished control.

If the change is completed, the performance monitor should invoke the proper services, as shown in Table
19 on page 94 . A performance monitor should always complete its last interval with the data collected
when it received the “start” event code. If the change failed, the performance monitor can continue to use
the data it saved when it received the start event code. Regardless of whether the event has completed or
failed, the performance monitor should reinitialize all of its workload activity information. Then the
performance monitor should issue:

• IWMPQRY for a copy of the active policy
• IWMRCOLL for workload activity information

This way, the performance monitor does not need to do two different things for completions and failures.

© Copyright IBM Corp. 1988, 2021 93

There is also an asynchronous ENF signal issued when the IWMWRQAA information is available. That way,
a performance monitor can synchronize its sampling interval for address space states with workload
management's sampling interval.

ENF event code 41
Table 19 on page 94 shows the ENF event code and its qualifiers. The table also outlines what a
performance monitor could do when the ENF code is heard.

Table 19. Using ENF event code 41 to guide data collection for policy changes

Event Signal and qualifiers Expected action

VARY WLM, POLICY WLMENF11
WLMENF12
WLMENF13

WLMENF11
Indicates the policy change has begun. The performance
monitor should invoke IWMRCOLL to obtain a copy of the
last available data, and wait for WLMENF12. The
performance monitor should save the copy as the last
available for the interval.

WLMENF12
Indicates the policy was successfully activated on this
system. To get a copy of the new policy information, the
performance monitor should issue the IWMPQRY macro.
The performance monitor should then reinitialize its
workload activity reporting fields and resume data
collection.

WLMENF13
Indicates the new policy was not activated on this system,
but may have been activated on some systems in the
sysplex. This system is potentially running with a different
policy than the rest of the systems in the sysplex. The
performance monitor should acquire the current policy
information by issuing the IWMPQRY macro. The
performance monitor should reinitialize its data collection
fields and indicators and resume data collection with
subsequent IWMRCOLLs. The performance monitor could
alert the customer that this system is not running with the
active service policy.

System failure WLMENF31
WLMENF32
WLMENF33

WLMENF31
Indicates workload activity reporting failed, recovery has
begun. Do not issue IWMRCOLL until recovery is complete.

WLMENF32
Indicates workload activity reporting recovery was
successful. Start a new reporting interval.

WLMENF33
Indicates workload activity reporting recovery was
unsuccessful. Do not issue IWMRCOLL as no data is
returned until the next IPL.

Using the IWMRCOLL service
The IWMRCOLL service allows a performance monitor to obtain a variety of performance data from a
single system. Although IWMRCOLL provides information about a single system, the performance monitor
can combine the information to provide a sysplex view.

Table 20 on page 94 shows how you can use the workload reporting services together with IWMRCOLL
to get workload activity information on a single system. “Using the information in IWMWRCAA” on page
95 explains how to use the information returned by IWMRCOLL.

Table 20. Using IWMRCOLL with the workload reporting services on a single system

Action Reason

Issue REQSRMST SYSEVENT To get information about the service definition and policy

94 z/OS: z/OS MVS Programming: Workload Management Services

Table 20. Using IWMRCOLL with the workload reporting services on a single system (continued)

Action Reason

Issue IWMPQRY macro To obtain current active policy length

Issue GETMAIN To obtain storage needed to hold the active service policy information

Issue IWMPQRY To obtain active service policy information

Set up a reporting interval To prepare for subsequent IWMRCOLL requests

Issue IWMRCOLL specifying MINLEN,
MAXLEN, and QUERYLEN

To obtain length of storage needed. IWMRCOLL returns ANSTOKN required for
subsequent calls to IWMRCOLL

Issue GETMAIN To get storage needed to hold information returned by IWMRCOLL

Issue IWMRCOLL ANSTOKN=token To get workload activity information mapped by IWMWRCAA

Set up a reporting interval Sample workload activity information by issuing IWMRCOLL at your determined
interval

Calculate differences in data To determine the delta of data returned for the interval in each successive IWMWRCAA

Using the information in IWMWRCAA
By using IWMRCOLL, a performance monitor can obtain the following kinds of information:

• Resource consumption information
• Response time and distribution information, and special reporting data
• General delay information
• Subsystem work manager delay state information

The information that is provided is mapped by the IWMWRCAA data area. Information is returned on a
service class and report class basis. “Using the subsystem work manager delay state information” on
page 96 explains how to use the response time data and the subsystem work manager delay state
information.

Header data
The header data present in the RCAA consists of:

• Data specific to the workload management mode in effect, such as which service policy is active.
• General information such as bookkeeping information.

Resource data
Resource information is available for address spaces and there is a distinction between transactions
and server address spaces. A server address space is any address space that does work on behalf of a
transaction manager or a resource manager. For example, a server address space might be a CICS
AOR, or an IMS control region. Service classes that represent CICS or IMS transactions, as opposed to
address spaces, have no resource data. The resources that are being consumed by such transactions
are reported in the service class of the server address space.

Delay data
There are two types of delay information that is returned by IWMRCOLL: general execution delays, and
subsystem work manager delays. All data is sampled.

The general execution delays are address space oriented while the subsystem work manager
execution delays are service class oriented. They show delays that are encountered by service classes
that represent transactions. The subsystem work manager execution delays are in the subsystem work
manager state samples section of IWMWRCAA. The state samples are available only for subsystem
work managers that use the execution delay monitoring services.

To assist in determining whether a service class has execution delay state sampling information, the
header data indicates which type of delay information is available for a service class. You can use
address space delay data to calculate execution velocity.

Chapter 9. Using the workload reporting services 95

Response time data
There is response time information and response time distributions for transactions. Both are
reported for service classes and report classes.

You can calculate average response times by using the information that is provided in this section.
Total completed transactions (both normal and abnormal) are provided, as well as total transaction
completion time. This same information is available for the execution phase of transactions.

In addition, special reporting data is provided for service and report classes.

Using the subsystem work manager delay state information
The delay information in IWMWRCAA represent delays encountered by subsystem work managers as they
process transactions. Workload management can recognize those address spaces that process
transactions on behalf of the transaction managers. Such address spaces are called server address
spaces. Workload management manages the server address spaces to achieve the goals of the
transactions the server is processing. If a server address space is managing more than one service class,
workload management manages the address space to meet the most stringent service class goal.
However, resource consumption and address space delays for server address spaces are reported in the
server's service classes.

The delay information shows the different states server address spaces experience while processing
transactions. The information is provided on a service and report class basis, in the service or report class
representing the transactions. This way, the delay states show for the transactions being processed, not
for the address spaces serving the transactions. The states include how many times the service or report
class was seen active, ready, and waiting. There are several waiting states. Each of these is reported
separately. Some other states include whether the transactions are continued somewhere else in the
system, in the sysplex, or in the network.

Using the continued state information
The state information helps a performance monitor show a picture of how well transactions are being
processed. Because multiple address spaces can be involved in processing a transaction, a delay could
occur in any of several places. IWMWRCAA provides state information to help a performance monitor pin
down when transactions experience delays. The states show whether a service class has continued:

• In the local system
• In the sysplex
• In the network

With the cooperation of the participating subsystem work managers, the information reported divides the
life span of transactions into two phases: a begin-to-end phase, and an execution phase. A begin-to-end
phase shows transaction states from the time the subsystem work manager receives a transaction,
processes it, and ends it. An execution phase shows transaction states only during the time a subsystem
work manager processes the transaction. Delay states may not always appear in each phase. It depends
on how a subsystem work manager is reporting the delays it encounters while processing.

For example, for CICS transactions, delay states are recorded from the time the TOR receives the
transaction and begins processing, through the time the transaction is processed in the AOR, FOR, or
elsewhere, and ended back in the TOR. The phase where the TOR receives the transaction, and ends it is
called the begin-to-end phase. The phase where the transaction moves into the AOR, FOR, or elsewhere
and is processed is called the execution phase.

The delay states for both the begin-to-end and the execution phase are reported together in the service
class of the CICS transactions processed. For example, Figure 24 on page 97 shows the delay states
sampled for both begin-to-end phase and the execution phase for one CICS service class representing
CICS transactions.

If the execution phase occurs on the same MVS image as the begin-to-end phase, then (barring some
statistical anomalies), the amount of time the service class spends in the continued - LOCAL state of the

96 z/OS: z/OS MVS Programming: Workload Management Services

begin-to-end phase should approximately equal the amount of time the service class spends in the
execution phase.

Figure 24. Using states for presenting CICS delay information

The execution phase could be in the same system as the begin-to-end phase, but could also be on
another system in the sysplex, or in the network.

By combining the information collected on each system for a given service class, the performance monitor
can resolve the states where the transactions in the service class continued elsewhere in the sysplex. For
transactions continued elsewhere in the network, workload management cannot know any more
information. Only the count of how many were switched out through the network is provided.

Figure 25 on page 98 shows how the performance monitor could view the state information to provide a
sysplex view. In this example, the states are reported for the CICSFAST service class. In this example, the
number of samples of transactions continued somewhere in the sysplex should equal the number of
transaction states sampled in the sysplex (summed from each system in the sysplex). The performance
monitor can combine all the state data from all the systems in the sysplex to provide a sysplex view,
correlating the data by service class.

Chapter 9. Using the workload reporting services 97

Figure 25. Combining state information for a sysplex view

Using delay states to report subsystem interactions
Not only are multiple address spaces involved in processing transactions, but those address spaces may
be part of different subsystems. For example, a CICS TOR may give control to a CICS AOR who in turn may
do a query to IMS DLI. Workload management can keep track of subsystems that communicate with each
other, and provides the information so that a performance monitor can present the subsystem
interactions in processing transactions.

The CICS transaction used in the previous example has a begin-to-end phase and an execution phase.
The execution phase could be split among several subsystems, and the delays associated with each
distinct subsystem are reported separately. The performance monitor should combine all information by
service class by subsystem to provide a sysplex view.

Delay data are presented for as many distinct subsystems as participated in processing each service
class. The data are available for both the begin-to-end phase and the execution phase.

A performance monitor could provide a timeline with the various pieces and phases of the work
represented differently. In Figure 26 on page 99, the performance monitor sees that the biggest delays
encountered are in the Waiting state and the Continued Local state. The performance monitor could
show further information about the Continued Local states by presenting the information found in the
execution phase on that system.

98 z/OS: z/OS MVS Programming: Workload Management Services

Figure 26. Combining state information for a service class

In the example, the performance monitor shows that there are execution delays attributed to Active,
Waiting, and Continued states. Notice that of the 35 delay states reported in the original display as being
Continued Local, only 33 of them show up in the execution phase. This is one of the shortcomings of
sampling.

In Figure 27 on page 99, there are two subsystems represented in the execution phase. This means that
during this interval, both subsystem A and subsystem B performed work on behalf of service class xyz.
Again, notice that there is 1 state sample missing due to statistical anomalies. The performance monitor
could determine the specific reason for subsystem B Waiting states from the delay states.

Figure 27. Combining state information across subsystems

Chapter 9. Using the workload reporting services 99

Using the response time information
To provide a picture of how a performance group was performing, SRM previously reported total
transaction time for use in calculating standard deviation. This information is provided for transaction
execution time. Response time distributions are provided for both service classes and report classes.

These distributions consist of 14 buckets of information. There is a header explaining the contents of the
buckets that is provided once. The header contains the value of the particular bucket, which is a
percentage of the specified goal (that is, 50 equates to 50% of the goal; 150 equates to 150%, of the
goal). One bucket always maps exactly to the specified goal, with a value of 100%.

In each bucket is the number of transactions that completed in the amount of time that is represented by
that bucket.

In Table 21 on page 100, each of the 14 buckets represents a percentage of the specified 1-second goal.
For instance, bucket 2 represents all transactions that completed in 50% to 60% of the goal, or 500 - 600
milliseconds, while bucket 8 contains the number of transactions that completed in 110% to 120% of the
goal, or 1.1 to 1.2 seconds. Notice that bucket 6 falls exactly on the goal (100% of goal, or 1 second). This
bucket captures all those transactions that complete in 900-1000 milliseconds.

The two end buckets (buckets 1 and 14) have special meaning. Bucket 1 contains the total number of
transactions that completed in up to 50% of the goal. Bucket 14 contains the number of transactions that
completed in greater than 4 times the goal.

Table 21. Self-defining response time distributions for service class XYZ

Response time distributions for service class XYZ
Goal: 90% in 1 second

Bucket 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Percent of goal 50 60 70 80 90 100 110 120 130 140 150 200 400 FFF

Transaction count 1 0 1 10 48 12 26 13 7 2 2 0 0 1

In addition to the response times, special reporting data is available in this section for service and report
classes. With classification rules, you can associate your work with a special reporting attribute. This
attribute can be used to report on subsets of transactions that are running in a service or report class. For
more information, see the topic on Defining special reporting options for workload reporting in z/OS MVS
Planning: Workload Management. Special reporting data for a service or report class contains service
consumption on general-purpose processors and offload engines for each value of the reporting attribute.
In contrast to other data in the IWMWRCAA answer area, these values might not be cumulative. Due to
reaccounting of transaction processor usage that arises from the WLM execution delay monitoring
services, values might shrink from one invocation of IWMRCOLL to the other.

Interpreting report class data
Through classification rules WLM allows you to associate transactions with report classes or tenant report
classes for reporting purposes. Since service IWMRCOLL processes tenant report classes like report
classes, the term report class always refers to both report classes and tenant report classes in the
following.

Report classes can be used to report on a subset of transactions running in a single service class but also
combine transactions running in different service classes within one report class. In the first case a report
class is called homogeneous, and in the second case it is called heterogeneous.

A report class period is homogeneous if there is only one service class found contributing to this report
class period in a given report interval. To allow a reporting product to determine whether a report class
period is homogeneous in its reporting interval, WLM offers two indicators returned by IWMRCOLL:

mixed-class-indication timestamp
This timestamp indicates when workload data associated with a different service class last
contributed data to a report class period that was currently collecting data from another service class
(see Figure 28 on page 101).

100 z/OS: z/OS MVS Programming: Workload Management Services

service class index
This index indicates the last service class whose data was collected in the report class period.

Figure 28 on page 101 illustrates the concept of the mixed-class-indication timestamp in relation to the
time interval in which a caller collects workload data.

Figure 28. Mixed-class-indication timestamp in relation to the time interval

A caller invokes IWMRCOLL twice in order to get interval data, first at time t₀ to start the interval and
second at time t₁ to end collecting data. With the second invocation at t₁, the caller gets back the mixed-
class-indication timestamp. If the returned timestamp is ≥ t₀, as it is for caller 1, it means that transaction
data from a different service class started contributing data to the same report class period. The report
class is heterogeneous. If the returned timestamp is outside the interval (smaller than t₀), as it is for caller
2, it means that the report class remained homogenous during the calling interval.

Being able to see that a period is homogeneous allows the reporting product to format response time
distribution buckets and work manager delay data for this period while it would not report this data for a
heterogeneous period. If the timestamp indicates that the report class is heterogeneous, it is
recommended to collapse the periods which means to report the data as if the report class had only one
period.

Using the IWMRQRY service
The IWMRQRY service provides sampled data on address spaces including:

• Address space state samples
• Server information

To see when an address space is serving more than one service class, information is provided for server
address spaces in the general execution delay portion of the IWMWRCAA. This information includes:

– The service classes being served by an address space.
– The number of samples of address spaces serving a particular service class. For example, address

space ACSFOR1 is seen serving service class CICSSLOW 60 times, and service class CICSFAST 40
times.

The data returned is mapped by the IWMWRQAA data area. It represents the data collected during one
sampling interval, an instantaneous, non-cumulative snapshot of the address space. The data is not tied
to a particular job. Products using IWMRQRY must decide whether to accumulate this latest state data
with prior samples.

An asynchronous ENF signal is issued whenever a new copy of IWMWRQAA information is available. The
performance monitor can use the ENF signal to determine when to issue IWMRQRY.

Table 22 on page 102 shows a sample sequence of what to do to get address space information using
IWMRQRY.

Chapter 9. Using the workload reporting services 101

Table 22. Using IWMRQRY with the workload reporting services

Action Reason

Issue IWMRQRY macro To obtain answer area length

Issue GETMAIN To get storage to hold the address space data

Issue IWMRQRY To obtain address space data mapped by IWMWRQAA

Set up a reporting interval To collect data from issuing IWMRQRY multiple times

Issue IWMRQRY
INFO=ONE,ASCB=asid

The performance monitor recognizes an exception for the address
space represented by the specified ASCB. To obtain specific data
about the ASCB address space.

Using the IWM4QTNT service
The IWM4QTNT service provides CPU service consumption of tenant resource groups defined in the WLM
service definition. Long-term average service on general purpose processors used by the tenant resource
groups is provided as well as the consumption on specialty engines.

Table 23 on page 102 shows a sample sequence of how you can use IWM4QTNT to obtain CPU service
consumption of tenant resource groups on a single system.

Table 23. Using IWM4QTNT with the workload reporting services

Action Reason

Issue REQSRMST SYSEVENT To get information about IWM4QTNT availability

Set up a reporting interval To prepare for subsequent IWM4QTNT requests

Issue IWM4QTNT specifying
ANSLEN and QUERYLEN

To obtain length of storage needed. IWM4QTNT returns ANSTOKN
required for subsequent calls to IWM4QTNT

Issue GETMAIN To get storage needed to hold information returned by IWM4QTNT

Issue IWM4QTNT
ANSTOKN=token

To get CPU service consumption data per tenant resource group
mapped by IWMWQTAA

102 z/OS: z/OS MVS Programming: Workload Management Services

Chapter 10. Using the administrative application
services

This information explains how to use the administrative application services. The services are intended
for programs which provide an interface to define and edit a service definition. They include:

• IWMDINST, which allows a program to install a service definition on the WLM couple data set.
• IWMDEXTR, which allows a program to extract a service definition from the WLM couple data set.
• IWMPACT, which allows a program to activate a service policy.
• IWMCQRY, which allows a program to query the classification rules in effect.

For information about service definition concepts, see z/OS MVS Planning: Workload Management.

Installing a service definition
The IWMDINST macro allows a program to install a service definition onto a WLM couple data set. The
service definition is moved onto the WLM couple data set as an area of storage, mapped by the
IWMSERVD macro.

Mapping a service definition
The service definition is installed and extracted from the WLM couple data set either in XML format, or as
a data area mapped by the IWMSERVD mapping macro. The XML structure is defined by the DTD
described in Appendix C, “Structure of the XML service definition (DTD),” on page 725. The IWMSERVD
macro points to the following sections:
IWMSVDEF

Maps the following service definition information:

Service policies
Workloads
Service classes
Report classes and tenant report classes
Resource groups and tenant resource groups
Service definition coefficients

IWMSVDCR
Maps the service definition classification rule information.

IWMSVNPA
Maps the service definition notepad area.

IWMSVAEA
Maps the service definition application environments.

IWMSVSEA
Maps the service definition scheduling environments.

Adding program-specific extensions to a service definition
A program can add program-specific information to the service definition. For example, suppose you want
to add a kind of reporting extension to a workload. In your program, you allow the service administrator to
define this extension when defining workloads.

You can add extensions to each of the following:

• Service definition

© Copyright IBM Corp. 1988, 2021 103

• Service policies
• Workloads
• Service classes
• Service class attributes
• Report classes
• Resource groups
• Resource group attributes
• Application environments
• Scheduling environments
• Scheduling environment headers
• Scheduling environment resources
• Classifications
• Resources

Extensions can be specified in an XML service definition. For service definitions mapped by IWMSERVD, a
program can add extensions to IWMSVDEF, IWMSVDCR, IWMSVAEA, and IWMSVSEA. The following
example illustrates extensions to IWMSVDEF. IWMSVDCR, IWMSVAEA, and IWMSVSEA all have roughly
similar structures, and are extended in much the same way. For more details on these other structures
see z/OS MVS Data Areas, Vol 3 or see the individual prologs for those macros.

To add the extensions to the service definition structure, the program must update the following fields in
IWMSVDEF:
SVDEF_EXT_DATA_OFF

The offset to the extension data, from the beginning of IWMSVDEF
SVDEF_EXT_DATA_LEN

The total length of the extension data, from the beginning of IWMSVDEF

For each part of the service definition with extensions, the program must update IWMSVDEF with the
following:

• The offset to the extension entries from the beginning of IWMSVDEF
• The number of extension entries
• The length of the extension entries

Each entry must have the following fields filled in:
SVDEFVID

Identifier of the product adding the extension.
SVDEFROB

The name of the related object. For example, if you are adding an extension to a service class, this
field should contain the service class name.

SVDEFEPN
Related policy name, if the extension is for a service class or resource group. Otherwise, leave this
field blank.

SVDEFEDL
The length of the extension data.

SVDEFEDO
The offset to the extension data.

Example of service definition extensions
Figure 29 on page 105 shows the structure of IWMSVDEF for a service definition with extensions to
workloads. In the example, there are two workload entries, and therefore two workload extensions.
Remember that IWMSERVD points to the IWMSVDEF mapping macro.

104 z/OS: z/OS MVS Programming: Workload Management Services

Figure 29. IWMSVDEF mapping for a service definition with workload extensions

The program adding the workload extensions has updated the following fields in IWMSVDEF:
SVDEF_WD_EXT_OFF

The offset to the workload extension data header from the beginning of IWMSVDEF.
SVDEF_WD_EXT_NUM

The number of workload extension entries
SVDEF_WD_EXT_SIZ

The size of the workload extension entries
SVDEF_EXT_DATA_OFF

The offset to the beginning of the extension data, from the beginning of IWMSVDEF.
SVDEF_EXT_DATA_LEN

The total length of the extension data, not including the length of the extension entries.

For each extension, the program must create an entry with the following fields:
SVDEFVID

Identifier of the your product.
SVDEFROB

The name of the workload related to this extension.
SVDEFEPN

Leave this field blank. Because this is a workload extension, it applies to all policies.
SVDEFEDL

The length of the extension data.
SVDEFEDO

The offset to the extension data from the start of the extension data.

Maintaining the service definition
Make sure your program maintains the service definition data structure. For example, your program has
added an extension to service classes, and the service administrator deletes that service class, then your
program must ensure that the service class extension is also deleted.

In order for customers to allow for the extra space this information may take up on the WLM couple data
set, there are new keywords on the JCL utility to allocate a couple data set. If your program intends to use
the service definition extensions, you should make sure customers know how to factor the extensions into
the size of the WLM couple data set. For information about how a service administrator allocates a WLM
couple data set, see z/OS MVS Planning: Workload Management.

Chapter 10. Using the administrative application services 105

Checking a service definition using IWMDINST
Before installing a service definition on the WLM couple data set, the IWMDINST macro checks to make
sure the service definition is valid. For a service definition in XML format, the macro parses the input to
make sure it conforms to the DTD. Otherwise, the macro checks the service definition to verify the service
definition data structure and to detect any storage overlay problems.

All data in a service definition must be valid to allow for the system to complete the installation. If the
IWMDINST macro finds an error during parsing or validity checking, it issues a reason code in the
VALCHECK_RSN parameter. IWMDINST also returns the offset to indicate where an error was found in the
IWMSVDEF mapping macro or the XML string, respectively. Note that no valid offset is returned in case
the service definition type is XML and the primary reason code returned is xxxx083d. IWMDINST
identifies no more than one error per call.

Appendix B, “Application validation reason codes,” on page 709 contains a list of the reason codes, and
their explanations. Table 24 on page 106 shows an example of the information provided for reason code
1B01.

Table 24. SERVD validation reason codes

Section Reason Offset Description

SVDCRSST 1B01 entry Service class for the subsystem type (SVDCRSCN)
not found in the SVDEF

In this example, IWMDINST returned a reason code of 1B01 in the VALCHECK_RSN parameter. The error
is in the SVDCRSST section of IWMSVDCR, and is in a subsystem type entry. IWMDINST found a service
class in the classification rules for the subsystem type that was not defined in the service definition. Your
program could check the service definition for the undefined service class name, and could issue a
message to the service administrator.

Recommended validity checking
In addition to using the validity checking provided by IWMDINST, a program should check for additional
errors not covered by IWMDINST.

Your program should check the following conditions not checked by IWMDINST:

• No workloads defined.
• No service classes defined.
• The response time goal for a service class period does not exceed the response time goal for the

previous period.
• Duplicate service class or resource group names. The names must be unique within a service definition.
• Some rule within a subsystem type refers to a service class, but there is no default service class
specified for the subsystem type. If a subsystem type has classification rules defined, then there must
be a service class default defined.

• A qualifier type is repeated in a sub-rule for a subsystem type in the classification rules. Only qualifier
type longer than 8 characters can be repeated in a sub-rule.

• The classification rules for a subsystem type refer to a service class with multiple periods, but that
subsystem type does not support multiple periods. The subsystem types which support multiple
periods are JES, ASCH, OMVS, STC, TSO, and DDF.

• The classification rules for a subsystem type refer to a service class with a resource group, but that
subsystem type does not support resource groups. The subsystem types which support resource groups
are JES, ASCH, OMVS, STC, TSO, and DDF.

• An unreferenced classification group. The service administrator defined a classification group, but did
not use it in the classification rules.

106 z/OS: z/OS MVS Programming: Workload Management Services

• The classification rules for a subsystem type refer to a qualifier type not supported by the subsystem
type. For a list of the qualifier types supported by each subsystem, see z/OS MVS Planning: Workload
Management.

• Subsystem type does not support discretionary or velocity goals. Service class with a discretionary or
velocity goal was referred to in the classification rules for that subsystem type. Subsystem types which
support discretionary and velocity goals are: JES, ASCH, OMVS, STC, TSO, and DDF.

Preventing service definition overlays
Suppose a service administrator extracts a service definition from the WLM couple data set, makes some
changes, and in the meantime someone else has extracted, changed, and reinstalled the service
definition. If the first user installs the service definition, any changes the second user made will be
overwritten. To prevent the service administrator from overwriting the service definition, a program can
use:

• The COND parameter on IWMDINST
• The ENQ macro

Using the COND parameter on IWMDINST
The optional COND parameter lets a caller specify whether or not to install the service definition if the
service definition has not been changed since it was extracted from the WLM couple data set. IWMDINST
determines whether the service definition has changed by checking a service definition identifier.

The service definition identifier consists of the service definition name, and the time and date the service
definition was installed.

Use COND=YES to install the service definition only if the identifier of the currently installed service
definition matches the base identifier passed in the IN_BASEID parameter. If the identifiers do not
match, your program can issue a message stating that the service definition has changed since the last
extract. The message can also ask the service administrator to confirm the installation.

Use COND=NO to specify that the input service definition should be installed unconditionally.

When the service definition has been successfully installed on the WLM couple data set, the system
issues ENF signal 41. A program can use the ENF macro to know when a service definition has been
installed. For more information about how to use ENF signals, see z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG.

Using the ENQ macro
To ensure that two service definitions are not installed simultaneously on the WLM couple data set, a
program can use the ENQ macro. Programs can serialize installation of the service definition onto the
WLM couple data set by obtaining an exclusive ENQ on:
QNAME

SYSZWLM
RNAME

WLM_SERVICE_DEFINITION_INSTALL
SCOPE

SYSTEMS

For more information about how to use the ENQ macro, see z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG.

Example of using IWMDINST to install a service definition
Suppose you have coded an application to define and edit a service definition mapped by the IWMSERVD
mapping macro. To install the service definition onto the WLM couple data set, do the following:

Chapter 10. Using the administrative application services 107

• Check the service definition data structure and whether there are any storage overlay problems. If there
are any problems, have the macro return the location of the error in the service definition.

• Specify that the service definition is to be installed only if the service definition installed on the WLM
couple data set has not changed since the last extract.

To install the service definition, you specify:

IWMDINST SERVD_AREA=(R4),
 PRODUCT_ID=ProductIdArea,
 QRY_BASEID=(R5),
 VALCHECK_RSN=ValcheckRsn,
 VALCHECK_OFFSET=ValcheckOffset,
 COND=YES,
 TYPE=HEX,
 RETCODE=Module_Rc,
 RSNCODE=Module_Rsn,
 MF=E

With the following storage areas defined:

ProductIdArea DS CL32 My application product identifier
ValcheckRsn DS 1F The validation check reason code
ValcheckOffset DS 1F The validation check offset
Module_Rc DS 1F The return code
Module_Rsn DS 1F The reason code

• To check the service definition data structure, use the VALCHECK_RSN and VALCHECK_OFF parameters.
If IWMDINST finds any error, it will provide the reason code in the VALCHECK_RSN parameter, and the
offset to the error in the VALCHECK_OFF parameter. Look up the reason code in Appendix B,
“Application validation reason codes,” on page 709 for more information about the error and help in
locating it in IWMSERVD.

• To specify that the service definition is to be installed only if the service definition installed on the WLM
couple data set has not changed since the last extract, use the COND=YES parameter. If the service
definition base identifier has not changed since the service definition was extracted from the WLM
couple data set, then IWMDINST continues with the installation.

Extracting a service definition
The IWMDEXTR macro allows a program to extract a service definition from the WLM couple data set.
Once the service definition is extracted, then a service administrator can make changes.

A caller should issue IWMDEXTR specifying QUERYLEN to determine the amount of storage required for
the service definition The service definition returned by IWMDEXTR is not serialized against future
installs, so the length returned could change before a caller can issue IWMDEXTR again. The caller should
issue IWMDEXTR in a loop, checking return and reason codes, and obtain a larger storage area, if
necessary.

Example of using IWMDEXTR to extract a service definition
To extract a service definition from the WLM couple data set, specify:

IWMDEXTR ANSAREA=(R4),
 ANSLEN=StorSizeForServd,
 QUERYLEN=QueryLenForServd,
 RETCODE=Module_Rc,
 RSNCODE=Module_Rsn,
 MF=E

StorSizeForServd DS 1F Storage size for service definition
QueryLenForServd DS 1F Query length for service definition
Module_Rc DS 1F Return code
Module_Rsn DS 1F Reason code

108 z/OS: z/OS MVS Programming: Workload Management Services

Activating a service policy
You can also activate a service policy from your application by using the IWMPACT macro. The caller must
provide the name of the service policy to be activated in the SERVICE_POLICY=service_policy
parameter. The specified policy must exist in the service definition installed on the WLM couple data set.

A single policy can be activated at any one time, and the policy is activated synchronously.

A caller can optionally request the name of the system where another policy activation is taking place by
specifying SYSTEM_NAME=system_name. Therefore, if a previous IMWPACT request is being processed
and a new IWMPACT request is issued, the new request is rejected with an appropriate return and reason
code. This occurs regardless of whether the requests were issued on the same system or different
systems in the sysplex. Control is not returned to the caller until the policy has been activated on all
systems in the sysplex or for some reason the policy activation could not be completed.

Example of activating a policy using IWMPACT
To activate a service policy, and if another policy activation is in progress, have IWMPACT return the name
of the system that activated the policy, specify:

IWMPACT POLICY_NAME=policy,
 SYSTEM_NAME=system,
 RETCODE=Module_rc,
 RSNCODE=Module_rsn

Where the following storage areas are defined:

policy DS CL8 The policy name
system DS CL8 System name where another policy is activating
Module_rc DS 1F Return code
Module_rsn DS 1F Reason code

Querying the active classification rules
IWMCQRY lets a caller query the classification rules associated with the active service policy. The
classification rules determine how incoming work is assigned a service class and/or report class or tenant
report class. The data returned by this macro is mapped by IWMSVDCR. For a description of the
IWMSVDCR macro, see z/OS MVS Data Areas, Vol 3.

Optionally, a caller can request the active service policy identifier by specifying the POLICY_ID
parameter. This is the active policy containing the classification rules returned by this macro. The caller
can then compare the service policy ID with the policy identification information returned by the
IWMPQRY macro to ensure they are the same.

Some data sections in the IWMSVDCR data area may not be available through IWMCQRY. For example,
the time stamps indicating when a classification GROUP was last updated and by whom may not be
available. For a complete list of fields that are not available refer to IWMSVDCR as described in z/OS MVS
Data Areas, Vol 3. The complete classification rules associated with a service policy are returned by the
IWMDEXTR macro and mapped by IWMSVDCR.

A caller can use the classification rules together with the active service policy to determine the goals
associated with incoming work. The service class goals are in the active service policy mapping returned
by the IWMPQRY service.

The information returned is not serialized upon return to the caller, and so may be out of date if a service
definition was modified, installed, and a new policy activated.

Example of IWMCQRY
To query the classification information associated with the active policy, specify:

IWMCQRY POLICY_ID=(R7),
 ANSAREA=(R5),

Chapter 10. Using the administrative application services 109

 ANSLEN=anslen,
 QUERYLEN=cqry_len,
 RETCODE=RCODE,
 RSNCODE=RSN

Where the following storage areas are defined:

anslen DS 1F Length of the answer area
cqry_len DS 1F Length required for answer area
RCODE DS 1F Return code
RSNCODE DS 1F Reason code

110 z/OS: z/OS MVS Programming: Workload Management Services

Chapter 11. Using SMF record type 99

SMF record type 99 provides detailed audit information for work run on z/OS. You can use the type 99
records for analyzing the performance characteristics of work. The records contain performance data for
each service class period, a trace of SRM actions, the data SRM used to decide which actions to take, and
the internal controls SRM uses to manage work. This can help you determine in detail what SRM is doing
to meet your work's goals with respect to other work, and the types of delays the work is experiencing.

You should write SMF type 99 records only when you want this detailed information. For general reporting
and tuning information for a system, you can use SMF type 72 records.

SRM writes type 99 records for each policy interval, or approximately once every 10 seconds.

SMF type 99 records have the following subtypes:
Subtype 1

Contains system level data, the trace of SRM actions, and data about resource groups. A subtype 1
record is written every policy interval.

Subtype 2
Contains data for service classes. A subtype 2 record is written every policy interval for each service
class if any period in the service class had recent activity.

Subtype 3
Contains service class period plot data. A subtype 3 record is written every policy interval for each
service class if any period in the service class had recent activity and plot data.

Subtype 4
Contains information about a device cluster. A device cluster is a set of service classes that compete
to use the same DASD devices. A subtype 4 record is written every policy interval for each device
cluster in the system.

Subtype 5
Contains data about monitored address spaces. A subtype 5 record is written each policy interval for
each swapped in monitored address space.

Subtype 6
Contains summary information about each service class period, including the resource control
settings for the next policy interval. A subtype 6 record is written each policy interval.

Subtype 7
Contains summary information for the Enterprise Storage Server® (ESS) with Parallel Access Volume
(PAV) feature. A subtype 7 record is written every third policy interval.

Subtype 8
Contains summary information for LPAR CPU management. A subtype 8 record is written each policy
interval, when in LPAR mode.

Some fields are used as input to adjust the policy. Those fields contain the data collected during the policy
interval just prior to policy adjustment. Other fields are altered when the policy is adjusted. Those fields
contain the data resulting from the policy adjustment. For example, a service class period dispatch
priority field contains the dispatch priority for the next policy interval not the dispatch priorities from the
previous policy interval.

When to start SMF record type 99
A type 99 record is written every policy interval, which is frequent. The records contain the data, plots,
and tables that SRM uses to assess the effects of changes. So you should write type 99 records only for a
time period in which you want this detailed audit information.

© Copyright IBM Corp. 1988, 2021 111

Starting SMF record type 99
You specify the SMF type 99 record in the SMFPRMxx parmlib member under SUBSYS STC.

Because SMF type 99 records are written approximately every 10 seconds, you should write them only for
certain time periods. If you use NOTYPE in your SMFPRMxx parmlib member, you should include type 99
in your NOTYPE list. For example:

SUBSYS(STC,NOTYPE(99))

If you use TYPE in your SMFPRMxx parmlib member, make sure you add type 99 only when you want this
level of detail. For example, add:

SUBSYS(STC,TYPE(99))

You should have an SMFPRMxx parmlib member for general audit information that does not specify type
99, and another for detailed audit information that specifies type 99. This way, you can write the
frequently written SMF record types, like SMF type 99, only when you need them.

The IRASMF99 mapping macro for this record is supplied in SYS1.AMODGEN.

Identifying work in SMF type 99 records
You can identify work in SMF type 99 records by:

• Service class name
• Service class performance period number
• Resource group name
• Address space name

This information is as defined in the service policy at the time the type 99 record was written.

Identifying server service classes
Some service classes are server service classes, that is they are service classes representing address
spaces doing work on behalf of transactions. You can determine whether a service class represented in
the subtype 2 period data is a server by first checking the goal type in the service class period section. If
the goal type is 0, indicating a system or server service class, you next check whether there are any server
data entries. If there are entries, then the service class period is a server, and the server data describes
the service classes being served by this server.

If the goal type is 0, and there are no server entries, then the service class is a system service class.

Identifying internal service classes
SRM groups some work not defined in the service policy into internal service classes. The internal service
class names are:

$SRMDInn - resource group discretionary
Contains all work in a resource group with a discretionary goal. There is one $SRMDInn class per
resource group with discretionary work.

$SRMDI00 - general discretionary
Contains all work assigned a discretionary goal, but not assigned a resource group. There is always
one $SRMDI00.

$SRMDISC - SYSOTHER service class
Contains all work not otherwise assigned to a service class.

112 z/OS: z/OS MVS Programming: Workload Management Services

$SRMSnnn - server
Contains all address spaces serving the same set of service classes. That is, the server address
space(s) could be serving more than one service class. For example, two AORs may be serving the
same three CICS service classes. Those AORs make up one $SRMSnnn service class.

An address space can belong to one internal server service class, but can move from one class to
another. The number of $SRMSnnn service classes depends on how many external service classes are
served and by how many combinations of server address spaces.

$SRMDUMP - SDUMP
Contains only SDUMP.

$SRMBEST - best
Contains the special system component address spaces, unless they are explicitly assigned to a
service class in the service policy. This includes the SYSTEM service class.

$SRMGOOD - good
Contains the STC subsystem type default work, if there was no default service class specified in the
classification rules for STC in the service policy. This is the SYSSTC service class.

$SRMGOD1-5 - good
Contains the work defined for service classes SYSSTC1, SYSSTC2, SYSSTC3, SYSSTC4, and SYSSTC5.
For more information, see z/OS MVS Planning: Workload Management.

Interpreting trace table entries
Subtype 1 contains a trace table. The trace codes describe which action SRM took or is considering taking
to process work. This section describes the SRM concepts reflected in the trace codes. For a list and a
brief explanation of the trace codes, see Appendix A, “SMF type 99 action codes,” on page 683.

Policy adjustment
Policy adjustment is how SRM:

• Selects work to help
• Selects performance bottlenecks to address
• Selects which work should donate resource to help other work
• Assesses whether it is worth it to help work.

The purpose of policy adjustment is to meet service class and resource group goals. Policy adjustment is
done approximately every 10 seconds.

Resource adjustment
Resource adjustment is how SRM keeps system resources effectively utilized. Resource adjustment
detects and addresses underutilized resources, overutilized resources, and shortage conditions. SRM
handles resource adjustment algorithms within the constraints set by the policy adjustment algorithms.
Resource adjustment is done approximately every 2 seconds.

Receivers and donors
A receiver is the service class period SRM is considering helping. SRM helps only one receiver during each
policy interval, although it may assess multiple receivers before finding one to help. A donor is a service
class period that donates resources to the receiver. Multiple donors may donate multiple resources to a
single receiver during one policy interval.

The resources to help the receiver may also come out of what is referred to as discretionary resources.
Discretionary resources are those that can be reallocated with little or no effect on the system's ability to
meet performance goals.

Service class periods other than receivers and donors can also be affected by changes. These service
class periods are referred to as secondary receivers and donors. SRM may decide not to help a receiver

Chapter 11. Using SMF record type 99 113

due to minimal net value for either a primary or secondary donor. “Action trace example” on page 121
explains an example in which there are secondary receivers and donors.

If a service class period is being served by one or more address spaces, it is called the goal receiver or
donor. It is the service class period with the response time goals. To help such service class periods, SRM
must donate resources to the server address spaces. The service class period serving a service class is
called a resource receiver or donor. SRM adjusts resources for the resource receiver/donor to affect the
performance of the goal receiver/donor.

Performance index
Performance index is a calculation of how well work is meeting its defined goal. For work with response
time goals, the performance index is the actual divided by goal. For work with velocity goals, the
performance index is goal divided by actual.

A performance index of 1.0 indicates the service class period is exactly meeting its goal. A performance
index greater than 1 indicates the service class period is missing its goal. A performance index less than
1.0 indicates the service class period is beating its goal. Work with a discretionary goal is defined to have
a performance index of .81.

Each service class period has a sysplex and a local performance index. The sysplex performance index
represents the performance of a service class period across all the systems in the sysplex. The local
performance index represents only the performance on the local system.

Within resource groups and importances, receivers are selected in performance index order. Donors are
selected in the reverse order of receivers. The sysplex performance index is the primary criteria used for
selecting receivers and donors and assessing changes.

Receiver value
A receiver is helped only if there is projected to be sufficient receiver value. Receiver value is a minimum
performance index improvement, a minimum group service increase, or other minimum criteria designed
to reject very small improvements. The reason to reject actions for too little receiver value is to get on to
addressing other problems for other service class periods rather than continuing to make changes that
yield only marginal improvements for a few service classes.

Net value
A receiver is only helped by a specific donor if SRM projects sufficient net value to the resource
reallocation. SRM calculates the net value and uses it to determine if using a donor to help a receiver
results in more projected harm to the donor than projected improvement to the receiver. If so, the
condition is traced, and another donor is selected. The net value assessment considers all external
service policy specifications (resource group capacity minimums and maximums, importance, and goals)
for both primary and secondary donors.

Small processor consumer
Service class periods that consume little or no processor time are referred to as small processor
consumers. Under some circumstances these small consumers are assigned a relatively high dispatching
priority and not assessed for dispatching priority changes.

Storage housekeeping
The purpose of storage housekeeping is to decrease storage targets that are out of date or ineffective.
Storage housekeeping will only reduce a target if it will not affect the ability of work to meet goals. There
are four types of storage housekeeping.
Time driven

Reduce target when the projected effect is small and the service class period will still easily meet
goals

114 z/OS: z/OS MVS Programming: Workload Management Services

Minimal effect
Reduce target slightly when the projected effect is very small

Unassessable
Reduce target slightly when the projected effect cannot be determined but the service class period is
meeting goals easily

Slow mode
Reduce target slightly when the projected effect cannot be determined but keep the target close to
the current allocation

Reverse housekeeping
A second type of housekeeping known as reverse housekeeping increases targets if these targets are
significantly less than the resources the service class period or address space already owns. The targets
are increased by reverse housekeeping so that if there is a sudden increase in the demand for resources
the service class period or address space will have some protection until the policy adjustment can
reevaluate the situation.

Interpreting management policy data
This section explains the controls that SRM uses to manage work, and where these controls can be found
in SMF type 99 records. SRM algorithms set all the control values internally. All changes to the control
values have trace entries in the subtype 1 record.

The SRM controls are:

• Dispatching priority
• MPL targets
• Swap protect time
• Storage targets
• Cap slices
• I/O priority
• Number of server address spaces
• Buffer pool management data

They are shown in the subtype 1, subtype 2, and subtype 5 records.

Dispatching priority
SRM defines dispatching priority for service class periods. All address spaces in a service class period
have the same base dispatching priority. Multiple service class periods may have the same base
dispatching priority. After a dispatching priority change, service class periods may be remapped to
different dispatching priorities such that there is an unoccupied priority between each occupied priority.
This process is referred to as priority unbunching.

The dispatching priority is recorded in the subtype 2 records.

MPL targets
SRM defines an MPL-in and MPL-out target for each service class period. MPL-in target represents the
number of address spaces that must be in the swapped-in state for the service class period to meet its
goals. MPL-out target is the maximum number of address spaces allowed in the swapped-in state.

The MPL targets are recorded in the subtype 2 records.

Chapter 11. Using SMF record type 99 115

Swap protect time
SRM defines swap protect time for service class periods. Swap protect time is the time in milliseconds
swapped-out address spaces will remain in processor storage before becoming candidates for swap to
auxiliary storage.

The swap protect time is recorded in the subtype 2 records.

Storage target
To manage central storage, SRM defines a storage target of protective central. This specifies the number of
frames that are protected in central storage. The system will not steal storage below this value.

The storage target assigned depends on the service class period goal.

For short response time goals, the service class period gets a protective processor storage target. Every
address space in the service class period has the same target.

For long response time, velocity, or discretionary goals, or for server internal service classes ($SRMSnnn),
SRM may define individual storage targets for the address spaces in the service class period. Each
address spaces may have one or more of each type of storage targets. Storage targets for individual
address spaces are recorded in subtype 5, in the monitored address space information section.

Cap slices
SRM defines cap slices for resource groups to enforce resource group maximums. Work is not dispatched
during its cap slices in order to reduce access to the processor to enforce the resource group maximum.
Each cap slice represents 1/64th of total time. All address spaces in all service class periods in a resource
group are controlled by the same number of cap slices.

The number of cap slices is recorded in the subtype 1 records.

I/O priority
SRM defines an I/O priority for each service class period. All address spaces in a service class period have
the same I/O priority. Multiple service class periods may have the same I/O priority. I/O priority is used to
prioritize requests on IOS's UCB queues.

The I/O priority is recorded in the subtype 2 records.

Number of server address spaces
SRM manages the number of server address spaces for users of the queueing manager services (see
Chapter 5, “Using the queueing manager services,” on page 65) and manages the number of initiators for
WLM-managed JES job classes.

Information on how SRM manages these server address spaces is recorded in the subtype 2 records in
the queue server data section and in the remote queue server data section.

Buffer pool management data
For each buffer pool that DB2® has registered to WLM for dynamic buffer pool management, the actual
size, the used size, the minimum and maximum size, the target size and the adjustment size are shown
together with the buffer pool name and the owning address space.

Interpreting plots
SRM creates the following plots to track how well work is being processed:

• System paging delay plot
• Period MPL delay plot

116 z/OS: z/OS MVS Programming: Workload Management Services

• Period ready user average plot
• Period swap delay plot
• Period paging rate plot
• Period proportional aggregate speed plot
• I/O delay plot
• Queue delay plot
• Address space paging plot
• I/O velocity plot
• Buffer pool hitratio plot

All plots except the address space paging plot are “one-curved” plots where one variable is plotted
against another. The address space paging plot is a “three curved” plot where one variable is plotted
against three variables.

System paging delay plot
SRM uses the system paging delay plot to determine if the paging configuration is close to capacity or if it
can support additional work. There is one system paging plot per system. The plot can show the point at
which additional page faults will start requiring a disproportionately longer time because the paging
subsystem is becoming overloaded.

x axis
The system wide page fault rate, in page faults per second.

y axis
The system wide auxiliary storage delay sample rate, in samples per minute.

Page faults and delay samples are for all types: private area, common area, and cross memory.

The system paging delay plot is recorded in subtype 1 records.

Period MPL delay plot
SRM uses the period MPL delay plot to assess increasing or decreasing a service class period's MPL
targets. The plot shows how response time may be improved by increasing MPL slots or how response
time may be degraded by reducing MPL slots.

x axis
The percentage of ready users who have an MPL slot available to them.

y axis
The MPL delay per completion in milliseconds.

The period MPL delay plot is recorded in subtype 3 records.

Period ready user average plot
SRM uses the period ready user average plot to predict the number of ready users when assessing an MPL
target change. The plot can show the point at which users will start backing up. The plot shows the
approximate MPL target at which users would be disproportionately delayed due to MPL.

x axis
The number of MPL slots, times 16, available to the service class period.

y axis
The maximum number of ready users, times 16, averaged over a two second interval.

The period ready user average plot is recorded in subtype 3 records.

Chapter 11. Using SMF record type 99 117

Period swap delay plot
SRM uses the period swap delay plot to assess increasing or decreasing swap protect time for a service
class period. The plot shows how response time may be improved or degraded by increasing or
decreasing a service class period's swap protect time.

x axis
The average time an address space in the service class period is logically swapped or swapped on
expanded, in milliseconds.

y axis
The swap delay time per completion, in milliseconds.

The period swap delay plot is recorded in subtype 3 records.

Period paging rate plot
SRM uses the period paging rate plot to assess increasing or decreasing period wide storage isolation for a
service class period.

x axis
The average address space size in frames.

y axis
The page fault rate in tenths of a page fault per departure from the period.

The period paging rate plot is recorded in subtype 3 records.

Period proportional aggregate speed plot
SRM uses the proportional aggregate speed plot to assess the effects of processor access or storage
allocation changes for served service classes. Proportional aggregate speed is similar to velocity.
Proportional aggregate speed applies to service class periods that are served while velocity applies to
service class periods that are not served. The units for proportional aggregate speed are the same units
as for velocity:

 using samples
 ------------------------------- × 100
 using samples + delay samples

The samples are an aggregate of the samples of all internal server service classes that serve the service
class. The server samples are apportioned to the served classes based on the relative amount of time,
also determined by state sampling, that the server is serving the service class.

x axis
The proportional aggregate speed of a service class period

y axis
The performance index at that speed, times 100

The period proportional aggregate speed plot is recorded in subtype 3 records for served service class
periods.

I/O delay plot
SRM uses the I/O delay plot when assessing increasing or decreasing a service class period's I/O priority.

x axis
The combined maximum I/O demand of service class periods with I/O priorities above a given priority.

y axis
The ratio of I/O delay time to I/O using time at that priority scaled by 16.

118 z/OS: z/OS MVS Programming: Workload Management Services

Maximum I/O demand is the maximum percentage of time that work units in a service class period would
use non-paging DASD devices if they were experiencing no I/O delay. Maximum I/O demand is
represented as a percentage scaled by 10.

The I/O delay plots are recorded in the subtype 4 records.

Queue delay plot
SRM uses the queue delay plot to assess creating or removing server address spaces. The plot shows how
queue delay for a service class period may be reduced by adding server address spaces for work running
in the service class period or how queue delay may be increased by removed server address spaces for
work running in the service class period.

x axis
The ratio of work requests that require a task in a server address space to the number of server tasks.
This ratio is scaled by 100.

y axis
The queue delay per work request in milliseconds.

The queue delay plots are recorded in the subtype 3 records.

Address space paging plots
SRM uses address space paging plots when assessing whether to increase or decrease the central storage
or processor storage allocated to an address space. There are two address space paging plots:

Central storage plot
SRM uses the central storage paging plot when assessing increasing or decreasing the central storage
allocated to an address space.

x axis
Address space size in frames.

y axis
Each one of the following:

• Page-in rate per captured (task and SRB) second from auxiliary and expanded storage.
• Paging cost in milliseconds per elapsed second from auxiliary and expanded storage.
• Captured time in milliseconds per elapsed second.

Processor storage plot
SRM uses the processor storage paging plot when assessing increasing or decreasing the processor
storage allocated to an address space.

x axis
The address space size in frames.

y axis
Each one of the following:

• Page-in rate per captured (task+SRB) second from auxiliary storage.
• Paging cost in milliseconds per elapsed second from auxiliary storage.
• Captured time in milliseconds per elapsed second.

The address space paging plots are recorded in subtype 5 records.

Chapter 11. Using SMF record type 99 119

I/O velocity plot
SRM uses the I/O velocity plot to keep track of the relationship between the number of channel paths
connected to a subsystem (along with the channel path's utilization) and the I/O velocity of that
subsystem. There is one I/O velocity plot for each I/O subsystem (control unit).

x axis
The contention factor.

y axis
The I/O velocity.

If there is a single channel, the contention factor equals the channel utilization. If there are multiple
channels, the contention factor is the utilization a single channel would have to have to be equivalent to
the channels connected to the control unit, given the number of channels and their average utilization. In
this case, “equivalent” means that an I/O operation would have the same probability of experiencing
delay.

The I/O velocity plots are recorded in the subtype 9 records.

Buffer pool hit ratio plot
SRM uses the buffer pool hit ratio plot to keep track of the relation between the size of the buffer pool and
the hit ratio of DB2 buffer pool accesses. The hit ratio is percentage of hits, when looking for data in the
buffer pool, related to the total number of attempts to read data from the buffer pool. There is one plot
per buffer pool.

x axis
The size of the buffer pool in Megabytes. This is not the absolute size of the buffer pool, instead this is
the delta to the defined minimum size.

y axis
The hitratio.

Interpreting priority table data
Subtype 1 priority table data contains processor resource demand and consumption at each dispatching
priority in use. Subtype 2 records contain similar data for each service class period. You can use the data
in these two records to determine how much processor capacity is available to each service class period
or to explain the actions being taken to increase or decrease access to the processor.

You can use the priority table data in subtype 1 to understand why dispatching priority change actions are
rejected. When a dispatching priority change is made, the table shows the before and after demand and
consumption data at each priority in use. The before data is actual data. The after data is projected data.

Maximum demand is the theoretical maximum percentage of total system processor time the address
spaces in a service class period would consume if they were suffering no processor delays. This value is
calculated for each service class period and accumulated for each priority.

Achievable maximum demand is the percentage of total system processor time the address spaces in a
service class period are projected to use, given the maximum demand of all work at higher dispatching
priorities. SRM calculates achievable maximum demand to assess dispatching priority changes.

Interpreting lack of action
Just as you can determine the actions SRM takes to manage work, you can determine lack of action from
SMF type 99. You can use the resource group and service class period information in the subtype 1 and 2
records. If a service class period is having a problem meeting its goals and isn't selected as a receiver, it
could be one or more of the following:

• Other work is even worse off.
• The service class period is of lower importance than the receiver selected.

120 z/OS: z/OS MVS Programming: Workload Management Services

• The receiver selected may be in a resource group that is not meeting its minimum.

The importances and performance indexes for all service class periods are in the subtype 2 records.
Resource group information is in the subtype 1 records.

In some cases, potential receivers may be skipped and not assessed as receivers. They are skipped when
the service class period hasn't accumulated any state samples that show it was delayed for any resource
SRM manages during the last policy interval. You can determine this from the needs help indicator in the
service class period data.

They are also skipped when a potential receiver's skip clock hasn't expired. If a receiver is assessed and
all actions to help it are rejected, a skip clock (counter) is set and the service class period will not be
selected as a receiver again until the skip clock expires.

In other cases, a service class period is selected as a receiver but not helped. It could be that there was
no receiver value projected for a change. The subtype 1 trace entry indicates these cases with the no
receiver value trace code.

For storage changes such as MPL targets, swap protect time, or storage targets, you can determine the
reasons for insufficient receiver value from the service class period's current targets in the subtype 2
records and the plots in the subtype 3 and 5 records.

For rejected dispatching priority actions, you can determine the reasons from the service class period's
dispatching priority, service, and maximum demand data in the subtype 2 records and at the priority table
data in the subtype 1 records.

For no net value assessments, you can determine the reasons from the service class period data, plot
data, and priority table data. From this data, you can also determine which service class periods are using
the resources for which another service class period is delayed.

Examples of interpreting SMF record type 99
This section describes the following examples of interpreting the data in SMF type 99 records:

• Action trace
• MPL policy

The examples show information from SMF type 99 records that were combined and displayed in a report
format.

Action trace example
This example shows how to use subtype 1 trace data with subtype 2 service class period data to
understand what actions SRM is taking, why those actions are taken, and which work is affected.

The following example shows the subtype 1 trace data output:

CLASS P SPI LPI ACTION
NRBATCH 2 .02 .03 3610 rv_hsk_inc_mpl
TSO 1 .10 .11 2630 tdh_rem_prt
TSO 2 1.84 1.84 270 pa_rec_cand
TSO 1 .10 .11 880 pa_pro_rdon_cand
TSO 2 1.84 1.84 620 pa_pmuo_rec
APPC 1 1.10 1.10 960 pa_pro_unc_sec_don
APPC 3 1.10 1.10 960 pa_pro_unc_sec_don
NRBATCH 1 2.23 3.23 960 pa_pro_unc_sec_don
TSO 1 .10 .11 940 pa_pro_unc_don
TSO 2 1.08 1.08 750 pa_pro_incp_rec

The data has the following headings:
CLASS

The service class name.

Chapter 11. Using SMF record type 99 121

P
The service period number within the service class.

SPI
The sysplex performance index for the service class period traced.

LPI
The local performance index for the service class period traced.

ACTION
The action code and mnemonic.

The following example shows the subtype 2 service class period output:

CLASS P I N SC GT SPI LPI DP MPLI MPLO SWPT
APPC 1 2 N -99 SRT 1.10 1.10 251 0 999 488
APPC 2 2 N -99 SRT 0 0 251 0 999 0
APPC 3 2 N -72 SRT 1.10 1.10 251 1 999 76206
APPC 4 3 N -99 VEL 0 0 249 1 999 0
NRBATCH 1 3 N -99 LRT 2.16 3.04 249 1 11 0
NRBATCH 2 4 Y -98 LRT .02 .03 247 2 999 0
NRBATCH 3 6 Y -99 DIS .81 .81 192 0 14 0
OFFBATCH 1 6 Y -99 DIS .81 .81 192 0 14 0
TSO 1 2 Y -64 SRT .10 .11 251 1 11 0
TSO 2 2 Y 0 SRT 1.84 1.84 251 1 999 1464
TSO 3 2 Y -2 SRT .91 .93 247 2 12 2440
TSO 4 3 Y -99 VEL .26 .26 245 7 999 0
$SRMDISC 1 6 Y -99 DIS .81 .81 192 0 14 0

The subtype 2 service class policy period output has the following headings:
CLASS

The service class name.
P

The service period number within the service class.
I

The service class period's importance, with 1 being highest.
N

The “needs help” indicator:
Y

The service class period needs help.
N

The service class period does not need help.
SC

The skip clock.
GT

One of the following goal types:
SRT

Short response time goals
LRT

Long response time goals
VEL

Velocity goals
DIS

Discretionary goals
SPI

The sysplex performance index for the service class period traced.
LPI

The local performance index for the service class period traced.

122 z/OS: z/OS MVS Programming: Workload Management Services

DP
Dispatching priority

MPLI
MPL-in target

MPLO
MPL-out target

SWPT
Swap protect time

Interpreting the trace data
Based on the information in these subtypes, SRM took the following actions:

• rv_hsk_inc_mpl, reverse housekeeping, to increase the MPL targets for service class NRBATCH,
period 2.

This action code indicates the service class period was using significantly more MPL slots than
guaranteed by its MPL control so its MPL in target was increased.

• tdh_rem_prt, time driven housekeeping, removing the swap protect time target from first period TSO.

First period TSO is easily meeting its goals and was assessed to not need swap protect time.
• pa_rec_cand indicates TSO period 2 was chosen as the receiver.

This shows the start of a series of actions where SRM is trying to improve the performance of TSO
period 2 by increasing its dispatching priority. SRM selected TSO period 2 as the receiver because it had
the worst performance index, 1.84, of all the work at the highest importance defined, 2. Service class
NRBATCH, period 1, had a worse performance index, 2.16, but it also had a lower importance, 3, so it
would be chosen as a receiver after TSO period 2 which had a higher importance and was not meeting
goals.

• pa_pro_rdon_cand indicates that TSO period 1 has been selected as the processor donor to be
assessed.

SRM selected TSO period 1 as the first donor candidate because it had the best performance index of all
service class periods that were running at a dispatching priority higher than or equal to the receiver's
dispatching priority.

• pa_pmuo_rec indicates that the first dispatching priority move to be assessed is to move TSO period 2
up to a higher dispatching priority.

• The next several pa_pro_unc_sec_don trace entries show the other service class periods whose
processor access will be affected by the move up of TSO period 2 even though their priority remains
unchanged. These service class periods were all secondary donors. TSO period 1 was the primary
donor. This is indicated by the pa_pro_unc_don action.

• pa_pro_incp_rec shows that the primary receiver, TSO period 2, received a dispatching priority
increase.

The sysplex and local performance index projections are shown with the final action for each service class
period affected.

MPL policy example
This example shows how to use subtype 2 service class period data to analyze a first period TSO problem.
The example shows how SRM used the data to resolve the problem. You can use the data in the same way
to analyze why SRM isn't solving a problem. From this kind of information, a service administrator can
decide whether to change goals or service class importance in the service policy.

This subtype 2 data shows the controls SRM is using for first period TSO, and the resulting performance
delays.

Chapter 11. Using SMF record type 99 123

CLASS: TSO PERIOD: 1 IMPORTANCE: 2 GOAL TYPE: SHORT RESPONSE TIME

TIME SPI LPI DP MPLI MPLO SWPT PSI EXP POL LARGEST DELAYS
13:15:01 .10 .09 251 3 6 15952 0 S L S S OTHR/60 ASWP/55 MPLD/2
13:15:11 6.18 6.73 251 6 9 15952 0 S L S S ASWP/48 CPUD/44 MPLD/42
13:15:22 2.20 2.42 251 8 12 15952 0 S L S S CPUD/38 MPLD/34 ASWP/2
13:15:32 .06 .06 251 8 12 15952 0 S L S S OTHR/13 CPUD/3 MPLD/2
13:15:42 .06 .06 251 8 12 15952 0 S L S S OTHR/22 MPLD/3 CPUD/2
13:15:52 .16 .16 251 8 12 15952 0 S L S S OTHR/28 MPLD/1
13:16:03 .16 .16 251 8 12 15952 0 S L S S OTHR/53 ASWP/6 CPUD/2

Figure 30. Subtype 2: Service class TSO period data

At 13:15:01 TSO period 1 was meeting its goals easily. This is indicated by a sysplex performance index
(SPI) of 0.1 and a local performance index (LPI) of 0.09. The dispatching priority (DP) was 251. The MPL in
and out targets (MPLI/MPLO) were 3 and 6. After being swapped out, work in the period was protected in
processor storage for 15.952 seconds (SWPT=15952). There was no period wide storage isolation
(PSI=0) and the expanded policy was space available for swap working set, VIO, and hiperspace pages,
and LRU for demand pages (EXP POL= S L S S). At 13:15:01 TSO period 1 has a swap delay and an MPL
delay but was meeting its goals easily.

Conditions change between 13:15:01 and 13:15:11. The sysplex performance index spiked to 6.18 and
the local performance index was worse. This period needs help. The delay samples show that the
problem could be either swap delay, processor delay, or MPL delay. Because it is the work furthest from
meeting its goals, it is selected as a receiver.

The following data, from the subtype 1 record at 13:15:11 shows what happens next. The fields are
explained in the first example.

CLASS P SPI LPI ACTION
TSO 1 6.18 6.73 270 pa_rec_cand
TSO 1 6.18 6.73 2540 pa_prt_na_rec_val
TSO 1 6.18 6.73 850 pa_pro_na_no_donor
 290 pa_use_disc_cent
TSO 1 4.69 5.10 3530 pa_inc_mpl

Figure 31. Subtype 1: Trace data output

TSO period 1 is selected as the receiver candidate. The trace entry, pa_rec_cand indicates this.

The largest delay is selected to be worked on first. In this case the largest delay in recent history is swap
delay. The swap delay plot is shown below. ccc indicates the current plot point. The current plot point
shows that only 89 milliseconds of swap delay per transaction could be eliminated even if all swap delay
were eliminated. The pa_prt_na_rec_val trace entry indicates that there was insufficient receiver
value to be gained by increasing the swap protect time. The swap delay plot data is from the subtype 3
record.

CLASS: TSO PERIOD: 1

SWAP DELAY PLOT ccc
SWAP DELAY 286 209 89 76 70 24 0
TIME IN PROC STOR 3572 4021 14407 23673 40803 71248 97323

Figure 32. Subtype 3: Swap delay plot

The next largest delay is processor delay. However TSO period 1 is running alone at the highest
dispatching priority in use. Therefore there is no work to donate processor time. This reason for lack of
action is indicated by the pa_pro_na_no_donor trace. The dispatch priorities are from the subtype 2
records.

124 z/OS: z/OS MVS Programming: Workload Management Services

CLASS P DP
NRBATCH 1 247
NRBATCH 2 243
NRBATCH 3 192
OFFBATCH 1 192
TSO 1 251
TSO 2 247
TSO 3 247
TSO 4 243
$SRMDISC 1 192

Figure 33. Subtype 2: Dispatching priority data

The third largest delay is MPL delay. The MPL delay plot below shows that here there is value to increasing
the MPL. The third entry in the MPL plot, indicated by ccc shows that on average, only 48/100ths of the
ready users have MPL slots. This results in an MPL delay of 202 milliseconds per completion. This plot in
recorded in the subtype 3 record. The fact that MPL targets were increased is indicated by the pa_inc_mpl
trace. The new MPL targets are recorded in the subtype 2 record.

CLASS: TSO PERIOD: 1

MPL DELAY PLOT ccc
MPL DELAY 500 451 202 79 0 0 0 0 0 0
MPL SLOT PERCENTAGE 3 37 48 72 99 109 115 122 129 133

Figure 34. MPL delay plot

At 13:15:22 the performance index was improving but there was still significant MPL delay and the MPL
targets were increased again. At 13:15:32 the work was back to meeting its goals as shown by sysplex
and local performance indexes of less than 1.0.

Chapter 11. Using SMF record type 99 125

126 z/OS: z/OS MVS Programming: Workload Management Services

Part 2. Reference: Workload Management Services
The information in this part describes the Workload Management Services in detail.

© Copyright IBM Corp. 1988, 2021 127

128 z/OS: z/OS MVS Programming: Workload Management Services

Chapter 12. Workload management services
This chapter provides detailed information about the workload management services, including those that
support both 31-bit and 64-bit addressing mode. Workload management services that support 64-bit
addressing mode have names that start with IWM4xxxx.

For information about equivalent versions of some of these services that only support 31-bit addressing
mode, see Appendix E, “WLM services supporting 31-bit addressing only,” on page 733.

IWMCNTN — WLM contention notification

The IWMCNTN service allows resource managers to notify WLM of changes to the list of resources, work
units, or transactions involved with resources that have been in contention (waiters exist) for longer than a
resource manager defined interval. The interval should be chosen so that only contention which has
lasted long enough to be considered chronic for the issuing resource manager results in calling this
service.

The caller can run in task or SRB mode.

Environment
The requirements for the caller are:

Minimum authorization Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode Task or SRB

Cross memory mode Any PASN, any HASN, any SASN

AMODE 31-bit

ASC mode Primary

Interrupt status Enabled for I/O and external interrupts

Locks No locks may be held.

Control parameters Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

6. Because this service may only be used by system-like code, some validity checking on the parameter
list is not performed. These checks would only be needed if the macro were not used to invoke the
service routine.

IWMCNTN

© Copyright IBM Corp. 1988, 2021 129

Restrictions
None.

Input register information
Before issuing the IWMCNTN macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMCNTN macro is as follows:

IWMCNTN

130 z/OS: z/OS MVS Programming: Workload Management Services

name
IWMCNTN SUBSYS=  subsys ,SUBSYSNM=  subsysnm

,RESOURCESCOPE=SINGLESYSTEM

,RESOURCESCOPE=MULTISYSTEM

,RESOURCEID=  resourceid ,RESOURCEID_LEN=  resourceid_len

,INVOCATIONTYPE=UPDATE ,REQUESTLIST=  requestlist

,INVOCATIONTYPE=REPLACE ,REQUESTLIST=  requestlist

,INVOCATIONTYPE=ENDOFCONTENTION

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMCNTN macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,INVOCATIONTYPE=UPDATE
,INVOCATIONTYPE=REPLACE
,INVOCATIONTYPE=ENDOFCONTENTION

A required parameter, which indicates the type of operation requested
,INVOCATIONTYPE=UPDATE

indicates that the operations described in the request list have to be applied to the resource. If
contention information for the resource does not already exist, it is created. If after applying the
operations there are no holders or waiters (local or remote), tracking of the resource is abandoned
locally.

,INVOCATIONTYPE=REPLACE
same as UPDATE, except that any existing local resource topology is discarded first.

,INVOCATIONTYPE=ENDOFCONTENTION
indicates that all topology information for the resource is discarded.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

IWMCNTN

Chapter 12. Workload management services 131

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,REQUESTLIST=requestlist
When INVOCATIONTYPE=UPDATE or REPLACE is specified, a required input parameter, which
specifies a list of topology requests. For each request, you must specify:

• Whether you want to add or to delete the contention information
• Whether the work unit is holding the resource or is waiting for it,
• The identification of the entity in terms of STOKEN, TCB address or enclave token.

IWMCNTN

132 z/OS: z/OS MVS Programming: Workload Management Services

For each request the macro returns a return and a reason code. See IWMCNTRL for the mapping of the
request list.

The work unit ID varies based on the resource ownership model (transaction or task resource) used
by the IWMCNTN exploiter and the work unit type involved, as described in Table 25 on page 133:

Table 25. Work unit IDs

Work unit type Exploiters using the
transaction model will pass

Exploiters using the task
resource model will pass

Global SRB,
local SRB,
preemptible SRB
(but not a client or
enclave SRB)

Home STOKEN,
TCB=0,
Etoken=0

Same as transaction resource
ownership model

Client SRB Client STOKEN
TCB=0,
Etoken=0

Same as transaction resource
ownership model

Enclave SRB STOKEN=0,
TCB=0,
Etoken=e

Same as transaction resource
ownership model

Non-enclave task Home STOKEN,
TCB= 0,
Etoken=0

Home STOKEN,
TCB= t,
Etoken=0

Enclave task STOKEN=0,
TCB= 0,
Etoken=e

Home STOKEN,
TCB= t,
Etoken=0

The following return/reason codes may be returned per request:
Return_Code

A 2-byte output field set based on whether or not the entity identification information passed
validity checks.
0

Name: IwmRetCodeOk Meaning: Successful completion. Action: None required.
4

Name: IwmRetCodeWarning Meaning: Successful completion, unusual conditions noted.
Action: Check reason code

8
Name: IwmRetCodeInvocError Meaning: Invalid invocation environment or parameters.
Action: Check reason code

Reason_Code
A 2-byte output field set based on whether or not the entity identification information passed
validity checks.
0448

Name: IwmRsnCodePossibleDeadlock Meaning: The specified chronic resource contention
may have caused a deadlock: The holder of resource (A) is waiting for resource (B), which is
currently held by another holder, which is waiting for resource (A). Action: Check for possible
deadlock.

IWMCNTN

Chapter 12. Workload management services 133

0807
Name: IwmRsnCodeBadSTOKEN Meaning: The specified STOKEN does not pass verification.
Action: Check for possible storage overlay of the address space token.

083A
Name: IwmRsnCodeBadEnclave Meaning: Enclave token does not pass verification. Action:
Check for possible storage overlay of the enclave token.

0886
Name: IwmRsnCodeBadRequestCode Meaning: The request code must be either ADD or
DELETE Action: Correct the request code.

0887
Name: IwmRsnCodeBadEntityType Meaning: The entity type must be either HOLDER or
WAITER Action: Correct the entity type.

088A
Name: IwmRsnCodeBadEntityId Meaning: The specified combination of STOKEN, TCB and/or
enclave token does not pass verification. Action: Correct the entity id.

088B
Name: IwmRsnCodeBadTCB Meaning: The specified TCB address does not pass verification.
Action: Correct the TCB address. Task may have terminated since the parameter list was built.
TCB may not match STOKEN.

08A5
Name: IwmRsnCodeNoContention Meaning: The specified chronic resource contention is not
stored in the topology. The DELETE request for this request list entry was not processed.
Action: Correct the delete request.

08A8
Name: IwmRsnCodeDupContention Meaning: The specified chronic resource contention is
already stored in the topology. The ADD request for this request list entry was not processed.
Action: Correct the add request.

08AF
Name: IwmRsnCodeDeadlock Meaning: The specified chronic resource contention caused a
deadlock: The holder of resource (A) is waiting for resource (B), which is currently held by
another holder, which is waiting for resource (A). The request list entry was not processed.
Action: Remove the deadlock.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,RESOURCEID=resourceid
A required input parameter, which identifies the resource uniquely within all resources for a
subsystem type and name.

For resources whose type is multisystem, the value must be unique within the subsystem type and
name across all systems where the interface might ever be invoked for this resource.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,RESOURCEID_LEN=resourceid_len
A required input parameter, which contains the length of the resource identifier. A resource identifier
may not exceed 264 bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RESOURCESCOPE=SINGLESYSTEM
,RESOURCESCOPE=MULTISYSTEM

An optional parameter, which identifies if the resource information is shared with other WLM instances
in the cluster. The default is RESOURCESCOPE=SINGLESYSTEM.
,RESOURCESCOPE=SINGLESYSTEM

Indicates that the resource information is used on the issuing system only.
,RESOURCESCOPE=MULTISYSTEM

Indicates that the resource information is shared among other systems.

IWMCNTN

134 z/OS: z/OS MVS Programming: Workload Management Services

Note : This keyword is ignored. WLM contention notifications are processed with
RESOURCESCOPE=SINGLESYSTEM, even if RESOURCESCOPE=MULTISYSTEM is specified.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SUBSYS=subsys
A required input parameter, which contains the generic subsystem type (e.g. IMS, CICS, etc.).

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character field.

,SUBSYSNM=subsysnm
A required input parameter, which identifies the subsystem instance.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMCNTN macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 26. Return and Reason Codes for the IWMCNTN Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx00447 Equate Symbol: IwmRsnCodeRequestListEntryWarning

Meaning: The processing of at least one of the request list entries has caused
a warning. Refer to the return code and reason code stored for this request
list entry.

Action: SRM continues with the request list processing.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

IWMCNTN

Chapter 12. Workload management services 135

Table 26. Return and Reason Codes for the IWMCNTN Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on primary ASC
mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0888 Equate Symbol: IwmRsnCodeBadRequestList

Meaning: The request list does not pass verification. No request in the
request list was processed.

Action: Check the return and reason codes in the request list.

8 xxxx0889 Equate Symbol: IwmRsnCodeBadResourceIdLen

Meaning: The length of the resource id must not exceed 264 bytes.

Action: Specify a correct resource id length.

8 xxxx088C Equate Symbol: IwmRsnCodeBadRequestListVersion

Meaning: The version specified in the request list is not supported

Action: Specify a correct request list version.

8 xxxx088D Equate Symbol: IwmRsnCodeBadRequestListLength

Meaning: The specified request list length is too small to carry the specified
number of request entries.

Action: Specify a correct request list length or correct the entry count.

8 xxxx08A6 Equate Symbol: IwmRsnCodeBadRequestListEntry

Meaning: The processing of at least one of the request list entries failed.
Refer to the return code and reason code stored for this request list entry.
SRM continues with the request list processing.

Action: Check the return and reason codes in the request list.

8 xxxx08A7 Equate Symbol: IwmRsnCodeBadResource

Meaning: The resource ID was not found in the topology for
INVOCATIONTYPE=ENDOFCONTENTION.

Action: Specify a correct resource ID.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

IWMCNTN

136 z/OS: z/OS MVS Programming: Workload Management Services

Example

 IWMCNTN SUBSYS=SUBSTYPE,SUBSYSNM=SUBSNAME,
 RESOURCEID=RESOURCE,RESOURCEID_LEN=128,
 INVOCATIONTYPE=REPLACE,
 REQUESTLIST=REQUESTS
*
* Storage areas
*
SUBSTYPE DS CL4 Subsystem type
SUBSNAME DS CL8 Subsystem name
RESOURCE DS CL128 Resource id
REQUESTS DS 0D Request list
EYE DC CL8'IWMCNTRL'
VERSION DC XL1'01'
RSRV_1 DS CL3
LENGTH# DC F'96'
ENTRY# DC F'2'
RSRV_2 DS CL12
ENTRY_1 DS 0CL32 1st entry
E#1_CODE DC CL1'A' code = add
E#1_TYPE DC CL1'H' type = holder
E#1_RSRV DS CL6 reserved
E#1_STKN DC XL8'0000000000000000' STOKEN not specified
E#1_TCB DC A'0' TCB not specified
E#1_ETKN DS XL8 enclave token
E#1_RC DS H entity return code
E#1_RSN DS H entity reason code
ENTRY_2 DS 0CL32 2nd entry
E#2_CODE DC CL1'A' code = add
E#2_TYPE DC CL1'W' type = waiter
E#2_RSRV DS CL6 reserved
E#2_STKN DS XL8 STOKEN
E#2_TCB DC A'0' TCB not specified
E#2_ETKN DC XL8'0000000000000000' enclave token not specified
E#2_RC DS H entity return code
E#2_RSN DS H entity reason code

IWMCQRY — Query classification attributes

The Query Active Classification Rules routine is given control from the IWMCQRY macro. The Query Active
Classification Rules macro will complete the parameter list with caller provided data and generate a
stacking, space switching, program call to the query service.

The purpose of this routine is to return a representation of the classification rules that are associated with
the active policy that is in effect for the sysplex. The data returned by this service describes the
installation-defined rules that determine how incoming work is assigned a service class and/or report
class by MVS.

The classification rule data returned by this service is mapped by macro IWMSVDCR. This macro is also
used to map the classification rules associated with the WLM service definition. As a result, some data
sections in this mapping will not be available (filled in) when it is obtained via this service. An example of
some of the information that will not be available, are the timestamps indicating when a classification
GROUP was last updated and by whom. For a complete list of fields that will not be available refer to the
field comments in macro IWMSVDCR.

The classification rules can be used in conjunction with the active service policy to determine what
performance goals will be associated with incoming work. The performance goals for a service class are
contained within service policy mapping returned by the IWMPQRY service.

The information returned is not serialized upon return to the caller, and so may be out-of-date if a
modified service definition was installed and a new policy activated.

The caller can optionally request that the identifier of the active policy that these classification rules are
part of, be returned in an area specified by the POLICY_ID keyword. The caller can then compare the

IWMCQRY

Chapter 12. Workload management services 137

policy identification information returned with the policy data returned by the IWMPQRY macro to ensure
they are in synch.

The Query Active Classification Rules macro is provided in list, execute, and standard form. The list form
accepts no variable parameters and is used only to reserve space for the query parameter list. The
standard form is provided for use with routines which do not require reentrant code. The execute form is
provided for use with the list format for reentrant routines.

The parameter list must be in the caller's primary address space or be addressable by the dispatchable
unit access list.

Environment
The requirements for the caller are:

Minimum authorization Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode Task

Cross memory mode Any PASN, any HASN, any SASN

AMODE 31-bit

ASC mode Primary or access register (AR) If in Access Register ASC mode,
specify SYSSTATE ASCENV=AR before invoking this macro.

Interrupt status Enabled for I/O and external interrupts

Locks No locks may be held.

Control parameters All parameter areas must reside in current primary or be addressable
by the dispatchable unit access list.

Programming requirements
1. The macro CVT must be included to use this macro.The macro IWMYCON must be included to use this

macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before issuing the IWMCQRY macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero

IWMCQRY

138 z/OS: z/OS MVS Programming: Workload Management Services

1
Used as work registers by the system

2-13
Unchanged

14
Used as a work register by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMCQRY macro is as follows:

name
IWMCQRY ANSAREA=  ansarea ,ANSLEN=  anslen

,QUERYLEN=  querylen

,POLICY_ID=  policy_id ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMCQRY macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

IWMCQRY

Chapter 12. Workload management services 139

ANSAREA=ansarea
A required output parameter, variable specifying an area to contain the data being returned by
IWMCQRY. The answer area is defined by the IWMSVDCR macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,ANSLEN=anslen
A required input parameter, variable which contains the length of the area provided to contain the
data being returned by IWMCQRY.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

IWMCQRY

140 z/OS: z/OS MVS Programming: Workload Management Services

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,POLICY_ID=policy_id
An optional output parameter, variable specifying an area to contain the identifier of the active policy
that these classification rules are a part of. This answer is mapped by the SVIDSSVP DSECT in the
IWMSVIDS macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,QUERYLEN=querylen
A required output parameter, variable which contains the number of bytes needed to contain the
classification rule information.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
Reason Code

Explanation
X'0Axx0005'

An attempt to reference caller's parameters caused an OC4 abend.

Return codes and reason codes
When the IWMCQRY macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 27. Return and Reason Codes for the IWMCQRY Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

IWMCQRY

Chapter 12. Workload management services 141

Table 27. Return and Reason Codes for the IWMCQRY Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive all the available
information. The variable specified in the QUERYLEN keyword will contain the
size of the storage required to hold the returned data area.

Action: None required. If necessary, invoke the service again with an output
area of sufficient size to receive all information.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or the length specified
is incorrect.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: The caller has passed an invalid ALET.

Action: Check for possible storage overlay of the parameter list or variable.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

IWMDEXTR — Extract WLM service definition

IWMDEXTR

142 z/OS: z/OS MVS Programming: Workload Management Services

The extract service definition routine is given control from the IWMDEXTR macro. The extract service
definition macro will complete the parameter list with caller provided data and generate a stacking,
program call to the extract service.

The purpose of this routine is to return a representation of the Workload Management service definition
currently installed in the WLM couple data set for the current sysplex. The service definition returned
contains all the policies that are currently eligible to be activated in the sysplex.

The information returned can be used by an application to be presented and manipulated by an end user.
The install service definition macro IWMDINST, may be used to install a service definition into the WLM
couple data set.

The service definition can be extracted either in XML format, or as a data area mapped by the IWMSERVD
mapping macro. The XML structure is defined by the DTD described in Appendix C, “Structure of the XML
service definition (DTD),” on page 725. The IWMSERVD mapping is a single logical entity described by the
service definition descriptor element, defined by IWMSERVD. The service definition descriptor element
contains offsets to the 5 distinct areas that comprise the service definition:

• The general service definition data area.

This data area contains general service definition information like the service definition name and
description along with more detailed information like the policy, workload, service class and resource
group information. This area is mapped by IWMSVDEF.

• The service definition classification rules data area.

This data area contains the definitions of the classification rules and classification groups that define
which service and report classes are associated with incoming work when the work enters MVS. This
area is mapped by IWMSVDCR.

• The notepad data area.

This data area contains any comments (or change history) that an installation chooses to associate with
the service definition. This area is mapped by IWMSVNPA.

• The service definition application environment data area.

This data area contains the definitions of the application environments. This area is mapped by
IWMSVAEA.

• The service definition scheduling environment data area.

This data area contains the definitions of the scheduling environments. This area is mapped by
IWMSVSEA.

The caller must provide sufficient storage to contain the service definition data requested. If insufficient
storage is passed, no data is returned, an appropriate return and reason code is set, and the length
required is returned in the variable specified in the QUERYLEN keyword.

Because the data returned is not serialized against future installs, the length returned may still change
before the extract is issued again. Therefore, the caller must issue the extract service in a loop, checking
return and reason codes, and obtaining a larger storage area as necessary.

The extract service definition macro is provided in list, execute, and standard form. The list form accepts
no variable parameters and is used only to reserve space for the extract parameter list. The standard form
is provided for use with routines which do not require reentrant code. The execute form is provided for
use with the list format for reentrant routines. The extract macro is provided in PL/AS and assembler
formats.

The parameter list must be in the caller's primary address space or be addressable by the dispatchable
unit access list.

Environment
The requirements for the caller are:

IWMDEXTR

Chapter 12. Workload management services 143

Minimum authorization Problem state, any PSW key. The caller must have read authority to
the resource MVSADMIN.WLM.POLICY in the FACILITY class.

Dispatchable unit mode Task

Cross memory mode PASN=HASN=SASN

AMODE 31-bit

ASC mode Primary or access register (AR) If in Access Register ASC mode,
specify SYSSTATE ASCENV=AR before invoking this macro.

Interrupt status Enabled for I/O and external interrupts

Locks No locks may be held.

Control parameters All parameter areas must reside in current primary or be addressable
by the dispatchable unit access list.

In addition, all parameters must reside in storage of the same key as
the caller is executing in when the macro is invoked unless the caller
is in key 0.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. The caller cannot have an EUT FRR established.
2. This macro supports multiple versions. Some keywords are unique to certain versions. For further

information, see the PLISTVER parameter description.

Input register information
Before issuing the IWMDEXTR macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as a work register by the system

IWMDEXTR

144 z/OS: z/OS MVS Programming: Workload Management Services

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMDEXTR macro is as follows:

name
IWMDEXTR

ANSAREA=  ansarea ,ANSLEN=  anslen ,QUERYLEN=  querylen
,TYPE=HEX

,TYPE=XML

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMDEXTR macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

ANSAREA=ansarea
A required output parameter, variable specifying an area to contain the service definition data
returned by the extract service. When TYPE=HEX is specified, this area is defined by the IWMSERVD

IWMDEXTR

Chapter 12. Workload management services 145

macro. When TYPE=XML is specified, it is the area where the service definition XML stream is to be
stored.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

Note : The specified address must not be 0.

,ANSLEN=anslen
A required input parameter, variable to contain the length of the area specified on ANSAREA keyword
to contain the service definition data returned by the extract service.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long

IWMDEXTR

146 z/OS: z/OS MVS Programming: Workload Management Services

enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameter and those from version 0:

TYPE

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, or 1

,QUERYLEN=querylen
A required output parameter, variable which contains the number of bytes of service definition data
returned by the extract service, or the number of bytes of storage required to contain the service
definition if insufficient storage was provided.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (with or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12), or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (with or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,TYPE=HEX
,TYPE=XML

An optional parameter indicating in which format the service definition will be extracted. The default
is TYPE=HEX.
,TYPE=HEX

The service definition will be returned in HEX format mapped by IWMSERVD (default).
,TYPE=XML

The service definition will be returned in XML format.

ABEND codes
Reason Code (Hex)

Explanation
X'0Axx0005'

An attempt to reference caller's parameters caused an OC4 abend.

Return codes and reason codes
When the IWMDEXTR macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

IWMDEXTR

Chapter 12. Workload management services 147

Table 28. Return and Reason Codes for the IWMDEXTR Macro

Return Code Reason Code Equate Symbol, Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied for the service definition area (ANSAREA
keyword on macro IWMDEXTR) is too small to receive all the available
information. As a result no service definition data is returned. The length
required to receive all the service definition data is returned in the variable
specified on the QUERYLEN keyword.

Action: None required. If necessary, reinvoke the service with an output area
of sufficient size to receive all information.

4 xxxx0414 Equate Symbol: IwmRsnCodeNullCDS

Meaning: No service definition is currently installed. As a result, no service
definition data is returned.

Action: None required.

4 xxxx0417 Equate Symbol: IwmRsnCodeBadServDE

Meaning: Service definition retrieved from WLM CDS has failed validation but
the structure is still returned to the caller.

Action: None required. Caution is advised in using the structure.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: The caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

IWMDEXTR

148 z/OS: z/OS MVS Programming: Workload Management Services

Table 28. Return and Reason Codes for the IWMDEXTR Macro (continued)

Return Code Reason Code Equate Symbol, Meaning and Action

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or the length specified
is incorrect.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: The caller has passed an invalid ALET.

Action: Check for possible storage overlay of the parameter list or variable.

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: The caller is in cross-memory mode.

Action: Invoke the function in non-cross memory mode.

8 xxxx083E Equate Symbol: IwmRsnCodeLevelMismatch

Meaning: The service definition retrieved from the WLM couple data set is at
a higher level than the WLM code running on this system. A system with a
lower level version cannot extract this service policy because it is not capable
of handling all the function in the service definition.

Action: None required. If necessary, invoke the service again on a higher
level system.

8 xxxx085B Equate Symbol: IwmRsnCodeZeroAnsArea

Meaning: The caller invoked the service with an address of zero for
parameter ANSAREA.

Action: Specify a non-zero address.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

C xxxx0C0E Equate Symbol: IwmRsnCodeInsufAccess

Meaning: The caller does not have read authority to the RACF® resource
MVSADMIN.WLM.POLICY in the FACILITY class.

Action: Invoke the function when the condition is fulfilled.

C xxxx0C0F Equate Symbol: IwmRsnCodeCDSNotAvail

Meaning: A couple data set for WLM has not been defined or it has been
defined but this system does not have connectivity to the data set.

Action: No action required.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

10 xxxx0F09 Equate Symbol: IwmRsnCodeUnknownLvl

Meaning: Internal error.

Action: Contact IBM.

IWMDEXTR

Chapter 12. Workload management services 149

IWMDINST — Install a service definition

The Install Service Definition routine is given control from the IWMDINST macro. The Install Service
Definition macro will complete the parameter list with caller provided data and generate a stacking,
program call to the install service.

The purpose of this routine is to install the WLM service definition supplied into the WLM couple data set
for the current sysplex. After this service definition is installed in the couple data set all policies contained
in it are eligible to be activated in the sysplex.

The service definition can be installed either in XML format, or as a data area mapped by the IWMSERVD
mapping macro. The XML structure is defined by the DTD described in Appendix C, “Structure of the XML
service definition (DTD),” on page 725. The IWMSERVD mapping is a single logical entity described by the
service definition descriptor element, defined by IWMSERVD. The service definition descriptor element
contains offsets to the 5 distinct areas that comprise the service definition:
General service definition data area

Contains general service definition information like the service definition name and description along
with more detailed information like the policy, workload, service class and resource group
information. This area is mapped by the IWMSVDEF.

Service definition classification rules data area
Contains the definitions of the classification rules and classification groups that govern which service
and report classes are associated with incoming work when the work enters MVS. This area is mapped
by IWMSVDCR.

Notepad data area
Contains any comments (or change history) that an installation chooses to associate with the service
definition. This area is mapped by IWMSVNPA.

Service definition application environment data area
Contains the definitions of the application environments. This area is mapped by IWMSVAEA.

Service definition scheduling environment data area
Contains the definitions of the scheduling environments. This area is mapped by IWMSVSEA.

The service definition descriptor element and all five data areas of the service definition must be passed
as input to the install service definition service. Even if certain data areas are non-applicable, for example
no notepad information exists, the data area header information must still be completely filled in and
pointed to by the descriptor element.

All input data areas must represent a valid service definition in order for the install to occur. If validity
checking for any section of the service definition fails, the entire install process is aborted and a return
and reason code indicating that validation of the service definition failed is returned. In addition, a reason
code describing the specific error detected is returned in the variable specified on keyword
VALCHECK_RSN and an offset to the specific section of the service definition where the error was
detected is returned in the variable specified on the VALCHECK_OFFSET keyword. Validity check
processing occurs until the first error is detected and only a single error is identified on an invocation of
this macro.

The caller can also request that the install occurs only if the service definition that was used as a base for
the definition being installed is still the currently installed service definition in the WLM couple data set.
This allows the caller the ability to prevent inadvertent overwrites of service definition updates that some
other user (caller) made in the window, from when the service definition was initially read, to when the
current install with the updated service definition was issued. For more details, refer to the description of
the COND keyword.

The parameter list must be in the caller's primary address space or be addressable by the dispatchable
unit access list.

IWMDINST

150 z/OS: z/OS MVS Programming: Workload Management Services

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key. The caller must have update authority
to the resource MVSADMIN.WLM.POLICY in the FACILITY class.

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR) If in Access Register ASC mode,
specify SYSSTATE ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: All parameter areas must reside in current primary or be addressable
by the dispatchable unit access list.

In addition, all parameters must reside in storage of the same key as
the caller is executing in when the macro is invoked unless the the
caller is in key 0.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. The caller cannot have an EUT FRR established.
2. This macro supports multiple versions. Some keywords are unique to certain versions. See the

PLISTVER parameter description.

Input register information
Before issuing the IWMDINST macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system

IWMDINST

Chapter 12. Workload management services 151

2-13
Unchanged

14
Used as a work register by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMDINST macro is as follows:

name
IWMDINST SERVD_AREA=  servd_area

,TYPE=HEX

,TYPE=XML ,XML_LEN=  xml_len ,QRY_BASEID=  qry_baseid

,PRODUCT_ID=  product_id ,VALCHECK_RSN=  valcheck_rsn

,VALCHECK_OFFSET=  valcheck_offset ,COND=YES ,IN_BASEID=  in_baseid

,COND=NO

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

IWMDINST

152 z/OS: z/OS MVS Programming: Workload Management Services

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMDINST macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,COND=YES
,COND=NO

A required parameter, which indicates whether checking is performed prior to the install, to determine
if the service definition that the input definition was based on is still the currently installed service
definition (i.e. another user has not made updates).
,COND=YES

indicates that the input service definition should only be installed if the identifier of currently
installed service definition matches the base identifier passed on IN_BASEID keyword. This
allows the user to detect changes in the installed service definition, since the last extract was
done, and allows the user to confirm whether the install should still occur.

,COND=NO
indicates that the input service definition should be installed unconditionally.

,IN_BASEID=in_baseid
When COND=YES is specified, a required input parameter, variable specifying an area that contains
the identifier of the service definition that was used as a base for the service definition being installed.
This area is mapped by the SVIDSSVD DESCT in macro IWMSVIDS.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

IWMDINST

Chapter 12. Workload management services 153

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameters and those from version 0:

TYPE
XML_LEN

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, or 1

,PRODUCT_ID=product_id
A required input parameter, variable specifying an area that contains an identifier of the product
(application) performing the install. The identifier should include information like product name, a
unique version/release identifier, and any other information that can help identify your product. This
area is mapped by the SVIDSPRD DSECT in the IWMSVIDS macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,QRY_BASEID=qry_baseid
An optional output parameter, variable specifying an area to contain the identifier of the service
definition that is currently installed on the WLM couple data set. This area is mapped by the SVIDSSVD
DSECT in macro IWMSVIDS. When this keyword is specified, the data is returned when the return
code indicates successful completion (return code 0) regardless of whether COND(YES) or COND(NO)
was specified. In addition, this data is returned on a conditional request (COND(YES)) if the return and
reason code indicate that specified IN_BASEID does not match the baseid of the installed service
definition (return code 4, reason code '0413'X).

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,TYPE=HEX
,TYPE=XML

An optional parameter indicating in which format the service definition will be extracted. The default
is TYPE=HEX.

IWMDINST

154 z/OS: z/OS MVS Programming: Workload Management Services

,TYPE=HEX
The service definition will be returned in HEX format mapped by IWMSERVD (default).

,TYPE=XML
The service definition will be returned in XML format.

SERVD_AREA=servd_area
A required input parameter, variable specifying an area that contains the service definition data to be
installed. When TYPE=HEX is specified, this area is defined by the IWMSERVD macro. When
TYPE=XML is specified, it is the area where the service definition XML stream is to be stored.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,VALCHECK_OFFSET=valcheck_offset
A required output parameter. The variable will contain the offset identifying the specific error in the
input service definition found during validity checking. If the primary reason code is xxxx083D and the
service definition type is HEX, the variable contains the offset from the beginning of the service
definition (IWMSERVD) to the section of the input service definition where validity check processing
found an error described by the reason code returned in VALCHECK_RSN. If the primary reason code
is xxxx083D and the service definition type is XML, the VALCHECK_OFFSET has no meaning. If the
primary reason code is xxxx08B2 or xxx08B5, the variable contains the offset from the beginning of
the service definition in XML format. This offset is returned under the same conditions as when
VALCHECK_RSN is returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,VALCHECK_RSN=valcheck_rsn
A required output parameter. The variable will contain the reason code identifying the specific error in
the input service definition found during validity checking. This reason code is only returned if
validation of the input service definition fails and a primary return code of 8 and reason code of
xxxx083D, xxxx08B2, or xxxx08B5 is returned. If reason codes xxxx083D and xxxx08B5 are issued,
refer to Appendix B, “Application validation reason codes,” on page 709 for an explanation. If the
primary reason code is xxxx08B2, refer to "XML System Services Users Guide and Reference" for an
explanation.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,XML_LEN=xml_len
When TYPE=XML is specified, a required input parameter. The variable contains the length of the area
specified on the SERVD_AREA keyword to contain the service definition data in XML format.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ABEND codes
Reason Code (Hex)

Explanation
0Axx0005

An attempt to reference caller's parameters caused an OC4 abend.

Return codes and reason codes
When the IWMDINST macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

IWMDINST

Chapter 12. Workload management services 155

Table 29. Return and Reason Codes for the IWMDINST Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0413 Equate Symbol: IwmRsnCodeIdsDontMatch

Meaning: COND=YES was specified on the IWMDINST macro, yet the service
definition identifier specified on the IN_BASEID keyword did not match the
identifier of the installed service definition. The identifier of the currently
installed service definition is returned in the area specified on the
QRY_BASEID keyword.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or the length specified
is incorrect.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or supplies mutually
exclusive parameters or provides data associated with options not selected.

Action: Check for possible storage overlay of the parameter list.

IWMDINST

156 z/OS: z/OS MVS Programming: Workload Management Services

Table 29. Return and Reason Codes for the IWMDINST Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: The caller has passed an invalid ALET.

Action: Check for possible storage overlay of the parameter list or variable.

8 xxxx083D Equate Symbol: IwmRsnCodeBadServDI

Meaning: The caller has passed a Service Definition area that failed
validation.

Action: See values in VALCHECK_RSN and VALCHECK_OFFSET parameters
for more information concerning the specific failure.

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: The caller is in cross-memory mode.

Action: Invoke the function in non-cross memory mode.

8 xxxx085B Equate Symbol: IwmRsnCodeNoSERVDArea

Meaning: The caller invoked the service without a required SERVD area or the
SERVD area address is 0.

Action: Check for possible storage overlay of the parameter list or variable.

8 xxxx08B2 Equate Symbol: IwmRsnCodeParserError

Meaning: The XML parser was not able to parse the service definition XML
document.

Action: See values in VALCHECK_RSN and VALCHECK_OFFSET parameters
for more information concerning the specific failure. The XML parser reason
codes can be found in the book: "XML System Services Users Guide and
Reference".

8 xxxx08B3 Equate Symbol: IwmRsnCodeXmlZeroLen

Meaning: The length of the provided XML service definition is zero.

Action: Provide the correct length of the service definition.

8 xxxx08B5 Equate Symbol: IwmRsnCodeXmlInvalid

Meaning: The XML parser was not able to parse the service definition XML
document.

Action: See values in VALCHECK_RSN and VALCHECK_OFFSET parameters
for more information concerning the specific failure. The reason codes can be
found in z/OS MVS Programming: Workload Management Services.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

C xxxx0C0E Equate Symbol: IwmRsnCodeInsufAccess

Meaning: The caller does not have update authority to the RACF resource
MVSADMIN.WLM.POLICY in the FACILITY class.

Action: Invoke the function when the condition is fulfilled.

C xxxx0C0F Equate Symbol: IwmRsnCodeCDSNotAvail

Meaning: A couple data set for WLM has not been defined or it has been
defined but this system does not have connectivity to the data set.

Action: No action required.

IWMDINST

Chapter 12. Workload management services 157

Table 29. Return and Reason Codes for the IWMDINST Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

C xxxx0C10 Equate Symbol: IwmRsnCodeCDSTooSmall

Meaning: WLM CDS is too small to process the request.

Action: No action required.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

10 xxxx0F0A Equate Symbol: IwmRsnCodeEndOfBuffer

Meaning: Internal error.

Action: Contact IBM.

IWMEBLK — Work request blocked

The IWMEBLK service allows work managers that participate in cross-platform enterprise workload
management (EWLM) to indicate that processing of a work request is blocked while waiting for a work
request in another application to complete.

The counterpart of this service to indicate that the processing of a work request is no longer blocked is
IWMEUBLK.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

IWMEBLK

158 z/OS: z/OS MVS Programming: Workload Management Services

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

6. Since this service may only be used by system-like code, some validity checking on the parameter list
is not performed. These checks would only be needed if the macro were not used to invoke the service
routine.

7. If the parameter EWLMMODE=EXPLICIT_SINGLE is specified, the following restrictions apply:

• No other task or SRB is allowed to issue other enclave services for the same enclave concurrently.
• The caller must be in primary ASC mode before invocation.
• The parameter list, the classification parameters and the savearea pointed to by GPR13 must be

addressable in AMODE 31 and primary ASC mode.
• No recovery environment is set up by the service. The caller is responsible to provide an appropriate

error recovery environment to handle abnormal terminations.
• The enclave must have been created with option ESTRT=EXPLICIT_SINGLE on the IWM4ECRE (or

IWMECREA) invocation.
• The caller must provide the ETOKEN parameter.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain versions. See the PLISTVER
parameter description.

Input register information
If the EWLMMODE=EXPLICIT_SINGLE parameter is specified, the caller must provide a standard 72-byte
savearea pointed to by GPR13.

For all other cases the caller does not have to place any information into any register unless using it in
register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged

IWMEBLK

Chapter 12. Workload management services 159

14-15
Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
The syntax of the IWMEBLK macro is as follows:

name
IWMEBLK WORKREQ_HDL=  workreq_hdl ,BLOCK_HDL=  block_hdl

,EWLMMODE=NORMAL

,EWLMMODE=EXPLICIT_SINGLE

,ETOKEN=NO_ETOKEN

,ETOKEN=  etoken

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMEBLK macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,BLOCK_HDL=block_hdl
A required output parameter that will receive the handle identifying the blocked work request.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ETOKEN=etoken
ETOKEN=NO_ETOKEN

An optional input parameter that contains the enclave token of the enclave under which the work
request is processed. The values of ETOKEN are:

• ETOKEN=etoken is required, if the option EWLMMODE=EXPLICIT_SINGLE is specified.
• ETOKEN=NO_ETOKEN indicates that no ETOKEN is passed. This is the default.

To code:Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWMEBLK

160 z/OS: z/OS MVS Programming: Workload Management Services

,EWLMMODE=NORMAL
,EWLMMODE=EXPLICIT_SINGLE

An optional input keyword that indicates if the parameter EXPLICIT_SINGLE has been specified on the
IWM4ECRE (or IWMECREA) call. Note that EWLMMODE=EXPLICIT_SINGLE can only be specified if the
enclave was created with the ESTRT=EXPLICIT_SINGLE option. The values of EWLMMODE are:

• EWLMMODE=NORMAL indicates that the enclave was created with the ESTRT=EXPLICIT or with
the ESTRT=IMPLIED option. EWLMMODE=NORMAL is the default.

• EWLMMODE=EXPLICIT_SINGLE indicates that the enclave was created with the
ESTRT=EXPLICIT_SINGLE option which can only be used for a restricted environment. The caller
must provide a standard 72-byte savearea, which is addressable in AMODE 31 and pointed to by
GPR13. The parameter list and the classification parameters must also be addressable in AMODE
31.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

IWMEBLK

Chapter 12. Workload management services 161

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameters and those from version 0:

ETOKEN
EWLMMODE

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

WORKREQ_HDL=workreq_hdl
A required input parameter that contains the handle which represents the work request. This handle
was returned from a previous call to IWMESTRT or IWM4ECRE.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMEBLK macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 30. Return and Reason Codes for the IWMEBLK Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

IWMEBLK

162 z/OS: z/OS MVS Programming: Workload Management Services

Table 30. Return and Reason Codes for the IWMEBLK Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: The Version number in the parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: EWLMMODE=EXPLICIT_SINGLE was specified and the required
enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token, or for
asynchronous events which may have deleted the enclave.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: The service is not enabled because the caller invoked the
IWM4CON (IWMCONN) service with EWLM=NO.

Action: Ensure that EWLM=YES is specified on the IWM4CON (IWMCONN)
request to enable this service.

8 xxxx0896 Equate Symbol: IwmRsnCodeBadWorkReqHandle

Meaning: The work request handle is invalid.

Action: Check the specification of the WORKREQ_HDL parameter.

8 xxxx08A0 Equate Symbol: IwmRsnCodeNotExplicitSingle

Meaning: The service has been invoked with option
EWLMMODE=EXPLICIT_SINGLE but the enclave has not been created with
the ESTRT=EXPLICIT_SINGLE option or vice versa.

Action: If ESTRT=EXPLICIT_SINGLE was coded on the IWM4ECRE or
IWMECREA call, EWLMMODE=EXPLICIT_SINGLE must also specified on the
IWMEBLK call. If ESTRT=EXPLICIT OR ESTRT=IMPLIED was coded on the
IWM4ECRE or IWMECREA call, EWLMMODE=NORMAL must be specified on
the IWMEBLK call (or the EWLMMODE parameter can be omitted).

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

Examples

 IWMEBLK WORKREQ_HDL=WRHANDLE,
 BLOCK_HDL=BKHANDLE
*

IWMEBLK

Chapter 12. Workload management services 163

* Storage areas
*
WRHANDLE DS CL8 Work Request Handle
BKHANDLE DS CL8 Work Request Block Handle

IWMEDREG — Deregister a WLM enclave

The IWMEDREG service allows the caller to deregister an enclave which it previously registered using the
IWMEREG service. Deregistration is required as soon as the caller has finished using the enclave so that
the enclave can eventually be deleted. If enclave deletion was requested while the enclave was
registered, deletion occurs when the last deregistration takes place.

The caller can run in task or SRB mode.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

6. Since this service may only be used by system-like code, some validity checking on the parameter list
is not performed. These checks would only be needed if the macro were not used to invoke the service
routine.

Restrictions
None.

IWMEDREG

164 z/OS: z/OS MVS Programming: Workload Management Services

Input register information
Before issuing the IWMEDREG macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMEDREG macro is as follows:

IWMEDREG

Chapter 12. Workload management services 165

name
IWMEDREG REGTOKEN=  regtoken ,ETOKEN=  etoken

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEDREG macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ETOKEN=etoken
A required input parameter that contains the enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

IWMEDREG

166 z/OS: z/OS MVS Programming: Workload Management Services

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

REGTOKEN=regtoken
A required input parameter, which passes the registration token obtained in a previous call to service
IWMEREG.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWMEDREG macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

IWMEDREG

Chapter 12. Workload management services 167

Table 31. Return and Reason Codes for the IWMEDREG Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-it addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token, or
asynchronous events which may have deleted the enclave.

8 xxxx0880 Equate Symbol: IwmRsnCodeBadRegToken

Meaning: The register token does not pass verification.

Action: Check for possible storage overlay of the register token, or
asynchronous events which may have deregistered the enclave already.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

Example

 IWMEDREG REGTOKEN=REGTKN,ETOKEN=ENCTKN
*
* Storage areas
*
ENCTKN DS CL8 Enclave token
REGTKN DS CL8 Register token

IWMEGCOR — Retrieve a correlator

IWMEGCOR

168 z/OS: z/OS MVS Programming: Workload Management Services

The IWMEGCOR service allows work managers that participate in cross-platform enterprise workload
management (EWLM) to retrieve the correlator for a given work request handle or the maximum length of
a correlator.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

6. Since this service may only be used by system-like code, some validity checking on the parameter list
is not performed. These checks would only be needed if the macro were not used to invoke the service
routine.

7. If the parameter EWLMMODE=EXPLICIT_SINGLE is specified, the following restrictions apply:

• No other task or SRB is allowed to issue other enclave services for the same enclave concurrently.
• The caller must be in primary ASC mode before invocation.
• The parameter list, the classification parameters and the savearea pointed to by GPR13 must be

addressable in AMODE 31 and primary ASC mode.
• No recovery environment is set up by the service. The caller is responsible to provide an appropriate

error recovery environment to handle abnormal terminations.
• The enclave must have been created with option ESTRT=EXPLICIT_SINGLE on the IWM4ECRE (or

IWMECREA) invocation.
• The caller must provide the ETOKEN parameter.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain versions. See the PLISTVER
parameter description.

IWMEGCOR

Chapter 12. Workload management services 169

Input register information
If the EWLMMODE=EXPLICIT_SINGLE parameter is specified, the caller must provide a standard 72-byte
savearea pointed to by GPR13.

For all other cases the caller does not have to place any information into any register unless using it in
register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMEGCOR macro is as follows:

IWMEGCOR

170 z/OS: z/OS MVS Programming: Workload Management Services

name
IWMEGCOR

GET=CORRELATOR ,WORKREQ_HDL=  workreq_hdl ,EWLM_CORR=  ewlm_corr

GET=MAXLENGTH ,EWLM_CORRML=  ewlm_corrml

,ETOKEN=NO_ETOKEN

,ETOKEN=  etoken

,EWLMMODE=NORMAL

,EWLMMODE=EXPLICIT_SINGLE ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMEGCOR macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

ETOKEN=etoken
ETOKEN=NO_ETOKEN

An optional input parameter that contains the enclave token of the enclave under which the work
request is processed. The values of ETOKEN are:

• ETOKEN=etoken is required, if the option EWLMMODE=EXPLICIT_SINGLE is specified.
• ETOKEN=NO_TOKEN indicates that no ETOKEN is passed. This is the default.

To code:Specify the RS-type address, or address in register (2)-(12), of an 8-character field.
,EWLM_CORR=ewlm_corr

When GET=CORRELATOR is specified, a required input parameter field where the service returns the
correlator of the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_CORRML=ewlm_corrml
When GET=MAXLENGTH is specified, a required output parameter, which will receive the maximum
length of a correlator.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,EWLMMODE=NORMAL
,EWLMMODE=EXPLICIT_SINGLE

An optional input keyword that indicates if the parameter EXPLICIT_SINGLE has been specified on the
IWM4ECRE (or IWMECREA) call. Note that EWLMMODE=EXPLICIT_SINGLE can only be specified if the
enclave was created with the ESTRT=EXPLICIT_SINGLE option. The values of EWLMMODE are:

IWMEGCOR

Chapter 12. Workload management services 171

• EWLMMODE=NORMAL indicates that the enclave was created with the ESTRT=EXPLICIT or with
the ESTRT=IMPLIED option. EWLMMODE=NORMAL is the default.

• EWLMMODE=EXPLICIT_SINGLE indicates that the enclave was created with the
ESTRT=EXPLICIT_SINGLE option which can only be used for a restricted environment. The caller
must provide a standard 72-byte savearea, which is addressable in AMODE 31 and pointed to by
GPR13. The parameter list and the classification parameters must also be addressable in AMODE
31.

GET=CORRELATOR
GET=MAXLENGTH

A required parameter, which describes whether the correlator or the maximum length of a correlator
is returned.
GET=CORRELATOR

indicates that the correlator should be returned.

GET=MAXLENGTH

indicates that the maximum length of a correlator should be returned.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

IWMEGCOR

172 z/OS: z/OS MVS Programming: Workload Management Services

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameters and those from version 0:

ETOKEN
EWLMMODE

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

WORKREQ_HDL=workreq_hdl
When GET=CORRELATOR is specified, a required input parameter that contains the handle which
represents the work request. This handle was returned on a previous invocation of IWMESTRT or
IWM4ECRE.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMEGCOR macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 32. Return and Reason Codes for the IWMEGCOR Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

IWMEGCOR

Chapter 12. Workload management services 173

Table 32. Return and Reason Codes for the IWMEGCOR Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-it addressing mode.

Action: Request this function only when you are in 31-it addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: EWLMMODE=EXPLICIT_SINGLE was specified and the required
enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token, or for
asynchronous events which may have deleted the enclave.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: The service is not enabled because the caller invoked the
IWM4CON (IWMCONN) service with EWLM=NO.

Action: Ensure that EWLM=YES is specified on the IWM4CON request to
enable this service.

8 xxxx0896 Equate Symbol: IwmRsnCodeBadWorkReqHandle

Meaning: Work request handle in parameter list is not valid.

Action: Check the specification of the WORKREQ_HDL parameter.

8 xxxx08A0 Equate Symbol: IwmRsnCodeNotExplicitSingle

Meaning: The service has been invoked with option
EWLMMODE=EXPLICIT_SINGLE but the enclave has not been created with
the ESTRT=EXPLICIT_SINGLE option or vice versa.

Action: If ESTRT=EXPLICIT_SINGLE was coded on the IWM4ECRE or
IWMECREA call, EWLMMODE=EXPLICIT_SINGLE must also specified on the
IWMEBLK call. If ESTRT=EXPLICIT OR ESTRT=IMPLIED was coded on the
IWM4ECRE or IWMECREA call, EWLMMODE=NORMAL must be specified on
the IWMEBLK call (or the EWLMMODE parameter can be omitted).

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

Examples

 IWMEGCOR GET=MAXLENGTH,EWLM_CORRML=CMLEN
*

IWMEGCOR

174 z/OS: z/OS MVS Programming: Workload Management Services

* Storage areas
*
CMLEN DS F Maximum correlator length

 IWMEGCOR GET=CORRELATOR,
 WORKREQ_HDL=WRHANDLE,EWLM_CORR=CORR
*
* Storage areas
*
WRHANDLE DS CL8 Work Request Handle
CORR DS CL127 Output field of size
 maximum correlator length

IWMEJOIN — Join WLM enclave
The purpose of this service is to allow the task (TCB) invoking this service to join an enclave for the
purpose of performance management. The scope of this service affects only a single TCB at the time the
service is invoked unless SUBTASKS=YES is in effect. Any TCBs which are attached by the current TCB
subsequently will also become part of the enclave environment. This inheritance of the enclave attribute
will apply to any further level of newly attached subtasks as well. Unless SUBTASKS=YES is in effect,
subtasks which exist at the time this service is invoked will not become part of the enclave environment
nor will any subtasks which are created subsequently by these non-enclave TCBs become part of the
enclave environment, unless they explicitly join.

Note that a task may only join an enclave if it is not already part of an enclave. In particular, a subtask
which inherited the enclave attribute from its mother task (which may happen either as a result of the
mother task issuing IWMEJOIN or IWM4STBG) is not allowed to use IWMEJOIN to explicitly join an
enclave. This restriction is independent of whether the enclave specified is the same enclave as it is in, or
a different enclave from the one it is in. Such a subtask which inherited the enclave attribute is also not
allowed to use IWMELEAV to explicitly leave the enclave. The subtask would only leave the enclave upon
its own (task) termination or when the enclave is deleted (IWM4EDEL). Also, a task which successfully
establishes a Begin environment (IWM4STBG) may not invoke enclave Join, nor is the task allowed to use
enclave Leave while this Begin environment exists.

Upon successful completion of this service, the CPU time for the TCB (and any subsequently attached
subtasks) will be attributed to the enclave for the purpose of service unit calculations and performance
period switches, rather than being attributed to the address space owning the TCB. Management and
reporting for the enclave will include activity for the TCB until the TCB either leaves the enclave or the
enclave is deleted.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task

Cross memory mode: Otherwise: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

IWMEJOIN

Chapter 12. Workload management services 175

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
1.
2. The caller cannot have an EUT FRR established.
3. This macro supports multiple versions. Some keywords are unique to certain versions. See the

PLISTVER parameter description.

Input register information
Before issuing the IWMEJOIN macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

IWMEJOIN

176 z/OS: z/OS MVS Programming: Workload Management Services

Performance implications

None.

Syntax
main diagram

name
b IWMEJOIN b ETOKEN=  etoken

,ENCLAVESERVER=YES

,ENCLAVESERVER=NO

,SUBTASKS=NO

,SUBTASKS=YES ,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEJOIN macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ENCLAVESERVER=YES
,ENCLAVESERVER=NO

An optional parameter, for internal use only The default is ENCLAVESERVER=YES.
,ENCLAVESERVER=YES

for internal use only

,ENCLAVESERVER=NO

for internal use only

ETOKEN=etoken
A required input parameter, which contains the enclave token to be associated with the TCB as
returned by IWM4ECRE.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWMEJOIN

Chapter 12. Workload management services 177

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports both the following parameters and those from version 0:

ENCLAVESERVER

To code: Specify one of the following:

IWMEJOIN

178 z/OS: z/OS MVS Programming: Workload Management Services

• IMPLIED_VERSION
• MAX
• A decimal value of 0, or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SUBTASKS=NO
,SUBTASKS=YES

An optional parameter, which specifies if subtasks of the joining task are also to be processed. The
default is SUBTASKS=NO.
,SUBTASKS=NO

specifies that subtasks of the joining task are not to be processed.
,SUBTASKS=YES

specifies that subtasks of the joining task that are not already joined to an enclave are to be joined
to the enclave identified by this invocation's ETOKEN parameter. When a currently-dispatched
subtask is joined to the enclave, its CPU time for that dispatch is associated with the enclave
rather than the address space. When the subtask is removed from the enclave, if it is currently
dispatched, its CPU time for that dispatch is associated with the address space rather than the
enclave.

If the caller does not have PASN=HASN, this is treated as SUBTASKS=NO. The caller is notified
with a return and reason code combination.

If SYSEVENT REQSRMST does not indicate, via bit SRMSTSTS being on, that this function is
available, this is treated as SUBTASKS=NO.

When SUBTASKS=YES is in effect, this task's corresponding IWMELEAV will also perform leave
processing upon any subtasks that are implicitly associated with the enclave. This includes
subtasks that were joined to the enclave due to this task's IWMEJOIN processing as well as
subtasks that were joined to the enclave by ATTACH processing.

ABEND codes
None.

Return codes and reason codes
When the IWMEJOIN macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

IWMEJOIN

Chapter 12. Workload management services 179

Table 33. Return and Reason Codes for the IWMEJOIN Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041F Equate Symbol: IwmRsnCodeExecEnvChanged

Meaning: The execution environment has changed while the
requested function is in progress.

Action: None required.

4 xxxx044D Equate Symbol: IwmRsnCodeXmSoNoSubtasks

Meaning: IWMEJOIN requesting SUBTASKS=YES was issued
with the primary address space not equal to the home address
space. No processing of subtasks was done. The rest of Join
processing completed successfully.

Action: Issue IWMEJOIN with PASN=HASN if you need the
subtasks processed.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

IWMEJOIN

180 z/OS: z/OS MVS Programming: Workload Management Services

Table 33. Return and Reason Codes for the IWMEJOIN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing
mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on Primary
ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in
progress for the current TCB.

Action: Avoid requesting this function while task termination is
in progress.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or
version length field is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token,
or asynchronous events which may have deleted the enclave.

8 xxxx0850 Equate Symbol: IwmRsnCodeBeginEnvOutstanding

Meaning: Caller is already operating under an outstanding Begin
environment which has implicitly joined an enclave.

Action: Avoid requesting this function in this environment.

8 xxxx0857 Equate Symbol: IwmRsnCodeAlreadyInEnclave

Meaning: Current dispatchable workunit is already in an
enclave.

Action: Avoid requesting this function while the caller is already
in an enclave.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

IWMEJOIN

Chapter 12. Workload management services 181

Example
To allow the current task to join an enclave:

 IWMEJOIN ETOKEN=ENCTOKEN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
ENCTOKEN DS CL8 Contains the enclave token
* associated with the work
* request as returned by IWM4ECRE
RC DS F Return code
RSN DS F Reason code

IWMELEAV — Leave WLM enclave
The purpose of this service is to allow the task (TCB) invoking this service to leave an enclave. In addition,
if the join of this task to the enclave specified SUBTASKS=YES, and the primary address space matches
the home address space (PASN=HASN) on this leave request, then any subtasks that are implicitly joined
to the enclave (by that join, or by ATTACH processing) leave the enclave. For the purpose of performance
management, the task will become associated with its home address space. The scope of this service
affects the current TCB at the time the service is invoked.

Note that a task may only leave an enclave if it explicitly joined the enclave. A subtask which inherited the
enclave attribute from its mother task is not allowed to use IWMELEAV to explicitly leave the enclave. The
subtask would leave the enclave upon its own (task) termination, when the enclave is deleted
(IWM4EDEL) or when leave processing for SUBTASKS=YES is being performed. Also, a task which
successfully establishes a Begin environment (IWM4STBG) may not invoke enclave Join, nor is the task
allowed to use enclave Leave while this Begin environment exists.

Upon successful completion of this service, the CPU time for the TCB (and any subsequently attached
subtasks) will be attributed to the home address space for the purpose of service unit calculations and
performance period switches, rather than being attributed to the enclave.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task

Cross memory mode: When the joining task had subtasks processed due to
SUBTASKS=YES and subtask processing is needed: PASN=HASN
Otherwise: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.

IWMELEAV

182 z/OS: z/OS MVS Programming: Workload Management Services

4. Note that the high order halfword of register 0, and the reason code variable when specified, may be
non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
1.
2. The caller cannot have an EUT FRR established.

Input register information
Before issuing the IWMELEAV macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

IWMELEAV

Chapter 12. Workload management services 183

Syntax
main diagram

name
b IWMELEAV b ETOKEN=  etoken

,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMELEAV macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

ETOKEN=etoken
A required input parameter, which contains the enclave token associated with the work request as
returned by IWM4ECRE.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

IWMELEAV

184 z/OS: z/OS MVS Programming: Workload Management Services

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

ABEND codes
None.

Return codes and reason codes
When the IWMELEAV macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

IWMELEAV

Chapter 12. Workload management services 185

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 34. Return and Reason Codes for the IWMELEAV Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041C Equate Symbol: IwmRsnCodeNotEnclave

Meaning: The current dispatchable workunit is not associated
with an enclave.

Action: Check for possible asynchronous events which may
have deleted the enclave.

4 xxxx044D Equate Symbol: IwmRsnCodeXmSoNoSubtasks

Meaning: The corresponding IWMEJOIN requested
SUBTASKS=YES but IWMELEAV was issued with the primary
address space not equal to the home address space. No
processing of subtasks was done. The Leave processing
completed successfully because the current dispatchable work
unit does not have residual subtasks propagated to the enclave
which are still associated with the enclave.

Action: Issue IWMELEAV with PASN=HASN if you need the
subtasks processed.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

IWMELEAV

186 z/OS: z/OS MVS Programming: Workload Management Services

Table 34. Return and Reason Codes for the IWMELEAV Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing
mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on Primary
ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in
progress for the current TCB.

Action: Avoid requesting this function while task termination is
in progress.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or
version length field is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token.

8 xxxx0845 Equate Symbol: IwmRsnCodeWrongEnclave

Meaning: The current dispatchable workunit is not associated
with the input enclave.

Action: Check for possible storage overlay of the enclave token.

8 xxxx0850 Equate Symbol: IwmRsnCodeBeginEnvOutstanding

Meaning: Current dispatchable workunit is operating under an
outstanding Begin environment, enclave leave is not allowed.
IWM4STEN is the required operation.

Action: Avoid requesting this function in this environment.

IWMELEAV

Chapter 12. Workload management services 187

Table 34. Return and Reason Codes for the IWMELEAV Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0858 Equate Symbol: IwmRsnCodeNotEjoinedTcb

Meaning: The current dispatchable workunit did not issue
enclave Join, but only inherited enclave attribute from mother
TCB.

Action: Avoid requesting this function in this environment.

8 xxxx0859 Equate Symbol: IwmRsnCodeEnclaveSubTaskExists

Meaning: The current dispatchable workunit has residual
subtasks propagated to the enclave which are still associated
with the enclave. Either the join (IWMEJOIN) of this work unit to
the enclave did not specify SUBTASKS=YES or the join
(IWMEJOIN) of this work unit to the enclave did specify
SUBTASKS=YES, but the IWMELEAV invocation was not made
with PASN=HASN.

Action: Avoid requesting this function in this environment.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To cause the current task to leave its Enclave environment:

 IWMELEAV ETOKEN=ENCTOKEN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
ENCTOKEN DS CL8 Contains the enclave token
* associated with the work
* request as returned by IWM4ECRE
RC DS F Return code
RSN DS F Reason code

IWMEQTME — Query enclave CPU time
The purpose of this service is to return the enclave processor times if the current dispatchable work unit
is associated with an enclave.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state. Any PSW key.

Dispatchable unit mode: Task, if CURRENT_DISP=YES; otherwise, task or SRB

Cross memory mode: Non-XMEM or XMEM. Any PASN, HASN, SASN.

AMODE: 31-bit

ASC mode: Primary

IWMEQTME

188 z/OS: z/OS MVS Programming: Workload Management Services

Interrupt status: Enabled for I/O and external interrupts if CURRENT_DISP=YES,
otherwise enabled or disabled for I/O and external interrupts

Locks: No locks are required.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

4. Caller is responsible for error recovery.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain versions. See the PLISTVER
parameter description.

Input register information
Before issuing the IWMEQTME macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

IWMEQTME

Chapter 12. Workload management services 189

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None

Syntax
main diagram

name
IWMEQTME

CPUTIME=  cputime

,ZIIPQUALTIME=  ziipqualtime ,ZIIPTIME=  ziiptime

,ZIIPONCPTIME=  ziiponcptime ,ZAAPTIME=  zaaptime

,ZAAPONCPTIME=  zaaponcptime ,ZAAPNFACTOR=  zaapnfactor

,CURRENT_DISP=NO

,CURRENT_DISP=YES ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEQTME macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

IWMEQTME

190 z/OS: z/OS MVS Programming: Workload Management Services

CPUTIME=cputime
An optional output parameter, which will contain the total accumulated TCB and SRB time for the
enclave that is associated with the current dispatchable workunit. The CPU time will be in TOD clock
format.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,CURRENT_DISP=NO
,CURRENT_DISP=YES

An optional parameter indicating whether to call the dispatcher before querying the enclave processor
times. Enclave processor times are only accumulated when an enclave loses the processor. So the
processor times are the total accumulated times for the enclave up to the point when it was
dispatched for the last time. Because the enclave being queried by the service is currently active on a
processor, the processor times are not accurate; all processor times since the last dispatch of the
enclave are missing. To make the enclave processor times returned by the service more accurate, the
dispatcher can optionally be called to update the accumulated processor times before they are
returned by the service.

This option provides benefit mostly for single-work-unit enclaves. For enclaves with multiple work
units (tasks or SRBs) running in parallel, the benefit will be marginal because the call to the dispatcher
will only update the times for the current (calling) workunit.

The default is CURRENT_DISP=NO.

,CURRENT_DISP=NO
The enclave processor times are queried without calling the dispatcher before. Which means that
processor times since the last dispatch of the enclave are missing, leading to slightly too small
results. In return invocation of the service is less costly, and has less prerequisites in the
environment.

,CURRENT_DISP=YES
The enclave processor times are queried after calling the dispatcher. Which means that all
processor times for the work unit up to invoking the service are returned. The price for getting
more exact values is more cycles for invoking the service, and more restricted environments in
which it can be invoked.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the

IWMEQTME

Chapter 12. Workload management services 191

parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports both the following parameters and those from version 0:

– ZIIPONCPTIME
– ZIIPQUALTIME
– ZIIPTIME

• 2, which supports both the following parameters and those from version 0 and 1:

– CURRENT_DISP
– ZAAPONCPTIME
– ZAAPNFACTOR
– ZAAPTIME

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, or 2

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

IWMEQTME

192 z/OS: z/OS MVS Programming: Workload Management Services

,ZAAPNFACTOR=zaapnfactor
An optional output parameter, which will contain the normalization factor for application assist
processors (zAAPs). If zAAPs are running at a different speed, multiply zAAP times with this factor and
divide the result by 256 to normalize the values to the speed of regular CPs. Note however, that if
there has been a speed change of zAAP processors during the life time of the enclave, this calculation
will return imprecise data.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ZAAPONCPTIME=zaaponcptime
An optional output parameter, which will contain the total accumulated time spent on a regular CP for
application assist processor (zAAP) eligible work for the enclave that is associated with the current
dispatchable work unit. The time will be in TOD clock format, normalized to the regular processor
speed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,ZAAPTIME=zaaptime
An optional output parameter, which will contain the total accumulated application assist processor
(zAAP) time for the enclave that is associated with the current work unit. The value is not normalized
to the speed of regular CPs, but is expressed in zAAP speed which might be different. You may use
ZAAPNFACTOR to normalize the value to the speed of regular CPs. Note however, that if the zAAP
speed changed during the life time of the enclave, this value cannot be normalized precisely. The time
will be in TOD clock format.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,ZIIPONCPTIME=ziiponcptime
An optional output parameter, which will contain the total accumulated time spent on a standard
processor for zIIP eligible work for the enclave that is associated with the current dispatchable
workunit. The time will be in TOD clock format, normalized to standard processor speed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,ZIIPQUALTIME=ziipqualtime
An optional output parameter, which will contain the total time the enclave that is associated with the
current dispatchable workunit was made eligible through programming services (available under a
license agreement) to run on an integrated information processor (zIIP). The time will be in TOD clock
format.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,ZIIPTIME=ziiptime
An optional output parameter, which will contain the total accumulated time spent on an integrated
information processor (zIIP) for the enclave that is associated with the current dispatchable workunit.
The zIIP time will be in TOD clock format, normalized to standard processor speed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
Invoking IWMEQTME with parameter CURRENT_DISP=YES while being disabled for I/O and external
interrupts results in ABEND 05D-08:

Explanation: A program issued a CALLDISP macro that is not valid. A hexadecimal reason code in register
15 explains the error: 08 The macro specified FRRSTK=SAVE while the program holds a lock, or the macro
specified FRRSTK=NOSAVE while the program holds a lock other than the LOCAL lock or the cross
memory local (CML) lock.

Invoking IWMEQTME with parameter CURRENT_DISP=YES while being in SRB mode results in ABEND
05D-10:

Explanation: A program issued a CALLDISP macro that is not valid. A hexadecimal reason code in register
15 explains the error: 10 The program was not in task control block (TCB) mode.

IWMEQTME

Chapter 12. Workload management services 193

Return codes and reason codes
When the IWMEQTME macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 35. Return and Reason Codes for the IWMEQTME Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041C Equate Symbol: IwmRsnCodeNotEnclave

Meaning: The current dispatchable workunit is not associated with an Enclave.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

Examples

None.

IWMEREG — Register a WLM enclave

The IWMEREG service allows the caller to register an enclave in order to prevent it from being deleted.
This is useful if the caller wants to schedule SRBs or join tasks to an enclave that is owned by another
subsystem. Registration guarantees that the enclave will continue to exist until the corresponding
deregistration is done, even if the other subsystem deletes the enclave. The system defers the enclave's
deletion until after the last deregistration.

The address space identified as the home address space at the time of registration is held responsible for
deregistration in case of abnormal termination of the job step, the job, or the address space itself.

The caller can run in task or SRB mode.

Environment
The requirements for the caller are:

IWMEREG

194 z/OS: z/OS MVS Programming: Workload Management Services

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

6. Since this service may only be used by system-like code, some validity checking on the parameter list
is not performed. These checks would only be needed if the macro were not used to invoke the service
routine.

Restrictions
This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to
the PLISTVER parameter description for further information.

Input register information
Before issuing the IWMEREG macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

IWMEREG

Chapter 12. Workload management services 195

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMEREG macro is as follows:

name
IWMEREG REGTOKEN=  regtoken ,SUBSYS=  subsys

,SUBSYSNM=  subsysnm

,SUBSYSREQUEST=  subsysrequest

,ETOKEN=  etoken
,OWNER=HOME

,OWNER=PRIMARY ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEREG macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ETOKEN=etoken
A required input parameter that contains the enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWMEREG

196 z/OS: z/OS MVS Programming: Workload Management Services

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,OWNER=HOME
,OWNER=PRIMARY

An optional parameter, for internal use only. The default is OWNER=HOME.
,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameter and those from version 0:

OWNER

IWMEREG

Chapter 12. Workload management services 197

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, or 1

REGTOKEN=regtoken
A required output parameter that will receive the registration token

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SUBSYS=subsys
A required input parameter, which contains the generic subsystem type (e.g. IMS, CICS, etc.).

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character field.

,SUBSYSNM=subsysnm
A required input parameter, which identifies the subsystem instance.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,SUBSYSREQUEST=subsysrequest
An optional input parameter that allows the caller to pass additional information in order to
distinguish between different invocations by the same subsystem.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMEREG macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 36. Return and Reason Codes for the IWMEREG Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

IWMEREG

198 z/OS: z/OS MVS Programming: Workload Management Services

Table 36. Return and Reason Codes for the IWMEREG Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token, or
asynchronous events which may have deleted the enclave.

8 xxxx0882 Equate Symbol: IwmRsnCodeTooManyRegistrations

Meaning: There are too many concurrent registrations requested.

Action: There is a resource shortage. The function may work successfully at a
later time.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

Example

 IWMEREG ETOKEN=ENCTKN,REGTOKEN=REGTKN,
 SUBSYS=SUBSTYPE,SUBSYSNM=SUBSNAME
*
* Storage areas
*
ENCTKN DS CL8 Enclave token
SUBSNAME DS CL8 Subsystem name
SUBSTYPE DS CL4 Subsystem type
REGTKN DS CL8 Register token

IWMERES — Change an enclave

The IWMERES macro allows the caller to change the performance controls for work associated with an
independent enclave. The caller can:

• Change the service class of work currently in execution, with the SRVCLASS keyword. Resetting to a new
service class also resumes quiesced work.

IWMERES

Chapter 12. Workload management services 199

• Quiesce work currently in execution, with the QUIESCE keyword.
• Reclassify work currently in execution according to the service policy in effect, with the RESUME

keyword. The RESUME keyword also resumes quiesced work.

The system does not allow foreign enclaves or dependent enclaves to be reset. See “Restrictions” on
page 200 for details.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. This macro may not be used prior to the completion of WLM address space initialization.
2. The caller cannot reset a dependent enclave. A dependent enclave can only be reset by resetting the

address space that owns the enclave.
3. The caller cannot reset a work-dependent enclave. Such an enclave can only be reset by resetting the

owning independent enclave.
4. The caller cannot reset a foreign enclave. A foreign enclave can only be reset by resetting the original

enclave on the originating system (foreign independent enclave) or by resetting the remote owner
address space (foreign dependent enclave).

5. The caller cannot reset an enclave that is implicitly quiesced because one or more address space
currently serving the enclave is quiesced. An address space is serving an enclave when any of its tasks
is joined to the enclave or when an SRB is scheduled to the enclave and the SRB used the ENCASSOC-
sysevent to establish an association with the address space.

Input register information
Before issuing the IWMERES macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

IWMERES

200 z/OS: z/OS MVS Programming: Workload Management Services

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMERES macro is as follows:

IWMERES

Chapter 12. Workload management services 201

name
IWMERES ETOKEN=  etoken

,FUNCTION=RESET

,SRVCLASS=  srvclass

,FUNCTION=QUIESCE

,FUNCTION=RESUME

,USERID=  userid

,PRODUCT=  product

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

,NOCHECK

)

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMERES macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

ETOKEN=etoken
A required input parameter that contains the enclave token. The enclave token must represent an
original independent enclave.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,FUNCTION=RESET
,FUNCTION=QUIESCE
,FUNCTION=RESUME

An optional parameter, which indicates the function to perform against the enclave. The default is
FUNCTION=RESET.
,FUNCTION=RESET

Requests that the enclave's service class be changed.

,FUNCTION=QUIESCE

Requests that the enclave be quiesced.

,FUNCTION=RESUME

Requests that the enclave be reclassified according to the service policy in effect. This undoes a
prior request to reset the enclave to a particular service class, or to quiesce the enclave.

IWMERES

202 z/OS: z/OS MVS Programming: Workload Management Services

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines that need to
provide different options according to user-provided input. Use the list form to define a storage area;
use the modify form to set the appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IWMERES in the following order:

• Use IWMERES ...MF=(M,list-addr,COMPLETE) specifying appropriate parameters, including all
required ones.

• Use IWMERES ...MF=(M,list-addr,NOCHECK), specifying the parameters that you want to change.
• Use IWMERES ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E, and MF=M, this can be an
RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to supply defaults for
omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

IWMERES

Chapter 12. Workload management services 203

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,PRODUCT=product
A required input parameter, which contains the product name that is requesting the enclave be
changed. The product name is included in the SMF 90 subtype 30 record created by IWMERES.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SRVCLASS=srvclass
When FUNCTION=RESET is specified, a required input parameter, which is the service class to be
assigned to the enclave. Resetting to a new service class also resumes quiesced work.

To code: Specify the RS-type address of an 8-character field.

,USERID=userid
A required input parameter, which contains the id of the user who is requesting the enclave be
changed. The user ID is included in the SMF 90 subtype 30 record created by IWMERES. If there is no
user ID available, the caller should pass blanks.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMERES macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value

IWMERES

204 z/OS: z/OS MVS Programming: Workload Management Services

Table 37. Return and Reason Codes for the IWMERES Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx043B Equate Symbol: IwmRsnCodeIsQuiesced

Meaning: The enclave cannot be reset because an address space currently
serving this enclave is quiesced. An address space is known to serve an
enclave if any of its tasks is joined to the enclave or if an SRB is scheduled to
the enclave and the SRB established an association with the address space
by using the ENCASSOC-sysevent.

Action: Retry the request when no address spaces serving the enclave is
quiesced.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported by the MVS release
on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token, or
asynchronous events which may have deleted the enclave.

IWMERES

Chapter 12. Workload management services 205

Table 37. Return and Reason Codes for the IWMERES Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: Caller is in cross memory mode.

Action: Invoke the function in non-cross memory mode.

8 xxxx0872 Equate Symbol: IwmRsnCodeForeignEnclave

Meaning: The requested service is not supported for a foreign enclave. This
reason code is returned for independent foreign enclaves only.

Action: All participants of a multisystem enclave can only be reset together
by resetting the original enclave on the originating system.

8 xxxx0885 Equate Symbol: IwmRsnCodeDependentEnclave

Meaning: The requested service is not supported for a dependent enclave.
This reason code is returned for both, an original and a foreign dependent
enclave.

Action: A dependent enclave cannot be reset directly. It can only be reset by
resetting its owning address space.

8 xxxx08B7 Equate Symbol: IwmRsnCodeWorkDepEnclave

Meaning: The requested service is not supported for a 'work-dependent'
enclave.

Action: A 'work-dependent' enclave cannot be reset directly. It can only be
reset by resetting its owning independent enclave.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C28 Equate Symbol: IwmRsnCodeBadServiceClass

Meaning: The input service class name is not defined in the active workload
manager policy.

Action: Record or report the error if appropriate.

C xxxx0C2E Equate Symbol: IwmRsnCodeWrongMode

Meaning: Reserved.

C xxxx0C32 Equate Symbol: IwmRsnCodeNotEligibleForSrvClass

Meaning: The active job in the specified address space or the specified
enclave is not eligible for reset into the specified system service class. Only
address spaces created with the ASCRE HIPRI attribute are eligible for reset
into the SYSTEM service class.

Action: Record or report the error if appropriate.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example

To change the service class of the enclave identified by the token TOKEN:

 IWMERES ETOKEN=TOKEN,SRVCLASS=SCNAME,USERID=USR,
 PRODUCT=PROD
*
* Storage areas
*
TOKEN DS CL8 Contains the enclave token
SCNAME DS CL8 Contains the service class name
* to assign to the job
USR DS CL8 Contains the id of the user who
* is requesting the change

IWMERES

206 z/OS: z/OS MVS Programming: Workload Management Services

PROD DS CL8 Contains the product name of
* the code invoking IWMERES

IWMESQRY — Query enclave state

The purpose of this service is to query whether or not the current dispatchable work unit is associated
with an enclave. The output is either the enclave token or the STOKEN of the address space associated
with the caller's work unit.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state. Any PSW key.

Dispatchable unit mode: Task or SRB

Cross memory mode: Non-XMEM or XMEM. Any PASN, HASN, SASN.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: No locks are required.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

4. The caller is responsible for the error recovery.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain versions. See the PLISTVER
parameter description.

Input register information
Before issuing the IWMESQRY macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents

IWMESQRY

Chapter 12. Workload management services 207

0
Reason code if GR15 return code is non-zero

1
Used as work registers by the system

2-13
Unchanged

14
Used as work registers by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMESQRY macro is as follows:

name
IWMESQRY ETOKEN=  etoken

TOKEN=  token

,IMPORTANCE=  importance ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

IWMESQRY

208 z/OS: z/OS MVS Programming: Workload Management Services

name
An optional symbol, starting in column 1, that is the name on the IWMESQRY macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

ETOKEN=etoken
A required output parameter, which will receive the enclave token if the current dispatchable work
unit is associated with an enclave. If it is not associated with an enclave, the field is set to 0. This
parameter is deprecated and supported for compatibility reasons only. The TOKEN parameter should
be used instead.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,IMPORTANCE=importance
An optional output parameter that will receive the importance value of the service class to which the
unit of work is classified.

To code: Specify the RS-type address, or address in register (2)-(12), of a halfword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

IWMESQRY

Chapter 12. Workload management services 209

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameter and those from version 0:

IMPORTANCE

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (with or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (with or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12), (00), (GPR0), (GPR00),
REG0), (REG00), or (R0).

,TOKEN=token
A required output parameter which will receive either the enclave token if the current dispatchable
work unit is associated with an enclave (as indicated by return code 0), or the STOKEN of the address
space the work unit is associated with (return code 4).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMESQRY macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 38. Return and Reason Codes for the IWMESQRY Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

IWMESQRY

210 z/OS: z/OS MVS Programming: Workload Management Services

Table 38. Return and Reason Codes for the IWMESQRY Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041C Equate Symbol: IwmRsnCodeNotEnclave

Meaning: The current dispatchable work unit is not associated with an
enclave. The returned token is the STOKEN of the associated address space.

Action: None required.

Example
To query whether the current dispatchable work unit is associated with an enclave or an address space,
specify:

 IWMESQRY TOKEN=MYTOKEN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
MYTOKEN DS CL8 Enclave token or STOKEN
RC DS F Return code
RSN DS F Reason code

IWMESTOP — Stop a work request

The IWMESTOP service allows work managers that participate in cross-platform enterprise workload
management (EWLM) to explicitly indicate the stop of an EWLM work request. Using this service the
application work request model is decoupled from WLM's enclave model.

The counterpart of this service to indicate the start of an EWLM work request is IWMESTRT.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- and 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.

IWMESTOP

Chapter 12. Workload management services 211

4. Note that the high-order halfword of 31-bit register 0, and the reason code variable when specified,
may be non-zero and represent diagnostic data which is not part of the external interface. The high-
order halfword should thus be excluded from comparison with the reason code values described
above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

6. Since this service may only be used by system-like code, some validity checking on the parameter list
is not performed. These checks would only be needed if the macro were not used to invoke the service
routine.

7. If the parameter EWLMMODE=EXPLICIT_SINGLE is specified, the following restrictions apply:

• No other task or SRB is allowed to issue other enclave services for the same enclave concurrently.
• The caller must be in primary ASC mode before invocation.
• The parameter list, the classification parameters and the savearea pointed to by GPR13 must be

addressable in AMODE 31 and primary ASC mode.
• No recovery environment is set up by the service. The caller is responsible to provide an appropriate

error recovery environment to handle abnormal terminations.
• The enclave must have been created with option ESTRT=EXPLICIT_SINGLE on the IWM4ECRE (or

IWMECREA) invocation.
• The caller must provide the ETOKEN parameter.

Restrictions
None.

Input register information
If the EWLMMODE=EXPLICIT_SINGLE parameter is specified, the caller must provide a standard 72-byte
savearea pointed to by GPR13.

For all other cases the caller does not have to place any information into any register unless using it in
register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents

IWMESTOP

212 z/OS: z/OS MVS Programming: Workload Management Services

0-1
Used as work registers by the system

2-13
Unchanged

14-15
Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMESTOP macro is as follows:

name
IWMESTOP ETOKEN=  etoken WORKREQ_HDL=  workreq_hdl

,WORKREQ_STA=0

,WORKREQ_STA=  workreq_sta

,EWLMMODE=NORMAL

,EWLMMODE=EXPLICIT_SINGLE

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMESTOP macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

ETOKEN=etoken
A required input parameter that contains the enclave token of the enclave under which the work
request is processed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,EWLMMODE=NORMAL
,EWLMMODE=EXPLICIT_SINGLE

An optional input keyword that indicates if the parameter EXPLICIT_SINGLE has been specified on the
IWM4ECRE (or IWMECREA) call. Note that EWLMMODE=EXPLICIT_SINGLE can only be specified if the
enclave was created with the ESTRT=EXPLICIT_SINGLE option. The values of EWLMMODE are:

IWMESTOP

Chapter 12. Workload management services 213

• EWLMMODE=NORMAL indicates that the enclave was created with the ESTRT=EXPLICIT or with
the ESTRT=IMPLIED option. EWLMMODE=NORMAL is the default.

• EWLMMODE=EXPLICIT_SINGLE indicates that the enclave was created with the
ESTRT=EXPLICIT_SINGLE option which can only be used for a restricted environment. The caller
must provide a standard 72-byte savearea, which is addressable in AMODE 31 and pointed to by
GPR13. The parameter list and the classification parameters must also be adressable in AMODE 31.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

IWMESTOP

214 z/OS: z/OS MVS Programming: Workload Management Services

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

WORKREQ_HDL=workreq_hdl
A required input parameter that contains the handle which represents the work request. This handle
was returned from a previous call to IWMESTRT or IWM4ECRE.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,WORKREQ_STA=workreq_sta
,WORKREQ_STA=0

An optional input parameter, which contains the completion status code of the work request.
Available completion status codes are described in the EWLM ARM interface specification. The use of
symbolic constants IwmEwlmArmStatusGood, IwmEwlmArmStatusAborted,
IwmEwlmArmStatusFailed, IwmEwlmArmStatusUnknown (defined in macro IWMYCON) is
recommended.

The default is 0. This indicates successful completion.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ABEND codes
None.

Return codes and reason codes
When the IWMESTOP macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 39. Return and Reason Codes for the IWMESTOP Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

IWMESTOP

Chapter 12. Workload management services 215

Table 39. Return and Reason Codes for the IWMESTOP Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token, or for
asynchronous events which may have deleted the enclave.

8 xxxx0885 Equate Symbol: IwmRsnCodeDependentEnclave

Meaning: This service is not available for dependent enclaves.

Action: Avoid requesting this function for dependent enclaves.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: This service is not enabled because the caller invoked the
IWM4CON (IWMCONN) service with EWLM=NO.

Action: Ensure that EWLM=YES is specified on the IWM4CON request to
enable this service.

8 xxxx0896 Equate Symbol: IwmRsnCodeBadWorkReqHandle

Meaning: Work request handle is not associated with passed enclave.

Action: Check the specification of the WORKREQ_HDL parameter.

8 xxxx0897 Equate Symbol: IwmRsnCodeTranStatusInvalid

Meaning: Passed work request completion status is not valid.

Action: Check the EWLM ARM interface specification for valid completion
status values.

8 xxxx08A0 Equate Symbol: IwmRsnCodeNotExplicitSingle

Meaning: The service has been invoked with option
EWLMMODE=EXPLICIT_SINGLE but the enclave has not been created with
the ESTRT=EXPLICIT_SINGLE option or vice versa.

Action: If ESTRT=EXPLICIT_SINGLE was coded on the IWM4ECRE or
IWMECREA call, EWLMMODE=EXPLICIT_SINGLE must also specified on the
IWMEBLK call. If ESTRT=EXPLICIT OR ESTRT=IMPLIED was coded on the
IWM4ECRE or IWMECREA call, EWLMMODE=NORMAL must be specified on
the IWMEBLK call (or the EWLMMODE parameter can be omitted).

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

IWMESTOP

216 z/OS: z/OS MVS Programming: Workload Management Services

Example

 IWMESTOP ETOKEN=ENCTKN,WORKREQ_HDL=WRHANDLE,
 WORKREQ_STA=WRSTATUS
*
* Storage areas
*
ENCTKN DS CL8 Enclave token
WRHANDLE DS CL8 Work Request Handle
WRSTATUS DS CL4 Work Request Completion Status

IWMESTRT — Start a work request
The IWMESTRT service allows work managers that participate in cross platform Enterprise Workload
Management (EWLM) to explicitly indicate the start of an EWLM work request. Using this service, the
application work request model is decoupled from the WLM enclave model.

The counterpart of this service to indicate the end of an EWLM work request is IWMESTOP.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of 31-BIT register 0, and the reason code variable when specified,

may be non-zero and represents diagnostic data which is NOT part of the external interface. The high
order halfword should thus be excluded from comparison with the reason code values described
above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

6. Since this service may only be used by system-like code, some validity checking on the parameter list
is not performed. These checks would only be needed if the macro were not used to invoke the service
routine.

7. If the parameter EWLMMODE=EXPLICIT_SINGLE is specified, some restrictions apply:

• No other task or SRB is allowed to issue other enclave services for the same enclave concurrently.
• The caller must be in primary ASC mode before invocation.

IWMESTRT

Chapter 12. Workload management services 217

• The parameter list and the save area pointed to by GPR13 must be addressable in AMODE 31 and
primary ASC mode.

• No recovery environment is set up by the service. The caller is responsible to provide an appropriate
error recovery environment to handle abnormal terminations.

• The enclave must have been created with option ESTRT=EXPLICIT_SINGLE on the IWM4ECRE(or
IWMECREA) invocation.

• All data in the optional classify parameter list (CLSFY=xxx) are ignored, including the EWLM_CORR.
If the application wants to specify an EWLM parent correlator or classification attributes for an EWLM
hop0 work request, these data have to be passed in the classification parameter list on the
IWM4ECRE (IWMECREA) call and thus will be the same for all work requests on the enclave.

Restrictions
None

Input register information
If EWLMMODE=EXPLICIT_SINGLE is specified, the caller must provide a standard 72-Byte savearea
pointed to by R13.

For all other cases the caller does not have to place any information into any register unless using it in
register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

IWMESTRT

218 z/OS: z/OS MVS Programming: Workload Management Services

Performance implications

None.

Syntax
main diagram

name
b IWMESTRT b ETOKEN=  etoken

,CLSFY=NO_CLSFY

,CLSFY=  clsfy

,WORKREQ_HDL=  workreq_hdl

,ARRIVALTIME=NO_ARRIVALTIME

,ARRIVALTIME=  arrivaltime

,EWLMMODE=NORMAL

,EWLMMODE=EXPLICIT_SINGLE ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMESTRT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ARRIVALTIME=arrivaltime
,ARRIVALTIME=NO_ARRIVALTIME

An optional input parameter, which contains the time when the work request actually started. This
time is used to calculate the response time of the work request. The format of the field is STCK. The
default is NO_ARRIVALTIME. indicates that no arrival time is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,CLSFY=clsfy
,CLSFY=NO_CLSFY

An optional input parameter, which contains the classification information in the format of the
parameter list for IWMCLSFY or IWM4CLSY NOTE that this name is the data area name, not its pointer.
IWM4CLSY or IWMCLSFY MF(M) should be used to initialize the area prior to invocation of IWMESTRT.
If the EWLM_CORR field within that classification information is non-zero, a sub-work request is
started.

IWMESTRT

Chapter 12. Workload management services 219

Note that the variable length fields associated with the classify parameter list given by the CLSFY
keyword have the following limitations in addition to those documented in IWMCLSFY or IWM4CLSY:

• SUBSYSPM is limited to 255 bytes
• COLLECTION is limited to 18 bytes
• CORRELATION is limited to 12 bytes

Note: If EWLMMODE=EXPLICIT_SINGLE is specified, all data in the optional classify parameter list
(CLSFY=xxx) are ignored, including the EWLM_CORR. If the application wants to specify an EWLM
parent correlator or classification attributes for an EWLM hop0 work request, these data have to be
passed in the classification parameter list on the IWM4ECRE (IWMECREA) call and thus will be the
same for all work requests on the enclave. The default is NO_CLSFY. indicates that no classify
parameter list is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

ETOKEN=etoken
A required input parameter that contains the enclave token of the enclave under which the work
request is processed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,EWLMMODE=NORMAL
,EWLMMODE=EXPLICIT_SINGLE

An optional parameter that indicates, if the parameter EXPLICIT_SINGLE has been specified on the
IWM4ECRE(or IWMECREA) call. The EWLMMODE parameter has to be omitted (or the default value
NORMAL must be specified), if the enclave was not created with the ESTRT=EXPLICIT_SINGLE option
and vice versa. Otherwise the results may be unpredictable. The default is EWLMMODE=NORMAL.
,EWLMMODE=NORMAL

indicates that the enclave was created with the ESTRT=EXPLICIT or ESTRT=IMPLIED option.
,EWLMMODE=EXPLICIT_SINGLE

indicates that the enclave was created with the ESTRT=EXPLICIT_SINGLE option which can only
be used for a restricted environment. The caller must also provide a standard 72-Byte savearea
(addressable in AMODE 31) pointed to by GPR13. Moreover the parameter list and the
classification parameters must also be adressable in AMODE 31.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

IWMESTRT

220 z/OS: z/OS MVS Programming: Workload Management Services

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,WORKREQ_HDL=workreq_hdl
A required output parameter that will receive the handle which represents the work request. The
application must pass this handle to the other work request services IWMESTOP, IWMEBLK,
IWMEUBLK, and IWMEGCOR.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

IWMESTRT

Chapter 12. Workload management services 221

Return codes and reason codes
When the IWMESTRT macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 40. Return and Reason Codes for the IWMESTRT Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing
mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0838 Equate Symbol: IwmRsnCodeClsfyAreaTooBig

Meaning: Input area associated with classification information
is larger than supported.

Action: Invoke the function with an area of the proper size.
Check for possible storage overlay.

IWMESTRT

222 z/OS: z/OS MVS Programming: Workload Management Services

Table 40. Return and Reason Codes for the IWMESTRT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0839 Equate Symbol: IwmRsnCodeClsfyPlTooSmall

Meaning: Input Classify parameter list is too small.

Action: Invoke the function with an area of the proper size.
Check for possible storage overlay.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token,
or asynchronous events which may have deleted the enclave.

8 xxxx0885 Equate Symbol: IwmRsnCodeDependentEnclave

Meaning: Service is not available for dependent enclaves.

Action: Avoid requesting this function for dependent enclaves.

8 xxxx0893 Equate Symbol: IwmRsnCodeMissingEWLMCorr

Meaning: Passed classification information must contain an
EWLM correlator (EWLM_CORR).

Action: Provide an EWLM correlator (EWLM_CORR) within the
passed classification information.

8 xxxx0894 Equate Symbol: IwmRsnCodeInvalidEWLMCorr

Meaning: Passed classification information contains an EWLM
correlator (EWLM_CORR) that does not pass validity checking or
that is not associated with the enclave.

Action: Check the specification of the EWLM correlator in the
classification information.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: Service is not enabled because caller invoked the
IWMCONN service with EWLM=NO.

Action: Ensure that EWLM=YES is specified on the IWMCONN
request to enable this service.

8 xxxx089F Equate Symbol: IwmRsnCodeMoreThanOneStart

Meaning: The service has been invoked with the
EWLMMODE=EXPLICIT_SINGLE option, but a workrequest is
already active for the enclave. For
EWLMMODE=EXPLICIT_SINGLE only one workrequest may be
active at a given point in time.

Action: Ensure that the IWMESTRT and IWMESTOP invocations
are correctly paired and that only one workrequest is active.

IWMESTRT

Chapter 12. Workload management services 223

Table 40. Return and Reason Codes for the IWMESTRT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx08A0 Equate Symbol: IwmRsnCodeNotExplicitSingle

Meaning: The service has been invoked with option
EWLMMODE=EXPLICIT_SINGLE, but the enclave has not been
created with the ESTRT=EXPLICIT_SINGLE option or vice versa.

Action: If ESTRT=EXPLICIT_SINGLE was coded on the
IWM4ECRE or IWMECREA call, EWLMMODE=EXPLICIT_SINGLE
must also specified on the IWMESTRT call. If ESTRT=EXPLICIT
OR ESTRT=IMPLIED was coded on the IWM4ECRE or
IWMECREA call, EWLMMODE=NORMAL must be specified on
the IWMESTRT call (or the EWLMMODE parameter can be
omitted).

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if
invoked again.

Example

* Before calling IWMESTRT initialize classification
* attributes in CLFSY
*
 IWMESTRT ETOKEN=ENCTKN,CLSFY=CLFSY,
 WORKREQ_HDL=WRHANDLE,ARRIVALTIME=ATIME
*
* Storage areas
*
 IWM4CLSY PLISTVER=MAX,MF=(L,CLFSY,0D)
ENCTKN DS CL8 Enclave token
ATIME DS CL8 Arrival time
WRHANDLE DS CL8 Work Request Handle

IWMEUBLK — Work request no longer blocked

The IWMEUBLK service allows work managers that participate in cross-platform enterprise workload
management (EWLM) to indicate that processing of a work request is no longer blocked.

The counterpart of this service to indicate that the processing of a work request is blocked is IWMEBLK.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary or access register (AR)

IWMEUBLK

224 z/OS: z/OS MVS Programming: Workload Management Services

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of 31-bit register 0, and the reason code variable when specified,

may be non-zero and represents diagnostic data which is NOT part of the external interface. The high-
order halfword should thus be excluded from comparison with the reason code values described
above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

6. Since this service may only be used by system-like code, some validity checking on the parameter list
is not performed. These checks would only be needed if the macro were not used to invoke the service
routine.

7. If the parameter EWLMMODE=EXPLICIT_SINGLE is specified, the following restrictions apply:

• No other task or SRB is allowed to issue other enclave services for the same enclave concurrently.
• The caller must be in primary ASC mode before invocation.
• The parameter list, the classification parameters and the savearea pointed to by GPR13 must be

addressable in AMODE 31 and primary ASC mode.
• No recovery environment is set up by the service. The caller is responsible to provide an appropriate

error recovery environment to handle abnormal terminations.
• The enclave must have been created with option ESTRT=EXPLICIT_SINGLE on the IWM4ECRE (or

IWMECREA) invocation.
• The caller must provide the ETOKEN parameter.

Restrictions
This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to
the PLISTVER parameter description for further information.

Input register information
If the EWLMMODE=EXPLICIT_SINGLE parameter is specified, the caller must provide a standard 72-byte
savearea pointed to by GPR13.

For all other cases the caller does not have to place any information into any register unless using it in
register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero

IWMEUBLK

Chapter 12. Workload management services 225

1
Used as work registers by the system

2-13
Unchanged

14
Used as work registers by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMEUBLK macro is as follows:

name
IWMEUBLK WORKREQ_HDL=  workreq_hdl ,BLOCK_HDL=  block_hdl

,EWLMMODE=NORMAL

,EWLMMODE=EXPLICIT_SINGLE

,ETOKEN=NO_ETOKEN

,ETOKEN=  etoken

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

IWMEUBLK

226 z/OS: z/OS MVS Programming: Workload Management Services

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMEUBLK macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,BLOCK_HDL=block_hdl
A required output parameter that will receive the handle identifying the blocked work request. This
handle was returned from a previous call to IWMEBLK.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ETOKEN=etoken
ETOKEN=NO_ETOKEN

Is the name (RS-type), or address in register (2)-(12), of an optional 8-character input variable that
contains the enclave token of the enclave under which the work request is processed. The values of
ETOKEN are:
ETOKEN=etoken

required, if the option EWLMMODE=EXPLICIT_SINGLE is specified.
ETOKEN=NOTOKEN

indicates that no ETOKEN is passed. This is the default.
,EWLMMODE=NORMAL
,EWLMMODE=EXPLICIT_SINGLE

An optional input keyword that indicates if the parameter EXPLICIT_SINGLE has been specified on the
IWM4ECRE (or IWMECREA) call. Note that EWLMMODE=EXPLICIT_SINGLE can only be specified if the
enclave was created with the ESTRT=EXPLICIT_SINGLE option. The values of EWLMMODE are:

• EWLMMODE=NORMAL indicates that the enclave was created with the ESTRT=EXPLICIT or with
the ESTRT=IMPLIED option. EWLMMODE=NORMAL is the default.

• EWLMMODE=EXPLICIT_SINGLE indicates that the enclave was created with the
ESTRT=EXPLICIT_SINGLE option which can only be used for a restricted environment. The caller
must provide a standard 72-byte savearea, which is addressable in AMODE 31 and pointed to by
GPR13. The parameter list and the classification parameters must also be adressable in AMODE 31.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

IWMEUBLK

Chapter 12. Workload management services 227

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameters and those from version 0:

ETOKEN
EWLMMODE

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

WORKREQ_HDL=workreq_hdl
A required input parameter that contains the handle which represents the work request. This handle
was returned from a previous call to IWMESTRT or IWM4ECRE.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

IWMEUBLK

228 z/OS: z/OS MVS Programming: Workload Management Services

Return codes and reason codes
When the IWMEUBLK macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 41. Return and Reason Codes for the IWMEUBLK Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: EWLMMODE=EXPLICIT_SINGLE was specified and the required
enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token, or for
asynchronous events which may have deleted the enclave.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: The service is not enabled because the caller invoked the
IWM4CON (IWMCONN) service with EWLM=NO.

Action: Ensure that EWLM=YES is specified on the IWM4CON request to
enable this service.

8 xxxx0896 Equate Symbol: IwmRsnCodeBadWorkReqHandle

Meaning: Work request handle is invalid.

Action: Check the specification of the WORKREQ_HDL parameter.

IWMEUBLK

Chapter 12. Workload management services 229

Table 41. Return and Reason Codes for the IWMEUBLK Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0898 Equate Symbol: IwmRsnCodeBadBlockHandle

Meaning: Block handle is invalid.

Action: Check the specification of the BLOCK_HDL parameter.

8 xxxx08A0 Equate Symbol: IwmRsnCodeNotExplicitSingle

Meaning: The service has been invoked with option
EWLMMODE=EXPLICIT_SINGLE but the enclave has not been created with
the ESTRT=EXPLICIT_SINGLE option or vice versa.

Action: If ESTRT=EXPLICIT_SINGLE was coded on the IWM4ECRE or
IWMECREA call, EWLMMODE=EXPLICIT_SINGLE must also specified on the
IWMEBLK call. If ESTRT=EXPLICIT OR ESTRT=IMPLIED was coded on the
IWM4ECRE or IWMECREA call, EWLMMODE=NORMAL must be specified on
the IWMEBLK call (or the EWLMMODE parameter can be omitted).

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

Examples

 IWMEUBLK WORKREQ_HDL=WRHANDLE,
 BLOCK_HDL=BKHANDLE
*
* Storage areas
*
WRHANDLE DS CL8 Work Request Handle
BKHANDLE DS CL8 Work Request Block Handle

IWMEXPT — Export a WLM enclave

The IWMEXPT macro exports an enclave to all systems in a parallel sysplex. This enables dispatchable
units on other systems to import and join the enclave. The macro returns an export token which the caller
must pass to other systems where it wants to import and join the enclave.

The caller must invoke the IWMUEXPT macro when other systems no longer need access to the exported
enclave.

The primary address space must have connected to WLM using the IWM4CON macro.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space which
connected to WLM.

AMODE: 31-bit

ASC mode: Primary

IWMEXPT

230 z/OS: z/OS MVS Programming: Workload Management Services

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
It is not supported to export work-dependent enclaves.

Input register information
Before issuing the IWMEXPT macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

IWMEXPT

Chapter 12. Workload management services 231

Performance implications

None.

Syntax
The syntax of the IWMEXPT macro is as follows:

name
IWMEXPT ETOKEN=  etoken ,XTOKEN=  xtoken ,CONNTKN=  conntkn

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEXPT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,CONNTKN=conntkn
A required input parameter that contains the connect token for the primary address space's
connection to WLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

ETOKEN=etoken
A required input parameter that contains the enclave token of the enclave to be exported.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

IWMEXPT

232 z/OS: z/OS MVS Programming: Workload Management Services

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,XTOKEN=xtoken
A required output parameter that contains an export token which uniquely identifies the exported
enclave throughout the parallel sysplex.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

ABEND codes
None.

IWMEXPT

Chapter 12. Workload management services 233

Return codes and reason codes
When the IWMEXPT macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 42. Return and Reason Codes for the IWMEXPT Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0433 Equate Symbol: IwmRsnCodeEncAlreadyExported

Meaning: The input enclave was imported from another system. It cannot be
exported by this system.

Action: The existing export token associated with the input enclave is
returned. It can be used as long as it remains valid, which is under the control
of the work manager that exported the enclave. Do not invoke IWMUEXPT to
undo the export since this invocation did not establish the export.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Make sure the primary address space connected to WLM using the
IWM4CON service. Make sure the connect token returned by IWM4CON is
passed correctly.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

IWMEXPT

234 z/OS: z/OS MVS Programming: Workload Management Services

Table 42. Return and Reason Codes for the IWMEXPT Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported by the z/OS release
on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token, or
asynchronous events which may have deleted the enclave.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's connection is not enabled for this service.

Action: Make sure that EXPTIMPT=YES is specified on the IWM4CON macro
invocation.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller's primary address space is not connected to WLM.

Action: Invoke the IWM4CON macro before invoking this macro.

8 xxxx0884 Equate SymbolIwmRsnCodeEnclaveDefEx

Meaning: Enclave is marked Execution Start Time to be deferred.

Action: Such an enclave cannot be exported.

8 xxxx08B7 Equate Symbol: IwmRsnCodeWorkDepEnclave

Meaning: The requested service is not supported for a work-dependent
enclave.

Action: Do not try to export work-dependent enclaves.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Virtual storage is not available for the request.

Action: Process the unit-of-work on the local system or fail the unit-of-work,
whichever is appropriate.

C xxxx0C2F Equate Symbol: IwmRsnCodeSystemSpace

Meaning: The enclave is owned by a system (i.e. limited-function) address
space. Exporting such an enclave is not supported.

Action: Process the unit-of-work on the local system or fail the unit-of-work,
whichever is appropriate.

C xxxx0C37 Equate Symbol: IwmRsnCodeStructureFull

Meaning: The coupling facility structure is full.

Action: Process the unit-of-work on the local system or fail the unit-of-work,
whichever is appropriate.

C xxxx0C36 Equate Symbol: IwmRsnCodeStructureUnavailable

Meaning: WLM does not have access to its coupling facility structure.

Action: Process the unit-of-work on the local system or fail the unit-of-work,
whichever is appropriate. Check for WLM or XES messages which describe
the problem.

IWMEXPT

Chapter 12. Workload management services 235

Table 42. Return and Reason Codes for the IWMEXPT Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
 IWMEXPT ETOKEN=ENCLAVET,XTOKEN=EXPORTT,CONNTKN=CONNECTT
*
* Storage areas
*
ENCLAVET DS CL8 Enclave token
EXPORTT DS CL32 Export token
CONNECTT DS CL4 Connect token

IWMGCORF — Get correlator flags

The IWMGCORF service allows to check whether or not certain Application Response Measurement
(ARM) flags in a provided EWLM correlator are set. These flags are contained in byte 3 of the ARM
correlator format.

Environment
The requirements for the caller are:

Minimum authorization: Problem state or supervisor state.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No restriction.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high-order halfword of bits 0-31 of register 0, and the reason code variable when

specified, may be non-zero and represents diagnostic data which is NOT part of the external interface.
The high-order halfword should thus be excluded from comparison with the reason code values
described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for
this purpose.

Restrictions
None.

IWMGCORF

236 z/OS: z/OS MVS Programming: Workload Management Services

Input register information
Before issuing the IWMGCORF macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMGCORF macro is as follows:

name
IWMGCORF EWLM_CORR=  ewlm_corr

,ASYNC_FLAG=  async_flag ,INDEP_FLAG=  indep_flag

,MF=(M , addr
,COMPLETE

,NOCHECK

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMGCORF macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

IWMGCORF

Chapter 12. Workload management services 237

,ASYNC_FLAG=async_flag
An optional output parameter, which receives the indication whether or not the asynchronous flow
flag is set. A value of 1 is returned, if the asynchronous flow flag is set. Otherwise 0 is returned. The
caller must initialize the ASYNC_FLAG field before issuing the macro because IWMGCORF will not
modify it if the EWLM_CORR field contains an invalid ARM correlator.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

EWLM_CORR=ewlm_corr
A required input parameter, which contains an EWLM correlator. If the correlator is invalid (the
architected length in the first two bytes is less than 4 or greater than 512), a call to this macro acts as
a no-operation and no change to the ASYNC_FLAG or INDEP_FLAG is made.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,INDEP_FLAG=indep_flag
An optional output parameter, which receives the indication whether or not the independent flag is
set. A value of 1 is returned, if the independent flag is set. Otherwise 0 is returned. The caller must
initialize the INDEP_FLAG field before issuing the macro because IWMGCORF will not modify it if the
EWLM_CORR field contains an invalid ARM correlator.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ABEND codes
None.

Return codes and reason codes
None.

Example
To extract the setting of the asynchronous and the independent flag from a storage area holding an ARM
correlator, specify the following:

LHI 2,-1 INIT TO CATCH INVALID CORRELATOR
 ST 2,ASYNCHRO
 ST 2,INDEPEND
 IWMGCORF *
 EWLM_CORR=MYCORR, *
 ASYNC_FLAG=ASYNCHRO, *
 INDEP_FLAG=INDEPEND
 L 2,ASYNCHRO LOAD ASNYCHRONOUS INDIDICATOR
 LTR 2,2 TEST ASYNC RESULT
 JP ASYN_ON ASYNC FLAG IS ON
 JZ ASYN_OFF ASYNC FLAG IS OFF
CORR_INVA DS 0H NOT A VALID ARM CORRELATOR
 :
 :
ASYN_ON L 3,INDEPEND LOAD INDEPENDENT INDICATOR
 LTR 3,3 TEST INDEP (RELEVANT, IF ASYNC)
 JP INDE_ON
INDE_OFF DS 0H ASYNC ON, BUT NOT INDEPENDANT
 :
 :
ASYNCHRO DS F STORAGE AREA FOR ASYNC FLAG
INDEPEND DS F STORAGE AREA FOR INDEP FLAG
MYCORR DS CL512 STORAGE AREA FOR ARM CORRELATOR

IWMIMPT — Import an enclave

The IWMIMPT macro imports an enclave that has been previously exported using the IWMEXPT macro.

IWMIMPT

238 z/OS: z/OS MVS Programming: Workload Management Services

The caller must invoke the IWMUIMPT macro when it no longer needs access to the enclave.

The primary address space must have connected to WLM using the IWM4CON macro.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space which
connected to WLM.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

Input register information
Before issuing the IWMIMPT macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system

IWMIMPT

Chapter 12. Workload management services 239

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMIMPT macro is as follows:

name
IWMIMPT XTOKEN=  xtoken ,ETOKEN=  etoken ,CONNTKN=  conntkn

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMIMPT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,CONNTKN=conntkn
A required input parameter that contains the connect token for the primary address space's
connection to WLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

IWMIMPT

240 z/OS: z/OS MVS Programming: Workload Management Services

,ETOKEN=etoken
A required output parameter that contains the enclave token for the imported enclave. The caller can
pass this token as input to all enclave services except IWM4EDEL. The enclave token is valid on the
local system only.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

IWMIMPT

Chapter 12. Workload management services 241

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

XTOKEN=xtoken
A required input parameter that contains the export token which identifies the exported enclave.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMIMPT macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 43. Return and Reason Codes for the IWMIMPT Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0432 Equate Symbol: IwmRsnCodeUnknownExportToken

Meaning: No enclave matching the export token was found. The enclave may
have been unexported or deleted, or the WLM coupling facility structure may
have been lost.

Action: Discontinue processing the unit of work.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

IWMIMPT

242 z/OS: z/OS MVS Programming: Workload Management Services

Table 43. Return and Reason Codes for the IWMIMPT Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Make sure the primary address space connected to WLM using the
IWM4CON service. Make sure the connect token returned by IWM4CON is
passed correctly.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported by the OS/390®

release on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0836 Equate Symbol: IwmRsnCodeMaxEnclave

Meaning: Enclave could not be created because the enclave limit ha been
reached.

Action: Check for possible problems wherein enclaves are not being deleted
as expected or excessive numbers of enclaves are being created in a loop.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: The caller's connection is not enabled for this service.

Action: Make sure that EXPTIMPT=YES is specified on the IWM4CON macro
invocation.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller's primary address space is not connected to WLM.

Action: Invoke the IWM4CON macro before invoking this macro.

8 xxxx0870 Equate Symbol: IwmRsnCodeBadExportToken

Meaning: The export token is not validly formatted.

Action: Check for possible storage overlay of the export token.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Virtual storage is not available for the request.

Action: Contact your system programmer.

C xxxx0C36 Equate Symbol: IwmRsnCodeStructureUnavailable

Meaning: WLM does not have access to its coupling facility structure.

Action: Check for WLM or XES messages which describe the problem.

IWMIMPT

Chapter 12. Workload management services 243

Table 43. Return and Reason Codes for the IWMIMPT Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

C xxxx0C38 Equate Symbol: IwmRsnCodeUplevelObject

Meaning: The multisystem enclave requires functions that are not available
on this level of the operating system.

Action: Do not process the work request on this system.

C xxxx0C39 Equate Symbol: IwmRsnCodeTooManySystems

Meaning: The sysplex has exceeded 32 systems with unique names. This can
occur when a system is reIPLed into the sysplex with a different SYSNAME or
CPU Adjustment factor.

Action: Do not process the work request on this system.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
 IWMIMPT XTOKEN=EXPORTT,ETOKEN=ENCLAVET,CONNTKN=CONNECTT
*
* Storage areas
*
ENCLAVET DS CL8 Enclave token
EXPORTT DS CL32 Export token
CONNECTT DS CL4 Connect token

IWMMXDC — Exit for resource data collection

IWMMXDC invokes the resource data collection exit specified. This exit returns information about the
usage of the buffer pool or other resources which may be responsible for delays to work requests. The
return and reason codes for IWMMXDC are those set by the exit invoked.

The exit environment is described in the following. The parameter list is in the same key as the PSW at the
time of invocation and is in pageable storage addressable from the current address space. Upon entry to
the exit, the register contents are as follows:

• Register 0 = not defined
• Register 1 contains the address of a parameter list as formatted by the list form of this macro,

IWMMXDC MF=(L).
• Registers 2-13 = not defined
• Register 14 = return address
• Register 15 = entry-point address

Upon entry to the exit, the access register contents are undefined.

Upon return from the exit, the register contents are as follows:

• Register 0 = Reason code if GR15 return code is non-zero
• Registers 1-14 = not defined (need not be restored to value on entry)
• Register 15 = Return code

Upon return from the exit, the access register contents are unchanged.

IWMMXDC

244 z/OS: z/OS MVS Programming: Workload Management Services

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state with the same PSW key as at the time of registration
(IWM4MREG).

Dispatchable unit mode: Task or SRB

Cross-memory mode: PASN=HASN=SASN. The current home address space must be the
same as at the time of registration (IWM4MREG).

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRRs may be established.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
The list form of the macro is intended for use by products supplying a data collection exit.

The execute form of the macro is intended for use by z/OS.

The assembler execute form only initializes the parameter list and calls the exit routine. The following
restrictions apply:

• The invoker must save registers required before invoking the macro
• The invoker must restore registers required immediately after invoking the macro, without depending on

the exit to preserve any registers
• The invoker must copy the output results directly from the parameter list to local variables and NOT use

macro keywords to do this

Restrictions
None.

Input register information
Before issuing the IWMMXDC macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unpredictable in assembler form, unchanged in PL/X form
14

Used as work registers by the system

IWMMXDC

Chapter 12. Workload management services 245

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
The syntax of the IWMMXDC macro is as follows:
main diagram

name
IWMMXDC RESOURCE_TKN=  resource_tkn

,RES_DATA_EXIT@=  res_data_exit@

,RESOURCE_TYPE=BUFFER_POOL parameters-1

,RESOURCE_TYPE=NULL ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

parameters-1
,OWNER_TKN=  owner_tkn

,RES_CUR_SIZE=  res_cur_size

,RES_INUSE_SIZE=  res_inuse_size

,RES_#REFERENCES=  res_#references ,RES_#HITS=  res_#hits

Parameters
The parameters are explained as follows:

IWMMXDC

246 z/OS: z/OS MVS Programming: Workload Management Services

name
An optional symbol, starting in column 1, that is the name on the IWMMXDC macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,OWNER_TKN=owner_tkn
When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter, which contains data
associated with the resource that was passed to registration (IWM4MREG).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

IWMMXDC

Chapter 12. Workload management services 247

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RES_#HITS=res_#hits
When RESOURCE_TYPE=BUFFER_POOL is specified, an optional output parameter, which contains
the number of hits among the references to the bufferpool since the last invocation of the data
collection exit. The corresponding field in the parameter list (IWMMXDC MF=(L)) must be set by the
exit.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RES_#REFERENCES=res_#references
When RESOURCE_TYPE=BUFFER_POOL is specified, an optional output parameter, which contains
the number of references to the bufferpool since the last invocation of the data collection exit. The
corresponding field in the parameter list (IWMMXDC MF=(L)) must be set by the exit.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RES_CUR_SIZE=res_cur_size
When RESOURCE_TYPE=BUFFER_POOL is specified, an optional output parameter, which contains
the current size (in 4K pages) associated with the specified resource. The corresponding field in the
parameter list (IWMMXDC MF=(L)) must be set by the exit.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RES_DATA_EXIT@=res_data_exit@
A required input parameter that contains the address of the resource data collection exit to be
invoked.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,RES_INUSE_SIZE=res_inuse_size
When RESOURCE_TYPE=BUFFER_POOL is specified, an optional output parameter, which contains
the current in use size (in 4K pages) associated with the specified resource. The corresponding field in
the parameter list (IWMMXDC MF=(L)) must be set by the exit.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

RESOURCE_TKN=resource_tkn
A required input parameter, which contains the associated WLM resource token which is returned by
the registration (IWM4MREG).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RESOURCE_TYPE=BUFFER_POOL
,RESOURCE_TYPE=NULL

A required parameter, which indicates the type of resource being registered.
,RESOURCE_TYPE=BUFFER_POOL

indicates that a bufferpool is being collected.
,RESOURCE_TYPE=NULL

indicates that no exit is to be called.
,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

IWMMXDC

248 z/OS: z/OS MVS Programming: Workload Management Services

ABEND codes
None.

Return codes and reason codes
When the IWMMXDC macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 44. Return and Reason Codes for the IWMMXDC Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

Example
To register a resource for delay monitoring, specify:

 IWMMXDC X
 RESOURCE_TKN=RSCTOKEN, X
 RES_DATA_EXIT@=DATAEXIT@, X
 RESOURCE_TYPE=BUFFER_POOL, X
 OWNER_TKN=OWNERTKN, X
 RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
RSCTOKEN DS CL8 WLM resource token
*
DATAEXIT@ DS AL4 contains the address of the
* Resource Data Collection Exit
* to be invoked
OWNERTKN DS CL8 Contains data maintained by
* the user
RC DS F Return code
RSN DS F Reason code

IWMMXRA — Exit for resource adjustment

IWMMXRA invokes the resource adjustment exit. This exit makes the adjustments indicated for the buffer
pool or other resources which may be responsible for delays to work requests. The return or reason codes
for IWMMXRA are those set by the exit invoked.

The exit environment is described in the following. The parameter list is in pageable storage addressable
in the current address space, but is not guaranteed to be in the key of the exit because it is not expected
to be changed by the exit. Upon entry to the exit, the register contents are as follows:

• Register 0 = not defined
• Register 1 contains the address of a parameter list as formatted by the list form of this macro, IWMMXRA
MF=(L).

• Registers 2-13 = not defined

IWMMXRA

Chapter 12. Workload management services 249

• Register 14 = return address
• Register 15 = entry-point address

Upon entry to the exit, the access register contents are undefined.

Upon return from the exit, the register contents are as follows:

• Register 0 = Reason code if GR15 return code is non-zero
• Registers 1-14 = not defined (need not be restored to value on entry)
• Register 15 = Return code

Upon return from the exit, the access register contents are unchanged.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state with the same PSW key as at the time of registration
(IWM4MREG).

Dispatchable unit mode: Task or SRB

Cross-memory mode: PASN=HASN=SASN. The current home address space must be the
same as at the time of registration (IWM4MREG).

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRRs may be established.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
The list form of the macro is intended for use by products supplying a resource adjustment exit.

The execute form of the macro is intended for use by z/OS.

The assembler execute form only initializes the parameter list and calls the exit routine. The following
restrictions apply:

• The invoker must save registers required before invoking the macro
• The invoker must restore registers required immediately after invoking the macro, without depending on

the exit to preserve any registers.

Restrictions
None.

Input register information
Before issuing the IWMMXRA macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents

IWMMXRA

250 z/OS: z/OS MVS Programming: Workload Management Services

0
Reason code if GR15 return code is non-zero

1
Used as work register by the system

2-13
Unpredictable in assembler form, unchanged in PL/X form

14
Used as work registers by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMMXRA macro is as follows:
main diagram

name
IWMMXRA RESOURCE_TKN=  resource_tkn

,RES_ADJ_EXIT@=  res_adj_exit@

,RESOURCE_TYPE=BUFFER_POOL parameters-1

,RESOURCE_TYPE=NULL ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

parameters-1
,OWNER_TKN=  owner_tkn ,RES_CUR_SIZE=  res_cur_size ,RES_NEW_SIZE=  res_new_size

IWMMXRA

Chapter 12. Workload management services 251

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMMXRA macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,OWNER_TKN=owner_tkn
When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter, which contains data
associated with the resource that was passed to registration (IWM4MREG).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled

IWMMXRA

252 z/OS: z/OS MVS Programming: Workload Management Services

with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RES_ADJ_EXIT@=res_adj_exit@
A required input parameter that contains the address of the resource adjustment exit to be invoked.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,RES_CUR_SIZE=res_cur_size
When RESOURCE_TYPE=BUFFER_POOL is specified, an required input parameter, which contains the
current size (in 4K pages) associated with the specified resource.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RES_NEW_SIZE=res_new_size
When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter, which contains the
new size (in 4K pages) to be associated with the specified resource.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

RESOURCE_TKN=resource_tkn
A required input parameter, which contains the associated WLM resource token which is returned by
the registration (IWM4MREG).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RESOURCE_TYPE=BUFFER_POOL
,RESOURCE_TYPE=NULL

A required parameter, which indicates the type of resource being registered.
,RESOURCE_TYPE=BUFFER_POOL

indicates that buffer pool adjustments are needed.
,RESOURCE_TYPE=NULL

indicates that no exit is to be called.
,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWMMXRA macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

IWMMXRA

Chapter 12. Workload management services 253

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code.

Table 45. Return and Reason Codes for the IWMMXRA Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

Example
To call a resource adjustment exit, specify the following:

 IWMMXRA X
 RES_ADJ_EXIT@=ADJEXIT@, X
 OWNER_TKN=OWNERTKN, X
 RESOURCE_TYPE=BUFFER_POOL, X
 RESOURCE_TKN=RSCTOKEN, X
 RES_CUR_SIZE=RESCURSIZE, X
 RES_NEW_SIZE=RESNEWSIZE, X
 RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
RESCURSIZE DS FL4 contains the current size of the
* specified resource in 4K pages
RESNEWSIZE DS FL4 contains the new target size of the
* specified resource in 4K pages
ADJEXIT@ DS AL4 contains the address of the
* Resource Adjustment Exit
* to be invoked
OWNERTKN DS CL8 Contains data maintained by
* the user
RSCTOKEN DS CL8 WLM resource token
RC DS F Return code
RSN DS F Reason code

IWMPACT — Activate service policy

The Activate Service Policy routine is given control from the IWMPACT macro. The Activate Service Policy
macro will complete the parameter list with caller-provided data and generate a stacking, program call to
the activate policy service.

The purpose of this routine is to activate a service policy in the sysplex. The name of the service policy to
be activated must be provided as input. The specified policy must exist in the current WLM service
definition installed on the WLM couple data set.

The Activate Service Policy service causes a service policy to be activated synchronously. In other words,
control will not be returned to the caller until the policy has been activated on all systems in the sysplex or
for some reason the policy activation could not be completed.

Note that only a single policy activation request can be processed at any one time. Therefore, if a previous
policy activation request is being processed and a new activation request is issued, the new request will
be rejected with an appropriate return and reason code. This will occur regardless of whether the two
requests were issued on the same system or different systems in the sysplex. The user can optionally
request that the name of the system where another policy activation is taking place be returned in the
variable specified in the SYSTEM_NAME keyword.

The Activate Service Policy macro is provided in list, execute, and standard form. The list form accepts no
variable parameters and is used only to reserve space for the activate policy parameter list. The standard
form is provided for use with routines which do not require reentrant code. The execute form is provided
for use with the list format for reentrant routines.

IWMPACT

254 z/OS: z/OS MVS Programming: Workload Management Services

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key. The caller must have update authority
to the resource MVSADMIN.WLM.POLICY in the FACILITY class.

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: All parameter areas must reside in current primary.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is not part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values that are described
above. The constant IWMRSNCODE_MASK_CONST, defined in IWMYCON, may be used for this
purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before issuing the IWMPACT macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as a work register by the system
15

Return code

When control returns to the caller, the ARs contain:

IWMPACT

Chapter 12. Workload management services 255

Register
Contents

0-1
Used as work registers by the system

2-13
Unchanged

14-15
Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMPACT macro is as follows:

name
IWMPACT POLICY_NAME=  policy_name

,CHECKHISTORY=CHECKALL

,CHECKHISTORY=IGNORE_CR ,SYSTEM_NAME=  system_name

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMPACT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,CHECKHISTORY=CHECKALL
,CHECKHISTORY=IGNORE_CR

An optional input parameter that applies only if the WLM policy to be activated with this request is the
same policy that was active previously, that is, if this is a request to reactivate a WLM policy. As a
result of the changes in effect with the reactivated policy, due to a changed WLM service definition on
the CDS, WLM might discard historical data for service class periods. Among the criteria that cause
WLM to discard historical data are the following:

• Classification groups are added, changed in content, or removed.

IWMPACT

256 z/OS: z/OS MVS Programming: Workload Management Services

• Classification rules are added, changed, or removed.

CHECKHISTORY changes the criteria that WLM applies to make that decision.
CHECKALL

Leave WLM's behavior unchanged. Historical data is discarded when classification groups or
classification rules are changed. This is the default.

IGNORE_CR
Requests that WLM not check for changes in classification groups or changes in classification rules
when making the decision about whether or not to discard historical data. Use this option if the
only changes to your WLM service definition are in the categories listed above and if keeping the
historical data does not negatively impact your workload.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long

IWMPACT

Chapter 12. Workload management services 257

enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

POLICY_NAME=policy_name
A required input parameter, variable specifying the name of the service policy to be activated. The
specified service policy must exist in the current service definition that is installed on the WLM couple
data set.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SYSTEM_NAME=system_name
An optional output parameter, variable where the name of the system where another policy activation
is taking place will be returned. This variable is only filled in when a return code of 4 and a reason
code of xxxx0415 is returned.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
Reason Code (Hex)

Explanation
X'0Axx0005'

An attempt to reference caller's parameters caused an OC4 abend.

Return codes and reason codes
When the IWMPACT macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 46. Return and Reason Codes for the IWMPACT Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

IWMPACT

258 z/OS: z/OS MVS Programming: Workload Management Services

Table 46. Return and Reason Codes for the IWMPACT Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

4 xxxx0414 Equate Symbol: IwmRsnCodeNullCDS

Meaning: This request could not be completed because no Service definition
has been installed on the WLM CDS.

Action: None required.

4 xxxx0415 Equate Symbol: IwmRsnCodePolicyActInProgress

Meaning: This request could not be completed because another policy
activation request is currently being processed. If specified, the
SYSTEM_NAME parameter will contain the name of the system on which
policy activation is in progress.

Action: None required. If this service is re-invoked at a later time it may be
successful.

4 xxxx0416 Equate Symbol: IwmRsnCodePolicyUndefined

Meaning: The service policy specified could not be found in the service
definition currently installed on the WLM couple data set. The service policy
was not activated.

Action: None required. Verify that the policy was specified correctly.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or the length specified
is incorrect.

Action: Check for possible storage overlay of the parameter list.

IWMPACT

Chapter 12. Workload management services 259

Table 46. Return and Reason Codes for the IWMPACT Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: The caller is in cross memory mode.

Action: Invoke the function in non-cross memory mode.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

C xxxx0C0E Equate Symbol: IwmRsnCodeInsufAccess

Meaning: The caller does not have update authority to the RACF resource
MVSADMIN.WLM.POLICY in the FACILITY class.

Action: Invoke the function when the condition is fulfilled.

C xxxx0C0F Equate Symbol: IwmRsnCodeCDSNotAvail

Meaning: A couple data set for WLM has not been defined or it has been
defined but this system does not have connectivity to the data set.

Action: No action required.

C xxxx0C10 Equate Symbol: IwmRsnCodeCDSTooSmall

Meaning: WLM CDS is too small to process the request.

Action: No action required.

C xxxx0C11 Equate Symbol: IwmRsnCodeOneSystemUnable

Meaning: At least one system in the sysplex was unable to activate the
policy. One or more systems may have been successful in activating the
policy.

Action: No action required.

C xxxx0C13 Equate Symbol: IwmRsnCodePolicyNotAvail

Meaning: The service policy specified could not be verified because the
service definition retrieved from WLM CDS has failed validation. The service
policy was not activated.

Action: No action required.

C xxxx0C1E Equate Symbol: IwmRsncodeHigherVersionLevel

Meaning: The policy cannot be activated on this system because the service
definition in the WLM couple data set is at a higher level than the WLM code
on this system. A system with a lower level version cannot activate this
service policy because it is not capable of handling all the function in the
service definition.

Action: None required. If necessary, reinvoke the service on a higher level
system.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

IWMPQRY — Query active service policy

IWMPQRY

260 z/OS: z/OS MVS Programming: Workload Management Services

The query active service policy routine is given control from the IWMPQRY macro. The query active
service policy macro will complete the parameter list with caller-provided data and generate a stacking,
space switching, program call to the query service.

The purpose of this routine is to return a representation of the active policy which could be used to
explain how the system/sysplex is being managed and could be used in conjunction with current
measurements to evaluate the condition of the system/sysplex. The information returned is not serialized
upon return to the caller, and so may be out-of-date due to a change in policy.

The Query Active Service Policy macro is provided in list, execute, and standard form. The list form
accepts no variable parameters and is used only to reserve space for the query parameter list. The
standard form is provided for use with routines which do not require reentrant code. The execute form is
provided for use with the list format for reentrant routines.

The parameter list must be in the caller's primary address space or be addressable by the dispatchable
unit access list.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR) If in Access Register ASC mode,
specify SYSSTATE ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: All parameter areas must reside in current primary or be addressable
by the dispatchable unit access list.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before issuing the IWMPQRY macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

IWMPQRY

Chapter 12. Workload management services 261

Register
Contents

0
Reason code if GR15 return code is non-zero

1
Used as work registers by the system

2-13
Unchanged

14
Used as a work register by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMPQRY macro is as follows:

name
IWMPQRY ANSAREA=  ansarea ,ANSLEN=  anslen

,QUERYLEN=  querylen

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

IWMPQRY

262 z/OS: z/OS MVS Programming: Workload Management Services

name
An optional symbol, starting in column 1, that is the name on the IWMPQRY macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

ANSAREA=ansarea
A required output parameter, variable specifying an area to contain the data being returned by
IWMPQRY. The answer area is defined by the IWMSVPOL macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,ANSLEN=anslen
A required input parameter, variable which contains the length of the area provided to contain the
data being returned by IWMPQRY.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

IWMPQRY

Chapter 12. Workload management services 263

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,QUERYLEN=querylen
A required output parameter, variable which contains the number of bytes needed to contain the
policy information.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
Reason Code (Hex)

Explanation
X'0Axx0005'

An attempt to reference caller's parameters caused an OC4 abend.

Return codes and reason codes
When the IWMPQRY macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 47. Return and Reason Codes for the IWMPQRY Macro

Return Code Reason code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

IWMPQRY

264 z/OS: z/OS MVS Programming: Workload Management Services

Table 47. Return and Reason Codes for the IWMPQRY Macro (continued)

Return Code Reason code Equate Symbol, Meaning, and Action

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive all the available
information.

Action: None required. If necessary, reinvoke the service with an output area
of sufficient size to receive all information.

4 xxxx0423 Equate Symbol: IwmRsnCodeDefaultPolicy

Meaning: The default policy was returned.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: The caller has passed an invalid ALET.

Action: Check for possible storage overlay of the parameter list or variable.

IWMQCXIT — Queue manager connect exit
IWMQCXIT will invoke the Queue Manager Connect exit specified. This exit is responsible for taking the
action indicated for the associated Queue Manager. The return/reason codes for IWMQCXIT are those set
by the exit invoked.

The list form of IWMQCXIT is intended for use by the exit routine to map the input parameters. The
execute and standard form of IWMQCXIT are intended for use only by the operating system.

The exit environment is described in the environment description below. The parameter list is in pageable
storage addressable in the current address space, but is not guaranteed to be in the key of the exit as it is
not expected to be changed by the exit. Upon entry to the exit, the register contents are as follows:

• Register 0 = not defined
• Register 1 contains the address of a parameter list as formatted by the list form of this macro,
IWMQCXIT MF=(L).

• Registers 2-13 = not defined
• Register 14 = return address
• Register 15 = entry point address

Upon entry to the exit, the access register contents are undefined.

IWMQCXIT

Chapter 12. Workload management services 265

Upon return from the exit, the register contents are as follows:

• Register 0 = Reason code if GR15 return code is non-zero
• Registers 1-14 = not defined (need not be restored to value on entry)
• Register 15 = Return code

Upon return from the exit, the access register contents are unchanged.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state key 0.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
The list form of the macro is intended for use by products supplying a Queue Manager Connect exit.

The execute form of the macro is intended for use by MVS. The assembler execute form only initializes the
parameter list and calls the exit routine, and has the following restrictions:

• the invoker must save registers required before invoking the macro
• the invoker must restore registers required immediately after invoking the macro, without depending on

the exit to preserve any registers.

Restrictions
• The exit routine may not invoke functions or suspend execution which prevents return to the caller for a

protracted timeframe. This includes the use of system services which either explicitly or implicitly give
control back to the system. In this context, protracted would include durations of one second or longer.
When the need for such activities is required, the exit should use asynchronous techniques.

Input register information
Before issuing the IWMQCXIT macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system

IWMQCXIT

266 z/OS: z/OS MVS Programming: Workload Management Services

2-13
Unpredictable in assembler form, unchanged in PL/X form

14
Used as work register by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None

IWMQCXIT

Chapter 12. Workload management services 267

Syntax
main diagram

name
b IWMQCXIT b QMGR_EXIT@=  qmgr_exit@

,ACTION=QDEL

,ACTION=NULL

,ETOKEN=  etoken ,USERDATA=  userdata

,APPLENV=  applenv
,SECUSER=NO

,SECUSER=YES ,USERID=  userid

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMQCXIT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ACTION=QDEL
,ACTION=NULL

A required parameter, which indicates the type of action requested. The exit should make an explicit
check for the action indicated to anticipate the introduction of new values in later releases.
,ACTION=QDEL

indicates that exit is being called for the deletion of a previously queued work element. The exit
will only be called once per queued work element. If the exit should end abnormally, the system
will not invoke the exit again for the same queued work element. In the event of an abnormal
termination of the exit routine, the system may chose to call the exit for any remaining queued
work elements, or may chose to discontinue use of the exit upon some threshold number of
errors.

,ACTION=NULL
indicates that no exit is to be called. The exit routine need not check for this action.

,APPLENV=applenv
A required input parameter, which contains the application environment name associated with the
queued work request or blanks if not available.

IWMQCXIT

268 z/OS: z/OS MVS Programming: Workload Management Services

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,ETOKEN=etoken
A required input parameter, which contains the Enclave token associated with the work request at the
time the work request was queued or binary zeros when the system knows the Enclave no longer
exists or the system no longer knows which Enclave was associated with the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

IWMQCXIT

Chapter 12. Workload management services 269

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

QMGR_EXIT@=qmgr_exit@
A required input parameter that contains the address of the Queue Manager Connect Exit to be
invoked.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SECUSER=NO
,SECUSER=YES

An optional parameter, which specifies whether the security environment of a user was associated
with the queued work request. The default is SECUSER=NO.
,SECUSER=NO

No security environment was to be established.
,SECUSER=YES

The specified userid was to be used to establish a security environment.
,USERDATA=userdata

A required input parameter, which contains data passed to Queue Insert. The format is undefined to
MVS.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,USERID=userid
When SECUSER=YES is specified, a required input parameter, which contains the requester's userid.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMQCXIT macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code.

IWMQCXIT

270 z/OS: z/OS MVS Programming: Workload Management Services

Table 48. Return and Reason Codes for the IWMQCXIT Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

Example
To call a Queue Manager connect exit:

 IWMQCXIT X
 QMGR_EXIT@=CONEXIT@, X
 ACTION=QDEL, X
 ETOKEN=ENCTOKEN, X
 USERDATA=USERDATA,APPLENV=APPLENV,SECUSER=NO, X
 RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
CONEXIT@ DS AL4 Contains the address of the
* Queue Manager Connect Exit
* to be invoked
ENCTOKEN DS CL8 Contains the Enclave token
* associated with the work
* request as returned by IWMECREA
USERDATA DS CL16 Contains data maintained by the
* user
APPLENV DS CL32 Contains the application
* environment name
*
RC DS F Return code
RSN DS F Reason code

IWMRCOLL — Collect workload activity data

With the IWMRCOLL macro, a performance monitor can get the following workload activity information:

• Resource consumption information
• Response time and distribution information
• General delay information
• Subsystem work manager delay state information

For a detailed description, refer to Chapter 9, “Using the workload reporting services,” on page 93.

To help the caller keep track of changes in workload management, this service returns a token, ANSTOKN.
ANSTOKN is a required input on all subsequent calls to IWMRCOLL. When a change occurs in workload
management, for example, when a new policy is activated, IWMRCOLL returns a new token value. The
caller’s code should check the reason codes to see if the ANSTOKN has changed since the last call to
IWMRCOLL. If the token has changed, the performance monitor should reset its reporting interval. If the
token has not changed, the performance monitor can continue with its existing reporting interval.

There are also some ENF event codes to keep track of changes in workload management. For information
about the ENF codes, see z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG.

The caller must provide a storage area in the ANSAREA=ansarea and the length of that area in the
ANSLEN=anslen for IWMRCOLL to place the workload activity information. This area may reside in either
address space related storage or dataspace storage. IWMRCOLL returns the information, which is mapped
by IWMWRCAA.

IWMRCOLL

Chapter 12. Workload management services 271

You must also specify the MINLEN and MAXLEN parameters. IWMRCOLL fills in the minimum and
maximum amount of storage required for the answer area.

The caller should issue the IWMPQRY macro for active service policy information to map the workload
activity information.

If the caller does not provide enough storage to contain all of the workload activity data, no data is
returned. IWMRCOLL returns the minimum length of the storage required in the ANSLEN field, and issues
the appropriate return and reason code.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register. If in access register ASC mode, specify
SYSSTATE ASCENV = AR before invoking IWMRCOLL.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space.

The caller of IWMRCOLL must provide storage for an answer area
mapped by IWMWRCAA. This answer area may reside in the caller’s
primary address space, or in a dataspace accessible via the current
unit of work’s dispatchable unit access list (DUal).

Programming requirements
You must include the CVT and the IWMYCON mapping macros in the program.

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before issuing the IWMRCOLL macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, using it as a base register, or using it to
provide the ALET of the storage area.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if the GP 15 return code is non-zero.
1

Used as work registers by the system.

IWMRCOLL

272 z/OS: z/OS MVS Programming: Workload Management Services

2 - 13
Unchanged

14
Used as a work register by the system.

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0 - 1

Used as work registers by the system.
2 - 13

Unchanged
14 - 15

Used as work registers by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMRCOLL macro is as follows:
main diagram

name
IWMRCOLL

ICS=NO
parameters-1

ICS=YES,ICSLEN=  icslen ,ICSAREA=  icsarea ,ICSQLEN=  icsqlen ,

,ANSTOKN=  anstokn

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

parameters-1
,ANSAREA=  ansarea ,ANSLEN=  anslen ,MINLEN=  minlen ,MAXLEN=  maxlen

IWMRCOLL

Chapter 12. Workload management services 273

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMRCOLL macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ANSAREA=ansarea
A required output parameter that contains the address of a storage area to hold the information
returned by IWMRCOLL. The area is mapped by the IWMWRCAA mapping macro.

To code: Specify the RS-type address, or address in register (2)-(12) of a character field.

,ANSLEN=anslen
A required input parameter that contains the length of the storage area (answer area) you are
providing on ANSAREA.

To code: Specify the RS-type address, or address in register (2)-(12) of a fullword field.

,ANSTOKN=anstoken,
A required input/output parameter that contains a token value. On your first call to IWMRCOLL, you
specify ANSTOKEN as an output parameter. IWMRCOLL provides a token value that is required for
subsequent calls to IWMRCOLL.

To code: Specify the RS-type address, or address in register (2)-(12) of an 8-character field.

ICS=NO
ICS=YES

An optional parameter that specifies whether IWMRCOLL should return ICS information, or workload
activity information. The default is ICS=NO.
ICS=NO

Specifies that IWMRCOLL should return workload activity information.
ICS=YES

Specifies that IWMRCOLL should return ICS information. It is valid for systems prior to z/OS R3
only.

,ICSAREA=icsarea
When ICS=YES is specified, a required output parameter that is valid for systems prior to z/OS R3
only.

To code: Specify the RS-type address, or address in register (2)-(12) of a character field.

,ICSLEN=icslen
When ICS=YES is specified, a required input parameter that is valid for systems prior to z/OS R3 only.

To code: Specify the RS-type address, or address in register (2)-(12) of a fullword field.

,ICSQLEN=icsqlen
When ICS=YES is specified, a required output parameter that is valid for systems prior to z/OS R3
only.

To code: Specify the RS-type address, or address in register (2)-(12) of a fullword field.

,MAXLEN=maxlen
A required output parameter that contains the maximum length of the storage area required by
IWMRCOLL to contain all the performance data for transactions that might run while the ANSTOKN is
valid.

To code: Specify the RS-type address, or address in register (2)-(12) of a fullword field.

IWMRCOLL

274 z/OS: z/OS MVS Programming: Workload Management Services

,MF=S
,MF=(L,list addr)
,MF=(L,list addr, attr)
,MF=(L,list addr0D
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1 to 60 character input string that you use to force boundary alignment of the
parameter list. Use a value of X'0F' to force the parameter list to a word boundary, or X'0D' to force
the parameter list to a doubleword boundary. If you do not code ,attr, the system provides a value
of X'0D'.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,MINLEN=minlen
A required output parameter that contains the minimum length of the storage area required by
IWMRCOLL to contain all existing performance data.

To code: Specify the RS-type address, or address in register (2)-(12) of a fullword field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:
IMPLIED_VERSION

Is the lowest version that allows all parameters specified on the request to be processed. If you
omit the PLISTVER parameter, IMPLIED_VERSION is the default.

MAX
Specify PLISTVER=MAX if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

IWMRCOLL

Chapter 12. Workload management services 275

0
Specify PLISTVER=0 to use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (with or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12), or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (with or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

ABEND codes
None.

Return codes and reason codes
When the IWMRCOLL macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 49. Return and Reason Codes for the IWMRCOLL Macro

Return Code Return Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion. All requested data returned.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive all the available
information. The correct answer area length is returned in the MINLEN and
MAXLEN fields.

Action: None required. If necessary, reinvoke the service with an output area
of sufficient size to receive all information.

IWMRCOLL

276 z/OS: z/OS MVS Programming: Workload Management Services

Table 49. Return and Reason Codes for the IWMRCOLL Macro (continued)

Return Code Return Code Equate Symbol, Meaning, and Action

4 xxxx040F Equate Symbol: IwmRsnCodeStateInvDataRet

Meaning: The token value specified on the ANSTOKN keyword is associated
with a WLM state that is no longer valid. The new system state is represented
by the token returned in the ANSTOKN field. The answer area provided is
large enough to contain the available data. However, the new answer area
lengths are returned in the MINLEN and MAXLEN fields.

Action: Reinvoke the service with the token passed with the ANSTOKN
keyword.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: The caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has an EUT FRR set.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: The caller specified an invalid alet for the storage pointed to by the
ANSAREA keyword.

Action: Check for possible storage overlay of the parameter list or variable.

8 xxxx0832 Equate Symbol: IwmRsnCodeStateInvNoDatRet

Meaning: The token value specified on the ANSTOKN keyword is associated
with a WLM state that is no longer valid. A new token has been returned. The
storage provided is not large enough to contain all of the data available
because of the state change. No data was returned. The length of the new
answer area required is returned in the MINLEN and MAXLEN fields.

Action: Reinvoke the service with an output area of sufficient size to receive
all information and the token passed with the ANSTOKN keyword.

8 xxxx0833 Equate Symbol: IwmRsnCodeNotInCompatMode

Meaning: IWMRCOLL was invoked with a parameter list specifying ICS=YES.
WLM no longer supports compatibility mode, and therefore no longer returns
ICS information.

Action: Reinvoke IWMRCOLL with ICS=NO specified.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

IWMRCOLL

Chapter 12. Workload management services 277

Table 49. Return and Reason Codes for the IWMRCOLL Macro (continued)

Return Code Return Code Equate Symbol, Meaning, and Action

C xxxx0C0A Equate Symbol: IwmRsnCodeSuspended

Meaning: Data collection is suspended as a result of a component error. No
data can be returned for this IWMRCOLL invocation, future invocations may
be successful.

Action: Reinvoke this service.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error

Action: No action required. The function may work successfully if invoked
again.

Example
For workload activity information from a system running in goal mode, specify:

IWMRCOLL ICS=NO,ANSAREA=(R6),ANSLEN=(R8),
 MINLEN=QMINLEN,MAXLEN=QMAXLEN,
 RSNCODE=RSN,MF=(E,MFRCOLL)

IWMRESET — Change a job

The IWMRESET macro allows the caller to perform the same functions as the RESET system command. If
the system is running in workload management goal mode, the caller can:

• Change the service class of work currently in execution, with the SRVCLASS keyword. Resetting to a new
service class also resumes quiesced work.

• Quiesce work currently in execution, with the QUIESCE keyword.
• Reclassify work currently in execution according to the service policy in effect, with the RESUME

keyword. The RESUME keyword also resumes quiesced work.

The system does not allow every address space to be reset. The IWMRESET service has the same
restrictions as the RESET system command. Refer to z/OS MVS System Commands for more information.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

IWMRESET

278 z/OS: z/OS MVS Programming: Workload Management Services

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before issuing the IWMRESET macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

IWMRESET

Chapter 12. Workload management services 279

Syntax

The syntax of the IWMRESET macro is as follows:

name
IWMRESET JOBNAME=  jobname

.,

ASID=  asid

,FUNCTION=RESET

,SRVCLASS=  srvclass

,FUNCTION=QUIESCE

,FUNCTION=RESUME

,USERID=  userid

,PRODUCT=  product

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

,NOCHECK

)

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMRESET macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

ASID=asid
A parameter which contains the address space identifier (ASID) of the job you want to change.

To code: Specify the RS-type address, or address in register (2)-(12), of a halfword field.

,FUNCTION=RESET
,FUNCTION=QUIESCE
,FUNCTION=RESUME

An optional parameter, which indicates the function to perform against the job. The default is
FUNCTION=RESET.
,FUNCTION=RESET

Requests that the job's service class or performance group be changed.
,FUNCTION=QUIESCE

Requests that the job be quiesced. If the job is non-swappable, it is given the lowest possible
performance characteristics.

,FUNCTION=RESUME
Requests that the job be reclassified according to the service policy in effect. This undoes a prior
request to reset the job to a particular service class, or to quiesce the job.

IWMRESET

280 z/OS: z/OS MVS Programming: Workload Management Services

JOBNAME=jobname
A required input parameter which contains the jobname of the job you want to change. If there is
more than one executing job with this jobname, you must specify the ASID parameter to identify the
specific job.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines that need to
provide different options according to user-provided input. Use the list form to define a storage area;
use the modify form to set the appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IWMRESET in the following order:

• Use IWMRESET ...MF=(M,list-addr,COMPLETE) specifying appropriate parameters, including all
required ones.

• Use IWMRESET ...MF=(M,list-addr,NOCHECK), specifying the parameters that you want to change.
• Use IWMRESET ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E, and MF=M, this can be an
RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to supply defaults for
omitted optional parameters.

IWMRESET

Chapter 12. Workload management services 281

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,PRODUCT=product
A required input parameter, which contains the product name that is requesting the job be changed.
The product name is included in the SMF 90 subtype 30 record created by IWMRESET.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SRVCLASS=srvclass

When FUNCTION=RESET is specified, a required input parameter which is the service class to be
assigned to the job. Resetting to a new service class also resumes quiesced work.

When you reset a server to a new service class, the goals associated with that service class are
ignored. However the resource group associated with the new service class is honored. The one
exception where the goal for a server is honored is when the transactions it is serving have been
assigned a discretionary goal.

To code: Specify the RS-type address of an 8-character field.

,USERID=userid
A required input parameter, which contains the ID of the user who is requesting the job be changed.
The user ID is included in the SMF 90 subtype 30 record created by IWMRESET. If there is no user ID
available, the caller should pass blanks.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

IWMRESET

282 z/OS: z/OS MVS Programming: Workload Management Services

Return codes and reason codes
When the IWMRESET macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 50. Return and Reason Codes for the IWMRESET Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0408 Equate Symbol: IwmRsnCodeWorkNotFound

Meaning: A job matching the input job name or ASID was not found.

Action: The caller should report the error appropriately.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSRBMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-it addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

IWMRESET

Chapter 12. Workload management services 283

Table 50. Return and Reason Codes for the IWMRESET Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported by the MVS Release
on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: The caller is in cross-memory mode.

Action: Invoke the function in non-cross memory mode.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C28 Equate Symbol: IwmRsnCodeBadServiceClass

Meaning: The input service class name is not defined in the active workload
manager policy.

Action: Record or report the error if appropriate.

C xxxx0C2D Equate Symbol: IwmRsnCodeBadPerformanceGroup

Meaning: Reserved.

C xxxx0C2E Equate Symbol: IwmRsnCodeWrongMode

Meaning: The caller tried to perform a goal-mode function in compatibility
mode, or vice versa.

Action: Record or report the error if appropriate.

C xxxx0C2F Equate Symbol: IwmRsnCodeSystemSpace

Meaning: The input address space is either a system component address
space or a privileged address space. It cannot be reset.

With APAR OA12625 installed, the restriction for privileged address spaces
has been removed, meaning that privileged address spaces can be reset. The
system component address space still cannot be reset.

Action: Record or report the error if appropriate.

C xxxx0C30 Equate Symbol: IwmRsnCodeDuplicateJobs

Meaning: There is more than one job active with the same jobname.

Action: Specify the ASID parameter to identify the specific job.

C xxxx0C31 Equate Symbol: IwmRsnCodeWrongASID

Meaning: The active job in the specified address space has a different
jobname than the one passed by the caller.

Action: Record or report the error if appropriate.

C xxxx0C32 Equate Symbol: IwmRsnCodeNotEligibleForSrvClass

Meaning: The active job in the specified address space is not eligible for reset
into the specified system service class. Only address spaces created with the
ASCRE HIPRI attribute are eligible for reset into the SYSTEM service class.

Action: Record or report the error if appropriate.

IWMRESET

284 z/OS: z/OS MVS Programming: Workload Management Services

Table 50. Return and Reason Codes for the IWMRESET Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To change the service class of the job executing in the ASID at location JOBASID, specify:

 IWMRESET ASID=JOBASID,SRVCLASS=SCNAME,USERID=USR,
 PRODUCT=PROD
*
* Storage areas
*
JOBASID DS H Contains the address space id
* of the job
SCNAME DS CL8 Contains the service class name
* to assign to the job
USR DS CL8 Contains the id of the user who
* is requesting the change
PROD DS CL8 Contains the product name of
* the code invoking IWMRESET

IWMRQRY — Collect address space delay information

IWMRQRY is the interface reporting products should use to obtain address space related general
execution delays. Enclave related information may optionally be requested.

The macro will complete the parameter list with caller specified data and invoke a stacking, space
switching PC routine in the WLM address space. Address space related data collected will be aggregated
on an address space basis, while enclave related data (if requested) will be aggregated by enclave.

If a user does not know the size of the answer area required by the service, he should code issue
IWMRQRY with ANSLEN set to zero. The length of the answer area will be placed in QRYLEN.

The IWMRQRY macro is provided in list, execute, and standard form. The list form accepts no variable
parameters and is used only to reserve space for the parameter list. The standard form is provided for use
with routines which do not require reentrant code. The execute form is provided for use with the list
format for reentrant routines.

The parameter list must be in the caller's primary address space, or in a dataspace accessible by the
current unit of work's dispatchable unit access list (DUal).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0 - 7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR) Any P,S,H.

If in Access Register ASC mode, specify SYSSTATE ASCENV=AR
before invoking this macro.

IWMRQRY

Chapter 12. Workload management services 285

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: The caller of IWMRQRY must provide storage for an answer area
mapped by IWMWRQAA. This answer area may reside in the caller's
primary address space, or in a dataspace accessible via the current
unit of work's dispatchable unit access list (DUal).

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before issuing the IWMRQRY macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2 - 13

Unchanged
14

Used as a work register by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0 - 1

Used as work registers by the system
2 - 13

Unchanged
14 - 15

Used as work registers by the system

IWMRQRY

286 z/OS: z/OS MVS Programming: Workload Management Services

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMRQRY macro is as follows:

name
IWMRQRY INFO=ALL

INFO=ONE ,ASID=  asid

,ENCLAVES=NONE

,ENCLAVES=ALL

,ENCLAVES=ONE ,ETOKEN=  etoken

,ANSAREA=  ansarea ,ANSLEN=  anslen

,QUERYLEN=  querylen

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMRQRY macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ANSAREA=ansarea
A required output parameter that contains the address of a storage area to hold the information
returned by IWMRQRY. The answer area is defined by the IWMWRQAA macro. If the length of the
output area is insufficient, no data is returned.

To code: Specify the RS-type address, or address in register (2) - (12), of a character field.

,ANSLEN=anslen
A required input parameter that contains the length of the answer area.

To code: Specify the RS-type address, or address in register (2) - (12), of a fullword field.

,ASID=asid
When INFO=ONE is specified, a required input parameter that contains the ASID of the address space
to be queried.

To code: Specify the RS-type address, or address in register (2) - (12), of a fullword field.

IWMRQRY

Chapter 12. Workload management services 287

,ENCLAVES=NONE
,ENCLAVES=ALL
,ENCLAVES=ONE

An optional parameter that indicates whether enclave information is requested. The default is
ENCLAVES=NONE.
,ENCLAVES=NONE

Indicates that no enclave information is requested.
,ENCLAVES=ALL

Indicates that information for all enclaves should be returned.
,ENCLAVES=ONE

Indicates that enclave information is requested for a particular enclave.
,ETOKEN=etoken

When ENCLAVES=ONE is specified, a required input parameter, which contains the enclave token of
the enclave to be queried.

To code: Specify the RS-type address, or address in register (2) - (12), of an 8-character field.

INFO=ALL
INFO=ONE

A required parameter that indicates what information the query service is to return
INFO=ALL

Indicates that information for all address spaces should be returned. The RQAE entries in the
IWMWRQAA area are returned as an array where each entry's index corresponds to the address
space's ASID.

INFO=ONE
Indicates that address space information is requested for a particular ASID.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

IWMRQRY

288 z/OS: z/OS MVS Programming: Workload Management Services

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, if you use only the following parameters:

ANSAREA ASID INFO

ANSLEN ENCLAVES QUERYLEN

• 1, if you use the following parameter and those of version 0:

ETOKEN

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0 or 1

,QUERYLEN=querylen
A required output parameter, which contains the length of the storage area required by the IWMRQRY
service. The length of the area may change between invocations.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWMRQRY macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.

IWMRQRY

Chapter 12. Workload management services 289

• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason
code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 51. Return and Reason Codes for the IWMRQRY Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive all the available
information.

Action: None required. If necessary, reinvoke the service with an output area
of sufficient size to receive all information.

4 xxxx042C Equate Symbol: IwmRsnCodeEtokenNoMatch

Meaning: No enclave information matching the input enclave token was
found. Enclave related information is not returned.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0812 Equate Symbol: IwmRsnCodeBadAscb

Meaning: The ASID value specified on the ASID keyword is invalid.

Action: Check for possible storage overlay.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or version length field
is not valid.

Action: Check for possible storage overlay of the parameter list.

IWMRQRY

290 z/OS: z/OS MVS Programming: Workload Management Services

Table 51. Return and Reason Codes for the IWMRQRY Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: Caller has passed an invalid ALET.

Action: Check for possible storage overlay of the parameter list or variable.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

C xxxx0C0A Equate Symbol: IwmRsnCodeSuspended

Meaning: Data sampling is suspended as a result of a component error. No
data can be returned for this IWMRQRY invocation.

Action: Reinvoke the function as it may be sucessful.

C xxxx0C0B Equate Symbol: IwmRsnCodeStateChanged

Meaning: A state change (a policy activation) occurred while the data for the
last sampling interval was being collected. No data is returned for this
invocation of IWMRQRY.

Action: The current sampling interval should be bypassed, future invocations
of IWMRQRY for subsequent sampling intervals should begin returning data
again.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

IWMSCORF — Set correlator flags
This service allows to set or clear certain correlator flags in a provided EWLM correlator. These flags are
contained in byte 3 of the architected Application Response Measurement (ARM) correlator format.

Environment
The requirements for the caller are:

Minimum authorization: Problem state or supervisor state.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. No restriction.

Control parameters: Control parameters must be in the primary address space.

IWMSCORF

Chapter 12. Workload management services 291

Programming requirements
None.

Restrictions
1. The caller is responsible for error recovery.
2. The caller must serialize to prevent any correlator from being accessed concurrently.

Input register information
Before issuing the IWMSCORF macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0-1

Used as work register by the system
2-13

Unchanged
14-15

Used as work register by the system

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

IWMSCORF

292 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
main diagram

name
b IWMSCORF b EWLM_CORR=  ewlm_corr

,SET_ASYNC_FLAG=NO_SET_ASYNC

,SET_ASYNC_FLAG=OFF

,SET_ASYNC_FLAG=ON

,SET_INDEP_FLAG=NO_SET_INDEP

,SET_INDEP_FLAG=OFF

,SET_INDEP_FLAG=ON

,RETCODE=  retcode

,RSNCODE=  rsncode

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSCORF macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

EWLM_CORR=ewlm_corr
A required input/output parameter, which contains an EWLM (ARM) correlator. If the correlator is
invalid (architected length in the first two bytes is less than 4 or greater than 512) a call to this macro
acts as a no-operation and no change to the EWLM_CORR field is made.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SET_ASYNC_FLAG=NO_SET_ASYNC
,SET_ASYNC_FLAG=OFF
,SET_ASYNC_FLAG=ON

An optional parameter, which requests to update the asynchronous flow flag. The default is
SET_ASYNC_FLAG=NO_SET_ASYNC.
,SET_ASYNC_FLAG=NO_SET_ASYNC

indicates that parameter SET_ASYNC_FLAG has not been specified and the asynchronous flow
flag in the EWLM correlator will not be changed.

IWMSCORF

Chapter 12. Workload management services 293

,SET_ASYNC_FLAG=OFF

requests to clear the asynchronous flow flag. The independent flag is also cleared, since the
independent flag may only be ON, if the asynchronous flag is ON.

,SET_ASYNC_FLAG=ON

requests to set the asynchronous flow flag to ON.

,SET_INDEP_FLAG=NO_SET_INDEP
,SET_INDEP_FLAG=OFF
,SET_INDEP_FLAG=ON

An optional parameter, which requests to update the independent flag. The default is
SET_INDEP_FLAG=NO_SET_INDEP.
,SET_INDEP_FLAG=NO_SET_INDEP

indicates that parameter SET_INDEP_FLAG has not been specified and the independent flag in the
EWLM correlator will not be changed.

,SET_INDEP_FLAG=OFF

requests to clear the independent flag.

,SET_INDEP_FLAG=ON

requests to set the independent flag to ON. The independent flag should be set only if the
asynchronous flag is already set or will be set by this request.

ABEND codes
None.

Return codes and reason codes
When the IWMSCORF macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

Examples

IWMSCXIT — Server manager connect exit
IWMSCXIT will invoke the Server Manager Connect exit specified. This exit is responsible for taking the
action indicated on behalf of the current connected server address space. The return and reason codes for
IWMSCXIT are set by the exit that was invoked.

The list form of IWMSCXIT is intended for use by the exit routine to map the input parameters. The
execute and standard form of IWMSCXIT are intended for use only by the operating system.

Note that it may be possible for the exit to be called before the caller has received control back from
IWMCONN. The exit or any program it drives (synchronously or asynchronously) must synchronize with
the program issuing IWMCONN to ensure that IWMCONN has returned a connect token prior to issuing
IWMDISC (disconnect) or any other services that need the connect token.

The exit environment is described in the environment description below. The parameter list is in pageable
storage addressable in the current address space, but is not guaranteed to be in the key of the exit as it is
not expected to be changed by the exit. Upon entry to the exit, the register contents are as follows:

• Register 0 = not defined

IWMSCXIT

294 z/OS: z/OS MVS Programming: Workload Management Services

• Register 1 will contain the address of a parameter list as formatted by the list form of this macro,
IWMSCXIT MF=(L).

• Registers 2-13 = not defined
• Register 14 = return address
• Register 15 = entry point address

Upon entry to the exit, the access register contents are undefined.

Upon return from the exit, the register contents are as follows:

• Register 0 = Reason code if GR15 return code is non-zero
• Registers 1-14 = not defined (need not be restored to value on entry)
• Register 15 = Return code

Upon return from the exit, the access register contents are unchanged.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state key 0.

Dispatchable unit mode: SRB

Cross memory mode: PASN=HASN=SASN The current home address space must be the
same as at time of Connect (IWMCONN).

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRRs may be established.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
The list form of the macro is intended for use by products supplying a Server Manager Connect exit.

The execute form of the macro is intended for use by MVS. The assembler execute form only initializes the
parameter list and calls the exit routine, and has the following restrictions:

• The invoker must save registers required before invoking the macro.
• The invoker must restore registers required immediately after invoking the macro, without depending on

the exit to preserve any registers.

Restrictions
None.

Input register information
Before issuing the IWMSCXIT macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

IWMSCXIT

Chapter 12. Workload management services 295

Register
Contents

0
Reason code if GR15 return code is non-zero

1
Used as work register by the system

2-13
Unpredictable in assembler form, unchanged in PL/X form

14
Used as work register by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

IWMSCXIT

296 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
main diagram

name
b IWMSCXIT b CONNTKN=  conntkn

,SRV_MGR_EXIT@=  srv_mgr_exit@ ,ACTION=QUIESCE

,ACTION=RESUME

,ACTION=NULL

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSCXIT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ACTION=QUIESCE
,ACTION=RESUME
,ACTION=NULL

A required parameter, which indicates the type of action requested. The exit should explicitly check to
see which action value was specified, as new values may be introduced in later releases.
,ACTION=QUIESCE

Indicates that the exit is to cause the server space to perform an orderly shutdown and terminate.
Disconnect should be invoked during the shutdown phase.

,ACTION=RESUME
Indicates that the exit may ignore a previous request to perform an orderly shutdown and
terminate. The server space is now eligible to be chosen via invocation of IWMSRFSV and may
resume normal operation.

,ACTION=NULL
Indicates that no exit is to be called. The exit need not check for this action.

CONNTKN=conntkn
A required input parameter, which contains the WLM Connect token which was returned for the server
by Connect (IWMCONN).

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

IWMSCXIT

Chapter 12. Workload management services 297

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

IWMSCXIT

298 z/OS: z/OS MVS Programming: Workload Management Services

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SRV_MGR_EXIT@=srv_mgr_exit@
A required input parameter that contains the address of the Server Manager Connect Exit to be
invoked.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

ABEND codes
None.

Return codes and reason codes
When the IWMSCXIT macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code.

Table 52. Return and Reason Codes for the IWMSCXIT Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

Example
To call a Server Manager Connect exit:

 IWMSCXIT X
 SRV_MGR_EXIT@ =CONEXIT@, X
 CONNTKN=OWNERCTKN, X
 ACTION=QUIESCE, X
 RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
CONEXIT@ DS AL4 Contains the address of the
* Connect Exit to be invoked
OWNERCTKN DS CL4 Contains the connect token for
* the server space
*
RC DS F Return code
RSN DS F Reason code

IWMSCXIT

Chapter 12. Workload management services 299

IWMSEDES — Scheduling environments determine execution
service

The IWMSEDES service determines if a scheduling environment is available on a specified system. A
scheduling environment is a list of resource names and their required states. If all of the resources are in
the required state, the scheduling environment is available. If any of the resources is not in the required
state, the scheduling environment is not available.

The caller can use the IWMSEDES service to perform certain work only when a particular scheduling
environment is available.

If the scheduling environment is available, the caller receives return code IwmRetCodeOK. If the
scheduling environment is not available, the caller receives return code IwmRetCodeWarning and
reason code IwmRsnCodeSCHENVNotAvailable.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

Input register information
Before issuing the IWMSEDES macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

IWMSEDES

300 z/OS: z/OS MVS Programming: Workload Management Services

Register
Contents

0
Reason code if GR15 return code is non-zero

1
Used as work registers by the system

2-13
Unchanged

14
Used as work registers by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMSEDES macro is as follows:

name
IWMSEDES SCHENV=  schenv ,SYSTEM_NAME=  system_name

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

IWMSEDES

Chapter 12. Workload management services 301

name
An optional symbol, starting in column 1, that is the name on the IWMSEDES macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

IWMSEDES

302 z/OS: z/OS MVS Programming: Workload Management Services

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SCHENV=schenv
A required input parameter, which contains the scheduling environment name to be checked.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,SYSTEM_NAME=system_name
A required input parameter, which contains the system name to be checked.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMSEDES macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 53. Return and Reason Codes for the IWMSEDES Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — IwmRetCodeOk: Successful completion.

4 — IwmRetCodeWarning: Successful completion, unusual conditions noted.

4 xxxx0425 Equate Symbol: IwmRsnCodeNoSCHENV:

Meaning: The system does not support scheduling environments services.
This return code is set for releases prior to OS/390 Release 4.

Action: Avoid requesting this function on releases prior to OS/390 Release 4.

4 xxxx0426 Equate Symbol: IwmRsnCodeSCHENVNotFound:

Meaning: The scheduling environment specified by SCHENV does not exist.

Action: Check the specification of the SCHENV parameter. If the SCHENV
parameter is correct, check whether the scheduling environment is defined in
the active service policy.

4 xxxx0427 Equate Symbol: IwmRsnCodeSCHENVNotAvailable:

Meaning: The scheduling environment is not available on the specified
system.

Action: Do not process work that depends upon the scheduling environment
being available on the specified system.

IWMSEDES

Chapter 12. Workload management services 303

Table 53. Return and Reason Codes for the IWMSEDES Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

4 xxxx042A Equate Symbol: IwmRsnCodeSCHENVNoSystem:

Meaning: The scheduling environment exists. However, the specified system
does not exist.

Action: Do not process work that depends upon the scheduling environment
being available on the specified system.

8 — IwmRetCodeInvocError: Invalid invocation environment or parameters

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode:

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller in 24-bit addressing mode.

Action: Request this function in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Request this function in primary mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Request this function with reserved fields zero.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list or version length field is not valid.

Action: Request this function with corrent version number.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To determine if the scheduling environment at location ENVNAME is available on the system name at
location SYSNAME specify:

 IWMSEDES SCHENV=ENVNAME,
 SYSTEM_NAME=SYSNAME,
 RETCODE=RETCODE,
 RSNCODE=RSNCODE
*
* Storage areas
*
ENVNAME DS CL16 Scheduling environment name
SYSNAME DS CL8 Name of system

IWMSEDES

304 z/OS: z/OS MVS Programming: Workload Management Services

RETCODE DS 1F Return code
RSNCODE DS 1F Reason code

IWMSEQRY — Scheduling environments query service

IWMSEQRY returns information about the scheduling environments and resources that are defined in the
active service policy. The information includes the current state of each scheduling environment and
resource on the current system and on other systems in the sysplex.

The information is obtained without serialization. Data may not be available for all systems in the sysplex.

The information is returned in a work area that you specify. The work area must be located in the caller's
primary address space. The format of the work area is mapped by the IWMSET macro. IWMSEQRY checks
if the specified work area length (ANSLEN) is large enough to receive the output. If so, IWMSEQRY returns
the information in the work area and returns the actual length of the information in the QUERYLEN
parameter. If the storage provided is not large enough, the caller receives reason code 040A, and
IWMSEQRY returns the required amount of storage in the QUERYLEN parameter.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before issuing the IWMSEQRY macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

IWMSEQRY

Chapter 12. Workload management services 305

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax

The syntax of the IWMSEQRY macro is as follows:

name
IWMSEQRY ANSLEN=  anslen ,ANSAREA=  ansarea

,QUERYLEN=  querylen

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

IWMSEQRY

306 z/OS: z/OS MVS Programming: Workload Management Services

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMSEQRY macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ANSAREA=ansarea
A required input/output parameter, of an area to contain the data returned by IWMSEQRY. The area is
mapped by macro IWMSET.

To code: Specify the RS-type address, or address in register (2)-(12), of a field.

ANSLEN=anslen
A required input parameter, which contains the length of the area provided to contain the data
returned by IWMSEQRY.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

IWMSEQRY

Chapter 12. Workload management services 307

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,QUERYLEN=querylen
A required output parameter, which contains the number of bytes needed to contain the scheduling
environment information.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWMSEQRY macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 54. Return and Reason Codes for the IWMSEQRY Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — IwmRetCodeOk: Successful completion. All requested data returned.

4 — IwmRetCodeWarning: Successful completion, unusual conditions noted.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall:

Meaning: The output area supplied is too small to receive all the available
information.

Action: Obtain a new output area using the length returned in the QUERYLEN
parameter and invoke the service again.

IWMSEQRY

308 z/OS: z/OS MVS Programming: Workload Management Services

Table 54. Return and Reason Codes for the IWMSEQRY Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

4 xxxx0425 Equate Symbol: IwmRsnCodeNoSCHENV:

Meaning: The system does not support scheduling environments services.
This return code is set for releases prior to OS/390 Release 4.

Action: Avoid requesting this function on releases prior to OS/390 Release 4.

4 xxxx0428 Equate Symbol: IwmRsnCodeNoSCHENVDefined

Meaning: No scheduling environments or resources are defined in the active
service policy. No data is returned in the output area.

Action: Do not use the output area.

8 — IwmRetCodeInvocError: Invalid invocation environment or parameters

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode:

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has an EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller is in 24-bit addressing mode.

Action: Request this function in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Request this function in primary mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Request this function with reserved fields zero.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C2C Equate Symbol: IwmRsnCodeCannotAccessPolicy

Meaning: The service cannot access the active policy possibly due to a policy
activation in progress.

Action: The caller can try the service again later, or return an error indication
to its caller.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

IWMSEQRY

Chapter 12. Workload management services 309

Example
To store scheduling environment and resource information into an area whose address is in register 5 and
whose length is at location ANSLEN, specify:

 IWMSEQRY ANSAREA=(R5),
 ANSLEN=ANSLEN,
 QUERYLEN=RQDLEN,
 RETCODE=RETCODE,
 RSNCODE=RSNCODE
*
* Storage areas
*
ANSLEN DS 1F Answer area length
RQDLEN DS 1F Required length
RETCODE DS 1F Return code
RSNCODE DS 1F Reason code
*

IWMSESET — Scheduling environments set resource service

IWMSESET allows the caller to modify the state of a resource. A resource is an abstract element that can
represent an actual physical entity (such as a peripheral device), or an intangible quality (such as a certain
time of day). A resource has an ON, OFF, or RESET state.

A resource is a component of a scheduling environment. A scheduling environment is a list of resource
names and their required states. By modifying the state of a resource you can:

• Change a scheduling environment such that the resources are in the required state thereby allowing
work to be scheduled.

• Change a scheduling environment such that the resources are not in the required state thereby
preventing work from being scheduled.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order

IWMSESET

310 z/OS: z/OS MVS Programming: Workload Management Services

halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

Input register information
Before issuing the IWMSESET macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMSESET macro is as follows:

IWMSESET

Chapter 12. Workload management services 311

name
IWMSESET RESOURCE=  resource ,STATE=ON

,STATE=OFF

,STATE=RESET

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMSESET macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

IWMSESET

312 z/OS: z/OS MVS Programming: Workload Management Services

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

RESOURCE=resource
A required input parameter, which contains the resource name to be modified.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,STATE=ON
,STATE=OFF
,STATE=RESET

A required parameter, which sets the state of the resource.
,STATE=ON

sets the resource to the ON state.
,STATE=OFF

sets the resource to the OFF state.
,STATE=RESET

sets the resource to the RESET state.

ABEND codes
None.

Return codes and reason codes
When the IWMSESET macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.

IWMSESET

Chapter 12. Workload management services 313

• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason
code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 55. Return and Reason Codes for the IWMSESET Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk:

Meaning: Successful completion. All requested data returned.

4 — Equate Symbol: IwmRetCodeWarning:

Meaning: Successful completion, unusual conditions noted.

4 xxxx0425 Equate Symbol: IwmRsnCodeNoSCHENV:

Meaning: The system does not support scheduling environments services.
This return code is set for releases prior to OS/390 Release 4.

Action: Avoid requesting this function on releases prior to OS/390 Release 4.

4 xxxx0429 Equate Symbol: IwmRsnCodeResourceNotFound:

Meaning: The resource specified by RESOURCE does not exist.

Action: Check the specification of the RESOURCE parameter. If the
RESOURCE parameter is correct, check whether the resource is defined in
the active service policy.

8 — Equate Symbol: IwmRetCodeInvocError:

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode:

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: The caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller is in 24-bit addressing mode.

Action: Request this function in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Request this function in primary mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Request this function with reserved fields zero.

IWMSESET

314 z/OS: z/OS MVS Programming: Workload Management Services

Table 55. Return and Reason Codes for the IWMSESET Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list or version length field is not valid.

Action: Request this function with correct version number.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To set the resource specified at location RESNAME to the ON state specify:

 IWMSESET RESOURCE=RESNAME,
 STATE=ON,
 RETCODE=RETCODE,
 RSNCODE=RSNCODE
*
* Storage areas
*
RESNAME DS CL16 Resource name
RETCODE DS 1F Return code
RSNCODE DS 1F Reason code
*

IWMSEVAL — Scheduling environments validate service

The IWMSEVAL service validates a scheduling environment name. The caller can validate a scheduling
environment prior to associating it with a work item (such as a job or transaction).

If the scheduling environment is valid, the caller receives return code IwmRetCodeOK. If the scheduling
environment is not valid, the caller receives return code IwmRetCodeWarning and reason code
IwmRsnCodeSCHENVNotFound.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.

IWMSEVAL

Chapter 12. Workload management services 315

2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

Input register information
Before issuing the IWMSEVAL macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMSEVAL macro is as follows:

IWMSEVAL

316 z/OS: z/OS MVS Programming: Workload Management Services

name
IWMSEVAL SCHENV=  schenv

,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMSEVAL macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

IWMSEVAL

Chapter 12. Workload management services 317

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SCHENV=schenv
A required input parameter, which contains the scheduling environment to be validated.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMSEVAL macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 56. Return and Reason Codes for the IWMSEVAL Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk:

Meaning: Successful completion.

IWMSEVAL

318 z/OS: z/OS MVS Programming: Workload Management Services

Table 56. Return and Reason Codes for the IWMSEVAL Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

4 — Equate Symbol: IwmRetCodeWarning:

Meaning: Successful completion, unusual conditions noted.

4 xxxx0425 Equate Symbol: IwmRsnCodeNoSCHENV:

Meaning: The system does not support scheduling environments services.
This return code is set for releases prior to OS/390 Release 4.

Action: Avoid requesting this function on releases prior to OS/390 Release 4.

4 xxxx0426 Equate Symbol: IwmRsnCodeSCHENVNotFound:

Meaning: The scheduling environment specified by SCHENV does not exist.

Action: Check the specification of the SCHENV parameter. If the SCHENV
parameter is correct, check whether the scheduling environment is defined in
the active service policy.

8 — Equate Symbol: IwmRetCodeInvocError:

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode:

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller is in 24-bit addressing mode.

Action: Request this function in 31 bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Request this function in primary mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Request this function with reserved fields zero.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list or version length field is not valid.

Action: Request this function with corrent version number.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To validate the scheduling environment name at location ENVNAME specify:

IWMSEVAL

Chapter 12. Workload management services 319

 IWMSEVAL SCHENV=ENVNAME,
 RETCODE=RETCODE,
 RSNCODE=RSNCODE
*
* Storage areas
*
ENVNAME DS CL16 Scheduling environment name
RETCODE DS 1F Return code
RSNCODE DS 1F Reason code

IWMSINF — WLM server manager inform service

The IWMSINF service should be used to obtain the number of server instances to be started from WLM.
The caller must have previously connected to WLM using the IWM4CON service specifying
SERVER_MANAGER=YES, SERVER_TYPE=QUEUE, and MANAGE_TASKS=YES.

The caller can use the service in the following ways:

MODE=SUSPEND
The calling task is suspended until WLM wants the caller to start additional server instances. The
caller must re-invoke the service after it starts the server instances to wait for the next notification.
The caller cannot rely upon asynchronous exits receiving control while the task is suspended.

MODE=POST
The calling task is not suspended by WLM. WLM returns the number of additional server instances to
start now. WLM will post the caller's ECB when the number of server instances should be increased.
After the ECB is posted the caller must re-invoke IWMSINF to obtain the number of server instances
to start.

MODE=INFORM
The calling task is not suspended by WLM. WLM returns the number of additional server instances to
start now. This form should only be used the first time the service is invoked immediately after
connect because at this time the service will always return a value.

MODE=ECBCANCEL
The calling task is not suspended by WLM. This invocation should only be used to inform WLM that it
should not post a caller's ECB any more. The form can be used for error recovery purposes in
conjunction with MODE=POST.

WLM stops server instances by returning reason code IwmRsnCodeStopTask from IWM4SSL.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

IWMSINF

320 z/OS: z/OS MVS Programming: Workload Management Services

Programming requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. This macro may not be used during task/address space termination.
2. Only a single invocation is allowed to be active for a given address space at any given time.
3. Before using this macro the caller must connect to WLM via IWM4CON Server_Manager=YES,

Server_Type=Queue, Manage_Tasks=Yes.

Input register information
Before issuing the IWMSINF macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

IWMSINF

Chapter 12. Workload management services 321

Performance implications

None.

Syntax
The syntax of the IWMSINF macro is as follows:

name
IWMSINF

MODE=SUSPEND ,SRVINST_TO_STRT=  srvinst_to_strt

MODE=POST ,SRVINST_TO_STRT=  srvinst_to_strt

,ECB=NO_ECB

,ECB=  ecb

MODE=INFORM ,SRVINST_TO_STRT=  srvinst_to_strt

,MODE=ECBCANCEL

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSINF macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ECB=ecb
,ECB=NO_ECB

When MODE=POST is specified, an optional input parameter, to specify the ECB which should be
posted if WLM wants to inform the caller that the number of server instances have changed. The caller
re-invokes IWMSINF after the ECB was posted by WLM to obtain number of server instances to start.
The default is NO_ECB, which indicates that no ECB has been specified by the caller.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

IWMSINF

322 z/OS: z/OS MVS Programming: Workload Management Services

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

MODE=SUSPEND
MODE=POST
MODE=INFORM
MODE=ECBCANCEL

A required parameter that indicates how the caller uses the service
MODE=SUSPEND

indicates that the caller wants to get suspended by WLM to listen for additional server instances to
start. WLM will resume the caller if the number of server instances should be increased.

MODE=POST
indicates that the caller wants to get posted if additional server instances should be started. If the
caller gets posted it must re-invoke IWMSINF to obtain the value.

The caller is not suspended by WLM and WLM will also return the number of additional server
instances on this call.

MODE=INFORM
indicates that the caller wants to obtain the number of server instances without being suspended
by WLM. This form is useful during initialization after IWM4CON if the caller wants to use the POST
form but is not able to provide an ECB yet. It is expected that the caller will provide an ECB on the
next invocation of the service.

MODE=ECBCANCEL
indicates that a caller who passed an ECB to WLM wants to cancel the ECB address to avoid being
posted in the future by WLM.

This form is usefull during termination or recovery of server address spaces if a previous ECB
address is no longer valid.

IWMSINF

Chapter 12. Workload management services 323

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SRVINST_TO_STRT=srvinst_to_strt
When MODE=SUSPEND is specified, a required output parameter that returns the number of server
instances to start by the caller

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,SRVINST_TO_STRT=srvinst_to_strt
When MODE=POST is specified, a required output parameter that returns the number of server
instances to start by the caller

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,SRVINST_TO_STRT=srvinst_to_strt
When MODE=INFORM is specified, a required output parameter that returns the number of server
instances to start by the caller

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ABEND codes
None.

Return codes and reason codes
When the IWMSINF macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.

IWMSINF

324 z/OS: z/OS MVS Programming: Workload Management Services

• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason
code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 57. Return and Reason Codes for the IWMSINF Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this service

Action: Make sure that SERVER_MANAGER=YES, SERVER_TYPE=QUEUE and
MANAGE_TASKS=YES is specified on the IWM4CON request to enable this
service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: The caller is in cross-memory mode.

Action: Request this function only when you are not in cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: The caller's space is not connected to WLM.

Action: Invoke the IWM4CON macro before invoking this macro.

IWMSINF

Chapter 12. Workload management services 325

Table 57. Return and Reason Codes for the IWMSINF Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx084D Equate Symbol: IwmRsnCodeNotAuthConnect

Meaning: The caller must be supervisor state or have PSW key mask 0-7
authority to use the requested WLM service. This applies only if the caller
uses the service with MODE=POST.

Action: Avoid requesting this function in this environment.

8 xxxx087B Equate Symbol: IwmRsnCodeUnexpectedCall

Meaning: The system did not expect the caller to use this service.

Action: Make sure that MANAGE_TASKS=YES is specified on the IWM4CON
request.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C14 Equate Symbol: IwmRsnCodeNoWorkShutDown

Meaning: No work selected. The caller is to shutdown.

Action: Caller must disconnect by invoking the IWM4DIS macro.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example

To obtain information about the number of server instances to start from WLM, specify the following:

 IWM4CON WORK_MANAGER=YES,
 SERVER_MANAGER=YES,
 PARALLEL_EU=EUNITS,
 SERVER_TYPE=QUEUE,
 MANAGE_TASKS=YES,
 SERVER_LIMIT=MAXTASKS,
 CONNTKN=CTKN,CONNTKNKEY=PSWKEY,
 RETCODE=RC,RSNCODE=RSN

 IWMSINF MODE=SUSPEND,
 SRVINST_TO_STRT=NUMINST,
 RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
EUNITS DS F Number of Tasks which will be started
* if the application environment is not managed.
MAXTASKS DS F Maximum Number of Tasks up to which
* WLM adjusts the number of server
* instances for the server AS
CTKN DS FL4 Connect Token
NUMINSTS DS F Number of server instances to start
RC DS F Return code
RSN DS F Reason code

IWMSRDNS — Get sysplex routing location list

IWMSRDNS will return a list of location names for all registered servers which have been registered with a
host name, known to the system on which the service is invoked. Servers which have deregistered, via
IWMSRDRS, may still be present in the output list, due to the asynchronous nature of deregistration.
Conversely, some registered servers may not appear for this same reason.

IWMSRDNS

326 z/OS: z/OS MVS Programming: Workload Management Services

Environment
The requirements for the caller are:

Minimum authorization: Problem state with any PSW key.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRRs may be established.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
None.

Input register information
Before issuing the IWMSRDNS macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unchanged
14

Used as work register by the system
15

Return code

IWMSRDNS

Chapter 12. Workload management services 327

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMSRDNS macro is as follows:

name
IWMSRDNS LOCATION_NAMES=  location_names ,ANSLEN=  anslen

,ENTRY_COUNT=  entry_count

,QUERYLEN=  querylen

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMSRDNS macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ANSLEN=anslen
A required input parameter, which contains the length of the LOCATION_NAMES in bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ENTRY_COUNT=entry_count
An optional output parameter, which will hold the number of location entries returned by the service.
This is the number of entries in the SYSL_INFO array (see IWMWSYSL).

IWMSRDNS

328 z/OS: z/OS MVS Programming: Workload Management Services

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

LOCATION_NAMES=location_names
A required input parameter, which specifies the name of the area to be filled in with the list of location
names for the registered, active, LUs in the SYSPLEX registered with a host name.

The area must be large enough to contain at least 1 entry. The format of this area is mapped by
IWMWSYSL.

To code: Specify the RS-type address, or address in register (2)-(12), of a field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

IWMSRDNS

Chapter 12. Workload management services 329

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,QUERYLEN=querylen
A required output parameter, variable which contains the number of bytes needed for all data
requested.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWMSRDNS macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 58. Return and Reason Codes for the IWMSRDNS Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive all the available
information.

Action: None required. If necessary, reinvoke the service with an output area
of sufficient size to receive all information.

4 xxxx040B Equate Symbol: IwmRsnCodeNoServersRegistered

Meaning: No servers have registered in the sysplex.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

IWMSRDNS

330 z/OS: z/OS MVS Programming: Workload Management Services

Table 58. Return and Reason Codes for the IWMSRDNS Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on Primary ASC
mode.

Action: Avoid requesting this function in this environment.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

Example
To list all locations registered with a host name, specify:

 IWMSRDNS LOCATION_NAMES=DATA,
 ANSLEN=SIZE,
 ENTRY_COUNT=E,
 QUERYLEN=Q,
 RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
DATA DS CL200 Area to receive output
SIZEEQU EQU *-DATA Equate for size of Data
E DS F Field to receive entry count
Q DS F Field to receive query length
RC DS F Return code
RSN DS F Reason code
SIZE DC A(SIZEEQU) Field to hold size

IWMSRDNS

Chapter 12. Workload management services 331

IWMSRDRS — Deregister a server for sysplex routing

IWMSRDRS will deregister a server that had previously registered via IWMSRSRG, the Sysplex Router
Registration macro, for sysplex workload balancing. Deregistration removes the specified server as a
candidate from the Sysplex Routing Selection service, IWMSRSRS. Since the propagation of the
deregistration to other systems is asynchronous, a newly deregistered triplet will continue to be eligible
for selection by other systems for a period of time after return from the IWMSRDRS invocation. If the
server was registered with a host name the caller must provide the host name in order to deregister the
server.

Environment
The requirements for the caller are:

Minimum authorization: Problem state with any PSW key if the server address space to be
deregistered is the home address space. If resource
BPX.WLMSERVER is defined in the FACILITY class, an unauthorized
caller requires access authority to this resource or the
IWM.SERVER.REGISTER resource in the FACILITY class.

If the server to be deregistered is not the home address space, one
of the following:

• Supervisor state.
• Program key mask (PKM) allowing at least one of the keys 0-7.
• The caller has access authority to the resource

IWM.SERVER.REGISTER in the FACILITY class. If this resource is
not defined, access authority to the FACILITY class resource
BPX.WLMSERVER is required.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts:

Locks: No locks held. FRRs may be established.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
None.

Restrictions
1. This macro may not be used prior to the completion of WLM address space initialization
2. All parameter areas must reside in current primary.

Output register information
When control returns to the caller, the GPRs contain:

IWMSRDRS

332 z/OS: z/OS MVS Programming: Workload Management Services

Register
Contents

0
Reason code if GR15 return code is non-zero

1
Used as a work register by the macro

14
Used as a work register by the macro

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0

Used as a work register by the macro
1

Used as a work register by the macro
14

Used as a work register by the macro
15

Used as a work register by the macro

Some callers depend on register contents remaining the same before and after using a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
calling the service, and restore them after the system returns control.

Performance implications
None.

Syntax

The syntax of the IWMSRDRS macro is as follows:

name
IWMSRDRS LOCATION=  location ,NETWORK_ID=  network_id

,LUNAME=  luname

,HOST=NO_HOST

,HOST=  host ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

IWMSRDRS

Chapter 12. Workload management services 333

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMSRDRS macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,HOST=host
,HOST=NO_HOST

An optional input parameter, which contains the server HOST name associated with the address space
to be deregistered. The value should be padded on the right with blanks for any unused characters.
The default is NO_HOST, which indicates that a HOST name was not passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-character field.

LOCATION=location
A required input parameter, which contains the server LOCATION associated with the registered
address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a 18-character field.

,LUNAME=luname
A required input parameter, which contains the server Logical Unit name associated with the
registered address space.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,NETWORK_ID=network_id
A required input parameter, which contains the Network ID associated with the registered address
space.

IWMSRDRS

334 z/OS: z/OS MVS Programming: Workload Management Services

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, if you use only the following parameters:

LOCATION LUNAME NETWORK_ID

• 1, if you use the following parameter and those from version 0:

HOST

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0 or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWMSRDRS macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes. IBM support personnel may
request the entire reason code, including the xxxx value.

IWMSRDRS

Chapter 12. Workload management services 335

Table 59. Return and Reason Codes for the IWMSRDRS Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0418 Equate Symbol: IwmRsnCodeServerNotRegistered

Meaning: Server not registered

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on Primary ASC
mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list or version length field is not valid.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or supplies mutually
exclusive parameters or provides data associated with options not selected.
Note that this reason code will only occur on calls to this service through the
IWMDNDRG C language interface.

Action: Check for possible storage overlay of the parameter list.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C35 Equate Symbol: IwmRsnCodeNotSecAuthServReg

Meaning: The caller is not authorized by SAF to deregister a service.

Action: Unauthorized callers (problem state or none of the authorized keys 0
to 7) require access authority to the RACF resource IWM.SERVER.REGISTER
in the FACILITY class. If this resource is not defined, access authority to the
FACILITY class resource BPX.WLMSERVER is required.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error (no reason codes)

IWMSRDRS

336 z/OS: z/OS MVS Programming: Workload Management Services

IWMSRFSV — Sysplex routing find server routine
IWMSRFSV will find a server associated with the specified application environment and return the
associated server data which was passed at the time the server connected to WLM (via IWM4CON). The
only eligible servers are those that have connected to WLM with a specification of IWM4CON
SERVER_MANAGER=YES,SERVER_TYPE=ROUTING, and whose application environment matches the
input value passed to IWMSRFSV, which implies that the server belongs to the same subsystem type as
the caller. The server chosen is considered a best choice to run work in terms of a variety of system
conditions which are monitored.

When no eligible servers are already started, and the service policy allows MVS to start a server, and
certain other conditions apply, MVS will start a new server on behalf of the request. Circumstances such
as this imply that the program calling this service may be suspended until the request can be resolved.
When no eligible servers exist and none can be started the caller will receive a return code to reflect this.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

4. All character inputs are assumed to be padded on the right with blanks, when needed to fill out the
entire length.

Restrictions
1. This macro may not be used during task/address space termination.
2. NO FRRs may be established.
3. The Connect token from the input parameter list must be owned by the current home address space.
4. The address space from which this service is invoked must have previously connected to WLM, using
IWM4CON Router=Yes. The input application environment must be associated in the current service
policy with the subsystem type specified through IWM4CON.

Input register information
Before issuing the IWMSRFSV macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

IWMSRFSV

Chapter 12. Workload management services 337

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

The task issuing this service may be suspended while a new server address space is being started,
possibly on another MVS image.

IWMSRFSV

338 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
main diagram

name
b IWMSRFSV b CONNTKN=  conntkn ,APPLENV=  applenv

,SERVER_DATA=  server_data

,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSRFSV macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,APPLENV=applenv
A required input parameter, which contains the application environment under which work requests
are to be served.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

CONNTKN=conntkn
A required input parameter, which contains the connect token for the current home space.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the

IWMSRFSV

Chapter 12. Workload management services 339

parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SERVER_DATA=server_data
A required output parameter, which contains the data needed to uniquely identify the chosen server.
The structure of this data is undefined to MVS, and is the same data passed when the server
connected using IWM4CON SERVER_MANAGER=YES, SERVER_TYPE=ROUTING, SERVER_DATA=...

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

IWMSRFSV

340 z/OS: z/OS MVS Programming: Workload Management Services

ABEND codes
None.

Return codes and reason codes
When the IWMSRFSV macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 60. Return and Reason Codes for the IWMSRFSV Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSRBMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

IWMSRFSV

Chapter 12. Workload management services 341

Table 60. Return and Reason Codes for the IWMSRFSV Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing
mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on Primary
ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in
progress for the current TCB.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number or version length field in parameter
list is not valid.

Action: Check for possible overlay of the parameter list.

8 xxxx083B Equate Symbol: IwmRsnCodeHomeNotOwnConn

Meaning: Home address space does not own the connect token
from the input parameter list.

Action: Invoke the function with the correct home address
space.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this
service.

Action: Avoid requesting this function under the input
connection. IWM4CON options must be specified previously to
enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller invoked service but was in cross-memory
mode.

Action: Avoid requesting this function in cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller's space is not connected to WLM.

Action: Issue IWM4CON with the necessary options prior to
invoking this service.

C — Equate symbol: IwmRetCodeEnvError

Meaning: Environmental error.

IWMSRFSV

342 z/OS: z/OS MVS Programming: Workload Management Services

Table 60. Return and Reason Codes for the IWMSRFSV Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C01 Equate symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

C xxxx0C1A Equate symbol: IwmRsnCodeApplNotDefined

Meaning: The application environment name is not defined in
the active WLM policy.

Action: Check whether the correct application environment
name is being used. If so, a service administrator must define
the application environment in the WLM service definition.

C xxxx0C1B Equate symbol: IwmRsnCodeApplNotSST

Meaning: The application environment name is defined for use
by a different subsystem type in the active WLM policy.

Action: Check whether the correct application environment
name is being used. If so, a service administrator must change
the application environment in the WLM service definition to
specify the correct subsystem type.

C xxxx0C1C Equate symbol: IwmRsnCodeServerNotStarted

Meaning: No server exists for the specified application
environment and no server could be started.

Action: No action required. The function may be successful if
invoked again.

C xxxx0C22 Equate symbol: IwmRsnCodeApplEnvQuiesced

Meaning: The specified application environment has been
quiesced, server cannot be started for the request.

Action: Restart the application environment and then retry the
request.

C xxxx0C23 Equate symbol: IwmRsnCodeIndLocalSystem

Meaning: Local system is not running with the current WLM
policy, new server cannot be started for the request.

Action: Avoid requesting this function while the local system is
not running with the current WLM policy.

C xxxx0C24 Equate symbol: IwmRsncodeProcNameBlank

Meaning: Server procname is blank, server cannot be started for
the request.

Action: Check the server procname, fix it, and then retry the
request.

IWMSRFSV

Chapter 12. Workload management services 343

Table 60. Return and Reason Codes for the IWMSRFSV Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C25 Equate symbol: IwmRsnCodeApplEnvStopped

Meaning: WLM has given up trying to start a server because of
failures. The associated application environment has been
internally stopped.

Action: Restart the application environment and then retry the
request.

C xxxx0C26 Equate symbol: IwmRsnCodeRouterNotActive

Meaning: Either there is no router exists for the requested
server or the router exists but not active. No server can be
selected/started on this system.

Action: Re-connect the router for the requested application
environment to WLM and then retry the request.

C xxxx0C27 Equate symbol: IwmRsnCodeFsvReqInCompat

Meaning: Reserved.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if
invoked again.

Example
To determine a best server to which to route work:

 IWMSRFSV CONNTKN=CTKN, X
 APPLENV=AENAME, X
 SERVER_DATA=SVRDATA, X
 RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
CTKN DS F Contains the connect token for
* the current home space
AENAME DS CL32 Contains the application
* environment name
SVRDATA DS CL32 Contains the output server data
RC DS F Return code
RSN DS F Reason code

IWMSRSRG — Register a server for sysplex routing

The purpose of the IWMSRSRG service is to register a server that wishes to participate in sysplex
workload balancing. The service allows the caller to identify an address space to be associated with a
triplet, corresponding to location name, network id and LU name. This triplet is expected to be unique
across all registered spaces in the sysplex, and, should be unique across all networks. The caller can
additionally associate the triplet with a host name. Specifying a host name is optional, and if it is not
coded it is set to blanks by the system. A list of eligible servers is made available to IWMSRSRS. These
work requests include enclaves owned by the space as well as the address space's activity itself.

If this macro is issued to register a LOCATION.NETWORK_ID.LUNAME that already exists on the issuing
MVS image, the second registration will be ignored (IWMSRDRS should first be used to deregister the

IWMSRSRG

344 z/OS: z/OS MVS Programming: Workload Management Services

triplet). This condition will be identified through a unique return and reason code. Due to timing
considerations, sysplex-wide uniqueness is not enforced, and so is the responsibility of the caller.

The caller can additionally associate the server with a health indicator. This is a value between 0 and 100,
that indicates the percentage up to which the server is capable of performing its normal work. This health
indicator is used by the routing service to modify the routing recommendations according to this indicator.
It can be modified by calling this service again with another HEALTH value. In this case the return and
reason code for already registered servers will not be returned.

After a server registers by issuing this macro, the sysplex routing service IWMSRSRS can be issued to
return a weighted list of registered servers in the sysplex to which work could be directed. Alternatively,
IWMSRSRS can be used to obtain a complete list of servers associated with a given location or to obtain
the user data associated with each server. Since the propagation of the registration to other systems is
asynchronous, a newly registered triplet will not be immediately visible to other systems.

A server is automatically deregistered during job termination or memory termination.

Environment
The requirements for the caller are:

Minimum authorization: Problem state with any PSW key if the address space token specified
with STOKEN=stoken equals the address space token of the home
address space. If resource BPX.WLMSERVER is defined in the
FACILITY class, an unauthorized caller requires access authority to
this resource or the IWM.SERVER.REGISTER resource in the
FACILITY class.

If the address space token specified with STOKEN=stoken is not the
address space token of the home address space, one of the
following:

• Supervisor state.
• Program key mask (PKM) allowing at least one of the keys 0-7.
• The caller has access authority to the resource

IWM.SERVER.REGISTER in the FACILITY class. If this resource is
not defined, access authority to the FACILITY class resource
BPX.WLMSERVER is required.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRRs may be established.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order

IWMSRSRG

Chapter 12. Workload management services 345

halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
This macro may not be used prior to the completion of WLM address space initialization.

Input register information
Before issuing the IWMSRSRG macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unchanged
14

Used as work register by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMSRSRG macro is as follows:

IWMSRSRG

346 z/OS: z/OS MVS Programming: Workload Management Services

name
IWMSRSRG LOCATION=  location ,NETWORK_ID=  network_id

,LUNAME=  luname ,STOKEN=  stoken

,USERDATA=NO_USERDATA

,USERDATA=  userdata

,HOST=NO_HOST

,HOST=  host

,HEALTH=NO_HEALTH

,HEALTH=  health

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,PLISTVER=3

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMSRSRG macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,HEALTH=health
,HEALTH=NO_HEALTH

An optional input parameter, which contains the health factor associated with the address space. This
is a value, that reflects, up to which percentage this address space is capable to handle requests.
NO_HEALTH indicates that no health indicator was passed. This is the default. In this case, a health
value of 100 is assumed, when the server is registered.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,HOST=host
,HOST=NO_HOST

An optional input parameter, which contains the host name associated with the address space to be
registered. The value should be padded on the right with blanks for any unused characters. NO_HOST
indicates that no host name was passed. This is the default.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-character field.

LOCATION=location
A required input parameter, which contains the server LOCATION associated with the address space
to be registered. The value should be padded on the right with blanks for any unused characters.

To code: Specify the RS-type address, or address in register (2)-(12), of a 18-character field.

IWMSRSRG

Chapter 12. Workload management services 347

,LUNAME=luname
A required input parameter, which contains the server Logical Unit name associated with the address
space to be registered.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,NETWORK_ID=network_id
A required input parameter, which contains the Network ID associated with the address space to be
registered.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2
,PLISTVER=3

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

IWMSRSRG

348 z/OS: z/OS MVS Programming: Workload Management Services

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameter and those from version 0:

USERDATA
• 2, which supports the following parameter and those from version 0 and 1:

HOST
• 3, which supports the following parameter and those from version 0, 1 and 2:

HEALTH

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, 2, or 3

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,STOKEN=stoken
A required input parameter, which contains the space token of the server to be registered.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,USERDATA=userdata
,USERDATA=NO_USERDATA

An optional input parameter, which contains data meaningful to the user of this service. This user data
is available to callers of the IWMSRSRS service.

The format is undefined to MVS. The default is NO_USERDATA, which indicates that no user data was
passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMSRSRG macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

IWMSRSRG

Chapter 12. Workload management services 349

Table 61. Return and Reason Codes for the IWMSRSRG Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0419 Equate Symbol: IwmRsnCodeServerAlreadyReg

Meaning: Server already registered.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0807 Equate Symbol: IwmRsnCodeBadSTOKEN

Meaning: Bad STOKEN passed.

Action: Check for possible storage overlay.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on Primary ASC
mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list or version length field is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx08A2 Equate Symbol: IwmRsnCodeBadHealth

Meaning: Health value out of range

Action: Check for possible storage overlay.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

IWMSRSRG

350 z/OS: z/OS MVS Programming: Workload Management Services

Table 61. Return and Reason Codes for the IWMSRSRG Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

C xxxx0C35 Equate Symbol: IwmRsnCodeNotSecAuthServReg

Meaning: The caller is not authorized by SAF to register a server.

Action: The caller is not authorized by SAF to register a server. Action: Invoke
the function with the authorization requirements fulfilled. Unauthorized
callers (problem state or none of the authorized keys 0 to 7) require access
authority to the RACF resource IWM.SERVER.REGISTER in the FACILITY
class. If this resource is not defined, access authority to the FACILITY class
resource BPX.WLMSERVER is required.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error (no reason codes).

Example
To register an instance of a given location, specify:

 IWMSRSRG LOCATION=LOC,NETWORK_ID=NET,LUNAME=LU,
 STOKEN=STKN,HOST=HST,HEALTH=HLTH,
 USERDATA=DATA,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
LOC DS CL18 Contains the Location
* associated with the server
* instance
NET DS CL8 Contains the Network id
* associated with the server
* instance
LU DS CL8 Contains the LU name
* associated with the server
* instance
STKN DS CL8 Contains the STOKEN
* associated with the server
* instance
DATA DS CL64 Contains the user data
* associated with the server
* instance
HST DS CL64 Contains the Host name
* associated with the server
* instance
HLTH DS F Contains the Health indicator
* associated with the server
* instance
RC DS F Return code
RSN DS F Reason code

IWMSRSRS — Sysplex routing information
IWMSRSRS provides three functions: SELECT, QUERY and SPECIFIC. All return a list of registered servers
known to the system on which the service is invoked. Servers which have deregistered, via IWMSRDRS,
may still be present in the output list, due to the asynchronous nature of deregistration. Conversely, some
registered servers may not appear for this same reason.

When either the SELECT or the SPECIFIC function is chosen, IWMSRSRS will return a list of servers in the
sysplex which are associated with the input Location name along with a relative weighting for each server.
These servers are identified by their Network id and LU name, which were previously registered using the
sysplex router register macro, IWMSRSRG. Note that some servers may not appear in the output list due

IWMSRSRS

Chapter 12. Workload management services 351

to balancing decisions, so this service should not be used as a general query service to find all currently
registered servers for the input location.

Next to each server in the list will be a weight which tells the caller the relative number of requests to
send to each entry. For example, the caller might send the indicated number of requests to each LU in the
list before routing to the next LU in the list.

Server Weight CPU Weight zAAP Weight zIIP Weight
------ ------ ---------- ----------- -----------
NETIDA.LUNAME1 4 3 6 4
NETIDB.LUNAME2 7 8 3 9
NETIDC.LUNAME3 1 3 1 0
NETIDD.LUNAME43 4 5 2 3
NETID4.LUNAME2 2 1 2 2

The requestor could then choose to send the first 4 requests to NETIDA.LUNAME1, the next 7 requests to
NETIDB.LUNAME2, the next request to NETIDC.LUNAME3, and so forth. When the list is exhausted, the
requestor could invoke this macro again and get a whole new list or could rotate through the list again. It
is expected that the requestor would invoke this macro frequently to get current system views for work
balancing. For example, it would be appropriate for the caller to invoke this service approximately every 1
to 3 minutes, so that the list will remain current with changing system conditions and server availability.

Starting with z/OS V1R9, three new output weights are available: the CPU weight, the zAAP weight and
the zIIP weight. The CPU weight is computed the same way as the weight was prior to V1R9, taking only
CPU data into account. The zAAP and the zIIP weights are computed when taking only zAAP, respectively
zIIP, data into account. The weight is a combination of these three processor weights.

Starting with z/OS V1R11, an optional input keyword METHOD selects how the weight (also referred to as
"mixed" weight) is computed. The default is METHOD=PROPORTIONAL, which calculates the weight as a
combination of these 3 processor weights (CPU, zAAP and zIIP). It is the same method as prior to V1R11.
With METHOD=EQUICPU, WLM computes the weight by trying to simulate a 100% usage of the system
capacity, and determining the capacity of a CPU-only system having equivalent resource consumption.

Both methods can be specified with keyword IL_WEIGHTING, and EQUICPU by COST_ZAAP_ON_CP and
COST_ZIIP_ON_CP, too.

When the QUERY function is requested, IWMSRSRS will return the list of all servers in the sysplex which
are associated with the input Location name along with a fixed weight of one for each server. The format
of the output is the same as for SELECT.

When using the QUERY function, the CPU, zAAP and zIIP weights are always set to 0.

When using the SELECT or the SPECIFIC function, the mixed weight is a combination of the CPU, zAAP
and zIIP weights with the relative use of the CPU, zAAP and zIIP by the server. Moreover, the mixed
weights are scaled up, so that their sum is 64. Due to rounding errors, the sum of the mixed weights is
usually as low as 64-(number of servers).

If there are pre-V1R9 systems in the sysplex, the zAAP and zIIP weights are automatically set to 0, and
the weight is equal to the CPU weight, because pre-V1R9 systems do not have such weights and could not
be correctly compared to V1R9 systems.

The Sysplex Routing Service (IWMSRSRS) can be used to obtain the userdata associated with each server.

When the SPECIFIC function is issued, IWMSRSRS returns a list of servers in the sysplex which are
associated with the input Location name along with a relative weighting for each server. In contrast to the
weights in the SELECT function, the weights in the SPECIFIC function do not only consider available
capacity values and the number of servers on the same system.

With the SPECIFIC function, the following additional factors are taken into account:

• The performance index that indicates the achievement of the WLM defined goals of the server, that is its
related work. A server that achieves its goal is preferred over one that does not achieve its goal.

• If the server owns independent enclaves those also take the delays into account that the work is subject
to, due to the queue times of the owned enclaves. A server with less average queue times for its
enclaves is preferred over one with higher queue times.

IWMSRSRS

352 z/OS: z/OS MVS Programming: Workload Management Services

• The health factor of this server. It is dependent on the health indicator which was reported to WLM for
this server by the IWM4HLTH service or by IWMSRSRG. If no health indicator was reported, this factor is
also neutral.

Environment
The requirements for the caller are:

Minimum authorization: Problem state with any PSW key.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRRs may be established.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain versions. See the PLISTVER
parameter description.

Input register information
Before issuing the IWMSRSRS macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unchanged

IWMSRSRS

Chapter 12. Workload management services 353

14
Used as work register by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

IWMSRSRS

354 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
main diagram

name
b IWMSRSRS b SYSINFO_BLOCK=  sysinfo_block

,EXTENDED_DATA=NO

,EXTENDED_DATA=YES

,ANSLEN=  anslen

,ENTRY_COUNT=  entry_count

,QUERYLEN=  querylen ,LOCATION=  location

,FUNCTION=SELECT

,FUNCTION=QUERY

,FUNCTION=SPECIFIC

,METHOD=PROPORTIONAL

,METHOD=EQUICPU

,COST_ZAAP_ON_CP=1

,COST_ZAAP_ON_CP=  cost_zaap_on_cp

,COST_ZIIP_ON_CP=1

,COST_ZIIP_ON_CP=  cost_ziip_on_cp

,IL_WEIGHTING=0

,IL_WEIGHTING=  il_weighting

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSRSRS macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

IWMSRSRS

Chapter 12. Workload management services 355

,ANSLEN=anslen
A required input parameter, which contains the length of the SYSINFO_BLOCK in bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,COST_ZAAP_ON_CP=cost_zaap_on_cp
,COST_ZAAP_ON_CP=1

An optional input parameter, which is used in conjunction with METHOD=EQUICPU. It describes the
additional cost of executing zAAP-eligible work on a CPU instead of on a zAAP processor.

If the caller wants to use the full system capacity, independently of the cost, then it should set
COST_ZAAP_ON_CP=1. With high values of this cost parameter, WLM considers that a system having
used up its free zAAP capacity should offload less work to the CPU, and gives this system a smaller
output weight.

This cost parameter must be in the range from 1 to 100. If the specified value is outside of this range,
WLM will instead use the nearest valid integer (1 or 100) as cost parameter. The default is 1.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,COST_ZIIP_ON_CP=cost_ziip_on_cp
,COST_ZIIP_ON_CP=1

An optional input parameter, which is used in conjunction with METHOD=EQUICPU. It describes the
additional cost of executing zIIP-eligible work on a CPU instead of on a zIIP processor.

If the caller wants to use the full system capacity, independently of the cost, then it should set
COST_ZIIP_ON_CP=1. With high values of this cost parameter, WLM considers that a system having
used up its free zIIP capacity should offload less work to the CPU, and gives this system a smaller
output weight.

This cost parameter must be in the range from 1 to 100. If the specified value is outside of this range,
WLM will instead use the nearest valid integer (1 or 100) as cost parameter. The default is 1.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,ENTRY_COUNT=entry_count
An optional output parameter, which will hold the number of server entries returned by the service.
This is the number of entries in the SYSR_INFO array (see IWMWSYSR).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,EXTENDED_DATA=NO
,EXTENDED_DATA=YES

An optional parameter, which describes whether the format of the output area named by
SYSINFO_BLOCK includes the extended section or not (see IWMWSYSR). The default is
EXTENDED_DATA=NO.
,EXTENDED_DATA=NO

indicates that the format of the output area named by SYSINFO_BLOCK includes only the standard
information mapped by the SYSR, which consists of an array of entries described by SYSR_INFO.

,EXTENDED_DATA=YES

indicates that the format of the output area given by SYSINFO_BLOCK includes first the standard
information mapped by the SYSR, which consists of an array of entries described by SYSR_INFO,
followed immediately by the header for the extension section and any other data described by the
header.

,FUNCTION=SELECT
,FUNCTION=SPECIFIC

An optional parameter, which describes which set of servers are of interest to the caller. The default is
FUNCTION=SELECT.

IWMSRSRS

356 z/OS: z/OS MVS Programming: Workload Management Services

,FUNCTION=SELECT

indicates that the servers best suited to receive work are to be returned.

,FUNCTION=QUERY

indicates that all servers associated with the input LOCATION are to be returned.

,FUNCTION=SPECIFIC

indicates that all servers in the sysplex which are associated with the input Location name along
with a relative weighting for each server are returned.

,IL_WEIGHTING=il_weighting
,IL_WEIGHTING=0

An optional input parameter, which controls how WLM weights available capacity at importance levels
(ILs) lower than the currently selected one. The value of IL_WEIGHTING should be in the range from 0
to 3. If the passed value is outside of this range, WLM will instead use the nearest valid integer (0 or 3)
as IL_WEIGHTING.

When this parameter is set to 0 (the default value), all free capacities used by levels less important
than the current one are weighted the same. This means that the free capacity below the current level
is considered to be totally free, and this is equivalent to what WLM did prior to V1R11.

When this parameter is set to 1, free capacity at the lowest ILs is weighted more than the current IL,
with a weighting growing proportionally to the square root of the IL difference + 1. For example , with
a selected IL of 1, free capacity at IL 5 is weighted about 2.236 times more than free capacity at IL 1.

When this parameter is set to 2, free capacity at the lowest ILs is weighted more than the current IL,
with a weighting growing proportionally to the IL difference + 1. For example , with a selected IL of 1,
free capacity at IL 5 is weighted 5 times more than free capacity at IL 1.

When this parameter is set to 3, free capacity at the lowest ILs is weighted more than the current IL,
with a weighting growing proportionally to the square of the IL difference + 1. For example , with a
selected IL of 1, free capacity at IL 5 is weighted 25 times more than free capacity at IL 1. The default
is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,LOCATION=location
A required input parameter, which contains the LOCATION associated with the registered address
spaces which are candidates to receive work.

To code: Specify the RS-type address, or address in register (2)-(12), of a 18-character field.

,METHOD=PROPORTIONAL
,METHOD=EQUICPU

An optional parameter, which selects the method for computing the output weights. The default is
METHOD=PROPORTIONAL. The default is METHOD=PROPORTIONAL.
,METHOD=PROPORTIONAL

Calculates the output weights as a proportion of the 3 processor types weights.
,METHOD=EQUICPU

Calculates a CPU equivalent of the systems before computing the output weights.

In order for METHOD=EQUICPU to be active, all systems in sysplex must run at least z/OS V1R11.
Otherwise WLM automatically switches back to METHOD=PROPORTIONAL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

IWMSRSRS

Chapter 12. Workload management services 357

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports both the following parameters and those from version 0:

ENTRY_COUNT EXTENDED_DATA FUNCTION

• 2, which supports both the following parameters and those from version 0 and 1:

COST_ZAAP_ON_CP IL_WEIGHTING

COST_ZIIP_ON_CP METHOD

To code: Specify one of the following:

IWMSRSRS

358 z/OS: z/OS MVS Programming: Workload Management Services

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, or 2

,QUERYLEN=querylen
A required output parameter, variable which contains the number of bytes needed for all data
requested, taking into account the format specified via the EXTENDED_DATA keyword.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

SYSINFO_BLOCK=sysinfo_block
A required input parameter, of the area to be filled in with the system information for the registered,
active, LUs in the SYSPLEX associated with the input location.

The area must be large enough to contain at least 1 entry. The format of this area is mapped by
IWMWSYSR. The EXTENDED_DATA keyword describes the desired format. The FUNCTION keyword
describes which servers are candidates for inclusion.

To code: Specify the RS-type address, or address in register (2)-(12), of a field.

ABEND codes
None.

Return codes and reason codes
When the IWMSRSRS macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 62. Return and Reason Codes for the IWMSRSRS Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

IWMSRSRS

Chapter 12. Workload management services 359

Table 62. Return and Reason Codes for the IWMSRSRS Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive all the
available information.

Action: None required. If necessary, reinvoke the service with
an output area of sufficient size to receive all information.

4 xxxx040B Equate Symbol: IwmRsnCodeNoServersRegistered

Meaning: No Servers have registered in the sysplex.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing
mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on Primary
ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list or version length
field is not valid.

Action: Check for possible storage overlay of the parameter list.

IWMSRSRS

360 z/OS: z/OS MVS Programming: Workload Management Services

Table 62. Return and Reason Codes for the IWMSRSRS Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx089D Equate Symbol: IwmRsnCodeWrongSysLevels

Meaning: There are servers registered in the sysplex, associated
with the input Location name, but with a too old z/OS level (prior
to V1R7) for the SPECIFIC function in the routing service.

Action: You may either deregister the servers with the old level,
or decide to use IWMSRSRS with function SELECT instead of
SPECIFIC.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if
invoked again.

Example
To register an instance of a given location:

 IWMSRSRS SYSINFO_BLOCK=DATA,
 EXTENDED_DATA=YES,
 ANSLEN=SIZE,
 ENTRY_COUNT=E,
 QUERYLEN=Q,
 LOCATION=LOC,
 FUNCTION=QUERY,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
DATA DS CL200 Area to receive output
SIZEEQU EQU *-DATA Equate for size of Data
E DS F Field to receive entry count
Q DS F Field to receive query length
LOC DS CL18 Contains the Location
* associated with the server
* instance
RC DS F Return code
RSN DS F Reason code
SIZE DC A(SIZEEQU) Field to hold size

IWMUEXPT — WLM undo export

The IWMUEXPT macro undoes an earlier request to export an enclave via the IWMEXPT macro.

The caller is expected to invoke IWMUEXPT after all importing systems have invoked IWMUIMPT. If
IWMUEXPT is invoked while other systems have imported the enclave, WLM loses the ability to manage

IWMUEXPT

Chapter 12. Workload management services 361

the multisystem enclave as a unit. Also the enclave owner's SMF 30 record will not contain all of the CPU
time used by the enclaves on the other systems.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space which
connected to WLM.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

Input register information
Before issuing the IWMUEXPT macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system

IWMUEXPT

362 z/OS: z/OS MVS Programming: Workload Management Services

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMUEXPT macro is as follows:

name
IWMUEXPT XTOKEN=  xtoken ,CONNTKN=  conntkn

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMUEXPT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,CONNTKN=conntkn
A required input parameter that contains the connect token for the primary address space's
connection to WLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

IWMUEXPT

Chapter 12. Workload management services 363

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

IWMUEXPT

364 z/OS: z/OS MVS Programming: Workload Management Services

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

XTOKEN=xtoken
A required input parameter that contains the export token which identifies the exported enclave.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMUEXPT macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 63. Return and Reason Codes for the IWMUEXPT Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0432 Equate Symbol: IwmRsnCodeUnknownExportToken

Meaning: No enclave matching the export token was found. The enclave may
have been unexported or deleted, or the WLM coupling facility structure may
have been lost.

Action: None.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

IWMUEXPT

Chapter 12. Workload management services 365

Table 63. Return and Reason Codes for the IWMUEXPT Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Make sure the primary address space connected to WLM using the
IWM4CON service. Make sure the connect token returned by IWM4CON is
passed correctly.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported by the MVS release
on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: The caller's connection is not enabled for this service.

Action: Make sure that EXPTIMPT=YES is specified on the IWM4CON macro
invocation.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: The caller's primary address space is not connected to WLM.

Action: Invoke the IWM4CON macro before invoking this macro.

8 xxxx0870 Equate Symbol: IwmRsnCodeBadExportToken

Meaning: The export token is not validly formatted.

Action: Check for possible storage overlay of the export token.

8 xxxx0871 Equate Symbol: IwmRsnCodeDidNotExportOrImport

Meaning: The primary address space did not export the enclave.

Action: Invoke IWMUEXPT from the correct address space.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
 IWMUEXPT XTOKEN=EXPORTT,CONNTKN=CONNECTT
*
* Storage areas
*
EXPORTT DS CL32 Export token
CONNECTT DS CL4 Connect token

IWMUEXPT

366 z/OS: z/OS MVS Programming: Workload Management Services

IWMUIMPT — WLM undo import

The IWMUIMPT macro undoes an earlier request to import an enclave via the IWMIMPT macro.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space which
connected to WLM.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

Input register information
Before issuing the IWMUIMPT macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged

IWMUIMPT

Chapter 12. Workload management services 367

14
Used as work registers by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMUIMPT macro is as follows:

name
IWMUIMPT XTOKEN=  xtoken ,CONNTKN=  conntkn

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMUIMPT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,CONNTKN=conntkn
A required input parameter that contains the connect token for the primary address space's
connection to WLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

IWMUIMPT

368 z/OS: z/OS MVS Programming: Workload Management Services

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

IWMUIMPT

Chapter 12. Workload management services 369

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

XTOKEN=xtoken
A required input parameter that contains the export token which identifies the exported enclave.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMUIMPT macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 64. Return and Reason Codes for the IWMUIMPT Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0432 Equate Symbol: IwmRsnCodeUnknownExportToken

Meaning: No enclave matching the export token was found. The enclave may
have been unexported or deleted, or the WLM coupling facility structure may
have been lost.

Action: None.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

IWMUIMPT

370 z/OS: z/OS MVS Programming: Workload Management Services

Table 64. Return and Reason Codes for the IWMUIMPT Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Make sure the primary address space connected to WLM using the
IWM4CON service. Make sure the connect token returned by IWM4CON is
passed correctly.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported by the MVS release
on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: The caller's connection is not enabled for this service.

Action: Make sure that EXPTIMPT=YES is specified, or used by default, on
the IWM4CON macro invocation.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: The caller's primary address space is not connected to WLM.

Action: Invoke the IWM4CON macro before invoking this macro.

8 xxxx0870 Equate Symbol: IwmRsnCodeBadExportToken

Meaning: The export token is not validly formatted.

Action: Check for possible storage overlay of the export token.

8 xxxx0871 Equate Symbol: IwmRsnCodeDidNotExportOrImport

Meaning: The primary address space did not import the enclave.

Action: Invoke IWMUIMPT from the correct address space.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
 IWMUIMPT XTOKEN=EXPORTT,CONNTKN=CONNECTT
*
* Storage areas
*
EXPORTT DS CL32 Export token
CONNECTT DS CL4 Connect token

IWMUIMPT

Chapter 12. Workload management services 371

IWMWMCON — WLM modify connect
The purpose of this service is to modify a particular connection to WLM with respect to the associated
subsystem type and/or name for work manager services, described below, and so could replace the use of
the pair of services disconnect (IWM4DIS) and connect (IWM4CON) for the new values of subsystem type
and/or name. This change only affects work manager related services, and does not affect the subsystem
identify for queue manager or server manager services. For this reason, the caller must be connected to
the WLM work management services, i.e. IWM4CON WORK_MANAGER=YES must be specified. Queue
manager and/or server manager may also be specified at connect, but are not affected by use of
IWMWMCON. The PSW key and topology list associated with the connect may not be changed via this
service.

Use of this service needs to be coordinated with the use of other work manager services which depend on
the connect token and the associated subsystem related information to ensure that the desired results
are obtained. Among these services are classify (IWMCLSFY), report (IWMRPT), notify (IWMMNTFY)
where it is an optional input, and enclave create (IWM4ECRE). Note that use of IWMWMCON is not
appropriate prior to creation of enclaves with TYPE(Dependent) or TYPE(Montkn).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any P,S. Current Home address space must be the same as Home
when the corresponding Connect was invoked.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. If the key specified on IWM4CON was a user key (8-F), then the following must ALL be true:

• caller must be in non-cross-memory mode (P=S=H). This implies that the current primary must
match the primary at the time that IWM4CON was invoked. Running in a subspace is not supported.

• must be in TCB mode (not SRB)
• current TCB must match the TCB at the time that IWM4CON was invoked.

IWMWMCON

372 z/OS: z/OS MVS Programming: Workload Management Services

2. It is the caller's responsibility to serialize use of this service with use of IWMCLSFY and other services
using the connect token. Failure to do so may result in classification to a service and/or report class
which is other than the intended one.

3. This service should not be invoked while in a RTM termination routine (resource manager) for the TCB
owning the connect token since MVS will have its own resource cleanup routine and unpredictable
results would occur. It is legitimate to use this service while in a recovery routine, however, or in
mainline processing.

Input register information
Before issuing the IWMWMCON macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None

IWMWMCON

Chapter 12. Workload management services 373

Syntax
main diagram

name
b IWMWMCON b CONNTKN=  conntkn ,SUBSYS=  subsys

,SUBSYSNM=  subsysnm

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMWMCON macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

CONNTKN=conntkn
A required input parameter, which contains the connect token for the environment to be modified.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

IWMWMCON

374 z/OS: z/OS MVS Programming: Workload Management Services

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SUBSYS=subsys
A required input parameter, which contains the generic subsystem type (e.g. IMS, CICS, etc.).

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character field.

,SUBSYSNM=subsysnm
A required input parameter, which contains the name of the specific subsystem instance

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWMWMCON

Chapter 12. Workload management services 375

ABEND codes
None.

Return codes and reason codes
When the IWMWMCON macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 65. Return and Reason Codes for the IWMWMCON Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0409 Equate Symbol: IwmRsnCodeNoConn

Meaning: Input connection token does not reflect an active
connection to WLM.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0802 Equate Symbol: IwmRsnCodeXmemUserKeyTkn

Meaning: Caller is in cross-memory mode while the token was
requested in user key.

Action: Avoid requesting this function while in cross-memory
mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

IWMWMCON

376 z/OS: z/OS MVS Programming: Workload Management Services

Table 65. Return and Reason Codes for the IWMWMCON Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0809 Equate Symbol: IwmRsnCodeSrbUserKeyTkn

Meaning: Caller is in SRB mode, while the token was obtained in
a user key (8-F).

Action: Avoid requesting this function in SRB mode for tokens
associated with user key.

8 xxxx080A Equate Symbol: IwmRsnCodeTcbNotOwnerUserKeyTkn

Meaning: Current TCB is not the owner, while the token was
obtained in a user key (8-F).

Action: Avoid requesting this function under a TCB other than
the owner for a token associated with user key.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing
mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on Primary
ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in
progress for the TCB associated with the owner.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

IWMWMCON

Chapter 12. Workload management services 377

Table 65. Return and Reason Codes for the IWMWMCON Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx082F Equate Symbol: IwmRsnCodeWrongHome

Meaning: Caller invoked the service from the wrong home
address space.

Action: Invoke the function with the correct home address
space.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this
service. The caller is not connected to the WLM work
management services.

Action: Avoid requesting this function under the input
connection. IWM4CON options must be specified previously to
enable this service. Check the specification of the
WORK_MANAGER keyword on the IWM4CON macro invocation.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if
invoked again.

Examples

To override the subsystem name and subsystem type provided on a previous call to IWM4CON, specify:

IWMWMCON SUBSYS=GENSUB,SUBSYSNM=SUBNAME,
 CONNTKN=CONNTOKEN,RETCODE=RC,RSNCODE=RSN,

Where the following are declared:

GENSUB DS CL4 Generic subsystem type
SUBNAME DS CL8 Subsystem name
CONNTOKEN DS FL4 Connect token

IWMWQRY — Query service

IWMWQRY provides information to help the subsystem work manager make work routing and scheduling
decisions. IWMWQRY allows the caller to obtain the service class goals and importance for a service class
by performance period.

The caller must provide an area of storage in the ANSAREA=ansarea and the length of that area in the
ANSLEN=anslen for IWMWQRY to place the service class goal and importance information. IWMWQRY
returns the actual length of the information in the QUERYLEN=querylen parameter.

The answer area is mapped by the IWMSVPOL and IWMSVPCD data areas. The data areas are described
in z/OS MVS Data Areas, Vol 3.

The first time the caller invokes this macro, you should specify QUERYLEN. The service returns the length
required for the service class information

The information returned is not serialized upon return to the caller, and so may be out of date due to a
change in service policy.

IWMWQRY

378 z/OS: z/OS MVS Programming: Workload Management Services

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state, or problem state. Any PSW key.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or Access Register (AR) mode.

Interrupt status: Enabled

Locks: Unlocked

Control parameters: Control parameters must be in the primary address space.

Programming requirements
• Make sure no EUT FRRs are established.
• If you are in AR mode, you must specify SYSSTATE ASCENV=AR before invoking IWMWQRY.
• You must include the CVT and the IWMYCON mapping macros in the calling program.

Restrictions
None.

Input register information
Before issuing the IWMWQRY macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.
1

Used as a work register by the system.
2 - 13

Unchanged
14

Used as a work register by the system.
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0 - 1

Used as a work register by the system.

IWMWQRY

Chapter 12. Workload management services 379

2 - 13
Unchanged

14 - 15
Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMWQRY macro is as follows:

name
IWMWQRY SERVCLS=  servcls ,ANSLEN=  anslen

,ANSAREA=  ansarea ,QUERYLEN=  querylen

,RETCODE=  retcode

,RSNCODE=  rsncode

,MF=S

,MF=(L, MFCTRL

, 0D

, mfattr

)

,MF=(E, MFCTRL

, COMPLETE

, complete

)

Parameters
The parameters are explained as follows:
SERVCLS=servcls

Required input parameter that specifies the token representing the service class, and if there is one,
the report class.

To code: Specify the RS-type name or address (using a register from 2 to 12) of a 32 bit field
containing the service class token.

,ANSLEN=anslen
Required input parameter containing the length of the area provided to hold the data returned by
IWMWQRY.

To code: Specify the RS-type name or address (using a register from 2 to 12) of a 32 bit field
containing the length of the area provided.

,ANSAREA=ansarea
Required output parameter that specifies the area provided to contain the data being returned by
IWMWQRY.

The area is mapped by the IWMSVPCD mapping macro and the service class period definition section
in the IWMSVPOL mapping macro. The IWMSVPCD part of the answer area contains the offset to the
class data, the size of the class data, and the size of each period entry. The IWMSVPOL part of the
answer area contains the service class definition section, and the service class period definition of the
service class.

To code: Specify the RS-type name or address (using a register from 2 to 12) of a character field
specifying an area to contain the data returned by the query service.

IWMWQRY

380 z/OS: z/OS MVS Programming: Workload Management Services

,QUERYLEN=querylen
Required output parameter that specifies the number of bytes needed to contain the service class
information.

To code: Specify the RS-type name or address (using a register from 2 to 12) of a fullword field to
contain the required number of bytes.

,RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return code. The return
code is also in GPR 15.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain
the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the reason code. The reason
code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain
the reason code (if any).

,MF=S
,MF=(L,mfctrl,mfattr)
,MF=(E,mfctrl,COMPLETE)

Use MF=S to specify the standard form, which places parameters into an inline parameter list and
invokes the IWM4CON macro service.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require re-entrant code. The list form defines an area of storage that the
execute form uses to store the parameters.

Use MF=E to specify the execute form of the macro. Use the execute form with the list form of the
macro for applications that require re-entrant code. The execute form stores the parameters into the
storage area defined by the list form and generates the macro invocation to transfer control to the
service.
,mfctrl

Use this output parameter to specify the name of the storage area to contain the parameters.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of the storage area
containing the parameter list.

,mfattr
Use this input parameter to specify the name of a 1 to 60 character storage area that can contain
any value that is valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code ,mfattr the system provides a value of
0D, which forces the parameter on a doubleword boundary.

,COMPLETE
Use this input parameter to specify that the system check for required parameters and supply
defaults for omitted optional parameter.

ABEND codes
None.

Return codes and reason codes
When IWMWQRY macro returns control to your program, GPR 15 contains a return code. When the return
code is non-zero, then GPR 0 contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code Meaning

00 Meaning: Warning.

IWMWQRY

Chapter 12. Workload management services 381

Hexadecimal Return
Code

Hexadecimal Reason
Code Meaning

04 040A Meaning: Warning. The output area supplied is too small to receive all the
available information.

04 0410 Meaning: Warning. The input service class token does not reflect a service
class in the current service policy.

08 0801 Meaning: Program error. The caller is in SRB mode.

08 0803 Meaning: Program error. The caller is disabled.

08 0804 Meaning: Program error. The caller is locked.

08 080D Meaning: Program error. Input service class is not valid.

08 0810 Meaning: Program error. The caller has EUT FRR established.

08 0830 Meaning: Program error. The caller has passed an invalid ALET.

Example
For information related to the service class represented by the service class token in the SERVCLS field,
specify:

IWMWQRY ANSAREA=ANSAREA,ANSLEN=ANSLEN,SERVCLS=SERVCLS
 QUERYLEN=QUERYLEN,RETCODE=RCODE,
 RSNCODE=RSN,MF=(E,MFWQRY)

IWMWQWRK — Query work service

A work manager can use IWMWQWRK to help identify where its transactions may be executing. A caller
can issue this for a work manager address space that is having trouble executing transactions, and wants
to find out where transaction ABENDs are occurring.

A caller can narrow in on where the problem is occurring by using the LU 6.2 token information contained
in monitoring environments.

With this service, a caller can get:

• A list of LU 6.2 tokens

Specify SEARCH_BY=CONNTKN, and get a list of LU 6.2 tokens for all work requests reflected in
monitoring environments owned by the current home address space. To do this, the caller should
provide the connect token of the address space in the CONNTKN parameter.

• A list of ASIDs and/or STOKENs

Specify SEARCH_BY=LU62TKN and provide a list of LU 6.2 tokens, and IWMWQWRK returns a list of
ASIDs and/or STOKENs representing owners of monitoring environments initialized (via IWM4MINI)
with an LU 6.2 token in the list.

The list of LU 6.2 tokens must have been obtained on a previous call to IWMWQWRK.

Monitoring environments owned by the home address space which are related (by IWMMRELA) to other
monitoring environments are not searched.

Optionally, to narrow the search, a caller can also provide the subsystem type or the subsystem
instance in the SUBSYS and SUBSYSNM parameters.

Environment
The requirements for the caller are:

IWMWQWRK

382 z/OS: z/OS MVS Programming: Workload Management Services

Minimum authorization: Supervisor state, or problem state. Any PSW key.

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN = SASN, unless all monitoring environments owned by
the current home address space were created only in system keys. If
the current home address space owns any monitoring environments
created in a user key (8-F), then PASN = HASN = SASN.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Unlocked

Control parameters: Control parameters must be in the primary address space.

Programming requirements
You must include the IWMYCON mapping macro in the calling program.

Restrictions
None.

Input register information
Before issuing the IWMWQWRK macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.
1

Used as a work register by the system.
2 - 13

Unchanged
14

Used as a work register by the system.
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0 - 1

Used as a work register by the system.
2 - 13

Unchanged
14 - 15

Used as a work register by the system.

IWMWQWRK

Chapter 12. Workload management services 383

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMWQWRK macro is as follows:
main diagram

name
IWMWQWRK SEARCH_BY= CONNTKN parameters-1

LU62TKN parameters-2

,RETCODE=  retcode ,RSNCODE=  rsncode

,MF=S

,MF=(L, MFCTRL

, 0D

, mfattr

)

,MF=(E, MFCTRL

, COMPLETE

, complete

)

parameters-1

,CONNTKN=  conntkn

,LU62_LIST=NO_LU62_LIST

,LU62_LIST=  lu62_list ,LU62_LISTSIZE=  lu62_listsize

,QUERYLEN=  querylen

parameters-2
,SUBSYS=NO_SUBSYS

,SUBSYS=  subsys

,SUBSYSNM=NO_SUBSYSNM

,SUBSYSNM=  subsysnm

,LU62_LIST=  lu62_list ,LU62_LISTSIZE=  lu62_listsize

,ASID_LIST=NO_ASID_LIST

,ASID_LIST=  asid_list parameters-3

,STOKEN_LIST=NO_STOKEN_LIST

,STOKEN_LIST=  stoken_list parameters-4 ,SKIP_REGIONS=  skip_regions

parameters-3
,ASID_LISTSIZE=  asid_listsize ,ASID_SIZENEED=  asid_sizeneed

parameters-4
,STKN_LISTSIZE=  stkn_listsize ,STKN_SIZENEED=  stkn_sizeneed

Parameters
The parameters are explained as follows:
SEARCH_BY=CONNTKN
SEARCH_BY=LU62TKN

Required input parameter that specifies the type of search for the information about work.

IWMWQWRK

384 z/OS: z/OS MVS Programming: Workload Management Services

Use SEARCH_BY=CONNTKN to indicate that the information about work associated with the input
connect token should be returned. The information returned is a list of LU 6.2 tokens, contained in
LU62_LIST, and a return code.

Use SEARCH_BY=LU62TKN to indicate that information about work associated with the input list of LU
6.2 tokens (which the caller must provide in the LU62_LIST=lu62_list) should be returned.

You define the input list with the LU62_LIST and LU62_LISTSIZE keywords. The list must be the
output of a prior call to IWMWQWRK specifying SEARCH_BY=CONNTKN.

The information returned is a return code indicating whether work reflected in any monitoring
environment owned by the current home address space is associated with ANY LU 6.2 token in the list
of token provided in the LU62_LIST.

CONNTKN=conntkn
Required input parameter for SEARCH_BY=CONNTKN that specifies the connect token returned by
IWM4CON. The connect token (CONNTKN) must be owned by the current home address space.

To code: Specify the RS-type name or address in register (2)-(12), of a 32 bit field containing the
connect token.

QUERYLEN=querylen
Required output parameter for SEARCH_BY=CONNTKN that specifies the number of bytes needed to
contain the information for the input connect token (CONNTKN=conntkn).

To code: Specify the RS-type name or address in register (2)-(12), of a fullword containing the number
of bytes to contain the information.

SUBSYS=subsys
SUBSYS=NO_SUBSYS

Optional input parameter for SEARCH_BY=LU62TKN that specifies the generic subsystem type (ie
CICS, IMS) This keyword helps narrow the search for the matching LU 6.2 token further.

To code: Specify the RS-type name or address in register (2)-(12), of a 4 character field containing the
generic subsystem type.

SUBSYSNM=subsysnm
SUBSYSNM=NO_SUBSYSNM

Optional input parameter for SEARCH_BY=LU62TKN that specifies the subsystem instance name. This
keyword helps narrow the search for the matching LU 6.2 token further.

To code: Specify the RS-type name or address in register (2)-(12), of an 8 character field containing
the subsystem instance name.

LU62_LIST=lu62_list
LU62_LIST=NO_LU62_LIST

Optional input/output parameter specifying the area for the list of LU 6.2 tokens when you specify
CONNTKN. When you specify LU62TKN, this parameter is required.. To specify an input LU62_LIST,
you must have previously invoked this macro to receive an output LU62_LIST, and provide the list on a
subsequent invocation.

To code: Specify the RS-type name or address in register (2)-(12), of a character field specifying the
area for the LU 6.2 token list.

,LU62_LISTSIZE=lu62_listsize
Required input parameter for LU62_LIST=lu62_list specifying the length of the area provided to
contain the data returned by IWMWQWRK.

To code: Specify the RS-type name or address in register (2)-(12), of a fullword field containing the
length of the LU 6.2 token list.

ASID_LIST=asid_list
ASID_LIST=NO_ASID_LIST

Optional input/output parameter that specifies an area for the list of ASIDs. Each entry (ASID) is 2
bytes. Only ASIDs for regions known to be involved in some work request are returned. Regions which
could not be interrogated are reflected only in the SKIP_REGIONS parameter.

IWMWQWRK

Chapter 12. Workload management services 385

ASID_LIST=NO_ASID_LIST indicates that no list area is provided.

To code: Specify the RS-type name or address in register (2)-(12), of a character field specifying the
area for the list of ASIDs.

ASID_LISTSIZE=asid_listsize
Required input parameter for ASID_LIST=asid_list that specifies the length of the area provided for
the ASIDs returned by IWMWQWRK.

To code: Specify the RS-type name, or address in register (2)-(12), of a fullword containing the length
of the area.

ASID_SIZENEED=asid_sizeneed
Required output parameter for ASID_LIST=asid_list that specifies the number of bytes needed for the
output list of ASIDs.

To code: Specify the RS-type name or address in register (2)-(12), of a fullword to contain the number
of bytes needed for the ASID list.

STOKEN_LIST=stoken_list
STOKEN_LIST=NO_STOKEN_LIST area is provided.

Option input/output parameter for that specifies the area for the list of STOKENs. Only STOKENs for
regions known to be involved in some work request are returned. Regions which could not be
interrogated are only reflected in the SKIP_REGIONS variable.

To code: Specify the name (RS-type), or address in register (2)-(12), of a character field specifying an
area for the list of STOKENs.

STKN_LISTSIZE=stkn_listsize
Required input parameter for STOKEN_LIST=stoken_list that contains the length of the area provided
for the STOKEN list being returned by IWMWQWRK.

To code: Specify the name (RS-type), or address in register (2)-(12), of a fullword containing the
length of the area.

STKN_SIZENEED=stkn_sizeneed
Required input parameter for STOKEN_LIST=stoken_list that specifies the number of bytes needed for
the output list of STOKENs.

To code: Specify the RS-type name or address in register (2)-(12), of a fullword containing the number
of bytes.

SKIP_REGIONS=skip_regions
Optional output parameter for STOKEN_LIST=stoken_list that contains the number of address spaces
skipped and therefore not included in the output list of ASIDs/STOKENs. If the caller wants to re-
invoke IWMWQWRK when SKIP_REGIONS is non-zero, it may be desirable to ensure that
ASID_SIZENEED + 2*SKIP_REGIONS <= ASID_LISTSIZE, AND that STKN_SIZENEED +
8*SKIP_REGIONS <= STKN_LISTSIZE when these output areas are passed.

,RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return code. The return
code is also in GPR 15.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain
the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the reason code. The reason
code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain
the reason code (if any).

IWMWQWRK

386 z/OS: z/OS MVS Programming: Workload Management Services

,MF=S
,MF=(L,mfctrl,mfattr)
,MF=(E,mfctrl,COMPLETE)

Use MF=S to specify the standard form, which places parameters into an inline parameter list and
invokes the IWM4CON macro service.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require re-entrant code. The list form defines an area of storage that the
execute form uses to store the parameters.

Use MF=E to specify the execute form of the macro. Use the execute form with the list form of the
macro for applications that require re-entrant code. The execute form stores the parameters into the
storage area defined by the list form and generates the macro invocation to transfer control to the
service.
,mfctrl

Use this output parameter to specify the name of the storage area to contain the parameters.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of the storage area
containing the parameter list.

,mfattr
Use this input parameter to specify the name of a 1 to 60 character storage area that can contain
any value that is valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code ,mfattr the system provides a value of
0D, which forces the parameter on a doubleword boundary.

,COMPLETE
Use this input parameter to specify that the system check for required parameters and supply
defaults for omitted optional parameter.

ABEND codes
None.

Return codes and reason codes
When IWMWQWRK macro returns control to your program, GPR 15 contains a return code. When the
return code is non-zero, then GPR 0 contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning

X'00' Meaning: Successful completion.

X'04' X'0408' Meaning: Warning. No work matching the input search arguments was found.

X'04' X'0409' Meaning: Warning. Input connection token does not reflect an active
connection to WLM.

X'04' X'040A' Meaning: Warning. The output area supplied is too small to receive all the
available information.

X'08' X'0802' Meaning: Program error. The caller is in cross-memory mode while some
monitoring environments were in user key.

X'08' X'0803' Meaning: Program error. Caller is disabled.

X'08' X'0804' Meaning: Program error. Caller is locked.

X'08' X'080B' Meaning: Program error. Error accessing parameter list.

X'08' X'0810' Meaning: Program error. The caller has EUT FRR established.

X'08' X'0823' Meaning: Program error. The caller invoked the service while dynamic
address translation was disabled.

X'08' X'0824' Meaning: Program error. The caller invoked the service but was in 24-bit
addressing mode.

IWMWQWRK

Chapter 12. Workload management services 387

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning

X'08' X'0825' Meaning: Program error. The caller invoked the service but was not in
primary ASC mode.

X'08' X'0827' Meaning: Program error. Reserved field in parameter list was non-zero.

X'08' X'0828' Meaning: Program error. Version number in parameter list is not valid.

X'08' X'0829' Meaning: Program error. Parameter list omits required parameters or
supplies mutually exclusive parameters or provides data associated with
options not selected.

Example
To identify where the transactions associated with the input connect token are executing, specify:

IWMWQWRK SEARCH_BY=CONNTKN,CONNTKN=(R7),
 LU62_LIST=LIST1,LU62_LISTSIZE=SIZE1,
 QUERYLEN=(R9),RETCODE=RCODE,RSNCODE=RSN

LIST1 is a field containing the area for the list. SIZE1 is a field containing the length of the list.

IWMWSYSQ — Query system information

This service queries information about the systems in the sysplex that are in goal mode. The Query
System Information service, IWMWSYSQ, returns a list of systems running in goal mode and information
related to available CPU capacity and resource constraints.

The caller of IWMWSYSQ must provide storage to contain all of the system information. This storage area
must reside in the caller's primary address space.

It is possible that the storage required by IWMWSYSQ may change such that multiple IWMWSYSQ calls
are required to obtain data. IWMWSYSQ users should take this into account when obtaining the amount of
storage that the IWMWSYSQ service can use.

If the caller does not provide enough storage to contain all of the system information, this service will
return a return/reason code pair indicating that the input SYSINFO_BLOCK is too small. Output data about
the amount of storage required (QUERYLEN) will be set to reflect the required SYSINFO_BLOCK size.
However, no system capacity information is returned.

Applications that schedule work across multiple systems in an MVS sysplex can use this service to:

• Locate the best (fastest or most idle) system in a sysplex for scheduling specific work.
• Avoid scheduling additional work to systems already critically overloaded.
• Factor WLM business importance level information into scheduling decisions.

The output of this service is a data area mapped by the IWMWSYSI macro, that provides a point-in-time
snapshot of each system WLM is managing in goal mode within the sysplex. A scheduling application can
interpret and use this information to schedule one or more types of work to systems with specific
operating characteristics. Some examples of operating characteristics you can identify with IWMWSYSQ
are:

• Fastest CP speed — Use the IWMWSYSI data area to identify the system having the fastest single CP
speed.

• Multi-processing capability — Use the IWMWSYSI data area to identify the number of online CPs on
each available system.

• Idle capacity — Use the IWMWSYSI data area to identify the system with the greatest idle capacity.

If a scheduling application can identify the IMPORTANCE LEVEL of the work it schedules the application
can use IWMWSYSI to select the most appropriate system. IWMWSYSI provides a vector containing the

IWMWSYSQ

388 z/OS: z/OS MVS Programming: Workload Management Services

amount of capacity consumed at each importance level on each system. Thus, if an application is
scheduling importance level 3 work, it can use IWMWSYSI to identify the system that has the most
capacity that is either idle or is handling importance level 4 or lower work.

An important use of a scheduling application is to avoid placing additional work on systems experiencing
contention. IWMWSYSI provides an indicator for each system that, if on, signifies that the system should
be avoided for scheduling additional work. This contention indicator is set if a auxiliary storage, fixed
storage, or SQA shortage exists. Also, if work to be scheduled may consume large quantities of CSA, you
can use IWMWSYSI to determine the amount of CSA and ECSA that is available on each system.

Notes :

• Multiple applications may simultaneously use the same IWMWSYSQ information to make work
scheduling decisions. These multiple applications will have no direct cooperation and will compete for
the available systems. It is recommended that before an application schedules a large amount of work it
activate a small quantity of work, wait for a built-in delay, and then use IWMWSYSQ to determine the
effect of the added work before scheduling the additional work.

• Field SYSI_CPU_UP in macro IWMWSYSI returns the speed of an individual CP on the system, adjusted
to compensate for MP effects. However, the CP speed of an LPAR is influenced by the CEC LPAR
configuration. Variables such as the number of LPARs, the CP mode (shared or dedicated), capping
controls, and the logical to physical CP ratio will all influence the actual CP speed. SYS_CPU_UP is not
adjusted for such LPAR configuration effects and therefore the actual performance may differ. See the
PR/SM manual for more details.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

IWMWSYSQ

Chapter 12. Workload management services 389

Input register information
Before issuing the IWMWSYSQ macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMWSYSQ macro is as follows:

IWMWSYSQ

390 z/OS: z/OS MVS Programming: Workload Management Services

name
IWMWSYSQ SYSINFO_BLOCK=  sysinfo_block

,EXTENDED_DATA=NO

,EXTENDED_DATA=YES

,ANSLEN=  anslen ,QUERYLEN=  querylen

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=2

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMWSYSQ macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ANSLEN=anslen
A required input parameter, which contains the length of the SYSINFO_BLOCK in bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,EXTENDED_DATA=NO
,EXTENDED_DATA=YES

An optional input parameter, which describes whether the format of the output area named by
SYSINFO_BLOCK includes the extended section or not (see IWMWSYSI). The default is
EXTENDED_DATA=NO.
,EXTENDED_DATA=NO

indicates that the format of the output area named by SYSINFO_BLOCK includes only the standard
information mapped by the SYSI, which consists of an array of entries described by SYSI_ENTRY.

,EXTENDED_DATA=YES
indicates that the format of the output area given by SYSINFO_BLOCK includes first the standard
information mapped by the SYSI, which consists of an array of entries described by SYSI_ENTRY,
followed immediately by the header for the extension section and another array of entries
described by SYSI_EXT_Entry.

The EXTENDED_DATA parameter is only available to callers of the IWMWSYSQ service when
invoked on a system running z/OS R9 or higher.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

IWMWSYSQ

Chapter 12. Workload management services 391

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 2, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 2

,QUERYLEN=querylen
A required output parameter, variable which contains the output area size that must be provided by
the caller to contain all of the active systems in the sysplex that are in goal mode (i.e. the amount of
data returned by the IWMWSYSQ service).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

IWMWSYSQ

392 z/OS: z/OS MVS Programming: Workload Management Services

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SYSINFO_BLOCK=sysinfo_block
A required input parameter that is to contain the address of an output area to contain information
provided by this service. The format of this area is mapped by IWMWSYSI and should only be
considered valid upon return code zero from this service.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

ABEND codes
None.

Return codes and reason codes
When the IWMWSYSQ macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 66. Return and Reason Codes for the IWMWSYSQ Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive all the available
information.

Action: None required. If necessary, reinvoke the service with an output area
of sufficient size (returned in QUERYLEN) to receive all information.

4 xxxx0420 Equate Symbol: IwmRsnCodeSysInfoIncomplete

Meaning: System capacity data for one or more systems running in goal
mode is unavailable when the IWMWSYSQ service is invoked.

Action: None required. If necessary, wait a few minutes and reinvoke the
service to receive all information.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

IWMWSYSQ

Chapter 12. Workload management services 393

Table 66. Return and Reason Codes for the IWMWSYSQ Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or the length specified
is incorrect.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083C Equate Symbol: IwmRsnCodeMissingAcro

Meaning: Required parameter list acronym (eye catcher) not found or a zero
SYSINFO_BLOCK pointer is found to be associated with a non-zero ANSLEN.

Action: Check for possible storage overlay of the parameter list after
ensuring that the acronym was correctly set.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C12 Equate Symbol: IwmRsnNoGoalModeSystems

Meaning: There are no goal mode systems in the sysplex

Action: No action required.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

Example
To query system information, specify:

IWMWSYSQ SYSINFO_BLOCK=SYSINFO,ANSLEN=ANSLEN, X
 QUERYLEN=QUERYLEN,RETCODE=RC,RSNCODE=RSN

Where the following are declared:

SYSINFO DS F SYSINFO_BLOCK address
ANSLEN DS F Length of the SYSINFO_BLOCK area
QUERYLEN DS F Query length
RC DS F Return code
RSN DS F Reason code

IWMWSYSQ

394 z/OS: z/OS MVS Programming: Workload Management Services

IWM4AEDF — WLM define dynamic application environments
The IWM4AEDF service defines dynamic application environments to WLM. The service can be used by
queue manager address spaces to add new application environments after they connected to WLM and to
delete the dynamic application environments before they disconnect from WLM.

Furthermore, the service can be used to define the method how server spaces should be resumed for
static and dynamic application environments.

Before using this service, the caller must connect to WLM using the IWM4CON service, specifying
Work_Manager=Yes, and Queue_Manager=Yes.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space which
connected to WLM (i.e. the address space that was home when
IWM4CON was issued for Queue_Manager=Yes, or
Server_Manager=Yes with Server_Type=Queue).

AMODE: 31- or 64-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
None

Input register information
Before issuing the IWM4AEDF macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

IWM4AEDF

Chapter 12. Workload management services 395

Register
Contents

0
Reason code if GR15 return code is non-zero

1
Used as work register by the system

2-13
Unchanged

14
Used as work register by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None

IWM4AEDF

396 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
main diagram

name
b IWM4AEDF b CONNTKN=  conntkn

,FUNC=ADD parameters-1

,FUNC=DELETE ,APPLENV=  applenv

,FUNC=MODIFY ,APPLENV=  applenv

,DISTRIBUTE_WORK=FIRST_AVAILABLE

,DISTRIBUTE_WORK=ROUND_ROBIN

,STATIC=NO

,STATIC=YES

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

parameters-1

,APPLENV=  applenv ,JCLPROC=  jclproc

,JCLPARMS=0

,JCLPARMS=  jclparms

,JOBSPACE=NO

,JOBSPACE=YES

,SINGLE_SERVER=NO

,SINGLE_SERVER=YES

,SELECT_POLICY=0

,SELECT_POLICY=  select_policy

,DISTRIBUTE_WORK=FIRST_AVAILABLE

,DISTRIBUTE_WORK=ROUND_ROBIN

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4AEDF macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

IWM4AEDF

Chapter 12. Workload management services 397

,APPLENV=applenv
When FUNC=ADD is specified, a required input parameter, which contains the name of the dynamic
application environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,APPLENV=applenv
When FUNC=DELETE is specified, a required input parameter, which contains the name of the
dynamic application environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,APPLENV=applenv
When FUNC=MODIFY is specified, a required input parameter, which contains the name of the static
or dynamic application environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

CONNTKN=conntkn
A required input parameter, which contains the connect token returned by the IWM4CON macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,DISTRIBUTE_WORK=FIRST_AVAILABLE
,DISTRIBUTE_WORK=ROUND_ROBIN

When FUNC=ADD is specified, an optional parameter that controls how workload management
resumes bound server spaces that are waiting for work The default is
DISTRIBUTE_WORK=FIRST_AVAILABLE.
,DISTRIBUTE_WORK=FIRST_AVAILABLE

Workload management wakes up the server space that has been suspended first (default).
,DISTRIBUTE_WORK=ROUND_ROBIN

Workload management wakes up the server space that has the smallest number of affinities. If
there are several server spaces with the same number of affinities, workload management will
start the server space with the smallest number of active server tasks.

,DISTRIBUTE_WORK=FIRST_AVAILABLE
,DISTRIBUTE_WORK=ROUND_ROBIN

When FUNC=MODIFY is specified, an optional parameter that controls how workload management
resumes bound server spaces that are waiting for work The default is
DISTRIBUTE_WORK=FIRST_AVAILABLE.
,DISTRIBUTE_WORK=FIRST_AVAILABLE

Workload management wakes up the server space that has been suspended first (default).
,DISTRIBUTE_WORK=ROUND_ROBIN

Workload management wakes up the server space that has the smallest number of affinities. If
there are several server spaces with the same number of affinities, workload management will
start the server space with the smallest number of active server tasks.

,FUNC=ADD
,FUNC=DELETE
,FUNC=MODIFY

A required parameter that indicates how the caller uses the service
,FUNC=ADD

indicates that the caller wants to add a dynamic application environment to WLM.
,FUNC=DELETE

indicates that the caller wants to delete its interest in the dynamic application environment.
,FUNC=MODIFY

indicates that the caller wants to redefine the method how server spaces should be resumed for
static and dynamic application environments.

IWM4AEDF

398 z/OS: z/OS MVS Programming: Workload Management Services

,JCLPARMS=jclparms
,JCLPARMS=0

When FUNC=ADD is specified, an optional input parameter, which contains the parameters which are
passed to the start procedure of the server manager address spaces by WLM. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a 115-character field.

,JCLPROC=jclproc
When FUNC=ADD is specified, a required input parameter, which contains the name of the start
procedure which is used by WLM to start server manager address spaces for the application
environment.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,JOBSPACE=NO
,JOBSPACE=YES

When FUNC=ADD is specified, an optional parameter, which specifies whether the server address
spaces for the application environment should be started as 'SYSTEM' or 'JOB' address spaces.
System address spaces are defined in the RACF STARTED class as jobname.jobname. Job address
spaces are defined in the RACF STARTED class as procname.jobname. The default is JOBSPACE=NO.
,JOBSPACE=NO

Server address spaces will be started as system address spaces. This is the default.
,JOBSPACE=YES

Server address spaces will be started as job address spaces.
,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

IWM4AEDF

Chapter 12. Workload management services 399

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SELECT_POLICY=select_policy
,SELECT_POLICY=0

When FUNC=ADD is specified, an optional input parameter, which tells WLM how to select work if
work requests are directly routed to the server address space. Only 0,1 and 2 are valid select policies.
0 is the default which is also selected if an invalid policy is specified.

The select policy options 0,1 and 2 have the following meaning:

• 0 Default, the oldest request on either the service class or server address space queue is selected
first.

• 1 The request on the server address space queue (if present) is selected first independently of the
times the requests have been inserted.

• 2 The request on the service class queue is always selected first.

The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a one-byte field.

,SINGLE_SERVER=NO
,SINGLE_SERVER=YES

When FUNC=ADD is specified, an optional parameter indicating whether one or multiple server spaces
should be started for the application environment The default is SINGLE_SERVER=NO.

IWM4AEDF

400 z/OS: z/OS MVS Programming: Workload Management Services

,SINGLE_SERVER=NO
Multiple server spaces should be started for the application environment (default).

,SINGLE_SERVER=YES
Only one server space should be started for the application environment.

,STATIC=NO
,STATIC=YES

When FUNC=MODIFY is specified, an optional parameter that controls whether a static or dynamic
application environment should be updated The default is STATIC=NO.
,STATIC=NO

indicates that the caller wants to modify a dynamic application environment (default).
,STATIC=YES

indicates that the caller wants to modify a static application environment.

ABEND codes
None.

Return codes and reason codes
When the IWM4AEDF macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 67. Return and Reason Codes for the IWM4AEDF Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

IWM4AEDF

Chapter 12. Workload management services 401

Table 67. Return and Reason Codes for the IWM4AEDF Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Make sure to use the connect token returned by the
IWM4CON service requesting Queue_Manager=Yes, or
Server_Manager=Yes with Server_Type=Queue.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing
mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary ASC
mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported by the
MVS release on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083F Equate Symbol: IwmRsnCodePrimaryNotOwnConn

Meaning: Primary address space does not own the passed
connect token.

Action: Ensure that the primary address space has previously
connected to WLM using the IWM4CON macro. Ensure that the
connect token returned by the IWM4CON macro is passed to the
IWM4AEDF macro.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this
service

Action: Make sure that Queue_Manager=Yes, or
Server_Manager=Yes with Server_Type=Queue is specified on
the IWM4CON request to enable this service.

IWM4AEDF

402 z/OS: z/OS MVS Programming: Workload Management Services

Table 67. Return and Reason Codes for the IWM4AEDF Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller's space disconnected from WLM during
processing of the request.

Action: None.

8 xxxx0890 Equate Symbol: IwmRsnCodeApplEnvExists

Meaning: The caller tried to add an application environment that
has already been defined. subsystem type.

Action: Check whether the correct application environment
name is being used. Make sure that a unique application
environment name is used when adding application
environments.

8 xxxx0891 Equate Symbol: IwmRsnCodeApplEnvNotFound

Meaning: The caller tried to delete or modify an application
environment that does not exist.

Action: Check whether the correct application environment
name is being used.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: Contact your system programmer. There is a common
storage shortage.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To add a dynamic application environment:

 IWM4AEDF CONNTKN=CONNTOKEN, X
 FUNC=ADD, X
 APPLENV=APPLENV X
 JCLPROC=JCLPROC X
 RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
CONNTOKEN DS FL4 Contains the connect token
* associated with the use of WLM
* Queuing services as returned by
* IWM4CON
APPLENV DS CL32 Contains the application
* environment name
JCLPROC DS CL8 Contains the name of the
* start procedure
RC DS F Return code
RSN DS F Reason code

IWM4AEDF

Chapter 12. Workload management services 403

IWM4CLSY — Classify work

The purpose of the IWM4CLSY service is to factor in available information about an arriving work request
in order to associate a service class and possibly a report class with it.

Note : This service was previously called IWMCLSFY for 31-bit addressing only (see “IWMCLSFY —
Classify work request” on page 740).

Environment
The requirements for the caller are:

Minimum authorization: Either problem state or supervisor state. PSW key must either be 0 or
match the value supplied on IWM4CON.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Unlocked or locked.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The caller is responsible for error recovery.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
1. This macro may only be used on z/OS V2R1, or higher.
2. FRRs are allowed.
3. This macro may not be used during task/address space termination for the connect owner.
4. If the key specified on IWM4CON was a user key (8-F), then the current primary must equal the

primary at the time that IWM4CON was invoked.
5. Only limited checking is done of the connect token obtained from IWM4CON.
6. Parameters SOURCELU, CLIENTIPADDR, and NETID/LUNAME are mutually exclusive.
7. Parameters EWLM_OUTCORR, EWLM_CHCORR and EWLM_CHCTKN are all mutually exclusive.

IWMCLSY

404 z/OS: z/OS MVS Programming: Workload Management Services

8. There is no restriction on the length of data passed as a parameter value, but all storage between the
start and end must be allocated (getmained).

Input register information
Before issuing the IWM4CLSY macro, the caller must ensure that the following general purpose registers
(GPRs) contain the specified information:
Register

Contents
13

The address of a 216-byte standard save area in the primary address space

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
The syntax of the IWM4CLSY macro is as follows:

IWMCLSY

Chapter 12. Workload management services 405

name
IWM4CLSY

TRXNAME=NO_TRXNAME

TRXNAME=  trxname

,USERID=NO_USERID

,USERID=  userid

,TRXCLASS=NO_TRXCLASS

,TRXCLASS=  trxclass

,ACCTINFO=NO_ACCTINFO

,ACCTINFO=  acctinfo

,ACCTINFO_L=  acctinfo_l

,SOURCELU=NO_SOURCELU

,SOURCELU=  sourcelu

,SOURCELU_L=  sourcelu_l

,NETID=NO_NETID

,NETID=  netid

,LUNAME=NO_LUNAME

,LUNAME=  luname

,SUBSYSPM=NO_SUBSYSPM

,SUBSYSPM=  subsyspm

,SUBSYSPM_L=  subsyspm_l

,CLIENTACCT=NO_CLIENTACCT

,CLIENTACCT=  clientacct

,CLIENTACCT_L=  clientacct_l

,CLIENTIPADDR=NO_CLIENTIPADDR

,CLIENTIPADDR=  clientipaddr

,CLIENTTRXNM=NO_CLIENTTRXNM

,CLIENTTRXNM=  clienttrxnm

,CLIENTTRXNM_L=  clienttrxnm_l

,CLIENTUSERID=NO_CLIENTUSERID

,CLIENTUSERID=  clientuserid

,CLIENTUSERID_L=  clientuserid_l

,CLIENTWKSTNM=NO_CLIENTWKSTNM

,CLIENTWKSTNM=  clientwkstnm

,CLIENTWKSTNM_L=  clientwkstnm_l

,COLLECTION=NO_COLLECTION

,COLLECTION=  collection

,COLLECTION_L=  collection_l

,PLAN=NO_PLAN

,PLAN=  plan

,PACKAGE=NO_PACKAGE

,PACKAGE=  package

,PACKAGE_L=  package_l

,CONNECTION=NO_CONNECTION

,CONNECTION=  connection

,CORRELATION=NO_CORRELATION

,CORRELATION=  correlation

,CORRELATION_L=  correlation_l

,PERFORM=NO_PERFORM

,PERFORM=  perform

,PRCNAME=NO_PRCNAME

,PRCNAME=  prcname

,PRCNAME_L=  prcname_l

,PRIORITY=NO_PRIORITY

,PRIORITY=  priority

, PROCESSNAME = NOPROCESSNAME

, PROCESSNAME=  processname

,PROCESSNAME_L=  processname_l

,CONNTKN=  conntkn

,SUBCOLN=NO_SUBCOLN

,SUBCOLN=  subcoln

,SCHEDENV=NO_SCHEDENV

,SCHEDENV=  schedenv

,SCHEDENV_L=schedenv_l

,EWLM_CORR=NO_EWLM_CORR

,EWLM_CORR=  ewlm_corr ,EWLM_OUTCORR=  ewlm_outcorr

,EWLM_CHCORR=  ewlm_chcorr ,EWLM_CHCTKN=  ewlm_chctkn

,EWLM_CLTOKEN=NO_EWLM_CLTOKEN

,EWLM_CLTOKEN=  ewlm_cltoken ,SRMTOKEN=  srmtoken

,SERVCLS=  servcls

,SRVCLSNM=  srvclsnm ,RPTCLSNM=  rptclsnm

,TTRACETOKEN=  ttracetoken ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

,NOCHECK

)

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

Parameters
The parameters are explained as follows:

IWMCLSY

406 z/OS: z/OS MVS Programming: Workload Management Services

name
An optional symbol, starting in column 1, that is the name on the IWM4CLSY macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ACCTINFO=acctinfo
,ACCTINFO=NO_ACCTINFO

An optional input parameter, which contains the accounting information. For environments where
accounting information is available on some, but not all flows, provision of a data area initialized to all
blanks is equivalent to specification of NO_ACCTINFO. The default is NO_ACCTINFO, which indicates
that no accounting information was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,ACCTINFO_L=acctinfo_l
When ACCTINFO=acctinfo is specified, a required input parameter, which contains the length of the
accounting information field. The maximum value supported is 143.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,CLIENTACCT=clientacct
,CLIENTACCT=NO_CLIENTACCT

An optional input parameter, which contains the accounting information. For environments where
accounting information is available on some, but not all flows, providing a data area initialized to all
blanks is equivalent to specifying NO_CLIENTACCT. The default is NO_CLIENTACCT, which indicates
that no accounting information was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,CLIENTACCT_L=clientacct_l
When CLIENTACCT=clientacct is specified, a required input parameter, which contains the length of
the client accounting information field. The maximum value supported is 512.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,CLIENTIPADDR=clientipaddr
,CLIENTIPADDR=NO_CLIENTIPADDR

An optional input parameter, which contains the 39-character source client IP address.

The recommended format of the value is uncompressed since each of the segments of an IP address
always has the same position. This simplifies the effort of defining classification rules based on subnet
addresses, and reduces the number of classification rules that might be necessary.

Depending on the version of IP, the recommended format is as follows:

• For IPv6 addresses, the value is represented as an uncompressed colon hexadecimal address. For
example, '2001:0DB8:0000:0000:0008:0800:200C:417A'

• For IPv4 addresses, the value is an uncompressed representation of the dotted decimal portion of
the IP address as right justified (leading blanks) in a 39-character space. Leading zeros, to the
dotted decimal portion, are represented by the IPv6 colon-hexadecimal double colon ("::")
compression convention. An example of such an IPv4 address is: ' ␢␢␢␢␢␢␢␢␢␢␢␢␢␢␢␢␢::FFFF:
001.000.013.114'

For environments where the source client IP address might be available on some, but not all flows,
providing a data area initialized to all blanks is equivalent to specifying NO_CLIENTIPADDR.

SOURCELU, CLIENTIPADDR and NETID/LUNAME are mutually exclusive. The default is
NO_CLIENTIPADDR, which indicates that no CLIENTIPADDR name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 39-character field.

,CLIENTTRXNM=clienttrxnm
,CLIENTTRXNM=NO_CLIENTTRXNM

An optional input parameter, which contains the client transaction name for the work request, as
known by the work manager. For environments where the transaction name is available on some, but

IWMCLSY

Chapter 12. Workload management services 407

not all flows, providing a data area initialized to all blanks is equivalent to specifying
NO_CLIENTTRXNM. The default is NO_CLIENTTRXNM, which indicates that no client transaction name
is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,CLIENTTRXNM_L=clienttrxnm_l
When CLIENTTRXNM=clienttrxnm is specified, a required input parameter, which contains the length
of the client transaction name field. The maximum value supported is 255.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,CLIENTUSERID=clientuserid
,CLIENTUSERID=NO_CLIENTUSERID

An optional input parameter, which contains the value of the client user ID which may be different
than USERID and provided from the client information that is specified for the connection. For
environments where the client user ID name may be available on some, but not all flows, providing a
data area initialized to all blanks is equivalent to specifying NO_CLIENTUSERID. The default is
NO_CLIENTUSERID, which indicates that no CLIENTUSERID name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,CLIENTUSERID_L=clientuserid_l
When CLIENTUSERID=clientuserid is specified, a required input parameter, which contains the length
of the client user ID name field. The maximum value supported is 128.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,CLIENTWKSTNM=clientwkstnm
,CLIENTWKSTNM=NO_CLIENTWKSTNM

An optional input parameter, which contains the value of the client workstation name or host name
from the client information that is specified for the connection. For environments where the client
workstation name may be available on some, but not all flows, providing a data area initialized to all
blanks is equivalent to specifying NO_CLIENTWKSTNM. The default is NO_CLIENTWKSTNM, which
indicates that no CLIENTWKSTNM name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,CLIENTWKSTNM_L=clientwkstnm_l
When CLIENTWKSTNM=clientwkstnm is specified, a required input parameter, which contains the
length of the client workstation name field. The maximum value supported is 255.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,COLLECTION=collection
,COLLECTION=NO_COLLECTION

An optional input parameter, which contains the customer defined name for a group of associated
packages. For environments where the collection name may be available on some, but not all flows,
providing a data area initialized to all blanks is equivalent to specifying NO_COLLECTION. The default
is NO_COLLECTION, which indicates that no COLLECTION name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,COLLECTION_L=collection_l
When COLLECTION=collection is specified, a required input parameter, which contains the length of
the collection name. The maximum value supported is 18.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or a literal
decimal value.

IWMCLSY

408 z/OS: z/OS MVS Programming: Workload Management Services

,CONNECTION=connection
,CONNECTION=NO_CONNECTION

An optional input parameter, which contains the name associated with the environment creating the
work request, which may reside anywhere within the network. For environments where the
connection name may be available on some, but not all flows, providing a data area initialized to all
blanks is equivalent to specifying NO_CONNECTION . The default is NO_CONNECTION, which
indicates that no CONNECTION name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,CONNTKN=conntkn
A required input parameter, which is returned by IWM4CON for use by the classify routine.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,CORRELATION=correlation
,CORRELATION=NO_CORRELATION

An optional input parameter, which contains the name associated with the user/program creating the
work request, which may reside anywhere within the network. For environments where the correlation
name may be available on some, but not all flows, providing a data area initialized to all blanks is
equivalent to specifying NO_CORRELATION. The default is NO_CORRELATION, which indicates that no
CORRELATION name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,CORRELATION_L=correlation_l
When CORRELATION=correlation is specified, a required input parameter, which contains the length
of the correlation identifier. The maximum value supported is 12.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,EWLM_CHCORR=ewlm_chcorr
An optional output parameter, which contains the cross-platform Enterprise Workload Management
(EWLM) child correlator associated with the instantiated sub work request. Specifying this parameter
indicates that a sub work request is created.

Note :

1. Currently z/OS V2R1 only uses the first 64 bytes of the EWLM_CHCORR field.
2. The EWLM_OUTCORR, EWLM_CHCORR and EWLM_CHCTKN parameters are mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a 512-character field.

,EWLM_CHCTKN=ewlm_chctkn
An optional output parameter, which contains the cross-platform Enterprise Workload Management
(EWLM) child correlator token associated with the instantiated sub work request. Specifying this
parameter indicates that a sub work request is created. An EWLM child correlator token must not be
passed outside of the EWLM management domain.

The EWLM_OUTCORR, EWLM_CHCORR and EWLM_CHCTKN parameters are mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-character field.

,EWLM_CLTOKEN=ewlm_cltoken
,EWLM_CLTOKEN=NO_EWLM_CLTOKEN

An optional input parameter, which contains internal EWLM classification information to be passed
from EWLM to WLM. This parameter is used internally by WLM and must not be used by application
programs. The default is NO_EWLM_CLTOKEN, which indicates that no EWLM classification
information was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 40-character field.

,EWLM_CORR=ewlm_corr
,EWLM_CORR=NO_EWLM_CORR

An optional input parameter, which contains the cross-platform Enterprise Workload Management
(EWLM) correlator associated with the work request. If this parameter is specified and a valid EWLM

IWMCLSY

Chapter 12. Workload management services 409

correlator is passed, the EWLM transaction class can be used for WLM classification purposes. The
default is NO_EWLM_CORR which indicates that no EWLM correlator is passed.

The EWLM correlator also serves as the input correlator for the EWLM_CHCORR, EWLM_CHTKN,
EWLM_OUTCORR parameters.

Note :

1. The architected length field of an ARM correlator in the first two bytes must contain a value
between 4 (X'0004') and 512 (X'0200').

2. For environments where the EWLM correlator may be available on some, but not all flows,
providing a data area with the first four bytes set to binary zeroes is equivalent to specifying
NO_EWLM_CORR.

3. The EWLM_OUTCORR, EWLM_CHCORR and EWLM_CHCTKN parameters are mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_OUTCORR=ewlm_outcorr
An optional output parameter which receives a validated EWLM correlator on return. The execution
form of IWM4CLSY validates the passed correlator in EWLM_CORR and provides a valid EWLM
correlator in EWLM_OUTCORR as follows:

• If the EWLM_CORR parameter is specified and the correlator in EWLM_CORR is a valid ARM
correlator in EWLM format, it is copied to EWLM_OUTCORR.

• If the correlator in EWLM_CORR is not a valid EWLM ARM correlator or the EWLM_CORR parameter
is omitted, a new classify correlator is returned within the EWLM_OUTCORR field.

Note :

1. Specifying EWLM_OUTCORR (unlike EWLM_CHCORR or EWLM_CHCTKN) does not indicate the
beginning of a sub work request.

2. Currently z/OS V2R1 only uses the first 64 bytes of the EWLM_OUTCORR field.
3. The application may specify the same parameter for both EWLM_CORR and EWLM_OUTCORR,

which means that the EWLM correlator can be validated or replaced in place.
4. The EWLM_OUTCORR, EWLM_CHCORR and EWLM_CHCTKN parameters are mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a 512-character field.

,LUNAME=luname
,LUNAME=NO_LUNAME

An optional input parameter, which contains the local LU name associated with the requestor. For
environments where the local LU name may be available on some, but not all flows, providing a data
area initialized to all blanks is equivalent to specifying NO_LUNAME.

SOURCELU, CLIENTIPADDR and LUNAME are mutually exclusive. The default is NO_LUNAME, which
indicates that no local LU name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

IWMCLSY

410 z/OS: z/OS MVS Programming: Workload Management Services

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines that need to
provide different options according to user-provided input. Use the list form to define a storage area;
use the modify form to set the appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IWM4CLSY in the following order:

• Use IWM4CLSY ...MF=(M,list-addr,COMPLETE) specifying appropriate parameters, including all
required ones.

• Use IWM4CLSY ...MF=(M,list-addr,NOCHECK), specifying the parameters that you want to change.
• Use IWM4CLSY ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E, and MF=M, this can be an
RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to supply defaults for
omitted optional parameters.

,NETID=netid
,NETID=NO_NETID

An optional input parameter, which contains the network identifier associated with the requestor. For
environments where the network identifier may be available on some, but not all flows, providing a
data area initialized to all blanks is equivalent to specifying NO_NETID.

SOURCELU, CLIENTIPADDR and NETID are mutually exclusive with NETID. The default is NO_NETID,
which indicates that no network identifier is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,PACKAGE=package
,PACKAGE=NO_PACKAGE

An optional input parameter, which contains the package name for a set of associated SQL
statements. Products using this attribute must chose a specific package name to be associated with
the work request, for example, the first package name used in the unit of work. Individual product
documentation describes how this choice is made to allow the installation to use the WLM
administrative application. For environments where the package name may be available on some, but
not all flows, providing a data area initialized to all blanks is equivalent to specifying NO_PACKAGE
The default is NO_PACKAGE, which indicates that no PACKAGE name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWMCLSY

Chapter 12. Workload management services 411

,PACKAGE_L=package_l
When PACKAGE=package is specified, a required input parameter, which contains the length of the
package information field. The maximum value supported is 128.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,PERFORM=perform
,PERFORM=NO_PERFORM

An optional input parameter, which contains the performance group number (PGN) associated with
the work request. If specified, the performance group number value must be within the range of
1-999, represented as character data, left-justified and padded with blanks on the right. For
environments where the perform value may be available on some, but not all flows, providing a data
area initialized to all blanks is equivalent to specifying NO_PERFORM. The default is NO_PERFORM,
which indicates that no PERFORM value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,PLAN=plan
,PLAN=NO_PLAN

An optional input parameter, which contains the access plan name for a set of associated SQL
statements. For environments where the plan name may be available on some, but not all flows,
providing a data area initialized to all blanks is equivalent to specifying NO_PLAN. The default is
NO_PLAN, which indicates that no PLAN name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,PRCNAME=prcname
,PRCNAME=NO_PRCNAME

An optional input parameter, which contains the Db2 Stored SQL Procedure name associated with the
work request. For environments where the SQL procedure name may be available on some, but not all
flows, providing a data area initialized to all blanks is equivalent to specifying NO_PRCNAME. The
default is NO_PRCNAME, which indicates that no PRCNAME value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 18-character field.

IWMCLSY

412 z/OS: z/OS MVS Programming: Workload Management Services

,PRCNAME_L=prcname_l
When PRCNAME=prcname is specified, a required input parameter, which contains the length of the
procedure name. The maximum value supported is 128.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,PRIORITY=priority
,PRIORITY=NO_PRIORITY

An optional input parameter, which contains the priority associated with the work request. For
environments where the priority value may be available on some, but not all flows, providing a data
area initialized to X'80000000' (the largest negative integer) is equivalent to specifying NO_PRIORITY.
The default is NO_PRIORITY, which indicates that no PRIORITY value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,PROCESSNAME=processname
,PROCESSNAME=NOPROCESSNAME

An optional input parameter, which contains the process name associated with the work request. The
default is NOPROCESSNAME, which indicates that no PROCESSNAME value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,PROCESSNM_L=processnm_l
When PROCESSNAME=processname is specified, a required input parameter, which contains the
length of the process name. The maximum value supported is 32.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (with or without parentheses), the value is left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12), or (15), (GPR15),
(REG15), or (R15).

,RPTCLSNM=rptclsnm
An optional output parameter, which is to receive the output report class name.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (with or without parentheses), the value is left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SCHEDENV=schedenv
,SCHEDENV=NO_SCHEDENV

An optional input parameter, which contains the scheduling environment value associated with the
work request. The default is NO_SCHEDENV, which indicates that no scheduling environment value is
passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,SCHEDENV_L=schedenv_l
When SCHEDENV=schedenv is specified, an optional input parameter, which contains the length of the
scheduling environment. The maximum value supported is 16.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

IWMCLSY

Chapter 12. Workload management services 413

,SERVCLS=servcls
A required output parameter, which is to receive the output token which represents the service and
report class for the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,SOURCELU=sourcelu
,SOURCELU=NO_SOURCELU

An optional input parameter, which contains the LU name associated with the requestor. This may be
the fully qualified NETID.LUNAME, for example, network name (1-8 bytes), followed by a period,
followed by the LU name for the requestor (1-8 bytes). It may also be the 1-8 byte local LU name, with
no network qualifier.

For environments where the LU name may be available on some, but not all flows, providing a data
area initialized to all blanks is equivalent to specifying NO_SOURCELU.

SOURCELU, CLIENTIPADDR and NETID/LUNAME are mutually exclusive. The default is
NO_SOURCELU, which indicates that no source LU name was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,SOURCELU_L=sourcelu_l
When SOURCELU=sourcelu is specified, a required input parameter, which contains the length of the
source LU name field. The maximum value supported is 17.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,SRMTOKEN=srmtoken
An optional output parameter, token for SRM internal use only.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,SRVCLSNM=srvclsnm
An optional output parameter, which is to receive the output service class name.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,SUBCOLN=subcoln
,SUBCOLN=NO_SUBCOLN

An optional input parameter, which contains the subsystem collection name associated with the work
request. The default is NO_SUBCOLN, which indicates that no subsystem collection name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,SUBSYSPM=subsyspm
,SUBSYSPM=NO_SUBSYSPM

An optional input parameter, which contains character data related to the work request which is
passed by the work manager for use in classification. The nature of the contents of this data must be
documented for customer use. For environments where the subsystem parameter is available on
some, but not all flows, providing a data area initialized to all blanks is equivalent to specifying
NO_SUBSYSPM. The default is NO_SUBSYSPM, which indicates that no parameter was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,TRXCLASS=trxclass
,TRXCLASS=NO_TRXCLASS

An optional input parameter, which contains a class name within the subsystem. This can be any
meaningful value that the installation can recognize and specify to match the value presented by the
work manager. For environments where the transaction class is available on some, but not all flows,
providing a data area initialized to all blanks is equivalent to specifying NO_TRXCLASS. The default is
NO_TRXCLASS, which indicates that no transaction class was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWMCLSY

414 z/OS: z/OS MVS Programming: Workload Management Services

TRXNAME=trxname
TRXNAME=NO_TRXNAME

An optional input parameter, which contains the transaction name for the work request, as known by
the work manager. For environments where the transaction name is available on some, but not all
flows, providing a data area initialized to all blanks is equivalent to specifying NO_TRXNAME. The
default is NO_TRXNAME, which indicates that no transaction name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,TTRACETOKEN=ttracetoken
An optional output parameter, which is to receive the output transaction trace token associated with
the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,USERID=userid
,USERID=NO_USERID

An optional input parameter, which contains the user ID associated with the work request. For
environments where the user ID is available on some, but not all flows, providing a data area
initialized to all blanks is equivalent to specifying NO_USERID. The default is NO_USERID, which
indicates that no user ID is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWM4CLSY macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 68. Return and Reason Codes for the IWM4CLSY Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0409 Equate Symbol: IwmRsnCodeNoConn

Meaning: Connect token does not reflect a successful Connect.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Check for possible storage overlay.

IWMCLSY

Chapter 12. Workload management services 415

Table 68. Return and Reason Codes for the IWM4CLSY Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: The caller's space connection is not enabled for this service.

Action: Avoid requesting this function under the input connection. IWM4CON
options must be specified previously to enable this service.

8 xxxx0894 Equate Symbol: IwmRsnCodeInvalidEWLMCorr

Meaning: The classification information contains an EWLM correlator
(EWLM_CORR) that does not pass validity checking. The architected ARM
correlator length field in the first two bytes of the EWLM_CORR is either less
than 4 (X'0004') or greater than 512 (X'0200').

Action: Check the specification of the EWLM correlator in the classification
information.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: Service is not enabled because the caller invoked the IWMCONN
service with EWLM=NO.

Action: Specify the parameter EWLM_CORR only when connected with
EWLM=YES.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful when invoked
again.

Examples

Suppose the transactions processed by a subsystem work manager have the following qualifiers:

• User ID
• Transaction name
• Transaction class

To get the service class associated with an incoming work request, specify:

IWM4CLSY USERID=AUSERID,TRXCLASS=ATRXCLS,TRXNAME=ATRXNM,
 CONNTKN=(R7),SERVCLS=(R9),
 RETCODE=RETCODE,RSNCODE=RSNCODE

Where the following are declared:

AUSERID DS CL8
ATRXCLS DS CL8
ATRXNM DS CL8

IWM4CON — Connect to workload management

IWM4CON

416 z/OS: z/OS MVS Programming: Workload Management Services

The purpose of this service is to connect a calling address space to WLM. This service returns a token
which is needed to invoke other services. This service can be used to:

• Request that WLM work management services be available to the connecting address space and
optionally to pass topology information to WLM.

• Request that WLM work queuing services be available to the connecting address space.
• Request that WLM work execution services be available to the connecting address space.
• Request that WLM work balancing services be available to the connecting address space.
• Request that WLM export and import services be available to the connecting address space.

Notes :

• The space which is connected is the current home address space.
• Only a single connection is allowed to be active for a given address space at any given time.
• For each connected task/space, WLM will establish a dynamic resource manager (RESMGR) to be

associated with the current task/space. When it receives control, it will free any accumulated resources
and delete any enclaves associated with the connect token. This implies that the resource manager will
logically perform the disconnect function and the connect token can no longer be passed to WLM
services.

Note : This service was previously called IWMCONN for 31-bit addressing only (see “IWMCONN —
Connect to workload management” on page 753).

Environment
The requirements for the caller are:

Minimum authorization: For WORK_MANAGER=YES or ROUTER=YES, QUEUE_MANAGER=YES or
EXPTIMPT=YES, supervisor state or program key mask (PKM)
allowing keys 0-7.

For SERVER_MANAGER=YES, problem state with any PSW key.

Dispatchable unit mode: Task

Cross memory mode: Non-XMEM when input key is a user key or SERVER_MANAGER =
YES, otherwise XMEM, any P,S,H.

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

IWM4CON

Chapter 12. Workload management services 417

6. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
1. This macro may not be used during task/address space termination.
2. Only a single connection is allowed to be active for a given address space at any given time.
3. Specification of both Queue_Manager=Yes and Server_Manager=Yes requires
Server_Type=Queue; specification of Server_Type=Routing is rejected.

4. Specification of both Router=Yes and Server_Manager=Yes requires Server_Type=Routing;
specification of Server_Type=Queue is rejected.

5. If the caller’s recovery routine should get control as a result of requesting this service, the function
cannot be guaranteed to be complete. It is possible that a token has been saved in the parameter list
where the connect token would reside upon successful completion. This token may be passed to
IWM4DIS to prevent the address space from being disabled from future IWM4CON requests, but the
token should not be used for other services. IWM4DIS in these circumstances may give a warning
return code indicating that no connection was established.

6. If the key specified on IWM4CON is a user key (8-F) or SERVER_MANAGER=YES was specified, then the
caller must be in non-cross-memory mode (P=S=H)

7. While not a restriction for IWM4CON, it should be noted that when the key specified is a user key (8-F),
the connect token may only be passed to IWM4CLSY, IWMRPT, or IWMMNTFY services, when the
current primary matches primary at the time IWM4CON is invoked.

8. This macro supports multiple versions. Some keywords are unique to certain versions. See the
PLISTVER parameter description.

Input register information
Before issuing the IWM4CON macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged

IWM4CON

418 z/OS: z/OS MVS Programming: Workload Management Services

14-15
Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
The syntax of the IWM4CON macro is as follows:
main diagram

name
IWM4CON

WORK_MANAGER=YES

parameters-1

WORK_MANAGER=NO

,ROUTER=NO ,QUEUE_MANAGER=NO

,QUEUE_MANAGER=YES

,QMGR_EXIT@=NO_QMGR_EXIT@

,QMGR_EXIT@=  qmgr_exit@

,ROUTER=YES

,SERVER_MANAGER=NO

,SERVER_MANAGER=YES parameters-2

,EXPTIMPT=NO

,EXPTIMPT=YES

,SUBSYS=  subsys ,SUBSYSNM=  subsysnm

,NODENM=NO_NODENM

,NODENM=  nodenm

,GROUPNM=NO_GROUPNM

,GROUPNM=  groupnm

,GROUPNM_LEN=  groupnm_len

,CONNTKN=  conntkn

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

IWM4CON

Chapter 12. Workload management services 419

parameters-1

,TOPOLOGY=NO_TOPOLOGY

,TOPOLOGY=  topology

,NUMBERASCB=  numberascb

,EWLM=NO

,EWLM=YES

,CONNTKNKEYP=VALUE ,CONNTKNKEY=  conntknkey

,CONNTKNKEYP=PSWKEY

parameters-2

,APPLENV=  applenv
,DYNAMIC=NO

,DYNAMIC=YES

,PARALLEL_EU=  parallel_eu

,REGION_TOKEN=  region_token

,SERVER_TYPE=QUEUE ,MANAGE_TASKS=NO

,MANAGE_TASKS=YES

,SERVER_LIMIT=1000

,SERVER_LIMIT=  server_limit

,SERVER_TYPE=ROUTING ,SERVER_DATA=  server_data ,SRV_MGR_EXIT@=  srv_mgr_exit@

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWM4CON macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,APPLENV=applenv
When SERVER_MANAGER=YES is specified, a required input parameter, which contains the
application environment under which work requests are served.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,CONNTKN=conntkn
A required output parameter, which will receive the connect token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,CONNTKNKEY=conntknkey
When CONNTKNKEYP=VALUE and WORK_MANAGER=YES are specified, a required input parameter.
It contains the key for which the various branch entry services using the CONNTKN returned by
IWM4CON must have PSW update authority. These other services include Classify (IWM4CLSY),
Report (IWMRPT), Notify (IWMMNTFY). Create (IWM4MCRE) is a PC interface and hence is excluded.
The low order 4 bits (bits 4-7) contain the key value. The high-order 4 bits (bits 0-3) must be zeros.

During the Connect with IWM4CON WLM creates a control block to hold the information. The
CONNTKNKEY is the storage key, which is used for the allocation of the control block. The WLM
services Classify (IWM4CLSY), Report (IWMRPT) and Notify (IWMMNTFY) get invoked via branch.
These WLM services have to run in the same key otherwise these services cannot update the control
block allocated during Connect (IWM4CON).

Note however that there are other services that use the connect token, for which the CONNTKNKEY
does not relate to PSW update authority but must be a system key (0-7) rather than a user key (8-15).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-bit field.

IWM4CON

420 z/OS: z/OS MVS Programming: Workload Management Services

,CONNTKNKEYP=VALUE
,CONNTKNKEYP=PSWKEY

When WORK_MANAGER=YES is specified, a required parameter, which describes how the input key
should be obtained.
,CONNTKNKEYP=VALUE

indicates that the key is passed explicitly via CONNTKNKEY.
,CONNTKNKEYP=PSWKEY

indicates that the current PSW key should be used.
,DYNAMIC=NO
,DYNAMIC=YES

When SERVER_MANAGER=YES is specified, an optional parameter indicating whether the server
manager connects to a dynamic or static application environment. The default is DYNAMIC=NO.
,DYNAMIC=NO

The server manager connects to a static application environment. This is the default.
,DYNAMIC=YES

The server manager connects to a dynamic application environment.
,EWLM=NO
,EWLM=YES

When WORK_MANAGER=YES is specified, an optional parameter, which indicates if this work
manager intends to participate in cross-platform enterprise workload management (EWLM). The
default is EWLM=NO.
,EWLM=NO

The work manager interacts only with WLM and no interaction with EWLM takes place. This is the
default.

,EWLM=YES
The work manager participates in cross-platform enterprise workload management and interacts
with EWLM.

,EXPTIMPT=NO
,EXPTIMPT=YES

An optional parameter indicating whether the space needs access to the export and import services
(IWMEXPT, IWMUEXPT, IWMIMPT, IWMUIMPT). The default is EXPTIMPT=NO.
,EXPTIMPT=NO

The connecting address space will not use the export and import services.
,EXPTIMPT=YES

The connecting address space will use the export and import services.
,GROUPNM=groupnm
,GROUPNM=NO_GROUPNM

An optional input parameter, which contains the name of an application group, for example, a group of
similar or cooperating subsystem instances. A group name can be up to 255 characters long. Provision
of a data area initialized to all blanks is equivalent to specification of NO_GROUPNM. The default is
NO_GROUPNM. This indicates that no group name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,GROUPNM_LEN=groupnm_len
When GROUPNM=groupnm is specified, a required input parameter, which contains the length of the
group name. A group name can be up to 255 characters long.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MANAGE_TASKS=NO
,MANAGE_TASKS=YES

When SERVER_TYPE=QUEUE and SERVER_MANAGER=YES are specified, an optional parameter
indicating that WLM will manage the server instances (tasks), selecting work from a work queue.

IWM4CON

Chapter 12. Workload management services 421

If YES is specified, the caller must use service IWMSINF to obtain the number of server instances to
start from WLM.

The meaning of PARALLEL_EU changes in this case. PARALLEL_EU is only used to determine the
number of tasks to start if the application environment cannot be managed by WLM. Otherwise
PARALLEL_EU can be used to limit the number of server tasks to start initially.

The server can define the SERVER_LIMIT parameter to specify a limit for the number of server tasks
supported by the application.

,MANAGE_TASKS=NO
The connecting address space starts the number of server instances as provided with
PARALLEL_EU. This is the default.

,MANAGE_TASKS=YES
The connecting address space uses IWMSINF to obtain the number of server instances to start
from WLM.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of X'0F' to force the parameter list to a word boundary, or X'0D' to force
the parameter list to a doubleword boundary. If you do not code attr, the system provides a value
of X'0D'.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,NODENM=nodenm
,NODENM=NO_NODENM

An optional input parameter, which contains the node name to be used for classifying work requests
when Work_Manager=Yes is specified or taken as default. The node name identifies a specific
subcomponent of the generic subsystem type.

When Server_Manager=Yes and Server_Type=Queue is specified, the node name should match the
node name specified on the corresponding Connect for the Queue_Manager, for example, all servers
associated with the Queue_Manager have identical node names.

IWM4CON

422 z/OS: z/OS MVS Programming: Workload Management Services

If a product chooses to use both Work_Manager=Yes and Server_Manager=Yes on a single invocation
of IWM4CON for a space, then the rules for Server_Manager apply, for example, the node name refers
to the node name of the space playing the role of Queue_Manager.

If the caller connects to the WLM work queueing services, the combination of the subsystem type,
node name and the subsystem name must be unique to that MVS system. Node name can be omitted.
The default is NO_NODENM.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,NUMBERASCB=numberascb
When TOPOLOGY=topology and WORK_MANAGER=YES are specified, a required input parameter,
which contains the number of ASCBs in the list passed via xTOPOLOGY. While there is no restriction on
the number of entries in the list, the current support will only look at the first 10 entries. The number
specified must be positive (hence also non-zero).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,PARALLEL_EU=parallel_eu
When SERVER_MANAGER=YES is specified, a required input parameter, which contains the maximum
number of tasks (TCBs) within the address space which will be used to concurrently process distinct
work requests if MANAGE_TASKS=YES is not in effect. When Select (IWM4SSL) is used to obtain a
work request, which might then be passed to another task (TCB) for processing under a Begin
(IWM4STBG) environment, this count represents the number of tasks (TCBs) which can be running
concurrently against these work requests, that is the number of concurrent Begin environments. It is
important that this count should represent the actual number of tasks (TCBs) which can be utilized,
and not merely some approximate upper bound, as this value will influence system algorithms.

If MANAGE_TASKS=YES is in effect, the application environment managed by WLM PARALLEL_EU is
not used. In this case the parameter is only used as described above if no procedure name was
defined for the application environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameter and those from version 0:

REGION_TOKEN

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX

IWM4CON

Chapter 12. Workload management services 423

• A decimal value of 0, or 1

,QMGR_EXIT@=qmgr_exit@
,QMGR_EXIT@=NO_QMGR_EXIT@

When QUEUE_MANAGER=YES and ROUTER=NO are specified, an optional input parameter that is to
contain the address of the Queue Manager Connect Exit to be invoked when the system wishes to
inform the queue manager of actions it should perform. The exit will be called in enabled, unlocked
TCB mode with no FRRs set, but may be called in a cross-memory environment. The mapping of the
parameter list for the exit and its invocation environment is given by the list form of the IWMQCXIT
macro.

The system may chose to discontinue calling the exit upon repetitive abnormal completions, i.e.
where the system recovery routine is percolated to from an error within the exit. The exit must be
callable from any address space and remain available after the queue manager disconnects or
terminates. The default is NO_QMGR_EXIT@, which indicates that no queue manager exit is provided.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,QUEUE_MANAGER=NO
,QUEUE_MANAGER=YES

When ROUTER=NO is specified, an optional parameter indicating that WLM Work Queuing services be
available to the connecting address space. For example:

• Insert (IWM4QIN)
• Delete (IWM4QDE)

If YES is specified, the combination of the subsystem type and the subsystem name must be unique
to that MVS system. The default is QUEUE_MANAGER=NO.
,QUEUE_MANAGER=NO

The connecting address space will not use the WLM Work Queuing services.
,QUEUE_MANAGER=YES

The connecting address space will be using the WLM Work Queuing services.

,REGION_TOKEN=region_token
When SERVER_MANAGER=YES is specified, an optional 16-character output parameter, which
contains a region token. A queueing manager can use the region token to queue work requests to a
specific server region. These work requests are considered to belong to a set of the work request all
needing access to some status information which exists only in the virtual storage of the server region.
They are selected using the IWM4SSL macro. It is assumed that the application uses the service
IWM4TAF to tell WLM when the temporary affinity to the defined server region begins and ends.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,ROUTER=NO
,ROUTER=YES

An optional parameter, which describes whether recommendations for sysplex routing to servers
associated with the same subsystem type and name are requested. The default is ROUTER=NO.
,ROUTER=NO

indicates that recommendations for sysplex routing via IWMSRFSV are not required.
,ROUTER=YES

indicates that recommendations for sysplex routing via IWMSRFSV is required. Note that only
server spaces which have the same Subsystem type and name AND which specified
Server_Type=Routing are considered when IWMSRFSV is invoked.

If YES is specified, the combination of the subsystem type and the subsystem name must be
unique to that MVS system.

IWM4CON

424 z/OS: z/OS MVS Programming: Workload Management Services

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SERVER_DATA=server_data
When SERVER_TYPE=ROUTING and SERVER_MANAGER=YES are specified, a required input
parameter, which contains whatever data is needed to uniquely identify the server when
recommended by MVS through use of the IWMSRFSV interface. The structure of this data is undefined
to MVS, and will be returned to the program invoking IWMSRFSV when the server is returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,SERVER_LIMIT=server_limit
,SERVER_LIMIT=1000

When MANAGE_TASKS=YES, SERVER_TYPE=QUEUE and SERVER_MANAGER=YES are specified, an
optional input parameter indicating the architectural limit of the application for the number of server
instances which can be supported.

This parameter can be used to tell WLM the upper limit up to which WLM will recommend to start
server instances. The default is 1000.

To code: Specify the RS-type address of a fullword field.

,SERVER_MANAGER=NO
,SERVER_MANAGER=YES

An optional parameter indicating whether the space needs access to a family of services specified by
SERVER_TYPE.
,SERVER_MANAGER=NO

The connecting address space will not use any of the various server-related WLM services
documented under SERVER_TYPE. This is the default.

,SERVER_MANAGER=YES
The connecting address space will be acting in the role of a server and needs access to the family
of services specified by SERVER_TYPE.

Specification of both Queue_Manager=Yes, and Server_Manager=Yes requires that
Server_Type=Queue. Specification of Server_Type=Routing is rejected.

Specification of both Router=Yes, and Server_Manager=Yes requires that Server_Type=Routing.
Specification of Server_Type=Queue is rejected.

,SERVER_TYPE=QUEUE
,SERVER_TYPE=ROUTING

When SERVER_MANAGER=YES is specified, an optional parameter, which describes what type of
services are used by the server.
,SERVER_TYPE=QUEUE

This is the default. Indicates that the server selects work from a queue, and thus requests that
WLM Work Execution services be available to the connecting address space. For example:

• Select (IWM4SSL)
• Begin (IWM4STBG)
• End (IWM4STEN)

The server also has the WLM Work Queuing services available to the connecting address space
when the corresponding Queue Manager with the same subsystem type and name is active on the
same MVS image (see the following macros for macro-specific restrictions). For example:

• Insert (IWM4QIN)
• Delete (IWM4QDE)

IWM4CON

Chapter 12. Workload management services 425

,SERVER_TYPE=ROUTING
indicates that the server receives work by way of routing, and may be selected by the IWMSRFSV
(Find Server) macro interface. Note that the space which invokes the IWMSRFSV service must
Connect with Router=Yes.

Termination of the router with the same subsystem type and name on the same MVS image will
not cause notification to the server to terminate. This coordination, if required, must be handled
through a different protocol than use of Connect.

,SRV_MGR_EXIT@=srv_mgr_exit@
When SERVER_TYPE=ROUTING and SERVER_MANAGER=YES are specified, a required input
parameter that is to contain the address of the Server Manager Connect Exit to be invoked when the
system wishes to inform the server of actions it should perform. This exit will be called in SRB mode,
with a non cross-memory environment, where HASN=SASN=PASN=HASN at the time IWM4CON was
invoked. The mapping of the parameter list for the exit and its invocation environment is given by the
list form of the IWMSCXIT macro.

Note that it may be possible for the exit to be called before the caller has received control back from
IWM4CON. The exit or any program it drives (synchronously or asynchronously) must synchronize with
the program issuing IWM4CON to ensure that IWM4CON has returned a connect token prior to issuing
IWM4DIS (disconnect) or any other services that need the connect token.

The system may cause the space to become ineligible to be recommended by IWMSRFSV upon
repetitive errors in calling the exit specified. The exit must be callable from the server address space
and remain available after the server manager disconnects or the connecting server TCB terminates.
The exit need not persist upon memory termination of the server.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,SUBSYS=subsys
A required input parameter, which contains the generic subsystem type (e.g. IMS, CICS, etc.). When
WORK_MANAGER=YES is specified, this is the primary category under which classification rules are
grouped.

If the caller connects to the WLM work queueing services by specifying QUEUE_MANAGER=YES, or
requests sysplex routing by specifying ROUTER=YES, the combination of the subsystem type and the
subsystem name must be unique to that MVS system.

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character field.

,SUBSYSNM=subsysnm
A required input parameter, which contains the subsystem name to be used for classifying work
requests when Work_Manager=Yes is specified or taken as default. The subsystem name identifies a
specific instance of the generic subsystem type.

When Server_Manager=Yes and Server_Type=Queue is specified, the subsystem name should match
the subsystem name specified on the corresponding Connect for the Queue_Manager, that is all
servers associated with the Queue_Manager have identical subsystem names.

When Server_Manager=Yes and Server_Type=Routing is specified, the subsystem name should match
the subsystem name specified on the corresponding Connect for Router=Yes, that is all servers
associated with the Router have identical subsystem names.

If a product choses to use both Work_Manager=Yes and Server_Manager=Yes on a single invocation
of IWM4CON for a space, then the rules for Server_Manager apply, that is the subsystem name refers
to the subsystem name of the space playing the role of Queue_Manager or Router.

If the caller connects to the WLM work queueing services, or to sysplex routing services, the
combination of the subsystem type and the subsystem name must be unique to that MVS system.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWM4CON

426 z/OS: z/OS MVS Programming: Workload Management Services

,TOPOLOGY=topology
,TOPOLOGY=NO_TOPOLOGY

When WORK_MANAGER=YES is specified, an optional input parameter, which represents a list of
ASCB addresses for the address spaces which comprise the subsystem. This list should ONLY include
address spaces which do NOT surface as the current home address space when IWM4MINI or
IWMMRELA are used to establish the delay monitoring environments, but that may participate as
dispatchable units (TCBs or SRBs) in serving work requests. If the current primary or home space is a
space not surfacing in a monitoring environment and its execution can affect the response time of
work flowing through the subsystem, then it should appear in the list. Neither current primary nor
current home are defaults. While there are no limits on the number of address spaces, this
information is less precise than that provided by monitoring environments. The default is
NO_TOPOLOGY, which indicates that no topology information was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

WORK_MANAGER=YES
WORK_MANAGER=NO

An optional parameter indicating that WLM Work Management services be available to the connecting
address space. For example:

• Classify (IWM4CLSY)
• Report (IWMRPT)
• Notify (IWMMNTFY)
• Enclave Create (IWM4ECRE)
• Modify Connect (IWMWMCON)

If NO is specified, the above services cannot be used, except for the form of Notify that does not pass
an input connect token.
WORK_MANAGER=YES

The connecting address space will be using the WLM Work Management services. This the default.
WORK_MANAGER=NO

The connecting address space will not use the WLM Work Management services. Specifying this
keyword may reduce the use of system resources.

ABEND codes
None.

Return codes and reason codes
When the IWM4CON macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 69. Return and Reason Codes for the IWM4CON Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

IWM4CON

Chapter 12. Workload management services 427

Table 69. Return and Reason Codes for the IWM4CON Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0802 Equate Symbol: IwmRsnCodeXmemUserKeyTkn

Meaning: The caller is in cross-memory mode while the token was requested
in user key.

Action: Avoid requesting this function while in cross-memory mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0812 Equate Symbol: IwmRsnCodeBadAscb

Meaning: Bad ASCB address passed.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on Primary ASC
mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: The caller invoked the service while task termination is in progress
for the TCB associated with the owner.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

IWM4CON

428 z/OS: z/OS MVS Programming: Workload Management Services

Table 69. Return and Reason Codes for the IWM4CON Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or supplies mutually
exclusive parameters or provides data associated with options not selected.

Action: Check for possible storage overlay of the parameter list.

8 xxxx082C Equate Symbol: IwmRsnCodeBadNumberAscb

Meaning: NUMBERASCB variable is not a positive value.

Action: Check for possible storage overlay of the parameter list or variable.

8 xxxx082E Equate Symbol: IwmRsnCodeConnectExists

Meaning: Connect has already been established for the current home
address space.

Action: Avoid requesting this function when a connection already exists.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Requested connection type cannot be established in the current
execution environment. This occurs when SERVER_MANAGER=YES is
specified and the program is run as a batch job in a WLM-managed job class.

Action: Run the program as a started task.

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: The caller is in cross-memory mode.

Action: Invoke the function in non-cross memory mode.

8 xxxx0847 Equate Symbol: IwmRsnCodeOtherSpaceConnected

Meaning: Another address space with the same subsystem type and name is
connected to WLM on the MVS image and has the role of queue manager or
router.

Action: Avoid requesting this function with duplicate values.

8 xxxx0849 Equate Symbol: IwmRsnCodeWLMServBadAPPL

Meaning: The application environment name (APPLENV=) specified is not the
same as the one used by WLM to start the server.

Action: Verify that the start parameters for the application environment are
coded correctly in the WLM ISPF application, and that those parameters are
used by the started JCL procedure.

8 xxxx084A Equate Symbol: IwmRsnCodeWLMServBadSSN

Meaning: The subsystem name (SUBSYSNM=) specified is not the same as
the one used by WLM to start the server.

Action: Verify that the start parameters for the application environment are
coded correctly in the WLM ISPF application, and that those parameters are
used by the started JCL procedure.

8 xxxx084B Equate Symbol: IwmRsnCodeWLMServBadSST

Meaning: The subsystem type (SUBSYS=) specified is not the same as the
one used by WLM to start the server.

Action: Verify that the start parameters for the application environment are
coded correctly in the WLM ISPF application, and that those parameters are
used by the started JCL procedure.

IWM4CON

Chapter 12. Workload management services 429

Table 69. Return and Reason Codes for the IWM4CON Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx084D Equate Symbol: IwmRsnCodeNotAuthConnect

Meaning: The caller must be supervisor state or have PSW key mask 0-7
authority to connect to the requested WLM services.

Action: Avoid requesting this function in this environment.

8 xxxx084E Equate Symbol: IwmRsnCodeWlmServBadType

Meaning: For WLM started servers, the SERVER_TYPE= is not the one used to
start the server.

Action: Specify the correct SERVER_TYPE.

8 xxxx0853 Equate Symbol: IwmRsnCodeWlmQmBadType

Meaning: There is a queue manager or router environment of the specified
subsystem name, but of a different type than that specified by the caller.

Action: Verify that the option for queue manager/router is specified correctly
on IWM4CON. If the option is correct, then server address spaces for a
different Server_Type exist and must terminate before the current space may
connect as a queue manager or router.

8 xxxx0855 Equate Symbol: IwmRsnCodeBadNumEUMax

Meaning: PARALLEL_EU variable is greater than the maximum of 65534.

Action: Specify a value between 1 and 65534.

8 xxxx0856 Equate Symbol: IwmRsnCodeBadNumEUMin

Meaning: PARALLEL_EU is less than the minimum of 1.

Action: Specify a value between 1 and 65534.

8 xxxx085C Equate Symbol: IwmRsnCodeWrongNumEU

Meaning: The caller invoked the service with a PARALLEL_EU value which is
different from the PARALLEL_EU of existing servers in the application
environment

Action: Ensure that all servers in the application environment specify the
same PARALLEL_EU value.

Note : If this reason code occurs after changes have been made to the
application environment, refer to the section about "Making changes to the
Application Environment Servers" in Chapter 13 "Defining Application
Environments" in z/OS MVS Planning: Workload Management.

8 xxxx0873 Equate Symbol: IwmRsnCodeWrongSrvLmt

Meaning: The caller invoked the service with a SERVER_LIMIT parameter
setting which is different from the SERVER_LIMIT of existing servers in the
application environment.

Action: Ensure that all servers in the application environment specify the
same SERVER_LIMIT value.

8 xxxx0874 Equate Symbol: IwmRsnCodeWrongMngTsk

Meaning: The caller invoked the service with a MANAGE_TASKS parameter
setting which is different from the MANAGE_TASKS of existing servers in the
application environment

Action: Ensure that all servers in the application environment specify the
same MANAGE_TASKS value.

8 xxxx0878 Equate Symbol: IwmRsnCodeBadNumLimitMax

Meaning: The caller invoked the service with a SERVER_LIMIT parameter
setting which exceeds the maximum number of tasks which can be started in
a server address space. The current maximum value is 65534.

Action: Correct the number or do not specify SERVER_LIMIT parameter in
order to use the default.

IWM4CON

430 z/OS: z/OS MVS Programming: Workload Management Services

Table 69. Return and Reason Codes for the IWM4CON Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0879 Equate Symbol: IwmRsnCodeBadNumLimitMin

Meaning: The caller invoked the service with a SERVER_LIMIT parameter
setting which is less than what has been defined on the PARALLEL_EU
parameter.

Action: Ensure that SERVER_LIMIT is always greater or equal to
PARALLEL_EU.

8 xxxx087A Equate Symbol: IwmRsnCodeNoQServer

Meaning: The MANAGE_TASKS parameter is not allowed when
QUEUE_SERVER=YES has been specified.

Action: Ensure to use the parameters correctly.

8 xxxx088E Equate Symbol: IwmRsnCodeWlmServBadSSND

Meaning: For WLM started servers, the NODENM= is not the one used to start
the server.

Action: Specify the correct NODENM.

8 xxxx088F Equate Symbol: IwmRsnCodeApplNotSSN

Meaning: The application environment name is defined for use by a different
subsystem node.

Action: Check whether the correct application environment name is being
used.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

C xxxx0C09 Equate Symbol: IwmRsnCodeNoResmgr

Meaning: Resource manager could not be established.

Action: No action required. This condition may be due to a storage shortage
condition.

C xxxx0C14 Equate Symbol: IwmRsnCodeNoWorkShutDown

Meaning: No work selected. Caller is to shutdown.

Action: The server should shut down (terminate).

C xxxx0C19 Equate Symbol: IwmRsnCodeNotSecAuthConnect

Meaning: The caller is not authorized by SAF to connect to WLM with
SERVER_MANAGER=YES.

Action: The security administrator must grant access to the appropriate
resource.

C xxxx0C1A Equate Symbol: IwmRsnCodeApplNotDefined

Meaning: The application environment name is not defined in the active WLM
policy.

Action: Check whether the correct application environment name is being
used. If so, a service administrator must define the application environment
in the WLM service definition.

IWM4CON

Chapter 12. Workload management services 431

Table 69. Return and Reason Codes for the IWM4CON Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

C xxxx0C1B Equate Symbol: IwmRsnCodeApplNotSST

Meaning: The application environment name is defined for use by a different
subsystem type in the active WLM policy.

Action: Check whether the correct application environment name is being
used. If so, a service administrator must change the application environment
in the WLM service definition to specify the correct subsystem type.

C xxxx0C1F Equate Symbol: IwmRsnCodeServerExists

Meaning: A server exists for the specified application environment which
only allows 1 such server in the sysplex.

Action: Check whether the correct application environment name is being
used. If so and the current server is shutting down, a retry may be successful
after a delay.

C xxxx0C22 Equate Symbol: IwmRsnCodeApplEnvQuiesced

Meaning: The specified application environment has been quiesced, server
cannot be started for the request.

Action: Restart the application environment and then retry the request.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

Examples

To connect to workload management with a key value of 8, and a list of 7 address spaces involved in
processing work, specify:

IWM4CON SUBSYS=GENSUB,SUBSYSNM=SUBNAME,
 TOPOLOGY=LISTASCBS,NUMBERASCB=NUMSPACE
 CONNTKN=CTKN,CONNTKNKEYP=VALUE,CONNTKNKEY=KEY,
 RETCODE=RC,RSNCODE=RSN,

Where the following are declared:

GENSUB DS CL4 Generic subsystem type
SUBNAME DS CL8 Subsystem name
LISTASCBS DS CL28 List of 7 address spaces
NUMSPACE DC F'7' Number of ASCBs
CTKN DS FL4 Connect token
KEY DS XL1 Key value

IWM4DIS — Disconnect from workload management

IWM4DIS allows the caller to disconnect from the workload management services. This means that the
input connect token can no longer be passed to workload management macros such as IWM4CLSY and
IWM4RPT. When a program disconnects, any enclaves associated with the input connect token are
deleted from the system. Any SRBs running in the enclave are run as preemptible SRBs at the priority of
the home address space. Any enclave TCBs are converted to ordinary TCBs.

You should issue this macro once during shutdown of the connecting address space.

Note : This service was previously called IWMDISC for 31-bit addressing only (see “IWMDISC —
Disconnect from workload management” on page 769).

IWM4DIS

432 z/OS: z/OS MVS Programming: Workload Management Services

Environment
The requirements for the caller are:

Minimum authorization: When the corresponding connect (IWM4CON) invocation specified
WORK_MANAGER=YES or QUEUE_MANAGER=YES, ROUTER=YES, or
EXPTIMPT=YES, supervisor state or program key mask (PKM)
allowing keys 0-7.

When the corresponding connect (IWM4CON) invocation specified
WORK_MANAGER=NO, QUEUE_MANAGER=NO, ROUTER=NO,
EXPTIMPT=NO, and SERVER_MANAGER=YES, problem state with any
PSW key.

Dispatchable unit mode: Task or SRB

When the corresponding connect (IWM4CON) invocation specified
SERVER_MANAGER=YES, task mode.

Cross memory mode: The current Home address space must be the same as Home when
the corresponding Connect was invoked. Any PASN, any SASN.

When the corresponding connect (IWM4CON) invocation specified
SERVER_MANAGER=YES, non-cross memory mode, P=S=H.

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

When the corresponding connect (IWM4CON) invocation specified
SERVER_MANAGER=YES, SERVER_TYPE=ROUTING, NO FRRs may be
set.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. No FRRs may be set when calling to disconnect a space which is connected as a server manager with

server type = routing.
2. If the key specified on IWM4CON was a user key (8-F), then the following must ALL be true:

• The caller must be in non-cross-memory mode (P=S=H). This implies that the current primary must
match the primary at the time that IWM4CON was invoked. Running in a subspace is not supported.

• Must be in TCB mode (not SRB)
• Current TCB must match the TCB at the time that IWM4CON was invoked.

IWM4DIS

Chapter 12. Workload management services 433

3. This service should not be invoked while in a RTM termination routine (resource manager) for the TCB
owning the connect token since MVS will have its own resource cleanup routine and unpredictable
results would occur. It is legitimate to use this service while in a recovery routine, however, or in
mainline processing.

Input register information
Before issuing the IWM4DIS macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWM4DIS macro is as follows:

IWM4DIS

434 z/OS: z/OS MVS Programming: Workload Management Services

name
IWM4DIS CONNTKN=  conntkn

,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWM4DIS macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

CONNTKN=conntkn
A required input parameter, which contains the connect token for the environment to be
disconnected.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of X'0F' to force the parameter list to a word boundary, or X'0D' to force
the parameter list to a doubleword boundary. If you do not code attr, the system provides a value
of X'0D'.

IWM4DIS

Chapter 12. Workload management services 435

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWM4DIS macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

IWM4DIS

436 z/OS: z/OS MVS Programming: Workload Management Services

Table 70. Return and Reason Codes for the IWM4DIS Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0409 Equate Symbol: IwmRsnCodeNoConn

Meaning: Input connection token does not reflect an active connection to
WLM.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0802 Equate Symbol: IwmRsnCodeXmemUserKeyTkn

Meaning: The caller is in cross-memory mode while the token was obtained
in a user key.

Action: Avoid requesting this function while in cross-memory mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0809 Equate Symbol: IwmRsnCodeSrbUserKeyTkn

Meaning: The caller is in SRB mode, while the token was obtained in a user
key (8-F).

Action: Avoid requesting this function in SRB mode for tokens associated
with user key.

8 xxxx080A Equate Symbol: IwmRsnCodeTcbNotOwnerUserKeyTkn

Meaning: Current TCB is not the owner, while the token was obtained in a
user key (8-F).

Action: Avoid requesting this function under a TCB other than the owner for a
token associated with user key.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

IWM4DIS

Chapter 12. Workload management services 437

Table 70. Return and Reason Codes for the IWM4DIS Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on Primary ASC
mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: The caller invoked the service while task termination is in progress
for the TCB associated with the owner.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx082F Equate Symbol: IwmRsnCodeWrongHome

Meaning: The caller invoked the service from the wrong home address space.

Action: Invoke the function with the correct home address space.

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: The caller is in cross-memory mode.

Action: Invoke the function in non-cross memory mode.

8 xxxx084D Equate Symbol: IwmRsnCodeNotAuthConnect

Meaning: The caller must be supervisor state or have PSW key mask 0-7
authority to disconnect from the requested WLM services.

Action: Avoid requesting this function in this environment.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

IWM4ECRE — Create an enclave
The purpose of this service is to create an enclave where possibly multiple SRBs and/or TCBs may be
simultaneously executing or scheduled. For the duration of each enclave, all SRBs and TCBs associated
with the enclave are treated as part of a single work request. All SRBs and/or TCBs associated with the
enclave accumulate service as a single entity and are managed as a single entity. The address spaces
where enclave SRBs are dispatched, as defined by the ENV parameter of IEAMSCHD, should be non-
swappable.

For more information about managing address spaces with enclaves, see “Performance management of
address spaces with enclaves” on page 44.

Note : An address space must be non-swappable if it has enclave SRBs dispatched and SYSEVENT
ENCASSOC has not been issue.

IWM4ECRE

438 z/OS: z/OS MVS Programming: Workload Management Services

For TYPE=INDEPENDENT enclaves, a new work business unit of work is created and classified according
to the input Connect token's subsystem type and subsystem name, along with whatever other attributes
are passed via the Classify parameter list. The current home address space is considered the owner.

For TYPE=DEPENDENT enclaves, SRM considers the enclave to be part of the current home address
space's transaction, which then becomes the owning space. This space need not be connected to WLM via
IWM4CON.

For TYPE=WORKDEPENDENT, SRM considers the new enclave to be a continuation of the creating unit of
work's (TCB or SRB) transaction. The resulting enclave's type depends on the caller's execution
environment: If the caller has joined or is scheduled into an enclave of type independent, the resulting
enclave will be of type work-dependent and is regarded as an extension of the independent enclave's
transaction. Classification and owner address space is adopted from the independent enclave. If the
caller has joined or is scheduled into an enclave of type work-dependent, the resulting enclave will be of
type work-dependent, as well. It is considered a part of the underlying independent enclave's transaction
and inherits owner address space and classification from that independent enclave. If the caller has
joined or is scheduled into a dependent enclave, the resulting enclave will be of type dependent. The new
enclave is considered part of the creating enclave's (i.e., the enclave the caller is running in) owner
address space's transaction and inherits its classification. The creating enclave's owner address space
will become the owner of the new enclave. Finally, if no enclave has been joined when the service is
called, the resulting enclave will be as if the service had been invoked with TYPE=DEPENDENT specified.
Note that it is not allowed to invoke this service with TYPE=WORKDEPENDENT specified while running in a
foreign enclave.

For TYPE=MONENV enclaves, SRM considers the enclave to be part of the address space's transaction
which is delayed according to the input management monitoring environment, as set when IWM4MINI or
IWM4MRLT was used. This space becomes the owning space. This space need not be connected to WLM
via IWM4CON.

For both TYPE=MONENV and TYPE=DEPENDENT enclaves, SRM will change the enclave to
TYPE=INDEPENDENT if the owning address space's transaction ends.

For both TYPE=MONENV and TYPE=DEPENDENT enclaves, SRM will check the enclave for period switch
when the owning address space is swapped in. If the owning address space is swapped out SRM will
continue to accumulate service for any enclaves owned by the space, but will not check the address space
or any owned enclave for period switch until the address space is swapped in again. The presence of
enclaves does not make the address space appear to be ready from an SRM point of view.

Enclaves are deleted if the owning address space terminates. TYPE=INDEPENDENT enclaves are deleted
if the owning address space disconnects or the TCB which connected terminates. Work-dependent
enclaves are implicitly deleted when the owning independent enclave is deleted.

Enclaves should only be created when this environment is ready for execution, and should not be used
when prolonged queueing effects are possible prior to the scheduling of the first SRB (IEAMSCHD) or the
first TCB join (IWMEJOIN). "Prolonged" would certainly include times measured in seconds. The service
allows the caller to pass the queueing time prior to creation of the Enclave so that this may be separately
reported.

Note : This service was previously called IWMECREA for 31-bit addressing only (see “IWMECREA —
Create an enclave” on page 780).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

IWM4ECRE

Chapter 12. Workload management services 439

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro CVT must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

6. Prior to release z/OS V1.11, the caller has to assure that work-dependent enclave support is available
on the system before calling this macro with TYPE=WORKDEPENDENT. A flag (SRMSTWDP) in macro
IRASRMST (which is returned by sysevent REQSRMST) indicates whether or not work-dependent
enclaves can be created.

Restrictions
1. The Connect token from the input classify parameter list must be owned by the current home address

space and must be associated with a system key (0-7), as specified on IWM4CON. The Classify
parameter list and hence the connect token is only relevant for TYPE=INDEPENDENT enclaves.

2. Since this service may only be used by system-like code, some validity checking on the parameter list
is not performed. These checks would only be needed if the macro were not used to invoke the service
routine.

3. The variable length fields associated with the classify parameter list (the classify parameter list is only
relevant for certain options) given by the CLSFY keyword have the following limitations in addition to
those documented in IWMCLSFY:

• SUBSYSPM is limited to 255 bytes
• COLLECTION is limited to 18 bytes
• CORRELATION is limited to 12 bytes

4. When TYPE(MONENV) is specified, the following apply:

• If the key specified on IWM4MCRE was a user key (8-F), then primary or home addressability must
exist to the performance block IWM4MCRE obtained. This condition is satisfied by ensuring that the
current primary or home address space matches primary (=home) at the time that IWM4MCRE was
invoked.

• The caller must serialize to prevent any delay monitoring services from being invoked concurrently
for the environment represented by the monitoring token.

• Only limited checking is done against the input monitoring token.
• TYPE=MONENV enclaves cannot be created for report-only monitoring environments.

5. This macro may only be used on z/OS V2R1 or later levels for the MONTKN64 keyword.
6. This macro may only be used on OS/390 R12 or later levels for EXSTARTDEFER keyword.
7. This macro may only be used on z/OS V1R10 or later levels for the IMPORTANCE keyword.

IWM4ECRE

440 z/OS: z/OS MVS Programming: Workload Management Services

8. This macro supports multiple versions. Some keywords are unique to certain versions. See the
PLISTVER parameter description.

Input register information
Before issuing the IWM4ECRE macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None

IWM4ECRE

Chapter 12. Workload management services 441

Syntax
main diagram

name
b IWM4ECRE b

TYPE=INDEPENDENT
parameters-1

TYPE=DEPENDENT

TYPE=WORKDEPENDENT

TYPE=MONENV ,MONTKN=  montkn

,MONTKN64=  montkn64

,ACCESS=PRIMARY

,ACCESS=HOME

,ETOKEN=  etoken

,IMPORTANCE=  importance ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

parameters-1

,CLSFY=  clsfy

,SERVCLS=  servcls

,INSERVCLS=0

,INSERVCLS=  inservcls

,ARRIVALTIME=  arrivaltime ,FUNCTION_NAME=  function_name

,EXSTARTDEFER=NO

,EXSTARTDEFER=YES

,ESTRT=IMPLIED

,WORKREQ_HDL=  workreq_hdl

,ESTRT=EXPLICIT

,ESTRT=EXPLICIT_SINGLE

,ESTRT=NEVER

IWM4ECRE

442 z/OS: z/OS MVS Programming: Workload Management Services

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4ECRE macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ACCESS=PRIMARY
,ACCESS=HOME

When TYPE=MONENV is specified, a required parameter, which describes how to access the
monitoring environment.
,ACCESS=PRIMARY

indicates that the monitoring environment can be accessed in the caller's primary address space.
This would be appropriate if the monitoring environment was established (by IWM4MCRE) to be
used by routines in a specific system key or if it was established to be used in a specific user key in
the current primary.

,ACCESS=HOME

indicates that the monitoring environment must be accessed in the home address space, which is
not the caller's primary address space. This would be appropriate if the monitoring environment
was established (by IWM4MCRE) for use by a specific user key.

,ARRIVALTIME=arrivaltime
When TYPE=INDEPENDENT is specified, a required input parameter, which contains the work arrival
time in STCK format. This is the time at which the business work request is considered to have arrived
and from which point the system evaluates elapsed time for the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,CLSFY=clsfy
When TYPE=INDEPENDENT is specified, a required input parameter, which contains the classification
information in the format of the parameter list for IWM4CLSY or IWMCLSFY. NOTE that this name is
the data area name, not its pointer. IWM4CLSY MF(M) or IWMCLSFY MF(M) should be used to initialize
the area prior to invocation of IWM4ECRE.

Note that the variable length fields associated with the classify parameter list given by the CLSFY
keyword have the following limitations in addition to those documented in IWMCLSFY:

• SUBSYSPM is limited to 255 bytes
• COLLECTION is limited to 18 bytes
• CORRELATION is limited to 12 bytes

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,ESTRT=IMPLIED
,ESTRT=EXPLICIT
,ESTRT=EXPLICIT_SINGLE
,ESTRT=NEVER

When TYPE=INDEPENDENT is specified, an optional parameter, which denotes how the work
manager indicates the start and end point of an EWLM work request when participating in cross
platform Enterprise Workload Management (EWLM). The default is ESTRT=IMPLIED.
,ESTRT=IMPLIED

If the work manager previously connected to WLM with IWM4CON EWLM=YES, a work request is
started implicitly when the enclave is created. If IWMESTOP was not invoked before, the work
request will be stopped implicitly when the enclave is deleted.

,ESTRT=EXPLICIT
The work manager indicates the start and end point of an EWLM work request by invoking the
services IWMESTRT and IWMESTOP. NOTE that this option is only meaningful, if the work
manager previously connected to WLM with IWM4CON EWLM=YES.

IWM4ECRE

Chapter 12. Workload management services 443

,ESTRT=EXPLICIT_SINGLE
Same as option EXPLICIT above, but the application ensures, that only one work request is active
(no nested calls to IWMESTRT are allowed). If this option is specified the CPU consumption on all
EWLM Enclave services (IWMEGCOR, IWMESTRT, IWMESTOP, IWMEBLK, IWMEUBLK) will be
reduced. If ESTRT=EXPLICIT_SINGLE is specified on IWMECREA, the the application must also
add the EWLMMODE=EXPLICIT_SINGLE parameter on all calls to IWMEGCOR, IWMESTRT,
IWMESTOP, IWMEBLK and IWMEUBLK. If this parameter is used, the application has some
restrictions on all calls to IWMEGCOR, IWMESTRT, IWMESTOP, IWMEBLK and IWMEUBLK (see the
corresponding macro descriptions for details).

,ESTRT=NEVER
Indicates, that this enclave will never use any EWLM related enclave services (IWMEGCOR,
IWMESTRT, IWMESTOP, IWMEBLK, IWMEUBLK) after the enclave has been created, even if the
work manager has registered (IWM4CON or IWMCONN) with EWLM=YES. Moreover IWM4ECRE
will not start an EWLM work request on the enclave and will not do any EWLM related processing.

,ETOKEN=etoken
A required output parameter, which will receive the Enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,EXSTARTDEFER=NO
,EXSTARTDEFER=YES

When TYPE=INDEPENDENT is specified, an optional parameter, which indicates whether the Enclave
execution start time should begin when the first IWM4STBG or IWMEJOIN is executed. The time
between enclave create and the first IWM4STBG or IWMEJOIN is assumed to be the queue time. The
default is EXSTARTDEFER=NO.
,EXSTARTDEFER=NO

indicates that the Enclave execution start time should not begin when the first IWM4STBG or
IWMEJOIN is executed.

,EXSTARTDEFER=YES

indicates that the Enclave execution start time should begin when the first IWM4STBG or
IWMEJOIN is executed.

,FUNCTION_NAME=function_name
When TYPE=INDEPENDENT is specified, a required input parameter, which contains the descriptive
name for the function for which the Enclave was created.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,IMPORTANCE=importance
An optional output parameter that will receive the importance value of the service class to which the
unit of work is classified.

To code: Specify the RS-type address, or address in register (2)-(12), of a halfword field.

,INSERVCLS=inservcls
,INSERVCLS=0

When TYPE=INDEPENDENT is specified, an optional input parameter, which contains the service class
token of a previous classification call. The caller must ensure that the classification attributes of the
work unit matches the service class token. If the service class token is still valid an enclave is created
and associated with the service and report class information contained in the token. If the service
class token is not valid IWM4ECRE will perform the full classification by using the information of the
CLSFY parameter block and return code 4, reason code IwmRsnCodeNewServcls. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

IWM4ECRE

444 z/OS: z/OS MVS Programming: Workload Management Services

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,MONTKN=montkn
When TYPE=MONENV is specified, a required input parameter which contains the delay monitoring
token which describes the current business unit of work. If the monitoring environment is related to
an address space, then it must be the current home address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKN64=montkn64
When TYPE=MONENV is specified, a required input parameter which contains the long delay
monitoring token which describes the current business unit of work. If the monitoring environment is
related to an address space, then it must be the current home address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

IWM4ECRE

Chapter 12. Workload management services 445

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports both the following parameters and those from version 0:

IMPORTANCE

• 2, which supports both the following parameters and those from version 0 and 1:

INSERVCLS MONTKN64

SERVCLS

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, or 2

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SERVCLS=servcls
When TYPE=INDEPENDENT is specified, an optional output parameter, when CLSFY has been
specified which receives the service class token which matches the classification attributes. The
token allows the caller to use fast path classification for work units which have the same classification
attributes than the current work unit.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

TYPE=INDEPENDENT
TYPE=DEPENDENT
TYPE=WORKDEPENDENT
TYPE=MONENV

An optional parameter, which indicates the type of Enclave being created. The default is
TYPE=INDEPENDENT.
TYPE=INDEPENDENT

indicates that the Enclave represents a new business unit of work with its own business
objectives.

TYPE=DEPENDENT
indicates that the Enclave represents a continuation of the business unit of work represented by
the current home address space.

IWM4ECRE

446 z/OS: z/OS MVS Programming: Workload Management Services

TYPE=WORKDEPENDENT
Indicates that the enclave represents a continuation of the creating unit of work's (TCB or SRB)
transaction. The resulting enclave's type depends on the caller's execution environment: If the
caller has joined or is scheduled into an enclave of type independent, the resulting enclave will be
of type work-dependent and is regarded as an extension of the independent enclave's transaction.
Classification and owner address space is adopted from the independent enclave. If the caller has
joined or is scheduled into an enclave of type work-dependent, the resulting enclave will be of
type work-dependent, as well. It is considered a part of the underlying independent enclave's
transaction and inherits owner address space and classification from that independent enclave. If
the caller has joined or is scheduled into a dependent enclave, the resulting enclave will be of type
dependent. The new enclave is considered part of the creating enclave's (i.e., the enclave the
caller is running in) owner address space's transaction and inherits its classification. The creating
enclave's owner address space will become the owner of the new enclave. Finally, if no enclave
has been joined when the service is called, the resulting enclave will be as if the service had been
invoked with TYPE=DEPENDENT specified. Note that it is not allowed to invoke this service with
TYPE=WORKDEPENDENT specified while running in a foreign enclave.

TYPE=MONENV
indicates that the Enclave represents a continuation of the business unit of work represented by
the input management monitoring environment. TYPE=MONENV enclaves cannot be created for
report-only monitoring environments.

,WORKREQ_HDL=workreq_hdl
When ESTRT=IMPLIED and TYPE=INDEPENDENT are specified, an optional output parameter that will
receive the handle which represents the work request. The application must pass this handle to the
other work request services IWMESTOP, IWMEBLK, IWMEUBLK, and IWMEGCOR.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWM4ECRE macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 71. Return and Reason Codes for the IWM4ECRE Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

IWM4ECRE

Chapter 12. Workload management services 447

Table 71. Return and Reason Codes for the IWM4ECRE Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 xxxx044E Equate Symbol: IwmRsnCodeNewServcls

Meaning: Input service class token is not valid. A new one has been assigned
and returned in SERVCLS (if specified).

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx080C Equate Symbol: IwmRsnCodeMonEnvLacksData

Meaning: Input monitoring environment does not contain the necessary
information.

Action: Provide missing information.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass short form verification.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Connect token from the input classify parameter list does not pass
validity checking.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing mode.

Action: Request this function only when you are in 31 bit addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

IWM4ECRE

448 z/OS: z/OS MVS Programming: Workload Management Services

Table 71. Return and Reason Codes for the IWM4ECRE Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0836 Equate Symbol: IwmRsnCodeMaxEnclave

Meaning: Enclave could not be created because the Enclave limit has been
reached.

Action: Check for possible problems wherein Enclaves are not being deleted
as expected or excessive numbers of Enclaves are being created in a loop.

8 xxxx0837 Equate Symbol: IwmRsnCodeUserKeyConntkn

Meaning: Connect token from the input classify parameter list is associated
with a user key.

Action: Invoke the function with a token associated with a system key.

8 xxxx0838 Equate Symbol: IwmRsnCodeClsfyAreaTooBig

Meaning: Input area associated with classification information is larger than
supported.

Action: Invoke the function with an area of the proper size. Check for possible
storage overlay.

8 xxxx0839 Equate Symbol: IwmRsnCodeClsfyPlTooSmall

Meaning: Input Classify parameter list is too small.

Action: Invoke the function with an area of the proper size. Check for possible
storage overlay.

8 xxxx083B Equate Symbol: IwmRsnCodeHomeNotOwnConn

Meaning: Home address space does not own the connect token from the input
classify parameter list.

Action: Invoke the function with the correct home address space.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this service.

Action: Avoid requesting this function under the input connection. IWM4CON
options must be specified previously to enable this service.

8 xxxx085D Equate Symbol: IwmRsnCodeMonenvNotHome

Meaning: The input monitoring environment is related to an address space
other than home.

Action: None required.

8 xxxx0872 Equate Symbol: IwmRsnCodeForeignEnclave

Meaning: It is not allowed to create an enclave of type work-dependent from
out of a foreign enclave.

Action: Make sure not to have joined a forein enclave prior to calling
IWM4ECRE with TYPE=WORKDEPENDENT.

IWM4ECRE

Chapter 12. Workload management services 449

Table 71. Return and Reason Codes for the IWM4ECRE Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0894 Equate Symbol: IwmRsnCodeInvalidEWLMCorr

Meaning: Passed classification information contains an EWLM correlator
(EWLM_CORR) that does not pass validity checking. The architected ARM
correlator length field in the first two Bytes of the EWLM_CORR is either less
than 4 ('0004'x) or greater than 512 ('0200'x).

Action: Check the specification of the EWLM correlator in the classification
information.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: Service is not enabled because caller invoked the IWM4CON service
with EWLM=NO.

Action: Specify the parameter WORKREQ_HDL only when connected with
EWLM=YES.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

C xxxx0C0C Equate Symbol: IwmRsnCodeClassifyFail

Meaning: Received a non-zero return code from the classification service,
IWM4CLSY/IWMCLSFY.

Action: No action required. Reinvoking the function later may succeed.

C xxxx0C0D Equate Symbol: IwmRsnCodeBadClsfy

Meaning: Classification apparently can not access the current policy, possibly
due to a policy switch in progress.

Action: Invoke the function when the conditions are alleviated.

C xxxx0C20 Equate Symbol: IwmRsnCodeDepClassifyFail

Meaning: Unable to obtain classification attributes for a dependent enclave.

Action: None required.

C xxxx0C21 Equate Symbol: IwmRsnCodeNoMonEnvErr

Meaning: Input monitoring token indicates no monitoring environment was
established.

Action: None required.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

IWM4ECRE

450 z/OS: z/OS MVS Programming: Workload Management Services

Examples

None.

IWM4EDEL — Delete an enclave

The purpose of this service is to delete an enclave, so that no SRBs or TCBs exist within the enclave and
no new SRBs may be scheduled into the enclave, nor may any TCBs join the enclave. Some residual
enclave-related CPU time will not be accounted back to the work request whenever active enclave SRBs/
TCBs were present at the time IWM4EDEL is invoked. SRBs scheduled to the enclave which have not
completed will be converted to ordinary preemptible SRBs. TCBs joined to the enclave which have not
completed will be converted to ordinary TCBs.

If IWM4EDEL is invoked for an enclave which is registered, the enclave is considered only logically
deleted while all its functionality stays in place. Physical deletion is deferred until all interested parties
have deregistered the enclave. The caller does not receive any notice when the physical deletion of the
enclave is done.

When an enclave is deleted, the work request is considered to have finished and all related resource
accounting will be finalized.

IWM4EDEL cannot be used to delete a foreign enclave. The IWMUIMPT macro must be used instead.

Note : This service was previously called IWMEDEL for 31-bit addressing only (see “IWMEDELE — Delete
an enclave” on page 789).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRR environments may be established.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

IWM4EDEL

Chapter 12. Workload management services 451

6. Since this service may only be used by system-like code, some validity checking on the parameter list
is not performed. These checks would only be needed if the macro were not used to invoke the service
routine.

Restrictions
This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to
the PLISTVER parameter description for further information.

Input register information
Before issuing the IWM4EDEL macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWM4EDEL macro is as follows:

IWM4EDEL

452 z/OS: z/OS MVS Programming: Workload Management Services

name
IWM4EDEL ETOKEN=  etoken

,CPUSERVICE=  cpuservice

,SYSPLEXCPUSRV=  sysplexcpusrv ,CPUTIME=  cputime

,RESPTIME_RATIO=  resptime_ratio ,ZAAPSERVICE=  zaapservice

,ZAAPTIME=  zaaptime ,ZAAPNFACTOR=  zaapnfactor

,ZIIPSERVICE=  ziipservice ,ZIIPTIME=  ziiptime

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWM4EDEL macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,CPUSERVICE=cpuservice
An optional output parameter, which will contain the CPU service accumulated by the enclave on the
local system.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,CPUTIME=cputime
An optional output parameter, which will contain the total CPU time (in TOD clock format)
accumulated by the enclave on the local system.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

ETOKEN=etoken
A required input parameter, which contains the enclave token to be returned.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWM4EDEL

Chapter 12. Workload management services 453

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of X'0F' to force the parameter list to a word boundary, or X'0D' to force
the parameter list to a doubleword boundary. If you do not code attr, the system provides a value
of X'0D'.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameter and those from version 0:

RESPTIME_RATIO
• 2, which supports the following parameters and those from version 0 and 1:

IWM4EDEL

454 z/OS: z/OS MVS Programming: Workload Management Services

ZAAPNFACTOR ZAAPTIME ZIIPTIME

ZAAPSERVICE ZIIPSERVICE

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, or 2

,RESPTIME_RATIO=resptime_ratio
An optional output parameter, which contains the response time ratio times 100: act.resp.time / goal *
100 if the enclave has a response time goal (limited to: 1<=RESPTIME_RATIO<=1000) 0 otherwise

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SYSPLEXCPUSRV=sysplexcpusrv
An optional output parameter, which will contain the CPU service accumulated by the enclave on the
local system and on other systems through the use of the IWMEXPT and IWMIMPT services. If the
IWMEXPT and IWMIMPT services were not used, SYSPLEXCPUSRV returns the same value as
CPUSERVICE.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,ZAAPNFACTOR=zaapnfactor
An optional output parameter, which contains the normalization factor for application assist
processors (zAAPs). If zAAPs are running at a different speed, multiply zAAP service and times with
this factor and divide the result by 256 to normalize the values to the speed of regular CPs. Note
however, that if there has been a speed change of zAAP processors during the life time of the enclave,
this calculation will return imprecise data.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ZAAPSERVICE=zaapservice
An optional output parameter, which contains the application assist processor (zAAP) service
accumulated by the enclave on the local system. The value is not normalized to the speed of regular
CPs, but is expressed in zAAP speed which might be different. You may use ZAAPNFACTOR to
normalize the value to the speed of regular CPs. Note however, that if the zAAP speed changed during
the life time of the enclave, this value cannot be normalized precisely.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,ZAAPTIME=zaaptime
An optional output parameter, which contains the total application assist processor (zAAP) time (in
TOD clock format) accumulated by the enclave on the local system. The value is not normalized to the
speed of regular CPs, but is expressed in zAAP speed which might be different. You may use
ZAAPNFACTOR to normalize the value to the speed of regular CPs. Note however, that if the zAAP
speed changed during the life time of the enclave, this value cannot be normalized precisely.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

IWM4EDEL

Chapter 12. Workload management services 455

,ZIIPSERVICE=ziipservice
An optional output parameter, which contains the integrated information processor (zIIP) service
accumulated by the enclave on the local system. The service is normalized to standard processor
speed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,ZIIPTIME=ziiptime
An optional output parameter, which contains the total integrated information processor (zIIP) time
(in TOD clock format) accumulated by the enclave on the local system. The time is normalized to
standard processor speed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

ABEND codes
None.

Return codes and reason codes
When the IWM4EDEL macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 72. Return and Reason Codes for the IWM4EDEL Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0411 Equate Symbol: IwmRsnCodeEnclActive

Meaning: Input enclave had 1 or more SRBs scheduled or running, or 1 or
more TCBs joined to the enclave.

Action: None required.

4 xxxx0449 Equate Symbol: IwmRsnCodeWDEDeleted

Meaning: Enclave was deleted and one or several associated work-
dependent enclaves were physically deleted.

Action: None required.

4 xxxx044A Equate Symbol: IwmRsnCodeActiveWDEDeleted

Meaning: Enclave was deleted while it had one or several TCBs joined or
SRBs scheduled/running. Additionally, one or several associated work-
dependent enclaves were physically deleted.

Action: None required.

4 xxxx044B Equate Symbol: IwmRsnCodeAWDEDeleted

Meaning: Enclave was deleted and one or several associated work-
dependent enclaves were physically deleted. One or several physically
deleted work-dependent enclaves had TCBs joined or SRBs scheduled/
running.

Action: None required.

IWM4EDEL

456 z/OS: z/OS MVS Programming: Workload Management Services

Table 72. Return and Reason Codes for the IWM4EDEL Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

4 xxxx044C Equate Symbol: IwmRsnCodeActiveAWDEDeleted

Meaning: Enclave was deleted and one or several associated work-
dependent enclaves were physically deleted. The enclave itself and one or
several physically deleted work-dependent enclaves had TCBs joined or SRBs
scheduled/running

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing the parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token, or
asynchronous events which may have deleted the enclave.

8 xxxx0872 Equate Symbol: IwmRsnCodeForeignEnclave

Meaning: The enclave is foreign.

Action: Use the IWMUIMPT macro to delete a foreign enclave.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

Example
None.

IWM4EQRY — Query an enclave
This service offers three functions:

1. Query the classification attributes for an enclave.
2. Query WLM performance management information for an enclave.
3. Query both the classification attributes and WLM performance management information for an

enclave.

IWM4EQRY

Chapter 12. Workload management services 457

The output of this service is mapped by macro IWMECDX.

The query macro is provided in list, execute, and standard form. The list form accepts no variable
parameters and is used only to reserve space for the parameter list. The standard form is provided for use
with routines which do not require reentrant code. The execute form is provided for use with the list
format for reentrant routines.

Note : This service was previously called IWMEQRY for 31-bit addressing only (see “IWMEQRY — Enclave
query” on page 796).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE ASCENV=AR
before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. This macro may not be used prior to the completion of WLM address space initialization
2. The caller must provide storage for an answer area mapped by macro IWMECDX. This answer area

may reside in the caller's primary address space, or in a dataspace accessible via the current unit of
work's dispatchable unit access list (DUal).

Input register information
Before issuing the IWM4EQRY macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents

IWM4EQRY

458 z/OS: z/OS MVS Programming: Workload Management Services

0
Reason code if GR15 return code is non-zero

1
Used as work register by the system

2-13
Unchanged

14
Used as work register by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None

IWM4EQRY

Chapter 12. Workload management services 459

Syntax
main diagram

name
b IWM4EQRY b ETOKEN=  etoken ,ANSAREA=  ansarea

,ANSLEN=  anslen ,QUERYLEN=  querylen ,FUNCTION=CLASSINFO

,FUNCTION=PERFINFO

,FUNCTION=ALL

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4EQRY macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ANSAREA=ansarea
A required output parameter, which is to receive the data being returned. The layout of this area is
defined by macro IWMECDX.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,ANSLEN=anslen
A required input parameter, variable which contains the length of the area provided to contain the
data being returned by IWM4EQRY.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

ETOKEN=etoken
A required input parameter, which contains the Enclave token representing the Enclave of interest.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,FUNCTION=CLASSINFO
,FUNCTION=PERFINFO
,FUNCTION=ALL

A required parameter that indicates the query function to be executed.

IWM4EQRY

460 z/OS: z/OS MVS Programming: Workload Management Services

,FUNCTION=CLASSINFO
Use this function to query the classification attributes of an enclave. This is the same information
as is returned by service IWMECQRY.

,FUNCTION=PERFINFO
Use this function to query the WLM performance management information of an enclave. This data
is based on the classification attributes and the active WLM Policy.

,FUNCTION=ALL
Use this function to query both, the classification attributes and the WLM performance
management information of an enclave.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled

IWM4EQRY

Chapter 12. Workload management services 461

with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,QUERYLEN=querylen
A required output parameter, variable is to receive the number of bytes needed to contain the data
being returned by IWM4EQRY. The length of the area needed to contain the data is dependent on the
Function being used. If the ANSLEN is less than the QUERYLEN, then no data is returned in the output
area specified by ANSAREA and a return code of 4 is issued.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

ABEND codes
None.

Return codes and reason codes
When the IWM4EQRY macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 73. Return and Reason Codes for the IWM4EQRY Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

IWM4EQRY

462 z/OS: z/OS MVS Programming: Workload Management Services

Table 73. Return and Reason Codes for the IWM4EQRY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive all the
available information.

Action: Reinvoke the service with an output area of sufficient
size to receive all information.

4 xxxx043C Equate Symbol: IwmRsnCodeIsReset

Meaning: Classification information returned may not reflect
how the independent enclave is being managed. The
independent enclave was reset to another service class or is
reset quiesced. Information returned.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing
mode.

Action: Request this function only when you are in 31-bit or 64-
bit addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Caller invoked service with an invalid value for
PLISTVER.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: Caller has an invalid ALET. The ALET is used to
address the output area specified in parameter ANSAREA.

Action: Check for possible storage overlay of the parameter list.

IWM4EQRY

Chapter 12. Workload management services 463

Table 73. Return and Reason Codes for the IWM4EQRY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token is invalid.

Action: Check the specification of the ETOKEN parameter.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error

Action: Consider reporting the problem to IBM.

Examples

None.

IWM4HLTH — Setting server health indicator

The IWM4HLTH service is used to inform WLM about the health state of a server. The health indicator is a
number which shows, in percent, how well the server is performing. It can be an integer value between 0
and 100.
Value

Meaning
100

The server is fully capable to do work without any health problems.
0

The server is not able to do any work.
Any value between 0 and 100

Indicates the level of health of the server.

IWM4HLTH provides two functions: SET and RESET. With the SET function, which is the main intended use
and default function, a caller informs WLM about its view of the health state of a server. WLM then sets the
server's health indicator to the minimum number of all the current settings from the different callers of
the service since the last RESET.

The RESET function primarily refers to reliability, availability, and serviceability (RAS) considerations
regarding a server's health state. RESET restarts setting the health indicator by specifying an initial value
and discarding any values reported by other callers before.

Callers can identify themselves by a subsystem type and subsystem name. The service uses these
parameters to recognize different callers of the service. If no subsystem type is passed, the job name of
the caller address space is used instead. This information will then also be available to callers of the
IWM4QHLT (Query Server Health Indicators) service.

The health indicator is activated when one of the routing services IWM4SRSC or IWMSRSRS with
FUNCTION=SPECIFIC are used to get routing recommendations. The weights are reduced to the
percentage given by the health indicator of the server address space.

The health indicator of a server keeps its value until it is modified by resetting it with the IWM4HLTH
service, or with the IWMSRSRG service.

Environment
The requirements for the caller are:

IWM4HLTH

464 z/OS: z/OS MVS Programming: Workload Management Services

Minimum authorization: FUNCTION=SET:

Problem state with any PSW key if the address space token specified
with STOKEN=stoken equals the address space token of the home
address space. That is, the caller provides a health indicator for itself.
When providing a health indicator for an address space other than
the home address space, the minimum authorization is one of the
following:

• Supervisor state.
• Program key mask (PKM) allowing at least one of the keys 0-7.
• The caller has UPDATE authority to the resource

IWM.SERVER.HEALTH in the FACILITY class.

FUNCTION=RESET:

The minimum authorization is one of the the following:

• Supervisor state.
• Program key mask (PKM) allowing at least one of the key 0-7.
• The caller has CONTROL authority to the resource

IWM.SERVER.HEALTH in the FACILITY class.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: The caller may hold locks, but is not required to hold any. FRRs may
be established.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain versions. See the PLISTVER
parameter description.

IWM4HLTH

Chapter 12. Workload management services 465

Input register information
Before issuing the IWM4HLTH macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWM4HLTH macro is as follows:

IWM4HLTH

466 z/OS: z/OS MVS Programming: Workload Management Services

name
IWM4HLTH STOKEN=  stoken

,FUNCTION=SET

,FUNCTION=RESET

,HEALTH=  health

,SUBSYS=NO_SUBSYS

,SUBSYS=  subsys

,SUBSYSNM=NO_SUBSYSNM

,SUBSYSNM=  subsysnm

,HEALTHRSN=NO_RSN

,HEALTHRSN=  healthrsn

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
STOKEN

A required input parameter which contains the space token of the server.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

FUNCTION
An optional parameter which indicates the function to perform. The default is FUNCTION=SET.
FUNCTION=SET

Informs WLM about the caller's view of the health state of a server. WLM then sets the server's
health indicator to the minimum number of all the current settings from the different callers of the
service since the last RESET.

FUNCTION=RESET
Restarts setting the health indicator by specifying an initial value and discarding any values
reported by other callers before. RESET primarily refers to reliability, availability, and serviceability
(RAS) considerations regarding a server's health state.

HEALTH
A required input parameter, which contains the health indicator associated with the address space.
This value is the percentage up to which this address space is capable to handle requests.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

SUBSYS
An optional input parameter which contains the generic name or type of the caller of the service. It is
used by WLM together with the SUBSYSNM parameter to recognize different callers of this service.
This data is also available to callers of the IWM4QHLT service.

The default is NO_SUBSYS which indicates that no type was passed.

IWM4HLTH

Chapter 12. Workload management services 467

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

SUBSYSNM
An optional input parameter which contains the name of a specific instance of the caller of the service.
It is used by WLM together with the SUBSYS parameter to recognize different callers of this service.
This data is also available to callers of the IWM4QHLT service.

The default is NO_SUBSYSNM which indicates that no name was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

HEALTHRSN
An optional input parameter that allows the caller to pass additional information, such as the reason
for changing the health indicator. This data is available to callers of the IWM4QHLT service.

The format is undefined. The default is NO_RSN which indicates that no additional information is
passed.

To code: Specify the RS-type address or address in register (2)-(12) of an of an 16-character field.

RETCODE
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address or address in register (2)-(12) of a fullword field.

RSNCODE
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address or address in register (2)-(12) of a fullword field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:
IMPLIED_VERSION

The lowest version that allows all parameters specified on the request to be processed. If you
omit the PLISTVER parameter, IMPLIED_VERSION is the default.

MAX
Indicates that you want the parameter list to be the largest size currently possible. This size might
grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

0
Indicates to use version 0 of the macro, which supports all parameters except those specifically
identified in higher versions.

1
Supports the following parameters and those from version 0:

FUNCTION
SUBSYS
SUBSYSNM
HEALTHRSN

To code: Specify one of the following:

IWM4HLTH

468 z/OS: z/OS MVS Programming: Workload Management Services

• IMPLIED_VERSION
• MAX
• A decimal value of 0 or 1

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of
the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

ABEND codes
None.

Return codes and reason codes
When the IWM4HLTH macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

Table 74 on page 469 identifies the hexadecimal return and reason codes and the equate symbol
associated with each reason code. IBM support personnel may request the entire reason code, including
the xxxx value.

Table 74. Return codes and reason codes for the IWM4HLTH Macro

Return code Reason code Equate symbol, meaning, and action

0 — Equate symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

IWM4HLTH

Chapter 12. Workload management services 469

Table 74. Return codes and reason codes for the IWM4HLTH Macro (continued)

Return code Reason code Equate symbol, meaning, and action

8 — Equate symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0807 Equate symbol: IwmRsnCodeBadSTOKEN

Meaning: Bad STOKEN passed.

Action: Check for possible storage overlay.

8 xxxx080B Equate symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on Primary ASC
mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0828 Equate symbol: IwmRsnCodeBadVersion

Meaning: The version number in the parameter list or the version length field
is not valid. Or this service was called on a z/OS release where it is not
supported.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0829 Equate symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters, supplies mutually
exclusive parameters, or provides data associated with options not selected.

Action: Check for possible storage overlay of the parameter list.

8 xxxx08A2 Equate symbol: IwmRsnCodeBadHealth

Meaning: Health Value out of range

Action: Check for possible storage overlay.

C — Equate symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

IWM4HLTH

470 z/OS: z/OS MVS Programming: Workload Management Services

Table 74. Return codes and reason codes for the IWM4HLTH Macro (continued)

Return code Reason code Equate symbol, meaning, and action

C xxxx0C0E Equate symbol: IwmRsnCodeInsufAccess

Meaning: Minimum authorization requirements are not fulfilled.

Action: Invoke the service with one of the following authorization
requirements fulfilled:

• Change the caller's authorization to supervisor state or PKM allowing at
least one of the keys 0-7.

• Give the user ID associated with the program UPDATE authority to the
resource profile IWM.SERVER.HEALTH.

10 — Equate symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

Example
To set the health indication value for a particular server, specify:

 IWM4HLTH STOKEN=STKN
 HEALTH=HLTH
 RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
STKN DS CL8 Contains the STOKEN
* associated with the address
* space
HLTH DS F Field to input the health value
RC DS F Return code
RSN DS F Reason code

IWM4MABN — Monitor environment abnormal event
The purpose of this service is to indicate that an abnormal event has occurred for the work request
represented by the input monitoring environment. This condition will supplement any existing abnormal
conditions recorded in the input monitoring environment (multiple conditions may exist).

Note that abnormal conditions are propagated to the parent monitoring environment via IWM4MXFR
Function(Return).

Note : This service was previously called IWMMABNL for 31-bit addressing only (see “IWMMABNL —
Record abnormal event” on page 802).

Environment
The requirements for the caller are:

IWM4MABN

Chapter 12. Workload management services 471

Minimum authorization: • Either problem state or supervisor state.
• PSW key must either be 0 or match the value supplied on

IWM4MCRE for the input monitoring token when
MONENVKEYP(PSWKEY) is specified.

• MONENVKEYP(VALUE) may only be specified in supervisor state or
with PKM authority to the key specified by MONENVKEY.

Note that the key for IWM4MABN is located in bit positions 0-3
(using 0 origin), which is the machine orientation to keeping keys,
not the "natural" way of declaring the key value.

• MONENVKEYP(UNKNOWN) may only be specified in supervisor state
or with PKM authority to key 0.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Unlocked

Control parameters: Control parameters must be in the primary address space.

Programming requirements
None.

Restrictions
1. This macro may not be used prior to the completion of WLM address space initialization
2. All parameter areas must reside in current primary.
3. If the key specified on IWM4MCRE for the input environment was a user key (8-F), then either primary

OR secondary addressability must exist to the performance block.
4. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for

the input monitoring environment.
5. Only limited validity checking is done on the input monitoring token.
6. Caller is responsible for error recovery.
7. This macro may only be used on z/OS V2R1 or higher.

Input register information
Before issuing the IWM4MABN macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero

IWM4MABN

472 z/OS: z/OS MVS Programming: Workload Management Services

1
Used as a work register by the macro

14
Used as a work register by the macro

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0

Used as a work register by the macro
1

Used as a work register by the macro
14

Used as a work register by the macro
15

Used as a work register by the macro

Some callers depend on register contents remaining the same before and after using a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
calling the service, and restore them after the system returns control.

Performance implications
None

Syntax
main diagram

name
b IWM4MABN b ABNORMAL=  abnormal

,MONTKN=  montkn

,MONTKN64=  montkn64

,MONENVKEYP=VALUE ,MONENVKEY=  monenvkey

,MONENVKEYP=PSWKEY

,MONENVKEYP=UNKNOWN

,MONENV=NOSWITCH

,MONENV=SECONDARY ,RETCODE=  retcode

,RSNCODE=  rsncode

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

Parameters
The parameters are explained as follows:

IWM4MABN

Chapter 12. Workload management services 473

name
An optional symbol, starting in column 1, that is the name on the IWM4MABN macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

ABNORMAL=abnormal
A required input parameter, which indicates the abnormal mask to use to reflect the abnormality.
Macro IWMYCON contains the defined abnormal masks. The mask variable names begin with
IWM4MABN, for example - IWMMABNL_SCOPE_LOCALMVS.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONENV=NOSWITCH
,MONENV=SECONDARY

A required parameter, which describes whether a space switch is needed to access the input
monitoring environment.
,MONENV=NOSWITCH

indicates that NO space switch is needed to access the input monitoring environment. This would
be appropriate if the input monitoring environment was established (by IWM4MCRE) to be used by
routines in a specific system key or if it was established to be used in a specific user key in the
current primary.

,MONENV=SECONDARY

indicates that the input monitoring environment was established in current secondary (for use by
a specific user key).

,MONENVKEY=monenvkey
When MONENVKEYP=VALUE is specified, a required input parameter, which contains the key in which
the input monitoring environment must be accessed. Use of this keyword value requires that the
invoker be in supervisor state or that the caller have PKM authority to the key specified. The leftmost,
i.e. high order, 4 bits contain the key value.

Note that this is different from the "natural" way of declaring the key, and uses the machine
orientation for keeping the storage key in the high order bits.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8 bit field.

,MONENVKEYP=VALUE
,MONENVKEYP=PSWKEY
,MONENVKEYP=UNKNOWN

A required parameter, which describes whether a key switch is needed to access the input monitoring
environment.
,MONENVKEYP=VALUE

indicates that the key is being passed explicitly via MONENVKEY.

,MONENVKEYP=PSWKEY

indicates that the current PSW key should be used. Use of this keyword value requires that the
input monitoring environment was established with the same key as the current PSW.

,MONENVKEYP=UNKNOWN

indicates that the key associated with the input monitoring environment is unknown. Use of this
keyword value requires that the invoker be in supervisor state or that the caller have PKM
authority to key 0.

,MONTKN=montkn
A required input parameter which contains the delay monitoring token for the environment affected
by the abnormality.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

IWM4MABN

474 z/OS: z/OS MVS Programming: Workload Management Services

,MONTKN64=montkn64
A required input parameter which contains the long delay monitoring token for the environment
affected by the abnormality.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

ABEND codes
None.

Return codes and reason codes
When the IWM4MABN macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 75. Return and reason codes for the IWM4MABN macro

Return code Reason code Meaning and action

0 — Equate symbol: IwmRetCodeOk

Meaning: Successful completion.

4 — Equate symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate symbol: IwmRsncodeNoMonEnv

Meaning: Input monitoring token indicates no monitoring environment was
established.

8 — Equate symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters .

8 xxxx0820 Equate symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass verification.

Examples

None.

IWM4MABN

Chapter 12. Workload management services 475

IWM4MCHS — Change the state of a work request
The purpose of this service is to reflect in a monitoring environment what the current state of a work
request is with respect to delays.

A work unit started by IWM4MSTR is blocked and unblocked automatically. WAITING states, that allow
the specification of the ASYNC keyword, block the work unit. All other states unblock the work unit.

Note : This service was previously called IWMMCHST for 31-bit addressing only (see “IWMMCHST —
Monitor change state of work unit” on page 806).

Environment
The requirements for the caller are:

Minimum authorization: Problem state. PSW key must either be 0 or match the value supplied
on IWM4MCRE.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Suspend locks are allowed.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of bits 0-31 of register 0, and the reason code variable when

specified, may be non-zero and represents diagnostic data which is NOT part of the external interface.
The high order halfword should thus be excluded from comparison with the reason code values
described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for
this purpose.

Restrictions
1. Caller is responsible for error recovery
2. Only limited checking is done against the input monitoring token.
3. If the key specified on IWM4MCRE was a user key (8-F), then the primary addressability must exist to

the performance block IWM4MCRE obtained. This condition is satisfied by ensuring that current
primary matches primary at the time that IWM4MCRE was invoked. If this service is invoked in a
subspace, the condition may be satisfied by ensuring that the performance block is shared with the
base space.

4. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for
the environment represented by the monitoring token.

5. This macro may only be used on z/OS R2 or higher levels for the following state/resources

• STATE(ACTIVE_APPL)
• RESOURCE(SSL_THREAD)
• RESOURCE(REG_THREAD)

IWM4MCHS

476 z/OS: z/OS MVS Programming: Workload Management Services

• RESOURCE(REG_TO_WRKTB)
• RESOURCE(TYPE1)
• RESOURCE(TYPE2)
• RESOURCE(TYPE3)
• RESOURCE(TYPE4)
• RESOURCE(TYPE5)

6. This macro may only be used on z/OS R8 or higher levels for the following resources

• RESOURCE(BUFFER_POOL_IO)
7. This macro may only be used on z/OS R8 or higher levels for RESTKN keyword.
8. This macro may only be used on z/OS R10 or higher levels for the following state/resources

• RESOURCE(TYPE6)
• RESOURCE(TYPE7)
• RESOURCE(TYPE8)
• RESOURCE(TYPE9)
• RESOURCE(TYPE10)
• RESOURCE(TYPE11)
• RESOURCE(TYPE12)
• RESOURCE(TYPE13)
• RESOURCE(TYPE14)
• RESOURCE(TYPE15)

9. This macro may only be used on z/OS V2R1 or higher levels for the MONTKN64 keyword.
10. This macro supports multiple versions. Some keywords are unique to certain versions. See the

PLISTVER parameter description.

Input register information
Before issuing the IWM4MCHS macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero. The reason code is stored in bits 0-31
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code stored in bits 0-31

When control returns to the caller, the ARs contain:
Register

Contents

IWM4MCHS

Chapter 12. Workload management services 477

0-1
Used as work registers by the system

2-13
Unchanged

14-15
Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

IWM4MCHS

478 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
main diagram

name
b IWM4MCHS b

STATE=FREE

STATE=ACTIVE

STATE=ACTIVE_APPL

STATE=READY

STATE=IDLE

STATE=WAITING ,RESOURCE=LATCH

,RESOURCE=LOCK

,RESOURCE=IO

,RESOURCE=CONV

,ASYNC=NO

,ASYNC=YES

,RESOURCE=DISTRIB

,ASYNC=NO

,ASYNC=YES

,RESOURCE=SESS_LOCALMVS

,ASYNC=NO

,ASYNC=YES

,RESOURCE=SESS_NETWORK

,ASYNC=NO

,ASYNC=YES

,RESOURCE=SESS_SYSPLEX

,ASYNC=NO

,ASYNC=YES

,RESOURCE=TIMER

,RESOURCE=OTHER_PRODUCT

,ASYNC=NO

,ASYNC=YES

,RESOURCE=MISC

,RESOURCE=SSL_THREAD

,RESOURCE=REG_THREAD

,RESOURCE=REG_TO_WRKTB

,RESOURCE=TYPE1

,RESOURCE=TYPE2

,RESOURCE=TYPE3

,RESOURCE=TYPE4

,RESOURCE=TYPE5

,RESOURCE=TYPE6

,RESOURCE=TYPE7

,RESOURCE=TYPE8

,RESOURCE=TYPE9

,RESOURCE=TYPE10

,RESOURCE=TYPE11

,RESOURCE=TYPE12

,RESOURCE=TYPE13

,RESOURCE=TYPE14

,RESOURCE=TYPE15

,RESOURCE=BUFFER_POOL_IO

,EWLM=NO

,MONTKN=  montkn

,MONTKN64=  montkn64

,RESTKN=NORESTKN

,RESTKN=  restkn

,RUNTIME_VER=SHORT_FORM

,RUNTIME_VER=MINIMAL

,COMPCODE=YES

,COMPCODE=NO

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,PLISTVER=3

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

IWM4MCHS

Chapter 12. Workload management services 479

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MCHS macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ASYNC=NO
,ASYNC=YES

When RESOURCE=CONV and STATE=WAITING are specified, an optional parameter, which specifies
the blocking type of a work unit started by IWM4MSTR. The default is ASYNC=NO.
,ASYNC=NO

indicates that the blocking type is synchronous.
,ASYNC=YES

indicates that the blocking type is asynchronous.
,ASYNC=NO
,ASYNC=YES

When RESOURCE=DISTRIB and STATE=WAITING are specified, an optional parameter, which
specifies the blocking type of a work unit started by IWM4MSTR. The default is ASYNC=NO.
,ASYNC=NO

indicates that the blocking type is synchronous.
,ASYNC=YES

indicates that the blocking type is asynchronous.
,ASYNC=NO
,ASYNC=YES

When RESOURCE=SESS_LOCALMVS and STATE=WAITING are specified, an optional parameter, which
specifies the blocking type of a work unit started by IWM4MSTR. The default is ASYNC=NO.
,ASYNC=NO

indicates that the blocking type is synchronous.
,ASYNC=YES

indicates that the blocking type is asynchronous.
,ASYNC=NO
,ASYNC=YES

When RESOURCE=SESS_NETWORK and STATE=WAITING are specified, an optional parameter, which
specifies the blocking type of a work unit started by IWM4MSTR. The default is ASYNC=NO.
,ASYNC=NO

indicates that the blocking type is synchronous.
,ASYNC=YES

indicates that the blocking type is asynchronous.
,ASYNC=NO
,ASYNC=YES

When RESOURCE=SESS_SYSPLEX and STATE=WAITING are specified, an optional parameter, which
specifies the blocking type of a work unit started by IWM4MSTR. The default is ASYNC=NO.
,ASYNC=NO

indicates that the blocking type is synchronous.
,ASYNC=YES

indicates that the blocking type is asynchronous.
,ASYNC=NO
,ASYNC=YES

When RESOURCE=OTHER_PRODUCT and STATE=WAITING are specified, an optional parameter,
which specifies the blocking type of a work unit started by IWM4MSTR. The default is ASYNC=NO.

IWM4MCHS

480 z/OS: z/OS MVS Programming: Workload Management Services

,ASYNC=NO
indicates that the blocking type is synchronous.

,ASYNC=YES
indicates that the blocking type is asynchronous.

,COMPCODE=YES
,COMPCODE=NO

An optional parameter, which indicates whether completion status for this service is needed. The
default is COMPCODE=YES.
,COMPCODE=YES

indicates that completion status is needed.
,COMPCODE=NO

indicates that completion status is not needed. Registers 0, 15 cannot be used as reason code and
return code registers upon completion of the macro expansion. For this reason neither RETCODE
NOR RSNCODE may be specified when COMPCODE(NO) is specified.

,EWLM=NO
An optional parameter, which indicates if this work manager intents to participate in cross platform
Enterprise Workload Management (eWLM). The default is EWLM=NO.
,EWLM=NO

The work manager interacts only with WLM and no interaction with eWLM takes place.
,MONTKN=montkn

A required input parameter which contains the delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKN64=montkn64
A required input parameter which contains the long delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2
,PLISTVER=3

An optional input parameter that specifies the version of the macro. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want to indicate the latest version currently possible.
• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports all parameters except those specifically referenced in higher versions. No

parameters correspond to this version number.
• 2, which supports all parameters except those specifically referenced in higher versions. No

parameters correspond to this version number.
• 3, which supports both the following parameters and those from version 0,1 and 2:

MONTKN64

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, 2, or 3

IWM4MCHS

Chapter 12. Workload management services 481

,RESOURCE=LATCH
,RESOURCE=LOCK
,RESOURCE=IO
,RESOURCE=CONV
,RESOURCE=DISTRIB
,RESOURCE=SESS_LOCALMVS
,RESOURCE=SESS_NETWORK
,RESOURCE=SESS_SYSPLEX
,RESOURCE=TIMER
,RESOURCE=OTHER_PRODUCT
,RESOURCE=MISC
,RESOURCE=SSL_THREAD
,RESOURCE=REG_THREAD
,RESOURCE=REG_TO_WRKTB
,RESOURCE=TYPE1
,RESOURCE=TYPE2
,RESOURCE=TYPE3
,RESOURCE=TYPE4
,RESOURCE=TYPE5
,RESOURCE=TYPE6
,RESOURCE=TYPE7
,RESOURCE=TYPE8
,RESOURCE=TYPE9
,RESOURCE=TYPE10
,RESOURCE=TYPE11
,RESOURCE=TYPE12
,RESOURCE=TYPE13
,RESOURCE=TYPE14
,RESOURCE=TYPE15
,RESOURCE=BUFFER_POOL_IO

When STATE=WAITING is specified, a required parameter, which indicates the resource that the work
manager is waiting for on behalf of the work request described by the monitoring environment.
,RESOURCE=LATCH

indicates that the work manager is waiting on a latch.
,RESOURCE=LOCK

indicates that the work manager is waiting on a lock.
,RESOURCE=IO

indicates that the work manager is waiting on an activity related to an I/O request. This may either
be an actual I/O operation or some function associated with an IO request that cannot be more
precisely determined by the work manager (e.g. locks, buffers, etc.).

,RESOURCE=CONV
indicates that the work manager is waiting on a conversation. This may be used in conjunction
with IWM4MSWC to identify where the target is located.

,RESOURCE=DISTRIB
indicates that the work manager is waiting on a distributed request. This says at a high level that
some function or data must be routed prior to resumption of the work request. This is to be
contrasted with Waiting on Conversation, which is a low level view of the precise resource that is
needed. A distributed request could involve waiting on a conversation as part of its processing.

,RESOURCE=SESS_LOCALMVS
indicates that the work manager is waiting to establish a session somewhere in the current MVS
image.

,RESOURCE=SESS_NETWORK
indicates that the work manager is waiting to establish a session somewhere in the network.

,RESOURCE=SESS_SYSPLEX
indicates that the work manager is waiting to establish a session somewhere in the sysplex.

IWM4MCHS

482 z/OS: z/OS MVS Programming: Workload Management Services

,RESOURCE=TIMER
indicates that the work request is waiting on a timer.

,RESOURCE=OTHER_PRODUCT
indicates that the work manager is waiting on another product to complete its function.

,RESOURCE=MISC
indicates that the work manager is waiting on some unidentified resource, possibly among the
previous categories.

,RESOURCE=SSL_THREAD
indicates that the work manager is waiting on a SSL thread.

,RESOURCE=REG_THREAD
indicates that the work manager is waiting on a regular processing thread.

,RESOURCE=REG_TO_WRKTB
indicates that the work manager is waiting for the registration to a worktable.

,RESOURCE=TYPE1
indicates that the work manager is waiting for resource type 1.

,RESOURCE=TYPE2
indicates that the work manager is waiting for resource type 2.

,RESOURCE=TYPE3
indicates that the work manager is waiting for resource type 3.

,RESOURCE=TYPE4
indicates that the work manager is waiting for resource type 4.

,RESOURCE=TYPE5
indicates that the work manager is waiting for resource type 5.

,RESOURCE=TYPE6
indicates that the work manager is waiting for resource type 6.

,RESOURCE=TYPE7
indicates that the work manager is waiting for resource type 7.

,RESOURCE=TYPE8
indicates that the work manager is waiting for resource type 8.

,RESOURCE=TYPE9
indicates that the work manager is waiting for resource type 9.

,RESOURCE=TYPE10
indicates that the work manager is waiting for resource type 10.

,RESOURCE=TYPE11
indicates that the work manager is waiting for resource type 11.

,RESOURCE=TYPE12
indicates that the work manager is waiting for resource type 12.

,RESOURCE=TYPE13
indicates that the work manager is waiting for resource type 13.

,RESOURCE=TYPE14
indicates that the work manager is waiting for resource type 14.

,RESOURCE=TYPE15
indicates that the work manager is waiting for resource type 15.

,RESOURCE=BUFFER_POOL_IO
indicates that the work manager is waiting for resource buffer pool IO.

,RESTKN=restkn
,RESTKN=NORESTKN

An optional input parameter, which contains the token of the managed resource previously registered
with Register Resource (IWM4MREG) The default is NORESTKN which indicates that no resource
token is provided.

IWM4MCHS

Chapter 12. Workload management services 483

NORESTKN will preserve the existing resource token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL

An optional parameter, which indicates what level of runtime verification will be performed. The
default is RUNTIME_VER=SHORT_FORM.
,RUNTIME_VER=SHORT_FORM

indicates that checking should verify that a monitoring environment is established and passes a
short form of verification prior to being used.

,RUNTIME_VER=MINIMAL
indicates that checking will only be done to verify that a monitoring environment may be
established, assuming that it would be valid and useable if established.

STATE=FREE
STATE=ACTIVE
STATE=ACTIVE_APPL
STATE=READY
STATE=IDLE
STATE=WAITING

A required parameter, which indicates the current state for the work request.
STATE=FREE

indicates that the work manager has no work request associated with the monitoring
environment.

STATE=ACTIVE
indicates that there is a program executing on behalf of the work request described by the
monitoring environment. This is an indication from the perspective of the work manager using this
service, who should not try to factor in MVS decisions in preempting work, etc.

STATE=ACTIVE_APPL
indicates that there is a application program executing on behalf of the work request described by
the monitoring environment. This is an indication from the perspective of the work manager using
this service, who should not try to factor in MVS decisions in preempting work, etc. This state
represents the application activity in contrast to the active (subsystem) state.

STATE=READY
indicates that there is a program ready to execute on behalf of the work request described by the
monitoring environment, but the work manager has given priority to another work request.

STATE=IDLE
indicates that the work manager has no work requests that it is allowed to service within the
monitoring environment. This represents a delay that is not under the control of the work manager
itself and which it cannot eliminate. This may be caused by limits imposed by the installation or by
the nature of the work request itself.

IWM4MCHS

484 z/OS: z/OS MVS Programming: Workload Management Services

STATE=WAITING
indicates that the work manager is waiting for a resource on behalf of the work request described
by the the monitoring environment. Some resources the work manager is waiting for cause a
blocking of the work unit started by IWM4MSTR. The blocking is terminated when the work unit
state is changed into a state that does not cause blocking.

ABEND codes
None.

Return codes and reason codes
When the IWM4MCHS macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 76. Return and Reason Codes for the IWM4MCHS Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: Input monitoring token indicates no monitoring environment was
established.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass short form verification.

Action: Check for possible storage overlay.

Examples

None.

IWM4MCRE — Create delay monitoring environment
The purpose of this service is to create a single delay monitoring environment or a number of delay
monitoring environments so that work and resource managers may utilize other delay monitoring services
to reflect to MVS the execution states and delays associated with work requests.

IWM4MCRE

Chapter 12. Workload management services 485

There are three types of monitoring environments available: management monitoring environments,
report-only monitoring environments, and buffer pool management only environments.

Management monitoring environments
Provide both performance management and performance reporting, including performance
management for buffer pools.

Report-only monitoring environments
Can only be used for performance reporting.

Buffer pool management only environments
If you do not use management monitoring environments, buffer pool management only environments
can be used to report buffer pool delays to manage buffer pools with enclaves. If used for buffer pool
management, they can also be used to report other delays for performance reporting.

Optionally with this macro, you can use the REPORTONLY=YES parameter to specify that the monitoring
environment will be used for reporting purposes only.

Optionally with this macro, you can use the BPMGMTONLY=YES parameter to specify that the monitoring
environment will be used together with enclaves for buffer pool management.

Note : This service was previously called IWMMCREA for 31-bit addressing only (see “IWMMCREA —
Create delay monitoring environment” on page 813).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task

Cross memory mode: Non-XMEM or XMEM. Any P.S.H.

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts No (EUT) FRR established.

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain versions. See the PLISTVER
parameter description.

IWM4MCRE

486 z/OS: z/OS MVS Programming: Workload Management Services

Input register information
Before issuing the IWM4MCRE macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

IWM4MCRE

Chapter 12. Workload management services 487

Syntax
main diagram

name
b IWM4MCRE b

REQTYPE=SINGLE

,MONTKN=  montkn

,MONTKN64=  montkn64
,ALLOCATEBELOW=NO

,ALLOCATEBELOW=YES

REQTYPE=MULTIPLE parameters-1

,REPORTONLY=NO ,BPMGMTONLY=NO

,BPMGMTONLY=YES

,REPORTONLY=YES

,SUBSYSP=CONNECT ,CONNTKN=  conntkn

,SUBSYSP=VALUE parameters-2

,MONTKNKEYP=VALUE ,MONTKNKEY=  montknkey

,MONTKNKEYP=PSWKEY ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

IWM4MCRE

488 z/OS: z/OS MVS Programming: Workload Management Services

parameters-1
,AMOUNT=  amount

,MONTKN_LIST=  montkn_list

,MONTKN64_LIST=  montkn64_list
,ALLOCATEBELOW=NO

,ALLOCATEBELOW=YES

,LISTLEN=  listlen

,MONTKN_LISTLEN=  montkn_listlen

parameters-2
,SUBSYS=  subsys ,SUBSYSNM=  subsysnm

,EWLM=NO

,EWLM=YES

,GROUPNM=NO_GROUPNM

,GROUPNM=  groupnm

,GROUPNM_LEN=  groupnm_len

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MCRE macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ALLOCATEBELOW=NO
,ALLOCATEBELOW=YES

When MONTKN64=montkn64 and REQTYPE=SINGLE are specified, an optional parameter, which
indicates whether the virtual storage for the delay monitoring environment is to be obtained below 2
gigabytes. This is especially helpful for callers with 31-bit dependencies. The default is
ALLOCATEBELOW=NO.
,ALLOCATEBELOW=NO

indicates that the delay monitoring environment is to be located as 64-bit virtual storage.
,ALLOCATEBELOW=YES

indicates that the virtual storage is to be located below 2 gigabytes.
,ALLOCATEBELOW=NO
,ALLOCATEBELOW=YES

When MONTKN64_LIST=montkn64_list and REQTYPE=MULTIPLE are specified, an optional
parameter, which indicates whether the virtual storage for the delay monitoring environment is to be
obtained below 2 gigabytes. This is especially helpful for callers with 31-bit dependencies. The
default is ALLOCATEBELOW=NO.
,ALLOCATEBELOW=NO

indicates that the delay monitoring environment is to be located as 64-bit virtual storage.
,ALLOCATEBELOW=YES

indicates that the virtual storage is to be located below 2 gigabytes.
,AMOUNT=amount

When REQTYPE=MULTIPLE is specified, a required input parameter, which specifies the number of
delay monitoring environments to be created.

IWM4MCRE

Chapter 12. Workload management services 489

While there is no restriction on the number of delay monitoring environments to be created, caller
should only create the minimum number of delay monitoring environments that are needed.

If there are too many unused delay monitoring environments existing in the system, the storage and
CPU overheads may be significant.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,BPMGMTONLY=NO
,BPMGMTONLY=YES

When REPORTONLY=NO is specified, an optional parameter, which indicates whether the monitoring
environment is used together with enclaves to manage buffer pools (YES) or (NO). The default is
BPMGMTONLY=NO.
,BPMGMTONLY=NO

indicates that the monitoring environment is not used together with enclaves to manage buffer
pools.

,BPMGMTONLY=YES
indicates that the monitoring environment is used together with enclaves to manage buffer pools.

,CONNTKN=conntkn
When SUBSYSP=CONNECT is specified, a required input parameter, which contains the connect token
associated with the subsystem.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,EWLM=NO
,EWLM=YES

When SUBSYSP=VALUE is specified, an optional parameter, which indicates if the created monitoring
environment is intended to paricipate in Enterprise Workload Management (EWLM). The default is
EWLM=NO.
,EWLM=NO

The monitoring environment can not be used to report on ARM work requests.
,EWLM=YES

The monitoring environment participates in cross platform Enterprise Workload Management and
interacts with EWLM. An ARM application instance will be registered and started using the passed
subsystem type (SUBSYS), subsystem name (SUBSYSNM), and the new parameter group name
(GROUPNM, GROUPNM_LEN) - an already existing ARM registration for the same address space
with identical SUBSYS, SUBSYSNM, GROUPNM and GROUPNM_LEN parameters will be reused. All
ARM work requests associated with the created monitoring environment are reported for this ARM
application instance.

,GROUPNM=groupnm
,GROUPNM=NO_GROUPNM

When EWLM=YES and SUBSYSP=VALUE are specified, an optional input parameter, which contains
the name of an application group, i.e. a group of similar or cooperating subsystem instances. A group
name can be up to 255 characters long. Provision of a data area initialized to all blanks is equivalent to
specification of NO_GROUPNM. The default is NO_GROUPNM. indicates that no group name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,GROUPNM_LEN=groupnm_len
When GROUPNM=groupnm, EWLM=YES and SUBSYSP=VALUE are specified, a required input
parameter, which contains the length of the group name. A group name can be up to 255 characters
long.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,LISTLEN=listlen
When REQTYPE=MULTIPLE is specified, a required input parameter which specifies the length (in
bytes) of the area identified by the MONTKN_LIST / MONTKN64_LIST keyword.

IWM4MCRE

490 z/OS: z/OS MVS Programming: Workload Management Services

Size of this area must be at least the size of one monitoring token (see MONTKN / MONTKN64
keyword) times AMOUNT. If the user specified area is not large enough to return the delay monitoring
tokens, a specific return/reason code will be returned and the request will not be processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,MONTKN=montkn
When REQTYPE=SINGLE is specified, a required output parameter which will receive the delay
monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKN_LIST=montkn_list
When REQTYPE=MULTIPLE is specified, a required input parameter which specifies an area into which
a list of delay monitoring tokens will be placed. A single MONTKN has a size of 4 byte.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,MONTKN_LISTLEN=montkn_listlen
When REQTYPE=MULTIPLE is specified, a required input parameter

Still supported, but use LISTLEN instead

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,MONTKNKEY=montknkey
When MONTKNKEYP=VALUE is specified, a required input parameter, which contains the key in which
the delay monitoring environment will be invoked subsequently when using the output MONTKN /

IWM4MCRE

Chapter 12. Workload management services 491

MONTKN64. The low order 4 bits (bits 4-7) contain the key value. The high order 4 bits (bits 0-3) must
be 0.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8 bit field.

,MONTKNKEYP=VALUE
,MONTKNKEYP=PSWKEY

A required parameter, which describes how the input key for the monitoring environment should be
obtained.
,MONTKNKEYP=VALUE

indicates that the key is being passed explicitly via MONTKNKEY.

,MONTKNKEYP=PSWKEY

indicates that the current PSW key should be used.

,MONTKN64=montkn64
When REQTYPE=SINGLE is specified, a required output parameter which will receive the long delay
monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,MONTKN64_LIST=montkn64_list
When REQTYPE=MULTIPLE is specified, a required input parameter which specifies an area into which
a list of long delay monitoring tokens will be placed. A single MONTKN64 has a size of 8 byte.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports both the following parameters and those from version 0:

BPMGMTONLY GROUPNM

EWLM GROUPNM_LEN

• 2, which supports both the following parameters and those from version 0 and 1:

ALLOCATEBELOW LISTLEN MONTKN64_LIST

IWM4MCRE

492 z/OS: z/OS MVS Programming: Workload Management Services

MONTKN64

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, or 2

,REPORTONLY=NO
,REPORTONLY=YES

An optional parameter, which indicates whether the monitoring environment is for reporting purposes
only (YES) or (NO). The default is REPORTONLY=NO.
,REPORTONLY=NO

indicates that the monitoring environment is for management and reporting purposes.
,REPORTONLY=YES

indicates that the monitoring environment is for reporting purposes only.
REQTYPE=SINGLE
REQTYPE=MULTIPLE

An optional parameter that indicates whether the request is to create a single delay monitoring
environment or to create multiple delay monitoring environments. The default is REQTYPE=SINGLE.
REQTYPE=SINGLE

The request is to create a single delay monitoring environment.
REQTYPE=MULTIPLE

The request is to create a number of delay monitoring environments.
,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SUBSYS=subsys
When SUBSYSP=VALUE is specified, a required input parameter, which contains the generic
subsystem type (e.g. IMS, CICS, etc.).

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character field.

,SUBSYSNM=subsysnm
When SUBSYSP=VALUE is specified, a required input parameter, which contains the subsystem name.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,SUBSYSP=CONNECT
,SUBSYSP=VALUE

A required parameter, which describes how the calling subsystem is providing identification.
,SUBSYSP=CONNECT

indicates that the connect token is being passed.

,SUBSYSP=VALUE

indicates that the subsystem name is being passed directly.

IWM4MCRE

Chapter 12. Workload management services 493

ABEND codes
None.

Return codes and reason codes
When the IWM4MCRE macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 77. Return and Reason Codes for the IWM4MCRE Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0409 Equate Symbol: IwmRsnCodeNoConn

Meaning: Connect token does not reflect a successful Connect.
The delay monitoring token returned is useable in other
services. However use of this token will NOT result in the action
requested of those services.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0802 Equate Symbol: IwmRsnCodeXmemUserKeyTkn

Meaning: Caller is in cross-memory mode while the token was
requested in user key.

Action: Avoid requesting this function while in cross-memory
mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

IWM4MCRE

494 z/OS: z/OS MVS Programming: Workload Management Services

Table 77. Return and Reason Codes for the IWM4MCRE Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing
mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on Primary
ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in
progress for the TCB associated with the owner.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

IWM4MCRE

Chapter 12. Workload management services 495

Table 77. Return and Reason Codes for the IWM4MCRE Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or supplies
mutually exclusive parameters or provides data associated with
options not selected.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0844 Equate Symbol: IwmRsnCodeBadMonTknListLen

Meaning: The storage area length specified on the
MONTKN_LISTLEN parameter is not large enough to contain the
data being returned. No data is returned.

Action: Invoke the function with an output area sufficient to
receive the data.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

C xxxx0C09 Equate Symbol: IwmRsnCodeNoResmgr

Meaning: Resource manager could not be established.

Action: No action required. This condition may be due to a
storage shortage condition.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if
invoked again.

Examples

None.

IWM4MDEL — Delete delay monitoring environment
The purpose of this service is to delete a delay monitoring environment, so that MVS state sampling will
no longer monitor for new work requests to be associated with the input monitoring token.

The delete macro is provided in list, execute, and standard form. The list form accepts no variable
parameters and is used only to reserve space for the parameter list. The standard form is provided for use
with routines which do not require reentrant code. The execute form is provided for use with the list
format for reentrant routines. The delete macro is provided in PL/AS and assembler formats.

The parameter list must be in the caller's primary address space.

Note : This service was previously called IWMMDELE for 31-bit addressing only (see “IWMMDELE —
Delete the monitoring environment” on page 821).

IWM4MDEL

496 z/OS: z/OS MVS Programming: Workload Management Services

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Unlocked, but FRRs are allowed.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
None.

Restrictions
1. This macro may not be used prior to the completion of WLM address space initialization
2. If the key specified on IWM4MCRE was a user key (8-F), then the following must ALL be true:

• Caller must be in non-cross-memory mode (P=S=H). This implies that the current primary must
match the primary at the time that IWM4MCRE was invoked. Running in a subspace is not supported.

• Must be in TCB mode (not SRB).
• Current TCB must match the TCB at the time that IWM4MCRE was invoked.

3. The caller must serialize to prevent any delay monitoring services from being invoked concurrently or
subsequently for the environment represented by the monitoring token

4. This service should not be invoked while in a RTM termination routine (resource manager) for the TCB
owning the monitoring environment since MVS will have its own resource cleanup routine and
unpredictable results would occur. It is legitimate to use this service while in a recovery routine,
however, or in mainline processing.

5. This macro may only be used on z/OS V2R1 or higher.

Input register information
Before issuing the IWM4MDEL macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as a work register by the macro
14

Used as a work register by the macro

IWM4MDEL

Chapter 12. Workload management services 497

15
Return code'.

When control returns to the caller, the ARs contain:
Register

Contents
0

Used as a work register by the macro
1

Used as a work register by the macro
14

Used as a work register by the macro
15

Used as a work register by the macro'.

Some callers depend on register contents remaining the same before and after using a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
calling the service, and restore them after the system returns control.

Performance implications
None.

Syntax
main diagram

name
b IWM4MDEL b MONTKN=  montkn

,MONTKN64=  montkn64

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MDEL macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

IWM4MDEL

498 z/OS: z/OS MVS Programming: Workload Management Services

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

MONTKN=montkn
A required input parameter which contains the delay monitoring token for the environment to be
deleted.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKN64=montkn64
A required input parameter which contains the long delay monitoring token for the environment to be
deleted.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled

IWM4MDEL

Chapter 12. Workload management services 499

with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

ABEND codes
None.

Return codes and reason codes
When the IWM4MDEL macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 78. Return and Reason Codes for the IWM4MDEL Macro

Return Code Reason Code Meaning and Action

0 — Equate symbol: IwmRetCodeOk

Meaning: Successful completion.

4 — Equate symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate symbol: IwmRsnCodeNoMonEnv

Meaning: Input monitoring token indicates no monitoring environment was
established.

4 xxxx0403 Equate symbol: IwmRsnCodeMonEnvNotAlloc

Meaning: Input monitoring token does not reflect an allocated monitoring
environment owned by the current home address space.

8 — Equate symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

IWM4MDEL

500 z/OS: z/OS MVS Programming: Workload Management Services

Table 78. Return and Reason Codes for the IWM4MDEL Macro (continued)

Return Code Reason Code Meaning and Action

8 xxxx0802 Equate symbol: IwmRsnCodeXmemUserKeyTkn

Meaning: Caller is in cross-memory mode while the token was obtained in
user key.

8 xxxx0803 Equate symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

8 xxxx0804 Equate symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

8 xxxx0805 Equate symbol: IwmRsnCodeMonEnvSwitchCont

Meaning: Input monitor token reflects a switch continuation.

8 xxxx0806 Equate symbol: IwmRsnCodeMonEnvParent

Meaning: Input monitoring token reflects a continuation to a dependent
monitoring environment.

8 xxxx0808 Equate symbol: IwmRsnCodeMonEnvDepCont

Meaning: Input monitoring token reflects a continuation from a parent
monitoring environment.

8 xxxx0809 Equate symbol: IwmRsnCodeSrbUserKeyTkn

Meaning: Caller is in SRB mode, while the token was obtained in a user key (8-
F).

8 xxxx080A Equate symbol: IwmRsnCodeTcbNotOwnerUserKeyTkn

Meaning: Current TCB is not the current owner, while the token was obtained
in a user key (8-F).

8 xxxx080B Equate symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

8 xxxx0823 Equate symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF.

8 xxxx0824 Equate symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24-bit addressing mode.

8 xxxx0825 Equate symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on Primary ASC mode.

8 xxxx0826 Equate symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in progress for the
TCB associated with the owner.

8 xxxx0827 Equate symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

IWM4MDEL

Chapter 12. Workload management services 501

Table 78. Return and Reason Codes for the IWM4MDEL Macro (continued)

Return Code Reason Code Meaning and Action

8 xxxx0828 Equate symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

8 xxxx082A Equate symbol: IwmRsnCodeMonEnvRelated

Meaning: Input monitor token is related to a parent monitoring environment.

10 — Equate symbol: IwmRetCodeCompError

Meaning: Component error.

Examples

None.

IWM4MDRG — Deregister a resource from monitoring

The purpose of the IWM4MDRG service is to deregister a resource from monitoring which was previously
registered via IWM4MREG. The service allows the caller to identify a resource which is no longer involved
in delays to work requests. Thus, the system may no longer alter the size of the resource to balance
associated delays.

The system implicitly deregisters a resource due to repetitive errors in calling exits associated with the
resource. In this case, the invocation to deregister finds that the associated resource token is invalid and
returns with a warning return code. The same return code will be returned in all cases where the resource
token is invalid.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN. The current HASN must match the HASN at the
time that IWM4MREG was used to register the resource.

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order

IWM4MDRG

502 z/OS: z/OS MVS Programming: Workload Management Services

halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

4. All character data input is assumed to be left-justified and padded with blanks on the right, as needed,
to fill in the specified number of bytes.

Restrictions
1. NO FRRs may be established.
2. This service should not be invoked from an address space resource manager, because those are

dispatched from master's address space which will not match the space which invoked the registration
service. The system will take care of the resources associated with registration when the owning
address space terminates.

Input register information
Before issuing the IWM4MDRG macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWM4MDRG macro is as follows:

IWM4MDRG

Chapter 12. Workload management services 503

name
IWM4MDRG RESOURCE_TKN=  resource_tkn

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWM4MDRG macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

IWM4MDRG

504 z/OS: z/OS MVS Programming: Workload Management Services

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

RESOURCE_TKN=resource_tkn
A required input parameter, which contains the associated WLM resource token which is returned by
the resource monitoring registration service (IWM4MREG).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWM4MDRG macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

IWM4MDRG

Chapter 12. Workload management services 505

Table 79. Return and Reason Codes for the IWM4MDRG Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041D Equate Symbol: IwmRsnCodeBadResTkn

Meaning: The input resource token is not valid. The system may have
deregistered due to errors associated with an exit.

Action: Verify that the resource token passed has the intended value.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSRBMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit or in 64-bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on Primary ASC
mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number or version length field in parameter list is not valid.

Action: Check for possible overlay of the parameter list.

8 xxxx082F Equate Symbol: IwmRsnCodeWrongHome

Meaning: The caller invoked the service from the wrong home space.

Action: Invoke the service from the owning address space.

IWM4MDRG

506 z/OS: z/OS MVS Programming: Workload Management Services

Table 79. Return and Reason Codes for the IWM4MDRG Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: The caller invoked the service but was in cross-memory mode.

Action: Avoid requesting this function in cross-memory mode.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To deregister a resource from monitoring, specify the following:

 IWM4MDRG RESOURCE_TKN=RSCTOKEN, X
 RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
RSCTOKEN DS CL8 WLM resource token
RC DS F Return code
RSN DS F Reason code

IWM4MGDD — Define descriptions for generic delay states
Using this service, a subsystem can define descriptions for its generic delay states. The term generic delay
states in this context is related to service IWM4MCHS. It means the case when STATE=WAITING is
specified and the resource that is specified is RESOURCE=TYPEx, where x is a number between 1 and 15.

With this service, descriptions can be defined that might be more intuitive to a human reader than the
generic terms. If defined, these descriptions will be accessible to performance monitors in the
IWMWRCAA data area as a result of a call to the IWMRCOLL service.

Note, that for a subsystem that allows multiple instances (address spaces) to be active on the same z/OS
system, only one set of descriptions can be in effect. If more that one instance of such subsystem defines
a set of definitions, the last one defined will be effective.

For a subsystem that allows the customer to run multiple instances at possibly different release levels on
the same system, it might be helpful if each instance first checks whether there are already some
descriptions defined for that subsystem, before the instance decides whether to define its own
descriptions.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

IWM4MGDD

Chapter 12. Workload management services 507

Control parameters: Control parameters must be in the primary address space or, for AR-
mode callers, must be in an address/data space that is addressable
through a public entry on the caller's dispatchable unit access list
(DU-AL).

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
None.

Input register information
Before issuing the IWM4MGDD macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

IWM4MGDD

508 z/OS: z/OS MVS Programming: Workload Management Services

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
main diagram

name
b IWM4MGDD b REQTYPE=DEFINE

REQTYPE=RETRIEVE

,DESCRIPTIONS=  descriptions

,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MGDD macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,DESCRIPTIONS=descriptions
A required input parameter,

For REQTYPE=DEFINE, the address specifies the input area to the request that contains descriptions
for generic delay states to be defined for a particular subsystem. The layout of the data area must
adhere to the mapping defined by macro IWMWGDD.

Note: With one DEFINE request, a subsystem defines a set of descriptions for the generic delay states
it uses. A subsequent DEFINE request will override the currently existing definitions. If IWMWGNUM
is set to 0, then the currently existing definitions are deleted.

Following fields in the data area must be set correctly. For their meaning refer to the header of macro
IWMWGDD directly.

• IWMWGEYE
• IWMWGVER
• IWMWGTYP
• IWMWGNUM

IWM4MGDD

Chapter 12. Workload management services 509

• IWMWGTNUM

Following field in the data area must not be set, i.e. it must have a value of zero. .br;For its meaning
refer to the header of macro IWMWGDD directly.

• IWMWGNXT

If any of these fields is not set correctly, the request is terminated with return code
IwmRetCodeInvocError and reason code IwmRsnCodeBadRequestList. The field in error is identified
by setting IWMWGRC appropriately, refer to macro IWMWGDD for the possible values in IWMWGRC.

For REQTYPE=RETRIEVE, the address specifies the input/output area to the request. As input to the
request the area contains the type of the subsystem for which the descriptions are to be retrieved.
After execution of the request the area contains the descriptions for generic delay states as they are
currently defined for the input subsystem. The layout of the data area must adhere to the mapping
defined by macro IWMWGDD.

Following fields in the data area must be set correctly. For their meaning refer to the header of macro
IWMWGDD directly.

• IWMWGEYE
• IWMWGVER
• IWMWGTYP
• IWMWGNUM

Following field in the data area must not be set

• IWMWGNXT

If any of these fields is not set correctly, the request is terminated with return code
IwmRetCodeInvocError and reason code IwmRsnCodeBadRequestList. The field in error is identified
by setting IWMWGRC appropriately, refer to macro IWMWGDD for the possible values in IWMWGRC.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

IWM4MGDD

510 z/OS: z/OS MVS Programming: Workload Management Services

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

REQTYPE=DEFINE
REQTYPE=RETRIEVE

A required parameter that indicates whether the request is to define or to retrieve generic delay state
descriptions.
REQTYPE=DEFINE

The request is to define the generic delay state descriptions for a particular subsystem.
REQTYPE=RETRIEVE

The request is to retrieve the generic delay state descriptions of a particular subsystem.
,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

ABEND codes
None.

Return codes and reason codes
When the IWM4MGDD macro returns control to your program:

IWM4MGDD

Chapter 12. Workload management services 511

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 80. Return and Reason Codes for the IWM4MGDD Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing
mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

IWM4MGDD

512 z/OS: z/OS MVS Programming: Workload Management Services

Table 80. Return and Reason Codes for the IWM4MGDD Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or supplies
mutually exclusive parameters or provides data associated with
options not selected.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0888 Equate Symbol: IwmRsnCodeBadRequestList

Meaning: The data area mapped by IWMWGDD does not pass
verification.

Action: Check the return and reason codes in IWMWGRC.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if
invoked again.

Example
None.

IWM4MINI — Monitoring environment initialization
IWM4MINI allows the caller to supply MVS with some or all of the work request attributes needed for the
monitoring environment. The attributes include user ID, transaction name, transaction class, source LU,
and LU 6.2 token.

There are three types of monitoring environments available: management monitoring environments,
report-only monitoring environments, and buffer pool management only environments. Management
monitoring environments provide both performance management and performance reporting. Report-
only monitoring environments can be used for performance reporting only. Buffer pool management only
environments provide only buffer pool performance management for enclaves.

Use the REPORTONLY=YES parameter to specify the monitoring environment will be used for reporting
purposes only.

If you invoke IWM4MINI with the REPORTONLY=YES parameter, you must specify ASSOCIATE=ENCLAVE
or ASSOCIATE=ADDRESS_SPACE to associate the monitoring environment with an enclave or an address
space.

Use the BPMGMTONLY=YES parameter to specify the monitoring environment will be used for buffer pool
management for enclaves only.

If you invoke IWM4MINI with the BPMGMTONLY=YES parameter, you must specify ASSOCIATE=ENCLAVE
to associate the monitoring environment with an enclave.

IWM4MINI

Chapter 12. Workload management services 513

For management monitoring environments, where possible, you should invoke IWM4MINI immediately
following IWMCLSFY, and pass the service class for the work request. Without the associated service
class in the monitoring environment, delay information cannot be accumulated and reported accurately.

IWM4MINI can be issued multiple times for the same work request. The first time you invoke IWM4MINI
for a work request, you must specify MODE=RESET, otherwise the previous work request's attributes are
associated with this work request. Any subsequent time you invoke IWM4MINI from the same address
space for the same monitoring token for the same work request, specify MODE=RETAIN. If the caller
subsystem work manager consists of multiple address spaces (with multiple monitoring tokens), the first
time IWM4MINI is invoked in each address space for a given work request must specify MODE=RESET.
Any subsequent invocations for the same work request should specify MODE=RETAIN.

If you are invoking IWM4MINI for a management monitoring environment, multiple times for the same
work request, only one of the invocations should specify EXSTARTTIME=exstarttime. It is up to you to
decide at which point in the subsystem work manager's processing you consider the real execution start
time.

Optionally with this macro, you can use the OWNER_TOKEN and OWNER_DATA parameters to specify a
token for the user/owner of the monitoring environment for your own use.

Optionally with this macro, you can use the FROM_SUBSYSNM parameter to specify the subsystem name
from where a request came in. This allows you to identify an address space as work provider or consumer.

Note : This service was previously called IWMMINIT for 31-bit addressing only (see “IWMMINIT —
Initialize monitoring environment” on page 831).

Environment
The requirements for the caller are:

Minimum authorization: Either problem state or supervisor state. PSW key must either be 0 or
match the value supplied on IWM4MCRE.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN If the key specified on IWM4MCRE
was a user key (8-F), then primary addressability must be the same
as when IWM4MCRE was invoked.

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Locked or unlocked

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of 31-Bit register 0, and the reason code variable when specified,

may be non-zero and represents diagnostic data which is NOT part of the external interface. The high
order halfword should thus be excluded from comparison with the reason code values described
above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

4. For ASSEMBLER programmers an Assembler that supports the new z/Architecture instructions and the
relative Branch (Jxx) instructions (such as High-Level Assembler Release 4 or higher) is required.

IWM4MINI

514 z/OS: z/OS MVS Programming: Workload Management Services

Restrictions
1. All parameter areas must reside in current primary, except that the TCB (if specified) must reside in

current home.
2. Caller is responsible for error recovery.
3. Only limited checking is done against the input monitoring token.
4. If the key specified on IWM4MCRE was a user key (8-F), then the primary addressability must exist to

the performance block IWM4MCRE obtained. This condition is satisfied by ensuring that current
primary matches primary at the time that IWM4MCRE was invoked. If this service is invoked in a
subspace, the condition may be satisfied by ensuring that the performance block is shared with the
base space.

5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for
the environment represented by the monitoring token.

6. This macro may only be used on z/OS V1R13 or later levels for FROM_SUBSYSNM keyword.
7. This macro may only be used on z/OS V2R1 or later levels for the MONTKN64 keyword.
8. This macro supports multiple versions. Some keywords are unique to certain versions. See the
PLISTVER parameter description.

Input register information
Before issuing the IWM4MINI macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

IWM4MINI

Chapter 12. Workload management services 515

Performance implications
None.

IWM4MINI

516 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
main diagram

name
b IWM4MINI b

EWLM=NO

,MONTKN=  montkn

,MONTKN64=  montkn64

,MODE=RESET parameters-1

,MODE=RETAIN

,DURATION=PREV_VALUE

,DURATION=EXECUTION

,DURATION=BEGIN_TO_END

,DISPTYPE=SAVEDTYPE

,DISPTYPE=TCB

,TCB=NO_TCB

,TCB=  tcb

,DISPTYPE=SRB

,CONTINUEP=YES ,FROM=NONE

,FROM=LOCALMVS

,FROM=SYSPLEX

,FROM=NETWORK

,CONTINUEP=NO

,OWNER_TOKEN=NO_OWNER_TOKEN

,OWNER_TOKEN=  owner_token

,OWNER_DATA=NO_OWNER_DATA

,OWNER_DATA=  owner_data

,FROM_SUBSYSNM=NO_SUBSYSNM

,FROM_SUBSYSNM=  from_subsysnm

,REPORTONLY=NO

parameters-2

,REPORTONLY=YES ,ASSOCIATE=ENCLAVE ,ENCLAVETOKEN=  enclavetoken

,ASSOCIATE=ADDRESS_SPACE ,ASID=  asid

,SCOPE=SHARED

,SCOPE=SINGLE

,TRXNAME=NO_TRXNAME

,TRXNAME=  trxname

,USERID=NO_USERID

,USERID=  userid

,TRXCLASS=NO_TRXCLASS

,TRXCLASS=  trxclass

,TTRACETOKEN=NO_TTRACETOKEN

,TTRACETOKEN=  ttracetoken

,SOURCELU=NO_SOURCELU

,SOURCELU=  sourcelu

,LU62TKN=NO_LU62TKN

,LU62TKN=  lu62tkn

,LU62TKN_FMT=LU_NO_CC_27

,LU62TKN_FMT=FULL_LU_NO_CC_27

,LU62TKN_FMT=FULL_LU_0_CC_28

,LU62TKN_FMT=FULL_LU_CC_36

,LU62TKN_FMT=OTHER ,LU62TKN_LEN=  lu62tkn_len

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

IWM4MINI

Chapter 12. Workload management services 517

parameters-1

,DURATION=EXECUTION

,DURATION=BEGIN_TO_END

,DISPTYPE=TCB

,TCB=NO_TCB

,TCB=  tcb

,DISPTYPE=SRB

,ARRIVALTIMEP=CURRENT

,ARRIVALTIMEP=YES ,ARRIVALTIME=  arrivaltime

,EWLM_PACORR=NO_EWLM_PACORR

,EWLM_PACORR=  ewlm_pacorr

,EWLM_PACTKN=NO_EWLM_PACTKN

,EWLM_PACTKN=  ewlm_pactkn

parameters-2
,BPMGMTONLY=NO

,EXSTARTTIMEP=NO

,EXSTARTTIMEP=CURRENT

,EXSTARTTIMEP=YES ,EXSTARTTIME=  exstarttime

,SERVCLS=NO_SERVCLS

,SERVCLS=  servcls

,BPMGMTONLY=YES ,ASSOCIATE=ENCLAVE ,ENCLAVETOKEN=  enclavetoken

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MINI macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ARRIVALTIME=arrivaltime
When ARRIVALTIMEP=YES and MODE=RESET are specified, a required input parameter, which
contains the work arrival time in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,ARRIVALTIMEP=CURRENT
,ARRIVALTIMEP=YES

When MODE=RESET is specified, a required parameter, which indicates whether the work arrival time
is passed. This keyword is not applicable for report-only or bufferpool-only monitoring environments.
,ARRIVALTIMEP=CURRENT

indicates that the current time should be supplied by the service.
,ARRIVALTIMEP=YES

indicates that the work arrival time is passed.
,ASID=asid

When ASSOCIATE=ADDRESS_SPACE and REPORTONLY=YES are specified, a required input
parameter, which contains the address space ID.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16 bit field.

,ASSOCIATE=ENCLAVE
When BPMGMTONLY=YES and REPORTONLY=NO are specified, a required parameter, which indicates
whether the monitoring environment should be associated only to an enclave

IWM4MINI

518 z/OS: z/OS MVS Programming: Workload Management Services

,ASSOCIATE=ENCLAVE
indicates that the monitoring environment should be associated to an enclave.

,ASSOCIATE=ENCLAVE
,ASSOCIATE=ADDRESS_SPACE

When REPORTONLY=YES is specified, a required parameter, which indicates whether the monitoring
environment should be associated to an enclave or an address space.
,ASSOCIATE=ENCLAVE

indicates that the monitoring environment should be associated to an enclave.
,ASSOCIATE=ADDRESS_SPACE

indicates that the monitoring environment should be associated to an address space.
,BPMGMTONLY=NO
,BPMGMTONLY=YES

When REPORTONLY=NO is specified, an optional parameter, which indicates whether the monitoring
environment is for bufferpool management purposes only (YES) or not (NO). The default is
BPMGMTONLY=NO.
,BPMGMTONLY=NO

indicates that the monitoring environment is not for bufferpool management purposes only.
,BPMGMTONLY=YES

indicates that the monitoring environment is for bufferpool management purposes only.
,CONTINUEP=YES
,CONTINUEP=NO

A required parameter, which indicates whether it is known (YES) or not (NO) that there exists another
monitoring environment for this same work request.
,CONTINUEP=YES

indicates that the existence of a prior monitoring environment for the work request is known.
,CONTINUEP=NO

indicates that it is not known whether there exists a prior monitoring environment for the work
request. If MODE(RESET) is specified, no status is saved. If MODE(RETAIN) is specified, the
existing status is preserved.

,DISPTYPE=TCB
,DISPTYPE=SRB

When MODE=RESET is specified, a required parameter, which describes the nature of the MVS
dispatchable units which participate in processing work requests associated with the delay
monitoring environment established by this service.
,DISPTYPE=TCB

indicates that work requests run in TCB mode under a TCB within the current home address
space. Note that in cross-memory mode, this may be different from the current primary address
space.

,DISPTYPE=SRB

indicates that work requests run in SRB mode within the current home address space.

,DISPTYPE=SAVEDTYPE
,DISPTYPE=TCB
,DISPTYPE=SRB

When MODE=RETAIN is specified, a required parameter, which describes the nature of the MVS
dispatchable units which participate in processing work requests associated with the delay
monitoring environment established by this service.
,DISPTYPE=SAVEDTYPE

indicates that the information saved when MODE(RESET) was used is still applicable.

IWM4MINI

Chapter 12. Workload management services 519

,DISPTYPE=TCB

indicates that work requests run in TCB mode under a TCB within the current home address
space. Note that in cross-memory mode, this may be different from the current primary address
space.

,DISPTYPE=SRB

indicates that work requests run in SRB mode within the current home address space.

,DURATION=EXECUTION
,DURATION=BEGIN_TO_END

When MODE=RESET is specified, an optional parameter, which indicates the duration of the work
request over which the delays are to be represented. The default is DURATION=EXECUTION.
,DURATION=EXECUTION

indicates that the monitoring environment will reflect delays from the point where an application
or transaction program is given control, i.e. the execution phase. Typically a monitoring
environment with this scope would be passed to IWM4MNTF to pass the execution time for the
work request.

,DURATION=BEGIN_TO_END
indicates that the monitoring environment will reflect delays from the arrival of the work request
into the MVS sysplex until its completion. Ordinarily use of this option would be in close proximity
to the time when the work request is classified. Typically a monitoring environment with this
duration would be passed to Iwmrpt to report the total elapsed time for the work request.

,DURATION=PREV_VALUE
,DURATION=EXECUTION
,DURATION=BEGIN_TO_END

When MODE=RETAIN is specified, an optional parameter, which indicates the duration of the work
request over which the delays are to be represented. The default is DURATION=PREV_VALUE.
,DURATION=PREV_VALUE

indicates that the duration for delays has been specified on a previous invocation.
,DURATION=EXECUTION

indicates that the monitoring environment will reflect delays from the point where an application
or transaction program is given control, i.e. the execution phase. Typically a monitoring
environment with this duration would be passed to IWM4MNTF to pass the execution time for the
work request.

,DURATION=BEGIN_TO_END
indicates that the monitoring environment will reflect delays from the arrival of the work request
into the MVS sysplex until its completion. Ordinarily use of this option would be in close proximity
to the time when the work request is classified. Typically a monitoring environment with this
duration would be passed to Iwmrpt to report the total elapsed time for the work request.

,ENCLAVETOKEN=enclavetoken
When ASSOCIATE=ENCLAVE, BPMGMTONLY=YES and REPORTONLY=NO are specified, a required
input parameter, which contains the enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,ENCLAVETOKEN=enclavetoken
When ASSOCIATE=ENCLAVE and REPORTONLY=YES are specified, a required input parameter, which
contains the enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

EWLM=NO
An optional parameter, which indicates if this work manager intents to participate in cross platform
Enterprise Workload Management (eWLM). The default is EWLM=NO.
EWLM=NO

The work manager interacts only with WLM and no interaction with eWLM takes place.

IWM4MINI

520 z/OS: z/OS MVS Programming: Workload Management Services

,EWLM_PACORR=ewlm_pacorr
,EWLM_PACORR=NO_EWLM_PACORR

When MODE=RESET is specified, an optional input parameter, which contains the cross platform
Enterprise Workload Management (EWLM) parent correlator associated with the work request.

Note :

• If EWLM_PACORR is specified and the correlator does not contain a valid ARM correlator, reason
code IwmRsnCodeInvalidEWLMCorr is returned to the caller. Refer to Table 81 on page 526 for
further information. If the corrrelator is a valid ARM correlator, but cannot be understood by EWLM
(no EWLM format), it is silently ignored.

• Parameters EWLM_PACORR and EWLM_PACTKN are mutually exclusive.

The default is NO_EWLM_PACORR. indicates that no EWLM parent correlator is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_PACTKN=ewlm_pactkn
,EWLM_PACTKN=NO_EWLM_PACTKN

When MODE=RESET is specified, an optional input parameter, which contains the cross platform
Enterprise Workload Management (EWLM) parent correlator token associated with the work request.
If EWLM_PACTKN is specified and the correlator token does not contain a valid correlator token,
reason code IwmRsnCodeInvalidEWLMCorr is returned to the caller (see Return Codes section). The
default is NO_EWLM_PACTKN. indicates that no EWLM correlator token is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EXSTARTTIME=exstarttime
When EXSTARTTIMEP=YES, BPMGMTONLY=NO and REPORTONLY=NO are specified, a required input
parameter, which contains the start execution time in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,EXSTARTTIMEP=NO
,EXSTARTTIMEP=CURRENT
,EXSTARTTIMEP=YES

When BPMGMTONLY=NO and REPORTONLY=NO are specified, a required parameter, which indicates
whether the execution start time value is passed.
,EXSTARTTIMEP=NO

indicates that the execution start time value is not passed.

If MODE(RETAIN) is specified, EXSTARTTIMEP(NO) will preserve the existing execution start time,
if any.

,EXSTARTTIMEP=CURRENT
indicates that the current time should be supplied by the service.

,EXSTARTTIMEP=YES
indicates that the start execution time value is passed.

,FROM=NONE
,FROM=LOCALMVS
,FROM=SYSPLEX
,FROM=NETWORK

When CONTINUEP=YES is specified, a required parameter.
,FROM=NONE

indicates that there is no other environment.
,FROM=LOCALMVS

indicates that such an environment should exist on the current MVS.
,FROM=SYSPLEX

indicates that such an environment should exist in the current syplex, but is not expected to be on
the current MVS image.

IWM4MINI

Chapter 12. Workload management services 521

,FROM=NETWORK
indicates that such an environment may exist, but is not expected to be in the current sysplex.

,FROM_SUBSYSNM=from_subsysnm
,FROM_SUBSYSNM=NO_SUBSYSNM

An optional input parameter, which contains the subsystem name from where the request came in.
The default is NO_SUBSYSNM which indicates that no FROM_SUBSYSNM is provided.

If MODE(RETAIN) is specified, NO_SUBSYSNM will preserve the existing FROM_SUBSYSNM, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,LU62TKN=lu62tkn
,LU62TKN=NO_LU62TKN

An optional input parameter, which contains LU 6.2 token for the work request. This is not a SNA term,
but it is comprised of the following fields which are defined by SNA for the FMH5.

• Logical Unit of Work Identifier length byte, in binary, which may have the values 0 or 10-26 decimal
(inclusive)

• Logical Unit of Work Identifier

– Length byte for the network qualified LU name, in binary, which may have the values 1-17 decimal
(inclusive)

– Network qualified LU network name (1-17 bytes)
– Logical Unit of Work Instance Number, in binary (6 bytes)
– Logical Unit of Work Sequence Number, in binary (2 bytes)

• Conversation Correlator Field (0 to 9 bytes)

– Length byte for the Conversation Correlator, in binary, which may have the values 0-8 decimal
(inclusive)

– Conversation Correlator of the sending transaction (1-8 bytes)

The Conversation Correlator Field (which includes its length byte) may be dropped when its length
byte is 0. The default is NO_LU62TKN. indicates that no LU 6.2 token was passed.

If MODE(RETAIN) is specified, NO_LU62TKN will preserve the existing LU6.2 token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,LU62TKN_FMT=LU_NO_CC_27
,LU62TKN_FMT=FULL_LU_NO_CC_27
,LU62TKN_FMT=FULL_LU_0_CC_28
,LU62TKN_FMT=FULL_LU_CC_36
,LU62TKN_FMT=OTHER

When LU62TKN=lu62tkn is specified, a required parameter, which indicates the format/length of the
LU 6.2 token.
,LU62TKN_FMT=LU_NO_CC_27

indicates that a fixed length token of 27 bytes is provided, with no conversation correlator (not
even its length byte). The LU name may be 1-17 bytes. Bytes at the end of the token are padded
with hexadecimal zeros, if necessary, to form a full 27 bytes.

,LU62TKN_FMT=FULL_LU_NO_CC_27
indicates that the fully qualified LU name (17 bytes) is used, but no conversation correlator (not
even its length byte) is provided. This format is architected to be 27 bytes long.

,LU62TKN_FMT=FULL_LU_0_CC_28
indicates that the fully qualified LU name (17 bytes) is used, and the conversation correlator
length byte is present and has the value 0. This format is architected to be 28 bytes long.

,LU62TKN_FMT=FULL_LU_CC_36
indicates that the fully qualified LU name (17 bytes) is used, and the conversation correlator is
provided with a length of 8 (maximum allowed). This format is architected to be 36 bytes long.

IWM4MINI

522 z/OS: z/OS MVS Programming: Workload Management Services

,LU62TKN_FMT=OTHER
indicates that the format of the LU 6.2 token is different from those specified by the remaining
keywords.

,LU62TKN_LEN=lu62tkn_len
When LU62TKN_FMT=OTHER and LU62TKN=lu62tkn are specified, a required input parameter, which
contains the length of the LU62 token. Valid values are in the range 1-36 decimal (inclusive).

To code: Specify the RS-type address, or address in register (2)-(12), of a one-byte field.

,MODE=RESET
,MODE=RETAIN

A required parameter, which indicates how previous attributes established for a monitoring
environment should be treated. This does not refer to (or include) attributes established in
IWM4MCRE.
,MODE=RESET

indicates that previous attributes should be discarded.
,MODE=RETAIN

indicates that previous attributes should be retained unless explicitly specified.
,MONTKN=montkn

A required input parameter which contains the delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKN64=montkn64
A required input parameter which contains the long delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,OWNER_DATA=owner_data
,OWNER_DATA=NO_OWNER_DATA

An optional input parameter, which contains data maintained by the user/owner of the monitoring
environment. The format is undefined to MVS. The default is NO_OWNER_DATA which indicates that
no owner data is provided.

If MODE(RETAIN) is specified, NO_OWNER_DATA will preserve the existing owner data, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,OWNER_TOKEN=owner_token
,OWNER_TOKEN=NO_OWNER_TOKEN

An optional input parameter, which contains a token maintained by the user/owner of the monitoring
environment. The format is undefined to MVS. The default is NO_OWNER_TOKEN which indicates that
no owner token is provided.

If MODE(RETAIN) is specified, NO_OWNER_TOKEN will preserve the existing owner token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want to indicate the latest version currently possible.
• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports both the following parameters and those from version 0:

IWM4MINI

Chapter 12. Workload management services 523

BPMGMTONLY EWLM_PACORR EWLM_PACTKN

• 2, which supports both the following parameters and those from version 0 and 1:

FROM_SUBSYSNM MONTKN64

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, or 2

,REPORTONLY=NO
,REPORTONLY=YES

An optional parameter, which indicates whether the monitoring environment is for reporting purposes
only (YES) or not (NO). The default is REPORTONLY=NO.
,REPORTONLY=NO

indicates that the monitoring environment is not for reporting purposes only.
,REPORTONLY=YES

indicates that the monitoring environment is for reporting purposes only.
,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SCOPE=SHARED
,SCOPE=SINGLE

A required parameter, which indicates the scope of work passed.
,SCOPE=SHARED

indicates that multiple work requests, possibly from different service classes, could be described.
,SCOPE=SINGLE

indicates that only a single work request is described.
,SERVCLS=servcls
,SERVCLS=NO_SERVCLS

When BPMGMTONLY=NO and REPORTONLY=NO are specified, an optional input parameter, which
contains the service class token. The default is NO_SERVCLS. indicates that no service class token
was passed.

If MODE(RETAIN) is specified, NO_SERVCLS will preserve the existing service class token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,SOURCELU=sourcelu
,SOURCELU=NO_SOURCELU

An optional input parameter, which contains the LU name associated with the requestor. This may be
the fully qualified NETID.LUNAME, i.e. network name (1-8 bytes), followed by a period, followed by
the LU name for the requestor (1-8 bytes). It may also be the 1-8 byte local LU name, with no network

IWM4MINI

524 z/OS: z/OS MVS Programming: Workload Management Services

qualifier. The SOURCELU field may be from 1-17 characters. In the assembler form, the macro will
determine the length of the field as follows:

1. if the field is specified by register notation, it will be assumed to be 17 characters (padded with
blanks) and a full 17 characters will be copied.

2. if the field is specified using an RS form name, then the length will be determined using the L'
assembler function. When the length is less than 17 characters, the macro will pad with blanks.
When the length is greater than or equal to 17 characters, the macro will copy the first 17 bytes.

In the PL/AS form, the rules for the PL/AS compiler will determine when to pad with blanks, i.e. less
than 17 characters implies padding, 17 or more implies a 17 character copy.

This is intended to be the same value as used in IWMCLSFY, and may be distinct from the LU name
contained within the LU 6.2 token. For environments where the LU name may be available on some,
but not all flows, provision of a data area initialized to all blanks is equivalent to specification of
NO_SOURCELU when MODE(RESET) is specified. Providing an area of all blanks when MODE(RETAIN)
is specified will cause that to be used. The default is NO_SOURCELU. indicates that no source LU name
was passed.

If MODE(RETAIN) is specified, NO_SOURCELU will preserve the existing source LU name, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,TCB=tcb
,TCB=NO_TCB

When DISPTYPE=TCB and MODE=RESET are specified, an optional input parameter, which defines the
TCB within the current home address space which will serve the work request. Note that this name is
not the pointer to the TCB, but the name of the data area containing the TCB. A typical invocation
might replace xTCB with TCB.

Ordinarily the input TCB specified should be the TCB under which the work request (e.g. transaction
program) runs and under which the delay information is recorded (in spite of the fact that task
switches may occur). The default is NO_TCB which indicates that no TCB is currently associated with
the. monitoring environment for this work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,TCB=tcb
,TCB=NO_TCB

When DISPTYPE=TCB and MODE=RETAIN are specified, an optional input parameter, which defines
the TCB within the current home address space which will serve the work request. Note that this
name is not the pointer to the TCB, but the name of the data area containing the TCB. A typical
invocation might replace xTCB with TCB.

Ordinarily the input TCB specified should be the TCB under which the work request (e.g. transaction
program) runs and under which the delay information is recorded (in spite of the fact that task
switches may occur). The default is NO_TCB which indicates that no TCB is currently associated with
the. monitoring environment for this work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,TRXCLASS=trxclass
,TRXCLASS=NO_TRXCLASS

An optional input parameter, which contains a class name within a subsystem. For environments
where the transaction class is available on some, but not all flows, provision of a data area initialized
to all blanks is equivalent to specification of NO_TRXCLASS when MODE(RESET) is specified. Providing
an area of all blanks when MODE(RETAIN) is specified will cause that to be used. The default is
NO_TRXCLASS. indicates that no class name was passed.

If MODE(RETAIN) is specified, NO_TRXCLASS will preserve the existing transaction class, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWM4MINI

Chapter 12. Workload management services 525

,TRXNAME=trxname
,TRXNAME=NO_TRXNAME

An optional input parameter, which contains the transaction name. For environments where the
transaction name is available on some, but not all flows, provision of a data area initialized to all
blanks is equivalent to specification of NO_TRXNAME when MODE(RESET) is specified. Providing an
area of all blanks when MODE(RETAIN) is specified will cause that to be used. The default is
NO_TRXNAME. indicates that no transaction name was passed.

If MODE(RETAIN) is specified, NO_TRXNAME will preserve the existing transaction name, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,TTRACETOKEN=ttracetoken
,TTRACETOKEN=NO_TTRACETOKEN

An optional input parameter, which contains the transaction trace token. The default is
NO_TTRACETOKEN. indicates that no transaction trace token was passed.

If MODE(RETAIN) is specified, NO_TTRACETOKEN will preserve the existing transaction trace token, if
any.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,USERID=userid
,USERID=NO_USERID

An optional input parameter, which contains the local userid associated with the work request. For
environments where the user id is available on some, but not all flows, provision of a data area
initialized to all blanks is equivalent to specification of NO_USERID when MODE(RESET) is specified.
Providing an area of all blanks when MODE(RETAIN) is specified will cause that to be used. The
default is NO_USERID. indicates that no userid was passed.

If MODE(RETAIN) is specified, NO_USERID will preserve the existing user id, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWM4MINI macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 81. Return and Reason Codes for the IWM4MINI Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: Monitoring token indicates that no monitoring environment exists.

IWM4MINI

526 z/OS: z/OS MVS Programming: Workload Management Services

Table 81. Return and Reason Codes for the IWM4MINI Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 — Equate Symbol: IwmRetCodeInvocError: Invalid invocation environment or
parameters

8 xxxx081E Equate Symbol: IwmRsnCodeBadLU62TknLen

Meaning: The length byte of the LU62 token has an invalid value. Only values
1-36 (decimal) are valid.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv:

Meaning: Monitoring environment does not pass short form verification.

8 xxxx0894 Equate Symbol: IwmRsnCodeInvalidEWLMCorr

Meaning: Passed correlator information (EWLM_PACORR or EWLM_PACTKN)
does not pass validity checking, that means: the architected ARM correlator
length field in the first two Bytes of the correlator (token) is either less than 4
('0004'x) or gretater than 512 ('0200'x).

Action: Check the specification of the correlator information.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: Service is not enabled because the Monitoring Environment was not
created with EWLM=YES (either on IWM4CON or IWM4MCRE).

Action: Specify the parameter EWLM_PACORR or EWLM_PACTKN only when
the Monitoring Environment was created with EWLM=YES (either on IWM4CON
or IWM4MCRE).

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C07 Equate Symbol: IwmRsnCodeNoArrTime:

Meaning: No arrival time was supplied to the service and STCK gave a non-
zero condition code.

C xxxx0C08 Equate Symbol: IwmRsnCodeNoExTime:

Meaning: No execution start time was supplied to the service and STCK gave a
non-zero condition code.

Example

 IWM4MINI MONTKN=(R9),ARRIVALTIMEP=YES,
 ARRIVALTIME=(R3),EXSTARTTIMEP=YES,
 EXSTARTTIME=(R4),DISPTYPE=TCB,TCB=(R7),
 SCOPE=SINGLE,TRXNAME=WLTRXNAME,SOURCELU=SOURCELU,
 CONTINUEP=YES,LU62TKN_FMT=OTHER,LU62TKN_LEN=LU62TKNLEN,
 LU62TKN=LU62TKN1,MODE=RESET,FROM=NONE,
 REPORTONLY=NO,RETCODE=RCODE,RSNCODE=RSN

IWM4MNTF — Notify of work execution completion
The primary purpose of this service is to notify MVS that the execution phase for a work request that is
associated with a monitoring environment just completed. Processor consumption data can also be
provided. The execution phase might represent the entire work request or a subset of it.

IWM4MNTF

Chapter 12. Workload management services 527

An indication is also given regarding whether the monitoring environment should be disassociated from
the work request. When DISASSOCIATE(YES) is specified, this service renders the information that is
associated with the monitoring environment unpredictable. To associate a work request with the
monitoring environment after use of DISASSOCIATE(YES), first use Initialize Mode(Reset) or
Relate/Transfer

Note : This service was previously called IWMMNTFY for 31 bit addressing only (see “IWMMNTFY —
Notify of work execution completion” on page 844).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state. PSW key must either be 0 or match the value that is
supplied on IWM4CON when a connect token is passed. PSW key
must either be 0 or match the value that is supplied on IWM4MCRE.
PSW key must be 0-7. See “Restrictions” on page 625.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: LOCAL lock is held

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. The high-order halfword of register 0, and the reason code variable when specified, might be nonzero

and represents diagnostic data that is not part of the external interface. The high-order halfword
should thus be excluded from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, can be used for this purpose.

Restrictions
1. Caller is responsible for error recovery
2. Though the caller is required to be enabled, this condition is not checked. Violation of this restriction

might cause disabled program checks, which would be the responsibility of the caller's recovery to
handle.

3. The monitoring environment must contain the information that is saved by IWM4MINI, not IWM4MRLT
4. The current PSW key must be 0 or match the key that is specified on IWM4MCRE provided the latter is

a system key (0-7).
5. IWM4MNTF cannot be used for Report-Only Monitoring Environments
6. If the key specified on IWM4MCRE was a user key (8-F), then:

• PSW key must be 0.
• Current primary must match the primary at the time that IWM4MCRE was invoked. Calling from a

subspace is not supported.

IWM4MNTF

528 z/OS: z/OS MVS Programming: Workload Management Services

7. If a connect token is passed to IWM4MNTF, then:

• The connect token must be enabled for using the WLM Work Management services (specifying
WORK_MANAGER=YES on IWM4CON).

• If the key specified on IWM4CON was a user key (8-F), then:

– PSW key must be 0.
– Current primary must match the primary at the time that IWM4CON was invoked. Calling from a

subspace is not supported.
8. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for

the environment that is represented by the monitoring token.
9. This macro can be used only on z/OS V2R1 or later.

Input register information
Before issuing the IWM4MNTF macro, the caller must ensure that the following general-purpose registers
(GPRs) contain the specified information:
Register

Contents
13

The address of a 216 byte standard save area in the primary address space

Before issuing the IWM4MNTF macro, the caller does not have to place any information into any AR
unless the caller is using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system.

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

IWM4MNTF

Chapter 12. Workload management services 529

Syntax
main diagram

name
b IWM4MNTF b MONTKN=  montkn

MONTKN64=  montkn64

,COMPLETION=YES

,COMPLETION=NO

,DISASSOCIATE=YES

,WORKREQ_STA=IWMEWLMARMSTATUSNONE

,WORKREQ_STA=  workreq_sta

,DISASSOCIATE=NO

,EWLM=NO ,CONNTKN=NO_CONNTKN

,CONNTKN=  conntkn

,CPUTIME=  cputime ,TIMEONCP=  timeoncp ,OFFLOADONCP=  offloadoncp

,ENDTIME=CURRENT

,ENDTIME=  endtime ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MNTF macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,COMPLETION=YES
,COMPLETION=NO

A required parameter, which indicates whether the major execution phase or phases are now
complete.

IWM4MNTF

530 z/OS: z/OS MVS Programming: Workload Management Services

,COMPLETION=YES
Indicates that execution for an entire phase of processing is now complete. Typically IWM4MNTF
Completion(Yes) would be issued as a result of the completion of the transaction program for the
work request. When a work request is composed of several (typically cascaded) transaction
programs, each would correspond to an invocation of IWM4MNTF Completion(Yes).

The execution time, as given by the difference between the IWM4MNTF ENDTIME value and the
Execution start time (established by the use of IWM4MINI), is added to the running total
execution time for the service class. There might still be "output" processing that is left to perform
for the work request, which time would be accounted for through the use of Iwmrpt. There might
also be operations corresponding to hardening of the database data outside the scope of Notify.

,COMPLETION=NO
Indicates that this invocation of Notify does not correspond to the completion of an entire
execution segment. Instead, this invocation of Notify corresponds to the portion of the work
request that is represented by the monitoring environment. For example, use Completion(No)
when this portion of processing behaves like a subroutine in the execution phase, which is
therefore a subset of the execution time passed in another Notify.

The execution time, as given by the difference between the IWM4MNTF ENDTIME value and the
Execution start time (established through the use of IWM4MINI), is treated separately from that
passed for Completion(Yes), since otherwise there would be double-counting.

,CONNTKN=conntkn
,CONNTKN=NO_CONNTKN

An optional input parameter, which is returned by IWM4CON. The default is NO_CONNTKN, which
indicates that no connect token is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,CPUTIME=cputime
An optional input parameter that contains the total CPU time, in STCK format, for the current work
request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,DISASSOCIATE=YES
,DISASSOCIATE=NO

A required parameter, which indicates whether the work request should be disassociated from the
monitoring environment or not.
,DISASSOCIATE=YES

Indicates that the work request should be disassociated from the monitoring environment.
,DISASSOCIATE=NO

Indicates that the work request should not be disassociated from the monitoring environment.
,ENDTIME=endtime
,ENDTIME=CURRENT

An optional input parameter, which specifies the ending execution time for the transaction in STCK
format. The default is CURRENT, which indicates that the current time should be used.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,EWLM=NO
An optional parameter, which indicates whether this work manager intends to participate in cross
platform Enterprise Workload Management (eWLM). The default is EWLM=NO.
,EWLM=NO

The work manager interacts only with WLM and no interaction with eWLM takes place.

IWM4MNTF

Chapter 12. Workload management services 531

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter can be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area that is defined by the list form, and generates the macro invocation
to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

MONTKN=montkn
A required input parameter that contains the delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,MONTKN64=montkn64
A required input parameter that contains the long delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,OFFLOADONCP=offloadoncp
When CPUTIME is specified, a required input parameter that contains the CPU time on standard CP
that was offload eligible, in STCK format, for the current work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms that are used for a
request and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters that are specified on the
request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

IWM4MNTF

532 z/OS: z/OS MVS Programming: Workload Management Services

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except parameters that are referenced in the description of higher
versions.

• 1, which supports the parameters that are supported by 0, and CPUTIME, TIMEONCP, and
OFFLOADONCP.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0 or 1.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value is left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value is left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,TIMEONCP=timeoncp
When CPUTIME is specified, a required input parameter that contains the CPU time on standard CP, in
STCK request format, for the current work.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,WORKREQ_STA=workreq_sta
,WORKREQ_STA=IWMEWLMARMSTATUSNONE

When DISASSOCIATE=YES is specified, an optional input parameter, which contains the completion
status code of the work request. Available completion status codes (defined in macro IWMYCON) are:
* IwmEwlmArmStatusGood(0), * IwmEwlmArmStatusAborted(1), * IwmEwlmArmStatusFailed(2) or *
IwmEwlmArmStatusUnknown(3) The codes above correspond to status codes in the OpenGroup ARM
4.0 Standard (for the meaning of the status codes see the ARM 4.0 Standard at Application Response
Measurement - ARM (collaboration.opengroup.org/tech/management/arm)). The default is
IWMEWLMARMSTATUSNONE, which indicates that the COMPLETION parameter value and internal
information in the Monitoring Environment will be examined to determine the status of the work
request. If COMPLETION=YES is specified and no abnormal event was recorded for the monitoring
environment through the use of the IWM4MABN service, the completion status
IwmEwlmArmStatusGood is reported to EWLM. If an abnormal event was reported through the use of
IWM4MABN or COMPLETION=NO was specified, the completion status IwmEwlmArmStatusFailed is
reported to EWLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

ABEND codes
None.

IWM4MNTF

Chapter 12. Workload management services 533

http://collaboration.opengroup.org/tech/management/arm
http://collaboration.opengroup.org/tech/management/arm

Return codes and reason codes
When the IWM4MNTF macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol that is
associated with each reason code. IBM support personnel might request the entire reason code, including
the xxxx value.

Table 82. Return and Reason Codes for the IWM4MNTF Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0405 Equate Symbol: IwmRsnCodeGoalNoMonEnv

Meaning: System is in goal mode but the input monitoring token
indicates that no monitoring environment was established,
hence MVS did not receive the information.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx080C Equate Symbol: IwmRsnCodeMonEnvLacksData

Meaning: Input monitoring environment does not contain the
necessary information.

Action: Ensure that the monitoring environment was
established with the necessary information.

8 xxxx080F Equate Symbol: IwmRsnCodeNoUserKeyNtfy

Meaning: User key routine is not allowed to issue Notify.

Action: Avoid requesting this function in user key.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Input monitoring environment does not pass short
form validity checking.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Check for possible storage overlay.

IWM4MNTF

534 z/OS: z/OS MVS Programming: Workload Management Services

Table 82. Return and Reason Codes for the IWM4MNTF Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx082D Equate Symbol: IwmRsnCodeExStTimeGTEndTime

Meaning: Input execution start time later than end time.

Action: Check for possible storage overlay of the parameter list
or variable.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this
service.

Action: Avoid requesting this function under the input
connection. IWM4CON options must be specified previously to
enable this service.

8 xxxx087E Equate Symbol: IwmRsnCodeRoMonEnv

Meaning: Input monitoring environment is Report-Only.

Action: Avoid requesting this function for Report-Only PBs.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: Service is not enabled because monitoring
environment cannot be associated with EWLM work requests.

Action: Specify the parameter WORKREQ_STA only when the
monitoring environment is created with IWM4MCRE EWLM=YES
or the address space is connected with IWMCONN EWLM=YES
and the connect token is passed to IWM4MCRE when creating
the monitoring environment.

8 xxxx0897 Equate Symbol: IwmRsnCodeTranStatusInvalid

Meaning: Passed work request completion status is not valid.

Action: Check the EWLM ARM interface specification for valid
completion status values.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C04 Equate Symbol: IwmRsnCodeNtfyNoWorkElt

Meaning: Notify routine invoked, but no work element was
available to save the input information.

Action: Invoke the function when the conditions are alleviated.
This condition may be due to a common storage shortage
condition.

C xxxx0C06 Equate Symbol: IwmRsnCodeNoEndTime

Meaning: No end time was supplied to the service and STCK
gave a nonzero condition code.

Action: No action is required.

IWM4MNTF

Chapter 12. Workload management services 535

Example
None.

IWM4MREG — Register a resource for monitoring

The IWM4MREG service registers a resource for delay monitoring. The service allows the caller to identify
a resource which may be involved in delays to work requests. The caller's home address space is
assumed to be the owner of the resource to be monitored. The system may decide to increase or
decrease the size of the resource to balance the associated delays.

The resource to be monitored may require the caller to provide one or more exits to interact with the
system. These exits are called in the same system key and non-cross memory environment as the
program which registers the resource. The exit always receives control in AMODE31, regardless of the
mode in which IWM4MREG was invoked.

The system implicitly deregisters a resource due to repetitive errors in calling exits associated with the
resource. In this case, the invocation to deregister finds that the associated resource token is invalid and
returns with a warning return code.

The system also cleans up its resources associated with the registration when the address space which
owns the resource goes through address space termination. Therefore, no deregistration is required or
honored for this case.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7. The
caller's PSW key must be in the range 0-7.

Dispatchable unit mode: Task

Cross-memory mode: PASN=HASN=SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is not part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

4. All character data input is assumed to be left-justified and padded with blanks on the right, as needed,
to fill in the specified number of bytes.

IWM4MREG

536 z/OS: z/OS MVS Programming: Workload Management Services

Restrictions
NO FRRs may be established.

Input register information
Before issuing the IWM4MREG macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWM4MREG macro is as follows:

IWM4MREG

Chapter 12. Workload management services 537

main diagram

name
IWM4MREG RESOURCE_NAME=  resource_name

,RESOURCE_TYPE=BUFFER_POOL parameters-1 ,RESOURCE_TKN=  resource_tkn

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

parameters-1
,RES_ADJ_SIZE=  res_adj_size ,RES_MIN_SIZE=  res_min_size

,RES_MAX_SIZE=  res_max_size ,RES_ADJ_EXIT@=  res_adj_exit@

,RES_DATA_EXIT@=  res_data_exit@ ,OWNER_TKN=  owner_tkn

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWM4MREG macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

IWM4MREG

538 z/OS: z/OS MVS Programming: Workload Management Services

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,OWNER_TKN=owner_tkn
When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter, which contains any
data associated with the resource that may be useful later when the resource adjustment exit or the
resource data collection exit is called. The format is undefined to MVS.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RES_ADJ_EXIT@=res_adj_exit@
When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter that contains the
address of the resource adjustment exit to be invoked when the system wishes to rebalance resource
usage. This exit is called with the same non cross-memory environment and PSW key as when
IWM4MREG is invoked.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,RES_ADJ_SIZE=res_adj_size
When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter, which contains the
minimum size (in 4K pages) by which the specified resource can be adjusted. For a bufferpool, this
corresponds to a product external or the size of a cell.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RES_DATA_EXIT@=res_data_exit@
When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter that contains the
address of the resource data collection exit to be invoked when the system checks how physical
resources relate to effectiveness of the given resource. This exit is called with the same non cross-
memory environment and PSW key as when IWM4MREG is invoked.

IWM4MREG

Chapter 12. Workload management services 539

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,RES_MAX_SIZE=res_max_size
When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter, which contains the
maximum size (in 4K pages) associated with the specified resource.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RES_MIN_SIZE=res_min_size
When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter, which contains the
minimum size (in 4K pages) associated with the specified resource.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

RESOURCE_NAME=resource_name
A required input parameter, which contains the resource name associated with the resource to be
registered. The value should be padded on the right with blanks for any unused characters.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

RESOURCE_TKN=resource_tkn
A required input parameter, which contains the associated WLM resource token which is used, for
example, by the change state service (IWMMCHST) and the deregister a resource service
(IWM4MDRG).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RESOURCE_TYPE=BUFFER_POOL
A required parameter, which indicates the type of resource being registered.
,RESOURCE_TYPE=BUFFER_POOL

indicates that a bufferpool is being registered.
,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWM4MREG macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 83. Return and Reason Codes for the IWM4MREG Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

IWM4MREG

540 z/OS: z/OS MVS Programming: Workload Management Services

Table 83. Return and Reason Codes for the IWM4MREG Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSRBMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on Primary ASC
mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number or version length field in parameter list is not valid.

Action: Check for possible overlay of the parameter list.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: The caller invoked the service but was in cross-memory mode.

Action: Avoid requesting this function in cross-memory mode.

8 xxxx0846 Equate Symbol: IwmRsnCodeNoUserKeyReg

Meaning: The caller invoked the service but was in user key.

Action: Request this function in system key (0-7).

8 xxxx08A1 Equate Symbol: IwmRsnCodeBadBPMinMaxSize

Meaning: Maximum resource size is lower than the minimum size.

Action: Specify a maximum size value at least as high as the minimum size
value.

IWM4MREG

Chapter 12. Workload management services 541

Table 83. Return and Reason Codes for the IWM4MREG Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

C xxxx0C01 Equate Symbol: IwmRetCodeEnvError:

Meaning: Environmental error.

Action: Storage is not available for the request.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To register a resource for delay monitoring, specify the following:

 IWM4MREG RESOURCE_NAME=RSCNAME, X
 RESOURCE_TYPE=BUFFER_POOL, X
 RES_ADJ_SIZE=RESADJSIZE, X
 RES_MIN_SIZE=RESMINSIZE, X
 RES_MAX_SIZE=RESMAXSIZE, X
 RES_ADJ_EXIT@=ADJEXIT@, X
 RES_DATA_EXIT@=DATAEXIT@, X
 OWNER_TKN=OWNERTKN, X
 RESOURCE_TKN=RSCTOKEN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
RSCNAME DS CL16 Contains the resource name
RESADJSIZE DS FL4 contains the minimum size by
* which the specified resource
* can be adjusted
RESMINSIZE DS FL4 contains the minimum size
* associated with the specified
* resource
RESMAXSIZE DS FL4 contains the maximum size
* associated with the specified
* resource
ADJEXIT@ DS AL4 contains the address of the
* Resource Adjustment Exit to be
* invoked when the system wishes
* to rebalance resource usage
DATAEXIT@ DS AL4 contains the address of the
* Resource Data Collection Exit
* to be invoked when the system
* wishes to understand how
* physical resources relate to
* effectiveness of the given
* resource
OWNERTKN DS CL8 Contains data maintained by
* the user
RSCTOKEN DS CL8 WLM resource token
RC DS F Return code
RSN DS F Reason code

IWM4MRLT — Relate monitoring environments (PBs)
The calling subsystem work manager can use IWM4MRLT to relate two different monitoring environments
that are associated with the same work request. IWM4MRLT initializes a monitoring environment, called a
dependent monitoring environment, and associates it with a previously established monitoring
environment, called a parent monitoring environment.

You can use IWM4MRLT when you do not have direct access to the information required by IWM4MINI. If
the caller has the monitoring token for a parent environment that is previously established for the same
work request, you provide it in the PARENTMONTKN or PARENTMONTKN64 parameter. If the caller does not
pass the monitoring token, you can use PARENTP=FINDACTIVE to specify that the parent monitoring
environment is the active monitoring environment owned by the address space and which is associated
with the TCB provided via PARENTTCB.

IWM4MRLT

542 z/OS: z/OS MVS Programming: Workload Management Services

IWM4MRLT must be used together with IWM4MXFR to ensure that the dependent monitoring
environment is a valid representation for the work request.

Optionally with this macro, you can use the OWNER_TOKEN and OWNER_DATA parameters to use the
monitoring environment for your own purposes. You can use the token/data to keep your own information.

Note : This service was previously called IWMMRELA for 31-bit addressing only (see “IWMMRELA —
Relate monitoring environment service” on page 851).

Environment
The requirements for the caller are:

Minimum authorization: Problem state or supervisor state. PSW key must either be 0 or
match the value supplied on IWM4MCRE.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Unlocked when PARENT=FINDACTIVE is specified, otherwise, no
restrictions.

Control parameters: Control parameters must be in the primary address space, except the
TCB, if specified, must reside in current home address space.

Programming requirements
1. You must include the IWMYCON mapping macro in the calling program.
2. If the key specified on IWM4MCRE for the input MONTKN / MONTKN64 was a user key (8-F), then the

following must be true:

• If you specify PARENTP=YES, then:

– Primary addressability must exist to the performance block IWM4MCRE obtained (represented by
the input MONTKN / MONTKN64). You could do this by ensuring that current primary matches
primary at the time that IWM4MCRE was invoked. If this service is invoked in a subspace, the
condition may be satisfied by ensuring that the performance block is shared with the base space.

– You cannot specify the list form of this macro. With PARENTP=YES, IWM4MRLT produces an inline
expansion rather than an out-of-line service, so you do not need a parameter list. Registers
0,1,14, and 15 are not preserved across the expansion.

• If you specify PARENTP=FINDACTIVE, then the caller must be in non-cross-memory mode
(PASN=SASN=HASN). That is, the current primary (and home) must match the primary (and home) at
the time that IWM4MCRE was invoked.

3. If the key specified on IWM4MCRE for the parent environment was a user key (8-F), then either
primary or secondary addressability must exist to the monitoring environment for the parent
environment.

4. Both monitoring environments must be established on the same MVS image.
5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for

the monitoring environment.
6. When PARENTP=YES, the caller must provide recovery.

IWM4MRLT

Chapter 12. Workload management services 543

Restrictions
This macro may only be used on z/OS V2R1 or later.

Input register information
Before issuing the IWM4MRLT macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

The following general purpose registers (GPRs) have to contain the specified information:
Register

Contents
13

The address of a 216-byte standard save area in the primary address space.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

IWM4MRLT

544 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
main diagram

name
b IWM4MRLT b FUNCTION=CREATE parameters-1

FUNCTION=DELETE

,MONTKN=  montkn

,MONTKN64=  montkn64

,EWLM=NO

,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

parameters-1
,OWNER_TOKEN=NO_OWNER_TOKEN

,OWNER_TOKEN=  owner_token

,OWNER_DATA=NO_OWNER_DATA

,OWNER_DATA=  owner_data

,DISPTYPE=TCB ,TCB=  tcb

,DISPTYPE=SRB ,SAMEDU=YES

,SAMEDU=NO

,PARENTP=YES ,PARENTMONTKN=  parentmontkn

,PARENTMONTKN64=  parentmontkn64

,PARENTENV=NOSWITCH

,PARENTENV=SECONDARY

,PARENTENV=HOME

,PARENTP=FINDACTIVE ,PARENTTCB=  parenttcb

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MRLT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,DISPTYPE=TCB
,DISPTYPE=SRB

When FUNCTION=CREATE is specified, a required parameter, which describes the dispatchable units
which participate in processing work requests associated with the monitoring environment
represented by the monitoring token (MONTKN / MONTKN64).

IWM4MRLT

Chapter 12. Workload management services 545

,DISPTYPE=TCB

indicates that work requests run in TCB mode under a TCB within the current home address
space. Note that in cross-memory mode, this may be different from the current primary address
space.

,DISPTYPE=SRB

indicates that work requests run in SRB mode within the current home address space.

,EWLM=NO
An optional parameter, which indicates if this work manager intents to participate in cross platform
Enterprise Workload Management (eWLM). The default is EWLM=NO.
,EWLM=NO

The work manager interacts only with WLM and no interaction with eWLM takes place.
FUNCTION=CREATE
FUNCTION=DELETE

A required parameter, which indicates whether the relationship is being established or inactivated.
FUNCTION=CREATE

indicates that the relationship is being established.
FUNCTION=DELETE

which indicates that the relationship is being inactivated.

Note that this produces an inline expansion rather than an out-of-line service, so that no
parameter list is needed. Thus the MF keyword is not applicable when this option is specified, and
is not allowed. Registers 0, 1, 14, and 15 are not preserved across the expansion.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of
the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

IWM4MRLT

546 z/OS: z/OS MVS Programming: Workload Management Services

,MONTKN=montkn
A required input parameter which contains the delay monitoring token for the dependent
environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKN64=montkn64
A required input parameter which contains the long delay monitoring token for the dependent
environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,OWNER_DATA=owner_data
,OWNER_DATA=NO_OWNER_DATA

When FUNCTION=CREATE is specified, an optional input parameter, which contains data maintained
by the user/owner of the monitoring environment. The format is undefined to MVS. The default is
NO_OWNER_DATA, which indicates that no owner data is provided.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,OWNER_TOKEN=owner_token
,OWNER_TOKEN=NO_OWNER_TOKEN

When FUNCTION=CREATE is specified, an optional input parameter, which contains a token
maintained by the user/owner of the monitoring environment. The format is undefined to MVS. The
default is NO_OWNER_TOKEN, which indicates that no owner token is provided on. this service.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,PARENTENV=NOSWITCH
,PARENTENV=SECONDARY
,PARENTENV=HOME

When PARENTP=YES and FUNCTION=CREATE are specified, a required parameter, which describes
whether a space switch is needed to access the parent monitoring environment.
,PARENTENV=NOSWITCH

Indicates that NO space switch is needed to access the parent monitoring environment. This
would be appropriate if the parent monitoring environment was established (by IWM4MCRE) to be
used by routines in a specific system key or if it was established to be used in a specific user key in
the current primary.

,PARENTENV=SECONDARY

Indicates that the parent monitoring environment was established in current secondary (for use
by a specific user key).

,PARENTENV=HOME

Indicates that the parent monitoring environment was established in current home (for use by a
specific user key). Use of this option requires that the program must reside in the MVS common
area.

,PARENTMONTKN=parentmontkn
When PARENTP=YES and FUNCTION=CREATE are specified, a required input parameter which
contains the delay monitoring token for the parent environment, i.e. the monitoring environment
which was established earlier and contains the characteristics to be inherited.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,PARENTMONTKN64=parentmontkn64
When PARENTP=YES and FUNCTION=CREATE are specified, a required input parameter which
contains the long delay monitoring token for the parent environment, i.e. the monitoring environment
which was established earlier and contains the characteristics to be inherited.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

IWM4MRLT

Chapter 12. Workload management services 547

,PARENTP=YES
,PARENTP=FINDACTIVE

When FUNCTION=CREATE is specified, a required parameter, which describes whether the parent
monitoring environment is known or not.
,PARENTP=YES

Indicates that the parent monitoring environment is known.

Note that this produces an inline expansion rather than an out-of-line service, so that no
parameter list is needed. Thus the MF keyword is not applicable when this option is specified, and
is not allowed. Registers 0, 1, 14, and 15 are not preserved across the expansion.

,PARENTP=FINDACTIVE

Indicates that the parent monitoring environment is unknown, but requests that the input
monitoring environment be related to the active monitoring environment owned by the current
HOME address space and which is associated with the TCB specified by PARENTTCB and which
has no further continuations to other monitoring environments. When no such monitoring
environment exists, the input monitoring environment will be related to the current home address
space.

,PARENTTCB=parenttcb
When PARENTP=FINDACTIVE and FUNCTION=CREATE are specified, a required input parameter,
which defines the TCB owned by the current home address space associated with a monitoring
environment via Initialize/Relate Disptype=TCB,TCB= . This TCB need not be the owner of the
monitoring environment. Note that this name is not the pointer to the TCB, but the name of the data
area containing the TCB. A typical invocation might replace xTCB with TCB.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

IWM4MRLT

548 z/OS: z/OS MVS Programming: Workload Management Services

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SAMEDU=YES
,SAMEDU=NO

When DISPTYPE=SRB and FUNCTION=CREATE are specified, a required parameter, which describes
whether the dependent monitoring environment associated with MONTKN / MONTKN64 is running
under the same dispatchable unit as the parent. In that case, it would behave as a "subroutine" and
execute on the same processor (CP, also known as CPU) as the parent environment.
,SAMEDU=YES

Indicates that the work request runs as a subroutine of the parent.

YES may not be specified when PARENTP(FINDACTIVE) is coded.

,SAMEDU=NO

Indicates that the work request runs in SRB mode and is independent of the parent dispatchable
unit.

,TCB=tcb
When DISPTYPE=TCB and FUNCTION=CREATE are specified, a required input parameter, which
defines the TCB within the current home address space which will serve the work request. Note that
this name is not the pointer to the TCB, but the name of the data area containing the TCB. A typical
invocation might replace xTCB with TCB.

Ordinarily the input TCB specified should be the TCB under which the work request (e.g. transaction
program) runs and under which the delay information is recorded (in spite of the fact that task
switches may occur).

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

ABEND codes
None.

Return codes and reason codes
When the IWM4MRLT macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 84. Return and Reason Codes for the IWM4MRLT Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

IWM4MRLT

Chapter 12. Workload management services 549

Table 84. Return and Reason Codes for the IWM4MRLT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 xxxx0402 Equate Symbol: IwmRsncodeNoMonEnv

Meaning: Input monitoring token indicates no monitoring environmen was
established.

4 xxxx0406 Equate Symbol: IwmRsncodeNoParEnv

Meaning: No parent monitoring environment was established. The input
dependent monitoring environment is now related to the Home address space.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters

8 xxxx0802 Equate Symbol: IwmRsnCodeXmemUserKeyTkn

Meaning: Caller is in cross-memory mode while the token was obtained in user
key.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

8 xxxx081A Equate Symbol: IwmRsnCodeCallerNotAuthDepEnv

Meaning: Caller is not authorized to update the dependent monitoring
environment

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass verification.

8 xxxx0822 Equate Symbol: IwmRsnCodeBadParEnv

Meaning: Parent monitoring environment does not pass verification.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was was in 24 bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on Primary ASC mod

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

IWM4MRLT

550 z/OS: z/OS MVS Programming: Workload Management Services

Table 84. Return and Reason Codes for the IWM4MRLT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or supplies mutually
exclusive parameters or provides data associated with options not selected.

8 xxxx087E Equate Symbol: IwmRsnCodeRoMonEnv

Meaning: Monitoring environment is report only

8 xxxx087F Equate Symbol: IwmRsnCodeRoParEnv

Meaning: Parent monitoring environment is report only

8 xxxx08A4 Equate Symbol: IwmRsnCodeBPParEnv

Meaning: Parent monitoring environment is buffer pool management only

10 — Equate Symbol: IwmRetCodeCompError:

Meaning: Component error

Example
To relate two monitoring environments where an address space switch is not required, specify:

 IWM4MRLT FUNCTION=CREATE,MONTKN64=(R7),PARENTP=YES,
 PARENTMONTKN64=(R8),PARENTENV=NOSWITCH,
 DISPTYPE=SRB,SAMEDU=YES,
 RETCODE=RCODE,RSNCODE=RSN

IWM4MSTO — Stops a work unit
The purpose of this service is to stop a work unit which has been started by IWM4MSTR. A work unit
started by IWM4MINI is not affected by this service. The work unit is unblocked, if it is blocked at the time
you issue this macro.

Note : This service was previously called IWMMSTOP for 31-bit addressing only (see “IWMMSTOP — Stop
a work unit” on page 859).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No restriction.

Control parameters: Control parameters must be in the primary address space.

IWM4MSTO

Chapter 12. Workload management services 551

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of bits 0-31 of register 0, and the reason code variable when

specified, may be non-zero and represents diagnostic data which is NOT part of the external interface.
The high order halfword should thus be excluded from comparison with the reason code values
described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for
this purpose.

Restrictions
1. This macro may not be used prior to the completion of WLM address space initialization
2. Caller must have issued the IWM4MSTR macro successfully.
3. Caller is responsible for error recovery
4. The current PSW key must be 0 or match the key specified on IWM4MCRE provided the latter is a

system key (0-7).
5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for

the environment represented by the monitoring token
6. This macro may only be used on z/OS V2R1 or later.

Input register information
Before issuing the IWM4MSTO macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

The following general purpose registers (GPRs) have to contain the specified information:
Register

Contents
13

The address of a 216-byte standard save area in the primary address space.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.
The reason code is stored in bits 0-31

1
Used as work register by the system

2-13
Unchanged

14
Used as work register by the system

15
Return code is stored in bits 0-31

When control returns to the caller, the ARs contain:
Register

Contents

IWM4MSTO

552 z/OS: z/OS MVS Programming: Workload Management Services

0-1
Used as work registers by the system

2-13
Unchanged

14-15
Used as work registers by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
main diagram

name
b IWM4MSTO b MONTKN=  montkn

MONTKN64=  montkn64

,EWLM=NO ,END_FLOW=NO

,END_FLOW=YES

,MESSAGES_SENT=NO_MESSAGES_SENT

,MESSAGES_SENT=  messages_sent

,EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR

,EWLM_RCVD_CORR=  ewlm_rcvd_corr

,AFTER_STRT=NO

,AFTER_STRT=YES

,STATUS=IWMEWLMARMSTATUSGOOD

,STATUS=  status ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

IWM4MSTO

Chapter 12. Workload management services 553

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MSTO macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,AFTER_STRT=NO
,AFTER_STRT=YES

When EWLM_RCVD_CORR=ewlm_rcvd_corr is specified, an optional parameter, which indicates the
moment the correlator has been received. The default is AFTER_STRT=NO.
,AFTER_STRT=NO

indicates that the correlator has been received before this work unit has been started by
IWM4MSTR.

,AFTER_STRT=YES

indicates that the correlator has arrived within the scope of this work unit that means after issuing
IWM4MSTR.

,END_FLOW=NO
,END_FLOW=YES

An optional parameter, which indicates the completion of a message flow. The default is
END_FLOW=NO.
,END_FLOW=NO

indicates that a message flow has not completed.

,END_FLOW=YES

indicates that a message flow has completed. Specify END_FLOW=YES, if you know that the
running work unit is the last one in a work unit flow. This indication can not be cleared, if it has
been set.

,EWLM=NO
An optional parameter, which indicates if this work manager intents to participate in cross platform
Enterprise Workload Management (eWLM). The default is EWLM=NO.
,EWLM=NO

The work manager interacts only with WLM and no interaction with eWLM takes place.
,EWLM_RCVD_CORR=ewlm_rcvd_corr
,EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR

An optional input parameter, which contains a cross platform Enterprise Workload Management
(EWLM) correlator received from another application. Workflows often have multiple parent work
units that must complete before a new work unit can be initiated. You can pass only 1 parent
correlator to the IWM4MSTR macro and one additional parent correlator to the IWM4MSTO macro.
You have to issue the IWM4MUPD macro, if more than two parent correlators should be assigned to a
work unit. This correlator is ignored, if it is an unknown EWLM correlator. The default is
NO_EWLM_RCVD_CORR. indicates that parameter EWLM_RCVD_CORR has not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,MESSAGES_SENT=messages_sent
,MESSAGES_SENT=NO_MESSAGES_SENT

An optional input parameter, which contains the number of messages sent to other applications. This
value is added to the total messages_sent value of the work unit. The total messages_sent value
should not exceed 32767. The default is NO_MESSAGES_SENT. indicates that parameter
MESSAGES_SEND has not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

IWM4MSTO

554 z/OS: z/OS MVS Programming: Workload Management Services

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

MONTKN=montkn
A required input parameter which contains the delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKN64=montkn64
A required input parameter which contains the long delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

IWM4MSTO

Chapter 12. Workload management services 555

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,STATUS=status
,STATUS=IWMEWLMARMSTATUSGOOD

An optional input parameter, which contains the completion status code of the work unit. Available
completion status codes (defined in macro IWMYCON) are: * IwmEwlmArmStatusGood(0), *
IwmEwlmArmStatusAborted(1), * IwmEwlmArmStatusFailed(2) or * IwmEwlmArmStatusUnknown(3)
The codes above correspond to status codes in the OpenGroup ARM 4.0 Standard (for the meaning of
the status codes see the ARM 4.0 Standard at Application Response Measurement - ARM
(collaboration.opengroup.org/tech/management/arm)). The default is IWMEWLMARMSTATUSGOOD.
indicates that the work unit completed successfully.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

ABEND codes
None.

Return codes and reason codes
When the IWM4MSTO macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 85. Return and Reason Codes for the IWM4MSTO Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

IWM4MSTO

556 z/OS: z/OS MVS Programming: Workload Management Services

http://collaboration.opengroup.org/tech/management/arm
http://collaboration.opengroup.org/tech/management/arm

Table 85. Return and Reason Codes for the IWM4MSTO Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: The input monitoring token indicates no monitoring
environment was established.

Action: Establish a monitoring environment by macro
IWM4MCRE.

4 xxxx0441 Equate Symbol: IwmRsnCodeTooManyMsgCorrs

Meaning: The correlator passed to EWLM_RCVD_CORR is
ignored, since the maximum number of supported correlators
has been reached.

Action: None required.

4 xxxx0443 Equate Symbol: IwmRsnCodeTooManyMsgsSent

Meaning: The value passed to MESSAGES_SENT is ignored,
since the maximum number of messages sent is reached.

Action: None required.

4 xxxx0444 Equate Symbol: IwmRsnCodeTooManyMsgsReceived

Meaning: The EWLM_RCVD_CORR parameter has been specified
too often. The correlated counter is not increased.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Input monitoring environment does not pass short
form validity checking.

Action: Check for possible storage overlay.

8 xxxx0897 Equate Symbol: IwmRsnCodeTranStatusInvalid

Meaning: An unsupported value has been passed to the STATUS
parameter.

Action: Specify a supported value.

8 xxxx08AC Equate Symbol: IwmRsnCodeTranNotStarted

Meaning: No work unit has been started by IWM4MSTR for the
specified monitoring environment.

Action: Start a work unit by IWM4MSTR macro, before issuing
this macro.

Example
None.

IWM4MSTO

Chapter 12. Workload management services 557

IWM4MSTR — Indicate the start of a work unit
The purpose of this service is to indicate that a work unit is beginning execution. The work unit runs under
the specified monitoring environment, but is reported to EWLM completely independent from a potentially
running transaction on the same monitoring environment that is defined by IWM4MINI and IWM4RPT/
IWM4MNTF calls. You can use the set of services IWM4MSTR, IWM4MSTO, IWM4MUPD to provide data
for "mini work units" running within a long-running transaction. In addition a work unit started by
IWM4MSTR can participate in asynchronous and synchronous work unit flows.

Note : This service was previously called IWMMSTRT for 31-bit addressing only (see “IWMMSTRT —
Indicate the start of a work unit” on page 865).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No restriction.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of bits 0-31 of register 0, and the reason code variable when

specified, may be non-zero and represents diagnostic data which is NOT part of the external interface.
The high order halfword should thus be excluded from comparison with the reason code values
described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for
this purpose.

Restrictions
1. This macro may not be used prior to the completion of WLM address space initialization
2. The caller must have issued the IWM4MCRE macro successfully and the created delay monitoring

environment must be enabled for EWLM support. This means the delay monitoring environment must
be created by one of the following ways:

• IWM4CON EWLM=YES ... and IWM4MCRE SUBSYSP=CONNECT ...
• IWM4MCRE SUBSYSP=VALUE EWLM=YES ...

3. The caller is responsible for error recovery.
4. The current PSW key must be 0 or match the key specified on IWM4MCRE provided the latter is a

system key (0-7).
5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for

the environment represented by the monitoring token.

IWM4MSTR

558 z/OS: z/OS MVS Programming: Workload Management Services

6. This macro may only be used on z/OS V2R1 or later.

Input register information
Before issuing the IWM4MSTR macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

The following general purpose registers (GPRs) have to contain the specified information:
Register

Contents
13

The address of a 216-byte standard save area in the primary address space.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.
The reason code is stored in bits 0-31

1
Used as work register by the system

2-13
Unchanged

14
Used as work register by the system

15
Return Code stored in bits 0-31

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

IWM4MSTR

Chapter 12. Workload management services 559

Syntax
main diagram

name
b IWM4MSTR b MONTKN=  montkn

MONTKN64=  montkn64

,END_FLOW=NO

,END_FLOW=YES

,MSG_RECEIVED=NO

,MSG_RECEIVED=YES

,EWLM=NO

,ARRIVALTIME=NO_ARRIVALTIME

,ARRIVALTIME=  arrivaltime

,EWLM_S_PACORR=  ewlm_s_pacorr

,EWLM_S_CURCORR=  ewlm_s_curcorr

,EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR

,EWLM_RCVD_CORR=  ewlm_rcvd_corr

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MSTR macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ARRIVALTIME=arrivaltime
,ARRIVALTIME=NO_ARRIVALTIME

An optional input parameter, which contains a timestamp in STCK format. This timestamp is
subtracted from the current timestamp and assigned as queued time to the work unit. For example,
you may use this parameter, if the work unit is started by receipt of a message from a queue and you
know the put time (the timestamp when the message has been put onto the queue). The default is
NO_ARRIVALTIME. indicates that parameter ARRIVALTIME has not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWM4MSTR

560 z/OS: z/OS MVS Programming: Workload Management Services

,END_FLOW=NO
,END_FLOW=YES

An optional parameter, which indicates the completion of a message flow. The default is
END_FLOW=NO.
,END_FLOW=NO

indicates that a message flow has not completed.

,END_FLOW=YES

indicates that a message flow has completed. Specify END_FLOW=YES, if you know that this work
unit is the last one in a work unit flow. This indication can not be cleared, if it has been set.

,EWLM=NO
An optional parameter, which indicates if this work manager intents to participate in cross platform
Enterprise Workload Management (eWLM). The default is EWLM=NO.
,EWLM=NO

The work manager interacts only with WLM and no interaction with eWLM takes place.
,EWLM_RCVD_CORR=ewlm_rcvd_corr
,EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR

When EWLM_S_CURCORR=ewlm_s_curcorr is specified, an optional input parameter, which contains a
cross platform Enterprise Workload Management (EWLM) correlator received from another
application. Normally this is a received correlator which has the independent flag and the
asynchronous flag set. It should not be passed to the EWLM_S_PACORR or the EWLM_S_CURCORR
parameter. If you pass this correlator to one of them then the started work unit is not reclassified and
runs under the classification of this correlator. When you receive a correlator with the independent
flag set then you should:

1. Reclassify the work unit by issuing IWM4CLFY EWLM_CORR=r_corr EWLM_CHCORR=c_corr. r_corr
is the received correlator and c_corr is the correlator created by IWM4CLFY.

2. Start the work unit by issuing IWM4MSTR EWLM_S_CURCORR=c_corr EWLM_RCVD_CORR=r_corr .

The default is NO_EWLM_RCVD_CORR. indicates that parameter EWLM_RCVD_CORR has not been
specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_S_CURCORR=ewlm_s_curcorr
A required input parameter which contains a cross platform Enterprise Workload Management
(EWLM) correlator for the current application. The correlator passed to this parameter is used as the
current correlator of this work unit. It has usually been created by means of a previous IWM4CLFY call
with the EWLM_CHCORR parameter (see below).

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_S_PACORR=ewlm_s_pacorr
A required input parameter which contains a cross platform Enterprise Workload Management
(EWLM) parent correlator received from another application.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

IWM4MSTR

Chapter 12. Workload management services 561

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

MONTKN=montkn
A required input parameter which contains the delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKN64=montkn64
A required input parameter which contains the long delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,MSG_RECEIVED=NO
,MSG_RECEIVED=YES

An optional parameter, which indicates whether this work unit has been started as a result of a receipt
of a message. The default is MSG_RECEIVED=NO.
,MSG_RECEIVED=NO

indicates that this work unit has not been started by receipt of a message.

,MSG_RECEIVED=YES

indicates that this work unit has been started as a result of a receipt of a message.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

IWM4MSTR

562 z/OS: z/OS MVS Programming: Workload Management Services

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

ABEND codes
None.

Return codes and reason codes
When the IWM4MSTR macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 86. Return and Reason Codes for the IWM4MSTR Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: The input monitoring token indicates no monitoring
environment was established.

Action: Establish a monitoring environment by macro
IWM4MCRE.

IWM4MSTR

Chapter 12. Workload management services 563

Table 86. Return and Reason Codes for the IWM4MSTR Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 xxxx0442 Equate Symbol: IwmRsnCodeCorrelatorUnknown

Meaning: A unknown correlator has been passed to the
EWLM_RCVD_CORR parameter. It is ignored.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Input monitoring environment does not pass short
form validity checking.

Action: Check for possible storage overlay.

8 xxxx0894 Equate Symbol: IwmRsnCodeInvalidEwlmCorr

Meaning: An unknown EWLM correlator has been passed to the
EWLM_S_PACORR or EWLM_S_CURCORR parameter.

Action: Specify a supported correlator. You can create a
supported correlator by macro IWM4CLFY.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: The EWLM service was not enabled for a delay
monitoring environment.

Action: Create a monitoring environment with EWLM=YES
(either on macro IWM4CON or macro IWM4MCRE).

8 xxxx08AD Equate Symbol: IwmRsnCodeAlreadyActive

Meaning: A work unit started by IWM4MSTR is already active.

Action: Stop the active work unit by macro IWM4MSTO before
creating a new one.

8 xxxx08AF Equate Symbol: IwmRsnCodeArrTimeGTStartTime

Meaning: The arrivaltime passed is greater than the current
timestamp.

Action: Check the format of the passed arrivaltime.

Example
None.

IWM4MSWC — Monitoring environment switch
The purpose of this service is to reflect that the delay information for a work request may now also reside
in another monitoring environment which is not Related to the current environment (Continue) OR that
there is no further information for the current work request beyond the current environment (Return).

The scope of this service is restricted to the input monitoring environment and no other monitoring
environments are accessed or otherwise involved.

IWM4MSWC

564 z/OS: z/OS MVS Programming: Workload Management Services

It is preferable to use IWM4MXFR, where the necessary information is available, and the restrictions can
be met, since this gives more specific information to MVS about the status of the work request.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. PSW key must either be 0 or match the value supplied
on IWM4MCRE.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Suspend locks are allowed, as are FRRs

Control parameters: Control parameters must be in the primary address space.

Programming requirements
None.

Restrictions
1. This macro may not be used prior to the completion of WLM address space initialization
2. All parameter areas must reside in current primary.
3. Caller is responsible for error recovery
4. Only limited checking is done against the input monitoring token.
5. If the key specified on IWM4MCRE was a user key (8-F), then the primary addressability must exist to

the performance block IWM4MCRE obtained. This condition is satisfied by ensuring that current
primary matches primary at the time that IWM4MCRE was invoked. If this service is invoked in a
subspace, the condition may be satisfied by ensuring that the performance block is shared with the
base space.

6. FUNCTION(CONTINUE) may not be used when there is an outstanding continuation established by use
of Transfer Continue

7. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for
the input monitoring environment.

8. This macro may only be used on z/OS V2R1 or later.

Input register information
Before issuing the IWM4MSWC macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

The following general purpose registers (GPRs) have to contain the specified information:
Register

Contents
13

The address of a 216-byte standard save area.

IWM4MSWC

Chapter 12. Workload management services 565

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as a work register by the macro
14

Used as a work register by the macro
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0

Used as a work register by the macro
1

Used as a work register by the macro
14

Used as a work register by the macro
15

Used as a work register by the macro

Some callers depend on register contents remaining the same before and after using a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
calling the service, and restore them after the system returns control.

Performance implications
None.

IWM4MSWC

566 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
main diagram

name
b IWM4MSWC b

FUNCTION=CONTINUE

,RUNTIME_VER=SHORT_FORM

,RUNTIME_VER=MINIMAL

,WHERE=LOCALMVS

,WHERE=SYSPLEX

,WHERE=NETWORK

FUNCTION=RETURN

,RUNTIME_VER=SHORT_FORM

,RUNTIME_VER=MINIMAL

,MONTKN=  montkn

,MONTKN64=  montkn64

,EWLM=NO ,COMPCODE=YES

,COMPCODE=NO

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MSWC macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,COMPCODE=YES
,COMPCODE=NO

An optional parameter, which indicates whether completion status for this service is needed. The
default is COMPCODE=YES.
,COMPCODE=YES

indicates that completion status is needed.
,COMPCODE=NO

indicates that completion status is not needed. Registers 0, 15 cannot be used as reason code and
return code registers upon completion of the macro expansion. For this reason neither RETCODE
NOR RSNCODE may be specified when COMPCODE(NO) is specified.

IWM4MSWC

Chapter 12. Workload management services 567

,EWLM=NO
An optional parameter, which indicates if this work manager intents to participate in cross platform
Enterprise Workload Management (eWLM). The default is EWLM=NO.
,EWLM=NO

The work manager interacts only with WLM and no interaction with eWLM takes place.
FUNCTION=CONTINUE
FUNCTION=RETURN

A required parameter, which indicates where there may be one or more other monitoring
environments which represent current information about the work request. This is meant to cover
further continuations of the work request, and does not deal with any parent environment that may
exist.
FUNCTION=CONTINUE

indicates that the current environment is creating only a single continuation elsewhere.
FUNCTION=RETURN

indicates that any continuations of the work request have completed. These continuations may
have been established through use of Transfer or Switch.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,MONTKN=montkn
A required input parameter which contains the delay monitoring token for the current environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKN64=montkn64
A required input parameter which contains the long delay monitoring token for the current
environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

IWM4MSWC

568 z/OS: z/OS MVS Programming: Workload Management Services

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL

When FUNCTION=CONTINUE is specified, an optional parameter, which indicates what level of
runtime verification will be performed. The default is RUNTIME_VER=SHORT_FORM.
,RUNTIME_VER=SHORT_FORM

indicates that checking should verify that a monitoring environment is established and passes a
short form of verification prior to being used.

,RUNTIME_VER=MINIMAL
indicates that checking will only be done to verify that a monitoring environment may be
established, assuming that it would be valid and useable if established.

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL

When FUNCTION=RETURN is specified, an optional parameter, which indicates what level of runtime
verification will be performed. The default is RUNTIME_VER=SHORT_FORM.
,RUNTIME_VER=SHORT_FORM

indicates that checking should verify that a monitoring environment is established and passes a
short form of verification prior to being used.

IWM4MSWC

Chapter 12. Workload management services 569

,RUNTIME_VER=MINIMAL
indicates that checking will only be done to verify that a monitoring environment may be
established, assuming that it would be valid and useable if established.

,WHERE=LOCALMVS
,WHERE=SYSPLEX
,WHERE=NETWORK

When FUNCTION=CONTINUE is specified, a required parameter, which indicates where there may be
another monitoring environment
,WHERE=LOCALMVS

indicates that such an environment may exist on the current MVS.
,WHERE=SYSPLEX

indicates that such an environment may exist in the current syplex, but is not expected to be on
the current MVS image.

,WHERE=NETWORK
indicates that such an environment may exist, but is not expected to be in the current sysplex.

ABEND codes
None.

Return codes and reason codes
When the IWM4MSWC macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 87. Return and Reason Codes for the IWM4MSWC Macro

Return Code Reason Code Meaning and Action

0 — Equate symbol: IwmRetCodeOk

Meaning: Successful completion.

4 — Equate symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate symbol: IwmRsncodeNoMonEnv

Meaning: Input monitoring token indicates no monitoring environment was
established.

4 xxxx0407 Equate symbol: IwmRsncodeReturnCont

Meaning: Switch Return was from a monitoring environment with an
outstanding continuation.

8 — Equate symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx081C Equate symbol: IwmRsnCodeContExists

Meaning: Outstanding continuation exists.

IWM4MSWC

570 z/OS: z/OS MVS Programming: Workload Management Services

Table 87. Return and Reason Codes for the IWM4MSWC Macro (continued)

Return Code Reason Code Meaning and Action

8 xxxx0820 Equate symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass short form verification.

10 — Equate symbol: IwmRetCodeCompError

Meaning: Component Error

Example
None.

IWM4MUPD — Update data for a work unit
The purpose of this service is to update data about a work unit which has been started by IWM4MSTR. A
work unit started by IWM4MINI is not affected by this service.

Note : This service was previously called IWMMUPD for 31-bit addressing only (see “IWMMUPD — Update
data for a work unit” on page 875).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. No restriction.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of bits 0-31 of register 0, and the reason code variable when

specified, may be non-zero and represents diagnostic data which is NOT part of the external interface.
The high order halfword should thus be excluded from comparison with the reason code values
described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for
this purpose.

Restrictions
1. This macro may not be used prior to the completion of WLM address space initialization
2. Caller must have issued the IWM4MSTR macro successfully
3. Caller is responsible for error recovery

IWM4MUPD

Chapter 12. Workload management services 571

4. The current PSW key must be 0 or match the key specified on IWM4MCRE provided the latter is a
system key (0-7)

5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for
the environment represented by the monitoring token

6. This macro may only be used on z/OS V2R1 or later.

Input register information
Before issuing the IWM4MUPD macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

The following general purpose registers (GPRs) have to contain the specified information:
Register

Contents
13

The address of a 216-byte standard save area in the primary address space.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.
The reason code is stored in bits 0-31

1
Used as work register by the system

2-13
Unchanged

14
Used as work register by the system

15
Return code stored in bits 0-31

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

IWM4MUPD

572 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
main diagram

name
b IWM4MUPD b MONTKN=  montkn

MONTKN64=  montkn64

,EWLM=NO ,END_FLOW=NO

,END_FLOW=YES

,MESSAGES_SENT=NO_MESSAGES_SENT

,MESSAGES_SENT=  messages_sent

,EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR

,EWLM_RCVD_CORR=  ewlm_rcvd_corr

,AFTER_STRT=NO

,AFTER_STRT=YES

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MUPD macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,AFTER_STRT=NO
,AFTER_STRT=YES

When EWLM_RCVD_CORR=ewlm_rcvd_corr is specified, an optional parameter, which indicates the
moment the correlator has been received. The default is AFTER_STRT=NO.
,AFTER_STRT=NO

indicates that the correlator has been received before this work unit has been started by
IWM4MSTR.

IWM4MUPD

Chapter 12. Workload management services 573

,AFTER_STRT=YES

indicates that the correlator has arrived within the scope of this work unit that means after issuing
IWM4MSTR.

,END_FLOW=NO
,END_FLOW=YES

An optional parameter, which indicates the completion of a message flow. The default is
END_FLOW=NO.
,END_FLOW=NO

indicates that a message flow has not completed.

,END_FLOW=YES

indicates that a message flow has completed. Specify END_FLOW=YES, if you know that the
running work unit is the last one in a work unit flow. This indication can not be cleared, if it has
been set.

,EWLM=NO
An optional parameter, which indicates if this work manager intents to participate in cross platform
Enterprise Workload Management (eWLM). The default is EWLM=NO.
,EWLM=NO

The work manager interacts only with WLM and no interaction with eWLM takes place.
,EWLM_RCVD_CORR=ewlm_rcvd_corr
,EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR

An optional input parameter, which contains a cross platform Enterprise Workload Management
(EWLM) correlator received from another application. Workflows often have multiple parent work
units that must complete before a new work unit can be initiated. You can pass only 1 parent
correlator to the IWM4MSTR macro and one additional parent correlator to the IWM4MSTO macro.
You have to issue this macro, if more than two parent correlators should be assigned to a work unit.
This correlator is ignored, if it is an unknown EWLM correlator. The default is NO_EWLM_RCVD_CORR.
indicates that parameter EWLM_RCVD_CORR has not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,MESSAGES_SENT=messages_sent
,MESSAGES_SENT=NO_MESSAGES_SENT

An optional input parameter, which contains the number of messages sent to other applications. This
value is added to the total messages_sent value of the work unit. The total messages_sent value
should not exceed 32767. The default is NO_MESSAGES_SENT. indicates that parameter
MESSAGES_SEND has not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

IWM4MUPD

574 z/OS: z/OS MVS Programming: Workload Management Services

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

MONTKN=montkn
A required input parameter which contains the delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKN64=montkn64
A required input parameter which contains the long delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

IWM4MUPD

Chapter 12. Workload management services 575

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

ABEND codes
None.

Return codes and reason codes
When the IWM4MUPD macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 88. Return and Reason Codes for the IWM4MUPD Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: The input monitoring token indicates no monitoring
environment was established.

Action: Establish a monitoring environment by macro
IWM4MCRE.

4 xxxx0441 Equate Symbol: IwmRsnCodeTooManyMsgCorrs

Meaning: The correlator passed to EWLM_RCVD_CORR is
ignored, since the maximum number of supported correlators
has been reached.

Action: None required.

4 xxxx0443 Equate Symbol: IwmRsnCodeTooManyMsgsSent

Meaning: The value passed to MESSAGES_SENT is ignored,
since the maximum number of messages sent is reached.

Action: None required.

4 xxxx0444 Equate Symbol: IwmRsnCodeTooManyMsgsReceived

Meaning: The messages received counter has reached the
maximum value.

Action: None required.

IWM4MUPD

576 z/OS: z/OS MVS Programming: Workload Management Services

Table 88. Return and Reason Codes for the IWM4MUPD Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Input monitoring environment does not pass short
form validity checking.

Action: Check for possible storage overlay.

8 xxxx08AC Equate Symbol: IwmRsnCodeTranNotStarted

Meaning: No work unit has been started by IWM4MSTR for the
specified monitoring environment.

Action: Start a work unit by IWM4MSTR macro, before issuing
this macro.

Example
None.

IWM4MXFR — Monitoring environment transfer
The purpose of this service is to reflect that the delay information for a work request may now also reside
in a dependent monitoring environment (CONTINUE) OR that delay information is no longer present in a
dependent monitoring environment (RETURN).

The two monitoring environments referred to above must be related by a previous IWM4MRLT invocation.
This service requires as input the monitoring token for the dependent environment, which is accessed,
but the parent environment must also be updated. This implies that the user must have addressability
and update access to the parent monitoring environment. The PARENTKEYP and PARENTENV keywords
are provided to accommodate these requirements. These restrictions apply even when the Relate was
performed using the FINDACTIVE option, though when the monitoring environment is related to the
address space characteristics, no key or addressability requirements exist beyond those for the
dependent monitoring environment.

Note : This service was previously called IWMMXFER for 31-bit addressing only (see “IWMMXFER —
Transfer monitoring environment” on page 880).

Environment
The requirements for the caller are:

IWM4MXFR

Chapter 12. Workload management services 577

Minimum authorization: • Either problem state or supervisor state.
• PSW key must either be 0 or match the value supplied on

IWM4MCRE for the (dependent) monitoring token.
• PARENTKEYP(VALUE) may only be specified in supervisor state or

with PKM authority to the key specified by PARENTKEY. Note that
the key for IWM4MXFR is located in bit positions 0-3 (using 0
origin), which is the machine orientation to keeping keys, not the
"natural" way of declaring the key value.

• PARENTKEYP(UNKNOWN) may only be specified in supervisor state
or with PKM authority to key 0.

• When PARENTKEYP(PSWKEY) is specified, the PSW key must
either be 0 or match the value supplied on IWM4MCRE for the
parent monitoring environment.

• If FUNCTION=RETURN is specified and the passed delay monitoring
token is associated with an ARM work request (EWLM=YES was
specified on IWMCONN and the monitoring environment was
created using that CONNTKN), the caller must be in supervisor
state or have PKM authority to key 0.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

4. Note that specification of FUNCTION(CONTINUE) produces an inline expansion rather than an out-of-
line service. Registers 0, 1, 14, and 15 are not preserved across the expansion.

Restrictions
1. If the key specified on IWM4MCRE for the dependent monitoring environment was a user key (8-F),

then primary addressability must exist to the performance block IWM4MCRE obtained. This condition
is satisfied by ensuring that current primary matches primary at the time that IWM4MCRE was
invoked. If this service is invoked in a subspace, the condition may be satisfied by ensuring that the
performance block is shared with the base space.

2. If the key specified on IWM4MCRE for the parent environment was a user key (8-F), then either
primary OR secondary addressability must exist to the performance block for the parent environment.

3. When FUNCTION(CONTINUE|RETURN) are used, the caller is responsible for error recovery

IWM4MXFR

578 z/OS: z/OS MVS Programming: Workload Management Services

4. When FUNCTION(CONTINUE) is used, the caller is responsible to ensure that the parent monitoring
environment does not already have a continuation (via a previous IWM4MXFR or IWM4MSWC) to
another (or other) dependent monitoring environment(s).

5. Both monitoring environments must be established on the same MVS image.
6. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for

the dependent monitoring environment.
7. The caller and/or the owner of the parent environment must ensure that parent environment is not

deleted while between the time that IWM4MXFR FUNCTION(CONTINUE) is used and the time that
either IWM4MXFR FUNCTION(RETURN) is used against the dependent monitoring environment OR
IWM4MSWC FUNCTION(RETURN) is used against the parent monitoring environment.

8. Only limited validity checking is done on the input monitoring tokens.
9. This macro may only be used on z/OS V2R1 or later.

Input register information
Before issuing the IWM4MXFR macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

The following general purpose registers (GPRs) have to contain the specified information:
Register

Contents
13

The address of a 216-byte standard save area in the primary address space.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

IWM4MXFR

Chapter 12. Workload management services 579

Performance implications
None.

Syntax
main diagram

name
b IWM4MXFR b

FUNCTION=CONTINUE

,RUNTIME_VER=SHORT_FORM

,RUNTIME_VER=MINIMAL

FUNCTION=RETURN

,RUNTIME_VER=SHORT_FORM

,RUNTIME_VER=MINIMAL

,WORKREQ_STA=IWMEWLMARMSTATUSNONE

,WORKREQ_STA=  workreq_sta

,MONTKN=  montkn

,MONTKN64=  montkn64

,PARENTKEYP=VALUE ,PARENTKEY=  parentkey

,PARENTKEYP=PSWKEY

,PARENTKEYP=UNKNOWN

,PARENTENV=NOSWITCH

,PARENTENV=SECONDARY

,EWLM=NO ,COMPCODE=YES

,COMPCODE=NO

,RETCODE=  retcode ,RSNCODE=  rsncode

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MXFR macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,COMPCODE=YES
,COMPCODE=NO

An optional parameter, which indicates whether completion status for this service is needed. The
default is COMPCODE=YES.
,COMPCODE=YES

indicates that completion status is needed.
,COMPCODE=NO

indicates that completion status is not needed. Registers 0, 15 cannot be used as reason code and
return code registers upon completion of the macro expansion. For this reason neither RETCODE
NOR RSNCODE may be specified when COMPCODE(NO) is specified.

,EWLM=NO
An optional parameter, which indicates if this work manager intents to participate in cross platform
Enterprise Workload Management (eWLM). The default is EWLM=NO.
,EWLM=NO

The work manager interacts only with WLM and no interaction with eWLM takes place.

IWM4MXFR

580 z/OS: z/OS MVS Programming: Workload Management Services

FUNCTION=CONTINUE
FUNCTION=RETURN

A required parameter, which indicates whether the dependent environment is continuing from or
returning to the parent environment.
FUNCTION=CONTINUE

indicates that this is a unique continuation of the work request which is reflected in the dependent
monitoring environment.

Note that the parent environment may continue to be active on behalf of the work request.

Note that specification of FUNCTION(CONTINUE) produces an inline expansion rather than an out-
of-line service. Registers 0, 1, 14, and 15 are not preserved across the expansion.

FUNCTION=RETURN
indicates that the work request is returning to a previously established parent monitoring
environment.

Use of this option indicates that the dependent environment no longer represents the work
request.

Note that specification of FUNCTION(RETURN) produces an inline expansion rather than an out-
of-line service. Registers 0, 1, 14, and 15 are not preserved across the expansion.

,MONTKN=montkn
A required input parameter which contains the delay monitoring token for the dependent
environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKN64=montkn64
A required input parameter which contains the long delay monitoring token for the dependent
environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,PARENTENV=NOSWITCH
,PARENTENV=SECONDARY

A required parameter, which describes whether a space switch is needed to access the parent
monitoring environment.
,PARENTENV=NOSWITCH

indicates that NO space switch is needed to access the parent monitoring environment. This
would be appropriate if the parent monitoring environment was established (by IWM4MCRE) to be
used by routines in a specific system key or if it was established to be used in a specific user key in
the current primary.

,PARENTENV=SECONDARY

indicates that the parent monitoring environment was established in current secondary (for use by
a specific user key).

,PARENTKEY=parentkey
When PARENTKEYP=VALUE is specified, a required input parameter, which contains the key in which
the parent monitoring environment must be accessed. Use of this keyword value requires that the
invoker be in supervisor state or that the caller have PKM authority to the key specified. The high order
4 bits (i.e. bits 0-3) contain the key value.

Note that this is different from the "natural" way of declaring the key, and uses the machine
orientation for keeping the storage key in the high order bits.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8 bit field.

IWM4MXFR

Chapter 12. Workload management services 581

,PARENTKEYP=VALUE
,PARENTKEYP=PSWKEY
,PARENTKEYP=UNKNOWN

A required parameter, which describes whether a key switch is needed to access the parent
monitoring environment.
,PARENTKEYP=VALUE

indicates that the key is being passed explicitly via PARENTKEY.

,PARENTKEYP=PSWKEY

indicates that the current PSW key should be used. Use of this keyword value requires that the
parent monitoring environment was established with the same key as the current PSW.

,PARENTKEYP=UNKNOWN

indicates that the key associated with the parent monitoring environment is unknown. Use of this
keyword value requires that the invoker be in supervisor state or that the caller have PKM
authority to key 0.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL

When FUNCTION=CONTINUE is specified, an optional parameter, which indicates what level of
runtime verification will be performed. The default is RUNTIME_VER=SHORT_FORM.
,RUNTIME_VER=SHORT_FORM

indicates that checking should verify that a monitoring environment is established and passes a
short form of verification prior to being used.

,RUNTIME_VER=MINIMAL
indicates that checking will only be done to verify that a monitoring environment may be
established, assuming that it would be valid and useable if established.

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL

When FUNCTION=RETURN is specified, an optional parameter, which indicates what level of runtime
verification will be performed. The default is RUNTIME_VER=SHORT_FORM.
,RUNTIME_VER=SHORT_FORM

indicates that checking should verify that a monitoring environment is established and passes a
short form of verification prior to being used.

,RUNTIME_VER=MINIMAL
indicates that checking will only be done to verify that a monitoring environment may be
established, assuming that it would be valid and useable if established.

,WORKREQ_STA=workreq_sta
,WORKREQ_STA=IWMEWLMARMSTATUSNONE

When FUNCTION=RETURN is specified, an optional input parameter, which contains the completion
status code of the work request. Available completion status codes (defined in macro IWMYCON) are:
* IwmEwlmArmStatusGood(0), * IwmEwlmArmStatusAborted(1), * IwmEwlmArmStatusFailed(2) or *
IwmEwlmArmStatusUnknown(3) The codes above correspond to status codes in the OpenGroup ARM

IWM4MXFR

582 z/OS: z/OS MVS Programming: Workload Management Services

4.0 Standard (for the meaning of the status codes see the ARM 4.0 Standard at Application Response
Measurement - ARM (collaboration.opengroup.org/tech/management/arm)). The default is
IWMEWLMARMSTATUSNONE. indicates that internal information in the Monitoring Environment will
be examined to determine the status of the work request: if no abnormal event was recorded for the
monitoring environment via the IWM4MABN service, the completion status IwmEwlmArmStatusGood
will be reported to EWLM. If an abnormal event was reported via IWM4MABN, the completion status
IwmEwlmArmStatusFailed will be reported to EWLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

ABEND codes
None.

Return codes and reason codes
When the IWM4MXFR macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 89. Return and Reason Codes for the IWM4MXFR Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: Input monitoring token indicates no monitoring
environment was established.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx081F Equate Symbol: IwmRsnCodeNoRelate

Meaning: NO Parent environment exists since Relate
Function(Continue) has not been performed or has not been
performed subsequent to a Relate Function(Delete).

Action: Check for possible storage overlay and whether Relate
Function(Continue) has been used properly.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass verification.

IWM4MXFR

Chapter 12. Workload management services 583

http://collaboration.opengroup.org/tech/management/arm
http://collaboration.opengroup.org/tech/management/arm

Table 89. Return and Reason Codes for the IWM4MXFR Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0822 IwmRsnCodeBadParEnv: Parent monitoring environment does
not pass verification.

Action: Check for possible storage overlay.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: Service is not enabled because monitoring
environment can not be associated with EWLM work requests.

Action: Specify the parameter WORKREQ_STA only when the
monitoring environment is created with IWM4MCRE EWLM=YES
or the address space is connected with IWMCONN EWLM=YES
and the connect token is passed to IWM4MCRE when creating
the monitoring environment.

8 xxxx0897 Equate Symbol: IwmRsnCodeTranStatusInvalid

Meaning: Passed work request completion status is not valid.

Action: Check the EWLM ARM interface specification for valid
completion status values.

Example
None.

IWM4MXTR — Monitoring environment extract service
The purpose of this service is to extract information about the monitoring environment which was
previously passed through IWM4MINI/IWM4MRLT. When IWM4MRLT was invoked for a management
monitoring environment, owner token, owner data and abnormal conditions are always available. Arrival
time, userid, and transaction name are only available when IWM4MINI was previously invoked. Arrival
time, however is only available for management monitoring environments.

When the service class token is requested for a management monitoring environment, the value may
represent a token from a prior active policy. Furthermore, when the monitoring environment was
established via IWM4MRLT, the token may be zero, which does not represent a valid service class or
report class. IWMWQRY may be used to obtain the service and/or report class name, along with other
information about these classes. The SERVCLS keyword is not applicable for report-only monitoring
environments. The returned token is zero, which does not represent a valid service class.

The ENCLAVE_TOKEN and ASID keywords are only applicable for report-only monitoring environments.

The EWLM_S_CURCORR keyword should be specified only, if a work unit has been started by IWM4MSTR.

When no output keywords are specified, the service merely checks whether a monitoring environment
was established and passes short form checking.

Note : This service was previously called IWMMEXTR for 31-bit addressing only (see “IWMMEXTR —
Monitoring environment extract” on page 825).

Environment
The requirements for the caller are:

Minimum authorization: Either problem state or supervisor state. Any PSW key.

Dispatchable unit mode: Task or SRB

IWM4MXTR

584 z/OS: z/OS MVS Programming: Workload Management Services

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Suspend locks are allowed.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of bits 0-31 of register 0, and the reason code variable when

specified, may be non-zero and represents diagnostic data which is NOT part of the external interface.
The high order halfword should thus be excluded from comparison with the reason code values
described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for
this purpose.

Restrictions
1. Caller is responsible for error recovery
2. Only limited checking is done against the input monitoring token.
3. If the key specified on IWM4MCRE was a user key (8-F), then the primary addressability must exist to

the performance block IWM4MCRE obtained. This condition is satisfied by ensuring that current
primary matches primary at the time that IWM4MCRE was invoked. If this service is invoked in a
subspace, the condition may be satisfied by ensuring that the performance block is shared with the
base space.

4. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for
the environment represented by the monitoring token.

5. This macro may only be used on z/OS V2R1 or later.

Input register information
Before issuing the IWM4MXTR macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

The following general purpose registers (GPRs) have to contain the specified information:
Register

Contents
13

The address of a 216-byte standard save area in the primary address space.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero. The reason code is stored in bits 0-31
1

Used as work register by the system

IWM4MXTR

Chapter 12. Workload management services 585

2-13
Unchanged

14
Used as work register by the system

15
Return code stored in bits 0-31

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

IWM4MXTR

586 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
main diagram

name
b IWM4MXTR b MONTKN=  montkn

MONTKN64=  montkn64

,EWLM=NO

,OMONTKN=  omontkn

,OMONTKN64=  omontkn64 ,OWNER_TOKEN=  owner_token

,OWNER_DATA=  owner_data ,ARRIVALTIME=  arrivaltime

,TRXNAME=  trxname ,USERID=  userid ,SERVCLS=  servcls

,ASID=  asid ,ENCLAVE_TOKEN=  enclave_token

,TTRACETOKEN=  ttracetoken ,ABNORMAL_COND=  abnormal_cond

,EWLM_CHCORR=  ewlm_chcorr ,EWLM_PACTKN=  ewlm_pactkn

,EWLM_S_CURCORR=  ewlm_s_curcorr ,RETCODE=  retcode

,RSNCODE=  rsncode

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MXTR macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ABNORMAL_COND=abnormal_cond
An optional output parameter, which contains the current information about abnormal conditions
which were either recorded in the input monitoring environment or which were propagated to it via
IWM4MXFR Function(Return). Multiple conditions may exist.

The mask, Iwmmabnl_Scope_LocalMVS, may be used to determine whether an abnormality which
only affects work on the current MVS image was recorded.

The mask, Iwmmabnl_Scope_Sysplex, may be used to determine whether an abnormality which
affects work on all MVS images in the sysplex was recorded.

To determine whether a condition was recorded, merely AND the field supplied for ABNORMAL_COND
with the relevant mask. The result will be nonzero when the condition is true, zero when the condition
is false.

IWM4MXTR

Chapter 12. Workload management services 587

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,ARRIVALTIME=arrivaltime
An optional output parameter, which contains the work arrival time in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,ASID=asid
An optional output parameter, which contains the address space ID. When the monitoring
environment is not associated with an address space, the output will be a halfword of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16 bit field.

,ENCLAVE_TOKEN=enclave_token
An optional output parameter, which contains the enclave token. When the monitoring environment is
not associated with an enclave, the output will be a doubleword of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,EWLM=NO
An optional parameter, which indicates if this work manager intents to participate in cross platform
Enterprise Workload Management (eWLM). The default is EWLM=NO.
,EWLM=NO

The work manager interacts only with WLM and no interaction with eWLM takes place.
,EWLM_CHCORR=ewlm_chcorr

An optional output parameter, which contains the cross platform Enterprise Workload Management
(EWLM) correlator of the work request created by IWM4MINI. Normally this correlator is different
from the current correlator of the work unit created by IWM4MSTR.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_PACTKN=ewlm_pactkn
An optional output parameter, which contains the cross platform Enterprise Workload Management
(EWLM) parent correlator token of the work request associated with the monitoring environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_S_CURCORR=ewlm_s_curcorr
An optional output parameter, which contains the current correlator of the work unit started by
IWM4MSTR. Normally this correlator is different from the child correlator of the work request created
by IWM4MINI.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

MONTKN=montkn
A required input parameter which contains the delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKN64=montkn64
A required input parameter which contains the long delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,OMONTKN=omontkn
An optional output parameter, which is to receive the delay monitoring token. This option can be used
to convert a long delay monitoring token into the short form.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,OMONTKN64=omontkn64
An optional output parameter, which is to receive the long delay monitoring token. This option can be
used to convert a short delay monitoring token into the long form.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

IWM4MXTR

588 z/OS: z/OS MVS Programming: Workload Management Services

,OWNER_DATA=owner_data
An optional output parameter, which is to receive the data established by the user/owner of the
monitoring environment. The format is undefined to MVS. When the monitoring environment is not
associated with an OWNER_TOKEN value, the output will be a word of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,OWNER_TOKEN=owner_token
An optional output parameter, which is to receive the token established by the user/owner of the
monitoring environment. The format is undefined to MVS. When the monitoring environment is not
associated with an OWNER_TOKEN value, the output will be a word of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SERVCLS=servcls
An optional output parameter, which contains the service class token. When the monitoring
environment is not associated with a service class token, the output will be a word of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,TRXNAME=trxname
An optional output parameter, which contains the transaction name. The field will be all blanks when
NO_TRXNAME was specified on IWM4MINI.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,TTRACETOKEN=ttracetoken
An optional output parameter, which contains the transaction trace token associated with the work
request. The field will be all zero when NO_TTRACETOKEN was specified on IWM4MINI.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,USERID=userid
An optional output parameter, which contains the local userid associated with the work request. The
field will be all blanks when NO_USERID was specified on IWM4MINI.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWM4MXTR macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

IWM4MXTR

Chapter 12. Workload management services 589

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 90. Return and Reason Codes for the IWM4MXTR Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: Monitoring token indicates that no monitoring
environment exists.

Action: None required.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area is too small to contain all the
available information.

4 xxxx040C Equate Symbol: IwmRsnCodeMonEnvLacksInfo

Meaning: Input monitoring environment does not contain the
necessary information to return the data requested.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass short form
verification.

Action: Check for possible storage overlay.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: Service is not enabled because monitoring
environment can not be associated with EWLM work requests.

Action: Specify the parameter EWLM_CHCORR or EWLM_PACTKN
only when the monitoring environment is created with
IWM4MCRE EWLM=YES or the address space is connected with
IWM4CON EWLM=YES and the connect token is passed to
IWM4MCRE when creating the monitoring environment.

8 xxxx08AC Equate Symbol: IwmRsnCodeTranNotStarted

Meaning: A work unit has not been started.

Action: Start a work unit by IWM4MSTR macro, before
specifying the EWLM_S_CURCORR parameter.

IWM4MXTR

590 z/OS: z/OS MVS Programming: Workload Management Services

Example
None.

IWM4OPTQ — Query IEAOPTxx parameters
The IWM4OPTQ service queries the current IEAOPTxx settings in the system and returns a list of the
IEAOPTxx parameters, including the actual value, unit, default value, and description.

The caller of IWM4OPTQ must provide storage to contain all of the parameter information. This storage
area must reside in the caller’s primary address space.

It is possible that the storage required by IWM4OPTQ can change such that multiple calls to IWM4OPTQ
are required to obtain data. Users of IWM4OPTQ should take this into consideration when obtaining an
amount of storage for the IWM4OPTQ service to use.

If the caller does not provide enough storage to contain all of the parameter information, the IWM4OPTQ
service returns a return code and reason code pair to indicate that the storage area specified by the
OPTINFO_BLOCK input parameter is too small. The QUERYLEN output parameter will be set to the
required size for the storage area specified by OPTINFO_BLOCK. No IEAOPTxx parameter information is
returned.

Applications that monitor the current system environment can use this service to display the SRM and
WLM parameter settings.

The output of the IWM4OPTQ service is a data area mapped by the IWMWOPTI macro and provides a
point-in-time snapshot of the parameter settings on the current system.

Environment
The requirements for the caller are:

Minimum authorization: Problem state, any PSW key.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE=YES before invoking this macro.

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro. The macro IWMYCON must be included to use this

macro.

Note : The high-order halfword of register 0, and the reason code variable when specified, may be
non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

IWM4OPTQ

Chapter 12. Workload management services 591

Input register information
Before issuing the IWM4OPTQ macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as a work register by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
The syntax of the IWM4OPTQ macro is as follows:

IWM4OPTQ

592 z/OS: z/OS MVS Programming: Workload Management Services

name
IWM4OPTQ OPTINFO_BLOCK=  optinfo_block ,ANSLEN=  anslen

,QUERYLEN=  querylen

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWM4OPTQ macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ANSLEN=anslen
A required input parameter that contains the length of the OPTINFO_BLOCK storage area, in bytes.

To code: Specify the RS-type address or address in register (2)-(12) of a fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of
the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

IWM4OPTQ

Chapter 12. Workload management services 593

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

OPTINFO_BLOCK=optinfo_block
Is the name (RS-type), or address in register (2)-(12), of a required character input of an output area
to contain information provided by this service. The format of this area is mapped by IWMWOPTI and
should only be considered valid upon return code zero from this service.

OPTINFO_BLOCK is not the address of a pointer but the address of the output area

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms that are used for a
request and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 1, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 1

,QUERYLEN=querylen
A required output parameter variable which contains the output area size that must be provided by
the caller to contain all of the active system’s IEAOPTxx parameter descriptions (that is, the amount of
data returned by the IWM4OPTQ service).

To code: Specify the RS-type address or address in register (2)-(12) of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWM4OPTQ macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

IWM4OPTQ

594 z/OS: z/OS MVS Programming: Workload Management Services

Table 91 on page 595 identifies the hexadecimal return and reason codes and the equate symbol
associated with each reason code. IBM support personnel may request the entire reason code, including
the xxxx value.

Table 91. Return codes and reason codes for the IWM4OPTQ macro

Return code Reason code Equate symbol, meaning, and action

0 — Equate symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx040A Equate symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive all the available
information. The variable specified by the QUERYLEN keyword will contain the
size of the storage required to hold the returned data area.

Action: None required. If necessary, invoke the service again with an output
area of sufficient size to receive all information.

8 — Equate symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0828 Equate symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or the length specified
is incorrect.

Action: Check for possible storage overlay of the parameter list.

Example
To query the IEAOPTxx settings for the current system, specify:

 IWM4OPTQ OPTINFO_BLOCK=OPTINFO,
 ANSLEN=ALEN,
 QUERYLEN=QLEN,

IWM4OPTQ

Chapter 12. Workload management services 595

 RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
OPTINFO DS CL8192 Output area
ALEN DS F Length of output area
QLEN DS F Length of returned data
RC DS F Return code
RSN DS F Reason code

IWM4QDE — Delete a request from the queue for an execution
address space

This service deletes a work request that was previously inserted using the IWM4QIN service, if it has not
been selected using the IWM4SSL service.

Note : This service was previously called IWMQDEL for 31-bit addressing only (see “IWMQDEL — Delete a
request from the queue for an execution address space” on page 887).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space which
connected to WLM (i.e. the address space that was home when
IWM4CON was issued for Queue_Manager=Yes, or
Server_Manager=Yes with Server_Type=Queue).

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

IWM4QDE

596 z/OS: z/OS MVS Programming: Workload Management Services

Input register information
Before issuing the IWM4QDE macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWM4QDE macro is as follows:

IWM4QDE

Chapter 12. Workload management services 597

name
IWM4QDE CONNTKN=  conntkn ,WLMWUTKN=  wlmwutkn

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWM4QDE macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

CONNTKN=conntkn
A required input parameter, which contains the connect token associated with the use of WLM Work
Queuing services as returned by IWM4CON (specifying Queue_Manager=Yes, or Server_Manager=Yes
with Server_Type=Queue).

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the

IWM4QDE

598 z/OS: z/OS MVS Programming: Workload Management Services

parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,WLMWUTKN=wlmwutkn
A required input parameter, specifying the work unit to be deleted. This token must be a token that
was returned on a prior IWM4QIN request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

ABEND codes
None.

Return codes and reason codes
When the IWM4QDE macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

IWM4QDE

Chapter 12. Workload management services 599

Table 92. Return and Reason Codes for the IWM4QDE Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0408 Equate Symbol: IwmRsnCodeWorkNotFound:

Meaning: No work matching the input search criteria was found.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Make sure to use the connect token returned by the IWM4CON
service requesting Queue_Manager=Yes, or Server_Manager=Yes with
Server_Type=Queue.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on Primary ASC
mod

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported by the MVS release
on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

IWM4QDE

600 z/OS: z/OS MVS Programming: Workload Management Services

Table 92. Return and Reason Codes for the IWM4QDE Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx083F Equate Symbol: IwmRsnCodePrimaryNotOwnConn

Meaning: Primary address space does not own the passed connect token.

Action: Avoid requesting this function while primary address space does not
own the connect token.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this service.

Action: Make sure that Queue_Manager=Yes, or Server_Manager=Yes with
Server_Type=Queue is specified on the IWM4CON request to enable this
service.

8 xxxx0848 Equate Symbol: IwmRsnCodeBadWorkUnitToken

Meaning: The work unit token is not valid.

Action: Check the specification of the WLMWUTKN parameter.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To delete a work request from the WLM queue manager queues, specify:

 IWM4QDE CONNTKN=CONNTOKEN, X
 WLMWUTKN=WLMWUTKN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
CONNTOKEN DS FL4 Contains the connect token
* associated with the use of WLM
* Queuing services as returned by
* IWM4CON
* (specifying QUEUE_MANAGER=YES
* or SERVER_MANAGER=YES
* SERVER_TYPE=QUEUE
WLMWUTKN DS CL16 Work unit token
RC DS F Return code
RSN DS F Reason code

IWM4QHLT — Query server health indicators

The IWM4QHLT service provides information about health indicators which have been set for server
address spaces via the IWM4HLTH or IWMSRSRG services. IWM4QHLT allows the caller to obtain the
health information for:

• All address spaces for which health indicators have been provided
• A list of particular address spaces

The caller must provide an area of storage in the ANSAREA parameter and the length of that area in the
ANSLEN parameter for IWM4QHLT to place the health information. IWM4QHLT returns the actual length
of the information in the QUERYLEN parameter.

If a caller does not know the size of the answer area required by the service, it should issue IWM4QHLT
with ANSLEN set to zero. The length of the answer area will be placed in QUERYLEN.

The answer area is mapped by the IWMWQHAA data area, which is described in z/OS MVS Data Areas,
Volume 4.

IWM4QHLT

Chapter 12. Workload management services 601

The returned information is not serialized upon return to the caller, so it may be outdated due to a change
in health indicators.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary or access register (AR). If in AR mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRR environments may be established.

Control parameters: The caller of IWM4QHLT must provide storage for an answer area
mapped by IWMWQHAA. This answer area may reside in the caller’s
primary address space or in a dataspace accessible via the current
unit of work’s dispatchable unit access list (DUAL).

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
None.

Input register information
Before issuing the IWM4QHLT macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system

IWM4QHLT

602 z/OS: z/OS MVS Programming: Workload Management Services

2-13
Unchanged

14
Used as work registers by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWM4QHLT macro is as follows:

name
IWM4QHLT

ASID_LIST=NO_ASID_LIST

ASID_LIST=  asid_list ,ASID_NUM=  asid_num

,ANSAREA=  ansarea ,ANSLEN=  anslen ,QUERYLEN=  querylen

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWM4QHLT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

IWM4QHLT

Chapter 12. Workload management services 603

,ANSAREA=ansarea
A required output parameter that specifies an answer area, ansarea, to contain the data returned by
the query service. The area is mapped by the IWMWQHAA mapping macro. If the length of ansarea is
insufficient to hold all of the data to be returned, no data is returned.

To code: Specify an RS-type address or address in register (2)-(12) of a character field.

,ANSLEN=anslen
A required input parameter that contains the length of the answer area (ansarea).

To code: Specify the RS-type address or address in register (2)-(12) of a fullword field.

ASID_LIST=NO_ASID_LIST
ASID_LIST=asid_list

An optional input parameter that specifies an area for the list of ASIDs for which health information
should be returned. Each entry (ASID) is a halfword field in hexadecimal format. A maximum number
of 100 entries in the list is supported. The default value is NO_ASID_LIST, which indicates that no
ASID list was passed and health information for all address spaces for which health indicators were
provided should be returned.

To code: Specify the RS-type name or address in register (2)-(12) of a field specifying the area for the
list of ASIDs.

,ASID_NUM=asid_num
A required input parameter for ASID_LIST=asid_list that contains the number of ASIDs in
asid_list.

To code: Specify the RS-type address or address in register (2)-(12) of a fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of
the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

IWM4QHLT

604 z/OS: z/OS MVS Programming: Workload Management Services

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:
IMPLIED_VERSION

The lowest version that allows all parameters specified on the request to be processed. If you
omit the PLISTVER parameter, IMPLIED_VERSION is the default.

MAX
Indicates that you want the parameter list to be the largest size currently possible. This size might
grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

0
Indicates to use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,QUERYLEN=querylen
A required output parameter that contains the length of the storage area required by the IWM4QHLT
service. The length of the area may change between invocations.

To code: Specify the RS-type address or address in register (2)-(12) of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address or address in register (2)-(12) of a fullword field.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address or address in register (2)-(12) of a fullword field.

ABEND codes
None.

Return codes and reason codes
When the IWM4QHLT macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains a reason

code.

Table 93 on page 606 identifies the hexadecimal return and reason codes and the equate symbol
associated with each reason code. IBM support personnel may request the entire reason code, including
the xxxx value.

IWM4QHLT

Chapter 12. Workload management services 605

Table 93. Return and reason codes for the IWM4QHLT macro

Return code Reason code Equate symbol, meaning, and action

0 — Equate symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0408 Equate symbol: IwmRsnCodeWorkNotFound

Meaning: No address spaces matching the input ASIDs were found or none
of the input ASIDs have health information.

Action: None required.

4 xxxx040A Equate symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The supplied output area is too small to receive all the available
information.

Action: None required. If necessary, reinvoke the service with an output area
of sufficient size (returned in QUERYLEN) to receive all information.

8 — Equate symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF.

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only in 31-bit or 64-bit addressing mode.

8 xxxx0827 Equate symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0828 Equate symbol: IwmRsnCodeBadVersion

Meaning: The version number in the parameter list or the version length field
is not valid, or this service was called on a z/OS release where it is not
supported.

Action: Check for possible storage overlay of the parameter list.

IWM4QHLT

606 z/OS: z/OS MVS Programming: Workload Management Services

Table 93. Return and reason codes for the IWM4QHLT macro (continued)

Return code Reason code Equate symbol, meaning, and action

8 xxxx0829 Equate symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters, supplies mutually
exclusive parameters, provides data associated with options not selected, or
specifies more than 100 ASIDs in ASID_LIST.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0830 Equate symbol: IwmRsnCodeBadAlet

Meaning: Caller specified an invalid ALET for the storage pointed to by the
ANSAREA parameter.

Action: Check for possible storage overlay of the parameter list or variable.

C — Equate symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

10 — Equate symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The service may be successful if invoked again.

Example
To query server health indicators, specify:

 IWM4QHLT ASID_LIST=ASLST,ASID_NUM=ASNUM,
 ANSAREA=AAREA,
 ANSLEN=ALEN,
 QUERYLEN=QLEN,
 RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
ASLST DS Cxx List of server ASIDs to query
ASNUM DS F Number of ASIDs in list
AAREA DS CLxx Answer area
ALEN DS F Length of answer area
QLEN DS F Length of returned data
RC DS F Return code
RSN DS F Reason code

IWM4QIN — Insert a request onto the queue for an execution
address space

The IWM4QIN service inserts a work request onto workload management queues so its execution in a
server address space can be managed by WLM.

Before using this service, the caller must connect to WLM using the IWM4CON service, specifying
Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue.

The IWM4QIN service requires the use of enclaves to manage the performance goals and reporting of
work. It requires the use of application environments to associate types of work requests with servers
capable of processing them.

IWM4QIN

Chapter 12. Workload management services 607

Note : This service was previously called IWMQINS for 31-bit addressing only (see “IWMQINS — Insert a
request onto the queue for an execution address space” on page 893).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space which
connected to WLM (i.e. the address space that was home when
IWM4CON was issued for Queue_Manager=Yes, or
Server_Manager=Yes with Server_Type=Queue).

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
None.

Input register information
Before issuing the IWM4QIN macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system

IWM4QIN

608 z/OS: z/OS MVS Programming: Workload Management Services

2-13
Unchanged

14
Used as work registers by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWM4QIN macro is as follows:

IWM4QIN

Chapter 12. Workload management services 609

name
IWM4QIN CONNTKN=  conntkn ,ETOKEN=  etoken

,USERDATA=  userdata ,APPLENV=  applenv
,DYNAMIC=NO

,DYNAMIC=YES

,DEPENDENT=NO

,DEPENDENT=YES

,SECUSER=NO

,SECUSER=YES ,USERID=  userid

,WLMWUTKN=  wlmwutkn

,SERVER_TOKEN=0

,SERVER_TOKEN=  server_token

,REGION_TOKEN=0

,REGION_TOKEN=  region_token ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

,NOCHECK

)

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4QIN macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,APPLENV=applenv
A required input parameter, which contains an application environment name. An application
environment is defined in the workload manager service definition and instructs WLM how to create a
server address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

CONNTKN=conntkn
A required input parameter, which contains the connect token returned by the IWM4CON macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,DEPENDENT=NO
,DEPENDENT=YES

An optional parameter indicating whether the insert is for a dependent or a standard request. The
default is DEPENDENT=NO.
,DEPENDENT=NO

The request is for an independent (standard) work request (default).

IWM4QIN

610 z/OS: z/OS MVS Programming: Workload Management Services

,DEPENDENT=YES
The insert is for a dependent work request which is required by already active server tasks to
complete their processing. The request is prioritized above requests which are not marked as
dependent.

,DYNAMIC=NO
,DYNAMIC=YES

An optional parameter indicating whether the insert is for a dynamic or static application environment.
The default is DYNAMIC=NO.
,DYNAMIC=NO

The server manager connects to a static application environment according to the WLM service
defintion. This is the default.

,DYNAMIC=YES
The server manager connects to a dynamic application environment according to a prior definition
via IWM4AEDF service.

,ETOKEN=etoken
A required input parameter, which contains the enclave token associated with the work request. An
enclave token is obtained using either the IWM4ECRE or IWMESQRY macro.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of
the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines that need to
provide different options according to user-provided input. Use the list form to define a storage area;
use the modify form to set the appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IWM4QIN in the following order:

•
• Use IWM4QIN ...MF=(M,list-addr,COMPLETE) specifying appropriate parameters, including

all required ones.
• Use IWM4QIN ...MF=(M,list-addr,NOCHECK), specifying the parameters that you want to

change.
• Use IWM4QIN ...MF=(E,list-addr,NOCHECK) to execute the macro.

IWM4QIN

Chapter 12. Workload management services 611

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:
IMPLIED_VERSION

The lowest version that allows all parameters specified on the request to be processed. If you
omit the PLISTVER parameter, IMPLIED_VERSION is the default.

MAX
if you want the parameter list to be the largest size currently possible. This size might grow from
release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

0
Supports all parameters except those specifically referenced in higher versions.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,REGION_TOKEN=region_token
,REGION_TOKEN=0

An optional input parameter, which contains a region token returned by the IWM4CON and IWM4SSL
macro. Use REGION_TOKEN to queue a work request to a specific server region. Such a work request
is considered to be part of a set of work requests which all need access to the same status
information which is kept in the virtual storage of the server region.

The following qualifications apply when specifying a region token:

• The application is responsible for passing the region token to the queueing manager so that it can
insert the work request to the region.

• WLM has to know that temporal affinities for work requests to a specific server region exist in order
not to stop the server region.The application must use the IWM4TAF macro to tell WLM when a
temporal affinity starts and when it ends.

Coding REGION_TOKEN=0 is equivalent to omitting the REGION_TOKEN keyword. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

IWM4QIN

612 z/OS: z/OS MVS Programming: Workload Management Services

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SECUSER=NO
,SECUSER=YES

An optional parameter, which specifies whether the security environment of the user should be
associated with the request at run time. The default is SECUSER=NO.
,SECUSER=NO

No security environment to be established.
,SECUSER=YES

Use the specified user ID to establish a security environment.
,SERVER_TOKEN=server_token
,SERVER_TOKEN=0

An optional input parameter, which contains a server token returned by the IWM4SSL macro. Use
SERVER_TOKEN to queue a secondary work request to the same server task that selected a prior work
request. A secondary work request is considered to be an extension of the prior work request.

The following qualifications apply when specifying a server token:

• The server task is responsible for passing the server token to the queueing manager so that it can
insert a secondary work request.

• Coordination is required between the queueing manager and the server task so that the server task
knows when to expect secondary work requests. The server task uses the IWM4SSM macro to
select secondary work requests. It must select all secondary work requests before it can resume
normal selection using IWM4SSL.

• The same application environment and enclave token passed for the original work request must be
passed for each secondary work request.

• A secondary work request cannot be deleted using the IWM4QDE macro. IWM4QIN does not return
a work unit token (WLMWUTKN).

• The SECUSER keyword is ignored.

Coding SERVER_TOKEN=0 is equivalent to omitting the SERVER_TOKEN keyword. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,USERDATA=userdata
A required input parameter, which contains data to pass to the server address space. This user data is
returned to the caller of the IWM4SSL or IWM4SSM macro. The format is undefined to MVS.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,USERID=userid
When SECUSER=YES is specified, a required input parameter, which contains the requester's user ID.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,WLMWUTKN=wlmwutkn
An optional output parameter, which will receive the work unit token. This token can be passed to the
IWM4QDE service to delete the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

ABEND codes
None.

IWM4QIN

Chapter 12. Workload management services 613

Return codes and reason codes
When the IWM4QIN macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 94. Return and Reason Codes for the IWM4QIN Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx042E Equate Symbol: IwmRsnCodeServerNotFound

Meaning: The server token does not identify an existing server tas The server
task may have terminated since the token was obtained.

Action: If the server task has not terminated, check that the correct token is
specified.

4 xxxx043A Equate Symbol: IwmRsnCodeRegionNotFound

Meaning: The region token does not identify a valid server region.

Action: Please specify the correct region token.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Make sure to use the connect token returned by the IWM4CON
service requesting Queue_Manager=Yes, or Server_Manager=Yes with
Server_Type=Queue.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

IWM4QIN

614 z/OS: z/OS MVS Programming: Workload Management Services

Table 94. Return and Reason Codes for the IWM4QIN Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported by the MVS release
on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token in parameter list is not valid.

Action: Check the specification of the ETOKEN parameter.

8 xxxx083F Equate Symbol: IwmRsnCodePrimaryNotOwnConn

Meaning: Primary address space does not own the passed connect token.

Action: Ensure that the primary address space has previously connected to
WLM using the IWM4CON macro. Ensure that the connect token returned by
the IWM4CON macro is passed to the IWM4QIN macro.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: The caller's space connection is not enabled for this service

Action: Make sure that Queue_Manager=Yes, or Server_Manager=Yes
with Server_Type=Queue is specified on the IWM4CON request to enable
this service.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: The caller's space disconnected from WLM during processing of the
insert request.

Action: None.

8 xxxx0845 Equate Symbol: IwmRsnCodeWrongEnclave

Meaning: The caller tried to queue a secondary work request to a specific
server task using the SERVER_TOKEN parameter. The caller's enclave token
does not match the enclave token of the last work request selected by the
server task.

Action: Check that the correct enclave token was specified. Check that the
server task is invoking the IWM4SSL and IWM4SSM macros in the correct
sequence.

8 xxxx089C Equate Symbol: IwmRsnCodeDupAENameInsert

Meaning: The caller tried to insert to an application environment with a
duplicate name within the same node concurrently.

Action: Make sure not to insert requests to a dynamic and static application
environment within the same node concurrently.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: Contact your system programmer. There is a common storage
shortage.

IWM4QIN

Chapter 12. Workload management services 615

Table 94. Return and Reason Codes for the IWM4QIN Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

C xxxx0C16 Equate Symbol: IwmRsnCodeServerUnavail

Meaning: A server cannot be started to process the work request. This is
probably caused by one of the following:

1. An error in the JCL procedure used to start the server address space.
2. Repeated, unexpected terminations of the server address space.

In either of these cases, workload management stops the application
environment. A DISPLAY WLM command shows this state as INTERNALLY
STOPPED.

Action: Look at the system log to determine what caused the error:

1. If it is a JCL error, correct the error in the procedure.
2. If it is repeated terminations of the server address space, correct the

application error causing the termination.

In either case, the server environment can then be resumed using the VARY
operator command: V WLM,APLLENV=nnn,RESUME where nnn is the
applicable application environment name.

Note : A re-IPL of some or all of the systems in the sysplex does not reset the
stopped state of the application environment. The VARY command is the only
way to resume the environment.

C xxxx0C1A Equate Symbol: IwmRsnCodeApplNotDefined

Meaning: The application environment name is not defined in the active WLM
policy.

Action: Check whether the correct application environment name is being
used. If so, a service administrator must define the application environment
in the WLM service definition.

C xxxx0C1B Equate Symbol: IwmRsnCodeApplNotSST

Meaning: The application environment name is defined for use by a different
subsystem type in the active WLM policy.

Action: Check whether the correct application environment name is being
used. If so, a service administrator must change the application environment
in the WLM service definition to specify the correct subsystem type.

C xxxx0C1D Equate Symbol: IwmRsnCodeQMgrNotActive

Meaning: The required Queue Manager is not active.

Action: The Queue Manager with the same subsystem type and name as the
server must be started and connected to workload management before the
request can be honored.

C xxxx0C22 Equate Symbol: IwmRsnCodeApplEnvQuiesced

Meaning: For server applications connecting to WLM with subsystem type
IWEB only: The application environment has been quiesced. The work
reqeust is not inserted to the WLM work queue.

Action: Resume the application environment.

IWM4QIN

616 z/OS: z/OS MVS Programming: Workload Management Services

Table 94. Return and Reason Codes for the IWM4QIN Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

C xxxx0C40 Equate Symbol: IwmRsnCodeNoSafCheckPossible

Meaning: MLS is active but a security check could not be performed probably
for one of the following reasons:

•
• No security decision could be made. The RACF router was not loaded; the

request, resource, subsystem combination could not be found in the RACF
ROUTER table,...

• A resource or class name is not defined to RACF or the class has not been
RAClisted.

• The class was RAClisted, but the data space cannot be accessed due to an
ALESERV failure.

• The class was RAClisted, but the data space has been deleted.
• No security decision could be made. The RACF router was not loaded,; the

request, resource, subsystem combination could not be found in the RACF
ROUTER table.

Action: Contact your RACF Security Administrator. Check if RACF is properly
installed, configured and tuned. Correct the eventual problems.

C xxxx0C41 Equate Symbol: IwmRsnCodeSafCheckFailed

Meaning: MLS is active. Queue Manager and Server Manager are not
authorized to communicate.

Action: Normally none. If QM and SM really must communicate, conta your
RACF Security Administrator. Set the appropriate Security Labels.

C xxxx0C42 Equate Symbol: IwmRsnCodeAletError

Meaning: Error while accessing access list with ALESERV probably because
of one of the following

1.
2. The current access list cannot be expanded. There are no free access list

entries and the maximum size has been reached.
3. ALESERV could not obtain storage for an expanded access list.

Action: Delete unused entries and reissue the request in first case. Free
some storage and retry the request in second case. Contact your System
Programmer if none works.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To insert a work request onto the WLM queue manager queues, specify the following:

 IWM4QIN CONNTKN=CONNTOKEN,ETOKEN=ENCTOKEN, X
 USERDATA=USERDATA,APPLENV=APPLENV,SECUSER=NO, X
 WLMWUTKN=WLMWUTKN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
CONNTOKEN DS FL4 Contains the connect token
* associated with the use of WLM
* Queuing services as returned by
* IWM4CON
* (specifying QUEUE_MANAGER=YES
* or SERVER_MANAGER=YES
* SERVER_TYPE=QUEUE
ENCTOKEN DS CL8 Contains the enclave token
* associated with the work
* request as returned by IWM4ECRE
USERDATA DS CL16 Contains data maintained by the
* user

IWM4QIN

Chapter 12. Workload management services 617

APPLENV DS CL32 Contains the application
* environment name
WLMWUTKN DS CL16 Work unit token
RC DS F Return code
RSN DS F Reason code

IWM4QTNT — Query tenant resource group consumption

IWM4QTNT is the interface reporting products should use to obtain CPU service consumption of tenant
resource groups defined in the WLM service definition. Long-term average service on general purpose
processors used by the tenant resource groups is provided as well as the consumption on specialty
engines.

To help the caller keep track of changes in workload management, this service returns a token, ANSTOKN.
ANSTOKN is a required input on all subsequent calls to IWM4QTNT. When a change occurs in workload
management, for example, when a new policy is activated, IWM4QTNT returns a new token value. The
caller’s code should check the reason codes to see if the ANSTOKN has changed since the last call to
IWM4QTNT. If the token has changed, the performance monitor should reset its reporting interval. If the
token has not changed, the performance monitor can continue with its existing reporting interval.

There are also some ENF event codes to keep track of changes in workload management. For information
about the ENF codes, see z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG

The caller must provide an area of storage in the ANSAREA parameter and the length of that area in the
ANSLEN parameter for IWM4QTNT to return the CPU consumption. IWM4QTNT return the actual length of
the information in the QUERYLEN parameter. The answer area is mapped by the IWMWQTAA data area.

If the storage area provided is insufficient, no data is returned by IWM4QTNT but an appropriate return
and reason code is issued and the required amount of storage is returned in the QUERYLEN parameter. If
a user does not know the size of the answer area required by the service, he should issue IWM4QTNT with
ANSLEN set to zero. The length of the answer area will be placed in QUERYLEN.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 64-bit

ASC mode: Primary or access register. If in access register ASC mode, specify
SYSSTATE ASCENV = AR before invoking IWM4QTNT.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space.

The caller of IWM4QTNT must provide storage for an answer area
mapped by IWMWQTAA. This answer area may reside in the caller’s
primary address space, or in a dataspace accessible via the current
unit of work’s dispatchable unit access list (DUal).

IWM4QTNT

618 z/OS: z/OS MVS Programming: Workload Management Services

Programming requirements
You must include the CVT and the IWMYCON mapping macros in the program.

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before issuing the IWM4QTNT macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, using it as a base register, or using it to
provide the ALET of the storage area.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWM4QTNT macro is as follows:

IWM4QTNT

Chapter 12. Workload management services 619

name
IWM4QTNT ,ANSAREA=  ansarea ,ANSLEN=  anslen

,QUERYLEN=  querylen ,ANSTOKN=  anstokn

,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L,  list addr

,0D

, attr
)

,MF=(E,  list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4QTNT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ANSAREA=ansarea
A required output parameter that contains the address of a storage area to hold the information
returned by IWM4QTNT. The area is mapped by the IWMWQTAA mapping macro.
To code: Specify the RS-type address, or address in register (2)-(12) of a character field.

,ANSLEN=anslen
A required input parameter that contains the length of the storage area (answer area) you are
providing on ANSAREA.
To code: Specify the RS-type address or address in register (2)-(12) of a fullword field.

,ANSTOKN=anstoken
A required input/output parameter that contains a token value. On your first call to IWM4QTNT, you
specify ANSTOKEN as an output parameter. IWM4QTNT provides a token value that is required for
subsequent calls to IWM4QTNT.
To code: Specify the RS-type address, or address in register (2)-(12) of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the

IWM4QTNT

620 z/OS: z/OS MVS Programming: Workload Management Services

execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,QUERYLEN=querylen
A required output parameter that contains the length of the storage area required by IWM4QTNT to
contain all the performance data for active tenants while the ANSTOKN is valid.

To code: Specify the RS-type address, or address in register (2)-(12) of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (with or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12), or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (with or without parentheses), the value will be left in GPR 0.

IWM4QTNT

Chapter 12. Workload management services 621

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

ABEND codes
None.

Return codes and reason codes
The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 95. Return and Reason Codes for the IWM4QTNT Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion. All
requested data returned.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual
conditions noted.

4 xxxx040A Equate Symbol:
IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too
small to receive all the available information.
The correct answer area length is returned in
the QUERYLEN field.

Action: None required. If necessary,
reinvoke the service with an output area of
sufficient size to receive all information.

4 xxxx040F Equate Symbol:
IwmRsnCodeStateInvDataRet

Meaning: The token value specified on the
ANSTOKN keyword is associated with a WLM
state that is no longer valid. The new system
state is represented by the token returned in
the ANSTOKN field. The answer area
provided is large enough to contain the
available data. However, the new answer
area length is returned in the QUERYLEN
field.

Action: Reinvoke the service with the token
passed with the ANSTOKN keyword.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or
parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while
in SRB mode.

IWM4QTNT

622 z/OS: z/OS MVS Programming: Workload Management Services

Table 95. Return and Reason Codes for the IWM4QTNT Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: The caller is disabled.

Action: Avoid requesting this function while
disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while
locked.

8 xxxx0808 Equate Symbol: IwmRsnBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has an EUT FRR set.

Action: Avoid requesting this function with
an EUT FRR set.

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: The caller specified an invalid alet
for the storage pointed to by the ANSAREA
keyword.

Action: Check for possible storage overlay of
the parameter list or variable.

8 xxxx0832 Equate Symbol:
IwmRsnCodeStateInvNoDatRet

Meaning: The token value specified on the
ANSTOKN keyword is associated with a WLM
state that is no longer valid. A new token has
been returned. The storage provided is not
large enough to contain all of the data
available because of the state change. No
data was returned. The length of the new
answer area required is returned in the
QUERYLEN field.

Action: Reinvoke the service with an output
area of sufficient size to receive all
information and the token passed with the
ANSTOKN keyword.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the
request.

Action: There is a storage shortage. The
function may work successfully at a later
time.

C xxxx0C0A Equate Symbol: IwmRsnCodeSuspended

Meaning: Data collection is suspended as a
result of a component error. No data can be
returned for this IWM4QTNT invocation,
future invocations may be successful.

Action: Reinvoke this service.

IWM4QTNT

Chapter 12. Workload management services 623

Table 95. Return and Reason Codes for the IWM4QTNT Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error

Action: No action required. The function
may work successfully if invoked again.

Example
For tenant consumption information from a system, specify:

IWM4QTNT ANSAREA=(R6),ANSLEN=(R8),
 QUERYLEN=QLEN,ANSTOKN=ATOKN,
 RETCODE=RC,RSNCODE=RSN,MF=(E,MFQTNT)

IWM4RPT — Report response time
The primary purpose of this service is to allow MVS to obtain the total response time for a completed work
request and its corresponding service class and (when customer specified) its report class. Processor
consumption data can also be provided.

The secondary purpose of this service is to allow MVS to know which address spaces were involved in
serving the service class.

When a monitoring token is provided, the third purpose of this service is to allow MVS to know that the
monitoring environment should no longer be associated with the now completed work request. The use of
this service renders the information that is associated with the monitoring environment unpredictable. To
associate a work request with the monitoring environment after use of Report, first use Initialize
Mode(Reset) or Relate/Transfer.

Note : This service was previously called IWMRPT for 31 bit addressing only (see “IWMRPT — Report on
work request completion” on page 903).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state. PSW key must either be 0 or match the value that is
supplied on IWM4CON. PSW key must either be 0 or match the value
that is supplied on IWM4MCRE when a monitoring token is passed.
PSW key must be 0-7. See “Restrictions” on page 625.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: LOCAL lock is held

Control parameters: Control parameters must be in the primary address space.

IWM4RPT

624 z/OS: z/OS MVS Programming: Workload Management Services

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. The high-order halfword of register 0, and the reason code variable when specified, might be non-zero

and represents diagnostic data that is NOT part of the external interface. The high-order halfword
should be excluded from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, might be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-aligned and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
1. Caller is responsible for error recovery
2. Though the caller is required to be enabled, this requirement is not checked. Violation of this

restriction might cause disabled program checks, which would be the responsibility of the caller's
recovery to handle.

3. If a delay monitoring token is provided, then

• The caller must serialize to prevent any delay monitoring services from being invoked concurrently
for the environment that is represented by the monitoring token.

• The monitoring environment must contain the information that is saved by IWM4MINI, not
IWM4MRLT.

• If the key specified on IWM4MCRE was a system key (0-7), then the current PSW key must be 0 or
match the key that is specified on IWM4MCRE.

• If the key specified on IWM4MCRE was a user key (8-F), then:

– PSW key must be 0.
– Current primary must match the primary at the time that IWM4MCRE was invoked. Calling from a

subspace is not supported.
4. If the key specified on IWM4CON for the input connect token was a user key (8-F), then:

• PSW key must be 0.
• Current primary must match the primary at the time that IWM4CON was invoked. Calling from a

subspace is not supported.
5. This macro can be used only on z/OS V2R1 or higher.

Input register information
Before issuing the IWM4RPT macro, the caller must ensure that the following general-purpose registers
(GPRs) contain the specified information:
Register

Contents
13

The address of a 216 byte standard save area in the primary address space.

Before issuing the IWM4RPT macro, the caller does not have to place any information into any AR unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

IWM4RPT

Chapter 12. Workload management services 625

Register
Contents

0-1
Used as work registers by the system

2-13
Unchanged

14-15
Used as work registers by the system.

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

IWM4RPT

626 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
main diagram

name
b IWM4RPT b

PSWKEYP=CURRENT

PSWKEYP=VALUE ,PSWKEY=  pswkey

,MONTKNI=YES ,MONTKN=  montkn

,MONTKN64=  montkn64

,MONTKNI=NO parameters-1

,CONNTKN=  conntkn

,EWLM=NO ,ENDTIME=CURRENT

,ENDTIME=  endtime

,CPUTIME=  cputime ,TIMEONCP=  timeoncp ,OFFLOADONCP=  offloadoncp

,STATUS=NORMAL ,WORK_COMPCD=NO_WORK_COMPCD

,WORK_COMPCD=  work_compcd

,STATUS=ABNORMAL

,WORK_COMPCD=NO_WORK_COMPCD

,WORK_COMPCD=  work_compcd

,STATUS=NORMAL_LE_VAL ,WORK_COMPCD=  work_compcd ,OK_THRESHOLD=  ok_threshold

,STATUS=NORMAL_GE_VAL ,WORK_COMPCD=  work_compcd ,OK_THRESHOLD=  ok_threshold

,WORKREQ_STA=IWMEWLMARMSTATUSNONE

,WORKREQ_STA=  workreq_sta ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

IWM4RPT

Chapter 12. Workload management services 627

parameters-1
,ARRIVALTIME=  arrivaltime ,EXSTARTTIMEP=NO

,EXSTARTTIMEP=YES ,EXSTARTTIME=  exstarttime

,SERVCLS=  servcls

,EWLM_CHCORR=NO_EWLM_CHCORR

,EWLM_CHCORR=  ewlm_chcorr

,EWLM_PACORR=NO_EWLM_PACORR

,EWLM_PACORR=  ewlm_pacorr

,EWLM_CHCTKN=NO_EWLM_CHCTKN

,EWLM_CHCTKN=  ewlm_chctkn

,BLOCK_TIME=NO_BLOCK_TIME

,BLOCK_TIME=  block_time

,WORK_AREA=NO_WORK_AREA

,WORK_AREA=  work_area

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4RPT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ARRIVALTIME=arrivaltime
When MONTKNI=NO is specified, a required input parameter, which contains the arrival time for the
work unit in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,BLOCK_TIME=block_time
,BLOCK_TIME=NO_BLOCK_TIME

When MONTKNI=NO is specified, an optional input parameter, which contains the duration where the
work request has been blocked. The format of the field is STCK. A work request is blocked, when the
transaction processing is waiting on an external transaction processing or some other event to
complete. The default is NO_BLOCK_TIME, which indicates that no block time is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,CONNTKN=conntkn
A required input parameter, which is returned by IWM4CON.

If a monitoring token is passed (MONTKNI(YES)), AND this monitoring token was obtained by using a
connect token on IWM4MCRE, then the latter connect token is expected to be the same as that
specified for IWM4RPT.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,CPUTIME=cputime
An optional input parameter that contains the total CPU time, in STCK format, for the current work
request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

IWM4RPT

628 z/OS: z/OS MVS Programming: Workload Management Services

,ENDTIME=endtime
,ENDTIME=CURRENT

An optional input parameter, which specifies the ending time for the transaction (typically, when the
output is sent or available to be sent) in STCK format. The default is CURRENT, which indicates that
the current time should be used.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,EWLM=NO
An optional parameter, which indicates whether this work manager intends to participate in cross
platform Enterprise Workload Management (eWLM). The default is EWLM=NO.
,EWLM=NO

The work manager interacts only with WLM and no interaction with eWLM takes place.
,EWLM_CHCORR=ewlm_chcorr
,EWLM_CHCORR=NO_EWLM_CHCORR

When MONTKNI=NO is specified, an optional input parameter, which contains the cross platform
Enterprise Workload Management (EWLM) correlator that is associated with the work request.

Note : If this correlator is not a valid ARM correlator, return code 8 and reason code
IwmRsnCodeInvalidEWLMCorr is returned to the caller (see return code section below). If the
correlator is valid, but cannot be understood by EWLM (no EWLM format), the correlator is silently
ignored and the work request is not reported to EWLM.

Parameter EWLM_CHCORR and EWLM_CHCTKN are mutually exclusive.

The default is NO_EWLM_CHCORR, which indicates that no EWLM correlator is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_CHCTKN=ewlm_chctkn
,EWLM_CHCTKN=NO_EWLM_CHCTKN

When MONTKNI=NO is specified, an optional input parameter, which contains the cross platform
Enterprise Workload Management (EWLM) correlator token that is associated with the work request.
Parameter EWLM_CHCORR and EWLM_CHCTKN are mutually exclusive. The default is
NO_EWLM_CHCTKN, which indicates that no EWLM correlator token is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_PACORR=ewlm_pacorr
,EWLM_PACORR=NO_EWLM_PACORR

When EWLM_CHCORR=ewlm_chcorr and MONTKNI=NO are specified, an optional input parameter,
which contains the cross platform Enterprise Workload Management (EWLM) parent correlator that is
associated with the work request. The default is NO_EWLM_PACORR, which indicates that no EWLM
parent correlator is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EXSTARTTIME=exstarttime
When EXSTARTTIMEP=YES and MONTKNI=NO are specified, a required input parameter, which
contains the start execution time in STCK format. This should be used only when IWM4MNTF was NOT
used to pass the execution time for this work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,EXSTARTTIMEP=NO
,EXSTARTTIMEP=YES

When MONTKNI=NO is specified, a required parameter, which indicates whether the start execution
time value is passed.
,EXSTARTTIMEP=NO

Indicates that the start execution time value is not passed.

IWM4RPT

Chapter 12. Workload management services 629

,EXSTARTTIMEP=YES
Indicates that the start execution time value is passed. This should be used only when
IWM4MNTF was NOT used to pass the execution time for this work request.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter can be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area that is defined by the list form, and generates the macro invocation
to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,MONTKN=montkn
When MONTKNI=YES is specified, a required input parameter that contains the delay monitoring
token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,MONTKNI=YES
,MONTKNI=NO

A required parameter, which indicates whether a delay monitoring token is provided.
,MONTKNI=YES

Indicates that a delay monitoring token is provided.
,MONTKNI=NO

Indicates that no delay monitoring token is provided.
,MONTKN64=montkn64

When MONTKNI=YES is specified, a required input parameter that contains the long delay monitoring
token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,OFFLOADONCP=offloadoncp
When CPUTIME is specified, a required input parameter that contains the CPU time on standard CP
that was offload eligible, in STCK format, for the current work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

IWM4RPT

630 z/OS: z/OS MVS Programming: Workload Management Services

,OK_THRESHOLD=ok_threshold
When STATUS=NORMAL_LE_VAL is specified, a required input parameter, which contains the
threshold value at which the work request is considered to have ended normally.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,OK_THRESHOLD=ok_threshold
When STATUS=NORMAL_GE_VAL is specified, a required input parameter, which contains the
threshold value at which the work request is considered to have ended normally.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms that are used for a
request and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters that are specified on the
request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except parameters referenced in the description of higher
versions.

• 1, which supports the parameters that are supported by 0, as well as CPUTIME, TIMEONCP, and
OFFLOADONCP.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0 or 1.

,PSWKEY=pswkey
When PSWKEYP=VALUE is specified, a required input parameter, which contains the current PSW key.
The low order 4 bits (bits 4-7) contain the key value. The high order 4 bits (bits 0-3) contain zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-bit field.

PSWKEYP=CURRENT
PSWKEYP=VALUE

An optional parameter, which describes how to determine the current PSW key. The default is
PSWKEYP=CURRENT.
PSWKEYP=CURRENT

Indicates that the current PSW key should be determined.
PSWKEYP=VALUE

Indicates that the key is being passed explicitly via PSWKEY.

IWM4RPT

Chapter 12. Workload management services 631

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value is left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value is left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SERVCLS=servcls
When MONTKNI=NO is specified, a required input parameter, which contains the service class token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,STATUS=NORMAL
,STATUS=ABNORMAL
,STATUS=NORMAL_LE_VAL
,STATUS=NORMAL_GE_VAL

An optional parameter, which indicates whether the portion of the work request that is associated
with the Report call has completed normally or not. The default is STATUS=NORMAL.
,STATUS=NORMAL

indicates that work request execution that is associated with the Report call has completed
normally.

,STATUS=ABNORMAL
indicates that work request execution that is associated with the Report call has completed
abnormally.

,STATUS=NORMAL_LE_VAL
indicates that work request execution that is associated with the Report call has completed
normally PROVIDED the work completion code is below or at (<=) the threshold value that is given
by OK_THRESHOLD.

,STATUS=NORMAL_GE_VAL
indicates that work request execution that is associated with the Report call has completed
normally PROVIDED the work completion code is above or at (>=) the threshold value that is given
by OK_THRESHOLD.

,TIMEONCP=timeoncp
When CPUTIME is specified, a required input parameter that contains the CPU time on standard CP, in
STCK request format, for the current work.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,WORK_AREA=work_area
,WORK_AREA=NO_WORK_AREA

When MONTKNI=NO is specified, an optional input parameter, which is used as a work area by WLM
when MONTKNI(NO) is specified and either EWLM_CHCORR or EWLM_CHTKN is specified on the
IWM4RPT invocation (in these cases WORK_AREA is required). The work area must begin on a
doubleword boundary and must be accessible in the current PSW key when the macro is invoked. The
default is NO_WORK_AREA, which indicates that no work area is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 512-character field.

,WORK_COMPCD=work_compcd
,WORK_COMPCD=NO_WORK_COMPCD

When STATUS=NORMAL is specified, an optional input parameter, which contains the completion/
return code for the work request execution that is associated with the Report call. The default is
NO_WORK_COMPCD, which indicates that NO completion/return code is passed.

IWM4RPT

632 z/OS: z/OS MVS Programming: Workload Management Services

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,WORK_COMPCD=work_compcd
,WORK_COMPCD=NO_WORK_COMPCD

When STATUS=ABNORMAL is specified, an optional input parameter, which contains the completion/
return code for the work request execution that is associated with the Report call. The default is
NO_WORK_COMPCD. indicates that NO completion/return code is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,WORK_COMPCD=work_compcd
When STATUS=NORMAL_LE_VAL is specified, a required input parameter, which contains the
completion/return code for the work request execution that is associated with the Report call.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,WORK_COMPCD=work_compcd
When STATUS=NORMAL_GE_VAL is specified, a required input parameter, which contains the
completion/return code for the work request execution that is associated with the Report call.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,WORKREQ_STA=workreq_sta
,WORKREQ_STA=IWMEWLMARMSTATUSNONE

An optional input parameter, which contains the completion status code of the work request.
Available completion status codes (defined in macro IWMYCON) are: * IwmEwlmArmStatusGood(0), *
IwmEwlmArmStatusAborted(1), * IwmEwlmArmStatusFailed(2) or * IwmEwlmArmStatusUnknown(3)
The codes above correspond to status codes in the OpenGroup ARM 4.0 Standard (for the meaning of
the status codes see the ARM 4.0 Standard at Application Response Measurement - ARM
(collaboration.opengroup.org/tech/management/arm)). The default is IWMEWLMARMSTATUSNONE,
which indicates that work request completion status should be derived from the passed STATUS
parameter value.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

ABEND codes
None.

Return codes and reason codes
When the IWM4RPT macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol that is
associated with each reason code. IBM support personnel might request the entire reason code, including
the xxxx value.

IWM4RPT

Chapter 12. Workload management services 633

http://collaboration.opengroup.org/tech/management/arm
http://collaboration.opengroup.org/tech/management/arm

Table 96. Return and Reason Codes for the IWM4RPT Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0405 Equate Symbol: IwmRsnCodeGoalNoMonEnv

Meaning: System is in goal mode but the input monitoring token
indicates that no monitoring environment was established,
hence MVS did not receive the information.

Action: None required.

4 xxxx0409 Equate Symbol: IwmRsnCodeNoConn

Meaning: Connect token does not reflect a successful Connect.
The system did not receive the information.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx080C Equate Symbol: IwmRsnCodeMonEnvLacksData

Meaning: Input monitoring environment does not contain the
necessary information.

Action: Ensure that the monitoring environment was
established with the necessary information.

8 xxxx080E Equate Symbol: IwmRsnCodeArrTimeGTEndTime

Meaning: Input arrival time later than end time.

Action: Check for possible storage overlay of the parameter list
or variable.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Input monitoring environment does not pass short
form validity checking.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Check for possible storage overlay.

8 xxxx082D Equate Symbol: IwmRsnCodeExStTimeGTEndTime

Meaning: Execution start time greater than execution end time

Action: Check for possible storage overlay of the parameter list
or variable.

IWM4RPT

634 z/OS: z/OS MVS Programming: Workload Management Services

Table 96. Return and Reason Codes for the IWM4RPT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this
service.

Action: Avoid requesting this function under the input
connection. IWM4CON options must be specified previously to
enable this service.

8 xxxx087E Equate Symbol: IwmRsnCodeRoMonEnv

Meaning: Input monitoring environment is report-only.
checking.

Action: Avoid calling this function for report-only monitoring
environments.

8 xxxx0894 Equate Symbol: IwmRsnCodeInvalidEWLMCorr

Meaning: Passed correlator information (EWLM_CHCORR,
EWLM_PACORR, or EWLM_CHCTKN) did not pass validity
checking, that means the architected ARM correlator length
field in the first two Bytes of the correlator (token) is either less
than 4 ('0004'x) or gretater than 512 ('0200'x).

Action: Check the specification of the correlator information.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: Service is not enabled because caller invoked the
IWMCONN service with EWLM=NO.

Action: Specify the parameter EWLM_CHCORR, EWLM_PACORR,
EWLM_CHCTKN, or WORKREQ_STA only when connected with
EWLM=YES.

8 xxxx0897 Equate Symbol: IwmRsnCodeTranStatusInvalid

Meaning: Passed work request completion status is not valid.

Action: Check the EWLM ARM interface specification for valid
completion status values.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C05 Equate Symbol: IwmRsnCodeRptNoWorkElt

Meaning: Report routine was invoked, but no work element was
available to save the input information.

Action: Invoke the function when the conditions are alleviated.
This condition may be due to a common storage shortage
condition.

C xxxx0C06 Equate Symbol: IwmRsnCodeNoEndTime

Meaning: No end time was supplied to the service and STCK
gave a nonzero condition code.

Action: No action required.

IWM4RPT

Chapter 12. Workload management services 635

Example
None.

IWM4SLI — Application environment limit service

The IWM4SLI service should be used to tell WLM the total number of server instances which are
supported by the application. WLM will ensure that no more server instances will be started in the system.

In addition the caller can define a minimum number of servers which should be made available by WLM
regardless of whether work is available to execute or not. The user can decide if an additional server will
be started before previously started servers have connected to WLM, or if WLM needs to wait until all
previously started servers have connected before an additional server will be started. If the user defines
multiple service classes to give the work of the application different service goals, the caller can define
that the minimum number of servers is spread across these service classes to ensure that servers are
available for all work executed by the application.

The caller must have previously connected to WLM using the IWM4CON service specifying
SERVER_MANAGER=YES and SERVER_TYPE=QUEUE. It is recommended to use the IWM4SLI service
directly after IWM4CON. If any server uses this service to define limits, the limits apply for all servers of
the application environment regardless of whether other servers use the service or not.

If a server defines new limits during execution, WLM attempts to meet the new limit definitions as soon as
possible. If the maximum limit for servers is reduced during execution it is not predictable when WLM is
able to meet the new maximum definition. This depends highly on the execution time of the running work
requests. Therefore changing the limits during execution should be used very carefully and primarily
during times of low application utilization.

Note : This service was previously called IWMSLIM for 31-bit addressing only (see “IWMSLIM —
Application environment limit service” on page 913).

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.

IWM4SLI

636 z/OS: z/OS MVS Programming: Workload Management Services

5. Note that the high-order halfword of register 0, and the reason code variable when specified, may be
non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. This macro may not be used during task/address space termination.
2. Only a single invocation is allowed to be active for a given address space at any given time.
3. Before using this macro the caller must connect to WLM via IWM4CON Server_Manager=YES,
Server_Type=Queue.

4. The macro must be used directly after using IWM4CON.

Input register information
Before issuing the IWM4SLI macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

IWM4SLI

Chapter 12. Workload management services 637

Syntax
The syntax of the IWM4SLI macro is as follows:

name
IWM4SLI

AE_SERVERMAX=0

AE_SERVERMAX=  ae_servermax

,AE_SERVERMIN=0

,AE_SERVERMIN=  ae_servermin

,AE_SPREADMIN=NO

,AE_SPREADMIN=YES

,START_MINIMUM=SERIAL

,START_MINIMUM=PARALLEL

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4SLI macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

AE_SERVERMAX=ae_servermax
AE_SERVERMAX=0

An optional input parameter, which indicates the architectural limit for the total number of server
instances which can run concurrently across the application environment for a given subsystem type
and subsystem name.

This parameter represents a physical limit, such as the maximum number of available connections to
a back-end subsystem. WLM will not start more than this number of server instances, even if goals
cannot be met because of the limit. This value should be an integral multiple of the PARALLEL_EU
value defined on the IWM4CON service. If AE_SERVERMAX is not an even multiple of PARALLEL_EU,
WLM will round this value down to the next integral multiple.

The maximum limit and the number of service classes to execute work requests should be defined
carefully. If the number of service classes exceeds the quotient of AE_SERVERMAX divided by
PARALLEL_EU WLM cannot start enough server address spaces to execute the work requests for all
service classes. The default is 0, indicating that no maximum limit has been specified

To code: Specify the RS-type address of a halfword field.

,AE_SERVERMIN=ae_servermin
,AE_SERVERMIN=0

An optional input parameter, which indicates the minimum number of servers which should be up and
running at all times.

This parameter can be used to tell WLM that a certain amount of server tasks should always be kept
available to select work. This value should be an integral multiple of the PARALLEL_EU value defined

IWM4SLI

638 z/OS: z/OS MVS Programming: Workload Management Services

on IWM4CON service. If AE_SERVERMIN is not an even multiple of PARALLEL_EU, WLM will round this
value down to the next integral multiple. The default is 0, which indicates that no limit has been
specified.

To code: Specify the RS-type address of a halfword field.

,AE_SPREADMIN=NO
,AE_SPREADMIN=YES

When AE_SERVERMIN=ae_servermin is specified, an optional parameter, which indicates whether
WLM will distribute the minimum number of servers as evenly as possible across the service classes
being used to process the work requests. The default is AE_SPREADMIN=NO.
,AE_SPREADMIN=NO

The server tasks specified in AE_SERVERMIN will be distributed to service classes as needed in
order to meet goals.

,AE_SPREADMIN=YES
The server tasks specified in AE_SERVERMIN will be distributed as evenly as possible to all
service classes being used to execute work requests.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

IWM4SLI

Chapter 12. Workload management services 639

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,START_MINIMUM=SERIAL
,START_MINIMUM=PARALLEL

When AE_SERVERMIN=ae_servermin is specified, an optional parameter, which indicates whether
WLM will start the minimum number of servers one by one or in parallel. The default is
START_MINIMUM=SERIAL.
,START_MINIMUM=SERIAL

The server tasks specified in AE_SERVERMIN will be started one by one. This means the next
server will only be started if the previous server has connected to WLM.

,START_MINIMUM=PARALLEL
The server tasks specified in AE_SERVERMIN will be started in parallel. This means WLM will start
additional servers even when the previous servers have not connected to WLM.

ABEND codes
None.

Return codes and reason codes
When the IWM4SLI macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 97. Return and Reason Codes for the IWM4SLI Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

IWM4SLI

640 z/OS: z/OS MVS Programming: Workload Management Services

Table 97. Return and Reason Codes for the IWM4SLI Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was not zero.

Action: Check for use of keywords that are not supported by the MVS release
on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: The Version number in the parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: The caller's space connection is not enabled for this service

Action: Make sure that SERVER_MANAGER=YES and SERVER_TYPE=QUEUE is
specified on the IWM4CON request to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: The caller is in cross-memory mode.

Action: Request this function only when you are not in cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: The caller's space is not connected to WLM.

Action: Invoke the IWM4CON macro before invoking this macro.

8 xxxx087D Equate Symbol: IwmRsnCodeBadNumAESrvMax

Meaning: The server maximum value is incorrect.

Action: Make sure that the maximum value is greater than the minimum
value and greater than the parallel_eu value.

IWM4SLI

Chapter 12. Workload management services 641

Table 97. Return and Reason Codes for the IWM4SLI Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To define application limits to WLM, specify the following:

 IWM4CON WORK_MANAGER=YES,
 SERVER_MANAGER=YES,
 PARALLEL_EU=EUNITS,
 SERVER_TYPE=QUEUE,
 CONNTKN=CTKN,
 CONNTKNKEY=PSWKEY,
 RETCODE=RC,
 RSNCODE=RSN

 IWM4SLI AE_SERVERMAX=MAXSRVS,
 AE_SERVERMIN=MINSRVS,
 RETCODE=RC,
 RSNCODE=RSN
*
* Storage areas
*
EUNITS DS F Number of Tasks which will be started
* per address space.
MAXSRVS DS H Maximum Number of Servers supported
* by the application.
MINSRVS DS H Minimum number of servers which should
* be up and running all time
CTKN DS FL4 Connect Token
RC DS F Return code
RSN DS F Reason code

IWM4SRSC — Obtain server-specific routing information

The IWM4SRSC service provides information about how well a server is suitable to receive work from a
WLM point-of-view. The IWM4SRSC service allows to check a specific server before routing work to it
from WLM. Thus, the information obtained can be used for making balanced routing decisions.

The input to the IWM4SRSC service is the STOKEN of an address space. The output is an indicator, of how
well the address space itself, the transactions or enclaves—if it is a registered transaction server, an
enclave server, or an enclave owner—are performing relative to their WLM goal and to the displaceable
capacity for its WLM importance on that system.

The service returns an indicator that can be used for load balancing by comparing it to calls of this service
for other servers.

The indicator output is a weight. WLM provides two methods for computing the weight, which can be
selected with the optional input parameter METHOD. The default method is PROPORTIONAL, the other
one is EQUICPU.

• With PROPORTIONAL, the weight is calculated based on six factors: it is a combination of the three
processor weights (CPU weight, ZAAP weight, and ZIIP weight) and their respective consumed service
units repartition.

• With EQUICPU, WLM computes the weight by trying to simulate a 100% usage of the system capacity,
and determining the capacity of a CPU-only system having equivalent resource consumption.

The CPU, ZAAP, and ZIIP weights are each computed based on the following four factors:

IWM4SRSC

642 z/OS: z/OS MVS Programming: Workload Management Services

• The first factor is how well this server, or the transactions or enclaves it is related to, fulfill their goals.
• The second factor is the abnormal termination factor. This depends on the ratio of abnormal

terminations to normal terminations as reported by the IWMRPT service. If no terminations were
reported by IWM4RPT, this factor is neutral (=1).

• The third factor is the health factor of this server. It is dependent on the health indicator which was
reported to WLM for this server by the IWM4HLTH service or by IWMSRSRG. If no health indicator was
reported, this factor is also neutral.

• The fourth factor is how much other work with lower importance can be displaced, if it receives more
work to handle on this system. With the optional IL_WEIGHTING parameter, the caller can set the
relative balance between the lower and the higher importance levels.

These four factors are combined to create the output processor WEIGHT as a number.

To make it easier for the caller to determine, how far the weights were influenced by the abnormal
terminations and health factors, those values can also be output through the optional parameters
ABNORM_COUNT and HEALTH.

The processor weights are returned through the optional CPUWEIGHT, ZAAPWEIGHT and ZIIPWEIGHT
parameters. The respective parts of these weights in the WEIGHT are returned through the optional
parameters CPUPROPORTION, ZAAPPROPORTION, and ZIIPPROPORTION.

If there are pre-V1R9 systems in the sysplex, the zAAP and zIIP weights and proportions are
automatically set to 0, because pre-V1R9 systems do not have such weights and could not be compared
to V1R9 systems. For the same reason, if there are pre-V1R11 systems in the sysplex, only
METHOD=PROPORTIONAL will be used, even if METHOD=EQUICPU is specified.

The WEIGHT is equal to the sum of these three proportion fields. As WLM computes the values with
higher precision, and rounds them before output, the WEIGHT actually returned is probably greater than
the sum of the returned proportion fields by one or two units.

A scenario where TCP/IP communicates on each system with WLM to obtain information about the
servers which receive work is described in the following.

TCP/IP recognizes the server address spaces when they open a port. It invokes the IWM4SRSC service to
WLM with an identification of the address space (STOKEN). WLM then finds out whether that address
space is a registered WLM server address space or whether it creates WLM transactions which can
execute in other server address spaces. The following possibilities are considered:

• The address space does not create any enclaves and is not a server address space registered to WLM.
The FTP daemon is such an address space, for example. In this case WLM uses the service class the
address space has been classified to.

• The address space is not a registered server address space but it creates independent enclaves which
are processed by other address spaces on that system. In this case WLM has to use the service classes
for the enclaves which are owned by this address space.

Note : There can be multiple service classes which are associated with enclaves. In this case the
service class with the highest transaction rate is used.

• The address space is a server address space from the point-of-view of WLM. In this case it is either an
enclave or a transaction server, for example, CICS or IMS. In this case WLM uses the service classes the
enclaves or CICS or IMS transactions are classified to.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

IWM4SRSC

Chapter 12. Workload management services 643

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRRs may be established.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
• This macro may only be used on systems running z/OS V1R7 or later.
• This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to

the PLISTVER parameter description for further information.

Input register information
Before issuing the IWM4SRSC macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents

IWM4SRSC

644 z/OS: z/OS MVS Programming: Workload Management Services

0-1
Used as work registers by the system

2-13
Unchanged

14-15
Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWM4SRSC macro is as follows:

IWM4SRSC

Chapter 12. Workload management services 645

name
IWM4SRSC WEIGHT=  weight ,STOKEN=  stoken

,ABNORM_COUNT=  abnorm_count ,HEALTH=  health

,CPUWEIGHT=  cpuweight
,ZAAPWEIGHT=  zaapweight

,ZIIPWEIGHT=  ziipweight ,CPUPROPORTION=  cpuproportion

,ZAAPPROPORTION=  zaapproportion

,ZIIPPROPORTION=  ziipproportion ,MAXSRVUNITS=  maxsrvunits

,METHOD=PROPORTIONAL

,METHOD=EQUICPU

,COST_ZAAP_ON_CP=1

,COST_ZAAP_ON_CP=  cost_zaap_on_cp

,COST_ZIIP_ON_CP=1

,COST_ZIIP_ON_CP=  cost_ziip_on_cp

,MAXEQUIVUNITS=  maxequivunits

,IL_WEIGHTING=0

,IL_WEIGHTING=  il_weighting

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,PLISTVER=3

,PLISTVER=4

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4SRSC macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ABNORM_COUNT=abnorm_count
An optional output parameter, which contains the number of abnormal terminations per 1000 total
terminations, if available. If no abnormal terminations were reported to WLM, this value is zero. This is

IWM4SRSC

646 z/OS: z/OS MVS Programming: Workload Management Services

independent of the reason why no report was issued - whether no abnormal terminations occurred or
whether the subsystem of the server is not enabled to report them to WLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,COST_ZAAP_ON_CP=cost_zaap_on_cp
,COST_ZAAP_ON_CP=1

An optional input parameter that is used in conjunction with METHOD=EQUICPU. The value describes
how much more it costs to execute zAAP-eligible work on a CPU instead of on a zAAP .

To use the full system capacity, independently of the cost, specify COST_ZAAP_ON_CP=1. With high
values of this cost parameter, WLM considers that a system having used up its whole free zAAP
capacity should offload less work to the CPU, and gives this system a smaller output weight.

This cost parameter must be in the range from 1 to 100. If the passed value is outside of this range,
WLM will instead use the nearest valid integer (1 or 100) as cost parameter. The default is 1.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,COST_ZIIP_ON_CP=cost_ziip_on_cp
,COST_ZIIP_ON_CP=1

An optional input parameter, which is used in conjunction with METHOD=EQUICPU. It describes how
much more it costs to execute zIIP-eligible work on a CPU instead of on a zIIP processor.

To use the whole system capacity, independently of the cost, specify COST_ZIIP_ON_CP=1. With high
values of this cost parameter, WLM considers that a system having used up its whole free zIIP
capacity should offload less work to the CPU, and gives this system a smaller output weight.

This cost parameter must be in the range from 1 to 100. If the passed value is out of this range, WLM
will use the nearest valid integer (1 or 100) as cost parameter. The default is 1.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,CPUPROPORTION=cpuproportion
An optional output parameter, which contains the CPU weight part in the calculation of the weight.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,CPUWEIGHT=cpuweight
An optional output parameter, which contains the weight of how well the server is doing on the CPU.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,HEALTH=health
An optional output parameter, which contains the health indicator of this server. This is a value
between 0 and 100, which was reported to WLM either by the IWM4HLTH or the IWMSRSRG service.
If no health indicator was reported, the value is 100.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,IL_WEIGHTING=il_weighting
,IL_WEIGHTING=0

An optional input parameter, which controls how WLM evaluates available capacity at importance
levels (ILs) lower than the currently selected one. The value of IL_WEIGHTING should be in the range
from 0 to 3. If the passed value is out of this range, WLM will use the nearest valid integer (0 or 3) as
IL_WEIGHTING instead.

When this parameter is set to 0 (the default value), all free capacities used by levels less important
than the current one are evaluated the same. This means that the free capacity below current level is
considered to be totally free, and this is equivalent to what WLM did prior to V1R11.

When this parameter is set to 1, free capacity at the lowest ILs is evaluated higher than the current IL,
with a weighting growing proportionally to the square root of the IL difference + 1. For example, with a
selected IL of 1, free capacity at IL 5 is weighted about 2.236 times more than free capacity at IL 1.

IWM4SRSC

Chapter 12. Workload management services 647

When this parameter is set to 2, free capacity at the lowest ILs is evaluated higher than the current IL,
with a weighting growing proportionally to the IL difference + 1. For example, with a selected IL of 1,
free capacity at IL 5 is weighted 5 times more than free capacity at IL 1.

When this parameter is set to 3, free capacity at the lowest ILs is weighted more than the current IL,
with a weighting growing proportionally to the square of the IL difference + 1. For example, with a
selected IL of 1, free capacity at IL 5 is weighted 25 times more than free capacity at IL 1. The default
is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,MAXEQUIVUNITS=maxequivunits
An optional output parameter, which contains the maximum equivalent service units across all
processing resources used to calculate the mixed weight output.

If METHOD=PROPORTIONAL is specified, MAXEQUIVUNITS is automatically set to 0, since WLM does
not compute equivalent CPU service units in this case.

If METHOD=EQUICPU is specified, MAXEQUIVUNITS is always a number in the range from 1 to
MAXSRVUNITS. MAXEQUIVUNITS then relates to the mixed weight output only, and MAXSRVUNITS to
the CPU, ZAAP and ZIIP weight outputs only.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MAXSRVUNITS=maxsrvunits
An optional output parameter, which contains the maximum service units across all processing
resources used to calculate the weights.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,METHOD=PROPORTIONAL
,METHOD=EQUICPU

An optional parameter, which selects the method for computing the output weights. The default is
METHOD=PROPORTIONAL.
,METHOD=PROPORTIONAL

Computes the output weights as a proportion of the three processor type weights.
,METHOD=EQUICPU

Computes a CPU equivalent of the systems before computing the output weights.

To specify METHOD=EQUICPU, all systems in the sysplex must run z/OS V1R11, or higher.
Otherwise WLM automatically switches back to METHOD=PROPORTIONAL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

IWM4SRSC

648 z/OS: z/OS MVS Programming: Workload Management Services

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2
,PLISTVER=3
,PLISTVER=4

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameters and those from version 0:

ABNORM_COUNT
HEALTH

• 2, which supports the following parameters and those from version 0 and 1:

CPUPROPORTION
CPUWEIGHT
ZAAPPROPORTION
ZAAPWEIGHT
ZIIPPROPORTION
ZIIPWEIGHT

• 3, which supports the following parameter and those from version 0, 1, and 2:

MAXSRVUNITS
• 4, which supports the following parameters and those from version 0, 1, 2, and 3:

COST_ZAAP_ON_CP
COST_ZIIP_ON_CP
IL_WEIGHTING
MAXEQUIVUNITS
METHOD

IWM4SRSC

Chapter 12. Workload management services 649

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, 2, 3, or 4

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,STOKEN=stoken
A required input parameter, which contains the space token of the server.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

WEIGHT=weight
A required output parameter, which contains the weight of how well the server is performing.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ZAAPPROPORTION=zaapproportion
An optional output parameter that contains the ZAAP weight part in the calculation of the WEIGHT.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ZAAPWEIGHT=zaapweight
An optional output parameter that contains the weight of how well the server is doing on the ZAAP.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ZIIPPROPORTION=ziipproportion
An optional output parameter, which contains the ZIIP weight part in the calculation of the WEIGHT.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ZIIPWEIGHT=ziipweight
An optional output parameter, which contains the weight of how well the server is doing on the ZIIP.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ABEND codes
None.

Return codes and reason codes
When the IWM4SRSC macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

IWM4SRSC

650 z/OS: z/OS MVS Programming: Workload Management Services

Table 98. Return and Reason Codes for the IWM4SRSC Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0807 Equate Symbol: IwmRsnCodeBadSTOKEN

Meaning: Bad STOKEN passed.

Action: Check for possible storage overlay.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on Primary ASC
mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list or version length field is not valid.

Action: Check for possible storage overlay of the parameter list.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

IWM4SRSC

Chapter 12. Workload management services 651

Example
To get the recommended values for a particular server, specify:

 IWM4SRSC STOKEN=STKN,
 WEIGHT=WGHT,
 ABNORM_COUNT=ABCNT,
 HEALTH=HLTH,
 RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
STKN DS CL8 Contains the STOKEN
* associated with the address
* space
WGHT DS F Field to receive the weight
ABCNT DS F Field to receive the Abnormal Count
HLTH DS F Field to receive the Health Indicator
RC DS F Return code
RSN DS F Reason code

IWM4SSL — Select a request from a caller's work manager queue

The IWM4SSL service selects the next work request from the queue associated with the caller's
application environment. The caller must have previously connected to WLM using the IWM4CON service
specifying SERVER_MANAGER=YES.

If there are no queued work requests waiting for selection the calling task will be suspended, pending
arrival of work to do. The caller cannot rely upon asynchronous exits receiving control while the task is
suspended.

After a work request is selected, the caller uses the IWM4STBG and IWM4STEN services to indicate the
start and end of processing of the request.

Note : This service was previously called IWMSSEL for 31-bit addressing only (see “IWMSSEL — Select a
request from a caller's work manager queue” on page 919).

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.

IWM4SSL

652 z/OS: z/OS MVS Programming: Workload Management Services

3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

Input register information
Before issuing the IWM4SSL macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWM4SSL macro is as follows:

IWM4SSL

Chapter 12. Workload management services 653

name
IWM4SSL USERDATA=  userdata ,WLMEUTKN=  wlmeutkn

,SERVER_TOKEN=  server_token ,REGION_TOKEN=  region_token

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4SSL macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

IWM4SSL

654 z/OS: z/OS MVS Programming: Workload Management Services

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,REGION_TOKEN=region_token
An optional output parameter, which contains a region token. A queueing manager can use the region
token to queue work requests to a specific server region. These work requests are considered to
belong to a set of work requests all needing access to same status information which exists only in the
vitual storage of the server region. They are selected using the IWM4SSL macro. It is assumed that the
application uses the service IWM4TAF to tell WLM when the temporary affinity to the defined server
region begins and ends.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a

,SERVER_TOKEN=server_token
An optional output parameter, which contains a server token. A queueing manager can use the server
token to queue secondary work requests to this server task. Secondary work requests are considered
to be extensions of the work request selected by IWM4SSL. They are selected using the IWM4SSM
macro. See the IWM4SSM macro for more information.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

USERDATA=userdata
A required output parameter, which contains the user data previously passed to WLM via IWM4QIN.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

IWM4SSL

Chapter 12. Workload management services 655

,WLMEUTKN=wlmeutkn
A required output parameter, which will receive the execution unit token. This token must be passed
on subsequent IWM4STBG and IWM4STEN requests.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWM4SSL macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 99. Return and Reason Codes for the IWM4SSL Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

IWM4SSL

656 z/OS: z/OS MVS Programming: Workload Management Services

Table 99. Return and Reason Codes for the IWM4SSL Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: The caller's space connection is not enabled for this service

Action: Make sure that SERVER_MANAGER=YES is specified on the
IWM4CON request to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: The caller is in cross-memory mode.

Action: Request this function only when you are not in cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: The caller's space is not connected to WLM.

Action: Invoke the IWM4CON macro before invoking this macro.

8 xxxx0854 Equate Symbol: IwmRsnCodeTooManySelect

Meaning: The caller is attempting to select more work units than it has tasks
to execute the work.

Action: Wait until an execution task has issued IWM4STEN before attempting
to select more work units.

8 xxxx0864 Equate Symbol: IwmRsnCodeSecondaryWorkExists

Meaning: There are secondary work requests queued to this server task. The
caller was expected to process them using IWM4SSM before calling
IWM4SSL.

Action: Select all secondary work requests before issuing IWM4SSL.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: Caller must disconnect by invoking the IWM4DIS macro.

C xxxx0C14 Equate Symbol: IwmRsnCodeNoWorkShutDown

Meaning: No work selected. Caller is to shutdown.

Action: The caller must disconnect by invoking the IWM4DIS macro.

C xxxx0C3B Equate Symbol: IwmRsnCodeStopTask

Meaning: WLM stopped the server instance.

Action: Calling task must shutdown, but server address space must remain
active.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To select a work request from the WLM queue manager queues, specify:

IWM4SSL

Chapter 12. Workload management services 657

 IWM4SSL USERDATA=USERDATA, X
 WLMEUTKN=WLMEUTKN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
USERDATA DS CL16 Contains the user-defined data
* that was passed to IWM4QIN
WLMEUTKN DS CL8 Work unit token that must be
* passed to IWM4STBG and IWMSTEND
RC DS F Return code
RSN DS F Reason code

IWM4SSM — WLM server select secondary service

The IWM4SSM service selects the next secondary work request from the queue associated with the
caller's server task.

If there are no queued secondary work requests waiting for selection the calling task will be suspended,
pending arrival of work to do. The caller cannot rely upon asynchronous exits receiving control while the
task is suspended.

Secondary work requests are considered to be extensions of an original work request selected using
IWM4SSL. The caller must invoke WLM services in the following sequence:

1. The caller invokes the IWM4SSL macro to select an initial work request. IWM4SSL returns a token
identifying the server task. The caller is responsible for passing the server token to the queueing
manager so that it can insert secondary work requests.

2. The caller invokes the IWM4STBG macro to establish an environment for processing the work request
selected using IWM4SSL. This environment also covers all secondary work requests.

3. The caller invokes the IWM4SSM macro to select each secondary work request. The queueing
manager is responsible for indicating the last secondary work request so that the server task knows
when not to try to select another one.

4. After the last secondary work request has been processed, the caller invokes the IWM4STEN macro to
remove the environment created by IWM4STBG.

5. The caller invokes IWM4SSL to select a new primary work request, and repeats the above flow.

In the above flow, IWM4SSL, IWM4STBG, IWM4SSM, and IWM4STEN must be invoked from the same
task.

Note : This service was previously called IWMSSEM for 31-bit addressing only (see “IWMSSEM — WLM
server select secondary service” on page 925).

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

IWM4SSM

658 z/OS: z/OS MVS Programming: Workload Management Services

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

Input register information
Before issuing the IWM4SSM macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

IWM4SSM

Chapter 12. Workload management services 659

Performance implications

None.

Syntax
The syntax of the IWM4SSM macro is as follows:

name
IWM4SSM USERDATA=  userdata

,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4SSM macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

IWM4SSM

660 z/OS: z/OS MVS Programming: Workload Management Services

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

USERDATA=userdata
A required output parameter, which contains the user data previously passed to WLM via IWM4QIN.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

ABEND codes
None.

Return codes and reason codes
When the IWM4SSM macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

IWM4SSM

Chapter 12. Workload management services 661

Table 100. Return and Reason Codes for the IWM4SSM Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was not zero.

Action: Check for use of keywords that are not supported by the MVS release
on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: The caller's space connection is not enabled for this service

Action: Make sure that SERVER_MANAGER=YES is specified on the
IWM4CON request to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: The caller is in cross-memory mode.

Action: Request this function only when you are not in cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: The caller's space is not connected to WLM.

Action: Invoke the IWM4CON macro before invoking this macro.

IWM4SSM

662 z/OS: z/OS MVS Programming: Workload Management Services

Table 100. Return and Reason Codes for the IWM4SSM Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0862 Equate Symbol: IwmRsnCodeNoPriorSelect

Meaning: The caller has not previously selected work using the IWM4SSL
macro.

Action: Invoke the IWM4SSL macro before invoking this macro.

8 xxxx0863 Equate Symbol: IwmRsnCodeNoExecEnv

Meaning: The caller has not established an execution environment using
IWM4STBG.

Action: Invoke the IWM4STBG macro before invoking this macro.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C14 Equate Symbol: IwmRsnCodeNoWorkShutDown

Meaning: No work selected. Caller is to shutdown.

Action: The caller must disconnect by invoking the IW DISC macro.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To select a secondary work request from the WLM queue manager queues, specify:

 IWM4SSM USERDATA=USERDATA,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
USERDATA DS CL16 Contains the user-defined data
* that was passed to IWM4QIN
RC DS F Return code
RSN DS F Reason code

IWM4STBG — WLM begin server transaction service
IWM4STBG establishes the environment to process a work request that was previously selected using
IWM4SSL. The caller must invoke IWM4STBG from the task in the server address space that will process
the request. IWM4STBG establishes a business unit-of-work relationship by joining the caller's task to the
enclave associated with the request. IWM4STBG creates a security environment if there is a userid
associated with the request previously selected.

Use IWM4STBG together with IWM4STEN to begin and end the processing of a work request. A task can
process only one work request at a time.

Note that a task may only join an enclave if it is not already part of an enclave. In particular, a subtask
which inherited the enclave attribute from its mother task (which may happen either as a result of the
mother task issuing IWMEJOIN or IWM4STBG) is not allowed to use IWMEJOIN to explicitly join an
enclave. This restriction is independent of whether the specified enclave is the same enclave as it is in, or
a different enclave from the one it is in. Such a subtask which inherited the enclave attribute is also not
allowed to use IWMELEAV to explicitly leave the enclave. The subtask would only leave the enclave upon
its own (task) termination or when the enclave is deleted (IWM4EDEL). Also, a task which successfully
establishes a Begin environment (IWM4STBG) may not invoke enclave Join, nor is the task allowed to use
enclave Leave while this Begin environment exists.

Note : This service was previously called IWMSTBGN for 31-bit addressing only (see “IWMSTBGN —
Begin a request from a caller's work manager queue” on page 930).

IWM4STBG

Chapter 12. Workload management services 663

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before issuing the IWM4STBG macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:

IWM4STBG

664 z/OS: z/OS MVS Programming: Workload Management Services

Register
Contents

0-1
Used as work registers by the system

2-13
Unchanged

14-15
Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
main diagram

name
b IWM4STBG b WLMEUTKN=  wlmeutkn

,ETOKEN=  etoken

,SUBTASKS=NO

,SUBTASKS=YES ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4STBG macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ETOKEN=etoken
An optional output parameter, which will receive the enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWM4STBG

Chapter 12. Workload management services 665

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

IWM4STBG

666 z/OS: z/OS MVS Programming: Workload Management Services

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SUBTASKS=NO
,SUBTASKS=YES

An optional parameter, which specifies if subtasks of the requesting task are also to be processed.
The default is SUBTASKS=NO.
,SUBTASKS=NO

specifies that subtasks of the requesting task are not to be processed.
,SUBTASKS=YES

specifies that subtasks of the requesting task that are not already joined to an enclave are to be
joined to the enclave identified by this invocation's ETOKEN parameter. When a currently-
dispatched subtask is joined to the enclave, its CPU time for that dispatch is associated with the
enclave rather than the address space. When the subtask is removed from the enclave, if it is
currently dispatched, its CPU time for that dispatch is associated with the address space rather
than the enclave.

If SYSEVENT REQSRMST does not indicate, via bit SRMSTSTS being on, that this function is
available, this is treated as SUBTASKS=NO.

When SUBTASKS=YES is in effect, this task's corresponding IWM4STEN will also perform leave
processing upon any subtasks that are implicitly associated with the enclave. This includes
subtasks that were joined to the enclave due to this task's IWM4STBG processing as well as
subtasks that were joined to the enclave by ATTACH processing.

WLMEUTKN=wlmeutkn
A required input parameter, execution unit token that was returned by a prior invocation of IWM4SSL.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWM4STBG macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

IWM4STBG

Chapter 12. Workload management services 667

Table 101. Return and Reason Codes for the IWM4STBG Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041F Equate Symbol: IwmRsnCodeExecEnvChanged

Meaning: The execution environment has changed while the
requested function is in progress.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing
mode.

Action: Request this function only when you are in 31 bit
addressing mode.

IWM4STBG

668 z/OS: z/OS MVS Programming: Workload Management Services

Table 101. Return and Reason Codes for the IWM4STBG Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on Primary
ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in
progress for the TCB associated with the owner.

Action: Avoid requesting this function while task termination is
in progress.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or
version length field is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token,
or asynchronous events which may have deleted the enclave.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this
service

Action: Make sure that SERVER_MANAGER=YES is specified on
the IWM4CON request to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller is in cross-memory mode.

Action: Request this function only when you are not in cross-
memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller's space is not connected to WLM.

Action: Invoke the IWM4CON macro before invoking this macro.

8 xxxx0850 Equate Symbol: IwmRsnCodeBeginEnvOutstanding

Meaning: Caller is already operating under an outstanding Begin
environment.

Action: Avoid requesting this function in this environment.

8 xxxx0851 Equate Symbol: IwmRsnCodeSecEnvOutstanding

Meaning: Caller is already operating under an outstanding
security environment.

Action: Avoid requesting this function while there is a TCB level
security environment outstanding.

IWM4STBG

Chapter 12. Workload management services 669

Table 101. Return and Reason Codes for the IWM4STBG Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0852 Equate Symbol: IwmRsnCodeExecTokenNotCorrect

Meaning: The execution unit token does not identify a
previously selected work unit.

Action: Verify that you have coded the WLMEUTKN parameter
correctly.

8 xxxx0857 Equate Symbol: IwmRsnCodeAlreadyInEnclave

Meaning: Current dispatchable workunit is already in an
enclave.

Action: Avoid requesting this function while the caller is already
in an enclave.

8 xxxx085A Equate Symbol: IwmRsnCodeSelectedWorkActive

Meaning: The selected work element associated with the input
execution unit token is already in execution.

Action: You may have invoked IWM4STBG from multiple tasks
in the server address space passing the same WLMEUTKN.
Avoid requesting this function in this environment.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C17 Equate Symbol: IwmRsnCodeSecEnvCreateFailed

Meaning: A user security environment cannot be created.

Action: Verify that the userid is defined to RACF or check the
SAF installation exit routine to enable the function.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
Suppose a work request was selected using IWM4SSL and the execution unit token returned by IWM4SSL
is WLMEUTKN.

To establish the environment to process the work request:

 IWM4STBG WLMEUTKN=WLMEUTKN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
WLMEUTKN DS CL8 Contains the execution unit
* token that was returned by
* IWM4SSL
RC DS F Return code
RSN DS F Reason code

IWM4STBG

670 z/OS: z/OS MVS Programming: Workload Management Services

IWM4STEN — End a request from a caller's work manager queue

IWM4STEN removes the environment which was previously established using IWM4STBG to process a
work request. The caller must invoke IWM4STEN from the same task that invoked IWM4STBG.
IWM4STEN removes the caller's task from the enclave associated with the request. IWM4STEN deletes
the security environment if one was previously established by IWM4STBG.

Note : This service was previously called IWMSTEND for 31-bit addressing only (see “IWMSTEND — End a
request from a caller's work manager queue” on page 937).

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31- and 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before issuing the IWM4STEN macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero

IWM4STEN

Chapter 12. Workload management services 671

1
Used as work register by the system

2-13
Unchanged

14
Used as work registers by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWM4STEN macro is as follows:

name
IWM4STEN WLMEUTKN=  wlmeutkn

,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWM4STEN macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

IWM4STEN

672 z/OS: z/OS MVS Programming: Workload Management Services

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (with or without parentheses), the value will be left in GPR 15.

IWM4STEN

Chapter 12. Workload management services 673

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (with or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

WLMEUTKN=wlmeutkn
A required input parameter, execution unit token that was specified on the prior invocation of
IWM4STBG.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWM4STEN macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 102. Return and Reason Codes for the IWM4STEN Macro

Return Code Return Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041C Equate Symbol: IwmRsnCodeNotEnclave

Meaning: The current dispatchable work unit is not associated with an
enclave.

Action: None required.

4 xxxx041F Equate Symbol: IwmRsnCodeExecEnvChanged

Meaning: The execution environment has changed while the requested
function is in progress.

Action: None required.

4 xxxx042F Equate Symbol: IwmRsnCodeSecondaryWorkDeleted

Meaning: There were secondary work requests queued to this server task.
The caller was expected to process them using IWM4SSM before calling
IWM4STEN. The secondary work requests were deleted.

Action: Select all secondary work requests before issuing IWM4STEN.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

IWM4STEN

674 z/OS: z/OS MVS Programming: Workload Management Services

Table 102. Return and Reason Codes for the IWM4STEN Macro (continued)

Return Code Return Code Equate Symbol, Meaning, and Action

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on Primary ASC
mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or version length field
is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: The caller invoked the service but was in cross-memory mode.

Action: Avoid requesting this function in cross-memory mode.

8 xxxx084F Equate Symbol: IwmRsnCodeWrongExecToken

Meaning: Current dispatchable work unit is not associated with the input
execution unit token.

Action: Check for possible storage overlay of the execution unit token.

8 xxxx0859 Equate Symbol: IwmRsnCodeEnclaveSubTaskExists

Meaning: The current dispatchable work unit has residual subtasks
propagated to the enclave which are still associated with the enclave. The
operation (IWM4STBG) that associated this work unit with the enclave did
not specify SUBTASKS=YES.

Action: Avoid requesting this function in this environment.

IWM4STEN

Chapter 12. Workload management services 675

Table 102. Return and Reason Codes for the IWM4STEN Macro (continued)

Return Code Return Code Equate Symbol, Meaning, and Action

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To remove the environment which was previously established using IWM4STBG, specify:

 IWM4STEN WLMEUTKN=WLMEUTKN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
WLMEUTKN DS CL8 Contains the execution unit
* token that was specified on
* the prior invocation of
* IWM4STBG
RC DS F Return code
RSN DS F Reason code

IWM4TAF — WLM temporal affinity service

The IWM4TAF service should be used to inform WLM when a temporal affinity for a specific server region
starts and when it ends. WLM will ensure that server regions will not be terminated as long as temporal
affinities exist.

The caller must have previously connected to WLM using the IWM4CON as server or as queue manager.

Note : This service was previously called IWMTAFF for 31-bit addressing only (see “IWMTAFF — WLM
temporal affinity service” on page 942).

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31- and 64-bit. If in 64-bit addressing mode, code SYSSTATE
AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.

IWM4TAF

676 z/OS: z/OS MVS Programming: Workload Management Services

4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. This macro may not be used during task/address space termination.
2. Before using this macro the caller must connect to WLM via IWM4CON Server_Manager=YES,
Server_Type=Queue or IWM4CON Queue_Manager=YES.

Input register information
Before issuing the IWM4TAF macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWM4TAF macro is as follows:

IWM4TAF

Chapter 12. Workload management services 677

name
IWM4TAF AFFINITY=YES

AFFINITY=NO

,REGION_TOKEN=0

,REGION_TOKEN=  region_token ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4TAF macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

AFFINITY=YES
AFFINITY=NO

A required parameter indicating whether a temporal affinity begins or ends
AFFINITY=YES

A new temporal affinity for the server region begins. WLM will ensure that the server regions is not
terminated before all temporal affinity have ended.

AFFINITY=NO
A temporal affinity for the server region has ended. WLM will start to terminate server regions if all
temporal affinities have ended.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

IWM4TAF

678 z/OS: z/OS MVS Programming: Workload Management Services

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,REGION_TOKEN=region_token
,REGION_TOKEN=0

An optional input parameter, which contains the region token. The region token is not required if the
macro is invoked from the server region for which the temporal affinity should be started or stopped.
The region token must be used if the services is used from the queueing manager. The region token is
returned by the IWM4CON and IWM4SSL macro.

The caller must be supervisor state or have PSW key mask 0-7 authority to use this service with the
REGION_TOKEN parameter.

Coding REGION_TOKEN=0 is equivalent to omitting the REGION_TOKEN keyword. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

IWM4TAF

Chapter 12. Workload management services 679

ABEND codes
None.

Return codes and reason codes
When the IWM4TAF macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 103. Return and Reason Codes for the IWM4TAF Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

Action: None required.

4 xxxx0439 Equate Symbol: IwmRsnCodeNoAffinityFound

Meaning: The service has been invoked to tell WLM that an existing server
region affinity has been terminated but WLM has no affinity defined for this
server region.

Action: If region token was not specified make sure to use the service
properly at the beginning and end of each affinity. If the region token has
been defined make sure that it is used for the correct server region.

4 xxxx043A Equate Symbol: IwmRsnCodeRegionNotFound

Meaning: The region token does not identify a valid server region.

Action: Please specify the correct region token.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

IWM4TAF

680 z/OS: z/OS MVS Programming: Workload Management Services

Table 103. Return and Reason Codes for the IWM4TAF Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was not zero.

Action: Check for use of keywords that are not supported by the MVS release
on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: The caller's space connection is not enabled for this service

Action: Make sure that SERVER_MANAGER=YES and SERVER_TYPE=QUEUE
is specified on the IWM4CON request to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller is in cross-memory mode.

Action: Request this function only when you are not in cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: The caller's space is not connected to WLM.

Action: Invoke the IWM4CON macro before invoking this macro.

8 xxxx084D Equate Symbol: IwmRsnCodeNotAuthConnect

Meaning: The caller must be supervisor state or have PSW key mask 0-7
authority to use the requested WLM service. This applies only if the caller
provides a region token for a server address space for which it wants to set
the affinity.

Action: Avoid requesting this function in this environment.

8 xxxx08B1 Equate Symbol: IwmRsnCodeTooManyTempAff

Meaning: No more than 2 GB temporal affinities supported.

Action: Avoid requesting more than 2 GB temporal affinities to an address
space.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To start a temporal affinity from the server region, specify:

 IWM4TAF AFFINITY=YES
 RETCODE=RC,
 RSNCODE=RSN
*
* Storage areas
*
RC DS F Return code
RSN DS F Reason code

IWM4TAF

Chapter 12. Workload management services 681

IWM4TAF

682 z/OS: z/OS MVS Programming: Workload Management Services

Appendix A. SMF type 99 action codes

Table 104 on page 683 lists the SMF record type 99 action codes and descriptions.

Table 104. SMF record type 99 action codes

Action code
number

Equate symbol Description

1 STA_RECOVERY_RETRY Retry.

2 STA_RECOVERY_PERC Percolation.

3 STA_RECOVERY_REDRIVE_SET Tell WLM to set to same policy again.

10 RA_AUXP_DEC_MPL Resource adjustment, too much auxiliary storage paging,
decrease mpl.

20 RA_AUXP_NO_ACTION Resource adjustment, too much auxiliary storage paging, no
action.

30 RA_MP_NO_ACTION Resource adjustment, managed paging, no action.

40 RA_OU_DEC_MPL Resource adjustment, overutilized, decrease mpl.

50 RA_OU_NO_ACTION Resource adjustment, overutilized, no action.

60 RA_SWAP_FOR_MPL Resource adjustment, working set management picked this
address space to swap out.

70 RA_UP_DECREASE_MPL Resource adjustment, unmanaged paging decrease mpl.

90 RA_UP_NO_ACTION Resource adjustment, unmanaged paging no action.

100 RA_UU_INC_MPL Resource adjustment, underutilized, increase mpl.

105 RA_UU_ADD_SRV_GR Resource adjustment, underutilized, add server.

106 RA_UU_ADD_SRV_RR Resource adjustment, underutilized, add server.

107 ADD_SRV_ASSESS Resource adjustment or discretionary goal management,
assess adding server(s).

108 ADD_SRV_ASSESS2 Resource adjustment or discretionary goal management,
assess adding server(s).

109 ADD_SRV_ASSESS3 Resource adjustment or discretionary goal management,
assess adding server(s).

110 RA_UU_NO_ACTION Resource adjustment, underutilized, no action.

111 RA_UU_NO_RECEIVER Resource adjustment, underutilized, no action, no receiver
found.

112 RA_UU_DISP_NOT_QUEUE_MANAGED Resource adjustment, underutilized, no action, internal
service period not queue-managed.

113 RA_UU_DISP_NOT_ELIGIBLE Resource adjustment, underutilized, no action, internal
service period not eligible.

114 RA_UU_DISP_PENDING Resource adjustment, underutilized, no action, internal
service period not eligible, pending actions.

115 RA_UU_DISP_NOT_BOUND Resource adjustment, underutilized, no action, internal
service period not eligible, no address space bound.

116 RA_UU_DISP_SPACE_NOT_AVAILABLE Resource adjustment, underutilized, no action, internal
service period not eligible, close to limit on the number of
address spaces that can be started, or there are not enough
address spaces available.

117 RA_UU_DISP_CANT_START_SPACE Resource adjustment, underutilized, no action, internal
service period is not eligible, application environment cannot
start servers.

© Copyright IBM Corp. 1988, 2021 683

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

118 RA_UU_DISP_NO_HISTORY Resource adjustment, underutilized, no action, internal
service period is not eligible, there were no queued requests
last interval.

119 RA_UU_DISP_INSUFFICIENT_STORAGE Resource adjustment, underutilized, no action, internal
service period is not eligible, there is no discretionary storage
for another address space.

120 RA_UU_DISP_SUFFICIENT_SERVERS Resource adjustment, underutilized, no action, internal
service period is not eligible, there are more servers than
needed.

121 RA_UU_DISP_OUTREADY_SERVERS Resource adjustment, underutilized, no action, internal
service period is not eligible, there are out ready servers.

122 RA_UU_DISP_CONTENTION Resource adjustment, underutilized, no action, additional
server instances cannot be added without unacceptable
increase in contention.

123 RA_UU_DISP_TOO_MANY_IDLE Resource adjustment, underutilized, no action, the queue
already has many idle servers.

125 RA_UU_DISP_NOT_BEST Resource adjustment, underutilized, no action, this period is
not the best.

126 RA_UU_DISP_NOT_BEST_NOT_AVAIL Resource adjustment, underutilized, no action, short term
processor is not available.

127 RA_UU_DISP_NOT_BEST_DELAY_SAMPLES Resource adjustment, underutilized, no action, projected
delay samples are not the best.

130 SWAP_DETECTED_WAIT Detected wait swap.

140 SWAP_EXCHANGE Exchange swap.

150 SWAP_LONG_WAIT Long wait swap.

160 SWAP_UNILATERAL Unilateral swap.

170 RA_MON_PAG_COST_HI Resource adjustment, monitor this space because paging
cost is high.

180 RA_MON_POLICY_DIR Resource adjustment, policy code directed us to monitor this
space.

190 RA_UNMON_ALL_P_OK Resource adjustment, unmonitor this space because the last
10 plotted points were ok.

195 RA_UNMON_NO_CAPT Resource adjustment, unmonitor this space because
insufficient capture time accumulated in last 5 minutes to
plot a point.

200 TX_END_UNMON Unmonitor because of transaction end, initiator detach, or
address space termination.

210 NS_STOR_TAR_ACTION Storage target action, no specific reason.

220 PA_ADD_TRANS_DISP Add transaction server dynamic internal service period.

222 PA_AS_BET_DISPS Move address space between server internal service periods.

224 PA_AS_FROM_DISP Move address space from server internal service period.

226 PA_AS2_TRX_DISP Move address space to server internal service period.

227 PA_AS2_NONTRX_DISP Move address space to server internal service period.

230 PA_DELETE_DISP Delete server internal service period.

232 PA_ADDDISP_MT_EN_Q Add a non transaction server dynamic internal service period
for multi-threaded enclave queue servers.

233 PA_ADD_DISP_MT_EN Add a non transaction server dynamic internal service period
for multi-threaded enclave non_queue servers.

684 z/OS: z/OS MVS Programming: Workload Management Services

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

235 PA_ADDDISP_ST_EN_Q Add a non transaction server dynamic internal service period
for single-threaded enclave queue servers.

236 PA_ADD_DISP_ST_EN Add a non transaction server dynamic internal service period
for single-threaded enclave non-queue servers.

240 PA_GREC_CAND Policy adjustment, goal receiver candidate selected.

245 PA_NA_NO_MPL Policy adjustment, no action taken because period had an
mpl out target of 0 and the delay was other than mpl.

246 PA_DRV_PRO_SKIPPED Policy adjustment, processor action was skipped even though
it is required.

250 PA_NA_NO_PROBLEM Policy adjustment, no action taken because receiver did not
have a problem.

251 PA_ADDDISP_SCSP Add a non-transaction server dynamic internal service period
for a single class/single period enclave server.

252 PA_ADDDISP_SCSP_Q Add a non transaction server dynamic internal service period
for a single class/single period enclave and queue server.

253 PA_ADDDISP_SCMP Add a non transaction server dynamic internal service period
for a single class/multi-period enclave server.

254 PA_ADDDISP_SCMP_Q Add a non transaction server dynamic internal service period
for a single class/multi-period enclave and queue server.

255 PA_ADDDISP_MCMP Add a non transaction server dynamic internal service period
for a mulli-class/multi-period enclave server.

256 PA_ADDDISP_MCMP_Q Add a non transaction server dynamic internal service period
for a multi- class/multi-period enclave and queue server.

260 PA_NA_UNKNOW_DELAY Policy adjustment, no action taken because delay is not
known.

265 PA_NA_SYSPLEX_ONLY Policy adjustment, because resource only addressed on
sysplex pass and this is the local pass.

270 PA_REC_CAND Policy adjustment, receiver candidate selected.

280 PA_RREC_CAND Policy adjustment, resource receiver candidate selected.

290 PA_USE_DISC_CENT Policy adjustment, use discretionary central.

300 PA_USE_DISC_EXP Policy adjustment, use discretionary expanded.

305 PA_STOR_DONOR Policy adjustment, storage donor.

306 SH_STOR_DONOR Shortage, storage donor.

307 SV_STOR_DONOR Storage donor from server.

308 PA_DONOR_PERIOD Policy adjustment, donor period.

310 WLM_Q_REQ WLM queue sysevent issued. Begin/end are not traced.

311 WLM_Q_MISC WLM queue miscellaneous actions.

315 PA_CPC_MOVE_DOWN Policy adjustment, period is moved down to make room for
CPU critical period.

320 PA_CAL_PI_NO_FOREIGN_FACTOR Policy adjustment, calculate PI.

500 HSK_FROM_SPC_DP Housekeeping, move from small processor consumer priority,
period is no longer small consumer.

510 HSK_TO_SPC_DP Housekeeping, move to small processor consumer priority.

520 HSK_XFROM_SPC_DP Housekeeping, exchange from small processor consumer
priority to make room for another small consumer.

525 HSK_UNBUNCH_PRTY Housekeeping, unbunch priorities.

Appendix A. SMF type 99 action codes 685

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

526 PA_PCC_NO_OCC_PRTY Policy adjustment, CPU critical, no occupied priority to move
blocker to.

527 PA_PCC_NO_UNO_PRTY Policy adjustment, CPU critical, no unoccupied priority to
move blocker to.

528 PA_PCC_BLKR_MOVED Policy adjustment, CPU critical, blocker has been moved to a
new priority.

529 PA_PCC_BLKR_VIOLTN Policy adjustment, CPU critical, blocker violates CPU critical
rules at new priority.

530 PA_PMDO_DON Policy adjustment, assess moving primary processor donor
down to occupied priority.

531 PA_PCC_DON_VIOLTN Policy adjustment, moving the donor to the receivers priority
violates CPU critical rules.

532 PA_PCC_BLKR_IS_DON Policy adjustment, cannot move the blocker up because it is
the donor.

533 PA_PCC_BLKR_IS_REC Policy adjustment, cannot move the blocker down because it
is the receiver.

534 PA_PCC_BLKR_NETVAL Policy adjustment, moving blocker down fails net value
check.

540 PA_PMDU_DON Policy adjustment, assess moving primary processor donor
down to unoccupied priority.

550 PA_PMD_DON_NETVAL Policy adjustment, processor move down, rejected for no net
value, donor trace, affected by resource donor.

552 PA_PMD_DON_NVL_SD Policy adjustment, processor move down, rejected for no net
value, donor trace, affected by secondary donor.

560 PA_PMD_GDON_NETVAL Policy adjustment, processor move down, rejected for no net
value, goal donor trace, affected by resource donor.

562 PA_PMD_GDON_NVL_SD Policy adjustment, processor move down, rejected for no net
value, goal donor trace, affected by secondary donor.

565 PA_PMD_GREC_NETVAL Policy adjustment, processor move down, rejected for no net
value, goal receiver trace, affected by resource donor.

567 PA_PMD_GREC_NVL_SD Policy adjustment, processor move down, rejected for no net
value, goal receiver trace, affected by secondary donor.

570 PA_PMD_RDON_NETVAL Policy adjustment, processor move down, rejected for no net
value, resource donor trace, affected by resource donor.

572 PA_PMD_RDON_NVL_SD Policy adjustment, processor move down, rejected for no net
value, resource donor trace, affected by secondary donor.

573 PA_PMD_REC_NETVAL Policy adjustment, processor move down, rejected for no net
value, receiver trace, affected by resource donor.

575 PA_PMD_REC_NVL_SD Policy adjustment, processor move down, rejected for no net
value, receiver trace, affected by secondary donor.

576 PA_PMD_RREC_NETVAL Policy adjustment, processor move down, rejected for no net
value, resource receiver trace, affected by resource donor.

578 PA_PMD_RREC_NVL_SD Policy adjustment, processor move down, rejected for no net
value, resource receiver trace, affected by secondary donor.

580 PA_PMD_SEC_DON Policy adjustment, assess moving secondary processor donor
down.

590 PA_PMU_DON_NETVAL Policy adjustment, processor move up, rejected for no net
value, donor trace.

686 z/OS: z/OS MVS Programming: Workload Management Services

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

595 PA_PMU_DON_SEC_REC Policy adjustment, processor assess moving donor up as
secondary receiver.

600 PA_PMU_GDON_NETVAL Policy adjustment, processor move up, rejected for no net
value, goal donor trace.

605 PA_PMU_GREC_NETVAL Policy adjustment, processor move up, rejected for no net
value, goal receiver trace.

610 PA_PMU_RDON_NETVAL Policy adjustment, processor move up, rejected for no net
value, resource donor trace.

613 PA_PMU_REC_NETVAL Policy adjustment, processor move up, rejected for no net
value, receiver trace.

616 PA_PMU_RREC_NETVAL Policy adjustment, processor move up, rejected for no net
value, resource donor trace.

620 PA_PMUO_REC Policy adjustment, assess moving primary processor receiver
up to occupied priority.

630 PA_PMUUA_REC Policy adjustment, assess moving primary processor receiver
up to unoccupied priority above donor.

635 PA_PMUUB_REC Policy adjustment, assess moving primary processor receiver
up to unoccupied priority between donor and receiver's
current priorities.

640 PA_PMU_SEC_REC Policy adjustment, assess moving secondary processor
receiver up.

650 PA_PMU_TO_SPC_DP Policy adjustment, move up to small processor consumer
priority.

651 PA_PMU_SPC_NXT_DP Policy adjustment, move up small processor consumer to
next priority.

655 PA_PMU_SPC_UP_FAIL Policy adjustment, moving up small processor consumer
failed because the move is blocked by CPU critical period.

660 PA_PRO_DECP_DON Policy adjustment, decrease priority for donor.

665 PA_PRO_DECP_MPL Policy adjustment, decrease priority because of an mpl
increase.

670 PA_PRO_DECP_SEC Policy adjustment, decrease priority for secondary donor or
receiver.

675 PA_PRO_DECP_BLKR Policy adjustment, decrease priority for blocker period.

690 PA_PRO_DON_DEPEN Policy adjustment, no further processor action because of
donor dependency relationship.

720 PA_PRO_GREC_NETVAL Policy adjustment, no processor action because insufficient
net value, goal receiver trace.

730 PA_PRO_GREC_RECVAL Policy adjustment, no processor action because insufficient
receiver value, goal receiver trace.

740 PA_PRO_INCP_DON Policy adjustment, increase priority for donor.

750 PA_PRO_INCP_REC Policy adjustment, increase priority for receiver.

760 PA_PRO_INCP_SEC Policy adjustment, increase priority for secondary donor or
receiver.

770 PA_PRO_INCP_BLKR Policy adjustment, increase priority for blocker period.

780 PA_PRO_INCP_SC Policy adjustment, increase priority for small consumer
period.

850 PA_PRO_NA_NO_DONOR Policy adjustment, no processor action because no donor
selected.

Appendix A. SMF type 99 action codes 687

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

870 PA_PRO_NA_SPC_DP Policy adjustment, no processor action because period is at
or just moved from small processor consumer priority.

880 PA_PRO_RDON_CAND Policy adjustment, processor resource donor candidate
selected.

890 PA_PRO_REC_DEPEN Policy adjustment, no further processor action because of
receiver dependency relationship.

900 PA_PRO_REC_NETVAL Policy adjustment, no processor action because insufficient
net value, receiver trace.

910 PA_PRO_REC_RECVAL Policy adjustment, no processor action because insufficient
receiver value, receiver trace.

920 PA_PRO_RREC_NETVAL Policy adjustment, no processor action because insufficient
net value, resource receiver trace.

930 PA_PRO_RREC_RECVAL Policy adjustment, no processor action because insufficient
receiver value, resource receiver trace.

933 PA_PRO_SERVED_GDON Policy adjustment, served goal donor selected.

936 PA_PRO_SERVED_GREC Policy adjustment, served goal receiver selected.

938 PA_PRO_TO_SPC_DP Policy moved to small processor consumer.

939 PA_PRO_SPC_UP_FAIL Policy adjustment, small processor user move up failed.

940 PA_PRO_UNC_DON Policy adjustment, unchanged donor.

950 PA_PRO_UNC_REC Policy adjustment, unchanged receiver.

960 PA_PRO_UNC_SEC_DON Policy adjustment, unchanged secondary donor.

970 PA_PRO_UNC_SEC_REC Policy adjustment, unchanged secondary receiver.

975 PA_SDO_DONFAIL_SPC Policy adjustment, select donor failed selecting period as the
donor because period is small consumer.

976 PA_SDO_ADD_DGRP Policy adjustment, move period from one donor group to
another, add donor group.

978 PA_SDO_CLR_FLGS Policy adjustment, select donor, clear cannot donate storage
flags.

980 PA_TA_EA_MOV_UBA Policy adjustment, tuning alias, efficiency-based adjustment,
move unbound alias.

981 PA_TA_EA_MOV_BDEV Policy adjustment, tuning alias, efficiency-based adjustment,
move base device.

982 PA_TA_EA_NA_TIME Policy adjustment, tuning alias, efficiency-based adjustment,
no action due to PAV subsystem time since last alias move
not exceeding one minute.

983 PA_TA_EA_NA_DONPIO Policy adjustment, tuning alias, efficiency-based adjustment,
donor not selected because donor projected increase in
queued I/O requests exceeds threshold.

984 PA_TA_EA_NA_IOSQL Policy adjustment, tuning alias, efficiency-based adjustment,
receiver not selected because of insufficient average queued
I/O requests.

987 PA_TA_EA_DON_L1MIN Policy adjustment, tuning alias, efficiency-based adjustment,
donor not selected because donor donated recently.

988 PA_TA_EA_REC_L1MIN Policy adjustment, tuning alias, efficiency-based adjustment,
receiver not selected because receiver was helped recently.

989 PA_TA_EA_NA_CUQDT Policy adjustment, tuning alias, efficiency-based adjustment,
receiver not selected due to excessive control unit queueing
delay.

688 z/OS: z/OS MVS Programming: Workload Management Services

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

990 PA_TA_GA_MOV_UBA Policy adjustment, tuning alias, goal-based adjustment, move
unbound alias.

991 PA_TA_GA_MOV_BDEV Policy adjustment, tuning alias, goal-based adjustment, move
base device.

992 PA_TA_GA_INV_RDEV Policy adjustment, tuning alias, goal-based adjustment,
invalid receiver device.

993 PA_TA_GA_NA_DONPIO Policy adjustment, tuning alias, goal-based adjustment,
donor not selected because donor projected increase in
queued I/O requests exceeds threshold.

994 PA_TA_GA_NA_IOSQL Policy adjustment, tuning alias, goal-based adjustment,
receiver not selected because of insufficient average queued
I/O requests.

995 PA_TA_GA_DON_L1MIN Policy adjustment, tuning alias, goal-based adjustment,
donor not selected because donor donated recently.

996 PA_TA_GA_REC_L1MIN Policy adjustment, tuning alias, goal-based adjustment,
receiver not selected because receiver was helped recently.

997 PA_TA_RRPATOD When Tuning alias adjustment was entered.

998 PA_TA_GA_DONGTREC Policy adjustment, tuning alias, goal-based adjustment, no
action due to donor's importance greater than receiver's or
donor belongs to a system service class.

999 PA_TA_GA_NA_CUQDT Policy adjustment, tuning alias, goal-based adjustment,
receiver not selected due to excessive control untit queueing
delay.

1000 PA_TA_EA_PASS_NO Policy adjustment, tuning alias, efficiency adjustment, pass
number.

1900 PA_0C9_suppressed Policy adjustment.

2010 PA_DEC_PSI_TAR Policy adjustment, decrease period protective processor
storage target for this resource period.

2011 PA_DEC_PSI_TAR_GP Policy adjustment, decrease period protective processor
storage target for a resource period associated with this goal
period. The goal period is different than the resource period.

2020 PA_INC_PSI_TAR Policy adjustment, increase period protective processor
storage target for this resource period.

2021 PA_INC_PSI_TAR_GR Policy adjustment, increase period protective processor
storage target to the resource receiver associated with this
goal receiver. The goal receiver is different than the resource
receiver.

2030 PA_PSI_NA_NET_VAL Policy adjustment, no period protective processor storage
action because insufficient net value. Resource receiver
trace.

2031 PA_PSI_GREC_NETVAL Policy adjustment, no period protective processor storage
action because insufficient net value. Goal receiver trace. The
goal receiver is different thatn the resource receiver.

2040 PA_PSI_NA_REC_VAL Policy adjustment, no period protective processor storage
action because insufficient receiver value. Goal receiver
trace.

2041 PA_PSI_RREC_RECVAL Policy adjustment, no period protective processor storage
action because insufficient receiver value. Resource receiver
trace. The resource receiver is different than the goal
receiver.

2050 PA_PSI_TAR_UNAB Policy adjustment, no period protective processor storage
action because current target not absorbed.

Appendix A. SMF type 99 action codes 689

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

2060 PA_REM_PSI_TAR Policy adjustment, remove period protective processor
storage target for this resource period.

2061 PA_REM_PSI_TAR_GP Policy adjustment, remove period protective processor
storage target for the resource period associated with this
goal period. The goal period is different than the resource
period.

2070 PLOT_X_REM_PSI_TAR Plot expansion, remove period protective processor storage
target for this resource period.

2071 PLOT_X_REM_PSI_GP Plot expansion, remove period protective processor storage
target for a resource period associated with this goal period.
The goal period is different than the resource period.

2080 SH_DEC_PSI_TAR Storage shortage, decrease period protective processor
storage target for this resource period.

2081 SH_DEC_PSI_TAR_GP Storage shortage, decrease period protective processor
storage target for a resource period associated with this goal
period. The goal period is different than the resource period.

2090 SH_REM_PSI_TAR Storage shortage, remove period protective processor
storage target for this resource period.

2091 SH_REM_PSI_TAR_GP Storage shortage, remove period protective processor
storage target from a resource period associated with this
goal period. The goal period is different than the resource
period.

2100 TDH_AS_DEC_PSI_TAR Time driven housekeeping, decrease period protective
processor storage target for this resource period.

2101 TDH_AS_DEC_PSI_GP Time driven housekeeping, decrease period protective
processor storage target for a resource period associated
with this goal period. The goal period is different than the
resource period.

2110 TDH_AS_REM_PSI_TAR Time driven housekeeping, remove period protective
processor storage target from this resource period.

2111 TDH_AS_REM_PSI_GP Time driven housekeeping, remove period protective
processor storage target from a resource period associated
with this goal period. The goal period is different than the
resource period.

2120 TDH_ME_DEC_PSI_TAR Time driven minimal effect housekeeping, decrease period
protective processor storage target for this resource period.

2121 TDH_ME_DEC_PSI_GP Time driven minimal effect housekeeping, decrease period
protective processor storage target for a resource period
associated with this goal period. The goal period is different
than the resource period.

2130 TDH_ME_REM_PSI_TAR Time driven minimal effect housekeeping, remove period
protective processor storage target from this resource period.

2131 TDH_ME_REM_PSI_GP Time driven minimal effect housekeeping, remove period
protective processor storage target from a resource period
associated with this goal period. The goal period is different
than the resource period.

2140 TDH_UA_DEC_PSI_TAR Time driven unassessable housekeeping, decrease period
protective processor storage target for this resource period.

2141 TDH_UA_DEC_PSI_GP Time driven unassessable housekeeping, decrease period
protective processor storage target for a resource period
associated with this goal period. The goal period is different
than the resource period.

2150 TDH_UA_REM_PSI_TAR Time driven unassessable housekeeping, remove period
protective processor storage target from this resource period.

690 z/OS: z/OS MVS Programming: Workload Management Services

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

2151 TDH_UA_REM_PSI_GP Time driven unassessable housekeeping, remove period
protective processor storage target from a resource period
associated with this goal period. The goal period is different
than the resource period.

2160 RV_HSK_INC_PSI_TAR Reverse housekeeping, increment period protective
processor storage target for this resource receiver.

2161 RV_HSK_INC_PSI_GR Reverse housekeeping, increment period protective
processor storage target for a resource receiver associated
with this goal receiver. The goal receiver is different than the
resource receiver.

2170 WSM_DEC_PSI_TAR Working set management, decrease period protective
processor storage target for this resource period.

2171 WSM_DEC_PSI_TAR_GP Working set management, decrease period protective
processor storage target for a resource period associated
with this goal period. The goal period is different than the
resource period.

2180 WSM_REM_PSI_TAR Working set management, remove period protective
processor storage target from this resource period.

2181 WSM_REM_PSI_TAR_GP Working set management, remove period protective
processor storage target from a resource period associated
with this goal period. The goal period is different than the
resource period.

2510 PA_DEC_PRT Policy adjustment, decrease swap protect time.

2520 PA_INC_PRT Policy adjustment, increase swap protect time.

2530 PA_PRT_NA_NET_VAL Policy adjustment, no swap protect time action because
insufficient net value.

2540 PA_PRT_NA_REC_VAL Policy adjustment, no swap protect time action because
insufficient receiver value.

2550 PA_PRT_NA_SRVR_UD Policy adjustment, no swap protect time action because
period is a server or a universal donor.

2555 PA_PRT_NA_ENCLAVE Policy adjustment, no swap protect time action because no
policy adjustment actions for enclave swap delay.

2560 PA_PRT_NO_WSS Policy adjustment, no swap protect time action because no
average working set size to calculate frame projections.

2570 PA_PRT_TAR_UNAB Policy adjustment, no swap protect time action because
current target not absorbed.

2580 PA_REM_PRT Policy adjustment, remove swap protect time.

2590 RV_HSK_INC_PRT Reverse housekeeping increment swap protect time.

2600 SH_DEC_PRT Storage shortage, decrease swap protect time.

2610 SH_REM_PRT Storage shortage, remove swap protect time.

2620 TDH_DEC_PRT Time driven housekeeping, decrease swap protect time.

2630 TDH_REM_PRT Time driven housekeeping, remove swap protect time.

2640 WSM_DEC_PRT Working set management, decrease swap protect time.

2650 WSM_REM_PRT Working set management, remove swap protect time.

3010 PA_CSI_NA_NET_VAL Policy adjustment, no common area protective processor
storage target action because insufficient net value.

3020 PA_CSI_NA_REC_VAL Policy adjustment, no common area protective processor
storage target action because insufficient receiver value.

Appendix A. SMF type 99 action codes 691

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

3030 PA_CSI_TAR_UNAB Policy adjustment, no common area protective processor
storage target action because current target not absorbed.

3040 PA_INC_CSI_TAR Policy adjustment, increase common area protective
processor storage target.

3050 TDH_DEC_CSI_TAR Time driven housekeeping, decrease common area protective
processor storage target.

3060 TDH_REM_CSI_TAR Time driven housekeeping, remove common area protective
processor storage target.

3070 PA_INC_XMEM_TAR Increase protective processor storage target to reduce cross
memory paging.

3080 PA_XMEM_NA_NET_VAL Did not increase protective processor storage target for cross
memory paging because of insufficient net value.

3090 PA_XMEM_NA_REC_VAL Did not increase protective processor storage target for cross
memory paging because of insufficient receiver value.

3095 PA_XMEM_NA_SRT Did not increase protective processor storage target for cross
memory paging because address space faulted on was in a
service period with short response time goals.

3100 PA_XMEM_TAR_UNAB Did not increase protective processor storage target for cross
memory paging because target was unabsorbed.

3110 TDH_DEC_SSI_TAR Time driven housekeeping, decrease shared area protective
processor storage target.

3120 PA_SHR_TAR_UNAB Policy adjustment, no shared area protective processor
storage target action because current target not absorbed.

3130 PA_SHR_NA_REC_VAL Policy adjustment, no shared area protective processor
storage target action because insufficient receiver value.

3140 PA_SHR_NA_NET_VAL Policy adjustment, no shared area protective processor
storage target action because insufficient net value.

3150 PA_INC_SHR_TAR Policy adjustment, increase shared area protective processor
storage target.

3160 PA_DEC_SHR_DEL Policy adjustment, decrease shared area protective
processor storage target by delta in SPTE.

3510 B16M_SHORT_DEC_MPL Below 16 meg storage shortage, decrease mpl.

3520 PA_DEC_MPL Policy adjustment, decrease mpl.

3521 PA_DEC_MPL_GP Policy adjustment, decrease mpl for a resource period that is
associated with this goal period. The goal period is different
than the resource period.

3530 PA_INC_MPL Policy adjustment, increase mpl.

3531 PA_INC_MPL_TS Policy adjustment, increase mpl for transaction servers.

3540 PA_INC_MPL_GR Policy adjustment, increase mpl for storage managed enclave
goal period.

3541 PA_INC_MPL_RR Policy adjustment, increase mpl for storage managed enclave
resource period.

3550 PA_MPL_NA_NET_VAL Policy adjustment, no mpl action because insufficient net
value.

3551 PA_MPL_NETVAL_RR Policy adjustment, no mpl action because insufficient net
value for storage managed enclave server periods.

3552 PA_MPL_NETVAL_GR Policy adjustment, no mpl action because insufficient net
value for storage managed enclave goal periods.

692 z/OS: z/OS MVS Programming: Workload Management Services

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

3560 PA_MPL_NA_REC_VAL Policy adjustment, no mpl action because insufficient
receiver value.

3561 PA_MPL_RECVAL_RR Policy adjustment, no mpl action because insufficient
receiver value for storage managed enclave servers.

3562 PA_MPL_RECVAL_GR Policy adjustment, no mpl action because insufficient
receiver value for storage managed enclave goal periods.

3580 PA_MPL_NA_SHORTAGE Policy adjustment, no mpl action because system is in a
storage shortage.

3590 PA_SWAP_FOR_MPL Policy adjustment, mpl assess picked this address space to
swap out.

3600 TDH_DEC_MPL Time driven housekeeping, decrease mpl.

3601 TDH_DEC_MPL_FOR_GR Time driven housekeeping, decrease mpl for goal receiver.

3602 TDH_DEC_MPL_FOR_RR Time driven housekeeping, decrease mpl for resource
receiver.

3603 TDH_DEC_QMPL_GR Time driven housekeeping, decrease QMPL for goal receiver.

3604 TDH_DEC_QMPL_RR Time driven housekeeping, decrease QMPL for resource
receiver.

3605 TDH_INC_QMPL_GR Time-driven housekeeping, increase QMPL for goal receiver.

3606 TDH_INC_QMPL_RR Time-driven housekeeping, increase QMPL for goal receiver.

3607 TDH_MOD_SERVINST Time-driven housekeeping, modify number of server
instances per address space.

3608 TDH_STRT_MIN_SP Time-driven housekeeping, modify number of server
instances per address space.

3609 TDH_RECOMM_FAILED Time driven housekeeping, recommendation for additional
address spaces or instances failed.

3610 RV_HSK_INC_MPL Reverse housekeeping, increment mpl.

3613 TDH_DEC_QMOV_GR Timer-driven housekeeping, decrease QMPL for move.

3614 TDH_DEC_QMOV_RR Timer-driven housekeeping, decrease QMPL for move.

3615 TDH_DEC_QSWP_GR Timer-driven housekeeping, decrease QMPL for swap out.

3616 TDH_DEC_QSWP_RR Timer-driven housekeeping, decrease QMPL for swap out.

3617 TDH_DEC_QSVT_GR Timer-driven housekeeping, decrease QMPL for service time.

3618 TDH_DEC_QSVT_RR Timer-driven housekeeping, decrease QMPL for service time.

3620 TDH_NA_INI_BAL Balancing of initiators, no action.

3621 TDH_MPL_VCAL_ERR Timer driven housekeeping, no decrease of mpl because
invalid scope of projected velocity.

3622 TDH_MPL_SVLCAL_ERR Timer driven housekeeping, no decrease of mpl because
invalid scope of projected sysplex velocity.

4010 ESPOL_NSW_LRU Change non-swap expanded access policy to lru.

4020 ESPOL_NSW_SP_AVAIL Change non-swap expanded access policy to space available.

4050 ESPOL_SWP_LRU Change swap expanded access policy to lru.

4060 ESPOL_SWP_SP_AVAIL Change swap expanded access policy to space available.

4090 HSK_ROLL_EXP_SPA Housekeep address space to space available because it is
rolling expanded storage.

Appendix A. SMF type 99 action codes 693

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

4200 STL_CR_AS_BLW_TRGT Stealing found a storage critical address space which is
below its processor protective target and RSM took more
frames as requested, first trace.

4201 STL_CR_AS_BLW_TRG2 Stealing found a storage critical address space which is
below its processor protective target and RSM took more
frames as requested, second trace.

4202 STL_CR_AS_BLW_TRG3 Stealing found a storage critical address space which is
below its processor protective target and RSM took more
frames as requested, third trace.

4203 STL_CR_REQ_BLW_PPS Steal request will bring a storage critical address space below
its processor protective target.

4310 STOR_AFCOK_INC The available frame queue target got increased.

4320 STOR_AFCOK_DEC The available frame queue target got decreased.

4330 STOR_PRESTEALOK_INC The presteal target got increased.

4340 STOR_PRESTEALOK_DEC The presteal target got decreased.

4510 ALL_OK_REM_ISI_TAR All points ok, remove individual protective processor storage
target for this address space.

4511 ALL_OK_REM_ISI_GP All points ok, remove individual protective processor storage
target from an address space in a resource period associated
with this goal period. The goal period is different than the
resource period.

4520 HSK_SL_DEC_ISI_TAR Slow mode housekeeping, decrement individual protective
processor storage target for this address space.

4521 HSK_SL_DEC_ISI_GP Slow mode housekeeping, decrement individual protective
processor storage target space for an address space in a
resource period associated with this goal period. The goal
period is different than the resource period.

4530 HSK_SL_REM_ISI_TAR Slow mode housekeeping, remove individual protective
processor storage target for this address space.

4531 HSK_SL_REM_ISI_GP Slow mode housekeeping, remove individual protective
processor storage target for an address space in a resource
period associated with this goal period. The goal period is
different than the resource period.

4540 OK1_INC_ISI_TAR Ok1 increment individual protective processor storage target
for this address space.

4541 OK1_INC_ISI_TAR_GR Ok1 increment individual protective processor storage target
for an address space in a resource receiver associated with
this goal receiver. The goal period is different than the
resource period.

4550 PA_DEC_ISI_TAR Policy adjustment, decrease individual protective processor
storage target for this address space.

4551 PA_DEC_ISI_TAR_GP Policy adjustment, decrease individual protective processor
storage target for an address space in a resource period
associated with this goal period. The goal period is different
than the resource period.

4560 PA_INC_ISI_TAR Policy adjustment, increase individual protective processor
storage target for this address space.

4561 PA_INC_ISI_TAR_GR Policy adjustment, increase individual protective processor
storage target for an address space in a resource receiver
associated with this goal receiver. The goal receiver is
different than the resource receiver.

694 z/OS: z/OS MVS Programming: Workload Management Services

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

4570 PA_ISI_NA_NET_VAL Policy adjustment, no individual protective processor storage
action because insufficient net value. Resource receiver
trace.

4571 PA_ISI_GREC_NETVAL Policy adjustment, no individual protective processor storage
action because insufficient net value. Goal reciever trace.

4580 PA_ISI_NA_REC_VAL Policy adjustment, no individual protective processor storage
action because insufficient receiver value for the goal
receiver. Resource receiver trace.

4581 PA_ISI_GREC_RECVAL Policy adjustment, no individual protective processor storage
action because insufficient receiver value for the goal
receiver. Goal receiver trace.

4590 PA_REM_ISI_TAR Policy adjustment, remove individual protective processor
storage target for this address space.

4591 PA_REM_ISI_TAR_GP Policy adjustment, remove individual protective processor
storage target from an address space in a resource period
associated with this goal period. The goal period is different
than the resource period.

4592 PA_DEC_ISI_GDON Goal donor trace when ISI target is reduced.

4600 PLOT_X_REM_ISI_TAR Plot expansion, remove individual protective processor
storage target for this address space.

4601 PLOT_X_REM_ISI_GP Plot expansion, remove individual protective processor
storage target from an address space in a resource period
associated with this goal period. The goal period is different
than the resource period.

4610 ROLL_EXP_REM_ISI Remove individual protective processor storage target
because address space target is rolling expanded for this
address space.

4611 ROLL_EXP_REM_ISIGP Remove individual protective processor storage target
because address space target is rolling expanded for this
address space, which is in a resource period associated with
this goal period. The goal period is different than the resource
period.

4620 RV_HSK_INC_ISI_TAR Reverse housekeeping, increment individual protective
processor storage target for this address space.

4621 RV_HSK_INC_ISI_GR Reverse housekeeping, increment individual protective
processor storage target for an address space in a resource
receiver associated with this goal receiver. The goal receiver
is different than the resource receiver.

4630 SH_DEC_ISI_TAR Storage shortage, decrease individual protective processor
storage target for this address space.

4631 SH_DEC_ISI_TAR_GP Storage shortage, decrease individual protective processor
storage target for an address space in a resource period
associated with this goal period. The goal period is different
than the resource period.

4640 SH_REM_ISI_TAR Storage shortage, remove individual protective processor
storage target for this address space.

4641 SH_REM_ISI_TAR_GP Storage shortage, remove individual protective processor
storage target from an address space in a resource period
associated with this goal period. The goal period is different
than the resource period.

4650 TDH_ME_DEC_ISI_TAR Time driven minimal effect housekeeping, decrease
individual protective processor storage target for this address
space.

Appendix A. SMF type 99 action codes 695

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

4653 TDH_ME_DEC_ISI_GP Time driven housekeeping minimal effect on goal period
when housekeeping down the individual protective processor
storage target for a transaction server period address space.

4660 TDH_ME_REM_ISI_TAR Time driven minimal effect housekeeping, remove individual
protective processor storage target for this address space.

4661 TDH_ME_REM_ISI_GP Time driven minimal effect housekeeping, remove individual
protective processor storage target from an address space in
a resource period associated with this goal period. The goal
period is different than the resource period.

4670 TDH_UA_DEC_ISI_TAR Time driven unassessable housekeeping, decrease individual
protective processor storage target for this address space.

4671 TDH_UA_DEC_ISI_GP Time driven unassessable housekeeping, decrease individual
protective processor storage target for an address space in a
resource period associated with this goal period. The goal
period is different than the resource period.

4680 TDH_UA_REM_ISI_TAR Time driven unassessable housekeeping, remove individual
protective processor storage target for this address space.

4681 TDH_UA_REM_ISI_GP Time driven unassessable housekeeping, remove individual
protective processor storage target from an address space in
a resource period associated with this goal period. The goal
period is different than the resource period.

4690 WSM_DEC_ISI_TAR Working set management, decrease individual protective
processor storage target for this address space.

4691 WSM_DEC_ISI_TAR_GP Working set management, decrease individual protective
processor storage target for an address space in a resource
period associated with this goal period. The goal period is
different than the resource period.

4700 WSM_INC_ISI_TAR Working set management, increase individual protective
processor storage target for this address space.

4701 WSM_INC_ISI_TAR_GR Working set management, increase individual protective
processor storage target for an address space in a resource
receiver associated with this goal receiver. The goal receiver
is different than the resource receiver.

4710 WSM_REM_ISI_TAR Working set management, remove individual protective
processor storage target for this address space.

4711 WSM_REM_ISI_TAR_GP Working set management, remove individual protective
processor storage target from an address space in a resource
period associated with this goal period. The goal period is
different than the resource period.

4720 Hsk_cr_inc_ici_tar Housekeep storage critical address space increment central
protective target.

4721 Hsk_cr_dec_ici_tar Housekeep storage critical address space decrement central
protective target.

4722 Hsk_cr_inc_ipi_tar Housekeep storage critical address space increment
processor protective target.

4723 Hsk_cr_dec_ipi_tar Housekeep storage critical address space decrement
processor protective target.

4724 Hsk_cr_inc_ici_gp Housekeep storage critical space increment central
protective target. Goal and resource periods are different.

4725 Hsk_cr_dec_ici_gp Housekeep storage critical space decrement central
protective target. Goal and resource periods are different.

4726 Hsk_cr_inc_ipi_gp Housekeep storage critical space increment processor
protective target. Goal and resource periods are different.

696 z/OS: z/OS MVS Programming: Workload Management Services

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

4727 Hsk_cr_dec_ipi_gp Housekeep storage critical space decrement processor
protective target. Goal and resource periods are different.

4730 Hsk_cr_rem_ipi_tar Housekeep storage critical space remove protective
processor target.

4740 Chp_cr_inc_ici_tar Change period increment central protective target.

4743 Chp_cr_inc_ipi_tar Change period increment processor protective Target.

4744 Chp_cr_inc_ipi_gp Change period increment processor protective Target, goal
and resource periods are different.

4747 inc_ipi_tar_blw_bw The protective processor target cannot be increamented the
new target would be below threshold for storage critical
address spaces.

4750 pa_cr_no_action No storage donation action was taken, because the address
space was storage critical.

4751 paaup_cr_no_action No storage donation action was taken, because the address
space was storage critical.

4752 palpd_cr_no_action No storage donation action was taken, the address space was
storage critical.

4760 pa_fst_outof_donor Find_storage has to give up, because it did not find more
donors.

4761 pa_fst_action Find_storage, action bookkept.

4762 pa_fst_begin Find_storage, begin.

4763 pa_fst_end Find_storage, end.

4764 pa_fst_parms Find_storage, trace parameters.

4768 pa_fst_isi_dnval_fd Find_storage, check donation value failed.

4769 pa_fst_no_isi_sdon Find_storage, the resource donor is not a WSM individual
storage donor.

4770 pa_fst_isi_no_bactn Find_storage, check donation value failed.

4771 pa_fst_no_bst_5as Find_storage, no best five individual donor address spaces
found.

5500 PA_DCM_INC_TAR Policy adjustment, increase I/O velocity target. Resource
receiver trace.

5501 PA_DCM_NA_NOPROB Policy adjustment, no action, insufficient delay. Resource
receiver trace.

5502 PA_DCM_NA_MAXVEL Policy adjustment, no action, actual velocity or current target
velocity is at maximum. Resource receiver trace.

5503 PA_DCM_NA_MAXTARG Policy adjustment, no action, new target velocity is at
maximum. Resource receiver trace.

5504 PA_DCM_NA_TAR_UNAB Policy adjustment, no action, current target velocity is not
being achieved. Resource receiver trace.

5505 PA_DCM_NA_RECVAL Policy adjustment, no action, insufficient receiver value.
Resource receiver trace.

5506 PA_DCM_NA_SVC_INC Policy adjustment, no action, current target velocity has
caused service time to increase. Resource receiver trace.

5507 PA_DCM_NA_IOSCDT Policy adjustment, no action, service error. Resource receiver
trace.

5508 PA_DCM_WLM_HUNG Policy adjustment, dynamic chpid management, WLM task
has not run recently so it may be hung.

Appendix A. SMF type 99 action codes 697

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

5510 PA_DCM_GREC Policy adjustment, dynamic chpid management, goal receiver
trace. The goal receiver is different from the resource
receiver.

5515 PA_DCM_NO_SCMT_ROW Policy adjustment, dynamic chpid management, period is
beyond bounds of Service Class Measurement Table.

5516 PA_DCM_DROP_SUBSYS Policy adjustment, dynamic chpid management, subsystem
dropped from tracking either because its no longer eligible
for management or there was a problem retrieving current
data from IOS.

5517 PA_DCM_NEWSUB_ERR Policy adjustment, dynamic chpid management, error from
IOS service when trying to get data about a new subsystem
to track.

5518 PA_DCM_GOALALG_ON Policy adjustment, dynamic chpid management goal
algorithm has been enabled.

5519 PA_DCM_GOALALG_OFF Policy adjustment, dynamic chpid management goal
algorithm has been disabled.

5520 HSK_DCM_BELOW_DEF Housekeeping, dynamic chpid management, velocity target
eliminated because it is below the default velocity.

5521 HSK_DCM_NO_DELAY Housekeeping, dynamic chpid management, velocity target is
reduced or eliminated because no period is experiencing
delay.

5522 HSK_DCM_IOSCDT_ERR Housekeeping, dynamic chpid management, target is
reduced or eliminate because no period is experiencing
delay.

5530 IOV_SUBSYS Sysevent IoViolat, I/O subsystem trace.

5531 IOV_GREC_SYS Sysevent IoViolat, goal receiver, sysplex level trace.

5532 IOV_GREC_LOC Sysevent IoViolat, goal receiver, local system trace.

5533 IOV_GREC_REM Sysevent IoViolat, goal receiver, remote system trace.

5534 IOV_GREC_NETV_SYS Sysevent IoViolat, goal receiver, rejected for net value,
sysplex level trace.

5535 IOV_GREC_NETV_LOC Sysevent IoViolat, goal receiver, rejected for net value, local
system trace.

5536 IOV_GREC_NETV_REM Sysevent IoViolat, goal receiver, rejected for net value,
remote system trace.

5537 IOV_GDON_NETV_SYS Sysevent IoViolat, goal donor, rejected for net value, sysplex
level trace.

5538 IOV_GDON_NETV_LOC Sysevent IoViolat, goal donor, rejected for net value, local
system trace.

5539 IOV_GDON_NETV_REM Sysevent IoViolat, goal donor, rejected for net value, remote
system trace.

5540 IOV_RREC_NETV Sysevent IoViolat, resource receiver, rejected for net value.

5541 IOV_RDON_NETV Sysevent IoViolat, resource donor, rejected for net value.

5542 IOV_GDON_MIMP_SYS Sysevent IoViolat, goal donor, rejected for net value, sysplex
level trace.

5543 IOV_GDON_MIMP_LOC Sysevent IoViolat, goal donor, most impacted, local system
trace.

5544 IOV_GDON_MIMP_REM Sysevent IoViolat, goal donor, most impacted, remote system
trace.

5545 IOV_NORECEIVER Sysevent IoViolat, no receiver found.

698 z/OS: z/OS MVS Programming: Workload Management Services

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

5546 IOV_NODONOR Sysevent IoViolat, no donor found.

5547 IOV_RC Sysevent IoViolat, return code.

5548 IOV_IREC_SYS Sysevent IoViolat, internal receiver, sysplex level trace.

5549 IOV_IREC_LOC Sysevent IoViolat, internal receiver, local system trace.

5550 IOV_IREC_REM Sysevent IoViolat, internal receiver, remote system trace.

5551 IOV_IDON_SYS Sysevent IoViolat, internal donor, sysplex level trace.

5552 IOV_IDON_LOC Sysevent IoViolat, internal donor, local system trace.

5553 IOV_IDON_REM Sysevent IoViolat, internal donor, remote system trace.

5554 IOV_DEC_TAR Sysevent IoViolat, decrease I/O velocity target for subsystem
whose target is violated.

5555 IOV_BAD_SUBSYS Sysevent IoViolat, I/O subsystem trace, bad subsystem index
or velocity.

5556 IOV_RDON_MIMP Sysevent IoViolat, resource donor, most impacted.

5557 IOV_ADD_CHPID Sysevent IoViolat, add chpid proposal.

5558 IOV_DELETE_CHPID Sysevent IoViolat, delete chpid proposal.

5559 IOV_AVAILABILITY Sysevent IoViolat, availability need request.

6510 HSK_SL_DEC_ICI_TAR Slow mode housekeeping, decrement protective central
storage target.

6520 HSK_SL_REM_ICI_TAR Slow mode housekeeping, remove protective central storage
target.

6530 OK1_INC_ICI_TAR Ok1 increment individual protective central storage target.

6540 PA_DEC_ICI_TAR Policy adjustment, decrease the protective central storage
target.

6550 PA_INC_ICI_TAR Increase protective central storage target.

6560 PA_REM_ICI_TAR Policy adjustment, remove the protective central storage
target.

6570 PLOT_X_REM_ICI_TAR Remove restrictive processor target for phase change.

6580 SH_DEC_ICI_TAR Shortage, decrease protective central storage target.

6590 SH_REM_ICI_TAR Shortage, remove protective central storage target.

6600 SWAPIN_DEC_ICI_TAR Decrease protective central storage target at swap in because
we cannot get enough frames to run address space at target.

6610 SWAPIN_REM_ICI_TAR Remove protective central storage target at swap in because
we cannot get enough frames to run address space at target.

6620 WSM_DEC_ICI_TAR Working set management, decrease protective central
storage target.

6630 WSM_INC_ICI_TAR Working set management, increase protective central storage
target.

6640 WSM_REM_ICI_TAR Working set management, remove protective central storage
target.

7110 SWAPIN_REM_RCS_TAR Remove restrictive central target because we can swap
address space in at ok1 point.

7120 SWAPIN_SET_RCS_TAR Set restrictive central storage target at swap in because we
cannot get enough frames to run address space at ok1.

7510 OTL_USE_DISC_CENT Working set management, out too long use discretionary
central.

Appendix A. SMF type 99 action codes 699

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

7520 WSM_DEC_MPL Working set management, decrease mpl.

7521 WSM_DEC_MPL_GP Working set management, decrease mpl for a resource period
associated with this goal period. The goal period and the
resource period are different.

7530 WSM_END_A2B_CNT Working set management, end a's frames to b central storage
interval.

7540 WSM_END_A2B_PSTOR Working set management, end a's frames to b processor stor
interval.

7550 WSM_END_OK1 Working set management, end ok1 interval.

7560 WSM_END_OK1_BY_STL Working set management, end ok1 interval.

7570 WSM_END_OK1_RUN_OK Working set management, end ok1 interval.

7590 WSM_END_SWAPIN Working set management, end a's frames to b swapping
interval.

7600 WSM_END_TRYLRU Working set management, end trylru interval.

7610 WSM_NA_MP1 Working set management, no action was taken in MP1.

7620 WSM_NA_NET_VAL Working set management, find_storage couldn't find enough
storage for the action.

7630 WSM_NA_NPCR_VAL Working set management, not enough net productive time
gain from this action.

7640 WSM_STRT_A2B_CNT Working set management, start a's frames to b central
storage interval.

7650 WSM_STRT_A2B_PSTOR Working set management, start a's frames to b porcessor
storage interval.

7660 WSM_STRT_OK1 Working set management, start ok1 interval.

7670 WSM_START_OTL_IN Working set management, start out too long swap in interval.

7690 WSM_STRT_SWAPIN Working set management, start a's frames to b swapping
interval.

7700 WSM_STRT_TRYLRU Working set management, start trylru interval.

7710 WSM_USE_DISC_CENT Working set management, use discretionary central.

7720 WSM_USE_DISC_EXP Working set management, use discretionary expanded.

8010 PA_CAP_DECS Decrease cap slices.

8020 PA_CAP_INCS Increase cap slices.

8025 PA_CAP_GETMAIN A new CAP pattern is getmained.

8030 PA_DRGROUP_ADD Dynamic resource group created.

8040 PA_DRGROUP_DELETE Dynamic resource group deleted.

8050 PA_DRGROUP_MRK_DEL Dynamic resource group marked for deletion.

8055 PA_DRGROUP_MRK_ALL All dynamic resource groups marked for deletion.

8060 PA_DRGROUP_EXCHG Dynamic resource group exchanged.

8070 PA_DRGROUP_MAX_INC Dynamic resource group maximum service.

8075 PA_DRGROUP_MAX_NI Dynamic resource group maximum service rate not
increased.

8080 PA_DRGROUP_MAX_DEC Dynamic resource group maximum service rate decreased.

8090 PA_DRGROUP_ADD_INT Dynamic resource group add initiators.

700 z/OS: z/OS MVS Programming: Workload Management Services

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

8095 PA_DRGROUP_TEST Dynamic resource test trace.

8500 HSK_FROM_SPC_IODP Housekeeping, move from small I/O consumer priority,
period is no longer small consumer.

8510 HSK_TO_SPC_IODP Housekeeping, move to small I/O consumer priority.

8520 HSK_XFROM_SPC_IODP Housekeeping, exchange from small I/O consumer priority to
make room for another small consumer.

8525 HSK_UNBUNCH_IOPRTY Housekeeping, unbunch I/O priorities.

8530 PA_IMDO_DON Policy adjustment, assess moving primary I/O donor down to
occupied priority.

8540 PA_IMDU_DON Policy adjustment, assess moving primary I/O donor down to
unoccupied priority.

8550 PA_IMD_DON_NETVAL Policy adjustment, I/O move down, rejected for no net value,
donor trace, affected by resource donor.

8552 PA_IMD_DON_NVL_SD Policy adjustment, I/O move down, rejected for no net value,
donor trace, affected by secondary donor.

8560 PA_IMD_GDON_NETVAL Policy adjustment, I/O move down, rejected for no net value,
goal donor trace, affected by resource donor.

8562 PA_IMD_GDON_NVL_SD Policy adjustment, I/O move down, rejected for no net value,
goal donor trace, affected by secondary donor.

8565 PA_IMD_GREC_NETVAL Policy adjustment, I/O move down, rejected for no net value,
goal receiver trace, affected by resource donor.

8567 PA_IMD_GREC_NVL_SD Policy adjustment, I/O move down, rejected for no net value,
goal receiver trace, affected by secondary donor.

8570 PA_IMD_RDON_NETVAL Policy adjustment, I/O move down, rejected for no net value,
resource donor trace, affected by resource donor.

8572 PA_IMD_RDON_NVL_SD Policy adjustment, I/O move down, rejected for no net value,
resource donor trace, affected by secondary donor.

8573 PA_IMD_REC_NETVAL Policy adjustment, I/O move down, rejected for no net value,
receiver trace, affected by resource donor.

8575 PA_IMD_REC_NVL_SD Policy adjustment, I/O move down, rejected for no net value,
receiver trace, affected by secondary donor.

8576 PA_IMD_RREC_NETVAL Policy adjustment, I/O move down, rejected for no net value,
resource receiver trace, affected by resource donor.

8578 PA_IMD_RREC_NVL_SD Policy adjustment, I/O move down, rejected for no net value,
resource receiver trace, affected by secondary donor.

8580 PA_IMD_SEC_DON Policy adjustment, assess moving secondary I/O donor down.

8590 PA_IMU_DON_NETVAL Policy adjustment, I/O move up, rejected for no net value,
donor trace.

8595 PA_IMU_DON_SEC_REC Policy adjustment, I/O assess moving donor up as secondary
receiver.

8600 PA_IMU_GDON_NETVAL Policy adjustment, I/O move up, rejected for no net value,
goal donor trace.

8605 PA_IMU_GREC_NETVAL Policy adjustment, I/O move up, rejected for no net value,
goal receiver trace.

8610 PA_IMU_RDON_NETVAL Policy adjustment, I/O move up, rejected for no net value,
resource donor trace.

8613 PA_IMU_REC_NETVAL Policy adjustment, I/O move up, rejected for no net value,
receiver trace.

Appendix A. SMF type 99 action codes 701

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

8616 PA_IMU_RREC_NETVAL Policy adjustment, I/O move up, rejected for no net value,
resource donor trace.

8620 PA_IMUO_REC Policy adjustment, assess moving primary I/O receiver up to
occupied priority.

8630 PA_IMUUA_REC Policy adjustment, assess moving I/O processor receiver up
to unoccupied priority above donor.

8635 PA_IMUUB_REC Policy adjustment, assess moving I/O processor receiver up
to unoccupied priority between donor and receiver's current
priorities.

8640 PA_IMU_SEC_REC Policy adjustment, assess moving secondary I/O donor up.

8650 PA_IMU_TO_SPC_DP Policy adjustment, move up to small I/O consumer priority.

8660 PA_IO_DECP_DON Policy adjustment, decrease priority for donor.

8670 PA_IO_DECP_SEC Policy adjustment, decrease priority for secondary donor or
receiver.

8690 PA_IO_DON_DEPEN Policy adjustment, no further I/O action because of donor
dependency relationship.

8720 PA_IO_GREC_NETVAL Policy adjustment, no I/O action because insufficient net
value, goal receiver trace.

8730 PA_IO_GREC_RECVAL Policy adjustment, no I/O action because insufficient receiver
value, goal receiver trace.

8740 PA_IO_INCP_DON Policy adjustment, increase priority for donor.

8750 PA_IO_INCP_REC Policy adjustment, increase priority for receiver.

8760 PA_IO_INCP_SEC Policy adjustment, increase priority for secondary donor or
receiver.

8850 PA_IO_NA_NO_DONOR Policy adjustment, no processor action because no donor
selected.

8870 PA_IO_NA_SPC_DP Policy adjustment, no I/O action because period is at or just
moved from small processor consumer priority.

8880 PA_IO_RDON_CAND Policy adjustment, I/O resource donor candidate selected.

8890 PA_IO_REC_DEPEN Policy adjustment, no further I/O action because of receiver
dependency relationship.

8900 PA_IO_REC_NETVAL Policy adjustment, no I/O action because insufficient net
value, receiver trace.

8910 PA_IO_REC_RECVAL Policy adjustment, no I/O action because insufficient receiver
value, receiver trace.

8920 PA_IO_RREC_NETVAL Policy adjustment, no I/O action because insufficient net
value, resource receiver trace.

8930 PA_IO_RREC_RECVAL Policy adjustment, no I/O action because insufficient receiver
value, resource receiver trace.

8933 PA_IO_SERVED_GDON Policy adjustment, served goal donor selected.

8936 PA_IO_SERVED_GREC Policy adjustment, served goal receiver selected.

8938 PA_IO_TO_SPC_DP Policy moved to small I/O consumer.

8940 PA_IO_UNC_DON Policy adjustment, unchanged donor.

8950 PA_IO_UNC_REC Policy adjustment, unchanged receiver.

8960 PA_IO_UNC_SEC_DON Policy adjustment, unchanged secondary donor.

8970 PA_IO_UNC_SEC_REC Policy adjustment, unchanged secondary receiver.

702 z/OS: z/OS MVS Programming: Workload Management Services

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

8975 PA_IO_NA_TOO_SOON Policy adjustment, no I/O action, too soon since last change.

8980 PA_IO_NA_NO_CLUST Policy adjustment, no I/O action, no clusters have been built.

8985 PA_IO_NA_REC_INEL Policy adjustment, no I/O action, receiver not eligible.

8990 PA_IO_IMPLEMENT Policy adjustment, implement I/O changes. The changes are
only trace on the system that made the change.

9001 PA_BP_DON_PER Buffer pool owning period, potential donor.

9002 PA_BP_DON_PER_VAL Buffer pool owning period, asess values of potential
donation: current buffer pool size, donor period pi delta,
receiver period pi delta.

9003 PA_BP_AFF_PER_VAL Buffer pool affected/sharing period, assess values of
potential donation: current buffer pool size, affected period pi
delta, receiver period pi delta.

9004 PA_BP_AFF_PER_SUC Success of buffer pool assessment for affected/sharing
period: 1 = successful, 0 = unsuccessful.

9005 PA_BP_ONE_UNSUC Assessment of buffer pool resource donation for all periods
using a common buffer pool had a negative result, the
assessment of at least one period using the common buffer
pool failed.

9006 PA_BP_ALL_SUC Assessment of buffer pool resource donation for all periods
using a common buffer pool had a positive result (all
assessments finished without error).

9010 PA_DEC_BP_TAR Policy adjustment, decrease bp storage target.

9020 PA_INC_BP_TAR Policy adjustment, increase bp storage target.

9030 PA_BP_NA_NET_VAL Policy adjustment, no period bp storage action because
insufficient net value.

9040 PA_BP_NA_REC_VAL Policy adjustment, no period bp storage action because
insufficient receiver value.

9050 PA_BP_TAR_UNAB Policy adjustment, no bp storage action because current
target not absorbed.

9060 PA_BP_NA_EXIT_FAIL Policy adjustment, no bp storage action because exit called
failed.

9070 PA_PRIREQ_LONG_DEL Policy adjustment, priority requests are waiting for longer
than 60 seconds.

9071 PA_PRIREQ_NO_CPU Policy adjustment, could not find CPU for additional server to
handle priority requests.

9072 PA_PRIREQ_NO_STOR Policy adjustment, could not find storage for additional server
to handle priority requests.

9075 PA_PRIREQ_NA_PEND Policy adjustment, a previous recommendation to start up a
space still exists or the first space has not bound yet.

9079 PA_PRIREQ_START_SA Policy adjustment, priority request algorithms start a server
address space.

9170 WSM_DEC_BP_TAR Working set management, decrease bp storage target.

9180 PA_QMPL_NA_REC Qmpl recommendations not allowed.

9190 PA_QMPL_NA_STOR No qmpl actions taken because a critical shortage condition
exists.

9191 PA_QMPL_AUX_STOR Available auxiliary storage for server spaces.

9195 PA_QMPL_NA_RUA0 No qmpl actions taken because a ready user average is zero.

Appendix A. SMF type 99 action codes 703

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

9200 PA_QMPL_NA_MPL No qmpl actions taken because a mpl problem exists for this
period.

9202 PA_QMPL_NA_IDLE No qmpl actions taken because already idle inits and there is
queued work. Let queued work be picked up by the idle inits
before starting more.

9205 PA_QMPL_NA_QUEUE No qmpl actions taken because the resource period isn't a
queue server.

9210 PA_QMPL_NA_PEND No qmpl actions taken because previous qmpl
recommendation(s) exists.

9220 PA_QMPL_NA_UNMGED No qmpl actions taken because queue is unmanaged.

9230 PA_QMPL_NA_REC_RR No qmpl actions taken because there is no receiver value.

9240 PA_QMPL_NA_REC_GR No qmpl actions taken because there is no receiver value.

9245 PA_QMPL_NA_SYSLOC No qmpl actions taken because there is a better system to
start initiators.

9246 PA_QMPL_NA_NOSYS No qmpl actions taken because there is no system to start
initiators.

9247 PA_QMPL_LIM_GSMAX Qmpl increase limited because resource group maximum
reached.

9250 PA_INC_QMPL_GR Policy adjustment, increase qmpl for queue servers, goal
receiver.

9251 PA_DEC_QMPL_GR Policy adjustment, decrease qmpl for queue servers, goal
receiver.

9260 PA_INC_QMPL_RR Policy adjustment, increase qmpl for queue servers, resource
receiver.

9261 PA_DEC_QMPL_RR Policy adjustment, decrease qmpl for queue servers,
resource receiver.

9270 PA_QMPL_NA_NETVAL Policy adjustment, no qmpl action because insufficient net
value for queue servers.

9280 PA_QMPL_NA_NO_REQ Policy adjustment, no qmpl action because no requests
queued.

9285 PA_QMPL_NA_GSMAX No QMPL actions taken to increase resource group service
maximum.

9294 PA_QMPL_LIMIT_AVT The number of initiators started was limited to not more than
number of available address spaces minus 10.

9295 ra_inc_qmpl_aff Start an initiator for a batch work queue because of a specific
affinity requirement.

9296 PA_QMPL_LIMIT_NUM The number of initiators started was limited to not more than
twice the current number of initiators.

9297 PA_QMPL_IMPACT_PER Period most impacted by starting the initiators on this
system.

9298 PA_QMPL_CPU_DON Period whose CPU assess will be reduced by adding initiators
on this system.

9299 PA_QMPL_INC_GSMAX QMPL actions taken to increase resource group service
maximum.

9300 PA_PPP_DECP_DON Priority of the period that was low importance period because
other high importance period was missing local goals.

9301 PA_PPP_POT_REC A period which is missing local goals due to significant CPU
delay and detects one or more low importance period to help
this period.

704 z/OS: z/OS MVS Programming: Workload Management Services

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

9305 PA_LMP_WT_CHANGE Lpar weight management action taken to increase lpar
weight, goal/resource receiver trace.

9306 PA_LMP_GWT_CHANGE Lpar weight management action taken to increase lpar
weight, goal receiver trace.

9307 PA_LMP_RWT_CHANGE Lpar weight management action taken to increase lpar
weight, resource receiver trace.

9308 PA_LMP_DON_NO_CAP Donor image cannot donate service units required to increase
weight of the system.

9309 PA_LMP_DIAG_FAIL Failed during LPAR weight change processing.

9310 PA_LMP_REC_RECVAL Lpar weight management, no weight change because of
insufficient receiver value, goal/resource receiver trace.

9311 PA_LMP_GREC_RECVAL Lpar weight management, no weight change because of
insufficient receiver value, goal receiver trace.

9312 PA_LMP_RREC_RECVAL Lpar weight management, no weight change because of
insufficient receiver value, resource receiver trace.

9313 PA_LMP_REC_NETVAL Lpar weight management, no weight change because of
insufficient net value, goal/resource receiver trace.

9314 PA_LMP_GREC_NETVAL Lpar weight management, no weight change because of
insufficient net value, goal receiver trace.

9315 PA_LMP_RREC_NETVAL Lpar weight management, no weight change because of
insufficient net value, resource receiver trace.

9316 PA_LMP_DON_NETVAL Lpar weight management, no weight change because of
insufficient net value, goal/resource donor trace.

9317 PA_LMP_GDON_NETVAL Lpar weight management, no weight change because of
insufficient net value, goal donor trace.

9318 PA_LMP_RDON_NETVAL Lpar weight management, no weight change because of
insufficient net value, resource donor trace.

9319 PA_LMP_DON_INV The selected donor can not donate weight because of either
the LDE is too old or the image is at minimum weight or the
LPAR CPU management is deactivated for the donor partition.

9320 PA_LMP_REC_MAX_WT The receiver may reach maximum weight if try to increase it's
weight.

9321 PA_LMP_REC_TIMEINT The receiver weight cannot be increased because not enough
time is elapsed from last weight change.

9322 PA_LMP_REC_INV The receiver weight cannot be increased because either
failed or LPAR CPU management is deactivated for receiver.

9323 PA_LMP_DON_NETVOK Lpar weight management, system is candidate for possible
weight change because of sufficient net value for this goal/
resource donor period.

9324 PA_LMP_GDON_NETVOK Lpar weight management, system is candidate for possible
weight change because of sufficient net value for this goal
donor period.

9325 PA_LMP_RDON_NETVOK Lpar weight management, system is candidate for possible
weight change because of sufficient net value for this goal
donor period.

9326 PA_CPU_ONLINE_REQ Not enough CPUs are online. A request is queued invoke
reconfig to bring required number of CPU on-line.

9327 PA_CPU_OFFLINE_REQ More CPUs than necessary are online. A request is queued
invoke reconfig to bring a CPU offline.

9328 PA_LMP_DON_CAND Donor image candidate.

Appendix A. SMF type 99 action codes 705

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

9329 PA_LMP_RECVAL_OK Sufficient receiver value.

9330 PA_LPCAP_PMAW Logical partition is to be capped with a non-zero pricing
management adjustment weight in order to enforce a soft
cap.

9331 PA_LPCAP_PATTERN Logical partition is to have capping turned on and off to
enforce a soft cap.

9332 PA_LPCAP_CAP_ON Logical partition was capped as part of enforcing a soft cap.

9333 PA_LPCAP_CAP_OFF Logical partition was uncapped as part of enforcing a soft
cap.

9334 PA_LPCAP_ON_ERR An error occurred when trying to cap the logical partition as
part of enforcing a soft cap.

9335 PA_LPCAP_OFF_ERR An error occurred when trying to uncap the logical partition
as part of enforcing a soft cap.

9336 PA_LPCAP_NODATA Unable to cap or uncap the partition on this interval due to
failure to obtain current partition data.

9337 PA_LPQUERY_ERR Failed to obtain current partition data.

9338 PA_LPCAP_CONFIGCAP WLM was capping the partition to enforce a soft cap. The
partition was reconfigured to be capped all the time.

9339 PA_LPCAP_FIX_PMAW WLM and PR/SM information is not in sync. PR/SM has a
different pricing management adjustment weight. WLM
information updated to match PR/SM.

9340 PA_LPCAP_FIX_OFF WLM and PR/SM information is not in sync. According to
PR/SM, WLM capping is not on. WLM information updated to
match PR/SM.

9341 PA_LPCAP_FIX_ON WLM and PR/SM information is not in sync. According to
PR/SM, WLM capping is on. WLM information updated to
match PR/SM.

9342 PA_LMP_GREC_RECOK Sufficient receiver value - goal receiver.

9343 PA_LMP_RREC_RECOK Sufficient receiver value - resource receiver.

9344 PA_LMP_REC_CAND Receiver image candidate.

9345 PA_LPCAP_PATTERN2 Logical partition is to have capping turned on and off to
enforce a soft cap.

9346 PA_CPUS_ADJUSTED Number of required online CPUs was adjusted due to
VARYCPUMIN value.

9347 PA_CPU_D204TIME CPU management processing skipped due to
D204ElapsedTime being too small.

9348 PA_LMP_SKIPPED LPAR weight management was skipped because one or
several required conditions were not met.

9398 PA_LMP_TEST LPAR Mgmt test race.

9399 PA_LMP_TEST1 LPAR Mgmt test race.

9401 PA_LPD204_ERR Weight management function failed.

9402 PA_LMP_REC_LOWUTIL CPU utilization for receiver is below threshold.

9403 PA_PPP_MU_BLKD_PER A period which is blocked due to CPU delay and moves it up
to the next occupied priority if there was only work of equal
or less importance at this priority.

9404 PA_GSL_HIGH_DELAY1 That delay time delta computed is not valid. The delay
samples for the interval will be ignored.

706 z/OS: z/OS MVS Programming: Workload Management Services

Table 104. SMF record type 99 action codes (continued)

Action code
number

Equate symbol Description

9405 PA_GSL_HIGH_DELAY2 That delay time delta computed is not valid. The delay
samples for the interval will be ignored.

9406 PA_GSL_LPAR_TIMES Dispatch, delay and wait time non z/OS partition.

9407 PA_CA2_BLKD_PER_NS PACA2 detects a period which is blocked due to CPU delay
and gets no service - uses the projected response time dist
only.

9408 PA_CA2_BLKD_PER_CM PACA2 detects a period which is blocked due to CPU or MPL
delay - uses the projected response time dist only.

9501 RA_PAE_MOV_UBA Resource adjustment, paging availability enhancement, move
unbound alias.

9502 RA_PAE_MOV_BDEV Resource adjustment, paging availability enhancement, move
base device alias.

9531 SPV_PAE_INV_DEVNUM Sysevent SETPVCNT, paging availability enhancement, invalid
device number.

9532 SPV_PAE_PLIST_INVD Sysevent SETPVCNT, paging availability enhancement, invalid
device number from plist.

9988 PA_MD_WT_CPUU Proj. Max demand calculation with projected CPUU samples.

9989 PA_MD_NO_CPUU Proj. Max demand calculation without projected CPUU
samples.

9991 PA_PAS_GREC_CPAS TEMP - goal receiver current speed.

9992 PA_PAS_GREC_PROJ TEMP - goal receiver current projected using and delay.

9993 PA_PAS_RREC_PROJ TEMP - resource rec new projected using and delay.

9994 PA_PAS_RREC_SAMPD TEMP - resource rec using & delay delta.

9995 PA_PAS_GDON_CPAS TEMP - goal receiver current speed.

9996 PA_PAS_GDON_PROJ TEMP - goal don current projected using and delay.

9997 PA_PAS_RDON_PROJ TEMP - resource donor new projected using and delay.

9998 PA_PAS_RDON_SAMPD TEMP - resource don using & delay delta.

Appendix A. SMF type 99 action codes 707

708 z/OS: z/OS MVS Programming: Workload Management Services

Appendix B. Application validation reason codes

Table 105 on page 709 lists the section, reason code, offset, and description for SERVD application
validation reason codes.

Table 105. SERVD application validation reason codes

Section Reason Offset Description

SERVD 3201 0 Beginning or end of some section as governed by the offset and
length fields lies beyond the end of the SERVD.

3202 0 Beginning of some section as governed by the offset field lies
within the middle of some other section.

3203 0 End of some section as governed by the offset and length fields
lies within the middle of some other section.

3204 0 Some section, as governed by offset and length fields, straddles
some other section.

3303 0 The SERVD has either an SVDEF, SVNPA, SVDCR, SVAEA, or an
SVSEA offset as zeros.

SERVDHDR 3301 0 Eyecatcher (SERVD_EYECATCHER) is not SERVD.

3302 0 Version (SERVD_VERSION) is 0

SVAEA 3701 SVAEA Beginning or end of some section as governed by the offset and
length fields lies beyond the end of the SVAEA.

3702 SVAEA Beginning of some section as governed by the offset field lies
within the middle of some other section.

3703 SVAEA End of some section as governed by the offset and length fields
lies within the middle of some other section.

3704 SVAEA Some section, as governed by offset and length fields, straddles
some other section.

SVAEAHDR 3801 SVAEA Eyecatcher (SVAEA_EYECATCHER) is not SVAE.

3802 SVAEA Functionality level (SVAEA_FUNCTIONALITY_LEVEL) is zeros.

3803 SVAEA Header length (SVAEA_SIZE_OF_HEADER) is incorrect. Does not
match the compiled size.

3804 SVAEA Application environment entry size (SVAEA_SIZE_AE) is incorrect.
Does not match the compiled size.

3805 SVAEA Application environment offset (SVAEA_EXT_DATA_OFF) is
incorrect. The offset is zero when SVAEA_EXT_DATA_LEN is non-
zero.

3806 SVAEA The functionality level is less than SVAEA_LEVEL003 and the
application environment entry offset or number are non-zero.

© Copyright IBM Corp. 1988, 2021 709

Table 105. SERVD application validation reason codes (continued)

Section Reason Offset Description

SVAEAAE B901 entry Duplicate application environment entry.

3902 entry Application environment
(SVAEA_APPLICATION_ENVIRONMENT_NAME) is not specified.

3903 entry Application environment
(SVAEA_APPLICATION_ENVIRONMENT_NAME) name is
incorrect.

3904 entry Subsystem type (SVAEA_SUBSYSTEM_TYPE) is not specified or is
incorrect.

3905 entry Procedure name (SVAEA_PROCEDURE_TYPE) is not specified or is
incorrect.

3906 entry WLM options (SVAEA_WLM_OPTIONS) has some reserved flags
on.

3907 entry WLM options (SVAEA_WLM_OPTIONS) has the single server flag
(SVAEA_SINGLE_SERVER) on for a subsystem type that does not
support the option.

3908 entry WLM options (SVAEA_WLM_OPTIONS) has the single sysplex flag
(SVAEA_SINGLE_SYSPLEX) on for a subsystem type that does not
support the option.

SVAEAEXT 3A01 entry Extension entry refers to an object (SVAEAROB) that does not
exist.

3A02 entry End of data (SVAEAEDO + SVAEAEDL) extends beyond the size of
the extended data section.

3A03 entry Use extension information found and the functionality level is less
than LEVEL003. For user extensions, you must be at least at
functionality LEVEL003 (LEVEL003 in
SVAEA_FUNCTIONALITY_LEVEL).

SVDEF 0001 SVDEF Beginning or end of some section as governed by the offset and
length fields lies beyond the end of the SVDEF

0002 SVDEF Beginning of some section as governed by the offset field lies
within the middle of some other section.

0003 SVDEF End of some section as governed by the offset and length fields
lies within the middle of some other section.

0004 SVDEF Some section, as governed by offset and length fields, straddles
some other section.

710 z/OS: z/OS MVS Programming: Workload Management Services

Table 105. SERVD application validation reason codes (continued)

Section Reason Offset Description

SVDEFHDR 0100 SVDEF The service definition is at a higher level than the WLM code
running on this system

0101 SVDEF Eyecatcher (SVDEFNAM) is not SVDE.

0102 SVDEF Functionality level is 0 (SVDEFLVL)

0103 SVDEF Only checked if releases match - Policy entry size (SVDEFPS) does
not match compiled size

0104 SVDEF Only checked if releases match - Workload entry size (SVDEFWS)
does not match compiled size

0105 SVDEF Only checked if releases match - Service class entry size
(SVDEFCS) does not match compiled size

0106 SVDEF Only checked if releases match - Resource group entry size
(SVDEFGS) does not match compiled size

0107 SVDEF Only checked if releases match - Report class entry size
(SVDEFRS) does not match compiled size

0108 SVDEF Only checked if releases match - Service class attribute entry size
(SVDEFCAS) does not match compiled size

0109 SVDEF Only checked if releases match - Resource group attribute section
size (SVDEFGAS) does not match compiled size

010A SVDEF Only checked if releases match - Constant entry size (SVDEFCNS)
does not match compiled size

010B SVDEF Only checked if releases match - Period entry size (SVDEFCPS)
does not match compiled size

010C SVDEF Size of the extended data (SVDEF_EXT_DATA_LEN) is nonzero, but
the offset to the extended data (SVDEF_EXT_DATA_OFF) is zero

010D SVDEF It was tried to install a service definition with a level less than 23
but with more than 999 report classes.

1C0F entry Classification rule was found that has indicators on in the SVDCR
reserved for future qualifier bytes. The reserved for future
qualifier bytes are in SVDCRRQT_BYTE4.

1C02 entry Group value specified (SVDCRRGI = '1'B) for a rule that does not
support the group indicator. The qualifier types that do not
support groups are: priority, zEnterprise service class.

Appendix B. Application validation reason codes 711

Table 105. SERVD application validation reason codes (continued)

Section Reason Offset Description

SVDEFHDR
(continued)

1C06 entry Substring (SVDCRRSU) specified for a qualifier type that does not
support substringing (hint: only accounting information
(SVDCRRAC), subsystem parameter (SVDCRRSP), collection name
(SVDCRRQT_COLL_NAME), correlation information
(SVDCRRQT_CORR_INFO), procedure name
(SVDCRRQT_PROC_NAME), process name
(SVDCRRQT_PROCESS_NAME), scheduling environment
(SVDCRRQT_SCHEDULING_ENVIRONMENT), zEnterprise Service
Class (SVDCRRQT_EWLM_SCLASS), Client UserId
(SVDCRRQT_CLIENT_USERID), Client Workstation Name
(SVDCRRQT_CLIENT_WORKSTATION_NAME), or Client IP Address
(SVDCRRQT_CLIENT_IP_ADDRESS), Package Name
(SVDCRRQT_PACK_NAME), Client Transaction Name
(SVDCRRQT_CLIENT_TN), or Client Accoutining Information
(SVDCRRQT_CLIENT_AI) support substringing for this WLM MVS
version.)

1C13 entry For the procedure name the substring value is greater than 128,
or the substring value plus the number of characters is greater
than 128.

1C2F entry Classification rules that use LEVEL029 qualifier types were found
and the functionality level in SVDCRLVL is set to less than
LEVEL029.

1C2A entry The Client Transaction Name qualifier type was specified greater
than 255, or the substring value plus the number of characters is
greater than 255.

1C2B entry The Package Name qualifier type was specified greater than 128,
or the substring value plus the number of characters is greater
than 128.

1C2C entry The Client IP Address qualifier type was specified greater than 39,
or the substring value plus the number of characters is greater
than 39.

1C2D entry The Client UserID qualifier type specified was greater than 128, or
the substring value plus the number of characters is greater than
128.

1C2E entry The Client Workstation Name qualifier type was specified greater
than 255, or the substring value plus the number of characters is
greater than 255.

1D05 entry Group exists that has indicators on in the SVDCR reserved for
future qualifier bytes. The reserved for future qualifier bytes are in
SVDCRGTY_BYTE4.

1D06 entry No groups found. SVDCRGTY and SVDCRGTY_BYTE3+4 is zeroes.

1D0A entry LEVEL029 classification rules found and the functionality level in
the SVDCRLVL is not set to LEVEL029.

712 z/OS: z/OS MVS Programming: Workload Management Services

Table 105. SERVD application validation reason codes (continued)

Section Reason Offset Description

SVDEFPOL 8201 section Number of policies (SVDEFPN) is 0

8202 section Number of policies (SVDEFPN) exceeds 99

8203 offset Duplicate policy names were found

0201 entry Name field (SVDEFPNM) has leading or imbedded blanks or
contains a reserved character: * ? / , . ' () & + - = ; -, =, ;)

0202 entry Name field (SVDEFPNM) starts with the letters SYS

SVDEFWKL 8301 offset Duplicate workload names were found

8302 section Number of workloads (SVDEFWN) exceeds 999

0301 entry Name field (SVDEFWNM) has leading or imbedded blanks or
contains a reserved character: * ? / , . ' () & + - = ; -, =, ;)

0302 entry Name field (SVDEFWNM) starts with the letters SYS

SVDEFSCL 8401 offset Duplicate service class names were found

8402 section Number of service classes (SVDEFCN) exceeds 100

0401 entry Name field (SVDEFCNM) has leading or imbedded blanks or
contains a reserved character: * ? / , . ' () & + - = ; -, =, ;)

0402 entry Workload name (SVDEFCWN) not found in the SVDEF

0403 entry Name field (SVDEFCNM) starts with the letters SYS

0404 entry Base attribute for this service class not found in the SVDEF

SVDEFGRP 8601 offset Duplicate resource group names were found

8602 section Number of resource groups (SVDEFGN) exceeds 32, or the
number of tenant resource groups exceeds 32

0601 entry Name field (SVDEFGNM) has leading or imbedded blanks or
contains a reserved character: * ? / , . ' () & + - = ; -, =, ;)

0602 entry Base attribute for this service class not found in the SVDEF

0603 entry Solution ID of tenant resource group invalid

SVDEFRCL 8701 offset Duplicate report class names were found

8702 section Number of report classes plus tenant report classes (SVDEFRN)
exceeds 2047

0701 entry Name field (SVDEFRNM) has leading or imbedded blanks or
contains a reserved character: * ? / , . ' () & + - = ; -, =, ;)

0702 entry Associated tenant resource group is not specified, or does not
exist in the containing service definition

Appendix B. Application validation reason codes 713

Table 105. SERVD application validation reason codes (continued)

Section Reason Offset Description

SVDEFCLA 0801 entry Named service class (SVDEFSCN) not found in service class list

0802 entry Named policy (SVDEFSPN) not found in policy list

0803 entry Named resource group (SVDEFCGN) not found in resource group
list

0804 entry Number of periods (SVDEFCPN) out of bounds (must be from 1 to
8)

0805 entry CPU critical option is used (YES) and the service class contains
more than 1 period.

0806 entry CPU critical option is used (YES) and the current functionality
level in svdef is less than LEVEL011.

0807 entry Service class is used in CICS or IMS and other subsystem type in a
service definition that is LEVEL011 or above.

SVDEFRGA 0901 entry Named resource group (SVDEFRGN) not found in resource group
list

0902 entry Named policy (SDVEFRPN) not found in policy list

0903 entry Specified minimum value (SVDEFGMN) exceeds 99,999,999

0904 entry Specified maximum value (SVDEFGMX) exceeds 99,999,999

0905 entry Specified minimum value (SVDEFGMN) exceeds maximum value
(SVDEFGMX)

714 z/OS: z/OS MVS Programming: Workload Management Services

Table 105. SERVD application validation reason codes (continued)

Section Reason Offset Description

SVDEFPDA 8501 entry A period other than the last period has a duration (SVDEFDUR) of
0

8502 entry A period other than the last period has a discretionary goal
(SVDEFDSC)

8503 entry Last period has a nonzero duration (SVDEFDUR)

0501
0502
0503
0504

entry More than one goal type specified (SVDEFTYP)

0505 entry Only checked if releases match - no known goal type (SVDEFTYP)
specified

0506 entry Percentile or average response time goal specified (SVDEFPRC,
SVDEFAVG), but response time units (SVDEFRTU) not between 1
and 4.

0507 entry Percentile, average response time, or velocity goal specified
(SVDEFPRC, SVDEFAVG, SVDEFVEL), but importance (SVDEFIMP)
is not between 1 and 5.

0508 entry Percentile or average response time goal but response time value
too low. The lowest value is 15 milliseconds (for service definition
with functionality level below 33) or one millisecond (for
functionality level of 33 and above).

0509 entry Percentile or average response time goal (SVDEFPRC, SVDEFAVG)
and response time is greater than 24 hours

050A entry Percentile goal (SVDEFPRC) and percentile value (SVDEFPER)
exceeds 99

050B entry Velocity goal (SVDEFVEL), and value (SVDEFVAL) exceeds
maximum of 99

050C entry Duration (SVDEFDUR) exceeds limit of 999,999,999

050D entry For service definition with LEVEL011 or above, a service class
cannot contain any periods that have higher importance levels
than previous periods

SVDEFCNS 0A01 section CPU coefficient (SDVEFCPU) exceeds maximum of 999,000

0A02 section I/O coefficient (SVDEFIOC) exceeds maximum of 999,000

0A03 section MSO coefficient (SVDEFMSO) exceeds maximum of 999,999

0A04 section SRB coefficient (SVDEFSRB) exceeds maximum of 999,000

0A05 section The dynamic alias management option is set to YES and the
functionality level in the SVDEFLVL is not set to LEVEL008 or
higher

0A06 entry The I/O priority management option is set to 'YES' and the
functionality level in the SVDEFLVL is not set to LEVEL003 or
higher.

Appendix B. Application validation reason codes 715

Table 105. SERVD application validation reason codes (continued)

Section Reason Offset Description

SVDEFEXT 0B01 entry Extension entry refers to an object (SVDEFROB) that does not
exist

0B02 entry End of data (SVDEFEDO + SVDEFEDL) extends beyond the size of
the extended data section

0B03 entry User extension information found and the level is less than
LEVEL002. For user extensions, you must be at least at LEVEL002
(LEVEL002 in SVDEFLVL).

SVDEFEMS 0C01 entry Guest platform management provider activation specified but the
functionality level in SVDEFLVL is less than LEVEL025

0C02 entry Number of excluded host systems specified (SVDEVNSY) but the
functionality level in SVDEFLVL is less than LEVEL025

0C03 entry The name of an excluded system (SCDEFSYN) is not valid

SVDCR 1901 SVDCR Beginning or end of some section as governed by the offset and
length fields lies beyond the end of the SVDCR

1902 SVDCR Beginning of some section as governed by the offset field lies
within the middle of some other section

1903 SVDCR End of some section as governed by the offset and length fields
lies within the middle of some other section

1904 SVDCR Some section, as governed by offset and length fields, straddles
some other section

SVDCRHDR 1A01 SVDCR Eyecatcher (SVDCRNAM) is not SVDC.

1A02 SVDCR Functionality level is 0 (SVDCRLVL)

1A03 SVDCR Only checked if releases match - Nesting level (SVDCRLN) does
not match compiled nesting level limit (must be <= 4)

1A04 SVDCR Only checked if releases match - Subsystem entry size (SVDCRSS)
does not match compiled size

1A05 SVDCR Only checked if releases match - Rule entry size (SVDCRRS) does
not match compiled size

1A06 SVDCR Only checked if releases match - Group entry size (SVDCRGS)
does not match compiled size

1A07 SVDCR Only checked if releases match - Group value entry size
(SVDCRVS) does not match compiled size

1A08 SVDCR Size of the extended data (SVDCR_EXT_DATA_LEN) is nonzero,
but the offset to the extended data (SVDCR_EXT_DATA_OFF) is
zero

1A09 SVDCR WLM version number (SVDCRWVN) is wrong. The functionality
level is LEVEL002 or greater, and the WLM version number is 0.

716 z/OS: z/OS MVS Programming: Workload Management Services

Table 105. SERVD application validation reason codes (continued)

Section Reason Offset Description

SVDCRSST 9B01 offset Duplicate subsystem type names were found

1B01 entry Service class for the subsystem type (SVDCRSCN) not found in the
SVDEF

1B02 entry Report class for the subsystem type (SVDCRSPN) not found in the
SVDEF

1B03 entry Number of classification rules (SVDCRSRN) is nonzero, but the
offset (SVDCRSRO) is 0

Appendix B. Application validation reason codes 717

Table 105. SERVD application validation reason codes (continued)

Section Reason Offset Description

SVDCRRUL 1C01 entry More than one qualifier type (SVDCRRQT) bit is on

1C02 entry Group value specified (SVDCRRGI = '1'B) for an accounting
information (SVDCRRAC) or subsystem parameter (SVDCRRSP)
type rule - this is unsupported.

1C03 entry Qualifier value (SVDCRRQV) has leading or imbedded blanks

1C04 entry Substring (SVDCRRSU) wildcard (SVDCRRWI) or mask characters
(SVDCRRSU) used on a rule that refers to a group (SVDCRRGI).

1C05 entry Nesting level of rule (SVDCRRLV) exceeds maximum nesting level
indicated in the header (SVDCRLN)

1C06 entry Substring (SVDCRRSU) specified for a qualifier type that does not
support substringing (hint: only accounting information
(SVDCRRAC), subsystem parameter (SVDCRRSP), collection name
(SVDCRRQT_COLL_NAME), correlation information
(SVDCRRQT_CORR_INFO), procedure name
(SVDCRRQT_PROC_NAME), or process name
(SVDCRRQT_PROCESS_NAME) support substringing for this WLM
MVS version).

1C07 entry Substring specified for accounting information extends beyond
the end of the maximum size accounting information (143
characters)

1C08 entry Substring specified for subsystem parameter extends beyond the
end of the maximum size subsystem parameter (255 characters)
list

1C09 entry Substring specified for collection name extends beyond the end of
the maximum size collection name (18 characters) list

1C0A entry Substring specified for correlation information extends beyond
the end of the maximum size correlation information (12
characters) list

1C0B entry Service class (SVDCRRCN) was not found in the SVDEF service
class list

1C0C entry Service class (SVDCRRPN) was not found in the SVDEF report
class list

1C0D entry Substring specified (SVDCRRSU) but value (SVDCRRSV) is 0

1C0E entry Group specified (SVDCRRGI) but named group (SVDCRRQV) not
found in group list

1C0F entry Classification rule was found that has indicators on in the SVDCR
reserved for future qualifier bytes. The reserved for future
qualifier types are in SVDCRRQT_BYTE3 and SVDCRRQT_BYTE4.

1C10 entry No classification rule found. SVDCRRQT is zeros.

1C11 entry LEVEL002 classification rules found and the functionality level in
the SVDCRLVL is not LEVEL002.

1C12 entry LEVEL003 classification rules found and the functionality level in
the SVDCRLVL is not LEVEL003.

718 z/OS: z/OS MVS Programming: Workload Management Services

Table 105. SERVD application validation reason codes (continued)

Section Reason Offset Description

SVDCRRUL
(continued)

1C13 entry For the procedure name the substring value is greater than 18 or
the substring value plus the number of characters is greater than
18.

1C14 entry LEVEL004 classification rules found and the functionality level in
the SVDCRLVL is not LEVEL004.

1C15 entry SVDCRRQV contains characters that are not allowed for a qualifier
that takes numeric data. SVDCRRQV must contain a number (in
EBCDIC) optionally preceded by one of the supported relational
operators.

1C16 entry Classification rule comment is found that has description
information in the SVDCR, but SVDCR is not at LEVEL006.

1C17 entry The PC (process name) classification type was found and the
functionality level in the SVDCRLVL is not set to LEVEL007.

1C18 entry For the process name the substring value is greater than 32 or the
substring value plus the number of characters is greater than 32.

1C19 entry Classification rules that uses LEVEL011 qualifier types were found
and the functionality level in SVDCRLVL is set to less than
LEVEL011.

1C32 entry Non-default reporting attribute "MOBILE", "CATEGORYA" or
"CATEGORYB" is used with a tenant report class in the same
classification rule.

1C33 entry A service class associated with a resource group is used with a
tenant report class in the same classification rule.

1C1A entry The SCHEDULING_ENVIRONMENT (SE) qualifier type specified is
greater than 16, or the substring value plus the number of
character is greater than 16.

1C1B entry Subsystem type that doesn't support storage protection has a
classification rule whose storage protection option is set to YES.

1C1C entry The storage protection option is chosen within a classification
rule, and the rule is using a service class with a short response
time goal.

1C1D entry The storage protection option is chosen within a classification
rule, and the rule is using a service class with more than one
period.

1C1E entry The storage protection option is chosen within a classification
rule, and the rule is using a service class with a discretionary goal.

1C1F entry LEVEL011 classification rule that uses storage critical option was
found, and the functionality level in the SVDCRLVL is set to less
than LEVEL011.

1C20 entry LEVEL011 classification rule that uses transaction and region
management options were found, and the functionality level in
the SVDCRLVL is set to less than LEVEL011.

1C21 entry Subsystem type that does not support the region management
option has a classification rule where the "Manage Region Using
Goals Of" field is set to REGION or BOTH.

Appendix B. Application validation reason codes 719

Table 105. SERVD application validation reason codes (continued)

Section Reason Offset Description

SVDCRGRP 9D01 entry Duplicates exist in the list of groups

1D01 entry Name field (SVDCRGNM) has leading or imbedded blanks or
contains a reserved character: * ? / , . ' () & + - = ; -, =, ;)

1D02 entry More than one qualifier type (SVDCRGTY) bit is on

1D03 entry Number of group values (SVDCRGVN) is 0

1D04 entry Offset to group values (SVDCRGVO) is 0

1D05 entry Group exists that has indicators on in the SVDCR that are reserved
for future qualifier bytes (SVDCRGTY_BYTE3 and
SVDCRGTY_BYTE4).

1D06 entry No groups found. SVDCRGTY is zeroes.

1D07 entry LEVEL002 classification groups found and the service definition
functionality level (SVDCRLVL) is not LEVEL002.

ID08 entry LEVEL003 classification rules (SVDCRGTY_PERFORM) found and
the functionality level in the SVDCRLVL is not LEVEL003.

1D09 entry LEVEL011 classification rules found and the functionality level in
the SVDCRLVL is less than LEVEL011.

SVDCRGVS 9E01 entry Duplicates exist in the list of group values for a given group

1E01 entry Group value (SVDCRGVV) has leading or imbedded blanks

1E02 entry LEVEL006 classification group comment found, but the
functionality level in the SVDCRLVL is not set to LEVEL006.

SVDCREXT 1F01 entry Extension entry refers to an object (SVDCRROB) that does not
exist

SVDCREXT 1F02 entry End of data (SVDCREDO + SVDCREDL) extends beyond the size of
the extended data section

SVDCREXT 1F03 entry User extension information found and the functionality level is
less than LEVEL002. To use user extensions, you must be at least
at LEVEL002 (LEVEL002 in SVDCRLVL).

SVNPA 2801 SVNPA Beginning or end of some section as governed by the offset and
length fields lies beyond the end of the SVDCR

2802 SVNPA Beginning of some section as governed by the offset field lies
within the middle of some other section

2803 SVNPA End of some section as governed by the offset and length fields
lies within the middle of some other section

2804 SVNPA Some section, as governed by offset and length fields, straddles
some other section

720 z/OS: z/OS MVS Programming: Workload Management Services

Table 105. SERVD application validation reason codes (continued)

Section Reason Offset Description

SVNPAHDR 2901 SVNPA Eyecatcher (SVNPANAM) is not SVNP.

2902 SVNPA Functionality level is 0 (SVNPALVL)

2903 SVNPA Only checked if releases match - Number of notepad entries
(SVNPANPN) exceeds maximum allowed (500)

2904 SVNPA Only checked if releases match - Notepad data entry size
(SVDEFNDS) does not match compiled size

SVSEA 3B01 SVSEA Beginning or end of some section as governed by the offset and
length fields lies beyond the end of the SVSEA.

3B02 SVSEA Beginning of some section as governed by the offset field lies
within the middle of some other section.

3B03 SVSEA End of some section as governed by the offset and length fields
lies within the middle of some other section.

3B04 SVSEA Some section, as governed by offset and length fields, straddles
some other section.

SVSEAHDR 3C01 SVSEA Eyecatcher (SVSEA_EYECATCHER) is not SVSE.

3C02 SVSEA Functionality level (SVSEA_FUNCTIONALITY_LEVEL) is zeros.

3C03 SVSEA Header length (SVSEA_SIZE_OF_HEADER) is incorrect. Does not
match the compiled size.

3C04 SVSEA Scheduling environment entry size (SVSEA_SIZE_SE) is incorrect.
Does not match the compiled size.

3C05 SVSEA Scheduling environment to resource connection size
(SVSEA_SIZE_SR) is incorrect. Does not match the compiled size.

3C06 SVSEA Resource size (SVSEA_SIZE_RE) is incorrect. Does not match the
compiled size.

3C05 SVSEA Scheduling environment extension size (SVSEA_SIZE_EXT) is
incorrect. Does not match the compiled size.

3C08 SVSEA The functionality level is less than SVSEA_LEVEL004 and the
scheduling environment entry offset or number are non-zero.

SVSEASE BD10 entry Too many scheduling environment entries.

BD11 entry Duplicate scheduling environment entry.

3D12 entry Scheduling environment name (SVSEA_SE_SCHENV_NAME) is not
specified.

3D13 entry Scheduling environment name (SVSEA_SE_SCHENV_NAME) is
incorrect.

3D14 entry Scheduling environment name (SVSEA_SE_SCHENV_NAME) is
reserved (cannot start with SYS).

Appendix B. Application validation reason codes 721

Table 105. SERVD application validation reason codes (continued)

Section Reason Offset Description

SVSEASR 3D20 entry In the scheduling environment to resource connection, the
scheduling environment name (SVSEA_SR_SCHENV_NAME) is not
specified.

3D21 entry In the scheduling environment to resource connection, the
scheduling environment name (SVSEA_SR_SCHENV_NAME) is
incorrect.

3D22 entry In the scheduling environment to resource connection, the
resource name (SVSEA_SR_RESOURCE_NAME) is not specified.

3D23 entry In the scheduling environment to resource connection, the
resource state (SVSEA_SR_RESOURCE_STATE) is not specified.

3D24 entry In the scheduling environment to resource connection, the
resource state (SVSEA_SR_RESOURCE_STATE) is not valid.

3D25 entry In the scheduling environment to resource connection, the
scheduling environment name (SVSEA_SR_SCHENV_NAME) is not
in the list of defined scheduling environments.

3D26 entry In the scheduling environment to resource connection, the the
resource name (SVSEA_SR_RESOURCE_NAME) is not in the list of
defined resources.

SVSEARE BD30 entry Too many resource entries.

BD31 entry Duplicate resource entry.

3D32 entry Resource name (SVSEA_RE_RESOURCE_NAME) is not specified.

3D33 entry Resource name (SVSEA_RE_RESOURCE_NAME) is incorrect.

3D34 entry Resource name (SVSEA_RE_RESOURCE_NAME) is reserved
(cannot start with SYS).

SVSEAEXT 3E01 entry Extension entry refers to an object (SVSEAROB) that does not
exist is not found.

3E02 entry End of data (SVSEAEDO + SVSEAEDL) extends beyond the size of
the extended data section

3E03 entry User extension information found and the functionality level is
less than LEVEL004. For user extensions, you must be at least at
functionality LEVEL004 (LEVEL004 in SVDEFLVL).

722 z/OS: z/OS MVS Programming: Workload Management Services

Table 105. SERVD application validation reason codes (continued)

Section Reason Offset Description

XML 4001 – The codepage which has been specified in XML is invalid. Only
EDCDIC code pages starting with 'IBM' are accepted by the
codepage= attribute.

4002 – The XML does not have the required xmlns= attribute in the
'ServiceDefinition' tag. The valid name spaces are listed in
Appendix C, “Structure of the XML service definition (DTD),” on
page 725.

4003 – The name space specified in the xmlns= attribute is invalid. The
name space must have the following format:

'http://www.ibm.com/xmlns/prod/zwlm/yyyy/mm/
ServiceDefinition.xsd'

The valid name spaces are listed in Appendix C, “Structure of the
XML service definition (DTD),” on page 725.

4004 – The level of the service definition which has been specified in the
level tag does not match the name space specified in the xmlns=
attribute. The valid name spaces and the corresponding levels are
listed in Appendix C, “Structure of the XML service definition
(DTD),” on page 725.

4005 unexpect
ed tag

The tag located at the returned offset is not expected at this
position in the XML.

4006 invalid
keyword

The keyword located at the returned offset is not known by WLM.

4007 invalid
content

The content located at the returned offset is too long for the tag
where it has been specified.

4008 invalid
content

The content located at the returned offset is not valid for the tag
where it has been specified.

4009 – The XML is not complete. The input buffer does not end with the
service definition end tag.

Appendix B. Application validation reason codes 723

724 z/OS: z/OS MVS Programming: Workload Management Services

Appendix C. Structure of the XML service definition
(DTD)

This section describes the following:

• The structure of the XML output of IWMDEXTR
• The layout of the XML service definition (DTD) that can be passed to IWMDINST

To obtain XML output, specify the TYPE=XML parameter for the IWMDEXTR service.

To install such an XML service definition with the IWMDINST service, also specify the TYPE=XML
parameter.

The following DTD defines the structure of an XML service definition:

<!ELEMENT ServiceDefinition (Name, Description?, CreationDate?, CreationUser?,
 ModificationDate?, ModificationUser?, Level, ReplId?, ProdId?, Notes,
 ResourceGroups, TenantResourceGroups?, Workloads, ServicePolicies, ReportClasses, TenantReportClasses?,
 ClassificationGroups, Classifications, ServiceParameter,
 ApplicationEnvironments?, Resources?, SchedulingEnvironments?, GPMPSettings?,
 Extensions?) >

<!ATTLIST ServiceDefinition
 xmlns CDATA #IMPLIED
 codepage CDATA #IMPLIED >

<!ELEMENT Name (#PCDATA) >
<!ELEMENT Description (#PCDATA) >
<!ELEMENT CreationDate (#PCDATA) >
<!ELEMENT CreationUser (#PCDATA) >
<!ELEMENT ModificationDate (#PCDATA) >
<!ELEMENT ModificationUser (#PCDATA) >
<!ELEMENT Level (#PCDATA) >
<!ELEMENT ReplId (#PCDATA) >
<!ELEMENT ProdId (#PCDATA) >

<!ELEMENT Notes (Note*) >
<!ELEMENT Note (#PCDATA) >

<!ELEMENT ResourceGroups (ResourceGroup*) >
<!ELEMENT ResourceGroup (Name, Description?, CreationDate, CreationUser,
 ModificationDate, ModificationUser, Type?, CapacityMinimum?,
 CapacityMaximum?, MemoryLimit?, IncludeSpecialtyProcessorConsumption?) >

<!ELEMENT TenantResourceGroups (TenantResourceGroup*) >
<!ELEMENT TenantResourceGroup (
 Name, Description?, SolutionId?, TenantId?, TenantName?,
 CreationDate, CreationUser,
 ModificationDate, ModificationUser, Type?, CapacityMinimum?,
 CapacityMaximum?, MemoryLimit?, IncludeSpecialtyProcessorConsumption?) >

<!ELEMENT Type (#PCDATA) >

<!ELEMENT SolutionId (#PCDATA) >
<!ELEMENT TenantId (#PCDATA) >
<!ELEMENT TenantName (#PCDATA) >

<!ELEMENT CapacityMaximum (#PCDATA) >
<!ELEMENT CapacityMinimum (#PCDATA) >
<!ELEMENT MemoryLimit (#PCDATA) >

<!ELEMENT IncludeSpecialtyProcessorConsumption (#PCDATA) >

<!ELEMENT Workloads (Workload*) >
<!ELEMENT Workload (Name, Description?, CreationDate, CreationUser,
 ModificationDate, ModificationUser, ServiceClasses) >

<!ELEMENT ServiceClasses (ServiceClass*) >
<!ELEMENT ServiceClass (Name, Description?, CreationDate, CreationUser,
 ModificationDate, ModificationUser, CPUCritical?, IOPriorityGroup?,
 HonorPriority?, ResourceGroupName?, Goal) >

<!ELEMENT ResourceGroupName (#PCDATA) >

<!ELEMENT Goal ((AverageResponseTime | PercentileResponseTime | Velocity)*,
 Discretionary?) >

<!ELEMENT AverageResponseTime (Importance, Duration?, ResponseTime) >

<!ELEMENT Importance (#PCDATA) >
<!ELEMENT Duration (#PCDATA) >

© Copyright IBM Corp. 1988, 2021 725

<!ELEMENT ResponseTime (#PCDATA) >

<!ELEMENT PercentileResponseTime (Importance, Duration?, ResponseTime,
 Percentile) >

<!ELEMENT Percentile (#PCDATA) >

<!ELEMENT Velocity (Importance, Duration?, Level) >

<!ELEMENT Discretionary EMPTY >

<!ELEMENT ServicePolicies (ServicePolicy*) >
<!ELEMENT ServicePolicy (Name, Description?, CreationDate, CreationUser,
 ModificationDate, ModificationUser, ServiceClassOverrides,
 ResourceGroupOverrides, TenantResourceGroupOverrides?) >

<!ELEMENT ServiceClassOverrides (ServiceClassOverride*) >
<!ELEMENT ServiceClassOverride (ServiceClassName, CPUCritical?,
 IOPriorityGroup?, HonorPriority?, ResourceGroupName?, Goal) >

<!ELEMENT ServiceClassName (#PCDATA) >
<!ELEMENT CPUCritical (#PCDATA) >
<!ELEMENT IOPriorityGroup (#PCDATA) >
<!ELEMENT HonorPriority (#PCDATA) >

<!ELEMENT ResourceGroupOverrides (ResourceGroupOverride*) >
<!ELEMENT ResourceGroupOverride (ResourceGroupName, Type?,
 CapacityMinimum?, CapacityMaximum?, MemoryLimit??,
 IncludeSpecialtyProcessorConsumption?) >

<!ELEMENT TenantResourceGroupOverrides (TenantResourceGroupOverride*) >
<!ELEMENT TenantResourceGroupOverride (TenantResourceGroupName, Type?,
 CapacityMinimum?, CapacityMaximum?, MemoryLimit?,
 IncludeSpecialtyProcessorConsumption?) >

<!ELEMENT ReportClasses (ReportClass*) >
<!ELEMENT ReportClass (Name, Description?, CreationDate,
 CreationUser, ModificationDate, ModificationUser) >

<!ELEMENT TenantReportClasses (TenantReportClass*) >
<!ELEMENT TenantReportClass (Name, TenantResourceGroupName,
 Description?, CreationDate,
 CreationUser, ModificationDate, ModificationUser) >

<!ELEMENT TenantResourceGroupName (#PCDATA) >

<!ELEMENT ClassificationGroups (ClassificationGroup*) >
<!ELEMENT ClassificationGroup (Name, Description?, CreationDate,
 CreationUser, ModificationDate, ModificationUser, QualifierType,
 QualifierNames) >

<!ELEMENT QualifierType (#PCDATA) >

<!ELEMENT QualifierNames (QualifierName*) >
<!ELEMENT QualifierName (Name, Description?, Start?) >

<!ELEMENT Classifications (Classification*) >
<!ELEMENT Classification (SubsystemType, Description?, CreationDate,
 CreationUser, ModificationDate, ModificationUser,
 DefaultServiceClassName?, DefaultReportClassName?, EWLMClassification?,
 ClassificationRules?) >

<!ELEMENT SubsystemType (#PCDATA) >
<!ELEMENT DefaultServiceClassName (#PCDATA) >
<!ELEMENT DefaultReportClassName (#PCDATA) >

<!ELEMENT ClassificationRules (ClassificationRule*) >
<!ELEMENT ClassificationRule (Description?, QualifierType, QualifierValue,
 Start?, ServiceClassName?, ReportClassName?, StorageCritical?, RegionGoal?,
 ReportingAttribute?, ClassificationRule*) >

<!ELEMENT QualifierValue (#PCDATA) >
<!ELEMENT Start (#PCDATA) >
<!ELEMENT ReportClassName (#PCDATA) >
<!ELEMENT RegionGoal (#PCDATA) >
<!ELEMENT StorageCritical (#PCDATA) >
<!ELEMENT ReportingAttribute (#PCDATA) >
<!ELEMENT ServiceParameter (ServiceCoefficients, ServiceOptions?) >

<!ELEMENT ServiceCoefficients (CPU, IOC, MSO, SRB)? >

<!ELEMENT CPU (#PCDATA) >
<!ELEMENT IOC (#PCDATA) >
<!ELEMENT MSO (#PCDATA) >
<!ELEMENT SRB (#PCDATA) >

<!ELEMENT EWLMClassification (#PCDATA) >

<!ELEMENT ServiceOptions (IOPriorityManagement, DynamicAliasManagement?,
 IOPriorityGroupsEnabled?, DeactivateDiscretionaryGoalManagement?) >

<!ELEMENT IOPriorityManagement (#PCDATA) >
<!ELEMENT DynamicAliasManagement (#PCDATA) >

726 z/OS: z/OS MVS Programming: Workload Management Services

<!ELEMENT IOPriorityGroupsEnabled (#PCDATA) >
<!ELEMENT DeactivateDiscretionaryGoalManagement (#PCDATA) >

<!ELEMENT ApplicationEnvironments (ApplicationEnvironment*) >
<!ELEMENT ApplicationEnvironment (Name, Description?, SubsystemType, Limit,
 ProcedureName?, StartParameter?) >

<!ELEMENT StartParameter (#PCDATA) >
<!ELEMENT Limit (#PCDATA) >
<!ELEMENT ProcedureName (#PCDATA) >

<!ELEMENT Resources (Resource*) >
<!ELEMENT Resource (Name, Description?) >

<!ELEMENT SchedulingEnvironments (SchedulingEnvironment*) >
<!ELEMENT SchedulingEnvironment (Name, Description?, ResourceNames) >

<!ELEMENT ResourceNames (ResourceName*) >
<!ELEMENT ResourceName (Name, RequiredState) >

<!ELEMENT RequiredState (#PCDATA) >

<!ELEMENT GPMPSettings (Activation, ExcludedHostSystems?) >
<!ELEMENT Activation (#PCDATA) >
<!ELEMENT ExcludedHostSystems (ExcludedHostSystem*) >
<!ELEMENT ExcludedHostSystem (Name) >

<!ELEMENT Extensions (ServiceDefinitionExtensions?,
 ResourceGroupExtensions?, ResourceGroupAttributeExtensions?,
 WorkloadExtensions?, ServiceClassExtensions?,
 ServiceClassAttributeExtensions?, ServicePolicyExtensions?,
 ReportClassExtensions?, ClassificationExtensions?,
 ApplicationEnvironmentExtensions?, ResourceExtensions?,
 SchedulingEnvironmentHeaderExtensions?,
 SchedulingEnvironmentExtensions?,
 SchedulingEnvironmentResourceExtensions?) >

<!ELEMENT ServiceDefinitionExtensions (ServiceDefinitionExtension*) >
<!ELEMENT ServiceDefinitionExtension (VendorId?, RelatedObject,
 ExtensionData?) >

<!ELEMENT VendorId (#PCDATA) >
<!ELEMENT RelatedObject (#PCDATA) >
<!ELEMENT ExtensionData (#PCDATA) >

<!ELEMENT ResourceGroupExtensions (ResourceGroupExtension*) >
<!ELEMENT ResourceGroupExtension (VendorId?, RelatedObject, ServicePolicyName?,
 ExtensionData?) >

<!ELEMENT ServicePolicyName (#PCDATA) >

<!ELEMENT ResourceGroupAttributeExtensions (ResourceGroupAttributeExtension*) >
<!ELEMENT ResourceGroupAttributeExtension (VendorId?, RelatedObject,
 ServicePolicyName?, ExtensionData?) >

<!ELEMENT WorkloadExtensions (WorkloadExtension*) >
<!ELEMENT WorkloadExtension (VendorId?, RelatedObject, ServicePolicyName?,
 ExtensionData?) >

<!ELEMENT ServiceClassExtensions (ServiceClassExtension*) >
<!ELEMENT ServiceClassExtension (VendorId?, RelatedObject, ServicePolicyName?,
 ExtensionData?) >

<!ELEMENT ServiceClassAttributeExtensions (ServiceClassAttributeExtension*) >
<!ELEMENT ServiceClassAttributeExtension (VendorId?, RelatedObject,
 ServicePolicyName?, ExtensionData?) >

<!ELEMENT ServicePolicyExtensions (ServicePolicyExtension*) >
<!ELEMENT ServicePolicyExtension (VendorId?, RelatedObject, ServicePolicyName?,
 ExtensionData?) >

<!ELEMENT ReportClassExtensions (ReportClassExtension*) >
<!ELEMENT ReportClassExtension (VendorId?, RelatedObject, ServicePolicyName?,
 ExtensionData?) >

<!ELEMENT ClassificationExtensions (ClassificationExtension*) >
<!ELEMENT ClassificationExtension (VendorId?, RelatedObject, ExtensionData?) >

<!ELEMENT ApplicationEnvironmentExtensions (ApplicationEnvironmentExtension*) >
<!ELEMENT ApplicationEnvironmentExtension (VendorId?, RelatedObject,
 ExtensionData?) >

<!ELEMENT ResourceExtensions (ResourceExtension*) >
<!ELEMENT ResourceExtension (VendorId?, RelatedObjectName?, ExtensionData?) >

<!ELEMENT SchedulingEnvironmentHeaderExtensions
 (SchedulingEnvironmentHeaderExtension*) >
<!ELEMENT SchedulingEnvironmentHeaderExtension
 (VendorId?, RelatedObject, ExtensionData?) >

<!ELEMENT SchedulingEnvironmentExtensions
 (SchedulingEnvironmentExtension*) >
<!ELEMENT SchedulingEnvironmentExtension

Appendix C. Structure of the XML service definition (DTD) 727

 (VendorId?, RelatedObject, ExtensionData?) >

<!ELEMENT SchedulingEnvironmentResourceExtensions
 (SchedulingEnvironmentResourceExtension*) >
<!ELEMENT SchedulingEnvironmentResourceExtension
 (VendorId?, RelatedObject, ExtensionData?) >

Table 106 on page 728 lists the valid name spaces and the corresponding functionality levels:

Table 106. Valid name spaces and corresponding functionality levels

Name space Level

http://www.ibm.com/xmlns/prod/zwlm/1993/09/ServiceDefinition.xsd 001

http://www.ibm.com/xmlns/prod/zwlm/1994/09/ServiceDefinition.xsd 002

http://www.ibm.com/xmlns/prod/zwlm/1997/03/ServiceDefinition.xsd 003

http://www.ibm.com/xmlns/prod/zwlm/1997/09/ServiceDefinition.xsd 004

http://www.ibm.com/xmlns/prod/zwlm/1998/09/ServiceDefinition.xsd 006

http://www.ibm.com/xmlns/prod/zwlm/1999/03/ServiceDefinition.xsd 007

http://www.ibm.com/xmlns/prod/zwlm/1999/09/ServiceDefinition.xsd 008

http://www.ibm.com/xmlns/prod/zwlm/2000/09/ServiceDefinition.xsd 011

http://www.ibm.com/xmlns/prod/zwlm/2001/09/ServiceDefinition.xsd 013

http://www.ibm.com/xmlns/prod/zwlm/2005/12/ServiceDefinition.xsd 017

http://www.ibm.com/xmlns/prod/zwlm/2006/09/ServiceDefinition.xsd 019

http://www.ibm.com/xmlns/prod/zwlm/2008/09/ServiceDefinition.xsd 021

http://www.ibm.com/xmlns/prod/zwlm/2009/09/ServiceDefinition.xsd 023

http://www.ibm.com/xmlns/prod/zwlm/2010/09/ServiceDefinition.xsd 025

http://www.ibm.com/xmlns/prod/zwlm/2012/09/ServiceDefinition.xsd 029

http://www.ibm.com/xmlns/prod/zwlm/2015/12/ServiceDefinition.xsd 030

http://www.ibm.com/xmlns/prod/zwlm/2016/12/ServiceDefinition.xsd 031

http://wlm.ibm.comm/xmlns/prod/zwlm/2017/12/ServiceDefinition.xsd 032

http://www.ibm.com/xmlns/prod/zwlm/2017/09/ServiceDefinition.xsd 035

728 z/OS: z/OS MVS Programming: Workload Management Services

Appendix D. C language interfaces for workload
management services

Table 107 on page 729 shows C language interfaces with their associated workload management
services. See z/OS XL C/C++ Runtime Library Reference for more information about these and other C
language interfaces.

Also see “Interfaces for sysplex routing services” on page 731 for the four C interfaces for accessing the
WLM sysplex routing services, and “Interface for querying a virtual server” on page 732 for the C
interface for querying a virtual server.

Table 107. C language interfaces

C language interface Associated WLM service Reference information

CheckSchEnv IWMSEDES “IWMSEDES — Scheduling
environments determine execution
service” on page 300

ConnectExportImport IWMCONN WORK_MANAGER=NO
 ROUTER=NO
 QUEUE_MANAGER=NO
 SERVER_MANAGER=NO
 EXPTIMPT=YES

“IWMCONN — Connect to workload
management” on page 753

ConnectServer IWMCONN WORK_MANAGER=NO
 ROUTER=NO
 QUEUE_MANAGER=YES
 SERVER_MANAGER=YES

“IWMCONN — Connect to workload
management” on page 753

ConnectWorkMgr IWMCONN WORK_MANAGER=YES
 ROUTER=NO
 QUEUE_MANAGER=YES
 SERVER_MANAGER=NO
 EXPTIMPT=YES

“IWMCONN — Connect to workload
management” on page 753

ContinueWorkUnit IWMCREA TYPE=DEPENDENT “IWMECREA — Create an enclave” on
page 780

CreateWorkUnit
IWMCREA TYPE=INDEPENDENT

“IWMECREA — Create an enclave” on
page 780

DeleteWorkUnit IWMEDELE “IWMEDELE — Delete an enclave” on
page 789

DisconnectServer
IWMDISC

“IWMDISC — Disconnect from
workload management” on page
769

ExportWorkUnit
IWMEXPT

“IWMEXPT — Export a WLM enclave”
on page 230

ExtractWorkUnit IWMESQRY “IWMESQRY — Query enclave state”
on page 207

ImportWorkUnit
IWMIMPT

“IWMIMPT — Import an enclave” on
page 238

© Copyright IBM Corp. 1988, 2021 729

Table 107. C language interfaces (continued)

C language interface Associated WLM service Reference information

JoinWorkUnit
IWMJOIN

“IWMEJOIN — Join WLM enclave” on
page 175

LeaveWorkUnit
IWMELEAV

“IWMELEAV — Leave WLM enclave”
on page 182

QueryMetrics
IWMWSYSQ

“IWMWSYSQ — Query system
information” on page 388

QuerySchEnv
IWMSEQRY

“IWMSEQRY — Scheduling
environments query service” on page
305

QueryWorkUnitClassification
IWM4EQRY

“IWM4EQRY — Query an enclave” on
page 457

UnDoExportWorkUnit
IWMUEXPT

“IWMUEXPT — WLM undo export” on
page 361

UnDoImportWorkUnit IWMUIMPT “IWMUIMPT — WLM undo import” on
page 367

_server_classify IWM4CLSY “IWM4CLSY — Classify work” on page
404

_server_classify_create IWM4CLSY “IWM4CLSY — Classify work” on page
404

_server_classify_init IWMCONN, IWMDISC • “IWMCONN — Connect to workload
management” on page 753

• “IWMDISC — Disconnect from
workload management” on page
769

730 z/OS: z/OS MVS Programming: Workload Management Services

Table 107. C language interfaces (continued)

C language interface Associated WLM service Reference information

_server_classify_pwu
IWMQINS,IWMSSEL,
IWMSTEND,IWMESQRY,
IWMSREF,IWMSTBGN,
IWMEDELE,IWMECREA,
IWM4CLSY,IWMDISC

• “IWMQINS — Insert a request onto
the queue for an execution address
space” on page 893

• “IWMSSEL — Select a request from
a caller's work manager queue” on
page 919

• “IWMSTEND — End a request from
a caller's work manager queue” on
page 937

• “IWMESQRY — Query enclave
state” on page 207

• “IWMSTBGN — Begin a request
from a caller's work manager
queue” on page 930

• “IWMEDELE — Delete an enclave”
on page 789

• “IWMECREA — Create an enclave”
on page 780

• “IWM4CLSY — Classify work” on
page 404

• “IWMDISC — Disconnect from
workload management” on page
769

_server_thread_query IWMSINF “IWMSINF — WLM server manager
inform service” on page 320

Interfaces for sysplex routing services
Table 108 on page 731 shows the C language interfaces that can be used to access WLM sysplex routing
services.

Note : You need to include the header file IWMWDNSH before invoking these functions.

Table 108. C language interfaces for WLM sysplex routing services

C language interface Associated WLM sysplex
routing service

Reference information

IWMDNREG IWMSRSRG “IWMSRSRG — Register a server for
sysplex routing” on page 344

IWMDNDRG IWMSRDRS “IWMSRDRS — Deregister a server for
sysplex routing” on page 332

IWMDNGRP IWMSRDNS “IWMSRDNS — Get sysplex routing
location list” on page 326

IWMDNSRV IWMSRSRS “IWMSRSRS — Sysplex routing
information” on page 351

Appendix D. C language interfaces for workload management services 731

Interface for querying a virtual server
Products can use the query virtual server interface to obtain a virtual server's ID and capacity. The C
interface for this query is IWMQVS, and the assembler interface is SYSEVENT QVS. Both forms of this
query return a QVS structure which maps the returned identification and capacity information. See z/OS
MVS Programming: Authorized Assembler Services Reference SET-WTO for more information.

732 z/OS: z/OS MVS Programming: Workload Management Services

Appendix E. WLM services supporting 31-bit
addressing only

The following WLM services support 31-bit addressing only.

The equivalent form of these services that support both 31-bit and 64-bit addressing are described in
Chapter 12, “Workload management services,” on page 129.

IWMAEDEF — Defining Dynamic Application Environments to
Workload Management

The IWMAEDEF service defines dynamic application environments to WLM. The service can be used by
queue manager address spaces to add new application environments after they connected to WLM and to
delete the dynamic application environments before they disconnect from WLM.

Furthermore, the service can be used to define the method how server spaces should be resumed for
static and dynamic application environments.

Before using this service, the caller must connect to WLM using the IWM4CON service, specifying
Work_Manager=Yes, and Queue_Manager=Yes.

A queueing manager must not insert requests for a dynamic and static application environment with the
same application environment name concurrently.

Note : It is recommended to use the equivalent service, IWM4AEDF, which also supports 64-bit
addressing. For more information, see “IWM4AEDF — WLM define dynamic application environments” on
page 395.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space which
connected to WLM (i.e. the address space that was home when
IWM4CON was issued for Queue_Manager=Yes, or
Server_Manager=Yes with Server_Type=Queue).

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.

IWMAEDEF

© Copyright IBM Corp. 1988, 2021 733

4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be
non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain versions. Refer to the
description of the PLISTVER parameter for further information.

Input register information
Before issuing the IWMAEDEF macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMAEDEF macro is as follows:

IWMAEDEF

734 z/OS: z/OS MVS Programming: Workload Management Services

main diagram

name
IWMAEDEF CONNTKN=  conntkn

,FUNC=ADD parameters-1

,FUNC=DELETE ,APPLENV=  applenv

,FUNC=MODIFY ,APPLENV=  applenv

,DISTRIBUTE_WORK=FIRST_AVAILABLE

,DISTRIBUTE_WORK=ROUND_ROBIN

,STATIC=NO

,STATIC=YES

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

parameters-1

,APPLENV=  applenv ,JCLPROC=  jclproc

,JCLPARMS=0

,JCLPARMS=  jclparms

,SINGLE_SERVER=NO

,SINGLE_SERVER=YES

,SELECT_POLICY=0

,SELECT_POLICY=  select_policy

,DISTRIBUTE_WORK=FIRST_AVAILABLE

,DISTRIBUTE_WORK=ROUND_ROBIN

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMAEDEF macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,APPLENV=applenv
When FUNC=ADD is specified, a required input parameter, which contains the name of the static or
dynamic application environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

CONNTKN=conntkn
A required input parameter, which contains the connect token returned by the IWM4CON macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

IWMAEDEF

Appendix E. WLM services supporting 31-bit addressing only 735

,DISTRIBUTE_WORK=FIRST_AVAILABLE
,DISTRIBUTE_WORK=ROUND_ROBIN

When FUNC=ADD is specified, an optional parameter that controls how Workload Management
resumes bound server spaces that are waiting for work The default is
DISTRIBUTE_WORK=FIRST_AVAILABLE.
,DISTRIBUTE_WORK=FIRST_AVAILABLE

Workload Management wakes up the server space that has been suspended first (default).
,DISTRIBUTE_WORK=ROUND_ROBIN

Workload Management wakes up the server space that has the smallest number of affinities. If
there are several server spaces with the same number of affinities, workload management will
start the server space with the smallest number of active server tasks.

,FUNC=ADD
,FUNC=DELETE
,FUNC=MODIFY

A required parameter that indicates how the caller uses the service
,FUNC=ADD

indicates that the caller wants to add a dynamic application environment to WLM.
,FUNC=DELETE

indicates that the caller wants to delete its interest in the dynamic application environment.
,FUNC=MODIFY

indicates that the caller wants to redefine the method how server spaces should be resumed for
static and dynamic application environments.

,JCLPARMS=jclparms
,JCLPARMS=0

When FUNC=ADD is specified, an optional input parameter, which contains the parameters which are
passed to the start procedure of the server manager address spaces by WLM. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a 115-character field.

,JCLPROC=jclproc
When FUNC=ADD is specified, a required input parameter, which contains the name of the start
procedure which is used by WLM to start server manager address spaces for the application
environment.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

IWMAEDEF

736 z/OS: z/OS MVS Programming: Workload Management Services

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.

1, which supports the following parameters and those from version 0:

DISTRIBUTE_WORK
STATIC

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SELECT_POLICY=select_policy
,SELECT_POLICY=0

When FUNC=ADD is specified, an optional input parameter, which tells WLM how to select work if
work requests are directly routed to the server address space. Only 0,1 and 2 are valid select policies.
0 is the default which is also selected if an invalid policy is specified.

The select policy options 0,1 and 2 have the following meaning:

IWMAEDEF

Appendix E. WLM services supporting 31-bit addressing only 737

• 0 Default, the oldest request on either the service class or server address space queue is selected
first.

• 1 The request on the server address space queue (if present) is selected first independently of the
times the requests have been inserted.

• 2 The request on the service class queue is always selected first.

The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of an one-byte field.

,SINGLE_SERVER=NO
,SINGLE_SERVER=YES

When FUNC=ADD is specified, an optional parameter indicating whether one or multiple server spaces
should be started for the application environment The default is SINGLE_SERVER=NO.
,SINGLE_SERVER=NO

Multiple server spaces should be started for the application environment (default).
,SINGLE_SERVER=YES

Only one server space should be started for the application environment.
,STATIC=NO
,STATIC=YES

When FUNC=MODIFY is specified, an optional parameter that controls whether a static or dynamic
application environment should be updated. The default is STATIC=NO.
,STATIC=NO

indicates that the caller wants to modify a dynamic application environment (default).
,STATIC=YES

indicates that the caller wants to modify a static application environment.

ABEND codes
None.

Return codes and reason codes
When the IWMAEDEF macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 109. Return and Reason Codes for the IWMAEDEF Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

IWMAEDEF

738 z/OS: z/OS MVS Programming: Workload Management Services

Table 109. Return and Reason Codes for the IWMAEDEF Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Make sure to use the connect token returned by the IWM4CON
service requesting Queue_Manager=Yes, or Server_Manager=Yes with
Server_Type=Queue.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported by the MVS release
on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083F Equate Symbol: IwmRsnCodePrimaryNotOwnConn

Meaning: Primary address space does not own the passed connect token.

Action: Ensure that the primary address space has previously connected to
WLM using the IWM4CON macro. Ensure that the connect token returned by
the IWM4CON macro is passed to the IWMAEDEF macro.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this service

Action: Make sure that Queue_Manager=Yes, or Server_Manager=Yes with
Server_Type=Queue is specified on the IWM4CON request to enable this
service.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller's space disconnected from WLM during processing of the
request.

Action: None.

IWMAEDEF

Appendix E. WLM services supporting 31-bit addressing only 739

Table 109. Return and Reason Codes for the IWMAEDEF Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0890 Equate Symbol: IwmRsnCodeApplEnvExists

Meaning: The caller tried to add an application environment that has already
been defined. subsystem type.

Action: Check whether the correct application environment name is being
used. Make sure that a unique application environment name is used when
adding application environments.

8 xxxx0891 Equate Symbol: IwmRsnCodeApplEnvNotFound

Meaning: The caller tried to delete or modify an application environment that
does not exist.

Action: Check whether the correct application environment name is being
used.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: Contact your system programmer. There is a common storage
shortage.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To add a dynamic application environment:

 IWMAEDEF CONNTKN=CONNTOKEN, X
 FUNC=ADD, X
 APPLENV=APPLENV X
 JCLPROC=JCLPROC X
 RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
CONNTOKEN DS FL4 Contains the connect token
* associated with the use of WLM
* Queuing services as returned by
* IWM4CON
APPLENV DS CL32 Contains the application
* environment name
JCLPROC DS CL8 Contains the name of the
* start procedure
RC DS F Return code
RSN DS F Reason code

IWMCLSFY — Classify work request
The purpose of this service is to factor in available information about an arriving work request in order to
associate a service class and possibly a report class with it.

Environment
The requirements for the caller are:

IWMCLSFY

740 z/OS: z/OS MVS Programming: Workload Management Services

Minimum authorization: Either problem state or supervisor state. PSW key must either be 0 or
match the value supplied on IWM4CON.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Unlocked or locked.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. Caller is responsible for error recovery.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
• This macro may only be used on MVS/ESA (version 3 or higher), NOT versions 1 or 2 of MVS.
• FRRs are allowed.
• This macro may not be used during task/address space termination for the connect owner.
• If the key specified on IWM4CON was a user key (8-F), then current primary must equal primary at the

time that IWM4CON was invoked.
• Only limited checking is done of the connect token obtained from IWM4CON.
• SOURCELU is mutually exclusive with NETID/LUNAME.
• This macro supports multiple versions. Some keywords are unique to certain versions. See the

PLISTVER parameter description.

Input register information
Before issuing the IWMCLSFY macro, the caller must ensure that the following general purpose registers
(GPRs) contain the specified information:
Register

Contents
13

The address of a 72-byte standard save area in the primary address space

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents

IWMCLSFY

Appendix E. WLM services supporting 31-bit addressing only 741

0
Reason code if GR15 return code is non-zero

1
Used as work registers by the system

2-13
Unchanged

14
Used as work registers by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

IWMCLSFY

742 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
main diagram

name
b IWMCLSFY b

TRXNAME=NO_TRXNAME

TRXNAME=  trxname

,USERID=NO_USERID

,USERID=  userid

,TRXCLASS=NO_TRXCLASS

,TRXCLASS=  trxclass

,ACCTINFO=NO_ACCTINFO

,ACCTINFO=  acctinfo

,ACCTINFL=  acctinfl

,SOURCELU=NO_SOURCELU

,SOURCELU=  sourcelu

,NETID=NO_NETID

,NETID=  netid

,LUNAME=NO_LUNAME

,LUNAME=  luname

,SUBSYSPM=NO_SUBSYSPM

,SUBSYSPM=  subsyspm

,SSPMLEN=  sspmlen

,COLLECTION=NO_COLLECTION

,COLLECTION=  collection

,COLLECTION_LEN=  collection_len

,PLAN=NO_PLAN

,PLAN=  plan

,PACKAGE=NO_PACKAGE

,PACKAGE=  package

,CONNECTION=NO_CONNECTION

,CONNECTION=  connection

,CORRELATION=NO_CORRELATION

,CORRELATION=  correlation

,CORR_LEN=  corr_len

,PERFORM=NO_PERFORM

,PERFORM=  perform

,PRCNAME=NO_PRCNAME

,PRCNAME=  prcname

,PRCNAME_LEN=  prcname_len

,PRIORITY=NO_PRIORITY

,PRIORITY=  priority

,PROCESSNAME=NOPROCESSNAME

,PROCESSNAME=  processname

,PROCESSNM_LEN=  processnm_len

,CONNTKN=  conntkn

,SUBCOLN=NO_SUBCOLN

,SUBCOLN=  subcoln

,SCHEDENV=NO_SCHEDENV

,SCHEDENV=  schedenv

,SCHEDENV_LEN=16

,SCHEDENV_LEN=  schedenv_len

,EWLM_CORR=NO_EWLM_CORR

,EWLM_CORR=  ewlm_corr ,EWLM_OUTCORR=  ewlm_outcorr

,EWLM_CHCORR=  ewlm_chcorr ,EWLM_CHCTKN=  ewlm_chctkn

,EWLM_CLTOKEN=NO_EWLM_CLTOKEN

,EWLM_CLTOKEN=  ewlm_cltoken ,SRMTOKEN=  srmtoken

,SERVCLS=  servcls

,SRVCLSNM=  srvclsnm ,RPTCLSNM=  rptclsnm

,TTRACETOKEN=  ttracetoken ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,PLISTVER=3

,PLISTVER=4

,PLISTVER=5

,PLISTVER=6

,PLISTVER=7

,PLISTVER=8

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

,NOCHECK

)

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

IWMCLSFY

Appendix E. WLM services supporting 31-bit addressing only 743

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMCLSFY macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ACCTINFL=acctinfl
When ACCTINFO=acctinfo is specified, a required input parameter, which contains the length of the
accounting information field. The maximum value supported is 143.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,ACCTINFO=acctinfo
,ACCTINFO=NO_ACCTINFO

An optional input parameter, which contains the accounting information. For environments where
accounting information is available on some, but not all flows, provision of a data area initialized to all
blanks is equivalent to specification of NO_ACCTINFO. The default is NO_ACCTINFO. indicates that no
accounting information was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,COLLECTION=collection
,COLLECTION=NO_COLLECTION

An optional input parameter, which contains the customer defined name for a group of associated
packages. For environments where the collection name may be available on some, but not all flows,
provision of a data area initialized to all blanks is equivalent to specification of NO_COLLECTION The
default is NO_COLLECTION. indicates that no COLLECTION name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,COLLECTION_LEN=collection_len
When COLLECTION=collection is specified, a required input parameter, which contains the length of
the collection name. There is no restriction on the length of data passed, but all storage between the
start and end must be allocated (getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,CONNECTION=connection
,CONNECTION=NO_CONNECTION

An optional input parameter, which contains the name associated with the environment creating the
work request, which may reside anywhere within the network. For environments where the
connection name may be available on some, but not all flows, provision of a data area initialized to all
blanks is equivalent to specification of NO_CONNECTION The default is NO_CONNECTION. indicates
that no CONNECTION name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,CONNTKN=conntkn
A required input parameter, which is returned by IWMCONN for use by the classify routine.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,CORR_LEN=corr_len
When CORRELATION=correlation is specified, a required input parameter, which contains the length
of the correlation identifier. There is no restriction on the length of data passed, but all storage
between the start and end must be allocated (getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

IWMCLSFY

744 z/OS: z/OS MVS Programming: Workload Management Services

,CORRELATION=correlation
,CORRELATION=NO_CORRELATION

An optional input parameter, which contains the name associated with the user/program creating the
work request, which may reside anywhere within the network. For environments where the correlation
name may be available on some, but not all flows, provision of a data area initialized to all blanks is
equivalent to specification of NO_CORRELATION The default is NO_CORRELATION. indicates that no
CORRELATION name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_CHCORR=ewlm_chcorr
An optional output parameter, which contains the cross platform Enterprise Workload Management
(EWLM) child correlator associated with the instantiated sub work request. Specification of this
parameter indicates that a sub work request will be created.

Notes:

• Currently (z/OS V1R6) only uses the first 64 Bytes of the EWLM_CHCORR field.
• Parameters EWLM_OUTCORR, EWLM_CHCORR and EWLM_CHCTKN are all mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a 512-character field.

,EWLM_CHCTKN=ewlm_chctkn
An optional output parameter, which contains the cross platform Enterprise Workload Management
(EWLM) child correlator token associated with the instantiated sub work request. Specification of this
parameter indicates that a sub work request will be created. A EWLM child correlator token must not
be passed outside of the EWLM Management Domain.

Parameters EWLM_OUTCORR, EWLM_CHCORR and EWLM_CHCTKN are all mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-character field.

,EWLM_CLTOKEN=ewlm_cltoken
,EWLM_CLTOKEN=NO_EWLM_CLTOKEN

An optional input parameter, which contains internal EWLM classification information to be passed
from EWLM to WLM. This parameter is internally used by WLM and must not be used by application
programs. The default is NO_EWLM_CLTOKEN. indicates that no EWLM classification information was
passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 40-character field.

,EWLM_CORR=ewlm_corr
,EWLM_CORR=NO_EWLM_CORR

An optional input parameter, which contains the cross platform Enterprise Workload Management
(EWLM) correlator associated with the work request. If this parameter is specified and a valid EWLM
correlator is passed, the EWLM transaction class can be used for WLM classification purposes.
Moreover the EWLM correlator serves as the input correlator for the EWLM_CHCORR, EWLM_CHTKN,
EWLM_OUTCORR parameters.

Note, that the architected length field of an ARM correlator in the first two bytes must contain a value
between 4 ('0004'X) and 512 ('0200'X).

For environments where the EWLM correlator may be available on some, but not all flows, provision of
a data area with the first four bytes set to binary zeroes is equivalent to the specification of
NO_EWLM_CORR.

The default is NO_EWLM_CORR. indicates that no EWLM correlator is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_OUTCORR=ewlm_outcorr
An optional output parameter, which will receive a validated EWLM correlator on return. The execution
form of IWMCLSFY will validate the passed correlator in EWLM_CORR and provide a valid EWLM
correlator in EWLM_OUTCORR as follows:

IWMCLSFY

Appendix E. WLM services supporting 31-bit addressing only 745

• If the EWLM_CORR parameter is specified and the the correlator in EWLM_CORR is a valid ARM
correlator in EWLM format, it will be copied to EWLM_OUTCORR.

• If the correlator in EWLM_CORR is not a valid EWLM ARM correlator or the EWLM_CORR parameter
is omitted, a new classify correlator will be returned within the EWLM_OUTCORR field.

Notes:

• The specification of EWLM_OUTCORR (unlike EWLM_CHCORR or EWLM_CHCTKN) does not indicate
the beginning of an sub work request.

• Currently (z/OS V1R6) only uses the first 64 Bytes of the EWLM_OUTCORR field.
• The application may specify the same parameter for both EWLM_CORR and EWLM_OUTCORR, which

means that the EWLM correlator can be validated/replaced in place.
• Parameters EWLM_OUTCORR, EWLM_CHCORR and EWLM_CHCTKN are all mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a 512-character field.

,LUNAME=luname
,LUNAME=NO_LUNAME

An optional input parameter, which contains the local LU name associated with the requestor. For
environments where the local LU name may be available on some, but not all flows, provision of a data
area initialized to all blanks is equivalent to specification of NO_LUNAME.

SOURCELU is mutually exclusive with LUNAME. The default is NO_LUNAME. indicates that no local LU
name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines that need to
provide different options according to user-provided input. Use the list form to define a storage area;
use the modify form to set the appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IWMCLSFY in the following order:

• Use IWMCLSFY ...MF=(M,list-addr,COMPLETE) specifying appropriate parameters, including all
required ones.

• Use IWMCLSFY ...MF=(M,list-addr,NOCHECK), specifying the parameters that you want to change.
• Use IWMCLSFY ...MF=(E,list-addr,NOCHECK), to execute the macro.

IWMCLSFY

746 z/OS: z/OS MVS Programming: Workload Management Services

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E, and MF=M, this can be an
RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to supply defaults for
omitted optional parameters.

,NETID=netid
,NETID=NO_NETID

An optional input parameter, which contains the network identifier associated with the requestor. For
environments where the network identifier may be available on some, but not all flows, provision of a
data area initialized to all blanks is equivalent to specification of NO_NETID.

SOURCELU is mutually exclusive with NETID. The default is NO_NETID. indicates that no network
identifier is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,PACKAGE=package
,PACKAGE=NO_PACKAGE

An optional input parameter, which contains the package name for a set of associated SQL
statements. Products using this attribute must chose a specific package name to be associated with
the work request, e.g. the first package name used in the unit of work. Individual product
documentation will describe how this choice is made to allow the installation to use the WLM
administrative application. For environments where the package name may be available on some, but
not all flows, provision of a data area initialized to all blanks is equivalent to specification of
NO_PACKAGE The default is NO_PACKAGE. indicates that no PACKAGE name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,PERFORM=perform
,PERFORM=NO_PERFORM

An optional input parameter, which contains the performance group number (PGN) associated with
the work request. If specified, the performance group number value must be within the range of
1-999, represented as character data, left justified and padded with blanks on the right. For
environments where the perform value may be available on some, but not all flows, provision of a data
area initialized to all blanks is equivalent to specification of NO_PERFORM. The default is
NO_PERFORM. indicates that no PERFORM value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,PLAN=plan
,PLAN=NO_PLAN

An optional input parameter, which contains the access plan name for a set of associated SQL
statements. For environments where the plan name may be available on some, but not all flows,
provision of a data area initialized to all blanks is equivalent to specification of NO_PLAN The default is
NO_PLAN. indicates that no PLAN name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWMCLSFY

Appendix E. WLM services supporting 31-bit addressing only 747

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2
,PLISTVER=3
,PLISTVER=4
,PLISTVER=5
,PLISTVER=6
,PLISTVER=7
,PLISTVER=8

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports both the following parameters and those from version 0:

PERFORM PRCNAME PRCNAME_LEN

• 2, which supports both the following parameters and those from version 0 and 1:

PRIORITY

• 3, which supports both the following parameters and those from version 0,1 and 2:

PROCESSNAME PROCESSNM_LEN

• 4, which supports both the following parameters and those from version 0,1,2 and 3:

TTRACETOKEN

• 5, which supports both the following parameters and those from version 0,1,2,3 and 4:

SCHEDENV SRMTOKEN

SCHEDENV_LEN SUBCOLN

• 6, which supports both the following parameters and those from version 0,1,2,3,4 and 5:

EWLM_CORR

• 7, which supports both the following parameters and those from version 0,1,2,3,4,5 and 6:

IWMCLSFY

748 z/OS: z/OS MVS Programming: Workload Management Services

EWLM_CHCORR EWLM_CHCTKN EWLM_OUTCORR

• 8, which supports both the following parameters and those from version 0,1,2,3,4,5,6 and 7:

EWLM_CLTOKEN

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, 2, 3, 4, 5, 6, 7, or 8

,PRCNAME=prcname
,PRCNAME=NO_PRCNAME

An optional input parameter, which contains the Db2 Stored SQL Procedure name associated with the
work request. For environments where the SQL procedure name may be available on some, but not all
flows, provision of a data area initialized to all blanks is equivalent to specification of NO_PRCNAME.
The default is NO_PRCNAME. indicates that no PRCNAME value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 18-character field.

,PRCNAME_LEN=prcname_len
When PRCNAME=prcname is specified, a required input parameter, which contains the length of the
procedure name. There is no restriction on the length of data passed, but all storage between the start
and end must be allocated (getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,PRIORITY=priority
,PRIORITY=NO_PRIORITY

An optional input parameter, which contains the priority associated with the work request. For
environments where the priority value may be available on some, but not all flows, provision of a data
area initialized to hexadecimal 80000000 (the largest negative integer) is equivalent to specification
of NO_PRIORITY. The default is NO_PRIORITY. indicates that no PRIORITY value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,PROCESSNAME=processname
,PROCESSNAME=NOPROCESSNAME

An optional input parameter, which contains the process name associated with the work request. The
default is NOPROCESSNAME. indicates that no PROCESSNAME value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,PROCESSNM_LEN=processnm_len
When PROCESSNAME=processname is specified, a required input parameter, which contains the
length of the process name. There is no restriction on the length of data passed, but all storage
between the start and end must be allocated (getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

IWMCLSFY

Appendix E. WLM services supporting 31-bit addressing only 749

,RPTCLSNM=rptclsnm
An optional output parameter, which is to receive the output report class name.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

,SCHEDENV=schedenv
,SCHEDENV=NO_SCHEDENV

An optional input parameter, which contains the scheduling environment value associated with the
work request. The default is NO_SCHEDENV. indicates that no scheduling environment value is
passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,SCHEDENV_LEN=schedenv_len
,SCHEDENV_LEN=16

When SCHEDENV=schedenv is specified, an optional input parameter, which contains the length of the
scheduling environment. There is no restriction on the length of data passed, but all storage between
the start and end must be allocated (getmained). The default is 16.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,SERVCLS=servcls
A required output parameter, which is to receive the output token which represents the service and
report class for the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,SOURCELU=sourcelu
,SOURCELU=NO_SOURCELU

An optional input parameter, which contains the LU name associated with the requestor. This may be
the fully qualified NETID.LUNAME, e.g. network name (1-8 bytes), followed by a period, followed by
the LU name for the requestor (1-8 bytes). It may also be the 1-8 byte local LU name, with no network
qualifier. The SOURCELU field may be from 1-17 characters. In the assembler form, the macro will
determine the length of the field as follows:

1. if the field is specified by register notation, it will be assumed to be 17 characters (padded with
blanks).

2. if the field is specified using an RS form name, then the length will be determined using the L'
assembler function.

In the PL/AS form, the rules for the PL/AS compiler will determine the length. The product using
IWMCLSFY is responsible for documenting which form is used so that the customer may specify the
correct format.

For environments where the LU name may be available on some, but not all flows, provision of a data
area initialized to all blanks is equivalent to specification of NO_SOURCELU.

SOURCELU is mutually exclusive with NETID/LUNAME. The default is NO_SOURCELU. indicates that no
source LU name was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,SRMTOKEN=srmtoken
An optional output parameter, token for SRM internal use only.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

IWMCLSFY

750 z/OS: z/OS MVS Programming: Workload Management Services

,SRVCLSNM=srvclsnm
An optional output parameter, which is to receive the output service class name.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,SSPMLEN=sspmlen
When SUBSYSPM=subsyspm is specified, a required input parameter, which contains the length of the
data passed by the work manager. There is no restriction on the length of data passed, but all storage
between the start and end must be allocated (getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

,SUBCOLN=subcoln
,SUBCOLN=NO_SUBCOLN

An optional input parameter, which contains the subsystem collection name associated with the work
request. The default is NO_SUBCOLN. indicates that no subsystem collection name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,SUBSYSPM=subsyspm
,SUBSYSPM=NO_SUBSYSPM

An optional input parameter, which contains character data related to the work request which is
passed by the work manager for use in classification. The nature of the contents of this data must be
documented for customer use. For environments where the subsystem parameter is available on
some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of
NO_SUBSYSPM. The default is NO_SUBSYSPM. indicates that no parameter was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,TRXCLASS=trxclass
,TRXCLASS=NO_TRXCLASS

An optional input parameter, which contains a class name within the subsystem. This can be any
meaningful value that the installation can recognize and specify to match the value presented by the
work manager. For environments where the transaction class is available on some, but not all flows,
provision of a data area initialized to all blanks is equivalent to specification of NO_TRXCLASS. The
default is NO_TRXCLASS. indicates that no transaction class was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

TRXNAME=trxname
TRXNAME=NO_TRXNAME

An optional input parameter, which contains the transaction name for the work request, as known by
the work manager. For environments where the transaction name is available on some, but not all
flows, provision of a data area initialized to all blanks is equivalent to specification of NO_TRXNAME.
The default is NO_TRXNAME. indicates that no transaction name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,TTRACETOKEN=ttracetoken
An optional output parameter, which is to receive the output transaction trace token associated with
the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,USERID=userid
,USERID=NO_USERID

An optional input parameter, which contains the userid associated with the work request. For
environments where the user id is available on some, but not all flows, provision of a data area
initialized to all blanks is equivalent to specification of NO_USERID. The default is NO_USERID.
indicates that no userid is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWMCLSFY

Appendix E. WLM services supporting 31-bit addressing only 751

ABEND codes
None.

Return codes and reason codes
When the IWMCLSFY macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 110. Return and Reason Codes for the IWMCLSFY Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0409 Equate Symbol: IwmRsnCodeNoConn

Meaning: Connect token does not reflect a successful Connect.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Check for possible storage overlay.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this
service.

Action: Avoid requesting this function under the input
connection. IWM4CON options must be specified previously to
enable this service.

8 xxxx0894 Equate Symbol: IwmRsnCodeInvalidEWLMCorr

Meaning: The classification information contains an EWLM
correlator (EWLM_CORR) that does not pass validity checking.
The architected ARM correlator length field in the first two Bytes
of the EWLM_CORR is either less than 4 ('0004'x) or greater than
512 ('0200'x).

Action: Check the specification of the EWLM correlator in the
classification information.

IWMCLSFY

752 z/OS: z/OS MVS Programming: Workload Management Services

Table 110. Return and Reason Codes for the IWMCLSFY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: Service is not enabled because caller invoked the
IWMCONN service with EWLM=NO.

Action: Specify the parameter EWLM_CORR only when
connected with EWLM=YES.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if
invoked again.

Example
Suppose the transactions processed by a subsystem work manager have the following qualifiers:

• User ID
• Transaction name
• Transaction class

To get the service class associated with an incoming work request, specify:

IWMCLSFY USERID=AUSERID,TRXCLASS=ATRXCLS,TRXNAME=ATRXNM,
 CONNTKN=(R7),SERVCLS=(R9),
 RETCODE=RETCODE,RSNCODE=RSNCODE

Where the following are declared:

AUSERID DS CL8
ATRXCLS DS CL8
ATRXNM DS CL8

IWMCONN — Connect to workload management

The purpose of this service is to connect a calling address space to WLM. This service returns a token
which is needed to invoke other services. This service can be used to:

• Request that WLM Work Management services be available to the connecting address space and
optionally to pass topology information to WLM.

• Request that WLM Work Queuing services be available to the connecting address space.
• Request that WLM Work Execution services be available to the connecting address space.
• Request that WLM Work Balancing services be available to the connecting address space.

IWMCONN

Appendix E. WLM services supporting 31-bit addressing only 753

• Request that WLM export and import services be available to the connecting address space.

Note that:

• The space which is connected is the current home address space.
• Only a single connection is allowed to be active for a given address space at any given time.
• For each connected task/space, WLM will establish a dynamic resource manager (RESMGR) to be

associated with the current task/space. When it receives control, it will free any accumulated resources
and delete any enclaves associated with the connect token. This implies that the resource manager will
logically perform the disconnect function and the connect token can no longer be passed to WLM
services.

Note : It is recommended to use the equivalent service, IWM4CON, which also supports 64-bit
addressing. For more information, see “IWM4CON — Connect to workload management” on page 416.

Environment
The requirements for the caller are:

Minimum authorization: For WORK_MANAGER=YES or ROUTER=YES,
QUEUE_MANAGER=YES or EXPTIMPT=YES, supervisor state or
program key mask (PKM) allowing keys 0-7.

For SERVER_MANAGER=YES, problem state with any PSW key.

Dispatchable unit mode: Task

Cross memory mode: Non-XMEM when input key is a user key or SERVER_MANAGER =
YES, otherwise XMEM, any P,S,H.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

6. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
1. This macro may not be used during task/address space termination.
2. Only a single connection is allowed to be active for a given address space at any given time.
3. Specification of both Queue_Manager=Yes, and Server_Manager=Yes requires that

Server_Type=Queue. Specification of Server_Type=Routing is rejected.

IWMCONN

754 z/OS: z/OS MVS Programming: Workload Management Services

4. Specification of both Router=Yes, and Server_Manager=Yes requires that Server_Type=Routing.
Specification of Server_Type=Queue is rejected.

5. If the callers recovery routine should get control as a result of requesting this service, the function
cannot be guaranteed to be complete. It is possible that a token has been saved in the parameter list
where the connect token would reside upon successful completion. This token may be passed to
IWMDISC to prevent the address space from being disabled from future IWMCONN requests, but the
token should not be used for other services. IWMDISC in these circumstances may give a warning
return code indicating that no connection was established, however.

6. If the key specified on IWMCONN is a user key (8-F) or SERVER_MANAGER=YES was specified, then
the caller must be in non-cross-memory mode (P=S=H).

7. While not a restriction for IWMCONN, it should be noted that when the key specified is a user key (8-
F), the Connect token may only be passed to IWMCLSFY, IWMRPT, or IWMMNTFY services, when the
current primary matches primary at the time IWMCONN is invoked.

Input register information
Before issuing the IWMCONN macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

IWMCONN

Appendix E. WLM services supporting 31-bit addressing only 755

Syntax
The syntax of the IWMCONN macro is as follows:
main diagram

name
IWMCONN

WORK_MANAGER=YES

parameters-1

WORK_MANAGER=NO

,ROUTER=NO ,QUEUE_MANAGER=NO

,QUEUE_MANAGER=YES

,QMGR_EXIT@=NO_QMGR_EXIT@

,QMGR_EXIT@=  qmgr_exit@

,ROUTER=YES

,SERVER_MANAGER=NO

,SERVER_MANAGER=YES parameters-2

,EXPTIMPT=NO

,EXPTIMPT=YES

,SUBSYS=  subsys ,SUBSYSNM=  subsysnm

,NODENM=NO_NODENM

,NODENM=  nodenm

,GROUPNM=NO_GROUPNM

,GROUPNM=  groupnm

,GROUPNM_LEN=  groupnm_len

,CONNTKN=  conntkn

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,PLISTVER=3

,PLISTVER=4

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

parameters-1

,TOPOLOGY=NO_TOPOLOGY

,TOPOLOGY=  topology

,NUMBERASCB=  numberascb

,EWLM=NO

,EWLM=YES

,CONNTKNKEYP=VALUE ,CONNTKNKEY=  conntknkey

,CONNTKNKEYP=PSWKEY

IWMCONN

756 z/OS: z/OS MVS Programming: Workload Management Services

parameters-2

,APPLENV=  applenv
,DYNAMIC=NO

,DYNAMIC=YES

,PARALLEL_EU=  parallel_eu

,SERVER_TYPE=QUEUE ,MANAGE_TASKS=NO

,MANAGE_TASKS=YES

,SERVER_LIMIT=1000

,SERVER_LIMIT=  server_limit

,SERVER_TYPE=ROUTING ,SERVER_DATA=  server_data ,SRV_MGR_EXIT@=  srv_mgr_exit@

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMCONN macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,APPLENV=applenv
When SERVER_MANAGER=YES is specified, a required input parameter, which contains the
application environment under which work requests are served.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,CONNTKN=conntkn
A required output parameter, which will receive the connect token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,CONNTKNKEY=conntknkey
When CONNTKNKEYP=VALUE and WORK_MANAGER=YES are specified, a required input parameter,
which contains the key for which the various branch entry services using the CONNTKN returned by
IWMCONN must have PSW update authority. These other services include Classify (IWMCLSFY),
Report (IWMRPT), Notify (IWMMNTFY). Create (IWMMCREA) is a PC interface and hence is excluded.
The low order 4 bits (bits 4-7) contain the key value. The high-order 4 bits (bits 0-3) must be zeros.

Note however that there are other services that use the connect token, for which the CONNTKNKEY
does not relate to PSW update authority but instead must be a system key (0-7) rather than a user key
(8-15).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8 bit field.

,CONNTKNKEYP=VALUE
,CONNTKNKEYP=PSWKEY

When WORK_MANAGER=YES is specified, a required parameter, which describes how the input key
should be obtained.
,CONNTKNKEYP=VALUE

indicates that the key is being passed explicitly via CONNTKNKEY.
,CONNTKNKEYP=PSWKEY

indicates that the current PSW key should be used.
,DYNAMIC=NO
,DYNAMIC=YES

When SERVER_MANAGER=YES is specified, an optional parameter indicating whether the server
manager connects to a dynamic or static application environment. The default is DYNAMIC=NO.
,DYNAMIC=NO

The server manager connects to a static application environment. This is the default.
,DYNAMIC=YES

The server manager connects to a dynamic application environment.

IWMCONN

Appendix E. WLM services supporting 31-bit addressing only 757

,EWLM=NO
,EWLM=YES

When WORK_MANAGER=YES is specified, an optional parameter, which indicates if this work
manager intends to participate in cross-platform enterprise workload management (EWLM). The
default is EWLM=NO.
,EWLM=NO

The work manager interacts only with WLM and no interaction with EWLM takes place. This is the
default.

,EWLM=YES
The work manager participates in cross-platform enterprise workload management and interacts
with EWLM.

,EXPTIMPT=NO
,EXPTIMPT=YES

An optional parameter indicating whether the space needs access to the export and import services
(IWMEXPT, IWMUEXPT, IWMIMPT, IWMUIMPT). The default is EXPTIMPT=NO.
,EXPTIMPT=NO

The connecting address space will not use the export and import services.
,EXPTIMPT=YES

The connecting address space will use the export and import services.
,GROUPNM=groupnm
,GROUPNM=NO_GROUPNM

An optional input parameter, which contains the name of an application group, for example, a group of
similar or cooperating subsystem instances. A group name can be up to 255 characters long. Provision
of a data area initialized to all blanks is equivalent to specification of NO_GROUPNM. The default is
NO_GROUPNM. This indicates that no group name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,GROUPNM_LEN=groupnm_len
When GROUPNM=groupnm is specified, a required input parameter, which contains the length of the
group name. A group name can be up to 255 characters long.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MANAGE_TASKS=NO
,MANAGE_TASKS=YES

When SERVER_TYPE=QUEUE and SERVER_MANAGER=YES are specified, an optional parameter
indicating that WLM will manage the server instances (tasks), selecting work from a work queue.

If YES is specified the caller must use service IWMSINF to obtain the number of server instances to
start from WLM.

The meaning of PARALLEL_EU changes in this case. PARALLEL_EU is only used to determine the
number of tasks to start if the application environment cannot be managed by WLM. Otherwise
PARALLEL_EU can be used to limit the number of server tasks to start initially.

The server can define the SERVER_LIMIT parameter to specify a limit for the number of server tasks
supported by the application.

,MANAGE_TASKS=NO
The connecting address space starts the number of server instances as provided with
PARALLEL_EU.

,MANAGE_TASKS=YES
The connecting address space uses IWMSINF to obtain the number of server instances to start
from WLM.

IWMCONN

758 z/OS: z/OS MVS Programming: Workload Management Services

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of X'0F' to force the parameter list to a word boundary, or X'0D' to force
the parameter list to a doubleword boundary. If you do not code attr, the system provides a value
of X'0D'.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,NODENM=nodenm
,NODENM=NO_NODENM

An optional input parameter, which contains the node name to be used for classifying work requests
when Work_Manager=Yes is specified or taken as default. The node name identifies a specific
subcomponent of the generic subsystem type.

When Server_Manager=Yes and Server_Type=Queue is specified, the node name should match the
node name specified on the corresponding Connect for the Queue_Manager, for example, all servers
associated with the Queue_Manager have identical node names.

If a product chooses to use both Work_Manager=Yes and Server_Manager=Yes on a single invocation
of IWMCONN for a space, then the rules for Server_Manager apply, for example, the node name refers
to the node name of the space playing the role of Queue_Manager.

If the caller connects to the WLM work queueing services, the combination of the subsystem type,
node name and the subsystem name must be unique to that MVS system. Node name can be omitted.
The default is NO_NODENM.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,NUMBERASCB=numberascb
When TOPOLOGY=topology and WORK_MANAGER=YES are specified, a required input parameter,
which contains the number of ASCBs in the list passed via xTOPOLOGY. While there is no restriction on
the number of entries in the list, the current support will only look at the first 10 entries. The number
specified must be positive (hence also non-zero).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

IWMCONN

Appendix E. WLM services supporting 31-bit addressing only 759

,PARALLEL_EU=parallel_eu
When SERVER_MANAGER=YES is specified, a required input parameter, which contains the maximum
number of tasks (TCBs) within the address space which will be used to concurrently process distinct
work requests if MANAGE_TASKS=YES is not in effect. When Select (IWMSSEL) is used to obtain a
work request, which might then be passed to another task (TCB) for processing under a Begin
(IWMSTBGN) environment, this count represents the number of tasks (TCBs) which can be running
concurrently against these work requests, i.e. the number of concurrent Begin environments. It is
important that this count represent the actual number of tasks (TCBs) which can be utilized, and not
merely some approximate upper bound, as this value will influence system algorithms.

If MANAGE_TASKS=YES is in effect, the application environment managed by WLM PARALLEL_EU is
not used. In this case the parameter is only used as described above if no procedure name was
defined for the application environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1,PLISTVER=2
,PLISTVER=3
,PLISTVER=4

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameters and those from version 0:

APPLENV QUEUE_MANAGER SERVER_TYPE

EXPTIMPT ROUTER SRV_MGR_EXIT@

PARALLEL_EU SERVER_DATA WORK_MANAGER

QMGR_EXIT@ SERVER_MANAGER

• 2, which supports the following parameters and those from version 0 and 1:

MANAGE_TASKS SERVER_LIMIT GROUPNM_LEN

• 3, which supports the following parameters and those from version 0, 1, and 2:

DYNAMIC NODENM

• 4, which supports the following parameters and those from version 0, 1, 2, and 3:

EWLM GROUPNM GROUPNM_LEN

To code: Specify one of the following:

IWMCONN

760 z/OS: z/OS MVS Programming: Workload Management Services

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, 2, 3, or 4

,QMGR_EXIT@=qmgr_exit@
,QMGR_EXIT@=NO_QMGR_EXIT@

When QUEUE_MANAGER=YES and ROUTER=NO are specified, an optional input parameter that
contains the address of the Queue Manager Connect Exit to be invoked when the system wishes to
inform the queue manager of actions it should perform. The exit will be called in enabled, unlocked
TCB mode with no FRRs set, but may be called in a cross-memory environment. The mapping of the
parameter list for the exit and its invocation environment is given by the list form of the IWMQCXIT
macro.

The system may chose to discontinue calling the exit upon repetitive abnormal completions, i.e.
where the system recovery routine is percolated to from an error within the exit. The exit must be
callable from any address space and remain available after the queue manager disconnects or
terminates. The default is NO_QMGR_EXIT@, which indicates that no queue manager exit is provided.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,QUEUE_MANAGER=NO
,QUEUE_MANAGER=YES

When ROUTER=NO is specified, an optional parameter indicating that WLM Work Queuing services be
available to the connecting address space. For example:

• Insert (IWMQINS)
• Delete (IWMQDEL)

If YES is specified, the combination of the subsystem type and the subsystem name must be unique
to that MVS system. The default is QUEUE_MANAGER=NO.
,QUEUE_MANAGER=NO

The connecting address space will not use the WLM Work Queuing services.
,QUEUE_MANAGER=YES

The connecting address space will be using the WLM Work Queuing services.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,ROUTER=NO
,ROUTER=YES

An optional parameter, which describes whether recommendations for sysplex routing to servers
associated with the same subsystem type and name are requested. The default is ROUTER=NO.
,ROUTER=NO

indicates that recommendations for sysplex routing via IWMSRFSV are not required.
,ROUTER=YES

indicates that recommendations for sysplex routing via IWMSRFSV is required. Note that only
server spaces which have the same Subsystem type and name AND which specified
Server_Type=Routing are considered when IWMSRFSV is invoked.

If YES is specified, the combination of the subsystem type and the subsystem name must be
unique to that MVS system.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SERVER_DATA=server_data
When SERVER_TYPE=ROUTING and SERVER_MANAGER=YES are specified, a required input
parameter, which contains whatever data is needed to uniquely identify the server when

IWMCONN

Appendix E. WLM services supporting 31-bit addressing only 761

recommended by MVS through use of the IWMSRFSV interface. The structure of this data is undefined
to MVS, and will be returned to the program invoking IWMSRFSV when the server is returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,SERVER_LIMIT=server_limit
,SERVER_LIMIT=1000

When MANAGE_TASKS=YES, SERVER_TYPE=QUEUE and SERVER_MANAGER=YES are specified, an
optional input parameter indicating the architectural limit of the application for the number of server
instances which can be supported.

This parameter can be used to tell WLM the upper limit up to which WLM will recommend to start
server instances. If the parameter is omitted or is set higher than 1000, WLM will use 1000 as upper
limit instead. The default is 1000.

To code: Specify the RS-type address of a fullword field.

,SERVER_MANAGER=NO
,SERVER_MANAGER=YES

An optional parameter indicating whether the space needs access to a family of services specified by
SERVER_TYPE. The default is SERVER_MANAGER=NO.
,SERVER_MANAGER=NO

The connecting address space will not use any of the various server related WLM services
documented under SERVER_TYPE.

,SERVER_MANAGER=YES
The connecting address space will be acting in the role of a server and needs access to the family
of services specified by SERVER_TYPE.

Specification of both Queue_Manager=Yes, and Server_Manager=Yes requires that
Server_Type=Queue. Specification of Server_Type=Routing is rejected.

Specification of both Router=Yes, and Server_Manager=Yes requires that Server_Type=Routing.
Specification of Server_Type=Queue is rejected.

,SERVER_TYPE=QUEUE
,SERVER_TYPE=ROUTING

When SERVER_MANAGER=YES is specified, an optional parameter, which describes what type of
services are used by the server. The default is SERVER_TYPE=QUEUE.
,SERVER_TYPE=QUEUE

indicates that the server selects work from a queue, and thus requests that WLM Work Execution
services be available to the connecting address space. For example:

• Select (IWMSSEL)
• Begin (IWMSTBGN)
• End (IWMSTEND)

The server also has the WLM Work Queuing services available to the connecting address space
when the corresponding Queue Manager with the same subsystem type and name is active on the
same MVS image (see following macros for macro specific restrictions). For example:

• Insert (IWMQINS)
• Delete (IWMQDEL)

,SERVER_TYPE=ROUTING
indicates that the server receives work by way of routing, and may be selected by the IWMSRFSV
(Find Server) macro interface. Note that the space which invokes the IWMSRFSV service must
Connect with Router=Yes.

Termination of the router with the same subsystem type and name on the same MVS image will
not cause notification to the server to terminate. This coordination, if required, must be handled
through a different protocol than use of Connect.

IWMCONN

762 z/OS: z/OS MVS Programming: Workload Management Services

,SRV_MGR_EXIT@=srv_mgr_exit@
When SERVER_TYPE=ROUTING and SERVER_MANAGER=YES are specified, a required input
parameter that is to contain the address of the Server Manager Connect Exit to be invoked when the
system wishes to inform the server of actions it should perform. This exit will be called in SRB mode,
with a non cross-memory environment, where HASN=SASN=PASN=HASN at the time IWMCONN was
invoked. The mapping of the parameter list for the exit and its invocation environment is given by the
list form of the IWMSCXIT macro.

Note that it may be possible for the exit to be called before the caller has received control back from
IWMCONN. The exit or any program it drives (synchronously or asynchronously) must synchronize
with the program issuing IWMCONN to ensure that IWMCONN has returned a connect token prior to
issuing IWMDISC (disconnect) or any other services that need the connect token.

The system may cause the space to become ineligible to be recommended by IWMSRFSV upon
repetitive errors in calling the exit specified. The exit must be callable from the server address space
and remain available after the server manager disconnects or the connecting server TCB terminates.
The exit need not persist upon memory termination of the server.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,SUBSYS=subsys
A required input parameter, which contains the generic subsystem type (e.g. IMS, CICS, etc.). When
WORK_MANAGER=YES is specified, this is the primary category under which classification rules are
grouped.

If the caller connects to the WLM work queueing services by specifying QUEUE_MANAGER=YES, or
requests sysplex routing by specifying ROUTER=YES, the combination of the subsystem type and the
subsystem name must be unique to that MVS system.

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character field.

,SUBSYSNM=subsysnm
A required input parameter, which contains the subsystem name to be used for classifying work
requests when Work_Manager=Yes is specified or taken as default. The subsystem name identifies a
specific instance of the generic subsystem type.

When Server_Manager=Yes and Server_Type=Queue is specified, the subsystem name should match
the subsystem name specified on the corresponding Connect for the Queue_Manager, i.e. all servers
associated with the Queue_Manager have identical subsystem names.

When Server_Manager=Yes and Server_Type=Routing is specified, the subsystem name should match
the subsystem name specified on the corresponding Connect for Router=Yes, i.e. all servers
associated with the Router have identical subsystem names.

If a product choses to use both Work_Manager=Yes and Server_Manager=Yes on a single invocation
of IWMCONN for a space, then the rules for Server_Manager apply, i.e. the subsystem name refers to
the subsystem name of the space playing the role of Queue_Manager or Router.

If the caller connects to the WLM work queueing services, or to sysplex routing services, the
combination of the subsystem type and the subsystem name must be unique to that MVS system.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,TOPOLOGY=topology
,TOPOLOGY=NO_TOPOLOGY

When WORK_MANAGER=YES is specified, an optional input parameter, which represents a list of
ASCB addresses for the address spaces which comprise the subsystem. This list should ONLY include
address spaces which do NOT surface as the current home address space when IWMMINIT or
IWMMRELA are used to establish the delay monitoring environments, but that may participate as
dispatchable units (TCBs or SRBs) in serving work requests. If the current primary or home space is a
space not surfacing in a monitoring environment and its execution can affect the response time of
work flowing through the subsystem, then it should appear in the list. Neither current primary nor
current home are defaults. While there are no limits on the number of address spaces, this

IWMCONN

Appendix E. WLM services supporting 31-bit addressing only 763

information is less precise than that provided by monitoring environments. The default is
NO_TOPOLOGY, which indicates that no topology information was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

WORK_MANAGER=YES
WORK_MANAGER=NO

An optional parameter indicating that WLM Work Management services be available to the connecting
address space. For example:

• Classify (IWMCLSFY)
• Report (IWMRPT)
• Notify (IWMMNTFY)
• Enclave Create (IWMECREA)
• Modify Connect (IWMWMCON)

If NO is specified, the above services cannot be used, except for the form of Notify that does not pass
an input connect token. The default is WORK_MANAGER=YES.
WORK_MANAGER=YES

The connecting address space will be using the WLM Work Management services.
WORK_MANAGER=NO

The connecting address space will not use the WLM Work Management services. Specifying this
keyword may reduce the use of system resources.

ABEND codes
None.

Return codes and reason codes
When the IWMCONN macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 111. Return and Reason Codes for the IWMCONN Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

IWMCONN

764 z/OS: z/OS MVS Programming: Workload Management Services

Table 111. Return and Reason Codes for the IWMCONN Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0802 Equate Symbol: IwmRsnCodeXmemUserKeyTkn

Meaning: Caller is in cross-memory mode while the token was requested in
user key.

Action: Avoid requesting this function while in cross-memory mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay. Also check if you call this macro
in 64-bit address mode. Refer to the description of reason code xxxx089E for
further information.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0812 Equate Symbol: IwmRsnCodeBadAscb

Meaning: Bad ASCB address passed.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing mode.

Action: Request this function only when you are in 31 bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on Primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in progress for the
TCB associated with the owner.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or supplies mutually
exclusive parameters or provides data associated with options not selected.

Action: Check for possible storage overlay of the parameter list.

IWMCONN

Appendix E. WLM services supporting 31-bit addressing only 765

Table 111. Return and Reason Codes for the IWMCONN Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx082C Equate Symbol: IwmRsnCodeBadNumberAscb

Meaning: NUMBERASCB variable is not a positive value.

Action: Check for possible storage overlay of the parameter list or variable.

8 xxxx082E Equate Symbol: IwmRsnCodeConnectExists

Meaning: Connect has already been established for the current home
address space.

Action: Avoid requesting this function when a connection already exists.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Requested connection type cannot be established in the current
execution environment. This occurs when SERVER_MANAGER=YES is
specified and the program is run as a batch job in a WLM-managed job class.

Action: Run the program as a started task.

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: Caller is in cross memory mode.

Action: Invoke the function in non-cross memory mode.

8 xxxx0847 Equate Symbol: IwmRsnCodeOtherSpaceConnected

Meaning: Another address space with the same subsystem type and name is
connected to WLM on the MVS image and has the role of queue manager or
router.

Action: Avoid requesting this function with duplicate values.

8 xxxx0849 Equate Symbol: IwmRsnCodeWLMServBadAPPL

Meaning: The application environment name (APPLENV=) specified is not the
same as the one used by WLM to start the server.

Action: Verify that the start parameters for the application environment are
coded correctly in the WLM ISPF application, and that those parameters are
used by the started JCL procedure.

8 xxxx084A Equate Symbol: IwmRsnCodeWLMServBadSSN

Meaning: The subsystem name (SUBSYSNM=) specified is not the same as
the one used by WLM to start the server.

Action: Verify that the start parameters for the application environment are
coded correctly in the WLM ISPF application, and that those parameters are
used by the started JCL procedure.

8 xxxx084B Equate Symbol: IwmRsnCodeWLMServBadSST

Meaning: The subsystem type (SUBSYS=) specified is not the same as the
one used by WLM to start the server.

Action: Verify that the start parameters for the application environment are
coded correctly in the WLM ISPF application, and that those parameters are
used by the started JCL procedure.

8 xxxx084D Equate Symbol: IwmRsnCodeNotAuthConnect

Meaning: The caller must be supervisor state or have PSW key mask 0-7
authority to connect to the requested WLM services.

Action: Avoid requesting this function in this environment.

8 xxxx084E Equate Symbol: IwmRsnCodeWlmServBadType

Meaning: For WLM started servers, the SERVER_TYPE= is not the one used to
start the server.

Action: Specify the correct SERVER_TYPE.

IWMCONN

766 z/OS: z/OS MVS Programming: Workload Management Services

Table 111. Return and Reason Codes for the IWMCONN Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0853 Equate Symbol: IwmRsnCodeWlmQmBadType

Meaning: There is a queue manager or router environment of the specified
subsystem name, but of a different type than that specified by the caller.

Action: Verify that the option for queue manager/router is specified correctly
on IWMCONN. If the option is correct, then server address spaces for a
different Server_Type exist and must terminate before the current space may
connect as a queue manager or router.

8 xxxx0855 Equate Symbol: IwmRsnCodeBadNumEUMax

Meaning: PARALLEL_EU variable is greater than the maximum of 1000.

Action: Specify a value between 1 and 1000.

8 xxxx0856 Equate Symbol: IwmRsnCodeBadNumEUMin

Meaning: PARALLEL_EU variable is less than the minimum of 1.

Action: Specify a value between 1 and 1000.

8 xxxx085C Equate Symbol: IwmRsnCodeWrongNumEU

Meaning: Caller invoked service with a PARALLEL_EU value which is different
from the PARALLEL_EU of existing servers in the application environment

Action: Ensure that all servers in the application environment specify the
same PARALLEL_EU value.

8 xxxx0873 Equate Symbol: IwmRsnCodeWrongSrvLmt

Meaning: Caller invoked service with a SERVER_LIMIT parameter setting
which is different from the SERVER_LIMIT of existing servers in the
application environment

Action: Ensure that all servers in the application environment specify the
same SERVER_LIMIT value.

8 xxxx0874 Equate Symbol: IwmRsnCodeWrongMngTsk

Meaning: Caller invoked service with a MANAGE_TASKS parameter setting
which is different from the MANAGE_TASKS of existing servers in the
application environment

Action: Ensure that all servers in the application environment specify the
same MANAGE_TASKS value.

8 xxxx0878 Equate Symbol: IwmRsnCodeBadNumLimitMax

Meaning: Caller invoked service with a SERVER_LIMIT parameter setting
which exceeds the maximum number of tasks which can be started in a
server address space.

Action: Correct number or do not specify SERVER_LIMIT parameter in order
to use the default.

8 xxxx0879 Equate Symbol: IwmRsnCodeBadNumLimitMin

Meaning: Caller invoked service with a SERVER_LIMIT parameter setting
which is less than what has been defined on the PARALLEL_EU parameter.

Action: Ensure that SERVER_LIMIT is always greater or equal to
PARALLEL_EU.

8 xxxx087A Equate Symbol: IwmRsnCodeNoQServer

Meaning: The MANAGE_TASKS parameter is not allowed when
QUEUE_SERVER=YES has been specified.

Action: Ensure to use the parameters correctly.

8 xxxx088E Equate Symbol: IwmRsnCodeWlmServBadSSND

Meaning: For WLM started servers, the NODENM= is not the one used to start
the server.

Action: Specify the correct NODENM.

IWMCONN

Appendix E. WLM services supporting 31-bit addressing only 767

Table 111. Return and Reason Codes for the IWMCONN Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx088F Equate Symbol: IwmRsnCodeApplNotSSN

Meaning: The application environment name is defined for use by a different
subsystem node.

Action: Check whether the correct application environment name is being
used.

8 xxxx089E Equate Symbol: IwmRsnCodeServiceAModeMismatch

Meaning: The caller is in 64-bit address mode and tried to invoke a service
macro that is only enabled for a 31-bit environment.

Action: Use the 64-bit enabled service macro (IWM4CON) or change the
address mode of the caller to 31-bit.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

C xxxx0C09 Equate Symbol: IwmRsnCodeNoResmgr

Meaning: Resource manager could not be established.

Action: No action required. This condition may be due to a storage shortage
condition.

C xxxx0C14 Equate Symbol: IwmRsnCodeNoWorkShutDown

Meaning: No work selected. Caller is to shutdown.

Action: The server should shut down (terminate).

C xxxx0C19 Equate Symbol: IwmRsnCodeNotSecAuthConnect

Meaning: The caller is not authorized by SAF to connect to WLM with
SERVER_MANAGER=YES.

Action: The security administrator must grant access to the appropriate
resource.

C xxxx0C1A Equate Symbol: IwmRsnCodeApplNotDefined

Meaning: The application environment name is not defined in the active WLM
policy.

Action: Check whether the correct application environment name is being
used. If so, a service administrator must define the application environment
in the WLM service definition.

C xxxx0C1B Equate Symbol: IwmRsnCodeApplNotSST

Meaning: The application environment name is defined for use by a different
subsystem type in the active WLM policy.

Action: Check whether the correct application environment name is being
used. If so, a service administrator must change the application environment
in the WLM service definition to specify the correct subsystem type.

C xxxx0C1F Equate Symbol: IwmRsnCodeServerExists

Meaning: A server exists for the specified application environment which
only allows 1 such server in the sysplex.

Action: Check whether the correct application environment name is being
used. If so and the current server is shutting down, a retry may be successful
after a delay.

IWMCONN

768 z/OS: z/OS MVS Programming: Workload Management Services

Table 111. Return and Reason Codes for the IWMCONN Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

C xxxx0C22 Equate Symbol: IwmRsnCodeApplEnvQuiesced

Meaning: The specified application environment has been quiesced, server
cannot be started for the request.

Action: Restart the application environment and then retry the request.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

Example
To connect to workload management specifying: a key value of 8, and a list of 7 address spaces involved
in processing work, specify:

IWMCONN SUBSYS=GENSUB,SUBSYSNM=SUBNAME,
 TOPOLOGY=LISTASCBS,NUMBERASCB=NUMSPACE
 CONNTKN=CTKN,CONNTKNKEYP=VALUE,CONNTKNKEY=KEY,
 RETCODE=RC,RSNCODE=RSN,

Where the following are declared:

GENSUB DS CL4 Generic subsystem type
SUBNAME DS CL8 Subsystem name
LISTASCBS DS CL28 List of 7 address spaces
NUMSPACE DC F'7' Number of ASCBs
CTKN DS FL4 Connect token
KEY DS XL1 Key value

IWMDISC — Disconnect from workload management

IWMDISC allows the caller to disconnect from the workload management services. This means that the
input connect token can no longer be passed to workload management macros such as IWMCLSFY and
IWMRPT. When a program disconnects, any enclaves associated with the input connect token are deleted
from the system. Any SRBs running in the enclave are run as preemptible SRBs at the priority of the home
address space. Any enclave TCBs are converted to ordinary TCBs.

You should issue this macro once during shutdown of the connecting address space.

Note : It is recommended to use the equivalent service, IWM4DIS, which also supports 64-bit addressing.
For more information, see “IWM4DIS — Disconnect from workload management” on page 432.

Environment
The requirements for the caller are:

Minimum authorization: When the corresponding Connect (IWMCONN) invocation specified
WORK_MANAGER=YES or QUEUE_MANAGER=YES, ROUTER=YES, or
EXPTIMPT=YES, supervisor state or program key mask (PKM)
allowing keys 0-7.

When the corresponding Connect (IWMCONN) invocation specified
WORK_MANAGER=NO, QUEUE_MANAGER=NO, ROUTER=NO,
EXPTIMPT=NO, and SERVER_MANAGER=YES, problem state with
any PSW key.

IWMDISC

Appendix E. WLM services supporting 31-bit addressing only 769

Dispatchable unit mode: Task or SRB

When the corresponding Connect (IWMCONN) invocation specified
SERVER_MANAGER=YES, task mode.

Cross memory mode: The current Home address space must be the same as Home when
the corresponding Connect was invoked. Any PASN, any SASN.

When the corresponding Connect (IWMCONN) invocation specified
SERVER_MANAGER=YES, non-cross memory mode, P=S=H.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

When the corresponding Connect (IWMCONN) invocation specified
SERVER_MANAGER=YES, SERVER_TYPE=ROUTING, NO FRRs may
be set.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. No FRRs may be set when calling to disconnect a space which is connected as a server manager with

server type = routing.
2. If the key specified on IWMCONN was a user key (8-F), then the following must ALL be true:

• caller must be in non-cross-memory mode (P=S=H). This implies that the current primary must
match the primary at the time that IWMCONN was invoked. Running in a subspace is not supported.

• must be in TCB mode (not SRB)
• current TCB must match the TCB at the time that IWMCONN was invoked.

3. This service should not be invoked while in a RTM termination routine (resource manager) for the TCB
owning the connect token since MVS will have its own resource cleanup routine and unpredictable
results would occur. It is legitimate to use this service while in a recovery routine, however, or in
mainline processing.

Input register information
Before issuing the IWMDISC macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

IWMDISC

770 z/OS: z/OS MVS Programming: Workload Management Services

Register
Contents

0
Reason code if GR15 return code is non-zero

1
Used as work registers by the system

2-13
Unchanged

14
Used as work registers by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMDISC macro is as follows:

name
IWMDISC CONNTKN=  conntkn

,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

IWMDISC

Appendix E. WLM services supporting 31-bit addressing only 771

name
An optional symbol, starting in column 1, that is the name on the IWMDISC macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

CONNTKN=conntkn
A required input parameter, which contains the connect token for the environment to be
disconnected.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

IWMDISC

772 z/OS: z/OS MVS Programming: Workload Management Services

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWMDISC macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 112. Return and Reason Codes for the IWMDISC Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0409 Equate Symbol: IwmRsnCodeNoConn

Meaning: Input connection token does not reflect an active connection to
WLM.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0802 Equate Symbol: IwmRsnCodeXmemUserKeyTkn

Meaning: The caller is in cross-memory mode while the token was obtained
in a user key.

Action: Avoid requesting this function while in cross-memory mode.

IWMDISC

Appendix E. WLM services supporting 31-bit addressing only 773

Table 112. Return and Reason Codes for the IWMDISC Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0809 Equate Symbol: IwmRsnCodeSrbUserKeyTkn

Meaning: The caller is in SRB mode, while the token was obtained in a user
key (8-F).

Action: Avoid requesting this function in SRB mode for tokens associated
with user key.

8 xxxx080A Equate Symbol: IwmRsnCodeTcbNotOwnerUserKeyTkn

Meaning: Current TCB is not the owner, while the token was obtained in a
user key (8-F).

Action: Avoid requesting this function under a TCB other than the owner for a
token associated with user key.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay. Also check if you call this macro
in 64-bit address mode. Refer to the description of xxxx089E for further
information.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on Primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: The caller invoked the service while task termination is in progress
for the TCB associated with the owner.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

IWMDISC

774 z/OS: z/OS MVS Programming: Workload Management Services

Table 112. Return and Reason Codes for the IWMDISC Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx082F Equate Symbol: IwmRsnCodeWrongHome

Meaning: The caller invoked the service from the wrong home address space.

Action: Invoke the function with the correct home address space.

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: Caller is in cross-memory mode.

Action: Invoke the function in non-cross memory mode.

8 xxxx084D Equate Symbol: IwmRsnCodeNotAuthConnect

Meaning: The caller must be supervisor state or have PSW key mask 0-7
authority to disconnect from the requested WLM services.

Action: Avoid requesting this function in this environment.

8 xxxx089E Equate Symbol: IwmRsnCodeServiceAModeMismatch

Meaning: The caller is in 64-bit address mode and tried to invoke a service
macro that is only enabled for a 31-bit environment.

Action: Use the 64-bit enabled service macro (IWM4DIS) or change the
address mode of the caller to 31-bit.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

IWMECQRY — Query enclave classification attributes

The purpose of this service is to query the classification attributes of an enclave. The output is mapped by
IWMECD.

The Query macro is provided in list, execute, and standard form. The list form accepts no variable
parameters and is used only to reserve space for the parameter list. The standard form is provided for use
with routines which do not require reentrant code. The execute form is provided for use with the list
format for reentrant routines.

Note : It is recommended to use the enhanced service, IWM4EQRY, which also supports 64-bit
addressing. For more information, see “IWM4EQRY — Query an enclave” on page 457.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR) Any P,S,H.

If in Access Register ASC mode, specify SYSSTATE ASCENV=AR
before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts.

IWMECQRY

Appendix E. WLM services supporting 31-bit addressing only 775

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Reason code and return code constants are defined within IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above.

The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. This macro may not be used prior to the completion of WLM address space initialization
2. All parameter areas must reside in current primary or be addressable by the dispatchable unit access

list.
3. The caller must provide storage for an answer area mapped by IWMECD. This answer area may reside

in the caller's primary address space, or in a dataspace accessible via the current unit of work's
dispatchable unit access list (DUal).

Input register information
Before issuing the IWMECQRY macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unchanged
14

Used as work register by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged

IWMECQRY

776 z/OS: z/OS MVS Programming: Workload Management Services

14-15
Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMECQRY macro is as follows:

name
IWMECQRY ETOKEN=  etoken ,ANSAREA=  ansarea

,ANSLEN=  anslen ,QUERYLEN=  querylen

,RETCODE=  retcode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMECQRY macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ANSAREA=ansarea
A required output parameter, which specifies an area to contain the data being returned. The answer
area is defined by the IWMECD macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,ANSLEN=anslen
A required input parameter, variable which contains the length of the area provided to contain the
data being returned by IWMECQRY.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ETOKEN=etoken
A required input parameter, which contains the enclave token representing the enclave of interest.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWMECQRY

Appendix E. WLM services supporting 31-bit addressing only 777

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,QUERYLEN=querylen
A required output parameter, variable which contains the number of bytes needed to contain the
classification attributes being returned by IWMECQRY. The length of the area needed to contain the

IWMECQRY

778 z/OS: z/OS MVS Programming: Workload Management Services

data is dependent on the MVS release. If the ANSLEN is less than the QUERYLEN, then no data is
returned in the output area specified by ANSAREA.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWMECQRY macro returns control to your program, GPR 15 (and retcode, if you coded
RETCODE) contains a return code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 113. Return and Reason Codes for the IWMECQRY Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive all the available
information.

Action: None required.

4 xxxx043C Equate Symbol: IwmRsnCodeIsReset

Meaning: Classification information returned may not reflect how the
independent enclave is being managed. The independent enclave was reset
to another service class or is reset quiesced.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

IWMECQRY

Appendix E. WLM services supporting 31-bit addressing only 779

Table 113. Return and Reason Codes for the IWMECQRY Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: The caller has passed an invalid ALET.

Action: Check for possible storage overlay of the parameter list or variable.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token is invalid.

Action: Check the specification of the ETOKEN parameter.

10 — Equate Symbol: IwmRetCodeCompError:

Meaning: Component error

Action: No action required. The function may be successful if invoked again.

IWMECREA — Create an enclave

The purpose of this service is to create an enclave where possibly multiple SRBs and/or TCBsmay be
simultaneously executing or scheduled. For the duration of each enclave, all SRBs and TCBs associated
with the enclave are treated as part of a single work request. All SRBs and/or TCBs associated with the
enclave accumulate service as a single entity and are managed as a single entity. The address spaces
where enclave SRBs are dispatched, as defined by the ENV= parameter of IEAMSCHD, should be non-
swappable.

For more information about managing address spaces with enclaves, see “Performance management of
address spaces with enclaves” on page 44.

Note : An address space must be non-swappable if it has enclave SRBs dispatched and SYSEVENT
ENCASSOC has not been issued.

For TYPE=INDEPENDENT enclaves, a new work business unit of work is created and classified according
to the input Connect token's subsystem type and subsystem name, along with whatever other attributes
are passed via the Classify parameter list. The current home address space is considered the owner.

For TYPE=DEPENDENT enclaves, SRM considers the enclave to be part of the current home address
space's transaction, which then becomes the owning space. This space need not be connected to WLM via
IWMCONN.

For TYPE=MONENV enclaves, SRM considers the enclave to be part of the address space's transaction
which is delayed according to the input monitoring environment, as set when IWMMINIT or IWMMRELA
was used. This space becomes the owning space. This space need not be connected to WLM via
IWMCONN.

For both TYPE=MONENV and TYPE=DEPENDENT enclaves, SRM will change the enclave to
TYPE=INDEPENDENT if the owning address space's transaction ends.

For both TYPE=MONENV and TYPE=DEPENDENT enclaves, SRM will check the enclave for period switch
when the owning address space is swapped in. If the owning address space is swapped out SRM will
continue to accumulate service for any enclaves owned by the space, but will not check the address space
and any owned enclave for period switch until the address space is swapped in again. The presence of
enclaves does not make the address space appear to be ready from an SRM point of view.

IWMECREA

780 z/OS: z/OS MVS Programming: Workload Management Services

Enclaves are deleted if the owning address space terminates. TYPE=INDEPENDENT enclaves are deleted
if the owning address space disconnects or the TCB which connected terminates.

Enclaves should only be created when this environment is ready for execution, and should not be used
when prolonged queueing effects are possible prior to the scheduling of the first SRB (IEAMSCHD) or the
first task join (IWMEJOIN). "Prolonged" would certainly include times measured in seconds. The service
allows the caller to pass the queueing time prior to creation of the enclave so that this may be separately
reported.

Note : It is recommended to use the equivalent service, IWM4ECRE, which also supports 64-bit
addressing. For more information, see “IWM4ECRE — Create an enclave” on page 438.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro CVT must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
1. The Connect token from the input classify parameter list must be owned by the current home address

space and must be associated with a system key (0-7), as specified on IWMCONN. The Classify
parameter list and hence the Connect token is only relevant for TYPE=INDEPENDENT enclaves.

2. Since this service may only be used by system-like code, some validity checking on the parameter list
is not performed. These checks would only be needed if the macro were not used to invoke the service
routine.

3. The variable length fields associated with the classify parameter list (the classify parameter list is only
relevant for certain options) given by the CLSFY keyword have the following limitations in addition to
those documented in IWMCLSFY:

• SUBSYSPM is limited to 255 bytes
• COLLECTION is limited to 18 bytes
• CORRELATION is limited to 12 bytes

IWMECREA

Appendix E. WLM services supporting 31-bit addressing only 781

4. When TYPE(MONENV) is specified the following apply:

• If the key specified on IWMMCREA was a user key (8-F), then primary or home addressability must
exist to the performance block IWMMCREA obtained. This condition is satisfied by ensuring that the
current primary or home address space matches primary (=home) at the time that IWMMCREA was
invoked.

• The caller must serialize to prevent any delay monitoring services from being invoked concurrently
for the environment represented by the monitoring token.

• Only limited checking is done against the input monitoring token.
• TYPE=MONENV enclaves cannot be created for report-only monitoring environments.

5. This macro may only be used on z/OS R2 or higher levels for EXSTARTDEFER keyword.

Input register information
Before issuing the IWMECREA macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMECREA macro is as follows:

IWMECREA

782 z/OS: z/OS MVS Programming: Workload Management Services

main diagram

name
IWMECREA

TYPE=INDEPENDENT
parameters-1

TYPE=DEPENDENT

TYPE=MONENV ,MONTKN=  montkn ,ACCESS=PRIMARY

,ACCESS=HOME

,ETOKEN=  etoken

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,PLISTVER=3

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

parameters-1
,CLSFY=  clsfy ,ARRIVALTIME=  arrivaltime ,FUNCTION_NAME=  function_name

,EXSTARTDEFER=NO

,EXSTARTDEFER=YES

,ESTRT=IMPLIED

,WORKREQ_HDL=  workreq_hdl

,ESTRT=EXPLICIT

,ESTRT=EXPLICIT_SINGLE

,ESTRT=NEVER

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMECREA macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ACCESS=PRIMARY
,ACCESS=HOME

When TYPE=MONENV is specified, a required parameter, which describes how to access the
monitoring environment.
,ACCESS=PRIMARY

indicates that the monitoring environment can be accessed in the caller's primary address space.
This would be appropriate if the monitoring environment was established (by IWMMCREA) to be

IWMECREA

Appendix E. WLM services supporting 31-bit addressing only 783

used by routines in a specific system key or if it was established to be used in a specific user key in
the current primary.

,ACCESS=HOME
indicates that the monitoring environment must be accessed in the home address space, which is
not the caller's primary address space. This would be appropriate if the monitoring environment
was established (by IWMMCREA) for use by a specific user key.

,ARRIVALTIME=arrivaltime
When TYPE=INDEPENDENT is specified, a required input parameter, which contains the work arrival
time in STCK format. This is the time at which the business work request is considered to have arrived
and from which point the system evaluates elapsed time for the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,CLSFY=clsfy
When TYPE=INDEPENDENT is specified, a required input parameter, which contains the classification
information in the format of the parameter list for IWMCLSFY. Note that this name is the data area
name, not its pointer. IWMCLSFY MF(M) should be used to initialize the area prior to invocation of
IWMECREA.

Note that the variable length fields associated with the classify parameter list given by the CLSFY
keyword have the following limitations in addition to those documented in IWMCLSFY:

• SUBSYSPM is limited to 255 bytes
• COLLECTION is limited to 18 bytes
• CORRELATION is limited to 12 bytes

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,ESTRT=IMPLIED
,ESTRT=EXPLICIT
,ESTRT=EXPLICIT_SINGLE
,ESTRT=NEVER

When TYPE=INDEPENDENT is specified, an optional parameter, which denotes how the work
manager indicates the start and end point of an EWLM work request when participating in cross-
platform enterprise workload management (EWLM). The default is ESTRT=IMPLIED.
,ESTRT=IMPLIED

If the work manager previously connected to WLM with IWMCONN EWLM=YES, a work request is
started implicitly when the enclave is created. If IWMESTOP was not invoked before, the work
request will be stopped implicitly when the enclave is deleted.

,ESTRT=EXPLICIT
The work manager indicates the start and end point of an EWLM work request by invoking the
services IWMESTRT and IWMESTOP. Note that this option is only meaningful, if the work manager
previously connected to WLM with IWMCONN EWLM=YES.

,ESTRT=EXPLICIT_SINGLE
Indicates the same as option ESTRT=EXPLICIT and, in addition, the application ensures that only
one work request is active. No nested calls to IWMESTRT are allowed. If this option is specified
the CPU consumption on all EWLM enclave services (IWMEGCOR, IWMESTRT, IWMESTOP,
IWMEBLK, IWMEUBLK) will be reduced. If ESTRT=EXPLICIT_SINGLE is specified on IWMECREA,
the application must also add the EWLMMODE=EXPLICIT_SINGLE parameter on all calls to
IWMEGCOR, IWMESTRT, IWMESTOP, IWMEBLK and IWMEUBLK. If this parameter is used, the
application has some restrictions on all calls to IWMEGCOR, IWMESTRT, IWMESTOP, IWMEBLK
and IWMEUBLK. Refer to the corresponding macro descriptions for details.

,ESTRT=NEVER
Indicates that this enclave will never use any EWLM-related enclave services (IWMEGCOR,
IWMESTRT, IWMESTOP, IWMEBLK, and IWMEUBLK) after the enclave has been created, even if
the work manager has registered (IWM4CON or IWMCONN) with EWMLM=YES. Moreover
IWMECREA will not start an EWLM work request on the enclave and will not do any EWLM-related
processing.

IWMECREA

784 z/OS: z/OS MVS Programming: Workload Management Services

,ETOKEN=etoken
A required output parameter, which will receive the enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,EXSTARTDEFER=NO
,EXSTARTDEFER=YES

When TYPE=INDEPENDENT is specified, an optional parameter, which indicates whether the enclave
execution start time should begin when the first IWMSTBGN or IWMEJOIN is executed. The time
between enclave create and the first IWMSTBGN or IWMEJOIN is assumed to be the queue time. The
default is EXSTARTDEFER=NO
,EXSTARTDEFER=NO

indicates that the enclave execution start time should not begin when the first IWMSTBGN or
IWMEJOIN is executed.

,EXSTARTDEFER=YES
indicates that the enclave execution start time should begin when the first IWMSTBGN or
IWMEJOIN is executed.

,FUNCTION_NAME=function_name
When TYPE=INDEPENDENT is specified, a required input parameter, which contains the descriptive
name for the function for which the enclave was created.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,MONTKN=montkn
When TYPE=MONENV is specified, a required input parameter, which contains the delay monitoring
token which describes the current business unit of work. If the monitoring environment is related to
an address space, then it must be the current home address space.

IWMECREA

Appendix E. WLM services supporting 31-bit addressing only 785

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2
,PLISTVER=3

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameters and those from version 0 :

ACCESS MONTKN TYPE

• 2, which supports the following parameter and those from version 0 and 1:

EXSTARTDEFER
• 3, which supports the following parameters and those from version 0, 1, and 2:

ESTRT
WORKREQ_HDL

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, 2, or 3

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

TYPE=INDEPENDENT
TYPE=DEPENDENT
TYPE=MONENV

An optional parameter, which indicates the type of enclave being created. The default is
TYPE=INDEPENDENT.
TYPE=INDEPENDENT

indicates that the enclave represents a new business unit of work with its own business
objectives.

IWMECREA

786 z/OS: z/OS MVS Programming: Workload Management Services

TYPE=DEPENDENT
indicates that the enclave represents a continuation of the business unit of work represented by
the current home address space.

TYPE=MONENV
indicates that the enclave represents a continuation of the business unit of work represented by
the input monitoring environment.

,WORKREQ_HDL=workreq_hdl
When ESTRT=IMPLIED and TYPE=INDEPENDENT are specified, an optional output parameter that will
receive the handle which represents the work request. The application must pass this handle to the
other work request services IWMESTOP, IWMEBLK, IWMEUBLK, and IWMEGCOR.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMECREA macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 114. Return and Reason Codes for the IWMECREA Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay. Also check if you call this macro
in 64-bit address mode. Refer to the description of xxxx089E for further
information.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass short form verification.

Action: Check for possible storage overlay.

IWMECREA

Appendix E. WLM services supporting 31-bit addressing only 787

Table 114. Return and Reason Codes for the IWMECREA Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Connect token from the input classify parameter list does not pass
validity checking.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing mode.

Action: Request this function only when you are in 31 bit addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0836 Equate Symbol: IwmRsnCodeMaxEnclave

Meaning: Enclave could not be created because the enclave limit has been
reached.

Action: Check for possible problems wherein enclaves are not being deleted
as expected or excessive numbers of enclaves are being created in a loop.

8 xxxx0837 Equate Symbol: IwmRsnCodeUserKeyConntkn

Meaning: Connect token from the input classify parameter list is associated
with a user key.

Action: Invoke the function with a token associated with a system key.

8 xxxx0838 Equate Symbol: IwmRsnCodeClsfyAreaTooBig

Meaning: Input area associated with classification information is larger than
supported.

Action: Invoke the function with an area of the proper size. Check for
possible storage overlay.

8 xxxx0839 Equate Symbol: IwmRsnCodeClsfyPlTooSmall

Meaning: Input Classify parameter list is too small.

Action: Invoke the function with an area of the proper size. Check for
possible storage overlay.

8 xxxx083B Equate Symbol: IwmRsnCodeHomeNotOwnConn

Meaning: Home address space does not own the connect token from the
input classify parameter list.

Action: Invoke the function with the correct home address space.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this service.

Action: Avoid requesting this function under the input connection. IWMCONN
options must be specified previously to enable this service.

8 xxxx085D Equate Symbol: IwmRsnCodeMonenvNotHome

Meaning: The input monitoring environment is related to an address space
other than home.

Action: None required.

8 xxxx0892 Equate Symbol: IwmRsnCodeEWLMCorrNotAllowed

Meaning: Passed classification information must not contain an EWLM
correlator (EWLM_CORR).

Action: Do not pass an EWLM correlator within the classification information
when invoking the service with ESTRT=EXPLICIT.

IWMECREA

788 z/OS: z/OS MVS Programming: Workload Management Services

Table 114. Return and Reason Codes for the IWMECREA Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0894 Equate Symbol: IwmRsnCodeInvalidEWLMCorr

Meaning: Passed classification information contains an ARM correlator
(EWLM_CORR) that does not pass validity checking. The architected ARM
correlator length field in the first two bytes of the EWLM_CORR is either less
than 4 (X'0004') or greater than 512 (X'0200').

Action: Check the specification of the EWLM correlator in the classification
information.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: Service is not enabled because caller invoked the IWMCONN
service with EWLM=NO.

Action: Specify the parameter WORKREQ_HDL only when connected with
EWLM=YES.

8 xxxx089E Equate Symbol: IwmRsnCodeServiceAModeMismatch

Meaning: The caller is in 64-bit address mode and tried to invoke a service
macro that is only enabled for a 31-bit environment.

Action: Use the 64-bit enabled service macro (IWM4ECRE) or change the
address mode of the caller to 31-bit.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

C xxxx0C0C Equate Symbol: IwmRsnCodeClassifyFail

Meaning: Received a non-zero return code from the classification service,
IWMCLSFY.

Action: No action required. Reinvoking the function later may succeed.

C xxxx0C0D Equate Symbol: IwmRsnCodeBadClsfy

Meaning: Classification apparently can not access the current policy, possibly
due to a policy switch in progress.

Action: Invoke the function when the conditions are alleviated.

C xxxx0C20 Equate Symbol: IwmRsnCodeDepClassifyFail

Meaning: Unable to obtain classification attributes for a dependent enclave.

Action: None required.

C xxxx0C21 Equate Symbol: IwmRsnCodeNoMonEnvErr

Meaning: Input monitoring token indicates no monitoring environment was
established.

Action: None required.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

IWMEDELE — Delete an enclave

IWMEDELE

Appendix E. WLM services supporting 31-bit addressing only 789

The purpose of this service is to delete an enclave, so that no SRBs or TCBs exist within the enclave and
no new SRBs may be scheduled into the enclave, nor may any TCBs join the enclave. Some residual
enclave related CPU time will not be accounted back to the work request whenever active enclave SRBs/
TCBs were present at the time IWMEDELE is invoked. SRBs scheduled to the enclave which have not
completed will be converted to ordinary preemptable SRBs. TCBs joined to the enclave which have not
completed will be converted to ordinary TCBs.

If IWMEDELE is invoked for an enclave which is registered, the enclave is considered only logically
deleted while all its functionality stays in place. Physical deletion is deferred until all interested parties
have deregistered the enclave. The caller does not receive any notice when the physical deletion of the
enclave is done.

When an enclave is deleted, the work request is considered to have finished and all related resource
accounting will be finalized.

IWMEDELE cannot be used to delete a foreign enclave. The IWMUIMPT macro must be used instead.

Note : It is recommended to use the equivalent service, IWM4EDEL, which also supports 64-bit
addressing. For more information, see “IWM4EDEL — Delete an enclave” on page 451.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRR environments may be established.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

6. Since this service may only be used by system-like code, some validity checking on the parameter list
is not performed. These checks would only be needed if the macro were not used to invoke the service
routine.

Restrictions
This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to
the PLISTVER parameter description for further information.

IWMEDELE

790 z/OS: z/OS MVS Programming: Workload Management Services

Input register information
Before issuing the IWMEDELE macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWM4EDEL macro is as follows:

IWMEDELE

Appendix E. WLM services supporting 31-bit addressing only 791

name
IWM4EDEL ETOKEN=  etoken

,CPUSERVICE=  cpuservice

,SYSPLEXCPUSRV=  sysplexcpusrv ,CPUTIME=  cputime

,RESPTIME_RATIO=  resptime_ratio ,ZAAPSERVICE=  zaapservice

,ZAAPTIME=  zaaptime ,ZAAPNFACTOR=  zaapnfactor

,ZIIPSERVICE=  ziipservice ,ZIIPTIME=  ziiptime

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWM4EDEL macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,CPUSERVICE=cpuservice
An optional output parameter, which will contain the CPU service accumulated by the enclave on the
local system.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,CPUTIME=cputime
An optional output parameter, which will contain the total CPU time accumulated by the enclave on
the local system.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

ETOKEN=etoken
A required input parameter, which contains the enclave token to be returned.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

IWMEDELE

792 z/OS: z/OS MVS Programming: Workload Management Services

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameter and those from version 0:

RESPTIME_RATIO
• 2, which supports the following parameters and those from version 0 and 1:

IWMEDELE

Appendix E. WLM services supporting 31-bit addressing only 793

ZAAPNFACTOR ZAAPTIME ZIIPTIME

ZAAPSERVICE ZIIPSERVICE

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, or 2

,RESPTIME_RATIO=resptime_ratio
An optional output parameter, which contains the response time ratio times 100: act.resp.time / goal *
100 if the enclave has a response time goal (limited to: 1<=RESPTIME_RATIO<=1000) 0 otherwise

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SYSPLEXCPUSRV=sysplexcpusrv
An optional output parameter, which will contain the CPU service accumulated by the enclave on the
local system and on other systems through the use of the IWMEXPT and IWMIMPT services. If the
IWMEXPT and IWMIMPT services were not used, SYSPLEXCPUSRV returns the same value as
CPUSERVICE.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,ZAAPNFACTOR=zaapnfactor
An optional output parameter, which contains the normalization factor for application assist
processors (zAAPs). If zAAPs are running at a different speed, multiply zAAP service and times with
this factor and divide the result by 256 to normalize the values to the speed of regular CPs. Note
however, that if there has been a speed change of zAAP processors during the life time of the enclave,
this calculation will return incorrect data.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ZAAPSERVICE=zaapservice
An optional output parameter, which contains the application assist processor (zAAP) service
accumulated by the enclave on the local system. The value is not normalized to the speed of regular
CPs, but is expressed in zAAP speed which might be different. You may use ZAAPNFACTOR to
normalize the value to the speed of regular CPs. Note however, that if the zAAP speed changed during
the life time of the enclave, this value cannot be normalized correctly.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,ZAAPTIME=zaaptime
An optional output parameter, which contains the total application assist processor (zAAP) time
accumulated by the enclave on the local system. The value is not normalized to the speed of regular
CPs, but is expressed in zAAP speed which might be different. You may use ZAAPNFACTOR to
normalize the value to the speed of regular CPs. Note however, that if the zAAP speed changed during
the life time of the enclave, this value cannot be normalized correctly.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

IWMEDELE

794 z/OS: z/OS MVS Programming: Workload Management Services

,ZIIPSERVICE=ziipservice
An optional output parameter, which contains the integrated information processor (zIIP) service
accumulated by the enclave on the local system. The service is normalized to standard processor
speed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,ZIIPTIME=ziiptime
An optional output parameter, which contains the total integrated information processor (zIIP) time
accumulated by the enclave on the local system. The time is normalized to standard processor speed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

ABEND codes
None.

Return codes and reason codes
When the IWMEDELE macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 115. Return and Reason Codes for the IWM4EDEL Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0411 Equate Symbol: IwmRsnCodeEnclActive

Meaning: Input enclave had 1 or more SRBs scheduled or running, or 1 or
more TCBs joined to the enclave.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

IWMEDELE

Appendix E. WLM services supporting 31-bit addressing only 795

Table 115. Return and Reason Codes for the IWM4EDEL Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing mode.

Action: Request this function only when you are in 31 bit addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token, or
asynchronous events which may have deleted the enclave.

8 xxxx0872 Equate Symbol: IwmRsnCodeForeignEnclave

Meaning: The enclave is foreign.

Action: Use the IWMUIMPT macro to delete a foreign enclave.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

Example
To allow the current task to join an enclave:

 IWMEDELE ETOKEN=ENCTOKEN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
ENCTOKEN DS CL8 Contains the enclave token
*
RC DS F Return code
RSN DS F Reason code

IWMEQRY — Enclave query
This service extends service IWMECQRY, it offers three functions:

1. query the classification attributes of an enclave,
2. query WLM performance management information of an enclave,
3. both of the above.

The output of this service is mapped by macro IWMECDX.

The Query macro is provided in list, execute, and standard form. The list form accepts no variable
parameters and is used only to reserve space for the parameter list. The standard form is provided for use
with routines which do not require reentrant code. The execute form is provided for use with the list
format for reentrant routines.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

IWMEQRY

796 z/OS: z/OS MVS Programming: Workload Management Services

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE ASCENV=AR
before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. This macro may only be used on z/OS V1.R10 (HBB7750) or higher with APAR OA35822 applied.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high order
halfword should thus be excluded from comparison with the reason code values described above.

The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. This macro may not be used prior to the completion of WLM address space initialization
2. The caller must provide storage for an answer area mapped by macro IWMECDX. This answer area

may reside in the caller's primary address space, or in a dataspace accessible via the current unit of
work's dispatchable unit access list (DUal).

Input register information
Before issuing the IWMEQRY macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unchanged
14

Used as work register by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents

IWMEQRY

Appendix E. WLM services supporting 31-bit addressing only 797

0-1
Used as work registers by the system

2-13
Unchanged

14-15
Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
main diagram

name
b IWMEQRY b ETOKEN=  etoken ,ANSAREA=  ansarea

,ANSLEN=  anslen ,QUERYLEN=  querylen ,FUNCTION=CLASSINFO

,FUNCTION=PERFINFO

,FUNCTION=ALL

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEQRY macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ANSAREA=ansarea
A required output parameter, which is to receive the data being returned. The layout of this area is
defined by macro IWMECDX.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

IWMEQRY

798 z/OS: z/OS MVS Programming: Workload Management Services

,ANSLEN=anslen
A required input parameter, variable which contains the length of the area provided to contain the
data being returned by IWM4EQRY.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a
literal decimal value.

ETOKEN=etoken
A required input parameter, which contains the Enclave token representing the Enclave of interest.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,FUNCTION=CLASSINFO
,FUNCTION=PERFINFO
,FUNCTION=ALL

A required parameter that indicates the query function to be executed.
,FUNCTION=CLASSINFO

Use this function to query the classification attributes of an enclave. This is the same information
as is returned by service IWMECQRY.

,FUNCTION=PERFINFO
Use this function to query the WLM performance management information of an enclave. This data
is based on the classification attributes and the active WLM Policy.

,FUNCTION=ALL
Use this function to query both, the classification attributes and the WLM performance
management information of an enclave.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

IWMEQRY

Appendix E. WLM services supporting 31-bit addressing only 799

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,QUERYLEN=querylen
A required output parameter, variable is to receive the number of bytes needed to contain the data
being returned by IWMEQRY. The length of the area needed to contain the data is dependent on the
Function being used. If the ANSLEN is less than the QUERYLEN, then no data is returned in the output
area specified by ANSAREA and a return code of 4 is issued.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or (15), (GPR15),
(REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0. If you specify 0,
00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2)-(12), (00), (GPR0),
(GPR00), REG0), (REG00), or (R0).

ABEND codes
None.

Return codes and reason codes
When the IWMEQRY macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

IWMEQRY

800 z/OS: z/OS MVS Programming: Workload Management Services

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 116. Return and Reason Codes for the IWMEQRY Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive all the
available information.

Action: Reinvoke the service with an output area of sufficient
size to receive all information.

4 xxxx043C Equate Symbol: IwmRsnCodeIsReset

Meaning: Classification information returned may not reflect
how the independent enclave is being managed. The
independent enclave was reset to another service class or is
reset quiesced. Information returned.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing
mode.

Action: Request this function only when you are in 31-bit or 64-
bit addressing mode.

IWMEQRY

Appendix E. WLM services supporting 31-bit addressing only 801

Table 116. Return and Reason Codes for the IWMEQRY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Caller invoked service with an invalid value for
PLISTVER.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or supplies
mutually exclusive parameters or provides data associated with
options not selected.

Action: Check for possible invalid input data in the parameter
list.

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: Caller has an invalid ALET. The ALET is used to
address the output area specified in parameter ANSAREA.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token is invalid.

Action: Check the specification of the ETOKEN parameter.

8 xxxx089E Equate Symbol: IwmRsnCodeServiceAModeMismatch

Meaning: Caller is in an addressing mode incompatible with the
invoked service.

Action: Check the specification of the caller's allowed AMODE.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error

Action: Consider reporting the problem to IBM.

Example
None.

IWMMABNL — Record abnormal event

You can use IWMMABNL to record an abnormal event that has occurred for work requests. The
information is kept in the input monitoring environment. The abnormal condition supplements any
existing abnormal conditions recorded in the input monitoring environment.

The abnormal events are transferred (with all other information) to any parent monitoring environment
with the IWMMXFER FUNCTION=RETURN parameter. These abnormal events are recorded in the
monitoring environment so that the caller can get an indication that further requests might fail due to
some abnormal situation. This supplements any information a caller receives from the return code.

IWMMABNL

802 z/OS: z/OS MVS Programming: Workload Management Services

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state, or problem state. PSW key must either be 0 or
match the value supplied on IWM4MCRE for the input monitoring
token when MONENVKEYP=PSWKEY is specified.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary mode

Interrupt status: Enabled

Locks: Unlocked

Control parameters: Control parameters must be in the primary address space.

Programming requirements
• You must include the IWMYCON mapping macro in the calling program.
• If the key specified on IWM4MCRE was a user key, then either primary or secondary addressability must

exist to the performance block IWM4MCRE obtained.
• If you specify MONENVKEYP=VALUE, then the caller must be in supervisor state or have PKM authority

to the key specified by MONENVKEY.
• If you specify MONENVKEYP=UNKNOWN, then the caller must be in supervisor state or have PKM

authority to key 0.
• The caller must serialize to prevent any delay monitoring services from being invoked concurrently for

the environment represented by the monitoring token.
• Only limited validity checking is done on the input monitoring token.
• The caller is responsible for error recovery.

Restrictions
None.

Input register information
Before issuing the IWMMABNL macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.
1

Used as a work register by the system.
2 - 13

Unchanged

IWMMABNL

Appendix E. WLM services supporting 31-bit addressing only 803

14
Used as a work register by the system.

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0 - 1

Used as a work register by the system.
2 - 13

Unchanged
14 - 15

Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMMABNL macro is as follows:

name
IWMMABNL ABNORMAL=  abnormal ,MONTKN=  montkn

,MONENVKEYP= VALUE ,MONENVKEY=  monenvkey

PSWKEY

UNKNOWN

,MONENV= NOSWITCH

SECONDARY ,RETCODE=  retcode

,RSNCODE=  rsncode

Parameters
The parameters are explained as follows:
ABNORMAL=abnormal

Required input parameter specifying the abnormal mask reflecting the abnormality. Macro IWMYCON
contains the defined abnormal masks. The mask variable names begin with IWMMABNL, for example
- IWMMABNL_SCOPE_LOCALMVS.

To code: Specify the name (RS-type), or address in register (2)-(12) of a 32-bit field containing the
abnormal mask.

,MONTKN=montkn
Required input parameter specifying the monitoring token for the environment affected by the
abnormality.

To code: Specify the name (RS-type), or address in register (2)-(12) of a 32 bit field containing the
monitoring token.

IWMMABNL

804 z/OS: z/OS MVS Programming: Workload Management Services

,MONENVKEYP=VALUE
,MONENVKEYP=PSWKEY
,MONENVKEYP=UNKNOWN

Required input parameter that specifies whether a key switch is needed to access the input
monitoring environment.

Use MONENVKEYP=VALUE to indicate that the key is being passed explicitly in MONENVKEY.

Use MONENVKEYP=PSWKEY to indicate that the current PSW key should be used. If you use this
parameter, the input monitoring environment must have been created with the same key as the
current PSW key.

Use MONENVKEYP=UNKNOWN to indicate that the key associated with the input monitoring
environment is unknown. If you use this parameter, the caller must be in supervisor state or have PKM
authority to key 0.

,MONENVKEY=monenvkey
Required input parameter for MONENVKEYP=VALUE that specifies the key in which the input
monitoring environment must be accessed. If you use this parameter, the caller must be in supervisor
state or have PKM authority to the key specified.

To code: Specify an 8 bit name (RS-type), or address in register (2)-(12), of the monitoring
environment key. The leftmost (high order) 4 bits contain the key value. Note that this uses the
machine orientation for keeping the storage key in the high-order bits.

,MONENV=NOSWITCH
,MONENV=SECONDARY

Required keyword input which describes whether an address space switch is needed to access the
input monitoring environment.

Use MONENV=NOSWITCH to indicate that no space switch is needed to access the input monitoring
environment. This is appropriate if the input monitoring environment was established (by IWM4MCRE)
to be used by routines in a specific system key or if it was established to be used in a specific user key
in the current primary.

Use MONENV=SECONDARY to indicate that the input monitoring environment was established in
current secondary (for use by a specific user key).

,RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return code. The return
code is also in GPR 15.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain
the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the reason code. The reason
code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain
the reason code (if any).

ABEND codes
None.

Return codes and reason codes
When IWMMABNL macro returns control to your program, GPR 15 contains a return code. When the
return code is non-zero, then GPR 0 contains a reason code.

IWMMABNL

Appendix E. WLM services supporting 31-bit addressing only 805

Hexadecimal Return
Code

Hexadecimal Reason
Code Meaning

00 Meaning: Successful completion.

Action: None.

04 0402 Meaning: Warning. Input monitoring token indicates no monitoring
environment was established.

Action: None.

08 0820 Meaning: Program error. The monitoring environment does not pass short
form verification.

Example
To record an abnormal event that has occurred for a work request associated with a monitoring token
defined in the field MONTKN1, specify:

IWMMABNL ABNORMAL=(R7),
 MONTKN=MONTKN1,
 MONENVKEYP=PSWKEY,
 MONENV=NOSWITCH,
 RETCODE=RCODE,RSNCODE=RSN

No address space switch is required, so you can specify MONENV=NOSWITCH.

IWMMCHST — Monitor change state of work unit

The purpose of this service is to reflect in a monitoring environment what the current state of a work
request is with respect to delays.

Note : It is recommended to use the equivalent service, IWM4MCHS, which also supports 64-bit
addressing. For more information, see “IWM4MCHS — Change the state of a work request” on page 476.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. PSW key must either be 0 or match the value supplied
on IWMMCREA.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Suspend locks are allowed.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order

IWMMCHST

806 z/OS: z/OS MVS Programming: Workload Management Services

halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. Caller is responsible for error recovery
2. Only limited checking is done against the input monitoring token.
3. If the key specified on IWMMCREA was a user key (8-F), then the primary addressability must exist to

the performance block IWMMCREA obtained. This condition is satisfied by ensuring that current
primary matches primary at the time that IWMMCREA was invoked. If this service is invoked in a
subspace, the condition may be satisfied by ensuring that the performance block is shared with the
base space.

4. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for
the environment represented by the monitoring token.

5. This macro may only be used on z/OS R2 or higher levels for the following state/resources:

• STATE(ACTIVE_APPL)
• RESOURCE(SSL_THREAD)
• RESOURCE(REG_THREAD)
• RESOURCE(REG_TO_WRKTB)
• RESOURCE(TYPE1)
• RESOURCE(TYPE2)
• RESOURCE(TYPE3)
• RESOURCE(TYPE4)
• RESOURCE(TYPE5)

6. This macro may only be used on z/OS R8 or higher versions for the following resources:

• RESOURCE(BUFFER_POOL_IO)
7. This macro may only be used on z/OS R8 or higher versions for RESTKN keyword.

Input register information
Before issuing the IWMMCHST macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:

IWMMCHST

Appendix E. WLM services supporting 31-bit addressing only 807

Register
Contents

0-1
Used as work registers by the system

2-13
Unchanged

14-15
Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMMCHST macro is as follows:

IWMMCHST

808 z/OS: z/OS MVS Programming: Workload Management Services

name
IWMMCHST

STATE=FREE

STATE=ACTIVE

STATE=ACTIVE_APPL

STATE=READY

STATE=IDLE

STATE=WAITING ,RESOURCE=LATCH

,RESOURCE=LOCK

,RESOURCE=IO

,RESOURCE=CONV

,RESOURCE=DISTRIB

,RESOURCE=SESS_LOCALMVS

,RESOURCE=SESS_NETWORK

,RESOURCE=SESS_SYSPLEX

,RESOURCE=TIMER

,RESOURCE=OTHER_PRODUCT

,RESOURCE=MISC

,RESOURCE=SSL_THREAD

,RESOURCE=REG_THREAD

,RESOURCE=REG_TO_WRKTB

,RESOURCE=TYPE1

,RESOURCE=TYPE2

,RESOURCE=TYPE3

,RESOURCE=TYPE4

,RESOURCE=TYPE5

,MONTKN=  montkn
,RESTKN=NORESTKN

,RESTKN=  restkn

,RUNTIME_VER=SHORT_FORM

,RUNTIME_VER=MINIMAL

,COMPCODE=YES

,COMPCODE=NO

,RETCODE=  retcode ,RSNCODE=  rsncode

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMMCHST macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,COMPCODE=YES
,COMPCODE=NO

An optional parameter, which indicates whether completion status for this service is needed. The
default is COMPCODE=YES.

IWMMCHST

Appendix E. WLM services supporting 31-bit addressing only 809

,COMPCODE=YES
indicates that completion status is needed.

,COMPCODE=NO
indicates that completion status is not needed. Registers 0, 15 cannot be used as reason code and
return code registers upon completion of the macro expansion. For this reason neither RETCODE
NOR RSNCODE may be specified when COMPCODE(NO) is specified.

,MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,RESOURCE=LATCH
,RESOURCE=LOCK
,RESOURCE=IO
,RESOURCE=CONV
,RESOURCE=DISTRIB
,RESOURCE=SESS_LOCALMVS
,RESOURCE=SESS_NETWORK
,RESOURCE=SESS_SYSPLEX
,RESOURCE=TIMER
,RESOURCE=OTHER_PRODUCT
,RESOURCE=MISC
,RESOURCE=SSL_THREAD
,RESOURCE=REG_THREAD
,RESOURCE=REG_TO_WRKTB
,RESOURCE=TYPE1
,RESOURCE=TYPE2
,RESOURCE=TYPE3
,RESOURCE=TYPE4
,RESOURCE=TYPE5

When STATE=WAITING is specified, a required parameter, which indicates the resource that the work
manager is waiting for on behalf of the work request described by the monitoring environment.
,RESOURCE=LATCH

indicates that the work manager is waiting on a latch.
,RESOURCE=LOCK

indicates that the work manager is waiting on a lock.
,RESOURCE=IO

indicates that the work manager is waiting on an activity related to an I/O request. This may either
be an actual I/O operation or some function associated with an IO request that cannot be more
precisely determined by the work manager, for example, locks, buffers, etc.

,RESOURCE=CONV
indicates that the work manager is waiting on a conversation. This may be used in conjunction
with IWMMSWCH to identify where the target is located.

,RESOURCE=DISTRIB
indicates that the work manager is waiting on a distributed request. This says at a high level that
some function or data must be routed prior to resumption of the work request. This is to be
contrasted with Waiting on Conversation, which is a low level view of the precise resource that is
needed. A distributed request could involve waiting on a conversation as part of its processing.

,RESOURCE=SESS_LOCALMVS
indicates that the work manager is waiting to establish a session somewhere in the current MVS
image.

,RESOURCE=SESS_NETWORK
indicates that the work manager is waiting to establish a session somewhere in the network.

,RESOURCE=SESS_SYSPLEX
indicates that the work manager is waiting to establish a session somewhere in the sysplex.

IWMMCHST

810 z/OS: z/OS MVS Programming: Workload Management Services

,RESOURCE=TIMER
indicates that the work request is waiting on a timer.

,RESOURCE=OTHER_PRODUCT
indicates that the work manager is waiting on another product to complete its function.

,RESOURCE=MISC
indicates that the work manager is waiting on some unidentified resource, possibly among the
previous categories.

,RESOURCE=SSL_THREAD
indicates that the work manager is waiting on an SSL thread.

,RESOURCE=REG_THREAD
indicates that the work manager is waiting on a regular processing thread.

,RESOURCE=REG_TO_WRKTB
indicates that the work manager is waiting for the registration to a worktable.

,RESOURCE=TYPE1
indicates that the work manager is waiting for resource type 1.

,RESOURCE=TYPE2
indicates that the work manager is waiting for resource type 2.

,RESOURCE=TYPE3
indicates that the work manager is waiting for resource type 3.

,RESOURCE=TYPE4
indicates that the work manager is waiting for resource type 4.

,RESOURCE=TYPE5
indicates that the work manager is waiting for resource type 5.

,RESTKN=restkn
,RESTKN=NORESTKN

An optional input parameter, which contains the token of the managed resource previously registered
with register resource (IWMMREG). The default is NORESTKN, which indicates that no resource token
is provided.

NORESTKN preserves the existing resource token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL

An optional parameter, which indicates what level of runtime verification will be performed. The
default is RUNTIME_VER=SHORT_FORM.
,RUNTIME_VER=SHORT_FORM

indicates that checking should verify that a monitoring environment is established and passes a
short form of verification prior to being used.

,RUNTIME_VER=MINIMAL
indicates that checking will only be done to verify that a monitoring environment may be
established, assuming that it would be valid and useable if established.

IWMMCHST

Appendix E. WLM services supporting 31-bit addressing only 811

STATE=FREE
STATE=ACTIVE
STATE=ACTIVE_APPL
STATE=READY
STATE=IDLE
STATE=WAITING

A required parameter, which indicates the current state for the work request.
STATE=FREE

indicates that the work manager has no work request associated with the monitoring
environment.

STATE=ACTIVE
indicates that there is a program executing on behalf of the work request described by the
monitoring environment. This is an indication from the perspective of the work manager using this
service, who should not try to factor in MVS decisions in preempting work, etc.

STATE=ACTIVE_APPL
indicates that there is an application program executing on behalf of the work request described
by the monitoring environment. This is an indication from the perspective of the work manager
using this service, who should not try to factor in MVS decisions in preempting work. This state
represents the application activity in contrast to the active (subsystem) state.

STATE=READY
indicates that there is a program ready to execute on behalf of the work request described by the
monitoring environment, but the work manager has given priority to another work request.

STATE=IDLE
indicates that the work manager has no work requests that it is allowed to service within the
monitoring environment. This represents a delay that is not under the control of the work manager
itself and which it cannot eliminate. This may be caused by limits imposed by the installation or by
the nature of the work request itself.

STATE=WAITING
indicates that the work manager is waiting for a resource on behalf of the work request described
by the the monitoring environment.

ABEND codes
None.

Return codes and reason codes
When the IWMMCHST macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 117. Return and Reason Codes for the IWM4MCHS Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

IWMMCHST

812 z/OS: z/OS MVS Programming: Workload Management Services

Table 117. Return and Reason Codes for the IWM4MCHS Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: Input monitoring token indicates no monitoring environment was
established.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass short form verification.

Action: Check for possible storage overlay.

IWMMCREA — Create delay monitoring environment

The purpose of this service is to create a single delay monitoring environment or a number of delay
monitoring environments so that work and resource managers may utilize other delay monitoring services
to reflect to MVS the execution states and delays associated with work requests.

There are three types of monitoring environments available, management monitoring environments,
report-only monitoring environments and buffer pool management only environments. Management
monitoring environments provide both, performance management and performance reporting. Report-
only monitoring environments can be used for performance reporting only. Buffer pool management only
monitoring environments provide only buffer pool performance management for enclaves.

Optionally, if you specify REPORTONLY=YES the monitoring environment is used for reporting purposes
only.

Furthermore, if you specify BPMGMTONLY=YES, the monitoring environment is used for buffer pool
management for enclaves only.

Note : It is recommended to use the equivalent service, IWM4MCRE, which also supports 64-bit
addressing. For more information, see “IWM4MCRE — Create delay monitoring environment” on page
485.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task

Cross memory mode: Non-XMEM or XMEM. Any P.S.H.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts No (EUT) FRR established.

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

IWMMCREA

Appendix E. WLM services supporting 31-bit addressing only 813

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
1. This macro may not be used during task/address space termination.
2. If the key specified on IWMMCREA is a user key (8-F), then the caller must be in non-cross-memory

mode (P=S=H)
3. While not a restriction for IWMMCREA, it should be noted that when the key specified is a user key (8-

F), the delay monitoring token may only be passed (to any service whatsoever), when primary
addressability exists to the performance block obtained by IWMMCREA. This condition may be
satisfied by ensuring that the then current primary matches primary at the time that IWMMCREA was
invoked. If these other services are invoked in a subspace, the condition may be satisfied by ensuring
that the performance block is shared with the base space.

4. This service provides a task and address space resource managers to clean up any resouces obtained
during task and address space terminations. Once the calling task or address space terminates, the
monitoring token returned by IWMMCREA must not be used for any services.

5. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer
to the PLISTVER parameter description for further information.

Input register information
Before issuing the IWMMCREA macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents

IWMMCREA

814 z/OS: z/OS MVS Programming: Workload Management Services

0-1
Used as work registers by the system

2-13
Unchanged

14-15
Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMMCREA macro is as follows:
main diagram

name
IWMMCREA

REQTYPE=SINGLE

,MONTKN=  montkn

REQTYPE=MULTIPLE ,AMOUNT=  amount ,MONTKN_LIST=  montkn_list ,MONTKN_LISTLEN=  montkn_listlen

,REPORTONLY=NO ,BPMGMTONLY=NO

,BPMGMTONLY=YES

,REPORTONLY=YES

,SUBSYSP=CONNECT ,CONNTKN=  conntkn

,SUBSYSP=VALUE parameters-1

,MONTKNKEYP=VALUE ,MONTKNKEY=  montknkey

,MONTKNKEYP=PSWKEY ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

IWMMCREA

Appendix E. WLM services supporting 31-bit addressing only 815

parameters-1
,SUBSYS=  subsys ,SUBSYSNM=  subsysnm

,EWLM=NO

,EWLM=YES

,GROUPNM=NO_GROUPNM

,GROUPNM=  groupnm

,GROUPNM_LEN=  groupnm_len

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMMCREA macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,AMOUNT=amount
When REQTYPE=MULTIPLE is specified, a required input parameter, which specifies the number of
delay monitoring environments to be created.

While there is no restriction on the number of delay monitoring environments to be created, caller
should only create the minimum number of delay monitoring environments that are needed.

If there are too many unused delay monitoring environments existing in the system, the storage and
CPU overheads may be significant.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,BPMGMTONLY=NO
,BPMGMTONLY=YES

When REPORTONLY=NO is specified, an optional parameter, which indicates whether the monitoring
environment is for buffer pool management purposes only (YES) or (NO). The default is
BPMGMTONLY=NO.
,BPMGMTONLY=NO

indicates that the monitoring environment is not for buffer pool management purposes.
,BPMGMTONLY=YES

indicates that the monitoring environment is for buffer pool management purposes only.
,CONNTKN=conntkn

When SUBSYSP=CONNECT is specified, a required input parameter, which contains the connect token
associated with the subsystem.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,EWLM=NO
,EWLM=YES

IF SUBSYSP=CONNECT is specified, this parameter is not allowed. In this case the EWLM=YES/NO
specification is inherited from the IWM4CON (or IWMCONN) EWLM=YES/NO specification. When
SUBSYSP=VALUE is specified, an optional parameter, which indicates if the created monitoring
environment is intended to participate in Enterprise Workload Management (EWLM). The default is
EWLM=NO.
,EWLM=NO

The monitoring environment cannot be used to report on ARM work requests.
,EWLM=YES

The monitoring environment participates in cross-platform Enterprise Workload Management and
interacts with EWLM. An ARM application instance will be registered and started using the passed
subsystem type (SUBSYS), subsystem name (SUBSYSNM), and the new parameter group name
(GROUPNM, GROUPNM_LEN) - an already existing ARM registration for the same address space
with identical SUBSYS, SUBSYSNM, GROUPNM and GROUPNM_LEN parameters will be reused. All

IWMMCREA

816 z/OS: z/OS MVS Programming: Workload Management Services

ARM work requests associated with the created monitoring environment are reported for this ARM
application instance.

,GROUPNM=groupnm
,GROUPNM=NO_GROUPNM

When EWLM=YES and SUBSYSP=VALUE are specified, an optional input parameter, which contains
the name of an application group, for example, a group of similar or cooperating subsystem instances.
A group name can be up to 255 characters long. Provision of a data area initialized to all blanks is
equivalent to specification of NO_GROUPNM. NO_GROUPNM indicates that no group name is passed.
This is the default.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,GROUPNM_LEN=groupnm_len
When GROUPNM=groupnm, EWLM=YES and SUBSYSP=VALUE are specified, a required input
parameter, which contains the length of the group name. A group name can be up to 255 characters
long.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,MONTKN=montkn
When REQTYPE=SINGLE is specified, a required output parameter, which will receive the delay
monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKN_LIST=montkn_list
When REQTYPE=MULTIPLE is specified, a required input parameter, which specifies an area into
which a list of delay monitoring tokens will be placed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

IWMMCREA

Appendix E. WLM services supporting 31-bit addressing only 817

,MONTKN_LISTLEN=montkn_listlen
When REQTYPE=MULTIPLE is specified, a required input parameter, which specifies the length (in
bytes) of the area identified by the MONTKN_LIST keyword.

Size of this area must be at least the size of MONTKN (see MONTKN keyword) times AMOUNT. If the user
specified area is not large enough to return the delay monitoring tokens, a specific return/reason code
will be returned and the request will not be processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MONTKNKEY=montknkey
When MONTKNKEYP=VALUE is specified, a required input parameter, which contains the key in which
the delay monitoring services will be invoked subsequently when using the output MONTKN. The low
order 4 bits (bits 4-7) contain the key value. The high-order 4 bits (bits 0-3) must be 0.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8 bit field.

,MONTKNKEYP=VALUE
,MONTKNKEYP=PSWKEY

A required parameter, which describes how the input key should be obtained.
,MONTKNKEYP=VALUE

indicates that the key is being passed explicitly via MONTKNKEY.
,MONTKNKEYP=PSWKEY

indicates that the current PSW key should be used.
,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameters and those from version 0:

BPMGMTONLY GROUPNM

EWLM GROUPNM_LEN

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, or 1

IWMMCREA

818 z/OS: z/OS MVS Programming: Workload Management Services

,REPORTONLY=NO
,REPORTONLY=YES

An optional parameter,which indicates whether the monitoring environment is for reporting purposes
only (YES)or (NO).The default is REPORTONLY=NO.
,REPORTONLY=NO

indicates that the monitoring environment is for management and reporting purposes.
,REPORTONLY=YES

indicates that the monitoring environment is for reporting purposes only.
REQTYPE=SINGLE
REQTYPE=MULTIPLE

An optional parameter that indicates whether the request is to create a single delay monitoring
environment or to create multiple delay monitoring environments. The default is REQTYPE=SINGLE.
REQTYPE=SINGLE

The request is to create a single delay monitoring environment.
REQTYPE=MULTIPLE

The request is to create a number of delay monitoring environments.
,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SUBSYS=subsys
When SUBSYSP=VALUE is specified, a required input parameter, which contains the generic
subsystem type (e.g. IMS, CICS, etc.).

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character field.

,SUBSYSNM=subsysnm
When SUBSYSP=VALUE is specified, a required input parameter, which contains the subsystem name.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,SUBSYSP=CONNECT
,SUBSYSP=VALUE

A required parameter, which describes how the calling subsystem is providing identification.
,SUBSYSP=CONNECT

indicates that the connect token is being passed.
,SUBSYSP=VALUE

indicates that the subsystem name is being passed directly.

ABEND codes
None.

Return codes and reason codes
When the IWMMCREA macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

IWMMCREA

Appendix E. WLM services supporting 31-bit addressing only 819

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 118. Return and Reason Codes for the IWMMCREA Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0409 Equate Symbol: IwmRsnCodeNoConn

Meaning: Connect token does not reflect a successful Connect. The delay
monitoring token returned is useable in other services. However use of this
token will NOT result in the action requested of those services.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0802 Equate Symbol: IwmRsnCodeXmemUserKeyTkn

Meaning: Caller is in cross-memory mode while the token was requested in
user key.

Action: Avoid requesting this function while in cross-memory mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing mode.

Action: Request this function only when you are in 31 bit addressing mode.

IWMMCREA

820 z/OS: z/OS MVS Programming: Workload Management Services

Table 118. Return and Reason Codes for the IWMMCREA Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on Primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in progress for the
TCB associated with the owner.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or supplies mutually
exclusive parameters or provides data associated with options not selected.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0844 Equate Symbol: IwmRsnCodeBadMonTknListLen

Meaning: The storage area length specified on the MONTKN_LISTLEN
parameter is not large enough to contain the data being returned. No data is
returned.

Action: Invoke the function with an output area sufficient to receive the data.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work successfully at a
later time.

C xxxx0C09 Equate Symbol: IwmRsnCodeNoResmgr

Meaning: Resource manager could not be established.

Action: No action required. This condition may be due to a storage shortage
condition.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

IWMMDELE — Delete the monitoring environment

Use this macro to delete the monitoring environment. You should invoke IWMMDELE during address
space shutdown processing.

IWMMDELE

Appendix E. WLM services supporting 31-bit addressing only 821

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state, or program key mask (PKM) allowing keys 0 - 7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any SASN. HASN must match the HASN when IWM4MCRE
was invoked.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled

Locks: Unlocked, but FRRs may be established.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. You must include the CVT and IWMYCON mapping macros in the calling program.
2. The caller must serialize to prevent any delay monitoring services from being invoked concurrently or

subsequently for the environment represented by the monitoring token
3. Do not invoke IWMMDELE while in a RTM termination routine (resource manager) for the task owning

the monitoring environment since MVS will have its own resource cleanup routine and unpredictable
results would occur. It is legitimate to use this service while in a recovery routine, however, or in
mainline processing.

Restrictions
1. If the key specified on IWM4MCRE was a user key (8-F), then all of the following must be true:

• Caller must be in non-cross-memory mode (PASN=SASN=HASN). This implies that the current
primary must match the primary at the time that IWM4MCRE was invoked.

• Must be in task mode (not SRB)
• Current task must match the task at the time that IWM4MCRE was invoked.

Input register information
Before issuing the IWMMDELE macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.
1

Used as a work register by the system.
2 - 13

Unchanged
14

Used as a work register by the system.

IWMMDELE

822 z/OS: z/OS MVS Programming: Workload Management Services

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0 - 1

Used as a work register by the system.
2 - 13

Unchanged
14 - 15

Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMMDELE macro is as follows:

name
IWMMDELE MONTKN=  montkn

,RETCODE=  retcode

,RSNCODE=  rsncode

,MF=S

,MF=(L, MFCTRL

, 0D

, mfattr

)

,MF=(E, MFCTRL

, COMPLETE

, complete

)

Parameters
The parameters are explained as follows:
,MONTKN=montkn

Required input parameter that specifies the monitoring token obtained from IWM4MCRE.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a 32-bit field
containing the monitoring token.

,RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return code. The return
code is also in GPR 15.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain
the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the reason code. The reason
code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain
the reason code (if any).

IWMMDELE

Appendix E. WLM services supporting 31-bit addressing only 823

,MF=S
,MF=(L,mfctrl,mfattr)
,MF=(E,mfctrl,COMPLETE)

Use MF=S to specify the standard form, which places parameters into an inline parameter list and
invokes the IWM4CON macro service.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require re-entrant code. The list form defines an area of storage that the
execute form uses to store the parameters.

Use MF=E to specify the execute form of the macro. Use the execute form with the list form of the
macro for applications that require re-entrant code. The execute form stores the parameters into the
storage area defined by the list form and generates the macro invocation to transfer control to the
service.
,mfctrl

Use this output parameter to specify the name of the storage area to contain the parameters.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of the storage area
containing the parameter list.

,mfattr
Use this input parameter to specify the name of a 1 to 60 character storage area that can contain
any value that is valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code ,mfattr the system provides a value of
0D, which forces the parameter on a doubleword boundary.

,COMPLETE
Use this input parameter to specify that the system check for required parameters and supply
defaults for omitted optional parameter.

ABEND codes
None.

Return codes and reason codes
When IWMMDELE macro returns control to your program, GPR 15 contains a return code. When the return
code is non-zero, then GPR 0 contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning

00 Meaning: Successful completion.

04 0402 Meaning: Warning. Input monitoring token indicates no monitoring
environment was established.

04 0403 Meaning: Warning. Input monitoring token does not reflect an allocated
monitoring environment owned by the current home address space.

08 0802 Meaning: Program error. The caller is in cross-memory mode while the token
was obtained in user key.

08 0803 Meaning: Program error. Caller is disabled.

08 0804 Meaning: Program error. The caller is locked.

08 0805 Meaning: Program error. Input monitoring token reflects a switch
continuation.

08 0806 Meaning: Program error. Input monitoring token reflects a continuation to a
dependent monitoring environment.

08 0808 Meaning: Program error. Input monitoring token reflects a continuation from
a parent monitoring environment.

08 0809 Meaning: Program error. The caller is in SRB mode, while the token was
obtained in a user key (8-F).

IWMMDELE

824 z/OS: z/OS MVS Programming: Workload Management Services

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning

08 080A Meaning: Program error. Current task is not the current owner, while the
token was obtained in a user key (8-F).

08 080B Meaning: Program error. Error accessing parameter list.

08 0823 Meaning: Program error. The caller invoked the service while dynamic
address translation was disabled.

08 0824 Meaning: Program error. The caller invoked the service but was in 24-bit
addressing mode.

08 0825 Meaning: Program error. The caller invoked the service but was not in
Primary ASC mode.

08 0826 Meaning: Program error. The caller invoked the service while task
termination is in progress for the task associated with the owner.

08 0827 Meaning: Program error. Reserved field in parameter list was non-zero.

08 0828 Meaning: Program error. Version number in parameter list is not valid.

08 082A Meaning: Program error. Input monitor token is related to a parent
monitoring environment.

Example
To delete a monitoring environment, where the monitoring token is in register 7, specify:

IWMMDELE MONTKN=(R7),
 RETCODE=RCODE,RSNCODE=RSN

IWMMEXTR — Monitoring environment extract

The purpose of this service is to extract information about the monitoring environment which was
previously passed through IWM4MINI/IWMMRELA. When IWMMRELA was invoked for a management
monitoring environment, owner token, owner data and abnormal conditions are always available. Arrival
time, user ID and transaction name are only available when IWM4MINI was previously invoked. Arrival
time, however, is only available for management monitoring environments.

When the service class token is requested for a management monitoring environment, the value may
represent a token from a prior active policy. Furthermore, when the monitoring environment was
established via IWMMRELA, the token may be zero, which does not represent a valid service class or
report class. IWMWQRY may be used to obtain the service and/or report class name, along with other
information about these classes. The SERVCLS keyword is not applicable for report-only monitoring
environments. The returned token is zero, which does not represent a valid service class.

The ENCLAVE_TOKEN and ASID keywords are only applicable for report-only monitoring environments.

The EWLM_S_CURCORR keyword should only be specified, if a work unit has been started by IWMMSTRT.

When no output keywords are specified, the service merely checks whether a monitoring environment
was established and passes short form checking.

Environment
The requirements for the caller are:

Minimum authorization: Either problem state or supervisor state. Any PSW key.

Dispatchable unit mode: Task or SRB

IWMMEXTR

Appendix E. WLM services supporting 31-bit addressing only 825

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Suspend locks are allowed.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. The caller is responsible for error recovery
2. Only limited checking is done against the input monitoring token.
3. If the key specified on IWM4MCRE was a user key (8-F), then the primary addressability must exist to

the performance block IWM4MCRE obtained. This condition is satisfied by ensuring that current
primary matches primary at the time that IWM4MCRE was invoked. If this service is invoked in a
subspace, the condition may be satisfied by ensuring that the performance block is shared with the
base space.

4. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for
the environment represented by the monitoring token.

5. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer
to the PLISTVER parameter description for further information.

Input register information
Before issuing the IWMMEXTR macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

IWMMEXTR

826 z/OS: z/OS MVS Programming: Workload Management Services

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMMEXTR macro is as follows:

name
IWMMEXTR MONTKN=  montkn

,OWNER_TOKEN=  owner_token

,OWNER_DATA=  owner_data ,ARRIVALTIME=  arrivaltime

,TRXNAME=  trxname ,USERID=  userid ,SERVCLS=  servcls

,ASID=  asid ,ENCLAVE_TOKEN=  enclave_token

,TTRACETOKEN=  ttracetoken ,ABNORMAL_COND=  abnormal_cond

,EWLM_CHCORR=  ewlm_chcorr ,EWLM_PACTKN=  ewlm_pactkn

,EWLM_S_CURCORR=  ewlm_s_curcorr ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,PLISTVER=3

,PLISTVER=4

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

Parameters
The parameters are explained as follows:

IWMMEXTR

Appendix E. WLM services supporting 31-bit addressing only 827

name
An optional symbol, starting in column 1, that is the name on the IWMMEXTR macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ABNORMAL_COND=abnormal_cond
An optional output parameter, which contains the current information about abnormal conditions
which were either recorded in the input monitoring environment or which were propagated to it via
IWMMXFER Function(Return). Multiple conditions may exist.

The mask, Iwmmabnl_Scope_LocalMVS, may be used to determine whether an abnormality which
only affects work on the current MVS image was recorded.

The mask, Iwmmabnl_Scope_Sysplex, may be used to determine whether an abnormality which
affects work on all MVS images in the sysplex was recorded.

To determine whether a condition was recorded, merely AND the field supplied for ABNORMAL_COND
with the relevant mask. The result will be nonzero when the condition is true, zero when the condition
is false.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,ARRIVALTIME=arrivaltime
An optional output parameter, which contains the work arrival time in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,ASID=asid
An optional output parameter,which contains the address space ID. When the monitoring environment
is not associated with an address space, the output will be a halfword of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-bit field.

,ENCLAVE_TOKEN=enclave_token
An optional output parameter, which contains the enclave token. When the monitoring environment is
not associated with an enclave, the output will be a doubleword of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12),of a 64 bit field.

,EWLM_CHCORR=ewlm_chcorr
An optional output parameter, which contains the cross-platform Enterprise Workload Management
(EWLM) correlator of the work request associated with the monitoring environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_PACTKN=ewlm_pactkn
An optional output parameter, which contains the cross-platform Enterprise Workload Management
(EWLM) parent correlator token of the work request associated with the monitoring environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_S_CURCORR=ewlm_s_curcorr
An optional output parameter, which contains the current correlator of the work unit started by
IWMMSTRT. Normally this correlator is different from the child correlator of the work request created
by IWM4MINI.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,OWNER_DATA=owner_data
An optional output parameter, which is to receive the data established by the user/owner of the
monitoring environment. The format is undefined to MVS. When the monitoring environment is not
associated with an OWNER_TOKEN value, the output will be a word of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

IWMMEXTR

828 z/OS: z/OS MVS Programming: Workload Management Services

,OWNER_TOKEN=owner_token
An optional output parameter, which is to receive the token established by the user/owner of the
monitoring environment. The format is undefined to MVS. When the monitoring environment is not
associated with an OWNER_TOKEN value, the output will be a word of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=3

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameter and those from version 0:

TTRACETOKEN
• 2, which supports the following parameters and those from version 0 and 1:

ASID
ENCLAVE_TOKEN

• 3, which supports the following parameters and those from version 0, 1, and 2:

EWLM_CHCORR
EWLM_PACTKN

• 4, which supports the following parameter and those from version 0, 1, 2, and 3:

EWLM_S_CURCORR

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, 2, 3, or 4

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SERVCLS=servcls
An optional output parameter, which contains the service class token. When the monitoring
environment is not associated with a service class token, the output will be a word of binary zeros.

IWMMEXTR

Appendix E. WLM services supporting 31-bit addressing only 829

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,TRXNAME=trxname
An optional output parameter, which contains the transaction name. The field will be all blanks when
NO_TRXNAME was specified on IWM4MINI.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,TTRACETOKEN=ttracetoken
An optional output parameter, which contains the transaction trace token associated with the work
request. The field will be all zero when NO_TTRACETOKEN was specified on IWM4MINI.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,USERID=userid
An optional output parameter, which contains the local user ID associated with the work request. The
field will be all blanks when NO_USERID was specified on IWM4MINI.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMMEXTR macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 119. Return and Reason Codes for the IWMMEXTR Macro

Return code Reason code Equates symbol, meaning, and action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: Monitoring token indicates that no monitoring environment exists.

Action: None required.

4 xxxx040C Equate Symbol: IwmRsnCodeMonEnvLacksInfo

Meaning: Input monitoring environment does not contain the necessary
information to return the data requested.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass short form verification.

Action: Check for possible storage overlay.

IWMMEXTR

830 z/OS: z/OS MVS Programming: Workload Management Services

Table 119. Return and Reason Codes for the IWMMEXTR Macro (continued)

Return code Reason code Equates symbol, meaning, and action

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: Service is not enabled because monitoring environment can not be
associated with EWLM work requests.

Action: Specify the parameter EWLM_CHCORR or EWLM_PACTKN only when
the monitoring environment is created with IWMMCREA EWLM=YES or the
address space is connected with IWMCONN EWLM=YES and the connect
token is passed to IWMMCREA when creating the monitoring environment.

8 xxxx08AC Equate Symbol: IwmRsnCodeTranNotStarted

Meaning: A work unit has not been started.

Action: Start a work unit by IWMMSTRT macro, before specifying the
EWLM_S_CURCORR parameter.

IWMMINIT — Initialize monitoring environment

IWMMINIT allows the caller to supply MVS with some or all of the work request attributes needed for the
monitoring environment. The attributes include user ID, transaction name, transaction class, source LU,
and LU 6.2 token.

There are two types of monitoring environments available, management monitoring environments and
report-only monitoring environments. Management monitoring environments provide both performance
management and performance reporting. Report-only monitoring environments can be used for
performance reporting only.

Use the REPORTONLY=YES parameter to specify the monitoring environment will be used for reporting
purposes only.

If you are invoking IWMMINIT with the REPORTONLY=YES parameter, ASSOCIATE=ENCLAVE or
ASSOCIATE=ADDRESS_SPACE must be specified to associate the monitoring environment with an
enclave or an address space.

For management monitoring environments, if possible, invoke IWMMINIT immediately following
IWMCLSFY, and pass the service class for the work request. Without the associated service class in the
monitoring environment, delay information cannot be accumulated and reported accurately.

IWMMINIT can be issued multiple times for the same work request. The first time you invoke IWMMINIT
for a work request, you must specify MODE=RESET, otherwise the previous work request's attributes are
associated with this work request. Any subsequent time you invoke IWMMINIT from the same address
space for the same monitoring token for the same work request, specify MODE=RETAIN. If the caller
subsystem work manager consists of multiple address spaces (with multiple monitoring tokens), the first
time IWMMINIT is invoked in each address space for a given work request must specify MODE=RESET.
Any subsequent invocations for the same work request should specify MODE=RETAIN.

If you are invoking IWMMINIT multiple times for the same work request, only one of the invocations
should specify EXSTARTTIME=exstarttime. It is up to you to decide at which point in the subsystem work
manager's processing you consider the real execution start time.

Optionally, with this macro, you can use the OWNER_TOKEN and OWNER_DATA parameters to specify a
token for the user/owner of the monitoring environment for your own use.

Note : It is recommended to use the equivalent service, IWM4MINI, which also supports 64-bit
addressing. For more information, see “IWM4MINI — Monitoring environment initialization” on page 513.

IWMMINIT

Appendix E. WLM services supporting 31-bit addressing only 831

Environment
The requirements for the caller are:

Minimum authorization: Either problem state or supervisor state. PSW key must either be 0 or
match the value supplied on IWMMCREA.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN. If the key specified on IWMMCREA
was a user key (8-F), then primary addressability must be the same
as when IWMMCREA was invoked.

AMODE: 31-bit

ASC mode: Primary Any P,S,H.

Interrupt status: Enabled for I/O and external interrupts

Locks: Locked or unlocked

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. All parameter areas must reside in current primary, except that the TCB (if specified) must reside in

current home.
2. Caller is responsible for error recovery.
3. Only limited checking is done against the input monitoring token.
4. If the key specified on IWMMCREA was a user key (8-F), then the primary addressability must exist to

the performance block IWMMCREA obtained. This condition is satisfied by ensuring that current
primary matches primary at the time that IWMMCREA was invoked. If this service is invoked in a
subspace, the condition may be satisfied by ensuring that the performance block is shared with the
base space.

5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for
the environment represented by the monitoring token.

6. This macro may only be used on z/OS R2 or higher levels for REPORTONLY and ASSOCIATE keywords.
7. The BPMGMTONLY keyword may only be used on systems running z/OS R8 or higher.
8. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer

to the PLISTVER parameter description for further information.

Input register information
Before issuing the IWMMINIT macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

IWMMINIT

832 z/OS: z/OS MVS Programming: Workload Management Services

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
The syntax of the IWMMINIT macro is as follows:

IWMMINIT

Appendix E. WLM services supporting 31-bit addressing only 833

main diagram

name
IWMMINIT MONTKN=  montkn

,MODE=RESET parameters-1

,MODE=RETAIN

,DURATION=PREV_VALUE

,DURATION=EXECUTION

,DURATION=BEGIN_TO_END

,DISPTYPE=SAVEDTYPE

,DISPTYPE=TCB

,TCB=NO_TCB

,TCB=  tcb

,DISPTYPE=SRB

,CONTINUEP=YES ,FROM=NONE

,FROM=LOCALMVS

,FROM=SYSPLEX

,FROM=NETWORK

,CONTINUEP=NO

,OWNER_TOKEN=NO_OWNER_TOKEN

,OWNER_TOKEN=  owner_token

,OWNER_DATA=NO_OWNER_DATA

,OWNER_DATA=  owner_data

,REPORTONLY=NO

parameters-2

,REPORTONLY=YES ,ASSOCIATE=ENCLAVE ,ENCLAVETOKEN=  enclavetoken

,ASSOCIATE=ADDRESS_SPACE ,ASID=  asid

,SCOPE=SHARED

,SCOPE=SINGLE

,TRXNAME=NO_TRXNAME

,TRXNAME=  trxname

,USERID=NO_USERID

,USERID=  userid

,TRXCLASS=NO_TRXCLASS

,TRXCLASS=  trxclass

,TTRACETOKEN=NO_TTRACETOKEN

,TTRACETOKEN=  ttracetoken

,SOURCELU=NO_SOURCELU

,SOURCELU=  sourcelu

,LU62TKN=NO_LU62TKN

,LU62TKN=  lu62tkn

,LU62TKN_FMT=LU_NO_CC_27

,LU62TKN_FMT=FULL_LU_NO_CC_27

,LU62TKN_FMT=FULL_LU_0_CC_28

,LU62TKN_FMT=FULL_LU_CC_36

,LU62TKN_FMT=OTHER ,LU62TKN_LEN=  lu62tkn_len

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

IWMMINIT

834 z/OS: z/OS MVS Programming: Workload Management Services

parameters-1

,DURATION=EXECUTION

,DURATION=BEGIN_TO_END

,DISPTYPE=TCB

,TCB=NO_TCB

,TCB=  tcb

,DISPTYPE=SRB

,ARRIVALTIMEP=CURRENT

,ARRIVALTIMEP=YES ,ARRIVALTIME=  arrivaltime

,EWLM_PACORR=NO_EWLM_PACORR

,EWLM_PACORR=  ewlm_pacorr

,EWLM_PACTKN=NO_EWLM_PACTKN

,EWLM_PACTKN=  ewlm_pactkn

parameters-2

,BPMGMTONLY=NO

,EXSTARTTIMEP=NO

,EXSTARTTIMEP=CURRENT

,EXSTARTTIMEP=YES ,EXSTARTTIME=  exstarttime

,SERVCLS=NO_SERVCLS

,SERVCLS=  servcls

,BPMGMTONLY=YES ,ASSOCIATE=ENCLAVE ,ENCLAVETOKEN=  enclavetoken

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMINIT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ARRIVALTIME=arrivaltime
When ARRIVALTIMEP=YES and MODE=RESET are specified, a required input parameter, which
contains the work arrival time in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,ARRIVALTIMEP=CURRENT
,ARRIVALTIMEP=YES

When MODE=RESET is specified, a required parameter, which indicates whether the work arrival time
is passed.
,ARRIVALTIMEP=CURRENT

indicates that the current time should be supplied by the service.
,ARRIVALTIMEP=YES

indicates that the work arrival time is passed.
,ASID=asid

When ASSOCIATE=ADDRESS_SPACE and REPORTONLY=YES are specified, a required input parameter
which contains the address space ID.

To code: Specify the RS-type address, or address in register (2)-(12) ,of a 16-bit field.

,ASSOCIATE=ENCLAVE
,ASSOCIATE=ADDRESS_SPACE

When REPORTONLY=YES is specified, a required parameter, which indicates whether the monitoring
environment should be associated to an enclave or an address space.
,ASSOCIATE=ENCLAVE

indicates that the monitoring environment should be associated to an enclave.

IWMMINIT

Appendix E. WLM services supporting 31-bit addressing only 835

,ASSOCIATE=ADDRESS_SPACE
indicates that the monitoring environment should be associated to an address space.

,ASSOCIATE=ENCLAVE
When BPMGMTONLY=YES and REPORTONLY=NO are specified, a required parameter, which indicates
whether the monitoring environment should be associated only to an enclave
,ASSOCIATE=ENCLAVE

indicates that the monitoring environment should be associated to an enclave.
,BPMGMTONLY=NO
,BPMGMTONLY=YES

When REPORTONLY=NO is specified, an optional parameter, which indicates whether the monitoring
environment is for bufferpool management purposes only (YES) or not (NO). The default is
BPMGMTONLY=NO.
,BPMGMTONLY=NO

indicates that the monitoring environment is not for bufferpool management purposes only.
,BPMGMTONLY=YES

indicates that the monitoring environment is for bufferpool management purposes only.
,CONTINUEP=YES
,CONTINUEP=NO

A required parameter, which indicates whether it is known (YES) or not (NO) that there exists another
monitoring environment for this same work request.
,CONTINUEP=YES

indicates that the existence of a prior monitoring environment for the work request is known.
,CONTINUEP=NO

indicates that it is not known whether there exists a prior monitoring environment for the work
request. If MODE(RESET) is specified, no status is saved. If MODE(RETAIN) is specified, the
existing status is preserved.

,DISPTYPE=TCB
,DISPTYPE=SRB

When MODE=RESET is specified, a required parameter, which describes the nature of the MVS
dispatchable units which participate in processing work requests associated with the delay
monitoring environment established by this service.
,DISPTYPE=TCB

indicates that work requests run in TCB mode under a TCB within the current home address
space. Note that in cross-memory mode, this may be different from the current primary address
space.

,DISPTYPE=SRB
indicates that work requests run in SRB mode within the current home address space.

,DISPTYPE=SAVEDTYPE
,DISPTYPE=TCB
,DISPTYPE=SRB

When MODE=RETAIN is specified, a required parameter, which describes the nature of the MVS
dispatchable units which participate in processing work requests associated with the delay
monitoring environment established by this service.
,DISPTYPE=SAVEDTYPE

indicates that the information saved when MODE(RESET) was used is still applicable.
,DISPTYPE=TCB

indicates that work requests run in TCB mode under a TCB within the current home address
space. Note that in cross-memory mode, this may be different from the current primary address
space.

,DISPTYPE=SRB
indicates that work requests run in SRB mode within the current home address space.

IWMMINIT

836 z/OS: z/OS MVS Programming: Workload Management Services

,DURATION=EXECUTION
,DURATION=BEGIN_TO_END

When MODE=RESET is specified, an optional parameter, which indicates the duration of the work
request over which the delays are to be represented. The default is DURATION=EXECUTION.
,DURATION=EXECUTION

indicates that the monitoring environment will reflect delays from the point where an application
or transaction program is given control, i.e. the execution phase. Typically a monitoring
environment with this scope would be passed to IWMMNTFY to pass the execution time for the
work request.

,DURATION=BEGIN_TO_END
indicates that the monitoring environment will reflect delays from the arrival of the work request
into the MVS sysplex until its completion. Ordinarily use of this option would be in close proximity
to the time when the work request is classified. Typically a monitoring environment with this
duration would be passed to IWMRPT to report the total elapsed time for the work request.

,DURATION=PREV_VALUE
,DURATION=EXECUTION
,DURATION=BEGIN_TO_END

When MODE=RETAIN is specified, an optional parameter, which indicates the duration of the work
request over which the delays are to be represented. The default is DURATION=PREV_VALUE.
,DURATION=PREV_VALUE

indicates that the duration for delays has been specified on a previous invocation.
,DURATION=EXECUTION

indicates that the monitoring environment will reflect delays from the point where an application
or transaction program is given control, for example, the execution phase. Typically a monitoring
environment with this duration would be passed to IWMMNTFY to pass the execution time for the
work request.

,DURATION=BEGIN_TO_END
indicates that the monitoring environment will reflect delays from the arrival of the work request
into the MVS sysplex until its completion. Ordinarily use of this option would be in close proximity
to the time when the work request is classified. Typically, a monitoring environment with this
duration is passed to IWMRPT to report the total elapsed time for the work request.

,ENCLAVETOKEN=enclavetoken
When ASSOCIATE=ENCLAVE and REPORTONLY=YES are specified, a required input parameter, which
contains the enclave token.

To code:Specify the RS-type address,or address in register (2)-(12),of a 64-bit field.

,EWLM_PACORR=ewlm_pacorr
,EWLM_PACORR=NO_EWLM_PACORR

When MODE=RESET is specified, an optional input parameter, which contains the cross-platform
enterprise workload management (EWLM) parent correlator associated with the work request.

Note :

• If EWLM_PACORR is specified and the correlator does not contain a valid ARM correlator, reason
code IwmRsnCodeInvalidEWLMCorr is returned to the caller. Refer to Table 81 on page 526 for
further information. If the correlator is a valid ARM correlator, but cannot be understood by EWLM
(no EWLM format), it is ignored.

• The parameters EWLM_PACORR and EWLM_PACTKN are mutually exclusive.

The default is NO_EWLM_PACORR. It indicates that no EWLM parent correlator is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_PACTKN=ewlm_pactkn
,EWLM_PACTKN=NO_EWLM_PACTKN

When MODE=RESET is specified, an optional input parameter, which contains the cross-platform
Enterprise Workload Management (EWLM) parent correlator token associated with the work request.

IWMMINIT

Appendix E. WLM services supporting 31-bit addressing only 837

If EWLM_PACTKN is specified and the correlator token does not contain a valid correlator token,
reason code IwmRsnCodeInvalidEWLMCorr is returned to the caller. Refer to Table 81 on page 526 for
further information.

The default is NO_EWLM_PACTKN. It indicates that no EWLM correlator token is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EXSTARTTIME=exstarttime
When EXSTARTTIMEP=YES, BPMGMTONLY=NO and REPORTONLY=NO are specified, a required input
parameter, which contains the start execution time in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,EXSTARTTIMEP=NO
,EXSTARTTIMEP=CURRENT
,EXSTARTTIMEP=YES

When BPMGMTONLY=NO and REPORTONLY=NO are specified, a required parameter, which indicates
whether the execution start time value is passed.
,EXSTARTTIMEP=NO

indicates that the execution start time value is not passed.

If MODE(RETAIN) is specified, EXSTARTTIMEP(NO) preserves the existing execution start time, if
any.

,EXSTARTTIMEP=CURRENT
indicates that the current time should be supplied by the service.

,EXSTARTTIMEP=YES
indicates that the start execution time value is passed.

,FROM=NONE
,FROM=LOCALMVS
,FROM=SYSPLEX
,FROM=NETWORK

When CONTINUEP=YES is specified, a required parameter.
,FROM=NONE

indicates that there is no other environment.
,FROM=LOCALMVS

indicates that such an environment should exist on the current MVS.
,FROM=SYSPLEX

indicates that such an environment should exist in the current syplex, but is not expected to be on
the current MVS image.

,FROM=NETWORK
indicates that such an environment may exist, but is not expected to be in the current sysplex.

,LU62TKN=lu62tkn
,LU62TKN=NO_LU62TKN

An optional input parameter, which contains LU 6.2 token for the work request. This is not an SNA
term, but it is comprised of the following fields which are defined by SNA for the FMH5.

• Logical Unit of Work Identifier length byte, in binary, which may have the values 0 or 10-26 decimal
(inclusive)

• Logical Unit of Work Identifier

– Length byte for the network qualified LU name, in binary, which may have the values 1-17 decimal
(inclusive)

– Network qualified LU network name (1-17 bytes)
– Logical Unit of Work Instance Number, in binary (6 bytes)
– Logical Unit of Work Sequence Number, in binary (2 bytes)

IWMMINIT

838 z/OS: z/OS MVS Programming: Workload Management Services

• Conversation Correlator Field (0 to 9 bytes)

– Length byte for the Conversation Correlator, in binary, which may have the values 0-8 decimal
(inclusive)

– Conversation Correlator of the sending transaction (1-8 bytes)

The Conversation Correlator Field (which includes its length byte) may be dropped when its length
byte is 0. The default is NO_LU62TKN, which indicates that no LU 6.2 token was passed.

If MODE(RETAIN) is specified, NO_LU62TKN will preserve the existing LU6.2 token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,LU62TKN_FMT=LU_NO_CC_27
,LU62TKN_FMT=FULL_LU_NO_CC_27
,LU62TKN_FMT=FULL_LU_0_CC_28
,LU62TKN_FMT=FULL_LU_CC_36
,LU62TKN_FMT=OTHER

When LU62TKN=lu62tkn is specified, a required parameter, which indicates the format/length of the
LU 6.2 token.
,LU62TKN_FMT=LU_NO_CC_27

indicates that a fixed length token of 27 bytes is provided, with no conversation correlator (not
even its length byte). The LU name may be 1-17 bytes. Bytes at the end of the token are padded
with hexadecimal zeros, if necessary, to form a full 27 bytes.

,LU62TKN_FMT=FULL_LU_NO_CC_27
indicates that the fully qualified LU name (17 bytes) is used, but no conversation correlator (not
even its length byte) is provided. This format is architected to be 27 bytes long.

,LU62TKN_FMT=FULL_LU_0_CC_28
indicates that the fully qualified LU name (17 bytes) is used, and the conversation correlator
length byte is present and has the value 0. This format is architected to be 28 bytes long.

,LU62TKN_FMT=FULL_LU_CC_36
indicates that the fully qualified LU name (17 bytes) is used, and the conversation correlator is
provided with a length of 8 (maximum allowed). This format is architected to be 36 bytes long.

,LU62TKN_FMT=OTHER
indicates that the format of the LU 6.2 token is different from those specified by the remaining
keywords.

,LU62TKN_LEN=lu62tkn_len
When LU62TKN_FMT=OTHER and LU62TKN=lu62tkn are specified, a required input parameter, which
contains the length of the LU62 token. Valid values are in the range 1-36 decimal (inclusive).

To code: Specify the RS-type address, or address in register (2)-(12), of an one-byte field.

,MODE=RESET
,MODE=RETAIN

A required parameter, which indicates how previous attributes established for a monitoring
environment should be treated. This does not refer to (or include) attributes established in
IWMMCREA.
,MODE=RESET

indicates that previous attributes should be discarded.
,MODE=RETAIN

indicates that previous attributes should be retained unless explicitly specified.
MONTKN=montkn

A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

IWMMINIT

Appendix E. WLM services supporting 31-bit addressing only 839

,OWNER_DATA=owner_data
,OWNER_DATA=NO_OWNER_DATA

An optional input parameter, which contains data maintained by the user/owner of the monitoring
environment. The format is undefined to MVS. The default is NO_OWNER_DATA which indicates that
no owner data is provided.

If MODE(RETAIN) is specified, NO_OWNER_DATA will preserve the existing owner data, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,OWNER_TOKEN=owner_token
,OWNER_TOKEN=NO_OWNER_TOKEN

An optional input parameter, which contains a token maintained by the user or owner of the
monitoring environment. The format is undefined to MVS. The default is NO_OWNER_TOKEN which
indicates that no owner token is provided.

If MODE(RETAIN) is specified, NO_OWNER_TOKEN preserves the existing owner token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want to indicate the latest version currently possible.
• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameters and those from version 0:

BPMGMTONLY EWLM_PACORR EWLM_PACTKN

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, or 1

REPORTONLY=NO
REPORTONLY=YES

An optional parameter,which indicates whether the monitoring environment is for reporting purposes
only (YES)or not (NO). The default is REPORTONLY=NO.
,REPORTONLY=NO

indicates that the monitoring environment is not for reporting purposes only.
,REPORTONLY=YES

indicates that the monitoring environment is for reporting purposes only.
,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

IWMMINIT

840 z/OS: z/OS MVS Programming: Workload Management Services

,SCOPE=SHARED
,SCOPE=SINGLE

A required parameter, which indicates the scope of work passed.
,SCOPE=SHARED

indicates that multiple work requests, possibly from different service classes, could be described.
,SCOPE=SINGLE

indicates that only a single work request is described.
,SERVCLS=servcls
,SERVCLS=NO_SERVCLS

When BPMGMTONLY=NO and REPORTONLY=NO are specified, an optional input parameter, which
contains the service class token. The default is NO_SERVCLS which indicates that no service class
token was passed.

If MODE(RETAIN) is specified, NO_SERVCLS preserves the existing service class token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,SOURCELU=sourcelu
,SOURCELU=NO_SOURCELU

An optional input parameter, which contains the LU name associated with the requestor. This may be
the fully qualified NETID.LUNAME, for example, network name (1-8 bytes), followed by a period,
followed by the LU name for the requestor (1-8 bytes). It may also be the 1-8 byte local LU name, with
no network qualifier. The SOURCELU field may be from 1-17 characters. In the assembler form, the
macro determines the length of the field as follows:

1. If the field is specified by register notation, it will be assumed to be 17 characters (padded with
blanks) and a full 17 characters will be copied.

2. If the field is specified using an RS form name, then the length will be determined using the L'
assembler function. When the length is less than 17 characters, the macro will pad with blanks.
When the length is greater than or equal to 17 characters, the macro copies the first 17 bytes.

In the PL/AS form, the rules for the PL/AS compiler determines when to pad with blanks, for example,
less than 17 characters implies padding, 17 or more implies a 17 character copy.

This is intended to be the same value as used in IWMCLSFY, and may be distinct from the LU name
contained within the LU 6.2 token. For environments where the LU name may be available on some,
but not all flows, provision of a data area initialized to all blanks is equivalent to specification of
NO_SOURCELU when MODE(RESET) is specified. Providing an area of all blanks when MODE(RETAIN)
is specified will cause that to be used. The default is NO_SOURCELU whcih indicates that no source LU
name was passed.

If MODE(RETAIN) is specified, NO_SOURCELU preserves the existing source LU name, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,TCB=tcb
,TCB=NO_TCB

When DISPTYPE=TCB and MODE=RESET are specified, an optional input parameter, which defines the
TCB within the current home address space which will serve the work request. Note that this name is
not the pointer to the TCB, but the name of the data area containing the TCB. A typical invocation
might replace xTCB with TCB.

Generally, the input TCB specified should be the TCB under which the work request (for, example, a
transaction program) runs and under which the delay information is recorded (in spite of the fact that
task switches may occur). The default is NO_TCB which indicates that no TCB is currently associated
with the monitoring environment for this work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

IWMMINIT

Appendix E. WLM services supporting 31-bit addressing only 841

,TCB=tcb
,TCB=NO_TCB

When DISPTYPE=TCB and MODE=RETAIN are specified, an optional input parameter, which defines
the TCB within the current home address space which will serve the work request. Note that this
name is not the pointer to the TCB, but the name of the data area containing the TCB. A typical
invocation might replace xTCB with TCB.

Ordinarily the input TCB specified should be the TCB under which the work request (e.g. transaction
program) runs and under which the delay information is recorded (in spite of the fact that task
switches may occur). The default is NO_TCB which indicates that no TCB is currently associated with
the. monitoring environment for this work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,TRXCLASS=trxclass
,TRXCLASS=NO_TRXCLASS

An optional input parameter, which contains a class name within a subsystem. For environments
where the transaction class is available on some, but not all flows, provision of a data area initialized
to all blanks is equivalent to specification of NO_TRXCLASS when MODE(RESET) is specified. Providing
an area of all blanks when MODE(RETAIN) is specified will cause that to be used. The default is
NO_TRXCLASS, which indicates that no class name was passed.

If MODE(RETAIN) is specified, NO_TRXCLASS will preserve the existing transaction class, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,TRXNAME=trxname
,TRXNAME=NO_TRXNAME

An optional input parameter, which contains the transaction name. For environments where the
transaction name is available on some, but not all flows, provision of a data area initialized to all
blanks is equivalent to specification of NO_TRXNAME when MODE(RESET) is specified. Providing an
area of all blanks when MODE(RETAIN) is specified will cause that to be used. The default is
NO_TRXNAME, which indicates that no transaction name was passed.

If MODE(RETAIN) is specified, NO_TRXNAME will preserve the existing transaction name, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,TTRACETOKEN=ttracetoken
,TTRACETOKEN=NO_TTRACETOKEN

An optional input parameter, which contains the transaction trace token. The default is
NO_TTRACETOKEN which indicates that no transaction trace token was passed.

If MODE(RETAIN) is specified, NO_TTRACETOKEN preserves the existing transaction trace token, if
any.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,USERID=userid
,USERID=NO_USERID

An optional input parameter, which contains the local user ID associated with the work request. For
environments where the user id is available on some, but not all flows, provision of a data area
initialized to all blanks is equivalent to specification of NO_USERID when MODE(RESET) is specified.
Providing an area of all blanks when MODE(RETAIN) is specified will cause that to be used. The
default is NO_USERID, which indicates that no user ID was passed.

If MODE(RETAIN) is specified, NO_USERID preserves the existing user ID, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

IWMMINIT

842 z/OS: z/OS MVS Programming: Workload Management Services

Return codes and reason codes
When the IWMMINIT macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 120. Return and Reason Codes for the IWMMINIT Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — IwmRetCodeOk: Successful completion.

4 — IwmRetCodeWarning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: Monitoring token indicates that no monitoring environment exists.

8 — IwmRetCodeInvocError: Invalid invocation environment or parameters

8 xxxx081E Equate Symbol: IwmRsnCodeBadLU62TknLen

Meaning: The length byte of the LU62 token has an invalid value. Only values
1-36 (decimal) are valid.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv:

Meaning: Monitoring environment does not pass short form verification.

8 xxxx0894 Equate Symbol: IwmRsnCodeInvalidEWLMCorr

Meaning: Passed correlator information (EWLM_PACORR or EWLM_PACTKN)
does not pass validity checking, that means: the architected ARM correlator
length field in the first two Bytes of the correlator (token) is either less than 4
('0004'x) or greater than 512 ('0200'x).

Action: Check the specification of the correlator information.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: Service is not enabled because the Monitoring Environment was
not created with EWLM=YES (either on IWMCONN or IWMMCREA).

Action: Specify the parameter EWLM_PACORR or EWLM_PACTKN only when
the Monitoring Environment was created with EWLM=YES (either on
IWMCONN or IWMMCREA).

C — IwmRetCodeEnvError: Environmental error

C xxxx0C07 Equate Symbol: IwmRsnCodeNoArrTime:

Meaning: No arrival time was supplied to the service and STCK gave a non-
zero condition code.

C xxxx0C08 Equate Symbol: IwmRsnCodeNoExTime:

Meaning: No execution start time was supplied to the service and STCK gave
a non-zero condition code.

Example
 IWMMINIT MONTKN=(R9),ARRIVALTIMEP=YES,
 ARRIVALTIME=(R3),EXSTARTTIMEP=YES,
 EXSTARTTIME=(R4),DISPTYPE=TCB,TCB=(R7),
 SCOPE=SINGLE,TRXNAME=WLTRXNAME,SOURCELU=SOURCELU,
 CONTINUEP=YES,LU62TKN_FMT=OTHER,LU62TKN_LEN=LU62TKNLEN,
 LU62TKN=LU62TKN1,MODE=RESET,FROM=NONE,
 REPORTONLY=NO,RETCODE=RCODE,RSNCODE=RSN

IWMMINIT

Appendix E. WLM services supporting 31-bit addressing only 843

IWMMNTFY — Notify of work execution completion

The primary purpose of this service is to notify MVS that the execution phase for a work request
associated with a monitoring environment has just completed. This may represent the entire work request
OR merely a subset of it. An indication is also given as to whether the monitoring environment should be
disassociated from the work request or not. When DISASSOCIATE(YES) is specified, this service will
render the information associated with the monitoring environment unpredictable. To associate a work
request with the monitoring environment following use of DISASSOCIATE(YES), first use Initialize
Mode(Reset) or Relate/Transfer.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state. PSW key must either be 0 or match the value
supplied on IWM4CON when a connect token is passed. PSW key
must either be 0 or match the value supplied on IWM4MCRE. PSW
key must be 0-7. See restrictions below.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: LOCAL lock held

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. Caller is responsible for error recovery
2. Though the caller is required to be enabled, this is not checked. Violation of this restriction may cause

disabled program checks which would be the responsibility of the caller's recovery to handle.
3. The monitoring environment must contain the information saved by IWM4MINI, not IWMMRELA
4. The current PSW key must be 0 or match the key specified on IWM4MCRE provided the latter is a

system key (0-7).
5. This service cannot be used for Report-Only Monitoring Environments
6. If the key specified on IWM4MCRE was a user key (8-F), then:

• PSW key must be 0

IWMMNTFY

844 z/OS: z/OS MVS Programming: Workload Management Services

• Current primary must match the primary at the time that IWM4MCRE was invoked. Calling from a
subspace is not supported.

7. If a connect token is passed to IWMMNTFY, then:

• The connect token must be enabled for using the WLM Work Management services (specifying
WORK_MANAGER=YES on IWM4CON).

• If the key specified on IWM4CON was a user key (8-F), then:

– PSW key must be 0
– Current primary must match the primary at the time that IWM4CON was invoked. Calling from a

subspace is not supported.
8. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for

the environment represented by the monitoring token
9. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer

to the PLISTVER parameter description for further information.

Input register information
Before issuing the IWMMNTFY macro, the caller must ensure that the following general purpose registers
(GPRs) contain the specified information:
Register

Contents
13

The address of a 72-byte standard save area in the primary address space

Before issuing the IWMMNTFY macro, the caller does not have to place any information into any AR
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system.

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

IWMMNTFY

Appendix E. WLM services supporting 31-bit addressing only 845

Performance implications

None.

Syntax
The syntax of the IWMMNTFY macro is as follows:

name
IWMMNTFY

TRAXFRPT=NO

TRAXFRPT=YES,SYSEVPL=  sysevpl

,MONTKN=  montkn ,COMPLETION=YES

,COMPLETION=NO

,DISASSOCIATE=YES

,WORKREQ_STA=IWMEWLMARMSTATUSNONE

,WORKREQ_STA=  workreq_sta

,DISASSOCIATE=NO

,CONNTKN=NO_CONNTKN

,CONNTKN=  conntkn

,ENDTIME=CURRENT

,ENDTIME=  endtime

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMMNTFY macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,COMPLETION=YES
,COMPLETION=NO

A required parameter, which indicates whether the (or possibly one of several) major execution
phase(s) is(are) now complete.
,COMPLETION=YES

indicates that execution for an entire phase of processing has now completed. Typically
IWMMNTFY Completion(Yes) would be issued as a result of the completion of the transaction
program for the work request. When a work request is comprised of several (typically cascaded)
transaction programs, each would correspond to an invocation of IWMMNTFY Completion(Yes).

The execution time, as given by the difference between the IWMMNTFY ENDTIME value and the
Execution start time (established via IWM4MINI), will be added to the running total execution

IWMMNTFY

846 z/OS: z/OS MVS Programming: Workload Management Services

time for the service class. There may still be "output" processing left to perform for the work
request, which time would be accounted for via IWMRPT. There may also be operations
corresponding to hardening of the database data outside the scope of NOTIFY.

,COMPLETION=NO
indicates that this invocation of Notify does not correspond to the completion of an entire
execution segment. Instead this invocation of Notify corresponds to the portion of the work
request represented by the monitoring environment. For example, use Completion(No) when this
portion of processing behaves like a subroutine in the execution phase, which is therefore a subset
of the execution time passed in another NOTIFY.

The execution time, as given by the difference between the IWMMNTFY ENDTIME value and the
Execution start time (established via IWM4MINI), will be treated separately from that passed for
Completion(Yes), since otherwise there would be double-counting.

,CONNTKN=conntkn
,CONNTKN=NO_CONNTKN

An optional input parameter, which is returned by IWM4CON. The default is NO_CONNTKN, which
indicates that no connect token is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,DISASSOCIATE=YES
,DISASSOCIATE=NO

A required parameter, which indicates whether the work request should be disassociated from the
monitoring environment or not.
,DISASSOCIATE=YES

indicates that the work request should be disassociated from the monitoring environment.
,DISASSOCIATE=NO

indicates that the work request should not be disassociated from the monitoring environment.
,ENDTIME=endtime
,ENDTIME=CURRENT

An optional input parameter, which specifies the ending execution time for the transaction in STCK
format. The default is CURRENT, which indicates that the current time should be used.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

IWMMNTFY

Appendix E. WLM services supporting 31-bit addressing only 847

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameter and those from version 0:

WORKREQ_STA

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SYSEVPL=sysevpl
When TRAXFRPT=YES is specified, a required input parameter, which is the fully initialized SYSEVENT
parameter list, as mapped by IHATRBPL.

To code: Specify the RS-type address, or address in register (2)-(12), of a 40-character field.

IWMMNTFY

848 z/OS: z/OS MVS Programming: Workload Management Services

TRAXFRPT=NO
TRAXFRPT=YES

An optional parameter, which indicated prior to z/OS R3 whether a SYSEVENT TRAXFRPT should be
issued when the system was in compatibility mode. This has become irrevelant. However, for
compatibility reasons TRAXFRPT can still be set but has no effect. The default is TRAXFRPT=NO.
TRAXFRPT=NO

indicates that no SYSEVENT TRAXFRPT should be issued.
TRAXFRPT=YES

indicated prior to z/OS R3 that a SYSEVENT TRAXFRPT should be issued when the system was in
compatibility mode. This has become irrevelant. However, for compatibility reasons TRAXFRPT
can still be set but has no effect.

,WORKREQ_STA=workreq_sta
,WORKREQ_STA=IWMEWLMARMSTATUSNONE

When DISASSOCIATE=YES is specified, an optional input parameter, which contains the completion
status code of the work request. Available completion status codes (defined in macro IWMYCON) are
the following:

• IwmEwlmArmStatusGood(0)
• IwmEwlmArmStatusAborted(1)
• IwmEwlmArmStatusFailed(2)
• IwmEwlmArmStatusUnknown(3)

These codes correspond to status codes in the OpenGroup ARM 4.0 Standard. For further information
about the meaning of the status codes, refer to the ARM 4.0 Standard at Application Response
Measurement - ARM (collaboration.opengroup.org/tech/management/arm). The default is
IWMEWLMARMSTATUSNONE. This indicates that the COMPLETION parameter value and internal
information in the monitoring environment are examined to determine the status of the work request.
If COMPLETION=YES is specified and no abnormal event was recorded for the monitoring
environment with the IWMMABNL service, the completion status IwmEwlmArmStatusGood is
reported to EWLM. If an abnormal event was reported via IWMMABNL or COMPLETION=NO was
specified, the completion status IwmEwlmArmStatusFailed is reported to EWLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ABEND codes
None.

Return codes and reason codes
When the IWMMNTFY macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 121. Return and Reason Codes for the IWMMNTFY Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

IWMMNTFY

Appendix E. WLM services supporting 31-bit addressing only 849

http://collaboration.opengroup.org/tech/management/arm
http://collaboration.opengroup.org/tech/management/arm

Table 121. Return and Reason Codes for the IWMMNTFY Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0404 Equate Symbol: IwmRsnCodeCompatNoSyseventRqd

Meaning: Reserved.

4 xxxx0405 Equate Symbol: IwmRsnCodeGoalNoMonEnv

Meaning: System is in goal mode but the input monitoring token indicates no
monitoring environment was established, hence MVS did not receive the
information.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx080C Equate Symbol: IwmRsnCodeMonEnvLacksData

Meaning: Input monitoring environment does not contain the necessary
information.

Action: Ensure that the monitoring environment was established with the
necessary information.

8 xxxx080F Equate Symbol: IwmRsnCodeNoUserKeyNtfy

Meaning: User key routine not allowed to issue Notify.

Action: Avoid requesting this function in user key.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Input monitoring environment does not pass short form validity
checking.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Check for possible storage overlay.

8 xxxx082D Equate Symbol: IwmRsnCodeExStTimeGTEndTime

Meaning: Input execution start time later than end time.

Action: Check for possible storage overlay of the parameter list or variable.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: The caller's space connection is not enabled for this service.

Action: Avoid requesting this function under the input connection. IWM4CON
options must be specified previously to enable this service.

8 xxxx087E Equate Symbol: IwmRsnCodeRoMonEnv

Meaning: Input monitoring environment is Report-Only.

Action: Avoid requesting this function for Report-Only PBs.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: The service is not enabled because monitoring environment cannot
be associated with EWLM work requests.

Action: Specify the parameter WORKREQ_STA only when the monitoring
environment is created with IWMMCREA EWLM=YES or the address space is
connected with IWMCONN EWLM=YES and the connect token is passed to
IWMMCREA when creating the monitoring environment.

IWMMNTFY

850 z/OS: z/OS MVS Programming: Workload Management Services

Table 121. Return and Reason Codes for the IWMMNTFY Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0897 Equate Symbol: IwmRsnCodeTranStatusInvalid

Meaning: Passed work request completion status is not valid.

Action: Check the EWLM ARM interface specification for valid completion
status values.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C02 Equate Symbol: IwmRsnCodeReportingSusp

Meaning: Reserved SYSEVENT TRAXFRPT invoked, but reporting is
temporarily suspended for one of the following reasons:

• RMF workload activity reporting is not active
• There is no installation control specification (IEAICSxx parmlib member

with RPGN specified for some subsystem other than TSO) in effect. No data
reported but a later reissue could be successful.

Action: Invoke the function when the conditions are alleviated.

C xxxx0C03 Equate Symbol: IwmRsnCodeSyseventNoWorkElt

Meaning: SYSEVENT TRAXFRPT invoked, but no work element was available
to save the input information.

Action: Invoke the function when the conditions are alleviated. This condition
may be due to a common storage shortage condition.

C xxxx0C04 Equate Symbol: IwmRsnCodeNtfyNoWorkElt

Meaning: Notify routine invoked, but no work element was available to save
the input information.

Action: Invoke the function when the conditions are alleviated. This condition
may be due to a common storage shortage condition.

C xxxx0C06 Equate Symbol: IwmRsnCodeNoEndTime

Meaning: No end time was supplied to the service and STCK gave a non-zero
condition code.

Action: No action required.

IWMMRELA — Relate monitoring environment service

The calling subsystem work manager can use IWMMRELA to relate two different monitoring environments
that are associated with the same work request. IWMMRELA initializes a monitoring environment, called a
dependent monitoring environment, and associates it with a previously established monitoring
environment, called a parent monitoring environment.

You can use IWMMRELA when you do not have direct access to the information required by IWM4MINI. If
the caller has the monitoring token for a parent monitoring environment that is previously established for
the same work request, you should provide it in the PARENTMONTKN parameter. If the caller does not
pass the parent monitoring token, you can use PARENTP=FINDACTIVE to specify that the parent
monitoring environment is the active monitoring environment owned by the home address space and
which is associated with the TCB provided via PARENTTCB.

IWMMRELA must be used together with IWMMXFER to ensure that the dependent monitoring
environment is a valid representation for the work request.

Optionally, with this macro, you can use the OWNER_TOKEN and OWNER_DATA parameters to use the
monitoring environment for your own purposes. You could use the token/data to keep your own
information.

IWMMRELA

Appendix E. WLM services supporting 31-bit addressing only 851

Environment
The requirements for the caller are:

Minimum authorization: Problem state, or supervisor state. PSW key must either be 0, or
match the value specified on IWM4MCRE.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Unlocked when PARENT=FINDACTIVE is specified, otherwise, no
restrictions.

Control parameters: Control parameters must be in the primary address space, except the
TCB, if specified, must reside in current home address space.

Programming requirements
1. You must include the IWMYCON mapping macro in the calling program.
2. If the key specified on IWM4MCRE for the input MONTKN was a user key (8-F), then the following must

be true:

• If you specify PARENTP=YES, then:

– Primary addressability must exist to the performance block IWM4MCRE obtained (represented by
the input MONTKN). You could do this by ensuring that current primary matches primary at the
time that IWM4MCRE was invoked. If this service is invoked in a subspace, the condition may be
satisfied by ensuring that the performance block is shared with the base space.

– You cannot specify the list form of this macro. With PARENTP=YES, IWMMRELA produces an inline
expansion rather than an out-of-line service, so you do not need a parameter list. Registers 0, 1,
14, and 15 are not preserved across the expansion.

• If you specify PARENTP=FINDACTIVE, then the caller must be in non-cross-memory mode
(PASN=SASN=HASN). That is, the current primary (and home) must match the primary (and home) at
the time that IWM4MCRE was invoked.

3. If the key specified on IWM4MCRE for the parent environment was a user key (8-F), then either
primary or secondary addressability must exist to the monitoring environment for the parent
environment.

4. Both monitoring environments must be established on the same MVS image.
5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for

the monitoring environment.
6. When PARENTP=YES, the caller must provide recovery.

Restrictions
None.

Input register information
Before issuing the IWMMRELA macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

IWMMRELA

852 z/OS: z/OS MVS Programming: Workload Management Services

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR 15 return code is non-zero.
1

Used as a work register by the system.
2 - 13

Unchanged
14

Used as a work register by the system.
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0 - 1

Used as a work register by the system.
2 - 13

Unchanged
14 - 15

Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
main diagram

name
IWMMRELA FUNCTION=CREATE parameters-1

FUNCTION=DELETE

,MONTKN=  montkn

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

IWMMRELA

Appendix E. WLM services supporting 31-bit addressing only 853

parameters-1
,OWNER_TOKEN=NO_OWNER_TOKEN

,OWNER_TOKEN=  owner_token

,OWNER_DATA=NO_OWNER_DATA

,OWNER_DATA=  owner_data

,DISPTYPE=TCB ,TCB=  tcb

,DISPTYPE=SRB ,SAMEDU=YES

,SAMEDU=NO

,PARENTP=YES ,PARENTMONTKN=  parentmontkn ,PARENTENV=NOSWITCH

,PARENTENV=SECONDARY

,PARENTENV=HOME

,PARENTP=FINDACTIVE ,PARENTTCB=  parenttcb

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMRELA macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,DISPTYPE=TCB
,DISPTYPE=SRB

When FUNCTION=CREATE is specified, a required parameter, which describes the dispatchable units
which participate in processing work requests associated with the monitoring environment
represented by the monitoring token (MONTKN).
,DISPTYPE=TCB

indicates that work requests run in TCB mode under a TCB within the current home address
space. Note that in cross-memory mode, this may be different from the current primary address
space.

,DISPTYPE=SRB

indicates that work requests run in SRB mode within the current home address space.

FUNCTION=CREATE
FUNCTION=DELETE

A required parameter, which indicates whether the relationship is being established or inactivated.
FUNCTION=CREATE

indicates that the relationship is being established.
FUNCTION=DELETE

which indicates that the relationship is being inactivated.

Note that this produces an inline expansion rather than an out-of-line service, so that no
parameter list is needed. Therefore, the MF keyword is not supported when this option is
specified. Registers 0, 1, 14, and 15 are not preserved across the expansion.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

IWMMRELA

854 z/OS: z/OS MVS Programming: Workload Management Services

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,MONTKN=montkn
A required input parameter, which contains the delay monitoring token for the dependent
environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,OWNER_DATA=owner_data
,OWNER_DATA=NO_OWNER_DATA

When FUNCTION=CREATE is specified, an optional input parameter, which contains data maintained
by the user or owner of the monitoring environment. The format is undefined to MVS. The default is
NO_OWNER_DATA which indicates that no owner data is provided.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,OWNER_TOKEN=owner_token
,OWNER_TOKEN=NO_OWNER_TOKEN

When FUNCTION=CREATE is specified, an optional input parameter, which contains a token
maintained by the user or owner of the monitoring environment. The format is undefined to MVS. The
default is NO_OWNER_TOKEN which indicates that no owner token is provided on. this service.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,PARENTENV=NOSWITCH
,PARENTENV=SECONDARY
,PARENTENV=HOME

When PARENTP=YES and FUNCTION=CREATE are specified, a required parameter, which describes
whether a space switch is needed to access the parent monitoring environment.
,PARENTENV=NOSWITCH

indicates that NO space switch is needed to access the parent monitoring environment. This
would be appropriate if the parent monitoring environment was established (by IWM4MCRE) to be
used by routines in a specific system key or if it was established to be used in a specific user key in
the current primary.

,PARENTENV=SECONDARY

indicates that the parent monitoring environment was established in current secondary (for use by
a specific user key).

IWMMRELA

Appendix E. WLM services supporting 31-bit addressing only 855

,PARENTENV=HOME

indicates that the parent monitoring environment was established in current home (for use by a
specific user key). Use of this option requires that the program must reside in the MVS common
area.

,PARENTMONTKN=parentmontkn
When PARENTP=YES and FUNCTION=CREATE are specified, a required input parameter, which
contains the delay monitoring token for the parent environment, for example, the monitoring
environment which was established earlier and contains the characteristics to be inherited.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,PARENTP=YES
,PARENTP=FINDACTIVE

When FUNCTION=CREATE is specified, a required parameter, which describes whether the parent
monitoring environment is known or not.
,PARENTP=YES

indicates that the parent monitoring environment is known.

Note, that this produces an inline expansion rather than an out-of-line service, so that no
parameter list is needed. Therefore, the MF keyword is not supported when this option is
specified. Registers 0, 1, 14, and 15 are not preserved across the expansion.

,PARENTP=FINDACTIVE

indicates that the parent monitoring environment is unknown, but requests that the input
monitoring environment be related to the active monitoring environment owned by the current
HOME address space and which is associated with the TCB specified by PARENTTCB and which
has no further continuations to other monitoring environments. When no such monitoring
environment exists, the input monitoring environment will be related to the current home address
space.

,PARENTTCB=parenttcb
When PARENTP=FINDACTIVE and FUNCTION=CREATE are specified, a required input parameter,
which defines the TCB owned by the current home address space associated with a monitoring
environment via Initialize/Relate Disptype=TCB,TCB= . This TCB need not be the owner of the
monitoring environment. Note that this name is not the pointer to the TCB, but the name of the data
area containing the TCB. A typical invocation might replace xTCB with TCB.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

IWMMRELA

856 z/OS: z/OS MVS Programming: Workload Management Services

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SAMEDU=YES
,SAMEDU=NO

When DISPTYPE=SRB and FUNCTION=CREATE are specified, a required parameter, which describes
whether the dependent monitoring environment associated with MONTKN is running under the same
dispatchable unit as the parent. In that case, it would behave as a "subroutine" and execute on the
same processor (CP, a.k.a. CPU) as the parent environment.
,SAMEDU=YES

indicates that the work request runs as a subroutine of the parent.

YES may not be specified when PARENTP(FINDACTIVE) is coded.

,SAMEDU=NO

indicates that the work request runs in SRB mode and is independent of the parent dispatchable
unit.

,TCB=tcb
When DISPTYPE=TCB and FUNCTION=CREATE are specified, a required input parameter, which
defines the TCB within the current home address space which will serve the work request. Note that
this name is not the pointer to the TCB, but the name of the data area containing the TCB. A typical
invocation might replace xTCB with TCB.

Generally, the input TCB specified should be the TCB under which the work request (e.g. transaction
program) runs and under which the delay information is recorded (in spite of the fact that task
switches may occur).

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

ABEND codes
None.

Return codes and reason codes
When the IWMMRELA macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

IWMMRELA

Appendix E. WLM services supporting 31-bit addressing only 857

Table 122. Return and Reason Codes for the IWMMRELA Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsncodeNoMonEnv

Meaning: Input monitoring token indicates no monitoring environment was
established.

4 xxxx0406 Equate Symbol: IwmRsncodeNoParEnv

Meaning: No parent monitoring environment was established. The input
dependent monitoring environment is now related to the Home address
space.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0802 Equate Symbol: IwmRsnCodeXmemUserKeyTkn

Meaning: The caller is in cross-memory mode while the token was obtained
in user key.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

8 xxxx081A Equate Symbol: IwmRsnCodeCallerNotAuthDepEnv

Meaning: The caller is not authorized to update the dependent monitoring
environment.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass verification.

8 xxxx0822 Equate Symbol: IwmRsnCodeBadParEnv

Meaning: Parent monitoring environment does not pass verification.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on Primary ASC
mod.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: The Version number in the parameter list is not valid.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or supplies mutually
exclusive parameters or provides data associated with options not selected.

IWMMRELA

858 z/OS: z/OS MVS Programming: Workload Management Services

Table 122. Return and Reason Codes for the IWMMRELA Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx087E Equate Symbol: IwmRsnCodeRoMonEnv

Meaning: Monitoring environment is report only.

8 xxxx087F Equate Symbol: IwmRsnCodeRoParEnv

Meaning: Parent monitoring environment is report only.

8 xxxx08A4 Equate Symbol: IwmRsnCodeBPParEnv

Meaning: Parent monitoring environment is buffer pool management only.

10 — Equate Symbol: IwmRetCodeCompError:

Meaning: Component error

Example
To relate two monitoring environments where an address space switch is not required, specify:

IWMMRELA FUNCTION=CREATE,MONTKN=(R7),PARENTP=YES,
 PARENTMONTKN=(R8),PARENTENV=NOSWITCH,
 DISPTYPE=SRB,SAMEDU=YES,
 RETCODE=RCODE,RSNCODE=RSN

IWMMSTOP — Stop a work unit

The IWMMSTOP service allows to stop a work unit which has been started by IWMMSTRT. A work unit
started by IWM4MINI is not affected by this service. The work unit is unblocked, if it is blocked at the time
you issue this macro.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No restrictions.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of bits 0-31 of register 0, and the reason code variable when

specified, may be non-zero and represents diagnostic data which is NOT part of the external interface.

IWMMSTOP

Appendix E. WLM services supporting 31-bit addressing only 859

The high-order halfword should thus be excluded from comparison with the reason code values
described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for
this purpose.

Restrictions
• This macro may not be used before the completion of WLM address space initialization
• The caller must have issued the IWMMSTRT macro successfully.
• The caller is responsible for error recovery.
• The current PSW key must be 0 or match the key specified on IWM4MCRE provided the latter is a

system key (0-7).
• The caller must serialize to prevent any delay monitoring services from being invoked concurrently for

the environment represented by the monitoring token.

Input register information
Before issuing the IWMMSTOP macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.
The reason code is stored in bits 0-31.

1
Used as a work register by the system.

2 - 13
Unchanged.

14
Used as a work register by the system.

15
Return code is stored in bits 0-31.

When control returns to the caller, the ARs contain:
Register

Contents
0 - 1

Used as a work register by the system.
2 - 13

Unchanged
14 - 15

Used as work registers by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

IWMMSTOP

860 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
The syntax of the IWMMSTOP macro is as follows:

name
IWMMSTOP MONTKN=  montkn

,END_FLOW=NO

,END_FLOW=YES

,MESSAGES_SENT=NO_MESSAGES_SENT

,MESSAGES_SENT=  messages_sent

,EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR

,EWLM_RCVD_CORR=  ewlm_rcvd_corr

,AFTER_STRT=NO

,AFTER_STRT=YES

,STATUS=IWMEWLMARMSTATUSGOOD

,STATUS=  status ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMSTOP macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,AFTER_STRT=NO
,AFTER_STRT=YES

When EWLM_RCVD_CORR=ewlm_rcvd_corr is specified, an optional parameter, which indicates the
moment the correlator has been received. The default is AFTER_STRT=NO.
,AFTER_STRT=NO

indicates that the correlator has been received before this work unit has been started by
IWMMSTRT.

,AFTER_STRT=YES

indicates that the correlator has arrived within the scope of this work unit that means after issuing
IWMMSTRT.

,END_FLOW=NO
,END_FLOW=YES

An optional parameter, which indicates the completion of a message flow. The default is
END_FLOW=NO.

IWMMSTOP

Appendix E. WLM services supporting 31-bit addressing only 861

,END_FLOW=NO

indicates that a message flow has not completed.

,END_FLOW=YES

indicates that a message flow has completed. Specify END_FLOW=YES, if you know that the
running work unit is the last one in a work unit flow. This indication cannot be cleared, if it has
been set.

,EWLM_RCVD_CORR=ewlm_rcvd_corr
,EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR

An optional input parameter, which contains a cross-platform Enterprise Workload Management
(EWLM) correlator received from another application. Workflows often have multiple parent work
units that must complete before a new work unit can be initiated. You can pass only one parent
correlator to the IWMMSTRT macro and one additional parent correlator to the IWMMSTOP macro.
You have to issue the IWMMUPD macro, if more than two parent correlators should be assigned to a
work unit. This correlator is ignored, if it is an unknown EWLM correlator. The default is
NO_EWLM_RCVD_CORR, which indicates that parameter EWLM_RCVD_CORR has not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,MESSAGES_SENT=messages_sent
,MESSAGES_SENT=NO_MESSAGES_SENT

An optional input parameter, which contains the number of messages sent to other applications. This
value is added to the total messages_sent value of the work unit. The total messages_sent value
should not exceed 32767. The default is NO_MESSAGES_SENT, which indicates that parameter
MESSAGES_SEND has not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

IWMMSTOP

862 z/OS: z/OS MVS Programming: Workload Management Services

MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

•
• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,STATUS=status
,STATUS=IWMEWLMARMSTATUSGOOD

An optional input parameter, which contains the completion status code of the work unit. Available
completion status codes (defined in macro IWMYCON) are:

• *IwmEwlmArmStatusGood(0),
• *IwmEwlmArmStatusAborted(1),
• *IwmEwlmArmStatusFailed(2) or
• *IwmEwlmArmStatusUnknown(3)

The codes above correspond to status codes in the OpenGroup ARM 4.0 Standard. For an explanation
of the status codes, refer to the ARM 4.0 Standard at Application Response Measurement - ARM
(collaboration.opengroup.org/tech/management/arm). The default is IWMEWLMARMSTATUSGOOD,
which indicates that the work unit completed successfully.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ABEND codes
None.

IWMMSTOP

Appendix E. WLM services supporting 31-bit addressing only 863

http://collaboration.opengroup.org/tech/management/arm
http://collaboration.opengroup.org/tech/management/arm

Return codes and reason codes
When the IWMMSTOP macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 123. Return and Reason Codes for the IWMMSTOP Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: The input monitoring token indicates no monitoring environment
was established.

Action: Establish a monitoring environment by macro IWM4MCRE.

4 xxxx0441 Equate Symbol: IwmRsnCodeTooManyMsgCorrs

Meaning: The correlator passed to EWLM_RCVD_CORR is ignored, since the
maximum number of supported correlators has been reached.

Action: None required.

4 xxxx0443 Equate Symbol: IwmRsnCodeTooManyMsgsSent

Meaning: The value passed to MESSAGES_SENT is ignored, since the
maximum number of messages sent is reached.

Action: None required.

4 xxxx0444 Equate Symbol: IwmRsnCodeTooManyMsgsReceived

Meaning: The EWLM_RCVD_CORR parameter has been specified too often.
The correlated counter is not increased.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Input monitoring environment does not pass short form validity
checking.

Action: Check for possible storage overlay.

8 xxxx0897 Equate Symbol: IwmRsnCodeTranStatusInvalid

Meaning: An unsupported value has been passed to the STATUS parameter.

Action: Specify a supported value.

8 xxxx08AC Equate Symbol: IwmRsnCodeTranNotStarted

Meaning: No work unit has been started by IWMMSTRT for the specified
monitoring environment.

Action: Start a work unit by IWMMSTRT macro, before issuing this macro.

IWMMSTOP

864 z/OS: z/OS MVS Programming: Workload Management Services

IWMMSTRT — Indicate the start of a work unit

This service indicates that a work unit is beginning execution. The work unit runs under the specified
monitoring environment, but is reported to EWLM completely independently from a potentially running
transaction on the same monitoring environment that is defined by IWM4MINI and IWMRPT/IWMMNTFY
calls. You can use the set of services IWMMSTRT, IWMMSTOP, IWMMUPD to provide data for "mini work
units" running within a long-running transaction. In addition, a work unit started by IWMMSTRT can
participate in asynchronous and synchronous work unit flows.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No restrictions.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. You must include the IWMYCON and CVT mapping macros in the calling program.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of bits 0-31 of register 0, and the reason code variable when

specified, may be non-zero and represents diagnostic data which is NOT part of the external interface.
The high-order halfword should thus be excluded from comparison with the reason code values
described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for
this purpose.

Restrictions
1. This macro may not be used before the completion of WLM address space initialization.
2. The caller must have issued the IWM4MCRE macro successfully and the created delay monitoring

environment must be enabled for EWLM support. This means the delay monitoring environment must
be created by one of the following ways:

• IWM4CON EWLM=YES ... and IWM4MCRE SUBSYSP=CONNECT ... OR
• IWM4MCRE SUBSYSP=VALUE EWLM=YES ...

3. The caller is responsible for error recovery.
4. The current PSW key must be 0 or match the key specified on IWM4MCRE provided the latter is a

system key (0-7).
5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for

the environment represented by the monitoring token.

IWMMSTRT

Appendix E. WLM services supporting 31-bit addressing only 865

Input register information
Before issuing the IWMMSTRT macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.
The reason code is stored in bits 0-31.

1
Used as work registers by the system.

2 - 13
Unchanged

14
Used as a work register by the system.

15
Return code stored in bits 0-31

When control returns to the caller, the ARs contain:
Register

Contents
0 - 1

Used as work registers by the system.
2 - 13

Unchanged
14 - 15

Used as work registers by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMMSTRT macro is as follows:

IWMMSTRT

866 z/OS: z/OS MVS Programming: Workload Management Services

name
IWMMSTRT MONTKN=  montkn

,END_FLOW=NO

,END_FLOW=YES

,MSG_RECEIVED=NO

,MSG_RECEIVED=YES

,ARRIVALTIME=NO_ARRIVALTIME

,ARRIVALTIME=  arrivaltime

,EWLM_S_PACORR=  ewlm_s_pacorr

,EWLM_S_CURCORR=  ewlm_s_curcorr

,EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR

,EWLM_RCVD_CORR=  ewlm_rcvd_corr

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMSTRT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ARRIVALTIME=arrivaltime
,ARRIVALTIME=NO_ARRIVALTIME

An optional input parameter, which contains a timestamp in STCK format. This timestamp is
subtracted from the current timestamp and assigned as queued time to the work unit. For example,
you may use this parameter, if the work unit is started by receipt of a message from a queue and you
know the put time (the timestamp when the message has been put onto the queue). The default is
NO_ARRIVALTIME which indicates that parameter ARRIVALTIME has not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,END_FLOW=NO
,END_FLOW=YES

An optional parameter, which indicates the completion of a message flow. The default is
END_FLOW=NO.
,END_FLOW=NO

indicates that a message flow has not completed.

,END_FLOW=YES

indicates that a message flow has completed. Specify END_FLOW=YES, if you know that this work
unit is the last one in a work unit flow. This indication cannot be cleared, if it has been set.

IWMMSTRT

Appendix E. WLM services supporting 31-bit addressing only 867

,EWLM_RCVD_CORR=ewlm_rcvd_corr
,EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR

When EWLM_S_CURCORR=ewlm_s_curcorr is specified, an optional input parameter, which contains a
cross platform Enterprise Workload Management (EWLM) correlator received from another
application. Normally this is a received correlator which has the independent flag and the
asynchronous flag set. It should not be passed to the EWLM_S_PACORR or the EWLM_S_CURCORR
parameter. If you pass this correlator to one of them then the started work unit is not reclassified and
runs under the classification of this correlator. When you receive a correlator with the independent
flag set, you should:

1. Reclassify the work unit by issuing IWM4CLSY EWLM_CORR=r_corr EWLM_CHCORR=c_corr. r_corr
is the received correlator and c_corr is the correlator created by IWM4CLSY.

2. Start the work unit by issuing IWMMSTRT EWLM_S_CURCORR=c_corr EWLM_RCVD_CORR=r_corr .

The default is NO_EWLM_RCVD_CORR which indicates that parameter EWLM_RCVD_CORR has not
been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_S_CURCORR=ewlm_s_curcorr
A required input parameter which contains a cross-platform Enterprise Workload Management
(EWLM) correlator for the current application. The correlator passed to this parameter is used as the
current correlator of this work unit. It has usually been created by means of a previous IWM4CLSY call
with the EWLM_CHCORR parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_S_PACORR=ewlm_s_pacorr
A required input parameter which contains a cross-platform Enterprise Workload Management
(EWLM) parent correlator received from another application.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

IWMMSTRT

868 z/OS: z/OS MVS Programming: Workload Management Services

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,MSG_RECEIVED=NO
,MSG_RECEIVED=YES

An optional parameter, which indicates whether this work unit has been started as a result of a receipt
of a message. The default is MSG_RECEIVED=NO.
,MSG_RECEIVED=NO

indicates that this work unit has not been started by receipt of a message.

,MSG_RECEIVED=YES

indicates that this work unit has been started as a result of a receipt of a message.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

IWMMSTRT

Appendix E. WLM services supporting 31-bit addressing only 869

Return codes and reason codes
When the IWMMSTRT macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 124. Return and Reason Codes for the IWMMSTRT Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: The input monitoring token indicates no monitoring environment
was established.

Action: Establish a monitoring environment by macro IWM4MCRE.

4 xxxx0442 Equate Symbol: IwmRsnCodeCorrelatorUnknown

Meaning: A unknown correlator has been passed to the EWLM_RCVD_CORR
parameter. It is ignored.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Input monitoring environment does not pass short form validity
checking.

Action: Check for possible storage overlay.

8 xxxx0894 Equate Symbol: IwmRsnCodeInvalidEwlmCorr

Meaning: An unknown EWLM correlator has been passed to the
EWLM_S_PACORR or EWLM_S_CURCORR parameter.

Action: Specify a supported correlator. You can create a supported correlator
by macro IWM4CLSY.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: The EWLM service was not enabled for a delay monitoring
environment.

Action: Create a monitoring environment with EWLM=YES (either on macro
IWM4CON or macro IWM4MCRE).

8 xxxx08AD Equate Symbol: IwmRsnCodeAlreadyActive

Meaning: A work unit started by IWMMSTRT is already active.

Action: Stop the active work unit by macro IWMMSTOP before creating a new
one.

8 xxxx08AF Equate Symbol: IwmRsnCodeArrTimeGTStartTime

Meaning: The arrivaltime passed is greater than the current timestamp.

Action: Check the format of the passed arrivaltime.

IWMMSTRT

870 z/OS: z/OS MVS Programming: Workload Management Services

Example
To indicate that the current monitoring environment continues only once elsewhere in the sysplex,
specify:

IWMMSTRT FUNCTION=CONTINUE,WHERE=SYSPLEX,MONTKN=(R7),
 RETCODE=RCODE,RSNCODE=RSN

IWMMSWCH — Switch monitoring environment

The IWMMSWCH macro allows the caller to indicate that the delay information for a work request may
now also reside in another monitoring environment which is not related (via IWMMRELA) to the current
environment. You can also use IWMMSWCH to indicate that there is no further information for the current
work request beyond the current monitoring environment.

The scope of this service is restricted to the input monitoring environment; no other monitoring
environments are accessed or otherwise involved.

Environment
The requirements for the caller are:

Minimum authorization: Problem state, or supervisor state. PSW key must either be 0, or
match the value specified on IWM4MCRE.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Suspend locks are allowed, as are FRRs

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. You must include the IWMYCON and CVT mapping macros in the calling program.
2. The caller is responsible for error recovery.
3. If you specify FUNCTION=CONTINUE, you cannot specify the list form of this macro. With

FUNCTION=CONTINUE, IWMMSWCH produces an inline expansion rather than an out-of-line service,
so you do not need a parameter list. Registers 0, 1, 14, and 15 are not preserved across the expansion.

4. If the key specified on IWM4MCRE was a user key (8 - F) then primary addressability must exist to the
monitoring environment IWM4MCRE obtained. You could do this by making sure the primary address
space matches the primary at the time IWM4MCRE was invoked.

5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for
the monitoring environment.

Restrictions
You cannot use FUNCTION=CONTINUE when there is an outstanding continuation established by the
IWMMXFER macro FUNCTION=CONTINUE.

IWMMSWCH

Appendix E. WLM services supporting 31-bit addressing only 871

Input register information
Before issuing the IWMMSWCH macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.
1

Used as a work register by the system.
2 - 13

Unchanged
14

Used as a work register by the system.
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0 - 1

Used as a work register by the system.
2 - 13

Unchanged
14 - 15

Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMMSWCH macro is as follows:

IWMMSWCH

872 z/OS: z/OS MVS Programming: Workload Management Services

main diagram

name
IWMMSWCH

FUNCTION=

CONTINUE parameters-1

RETURN

,RUNTIME_VER= SHORT_FORM

MINIMAL

,MONTKN=  montkn

,COMPCODE= YES

NO

,RETCODE=  retcode ,RSNCODE=  rsncode

,MF=S

,MF=(L, MFCTRL

, 0D

, mfattr

)

,MF=(E, MFCTRL

, COMPLETE

, complete

)

parameters-1

,RUNTIME_VER= SHORT_FORM

MINIMAL

,WHERE= LOCALMVS

SYSPLEX

NETWORK

Parameters
The parameters are explained as follows:
,FUNCTION=CONTINUE
,FUNCTION=RETURN

Required input parameter that specifies where there may be one or more monitoring environments
which represent current information about the work request. FUNCTION indicates further
continuations, and does not deal with any parent environment that may exist.

Use FUNCTION=CONTINUE to indicate that the current monitoring environment continues elsewhere.

If you specify FUNCTION=CONTINUE, you cannot specify the MF keyword. With
FUNCTION=CONTINUE, IWMMSWCH produces an inline expansion rather than an out-of-line service,
so that you do not need a parameter list. Registers 0, 1, 14, and 15 are not preserved across the
expansion.

Use FUNCTION=RETURN to indicate that continuations of the current monitoring environment have
completed. Registers 0, 1, 14, and 15 are not preserved across the expansion.

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL

Optional parameter that specifies what level of runtime verification will be performed.

RUNTIME_VER=SHORT_FORM indicates that checking should verify that a monitoring environment is
established and passes a short form of verification prior to being used.

RUNTIME_VER=MINIMAL indicates that checking should assume that if a monitoring environment is
created, it is valid and useable.

IWMMSWCH

Appendix E. WLM services supporting 31-bit addressing only 873

,WHERE=LOCALMVS
,WHERE=SYSPLEX
,WHERE=NETWORK

Required input parameter for FUNCTION=CONTINUE that specifies where there may be another
monitoring environment.

Use WHERE=LOCALMVS to indicate that another monitoring environment may exist on the current
MVS.

Use WHERE=SYSPLEX to indicate that another monitoring environment may exist in the current
sysplex, but is not expected to be on the current MVS image.

Use WHERE=NETWORK to indicate that another monitoring environment may exist, but is not
expected to be in the current MVS sysplex.

,MONTKN=montkn
Required input parameter that specifies the monitoring token.

To code: Specify the RS-type name or address (using a register from 2 to 12) of a 32 bit field
containing the monitoring token.

,COMPCODE=NO
,COMPCODE=YES

Optional input parameter that specifies whether you need completion status for IWMMSWCH.

COMPCODE=NO specifies that you do not need completion status. Registers 0, 15 cannot be used as
reason code and return code registers upon completion of the macro expansion. If you specify
COMPCODE=NO, you cannot specify RETCODE nor RSNCODE.

COMPCODE=YES specifies that you need completion status.

,RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return code. The return
code is also in GPR 15.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain
the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the reason code. The reason
code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain
the reason code (if any).

,MF=S
MF=(L,mfctrl,mfattr)
MF=(E,mfctrl,COMPLETE)

Use MF=S to specify the standard form, which places parameters into an inline parameter list and
invokes the IWM4CON macro service.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require re-entrant code. The list form defines an area of storage that the
execute form uses to store the parameters.

Use MF=E to specify the execute form of the macro. Use the execute form with the list form of the
macro for applications that require re-entrant code. The execute form stores the parameters into the
storage area defined by the list form and generates the macro invocation to transfer control to the
service.
,mfctrl

Use this output parameter to specify the name of the storage area to contain the parameters.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of the storage area
containing the parameter list.

IWMMSWCH

874 z/OS: z/OS MVS Programming: Workload Management Services

,mfattr
Use this input parameter to specify the name of a 1 to 60 character storage area that can contain
any value that is valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code ,mfattr the system provides a value of
0D, which forces the parameter on a doubleword boundary.

,COMPLETE
Use this input parameter to specify that the system check for required parameters and supply
defaults for omitted optional parameter.

ABEND codes
None.

Return codes and reason codes
When IWMMSWCH macro returns control to your program, GPR 15 contains a return code. When the
return code is non-zero, then GPR 0 contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code Meaning

00 Meaning: Successful completion.

04 0402 Meaning: Warning. Input monitoring token indicates no monitoring
environment was established.

04 0407 Meaning: Warning. Switch return was from a monitoring environment with an
outstanding continuation.

08 081C Meaning: Program error. Outstanding continuation exists.

08 0820 Meaning: Program error. Monitoring environment does not pass short form
verification.

Example
To indicate that the current monitoring environment continues only once elsewhere in the sysplex,
specify:

 IWMMSWCH FUNCTION=CONTINUE,WHERE=SYSPLEX,MONTKN=(R7),
 RETCODE=RCODE,RSNCODE=RSN

IWMMUPD — Update data for a work unit

The IWMMUPD service allows to update data about a work unit which has been started by IWMMSTRT. A
work unit started by IWM4MINI is not affected by this service.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

IWMMUPD

Appendix E. WLM services supporting 31-bit addressing only 875

Interrupt status: Enabled for I/O and external interrupts

Locks: No restrictions.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of bits 0-31 of register 0, and the reason code variable when

specified, may be non-zero and represents diagnostic data which is NOT part of the external interface.
The high-order halfword should thus be excluded from comparison with the reason code values
described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for
this purpose.

Restrictions
1. This macro may not be used before the completion of WLM address space initialization
2. The caller must have issued the IWMMSTRT macro successfully.
3. The caller is responsible for error recovery.
4. The current PSW key must be 0 or match the key specified on IWM4MCRE provided the latter is a

system key (0-7).
5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for

the environment represented by the monitoring token.

Input register information
Before issuing the IWMMUPD macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.
The reason code is stored in bits 0-31.

1
Used as a work register by the system.

2 - 13
Unchanged.

14
Used as a work register by the system.

15
Return code is stored in bits 0-31.

When control returns to the caller, the ARs contain:
Register

Contents

IWMMUPD

876 z/OS: z/OS MVS Programming: Workload Management Services

0 - 1
Used as a work register by the system.

2 - 13
Unchanged

14 - 15
Used as work registers by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMMUPD macro is as follows:

name
IWMMUPD MONTKN=  montkn

,END_FLOW=NO

,END_FLOW=YES

,MESSAGES_SENT=NO_MESSAGES_SENT

,MESSAGES_SENT=  messages_sent

,EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR

,EWLM_RCVD_CORR=  ewlm_rcvd_corr

,AFTER_STRT=NO

,AFTER_STRT=YES

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMUPD macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,AFTER_STRT=NO
,AFTER_STRT=YES

When EWLM_RCVD_CORR=ewlm_rcvd_corr is specified, an optional parameter, which indicates the
moment the correlator has been received. The default is AFTER_STRT=NO.

IWMMUPD

Appendix E. WLM services supporting 31-bit addressing only 877

,AFTER_STRT=NO

indicates that the correlator has been received before this work unit has been started by
IWMMSTRT.

,AFTER_STRT=YES

indicates that the correlator has arrived within the scope of this work unit that means after issuing
IWMMSTRT.

,END_FLOW=NO
,END_FLOW=YES

An optional parameter, which indicates the completion of a message flow. The default is
END_FLOW=NO.
,END_FLOW=NO

indicates that a message flow has not completed.

,END_FLOW=YES

indicates that a message flow has completed. Specify END_FLOW=YES, if you know that the
running work unit is the last one in a work unit flow. This indication cannot be cleared, if it has
been set.

,EWLM_RCVD_CORR=ewlm_rcvd_corr
,EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR

An optional input parameter, which contains a cross-platform Enterprise Workload Management
(EWLM) correlator received from another application. Workflows often have multiple parent work
units that must complete before a new work unit can be initiated. You can pass only one parent
correlator to the IWMMSTRT macro and one additional parent correlator to the IWMMUPD macro. You
have to issue the IWMMUPD macro, if more than two parent correlators should be assigned to a work
unit. This correlator is ignored, if it is an unknown EWLM correlator. The default is
NO_EWLM_RCVD_CORR, which indicates that parameter EWLM_RCVD_CORR has not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,MESSAGES_SENT=messages_sent
,MESSAGES_SENT=NO_MESSAGES_SENT

An optional input parameter, which contains the number of messages sent to other applications. This
value is added to the total messages_sent value of the work unit. The total messages_sent value
should not exceed 32767. The default is NO_MESSAGES_SENT, which indicates that parameter
MESSAGES_SEND has not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

IWMMUPD

878 z/OS: z/OS MVS Programming: Workload Management Services

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWMMUPD macro returns control to your program:

•

IWMMUPD

Appendix E. WLM services supporting 31-bit addressing only 879

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 125. Return and Reason Codes for the IWMMUPD Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: The input monitoring token indicates no monitoring environment
was established.

Action: Establish a monitoring environment by macro IWM4MCRE.

4 xxxx0441 Equate Symbol: IwmRsnCodeTooManyMsgCorrs

Meaning: The correlator passed to EWLM_RCVD_CORR is ignored, since the
maximum number of supported correlators has been reached.

Action: None required.

4 xxxx0443 Equate Symbol: IwmRsnCodeTooManyMsgsSent

Meaning: The value passed to MESSAGES_SENT is ignored, since the
maximum number of messages sent is reached.

Action: None required.

4 xxxx0444 Equate Symbol: IwmRsnCodeTooManyMsgsReceived

Meaning: The EWLM_RCVD_CORR parameter has been specified too often.
The correlated counter is not increased.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Input monitoring environment does not pass short form validity
checking.

Action: Check for possible storage overlay.

8 xxxx08AC Equate Symbol: IwmRsnCodeTranNotStarted

Meaning: No work unit has been started by IWMMSTRT for the specified
monitoring environment.

Action: Start a work unit by IWMMSTRT macro, before issuing this macro.

IWMMXFER — Transfer monitoring environment

The purpose of this service is to reflect that the delay information for a work request may now also reside
in a dependent monitoring environment (CONTINUE) OR that delay information is no longer present in a
dependent monitoring environment (RETURN).

IWMMXFER

880 z/OS: z/OS MVS Programming: Workload Management Services

The two monitoring environments referred to above must be related by a previous IWMMRELA invocation.
This service requires as input the monitoring token for the dependent environment, which is accessed,
but the parent environment must also be updated. This implies that the user must have addressability
and update access to the parent monitoring environment. PARENTKEYP and PARENTENV keywords are
provided to accommodate these requirements. These restrictions apply even when the Relate was
performed using the FINDACTIVE option, though when the monitoring environment is related to the
address space characteristics, no key or addressability requirements exist beyond those for the
dependent monitoring environment.

Environment
The requirements for the caller are:

Minimum authorization: • Either problem state or supervisor state.
• PSW key must either be 0 or match the value supplied on

IWM4MCRE for the (dependent) monitoring token.
• PARENTKEYP(VALUE) may only be specified in supervisor state or

with PKM authority to the key specified by PARENTKEY. Note that
the key for IWMMXFER is located in bit positions 0-3 (using 0
origin), which is the machine orientation to keeping keys, not the
"natural" way of declaring the key value.

• PARENTKEYP(UNKNOWN) may only be specified in supervisor state
or with PKM authority to key 0.

• When PARENTKEYP(PSWKEY) is specified, the PSW key must either
be 0 or match the value supplied on IWM4MCRE for the parent
monitoring environment.

• If FUNCTION=RETURN is specified and the passed MONTKN is
associated with an ARM work request (EWLM=YES was specified on
IWM4CON (or IWMCONN) and the monitoring environment was
created using that CONNTKN), the caller must be in supervisor
state or have PKM authority to key 0.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

4. Note that specification of FUNCTION(CONTINUE) produces an inline expansion rather than an out-of-
line service. Registers 0, 1, 14, and 15 are not preserved across the expansion.

IWMMXFER

Appendix E. WLM services supporting 31-bit addressing only 881

Restrictions
1. If the key specified on IWM4MCRE for the dependent monitoring environment was a user key (8-F),

then primary addressability must exist to the performance block IWM4MCRE obtained. This condition
is satisfied by ensuring that current primary matches primary at the time that IWM4MCRE was
invoked. If this service is invoked in a subspace, the condition may be satisfied by ensuring that the
performance block is shared with the base space.

2. If the key specified on IWM4MCRE for the parent environment was a user key (8-F), then either
primary OR secondary addressability must exist to the performance block for the parent environment.

3. When FUNCTION(CONTINUE|RETURN) are used, the caller is responsible for error recovery
4. When FUNCTION(CONTINUE) is used, the caller is responsible to ensure that the parent monitoring

environment does not already have a continuation (via a previous IWMMXFER or IWMMSWCH) to
another (or other) dependent monitoring environment(s).

5. Both monitoring environments must be established on the same MVS image.
6. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for

the dependent monitoring environment.
7. The caller and/or the owner of the parent environment must ensure that parent environment is not

deleted while between the time that IWMMXFER FUNCTION(CONTINUE) is used and the time that
either IWMMXFER FUNCTION(RETURN) is used against the dependent monitoring environment OR
IWMMSWCH FUNCTION(RETURN) is used against the parent monitoring environment.

8. Only limited validity checking is done on the input monitoring tokens.
9. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer

to the PLISTVER parameter description for further information.

Input register information
Before issuing the IWMMXFER macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged

IWMMXFER

882 z/OS: z/OS MVS Programming: Workload Management Services

14-15
Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMMXFER macro is as follows:

name
IWMMXFER

FUNCTION=CONTINUE

,RUNTIME_VER=SHORT_FORM

,RUNTIME_VER=MINIMAL

FUNCTION=RETURN

,RUNTIME_VER=SHORT_FORM

,RUNTIME_VER=MINIMAL

,WORKREQ_STA=IWMEWLMARMSTATUSNONE

,WORKREQ_STA=  workreq_sta

,MONTKN=  montkn ,PARENTKEYP=VALUE ,PARENTKEY=  parentkey

,PARENTKEYP=PSWKEY

,PARENTKEYP=UNKNOWN

,PARENTENV=NOSWITCH

,PARENTENV=SECONDARY

,COMPCODE=YES

,COMPCODE=NO

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=(M , list addr

,COMPLETE

,NOCHECK

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMMXFER macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,COMPCODE=YES
,COMPCODE=NO

An optional parameter, which indicates whether completion status for this service is needed. The
default is COMPCODE=YES.
,COMPCODE=YES

indicates that completion status is needed.

IWMMXFER

Appendix E. WLM services supporting 31-bit addressing only 883

,COMPCODE=NO
indicates that completion status is not needed. Registers 0, 15 cannot be used as reason code and
return code registers upon completion of the macro expansion. For this reason neither RETCODE
NOR RSNCODE may be specified when COMPCODE(NO) is specified.

FUNCTION=CONTINUE
FUNCTION=RETURN

A required parameter, which indicates whether the dependent environment is continuing from or
returning to the parent environment.
FUNCTION=CONTINUE

indicates that this is a unique continuation of the work request which is reflected in the dependent
monitoring environment.

Note that the parent environment may continue to be active on behalf of the work request.

Note that specification of FUNCTION(CONTINUE) produces an inline expansion rather than an out-
of-line service. Registers 0, 1, 14, and 15 are not preserved across the expansion.

FUNCTION=RETURN
indicates that the work request is returning to a previously established parent monitoring
environment.

Use of this option indicates that the dependent environment no longer represents the work
request.

Note that specification of FUNCTION(RETURN) produces an inline expansion rather than an out-
of-line service. Registers 0, 1, 14, and 15 are not preserved across the expansion.

,MONTKN=montkn
A required input parameter, which contains the delay monitoring token for the dependent
environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,PARENTENV=NOSWITCH
,PARENTENV=SECONDARY

A required parameter, which describes whether a space switch is needed to access the parent
monitoring environment.
,PARENTENV=NOSWITCH

indicates that NO space switch is needed to access the parent monitoring environment. This
would be appropriate if the parent monitoring environment was established (by IWM4MCRE) to be
used by routines in a specific system key or if it was established to be used in a specific user key in
the current primary.

,PARENTENV=SECONDARY
indicates that the parent monitoring environment was established in current secondary (for use by
a specific user key).

,PARENTKEY=parentkey
When PARENTKEYP=VALUE is specified, a required input parameter, which contains the key in which
the parent monitoring environment must be accessed. Use of this keyword value requires that the
invoker be in supervisor state or that the caller have PKM authority to the key specified. The high-
order 4 bits (i.e. bits 0-3) contain the key value.

Note that this is different from the "normal" way of declaring the key, and uses the machine
orientation for keeping the storage key in the high-order bits.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-bit field.

,PARENTKEYP=VALUE
,PARENTKEYP=PSWKEY
,PARENTKEYP=UNKNOWN

A required parameter, which describes whether a key switch is needed to access the parent
monitoring environment.

IWMMXFER

884 z/OS: z/OS MVS Programming: Workload Management Services

,PARENTKEYP=VALUE
indicates that the key is being passed explicitly via PARENTKEY.

,PARENTKEYP=PSWKEY
indicates that the current PSW key should be used. Use of this keyword value requires that the
parent monitoring environment was established with the same key as the current PSW.

,PARENTKEYP=UNKNOWN
indicates that the key associated with the parent monitoring environment is unknown. Use of this
keyword value requires that the invoker be in supervisor state or that the caller have PKM
authority to key 0.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameters and those from version 0:

WORKREQ_STA

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL

When FUNCTION=CONTINUE is specified, an optional parameter, which indicates what level of
runtime verification will be performed. The default is RUNTIME_VER=SHORT_FORM.
,RUNTIME_VER=SHORT_FORM

indicates that checking should verify that a monitoring environment is established and passes a
short form of verification prior to being used.

,RUNTIME_VER=MINIMAL
indicates that checking will only be done to verify that a monitoring environment may be
established, assuming that it would be valid and usable if established.

IWMMXFER

Appendix E. WLM services supporting 31-bit addressing only 885

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL

When FUNCTION=RETURN is specified, an optional parameter, which indicates what level of runtime
verification will be performed. The default is RUNTIME_VER=SHORT_FORM.
,RUNTIME_VER=SHORT_FORM

indicates that checking should verify that a monitoring environment is established and passes a
short form of verification prior to being used.

,RUNTIME_VER=MINIMAL
indicates that checking will only be done to verify that a monitoring environment may be
established, assuming that it would be valid and usable if established.

,WORKREQ_STA=workreq_sta
,WORKREQ_STA=IWMEWLMARMSTATUSNONE

When FUNCTION=RETURN is specified, an optional input parameter, which contains the
completion status code of the work request. Available completion status codes (defined in macro
IWMYCON) are the following:

• IwmEwlmArmStatusGood(0)
• IwmEwlmArmStatusAborted(1)
• IwmEwlmArmStatusFailed(2)
• IwmEwlmArmStatusUnknown(3)

These codes correspond to status codes in the OpenGroup ARM 4.0 Standard. For further
information about the meaning of the status codes, refer to the ARM 4.0 Standard at Application
Response Measurement - ARM (collaboration.opengroup.org/tech/management/arm). The default
is IWMEWLMARMSTATUSNONE. This indicates that internal information in the monitoring
environment are examined to determine the status of the work request. If no abnormal event was
recorded for the monitoring environment with the IWMMABNL service, the completion status
IwmEwlmArmStatusGood is reported to EWLM. If an abnormal event was reported with
IWMMABNL, the completion status IwmEwlmArmStatusFailed is reported to EWLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ABEND codes
None.

Return codes and reason codes
When the IWMMXFER macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 126. Return and Reason Codes for the IWMMXFER Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

IWMMXFER

886 z/OS: z/OS MVS Programming: Workload Management Services

http://collaboration.opengroup.org/tech/management/arm
http://collaboration.opengroup.org/tech/management/arm

Table 126. Return and Reason Codes for the IWMMXFER Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: Input monitoring token indicates no monitoring environment was
established.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx081F Equate Symbol: IwmRsnCodeNoRelate

Meaning: NO Parent environment exists since Relate Function(Continue) has
not been performed or has not been performed subsequent to a Relate
Function(Delete).

Action: Check for possible storage overlay and whether Relate
Function(Continue) has been used properly.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass verification.

8 xxxx0822 IwmRsnCodeBadParEnv: Parent monitoring environment does not pass
verification.

Action: Check for possible storage overlay.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: Service is not enabled because monitoring environment can not be
associated with EWLM work requests.

Action: Specify the parameter WORKREQ_STA only when the monitoring
environment is created with IWMMCREA EWLM=YES or the address space is
connected with IWMCONN EWLM=YES and the connect token is passed to
IWMMCREA when creating the monitoring environment.

8 xxxx0897 Equate Symbol: IwmRsnCodeTranStatusInvalid

Meaning: Passed work request completion status is not valid.

Action: Check the EWLM ARM interface specification for valid completion
status values.

IWMQDEL — Delete a request from the queue for an execution
address space

This service deletes a work request that was previously inserted using the IWMQINS service, if it has not
been selected using the IWMSSEL service.

Note : It is recommended to use the equivalent service, IWM4QDE, which also supports 64-bit
addressing. For more information, see “IWM4QDE — Delete a request from the queue for an execution
address space” on page 596.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

IWMQDEL

Appendix E. WLM services supporting 31-bit addressing only 887

Cross memory mode: Any HASN, any SASN. PASN must be the address space which
connected to WLM (i.e. the address space that was home when
IWMCONN was issued for Queue_Manager=Yes, or
Server_Manager=Yes with Server_Type=Queue).

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

Input register information
Before issuing the IWMQDEL macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system

IWMQDEL

888 z/OS: z/OS MVS Programming: Workload Management Services

2-13
Unchanged

14-15
Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMQDEL macro is as follows:

name
IWMQDEL CONNTKN=  conntkn ,WLMWUTKN=  wlmwutkn

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMQDEL macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

CONNTKN=conntkn
A required input parameter, which contains the connect token associated with the use of WLM Work
Queuing services as returned by IWMCONN (specifying Queue_Manager=Yes, or Server_Manager=Yes
with Server_Type=Queue).

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

IWMQDEL

Appendix E. WLM services supporting 31-bit addressing only 889

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,WLMWUTKN=wlmwutkn
A required input parameter, specifying the work unit to be deleted. This token must be a token that
was returned on a prior IWMQINS request.

IWMQDEL

890 z/OS: z/OS MVS Programming: Workload Management Services

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMQDEL macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 127. Return and Reason Codes for the IWMQDEL Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0408 Equate Symbol: IwmRsnCodeWorkNotFound:

Meaning: No work matching the input search criteria was found.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay. Also check if you call this macro
in 64-bit address mode. Refer to the description of reason code xxxx089E for
further information.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Make sure to use the connect token returned by the IWMCONN
service requesting Queue_Manager=Yes, or Server_Manager=Yes with
Server_Type=Queue.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

IWMQDEL

Appendix E. WLM services supporting 31-bit addressing only 891

Table 127. Return and Reason Codes for the IWMQDEL Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing mode.

Action: Request this function only when you are in 31 bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on Primary ASC mod

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported by the MVS release
on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083F Equate Symbol: IwmRsnCodePrimaryNotOwnConn

Meaning: Primary address space does not own the passed connect token.

Action: Avoid requesting this function while primary address space does not
own the connect token.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this service

Action: Make sure that Queue_Manager=Yes, or Server_Manager=Yes with
Server_Type=Queue is specified on the IWMCONN request to enable this
service.

8 xxxx0848 Equate Symbol: IwmRsnCodeBadWorkUnitToken

Meaning: The work unit token is not valid.

Action: Check the specification of the WLMWUTKN parameter.

8 xxxx089E Equate Symbol: IwmRsnCodeServiceAModeMismatch

Meaning: The caller is in 64-bit address mode and tried to invoke a service
macro that is only enabled for a 31-bit environment.

Action: Use the 64-bit enabled service macro (IWM4QDE) or change the
address mode of the caller to 31-bit.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To delete a work request from the WLM queue manager queues:

 IWMQDEL CONNTKN=CONNTOKEN, X
 WLMWUTKN=WLMWUTKN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
CONNTOKEN DS FL4 Contains the connect token
* associated with the use of WLM
* Queuing services as returned by
* IWMCONN
* (specifying QUEUE_MANAGER=YES
* or SERVER_MANAGER=YES
* SERVER_TYPE=QUEUE
WLMWUTKN DS CL16 Work unit token

IWMQDEL

892 z/OS: z/OS MVS Programming: Workload Management Services

RC DS F Return code
RSN DS F Reason code

IWMQINS — Insert a request onto the queue for an execution
address space

The IWMQINS service inserts a work request onto workload management queues so its execution in a
server address space can be managed by WLM.

Before using this service, the caller must connect to WLM using the IWMCONN service, specifying
Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue.

The IWMQINS service requires the use of enclaves to manage the performance goals and reporting of
work. It requires the use of application environments to associate types of work requests with servers
capable of processing them.

Note : It is recommended to use the equivalent service, IWM4QIN, which also supports 64-bit
addressing. For more information, see “IWM4QIN — Insert a request onto the queue for an execution
address space” on page 607.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space which
connected to WLM (i.e. the address space that was home when
IWMCONN was issued for Queue_Manager=Yes, or
Server_Manager=Yes with Server_Type=Queue).

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

IWMQINS

Appendix E. WLM services supporting 31-bit addressing only 893

Restrictions
None.

Input register information
Before issuing the IWMQINS macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMQINS macro is as follows:

IWMQINS

894 z/OS: z/OS MVS Programming: Workload Management Services

name
IWMQINS CONNTKN=  conntkn ,ETOKEN=  etoken

,USERDATA=  userdata ,APPLENV=  applenv
,DYNAMIC=NO

,DYNAMIC=YES

,DEPENDENT=NO

,DEPENDENT=YES

,SECUSER=NO

,SECUSER=YES ,USERID=  userid

,WLMWUTKN=  wlmwutkn

,SERVER_TOKEN=0

,SERVER_TOKEN=  server_token

,REGION_TOKEN=0

,REGION_TOKEN=  region_token ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,PLISTVER=3

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMQINS macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,APPLENV=applenv
A required input parameter, which contains an application environment name. An application
environment is defined in the workload manager service definition and instructs WLM how to create a
server address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

CONNTKN=conntkn
A required input parameter, which contains the connect token returned by the IWMCONN macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,DEPENDENT=NO
,DEPENDENT=YES

An optional parameter indicating whether the insert is for a dependent or a standard request. The
default is DEPENDENT=NO.
,DEPENDENT=NO

The request is for an independent (standard) work request (default).

IWMQINS

Appendix E. WLM services supporting 31-bit addressing only 895

,DEPENDENT=YES
The insert is for a dependent work request which is required by already active server tasks to
complete their processing. The request is prioritized above requests which are not marked as
dependent.

,DYNAMIC=NO
,DYNAMIC=YES

An optional parameter indicating whether the insert is for a dynamic or static application environment.
The default is DYNAMIC=NO.
,DYNAMIC=NO

The server manager connects to a static application environment according to the WLM service
defintion. This is the default.

,DYNAMIC=YES
The server manager connects to a dynamic application environment according to a prior definition
via IWMAEDEF (IWM4AEDF for 64-bit environments) service.

,ETOKEN=etoken
A required input parameter, which contains the enclave token associated with the work request. An
enclave token is obtained using either the IWMECREA or IWMESQRY macro.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

IWMQINS

896 z/OS: z/OS MVS Programming: Workload Management Services

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2
,PLISTVER=3

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameter and those from version 0:

SERVER_TOKEN
• 2, which supports the following parameter and those from version 0 and 1:

REGION_TOKEN
• 3, which supports the following parameter and those from version 0, 1, and 2:

DYNAMIC

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, 2, or 3

,REGION_TOKEN=region_token
,REGION_TOKEN=0

An optional input parameter, which contains a region token returned by the IWM4CON and IWMSSEL
macro. Use REGION_TOKEN to queue a work request to a specific server region. Such a work request
is considered to be part of a set of work requests which all need access to the same status
information which is kept in the virtual storage of the server region.

The following qualifications apply when specifying a region token:

• The application is responsible for passing the region token to the queueing manager so that it can
insert the work request to the region.

• WLM has to know that temporal affinities for work requests to a specific server region exist in order
not to stop the server region.The application must use the IWMTAFF macro to tell WLM when a
temporal affinity starts and when it ends.

Coding REGION_TOKEN=0 is equivalent to omitting the REGION_TOKEN keyword. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

IWMQINS

Appendix E. WLM services supporting 31-bit addressing only 897

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SECUSER=NO
,SECUSER=YES

An optional parameter, which specifies whether the security environment of the user should be
associated with the request at run time. The default is SECUSER=NO.
,SECUSER=NO

No security environment to be established.
,SECUSER=YES

Use the specified user ID to establish a security environment.
,SERVER_TOKEN=server_token
,SERVER_TOKEN=0

An optional input parameter, which contains a server token returned by the IWMSSEL macro. Use
SERVER_TOKEN to queue a secondary work request to the same server task that selected a prior work
request. A secondary work request is considered to be an extension of the prior work request.

The following qualifications apply when specifying a server token:

• The server task is responsible for passing the server token to the queueing manager so that it can
insert a secondary work request.

• Coordination is required between the queueing manager and the server task so that the server task
knows when to expect secondary work requests. The server task uses the IWMSSEM macro to
select secondary work requests. It must select all secondary work requests before it can resume
normal selection using IWMSSEL.

• The same application environment and enclave token passed for the original work request must be
passed for each secondary work request.

• A secondary work request cannot be deleted using the IWMQDEL macro. IWMQINS does not return
a work unit token (WLMWUTKN).

• The SECUSER keyword is ignored.

Coding SERVER_TOKEN=0 is equivalent to omitting the SERVER_TOKEN keyword. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,USERDATA=userdata
A required input parameter, which contains data to pass to the server address space. This user data is
returned to the caller of the IWMSSEL or IWMSSEM macro. The format is undefined to MVS.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,USERID=userid
When SECUSER=YES is specified, a required input parameter, which contains the requester's user ID.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,WLMWUTKN=wlmwutkn
An optional output parameter, which will receive the work unit token. This token can be passed to the
IWMQDEL service to delete the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMQINS macro returns control to your program:

IWMQINS

898 z/OS: z/OS MVS Programming: Workload Management Services

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 128. Return and Reason Codes for the IWMQINS Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx042E Equate Symbol: IwmRsnCodeServerNotFound

Meaning: The server token does not identify an existing server tas The server
task may have terminated since the token was obtained.

Action: If the server task has not terminated, check that the correct token is
specified.

4 xxxx043A Equate Symbol: IwmRsnCodeRegionNotFound

Meaning: The region token does not identify a valid server region.

Action: Please specify the correct region token.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay. Also check if you call this macro
in 64-bit address mode. Refer to the description of reason code xxxx089E for
further information.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Make sure to use the connect token returned by the IWMCONN
service requesting Queue_Manager=Yes, or Server_Manager=Yes with
Server_Type=Queue.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing mode.

Action: Request this function only when you are in 31 bit addressing mode.

IWMQINS

Appendix E. WLM services supporting 31-bit addressing only 899

Table 128. Return and Reason Codes for the IWMQINS Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported by the MVS release
on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token in parameter list is not valid.

Action: Check the specification of the ETOKEN parameter.

8 xxxx083F Equate Symbol: IwmRsnCodePrimaryNotOwnConn

Meaning: Primary address space does not own the passed connect token.

Action: Ensure that the primary address space has previously connected to
WLM using the IWMCONN macro. Ensure that the connect token returned by
the IWMCONN macro is passed to the IWMQINS macro.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this service

Action: Make sure that Queue_Manager=Yes, or Server_Manager=Yes with
Server_Type=Queue is specified on the IWMCONN request to enable this
service.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller's space disconnected from WLM during processing of the
insert request.

Action: None.

8 xxxx0845 Equate Symbol: IwmRsnCodeWrongEnclave

Meaning: The caller tried to queue a secondary work request to a specific
server task using the SERVER_TOKEN parameter. The caller's enclave token
does not match the enclave token of the last work request selected by the
server task.

Action: Check that the correct enclave token was specified. Check that the
server task is invoking the IWMSSEL and IWMSSEM macros in the correct
sequence.

8 xxxx089E Equate Symbol: IwmRsnCodeServiceAModeMismatch

Meaning: The caller is in 64-bit address mode and tried to invoke a service
macro that is only enabled for a 31-bit environment.

Action: Use the 64-bit enabled service macro (IWM4QIN) or change the
address mode of the caller to 31-bit.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: Contact your system programmer. There is a common storage
shortage.

IWMQINS

900 z/OS: z/OS MVS Programming: Workload Management Services

Table 128. Return and Reason Codes for the IWMQINS Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

C xxxx0C16 Equate Symbol: IwmRsnCodeServerUnavail

Meaning: A server cannot be started to process the work request. This is
probably caused by one of the following:

1. An error in the JCL procedure used to start the server address space.
2. Repeated, unexpected terminations of the server address space.

In either of these cases, workload management stops the application
environment. A DISPLAY WLM command shows this state as INTERNALLY
STOPPED.

Action: Look at the system log to determine what caused the error:

1. If it is a JCL error, correct the error in the procedure.
2. If it is repeated terminations of the server address space, correct the

application error causing the termination.

In either case, the server environment can then be resumed using the VARY
operator command: V WLM,APLLENV=nnn,RESUME where nnn is the
applicable application environment name.

Note : A re-IPL of some or all of the systems in the sysplex does not reset the
stopped state of the application environment. The VARY command is the only
way to resume the environment.

C xxxx0C1A Equate Symbol: IwmRsnCodeApplNotDefined

Meaning: The application environment name is not defined in the active WLM
policy.

Action: Check whether the correct application environment name is being
used. If so, a service administrator must define the application environment
in the WLM service definition.

C xxxx0C1B Equate Symbol: IwmRsnCodeApplNotSST

Meaning: The application environment name is defined for use by a different
subsystem type in the active WLM policy.

Action: Check whether the correct application environment name is being
used. If so, a service administrator must change the application environment
in the WLM service definition to specify the correct subsystem type.

C xxxx0C1D Equate Symbol: IwmRsnCodeQMgrNotActive

Meaning: The required Queue Manager is not active.

Action: The Queue Manager with the same subsystem type and name as the
server must be started and connected to workload management before the
request can be honored.

C xxxx0C22 Equate Symbol: IwmRsnCodeApplEnvQuiesced

Meaning: For server applications connecting to WLM with subsystem type
IWEB only: The application environment has been quiesced. The work
reqeust is not inserted to the WLM work queue.

Action: Resume the application environment.

IWMQINS

Appendix E. WLM services supporting 31-bit addressing only 901

Table 128. Return and Reason Codes for the IWMQINS Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

C xxxx0C40 Equate Symbol: IwmRsnCodeNoSafCheckPossible

Meaning: MLS is active but a security check could not be performed probably
for one of the following reasons:

•
• No security decision could be made. The RACF router was not loaded; the

request, resource, subsystem combination could not be found in the RACF
ROUTER table,...

• A resource or class name is not defined to RACF or the class has not been
RAClisted.

• The class was RAClisted, but the data space cannot be accessed due to an
ALESERV failure.

• The class was RAClisted, but the data space has been deleted.
• No security decision could be made. The RACF router was not loaded,; the

request, resource, subsystem combination could not be found in the RACF
ROUTER table.

Action: Contact your RACF Security Administrator. Check if RACF is properly
installed, configured and tuned. Correct the eventual problems.

C xxxx0C41 Equate Symbol: IwmRsnCodeSafCheckFailed

Meaning: MLS is active. Queue Manager and Server Manager are not
authorized to communicate.

Action: Normally none. If QM and SM really must communicate, conta your
RACF Security Administrator. Set the appropriate Security Labels.

C xxxx0C42 Equate Symbol: IwmRsnCodeAletError

Meaning: Error while accessing access list with ALESERV probably because
of one of the following

1.
2. The current access list cannot be expanded. There are no free access list

entries and the maximum size has been reached.
3. ALESERV could not obtain storage for an expanded access list.

Action: Delete unused entries and reissue the request in first case. Free
some storage and retry the request in second case. Contact your System
Programmer if none works

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To insert a work request onto the WLM queue manager queues:

 IWMQINS CONNTKN=CONNTOKEN,ETOKEN=ENCTOKEN, X
 USERDATA=USERDATA,APPLENV=APPLENV,SECUSER=NO, X
 WLMWUTKN=WLMWUTKN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
CONNTOKEN DS FL4 Contains the connect token
* associated with the use of WLM
* Queuing services as returned by
* IWMCONN
* (specifying QUEUE_MANAGER=YES
* or SERVER_MANAGER=YES
* SERVER_TYPE=QUEUE
ENCTOKEN DS CL8 Contains the enclave token
* associated with the work
* request as returned by IWMECREA
USERDATA DS CL16 Contains data maintained by the
* user

IWMQINS

902 z/OS: z/OS MVS Programming: Workload Management Services

APPLENV DS CL32 Contains the application
* environment name
WLMWUTKN DS CL16 Work unit token
RC DS F Return code
RSN DS F Reason code

IWMRPT — Report on work request completion

The primary purpose of this service is to allow MVS to obtain the total response time for a completed work
request and its corresponding service class and (when customer specified) its report class.

The second purpose in using this service is to allow MVS to know which address spaces were involved in
serving the service class.

When a monitoring token is provided, the third purpose in using this service is to allow MVS to know that
the monitoring environment should no longer be associated with the now completed work request. The
use of this service will render the information associated with the monitoring environment unpredictable.
To associate a work request with the monitoring environment following use of Report, first use Initialize
Mode(Reset) or Relate/Transfer.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state. PSW key must either be 0 or match the value
supplied on IWM4CON. PSW key must either be 0 or match the value
supplied on IWM4MCRE when a monitoring token is passed. PSW key
must be 0-7. See restrictions below.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: LOCAL lock held

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks
on the right, as needed, to occupy the specified number of bytes.

Restrictions
1. The caller is responsible for error recovery

IWMRPT

Appendix E. WLM services supporting 31-bit addressing only 903

2. Though the caller is required to be enabled, this is not checked. Violation of this restriction may cause
disabled program checks which would be the responsibility of the caller's recovery to handle.

3. If a delay monitoring token is provided, then:

• The caller must serialize to prevent any delay monitoring services from being invoked concurrently
for the environment represented by the monitoring token.

• The monitoring environment must contain the information saved by IWM4MINI, not IWM4MRLT.
• If the key specified on IWM4MCRE was a system key (0-7), then the current PSW key must be 0 or

match the key specified on IWM4MCRE.
• If the key specified on IWM4MCRE was a user key (8-F), then:

– PSW key must be 0.
– Current primary must match the primary at the time that IWM4MCRE was invoked. Calling from a

subspace is not supported.
4. If the key specified on IWM4CON for the input connect token was a user key (8-F), then:

• PSW key must be 0.
• Current primary must match the primary at the time that IWM4CON was invoked. Calling from a

subspace is not supported.
5. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer

to the PLISTVER parameter description for further information.

Input register information
Before issuing the IWMRPT macro, the caller must ensure that the following general purpose registers
(GPRs) contain the specified information:
Register

Contents
13

The address of a 72-byte standard save area in the primary address space

Before issuing the IWMRPT macro, the caller does not have to place any information into any AR unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system.

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged

IWMRPT

904 z/OS: z/OS MVS Programming: Workload Management Services

14-15
Used as work registers by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMRPT macro is as follows:
main diagram

name
IWMRPT

TRAXFRPT=NO ,PSWKEYP=CURRENT

,PSWKEYP=VALUE ,PSWKEY=  pswkey

TRAXFRPT=YES ,SYSEVPL=  sysevpl

,MONTKNI=YES ,MONTKN=  montkn

,MONTKNI=NO parameters-1

,CONNTKN=  conntkn

,ENDTIME=CURRENT

,ENDTIME=  endtime

,STATUS=NORMAL ,WORK_COMPCD=NO_WORK_COMPCD

,WORK_COMPCD=  work_compcd

,STATUS=ABNORMAL

,WORK_COMPCD=NO_WORK_COMPCD

,WORK_COMPCD=  work_compcd

,STATUS=NORMAL_LE_VAL ,WORK_COMPCD=  work_compcd ,OK_THRESHOLD=  ok_threshold

,STATUS=NORMAL_GE_VAL ,WORK_COMPCD=  work_compcd ,OK_THRESHOLD=  ok_threshold

,WORKREQ_STA=IWMEWLMARMSTATUSNONE

,WORKREQ_STA=  workreq_sta ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

IWMRPT

Appendix E. WLM services supporting 31-bit addressing only 905

parameters-1
,ARRIVALTIME=  arrivaltime ,EXSTARTTIMEP=NO

,EXSTARTTIMEP=YES ,EXSTARTTIME=  exstarttime

,SERVCLS=  servcls

,EWLM_CHCORR=NO_EWLM_CHCORR

,EWLM_CHCORR=  ewlm_chcorr

,EWLM_PACORR=NO_EWLM_PACORR

,EWLM_PACORR=  ewlm_pacorr

,EWLM_CHCTKN=NO_EWLM_CHCTKN

,EWLM_CHCTKN=  ewlm_chctkn

,BLOCK_TIME=NO_BLOCK_TIME

,BLOCK_TIME=  block_time

,WORK_AREA=NO_WORK_AREA

,WORK_AREA=  work_area

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMRPT macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ARRIVALTIME=arrivaltime
When MONTKNI=NO is specified, a required input parameter, which contains the arrival time for the
work unit in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,BLOCK_TIME=block_time
,BLOCK_TIME=NO_BLOCK_TIME

When MONTKNI=NO is specified, an optional input parameter, which contains the duration where the
work request has been blocked. The format of the field is STCK. A work request is blocked, when the
transaction processing is waiting on an external transaction processing or some other event to
complete. The default is NO_BLOCK_TIME indicates that no block time is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,CONNTKN=conntkn
A required input parameter, which is returned by IWM4CON.

If a monitoring token is passed (MONTKNI(YES)), AND this monitoring token was obtained using a
connect token on IWM4MCRE, then the latter connect token is expected to be the same as that
specified for IWMRPT.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,ENDTIME=endtime
,ENDTIME=CURRENT

An optional input parameter, which specifies the ending time for the transaction (typically, when the
output is sent or available to be sent) in STCK format. The default is CURRENT, which indicates that
the current time should be used.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,EWLM_CHCORR=ewlm_chcorr
,EWLM_CHCORR=NO_EWLM_CHCORR

When MONTKNI=NO is specified, an optional input parameter, which contains the cross-platform
Enterprise Workload Management (EWLM) correlator associated with the work request.

IWMRPT

906 z/OS: z/OS MVS Programming: Workload Management Services

Note : If this correlator is not a valid ARM correlator, return code 8 and reason code
IwmRsnCodeInvalidEWLMCorr is returned to the caller (see return code section below). If the
correlator is valid, but cannot be understood by EWLM (no EWLM format), the correlator is silently
ignored and the work request will not be reported to EWLM.

The EWLM_CHCORR and EWLM_CHCTKN parameters are mutually exclusive.

The default is NO_EWLM_CHCORR. It indicates that no EWLM correlator is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_CHCTKN=ewlm_chctkn
,EWLM_CHCTKN=NO_EWLM_CHCTKN

When MONTKNI=NO is specified, an optional input parameter, which contains the cross-platform
Enterprise Workload Management (EWLM) correlator token associated with the work request. The
EWLM_CHCORR and EWLM_CHCTKN parameters are mutually exclusive. The default is
NO_EWLM_CHCTKN. It indicates that no EWLM correlator token is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_PACORR=ewlm_pacorr
,EWLM_PACORR=NO_EWLM_PACORR

When EWLM_CHCORR=ewlm_chcorr and MONTKNI=NO are specified, an optional input parameter,
which contains the cross-platform Enterprise Workload Management (EWLM) parent correlator
associated with the work request. The default is NO_EWLM_PACORR. It indicates that no EWLM
parent correlator is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EXSTARTTIME=exstarttime
When EXSTARTTIMEP=YES and MONTKNI=NO are specified, a required input parameter, which
contains the start execution time in STCK format. Note that this should only be used when IWMMNTFY
was NOT used to pass the execution time for this work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,EXSTARTTIMEP=NO
,EXSTARTTIMEP=YES

When MONTKNI=NO is specified, a required parameter, which indicates whether the start execution
time value is passed.
,EXSTARTTIMEP=NO

indicates that the start execution time value is not passed.
,EXSTARTTIMEP=YES

indicates that the start execution time value is passed. Note that this should only be used when
IWMMNTFY was NOT used to pass the execution time for this work request.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the

IWMRPT

Appendix E. WLM services supporting 31-bit addressing only 907

parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,MONTKN=montkn
When MONTKNI=YES is specified, a required input parameter, which contains the delay monitoring
token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKNI=YES
,MONTKNI=NO

A required parameter, which indicates whether a delay monitoring token is provided.
,MONTKNI=YES

indicates that a delay monitoring token is provided.
,MONTKNI=NO

indicates that no delay monitoring token is provided.
,OK_THRESHOLD=ok_threshold

When STATUS=NORMAL_LE_VAL is specified, a required input parameter, which contains the
threshold value at which the work request is considered to have ended normally.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,OK_THRESHOLD=ok_threshold
When STATUS=NORMAL_GE_VAL is specified, a required input parameter, which contains the
threshold value at which the work request is considered to have ended normally.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures
that the parameter list does not overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameters and those from version 0:

IWMRPT

908 z/OS: z/OS MVS Programming: Workload Management Services

BLOCK_TIME EWLM_CHCTKN WORK_AREA

EWLM_CHCORR EWLM_PACORR WORKREQ_STA

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0, or 1

,PSWKEY=pswkey
When PSWKEYP=VALUE and TRAXFRPT=NO are specified, a required input parameter, which contains
the current PSW key. The low order 4 bits (bits 4-7) contain the key value. The high-order 4 bits (bits
0-3) contain zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8 bit field.

,PSWKEYP=CURRENT
,PSWKEYP=VALUE

When TRAXFRPT=NO is specified, an optional parameter, which describes how to determine the
current PSW key. The default is PSWKEYP=CURRENT.
,PSWKEYP=CURRENT

indicates that the current PSW key should be determined.
,PSWKEYP=VALUE

indicates that the key is being passed explicitly via PSWKEY.
,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SERVCLS=servcls
When MONTKNI=NO is specified, a required input parameter, which contains the service class token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,STATUS=NORMAL
,STATUS=ABNORMAL
,STATUS=NORMAL_LE_VAL
,STATUS=NORMAL_GE_VAL

An optional parameter, which indicates whether the portion of the work request associated with the
Report call has completed normally or not. The default is STATUS=NORMAL.
,STATUS=NORMAL

indicates that work request execution associated with the Report call has completed normally.
,STATUS=ABNORMAL

indicates that work request execution associated with the Report call has completed abnormally.
,STATUS=NORMAL_LE_VAL

indicates that work request execution associated with the Report call has completed normally
PROVIDED the work completion code is below or at (<=) the threshold value given by
OK_THRESHOLD.

,STATUS=NORMAL_GE_VAL
indicates that work request execution associated with the Report call has completed normally
PROVIDED the work completion code is above or at (>=) the threshold value given by
OK_THRESHOLD.

IWMRPT

Appendix E. WLM services supporting 31-bit addressing only 909

,SYSEVPL=sysevpl
When TRAXFRPT=YES is specified, a required input parameter, which is the fully initialized SYSEVENT
parameter list, as mapped by IHATRBPL.

To code: Specify the RS-type address, or address in register (2)-(12), of a 40-character field.

TRAXFRPT=NO
TRAXFRPT=YES

An optional parameter, which indicated prior to z/OS R3 whether a SYSEVENT TRAXFRPT should be
issued when the system was in compatibility mode. This has become irrelevant. However, for
compatibility reasons TRAXFRPT can still be set but has no effect. The default is TRAXFRPT=NO.
TRAXFRPT=NO

indicates that no SYSEVENT TRAXFRPT should be issued.
TRAXFRPT=YES

indicated prior to z/OS R3 that a SYSEVENT TRAXFRPT should be issued when the system was in
compatibility mode. This has become irrelevant. However, for compatibility reasons TRAXFRPT
can still be set but has no effect.

,WORK_AREA=work_area
,WORK_AREA=NO_WORK_AREA

When MONTKNI=NO is specified, an optional input parameter, which is used as a work area by WLM
when MONTKNI(NO) is specified and either EWLM_CHCORR or EWLM_CHTKN is specified on the
IWMRPT invocation (in these cases WORK_AREA is required). The work area must begin on a
doubleword boundary and must be accessible in the current PSW key when the macro is invoked. The
default is NO_WORK_AREA. It indicates that no work area is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 256-character field.

,WORK_COMPCD=work_compcd
,WORK_COMPCD=NO_WORK_COMPCD

When STATUS=NORMAL is specified, an optional input parameter, which contains the completion/
return code for the work request execution associated with the Report call. The default is
NO_WORK_COMPCD, which indicates that NO completion/return code is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,WORK_COMPCD=work_compcd
,WORK_COMPCD=NO_WORK_COMPCD

When STATUS=ABNORMAL is specified, an optional input parameter, which contains the completion/
return code for the work request execution associated with the Report call. The default is
NO_WORK_COMPCD, which indicates that NO completion/return code is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,WORK_COMPCD=work_compcd
When STATUS=NORMAL_LE_VAL is specified, a required input parameter, which contains the
completion/return code for the work request execution associated with the Report call.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,WORK_COMPCD=work_compcd
When STATUS=NORMAL_GE_VAL is specified, a required input parameter, which contains the
completion/return code for the work request execution associated with the Report call.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,WORKREQ_STA=workreq_sta
,WORKREQ_STA=IWMEWLMARMSTATUSNONE

An optional input parameter, which contains the completion status code of the work request.
Available completion status codes (defined in macro IWMYCON) are the following:

• IwmEwlmArmStatusGood(0)
• IwmEwlmArmStatusAborted(1)

IWMRPT

910 z/OS: z/OS MVS Programming: Workload Management Services

• IwmEwlmArmStatusFailed(2)
• IwmEwlmArmStatusUnknown(3)

These codes correspond to status codes in the OpenGroup ARM 4.0 Standard. For further information
about the meaning of the status codes refer to the ARM 4.0 Standard at Application Response
Measurement - ARM (collaboration.opengroup.org/tech/management/arm). The default is
IWMEWLMARMSTATUSNONE. This indicates that work request completion status should be derived
from the passed STATUS parameter value.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ABEND codes
None.

Return codes and reason codes
When the IWMRPT macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 129. Return and Reason Codes for the IWMRPT Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0405 Equate Symbol: IwmRsnCodeGoalNoMonEnv

Meaning: System is in goal mode but the input monitoring token indicates no
monitoring environment was established, hence MVS did not receive the
information.

Action: None required.

4 xxxx0409 Equate Symbol: IwmRsnCodeNoConn

Meaning: Connect token does not reflect a successful Connect. The system
did not receive the information (applies to both goal mode and compatibility
mode). No SYSEVENT TRAXFRPT was issued.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx080C Equate Symbol: IwmRsnCodeMonEnvLacksData

Meaning: Input monitoring environment does not contain the necessary
information.

Action: Ensure that the monitoring environment was established with the
necessary information.

8 xxxx080E Equate Symbol: IwmRsnCodeArrTimeGTEndTime

Meaning: Input arrival time later than end time.

Action: Check for possible storage overlay of the parameter list or variable.

IWMRPT

Appendix E. WLM services supporting 31-bit addressing only 911

http://collaboration.opengroup.org/tech/management/arm
http://collaboration.opengroup.org/tech/management/arm

Table 129. Return and Reason Codes for the IWMRPT Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Input monitoring environment does not pass short form validity
checking.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity checking.

Action: Check for possible storage overlay.

8 xxxx082D Equate Symbol: IwmRsnCodeExStTimeGTEndTime

Meaning: Execution start time greater than execution end time

Action: Check for possible storage overlay of the parameter list or variable.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this service.

Action: Avoid requesting this function under the input connection. IWM4CON
options must be specified previously to enable this service.

8 xxxx087E Equate Symbol: IwmRsnCodeRoMonEnv

Meaning: Input monitoring environment is report-only.

Action: Avoid calling this function for report-only monitoring environments.

8 xxxx0894 Equate Symbol: IwmRsnCodeInvalidEWLMCorr

Meaning: Passed correlator information (EWLM_CHCORR, EWLM_PACORR, or
EWLM_CHCTKN) did not pass validity checking, that means: the architected
ARM correlator length field in the first two Bytes of the correlator (token) is
either less than 4 ('0004'x) or greater than 512 ('0200'x).

Action: Check the specification of the correlator information.

8 xxxx0895 Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: The service is not enabled because the caller invoked the
IWMCONN service with EWLM=NO.

Action: Specify the parameter EWLM_CHCORR, EWLM_PACORR,
EWLM_CHCTKN, or WORKREQ_STA only when connected with EWLM=YES.

8 xxxx0897 Equate Symbol: IwmRsnCodeTranStatusInvalid

Meaning: Passed work request completion status is not valid.

Action: Check the EWLM ARM interface specification for valid completion
status values.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C02 Equate Symbol: IwmRsnCodeReportingSusp

Meaning: SYSEVENT TRAXFRPT invoked, but reporting is temporarily
suspended for one of the following reasons:

• RMF workload activity reporting is not active
• There is no installation control specification (IEAICSxx parmlib member

with RPGN specified for some subsystem other than TSO) in effect. No data
reported but a later reissue could be successful.

Action: Invoke the function when the conditions are alleviated.

C xxxx0C03 Equate Symbol: IwmRsnCodeSyseventNoWorkElt

Meaning: SYSEVENT TRAXFRPT invoked, but no work element was available
to save the input information.

Action: Invoke the function when the conditions are alleviated. This condition
may be due to a common storage shortage condition.

IWMRPT

912 z/OS: z/OS MVS Programming: Workload Management Services

Table 129. Return and Reason Codes for the IWMRPT Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

C xxxx0C05 Equate Symbol: IwmRsnCodeRptNoWorkElt

Meaning: Report routine invoked, but no work element was available to save
the input information.

Action: Invoke the function when the conditions are alleviated. This condition
may be due to a common storage shortage condition.

C xxxx0C06 Equate Symbol: IwmRsnCodeNoEndTime

Meaning: No end time was supplied to the service and STCK gave a non-zero
condition code.

Action: No action required.

IWMSLIM — Application environment limit service

The IWMSLIM service should be used to tell WLM the total number of server instances which are
supported by the application. WLM will ensure that no more server instances will be started in the system.

In addition the caller can define a minimum number of servers which should be made available by WLM
regardless of whether work is available to execute or not. If the user defines multiple service classes to
give the work of the application different service goals, the caller can define that the minimum number of
servers is spread across these service classes to ensure that servers are available for all work executed by
the application.

The caller must have previously connected to WLM using the IWMCONN service specifying
SERVER_MANAGER=YES and SERVER_TYPE=QUEUE. It is recommended to use the IWMSLIM service
directly after IWMCONN. If any server uses this service to define limits, the limits apply for all servers of
the application environment regardless of whether other servers use the service or not.

If a server defines new limits during execution, WLM attempts to meet the new limit definitions as soon as
possible. If the maximum limit for servers is reduced during execution it is not predictable when WLM is
able to meet the new maximum definition. This depends highly on the execution time of the running work
requests. Therefore changing the limits during execution should be used very carefully and primarily
during times of low application utilization.

Note : It is recommended to use the equivalent service, IWM4SLI, which also supports 64-bit addressing.
For more information, see “IWM4SLI — Application environment limit service” on page 636.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

IWMSLIM

Appendix E. WLM services supporting 31-bit addressing only 913

Programming requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. This macro may not be used during task/address space termination.
2. Only a single invocation is allowed to be active for a given address space at any given time.
3. Before using this macro the caller must connect to WLM via IWMCONN Server_Manager=YES,

Server_Type=Queue.
4. The macro must be used directly after using IWMCONN.

Input register information
Before issuing the IWMSLIM macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

IWMSLIM

914 z/OS: z/OS MVS Programming: Workload Management Services

Performance implications

None.

Syntax
The syntax of the IWMSLIM macro is as follows:

name
IWMSLIM

AE_SERVERMAX=0

AE_SERVERMAX=  ae_servermax

,AE_SERVERMIN=0

,AE_SERVERMIN=  ae_servermin

,AE_SPREADMIN=NO

,AE_SPREADMIN=YES

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSLIM macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

AE_SERVERMAX=ae_servermax
AE_SERVERMAX=0

An optional input parameter, which indicates the architectural limit for the total number of server
instances which can run concurrently across the application environment for a given subsystem type
and subsystem name.

This parameter represents a physical limit, such as the maximum number of available connections to
a back-end subsystem. WLM will not start more than this number of server instances, even if goals
cannot be met because of the limit. This value should be an integral multiple of the PARALLEL_EU
value defined on the IWMCONN service. If AE_SERVERMAX is not an even multiple of PARALLEL_EU,
WLM will round this value down to the next integral multiple.

The maximum limit and the number of service classes to execute work requests should be defined
carefully. If the number of service classes exceeds the quotient of AE_SERVERMAX divided by
PARALLEL_EU WLM cannot start enough server address spaces to execute the work requests for all
service classes. The default is 0, indicating that no maximum limit has been specified

To code: Specify the RS-type address of a halfword field.

IWMSLIM

Appendix E. WLM services supporting 31-bit addressing only 915

,AE_SERVERMIN=ae_servermin
,AE_SERVERMIN=0

An optional input parameter, which indicates the minimum number of servers which should be up and
running at all times.

This parameter can be used to tell WLM that a certain amount of server tasks should always be kept
available to select work. This value should be an integral multiple of the PARALLEL_EU value defined
on IWMCONN service. If AE_SERVERMIN is not an even multiple of PARALLEL_EU, WLM will round
this value down to the next integral multiple. The default is 0, indicating that no limit has been
specified

To code: Specify the RS-type address of a halfword field.

,AE_SPREADMIN=NO
,AE_SPREADMIN=YES

When AE_SERVERMIN=ae_servermin is specified, an optional parameter, which indicates whether
WLM will distribute the minimum number of servers as evenly as possible across the service classes
being used to process the work requests. The default is AE_SPREADMIN=NO.
,AE_SPREADMIN=NO

The server tasks specified in AE_SERVERMIN will be distributed to service classes as needed in
order to meet goals.

,AE_SPREADMIN=YES
The server tasks specified in AE_SERVERMIN will be distributed as evenly as possible to all
service classes being used to execute work requests.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

IWMSLIM

916 z/OS: z/OS MVS Programming: Workload Management Services

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWMSLIM macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 130. Return and Reason Codes for the IWMSLIM Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

IWMSLIM

Appendix E. WLM services supporting 31-bit addressing only 917

Table 130. Return and Reason Codes for the IWMSLIM Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay. Also check if you call this macro
in 64-bit address mode. Refer to the description of reason code xxxx089E for
further information.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing mode.

Action: Request this function only when you are in 31 bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this service

Action: Make sure that SERVER_MANAGER=YES and SERVER_TYPE=QUEUE
is specified on the IWMCONN request to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller is in cross-memory mode.

Action: Request this function only when you are not in cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller's space is not connected to WLM.

Action: Invoke the IWMCONN macro before invoking this macro.

8 xxxx089E Equate Symbol: IwmRsnCodeServiceAModeMismatch

Meaning: The caller is in 64-bit address mode and tried to invoke a service
macro that is only enabled for a 31-bit environment.

Action: Use the 64-bit enabled service macro (IWM4SLI) or change the
address mode of the caller to 31-bit.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To specify application limits to WLM.

IWMSLIM

918 z/OS: z/OS MVS Programming: Workload Management Services

 IWMCONN WORK_MANAGER=YES,
 SERVER_MANAGER=YES,
 PARALLEL_EU=EUNITS,
 SERVER_TYPE=QUEUE,
 CONNTKN=CTKN,
 CONNTKNKEY=PSWKEY,
 RETCODE=RC,
 RSNCODE=RSN

 IWMSLIM AE_SERVERMAX=MAXSRVS,
 AE_SERVERMIN=MINSRVS,
 RETCODE=RC,
 RSNCODE=RSN
*
* Storage areas
*
EUNITS DS F Number of Tasks which will be started
* per address space.
MAXSRVS DS H Maximum Number of Servers supported
* by the application.
MINSRVS DS H Minimum number of servers which should
* be up and running all time
CTKN DS FL4 Connect Token
RC DS F Return code
RSN DS F Reason code

IWMSSEL — Select a request from a caller's work manager queue

The IWMSSEL service selects the next work request from the queue associated with the caller's
application environment. The caller must have previously connected to WLM using the IWMCONN service
specifying SERVER_MANAGER=YES.

If there are no queued work requests waiting for selection the calling task will be suspended, pending
arrival of work to do. The caller cannot rely upon asynchronous exits receiving control while the task is
suspended.

After a work request is selected, the caller uses the IWMSTBGN and IWMSTEND services to indicate the
start and end of processing of the request.

Note : It is recommended to use the equivalent service, IWM4SSL, which also supports 64-bit addressing.
For more information, see “IWM4SSL — Select a request from a caller's work manager queue” on page
652.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

IWMSSEL

Appendix E. WLM services supporting 31-bit addressing only 919

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

Input register information
Before issuing the IWMSSEL macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

IWMSSEL

920 z/OS: z/OS MVS Programming: Workload Management Services

Syntax
The syntax of the IWMSSEL macro is as follows:

name
IWMSSEL USERDATA=  userdata ,WLMEUTKN=  wlmeutkn

,SERVER_TOKEN=  server_token ,REGION_TOKEN=  region_token

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSSEL macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the

IWMSSEL

Appendix E. WLM services supporting 31-bit addressing only 921

parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameter and those from version 0:

SERVER_TOKEN

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0 or 1

,REGION_TOKEN=region_token
An optional output parameter, which contains a region token. A queueing manager can use the region
token to queue work requests to a specific server region. These work requests are considered to
belong to a set of work requests all needing access to same status information which exists only in the
vitual storage of the server region. They are selected using the IWMSSEL macro. It is assumed that the
application uses the service IWMTAFF to tell WLM when the temporary affinity to the defined server
region begins and ends.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a

,SERVER_TOKEN=server_token
An optional output parameter, which contains a server token. A queueing manager can use the server
token to queue secondary work requests to this server task. Secondary work requests are considered
to be extensions of the work request selected by IWMSSEL. They are selected using the IWMSSEM
macro. See the IWMSSEM macro for more information.

IWMSSEL

922 z/OS: z/OS MVS Programming: Workload Management Services

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

USERDATA=userdata
A required output parameter, which contains the user data previously passed to WLM via IWMQINS.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,WLMEUTKN=wlmeutkn
A required output parameter, which will receive the execution unit token. This token must be passed
on subsequent IWMSTBGN and IWMSTEND requests.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMSSEL macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 131. Return and Reason Codes for the IWMSSEL Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay. Also check if you call this macro
in 64-bit address mode. Refer to the description of reason code xxxx089E for
further information.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

IWMSSEL

Appendix E. WLM services supporting 31-bit addressing only 923

Table 131. Return and Reason Codes for the IWMSSEL Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing mode.

Action: Request this function only when you are in 31 bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this service

Action: Make sure that SERVER_MANAGER=YES is specified on the
IWMCONN request to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller is in cross-memory mode.

Action: Request this function only when you are not in cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller's space is not connected to WLM.

Action: Invoke the IWMCONN macro before invoking this macro.

8 xxxx0854 Equate Symbol: IwmRsnCodeTooManySelect

Meaning: The caller is attempting to select more work units than it has tasks
to execute the work.

Action: Wait until an execution task has issued IWMSTEND before attempting
to select more work units.

8 xxxx0864 Equate Symbol: IwmRsnCodeSecondaryWorkExists

Meaning: There are secondary work requests queued to this server task. The
caller was expected to process them using IWMSSEM before calling
IWMSSEL.

Action: Select all secondary work requests before issuing IWMSSEL.

8 xxxx089E Equate Symbol: IwmRsnCodeServiceAModeMismatch

Meaning: The caller is in 64-bit address mode and tried to invoke a service
macro that is only enabled for a 31-bit environment.

Action: Use the 64-bit enabled service macro (IWM4SSL) or change the
address mode of the caller to 31-bit.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: Caller must disconnect by invoking the IWMDISC macro.

IWMSSEL

924 z/OS: z/OS MVS Programming: Workload Management Services

Table 131. Return and Reason Codes for the IWMSSEL Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

C xxxx0C14 Equate Symbol: IwmRsnCodeNoWorkShutDown

Meaning: No work selected. Caller is to shutdown.

Action: Caller must disconnect by invoking the IWMDISC macro.

C xxxx0C3B Equate Symbol: IwmRsnCodeStopTask

Meaning: WLM decided to stop the server instance.

Action: Calling task must shutdown, but server address space must remain
active.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To select a work request from the WLM queue manager queues:

 IWMSSEL USERDATA=USERDATA, X
 WLMEUTKN=WLMEUTKN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
USERDATA DS CL16 Contains the user-defined data
* that was passed to IWMQINS
WLMEUTKN DS CL8 Work unit token that must be
* passed to IWMSTBGN and IWMSTEND
RC DS F Return code
RSN DS F Reason code

IWMSSEM — WLM server select secondary service

The IWMSSEM service selects the next secondary work request from the queue associated with the
caller's server task.

If there are no queued secondary work requests waiting for selection the calling task will be suspended,
pending arrival of work to do. The caller cannot rely upon asynchronous exits receiving control while the
task is suspended.

Secondary work requests are considered to be extensions of an original work request selected using
IWMSSEL. The caller must invoke WLM services in the following sequence:

• The caller invokes the IWMSSEL macro to select an initial work request. IWMSSEL returns a token
identifying the server task. The caller is responsible for passing the server token to the queueing
manager so that it can insert secondary work requests.

• The caller invokes the IWMSTBGN macro to establish an environment for processing the work request
selected using IWMSSEL. This environment also covers all secondary work requests.

• The caller invokes the IWMSSEM macro to select each secondary work request. The queueing manager
is responsible for indicating the last secondary work request so that the server task knows when not to
try to select another one.

• After the last secondary work request has been processed, the caller invokes the IWMSTEND macro to
remove the environment created by IWMSTBGN.

• The caller invokes IWMSSEL to select a new primary work request, and repeats the above flow.

In the above flow, IWMSSEL, IWMSTBGN, IWMSSEM, and IWMSTEND must be invoked from the same
task.

IWMSSEM

Appendix E. WLM services supporting 31-bit addressing only 925

Note : It is recommended to use the equivalent service, IWM4SSM, which also supports 64-bit
addressing. For more information, see “IWM4SSM — WLM server select secondary service” on page 658.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

Input register information
Before issuing the IWMSSEM macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work registers by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

IWMSSEM

926 z/OS: z/OS MVS Programming: Workload Management Services

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMSSEM macro is as follows:

name
IWMSSEM USERDATA=  userdata

,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSSEM macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the

IWMSSEM

Appendix E. WLM services supporting 31-bit addressing only 927

execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

USERDATA=userdata
A required output parameter, which contains the user data previously passed to WLM via IWMQINS.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

IWMSSEM

928 z/OS: z/OS MVS Programming: Workload Management Services

ABEND codes
None.

Return codes and reason codes
When the IWMSSEM macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 132. Return and Reason Codes for the IWMSSEM Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay. Also check if you call this macro
in 64-bit address mode. Refer to the description of reason code xxxx089E for
further information.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing mode.

Action: Request this function only when you are in 31 bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this service

Action: Make sure that SERVER_MANAGER=YES is specified on the
IWMCONN request to enable this service.

IWMSSEM

Appendix E. WLM services supporting 31-bit addressing only 929

Table 132. Return and Reason Codes for the IWMSSEM Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller is in cross-memory mode.

Action: Request this function only when you are not in cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller's space is not connected to WLM.

Action: Invoke the IWMCONN macro before invoking this macro.

8 xxxx0862 Equate Symbol: IwmRsnCodeNoPriorSelect

Meaning: The caller has not previously selected work using the IWMSSEL
macro.

Action: Invoke the IWMSSEL macro before invoking this macro.

8 xxxx0863 Equate Symbol: IwmRsnCodeNoExecEnv

Meaning: The caller has not established an execution environment using
IWMSTBGN.

Action: Invoke the IWMSTBGN macro before invoking this macro.

8 xxxx089E Equate Symbol: IwmRsnCodeServiceAModeMismatch

Meaning: The caller is in 64-bit address mode and tried to invoke a service
macro that is only enabled for a 31-bit environment.

Action: Use the 64-bit enabled service macro (IWM4SSM) or change the
address mode of the caller to 31-bit.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C14 Equate Symbol: IwmRsnCodeNoWorkShutDown

Meaning: No work selected. Caller is to shutdown.

Action: Caller must disconnect by invoking the IW DISC macro.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To select a secondary work request from the WLM queue manager queues:

 IWMSSEM USERDATA=USERDATA,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
USERDATA DS CL16 Contains the user-defined data
* that was passed to IWMQINS
RC DS F Return code
RSN DS F Reason code

IWMSTBGN — Begin a request from a caller's work manager queue

IWMSTBGN establishes the environment to process a work request that was previously selected using
IWMSSEL. The caller must invoke IWMSTBGN from the task in the server address space that will process
the request. IWMSTBGN establishes a business unit-of-work relationship by joining the caller's task to the

IWMSTBGN

930 z/OS: z/OS MVS Programming: Workload Management Services

enclave associated with the request. IWMSTBGN creates a security environment if there is a user ID
associated with the request previously selected.

Use IWMSTBGN together with IWMSTEND to begin and end the processing of a work request. A task can
process only one work request at a time.

Note that a task may only join an enclave if it is not already part of an enclave. In particular, a subtask
which inherited the enclave attribute from its mother task (which may happen either as a result of the
mother task issuing IWMEJOIN or IWMSTBGN) is not allowed to use IWMEJOIN to explicitly join an
enclave. This restriction is independent of whether the specified enclave is the same enclave as it is in, or
a different enclave from the one it is in. Such a subtask which inherited the enclave attribute is also not
allowed to use IWMELEAV to explicitly leave the enclave. The subtask would only leave the enclave upon
its own (task) termination or when the enclave is deleted (IWMEDELE). Also, a task which successfully
establishes a Begin environment (IWMSTBGN) may not invoke Enclave Join, nor is the task allowed to use
Enclave Leave while this Begin environment exists.

Note : It is recommended to use the equivalent service, IWM4STBG, which also supports 64-bit
addressing. For more information, see “IWM4STBG — WLM begin server transaction service” on page
663.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before issuing the IWMSTBGN macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

IWMSTBGN

Appendix E. WLM services supporting 31-bit addressing only 931

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMSTBGN macro is as follows:

IWMSTBGN

932 z/OS: z/OS MVS Programming: Workload Management Services

name
IWMSTBGN WLMEUTKN=  wlmeutkn

,ETOKEN=  etoken

,RETCODE=  retcode ,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMSTBGN macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,ETOKEN=etoken
An optional output parameter, which will receive the enclave token.

To code: Specify the RS-type address, or register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

IWMSTBGN

Appendix E. WLM services supporting 31-bit addressing only 933

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports the following parameter and those from version 0:

ETOKEN

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

WLMEUTKN=wlmeutkn
A required input parameter, execution unit token that was returned by a prior invocation of IWMSSEL.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMSTBGN macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

IWMSTBGN

934 z/OS: z/OS MVS Programming: Workload Management Services

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 133. Return and Reason Codes for the IWMSTBGN Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041F Equate Symbol: IwmRsnCodeExecEnvChanged

Meaning: The execution environment has changed while the requested
function is in progress.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay. Also check if you call this macro
in 64-bit address mode. Refer to the description of reason code xxxx089E for
further information.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked the service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on Primary ASC
mode.

Action: Avoid requesting this function in this environment.

IWMSTBGN

Appendix E. WLM services supporting 31-bit addressing only 935

Table 133. Return and Reason Codes for the IWMSTBGN Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: The caller invoked the service while task termination is in progress
for the task associated with the owner.

Action: Avoid requesting this function while task termination is in progress.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or version length field
is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token, or
asynchronous events which may have deleted the enclave.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: The caller's space connection is not enabled for this service

Action: Make sure that SERVER_MANAGER=YES is specified on the
IWMCONN request to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: The caller is in cross-memory mode.

Action: Request this function only when you are not in cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: The caller's space is not connected to WLM.

Action: Invoke the IWMCONN macro before invoking this macro.

8 xxxx0850 Equate Symbol: IwmRsnCodeBeginEnvOutstanding

Meaning: The caller is already operating under an outstanding Begin
environment.

Action: Avoid requesting this function in this environment.

8 xxxx0851 Equate Symbol: IwmRsnCodeSecEnvOutstanding

Meaning: The caller is already operating under an outstanding security
environment.

Action: Avoid requesting this function while there is a task level security
environment outstanding.

8 xxxx0852 Equate Symbol: IwmRsnCodeExecTokenNotCorrect

Meaning: The execution unit token does not identify a previously selected
work unit.

Action: Verify that you have coded the WLMEUTKN parameter correctly.

8 xxxx0857 Equate Symbol: IwmRsnCodeAlreadyInEnclave

Meaning: Current dispatchable work unit is already in an enclave.

Action: Avoid requesting this function while the caller is already in an
enclave.

8 xxxx085A Equate Symbol: IwmRsnCodeSelectedWorkActive

Meaning: The selected work element associated with the input execution
unit token is already in execution.

Action: You may have invoked IWMSTBGN from multiple tasks in the server
address space passing the same WLMEUTKN. Avoid requesting this function
in this environment.

IWMSTBGN

936 z/OS: z/OS MVS Programming: Workload Management Services

Table 133. Return and Reason Codes for the IWMSTBGN Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx089E Equate Symbol: IwmRsnCodeServiceAModeMismatch

Meaning: The caller is in 64-bit address mode and tried to invoke a service
macro that is only enabled for a 31-bit environment.

Action: Use the 64-bit enabled service macro (IWM4STBG) or change the
address mode of the caller to 31-bit.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C17 Equate Symbol: IwmRsnCodeSecEnvCreateFailed

Meaning: A user security environment cannot be created.

Action: Verify that the user ID is defined to RACF or check the SAF
installation exit routine to enable the function.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
Suppose a work request was selected using IWMSSEL and the execution unit token returned by IWMSSEL
is WLMEUTKN.

To establish the environment to process the work request:

 IWMSTBGN WLMEUTKN=WLMEUTKN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
WLMEUTKN DS CL8 Contains the execution unit
* token that was returned by
* IWMSSEL
RC DS F Return code
RSN DS F Reason code

IWMSTEND — End a request from a caller's work manager queue

IWMSTEND removes the environment which was previously established using IWMSTBGN to process a
work request. The caller must invoke IWMSTEND from the same task that invoked IWMSTBGN.
IWMSTEND removes the caller's task from the enclave associated with the request. IWMSTEND deletes
the security environment if one was previously established by IWMSTBGN.

Note : It is recommended to use the equivalent service, IWM4STEN, which also supports 64-bit
addressing. For more information, see “IWM4STEN — End a request from a caller's work manager queue”
on page 671.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

IWMSTEND

Appendix E. WLM services supporting 31-bit addressing only 937

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before issuing the IWMSTEND macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero
1

Used as work register by the system
2-13

Unchanged
14

Used as work registers by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

IWMSTEND

938 z/OS: z/OS MVS Programming: Workload Management Services

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMSTEND macro is as follows:

name
IWMSTEND WLMEUTKN=  wlmeutkn

,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:
name

An optional symbol, starting in column 1, that is the name on the IWMSTEND macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

IWMSTEND

Appendix E. WLM services supporting 31-bit addressing only 939

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

WLMEUTKN=wlmeutkn
A required input parameter, execution unit token that was specified on the prior invocation of
IWMSTBGN.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND codes
None.

Return codes and reason codes
When the IWMSTEND macro returns control to your program:

• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason

code.

IWMSTEND

940 z/OS: z/OS MVS Programming: Workload Management Services

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 134. Return and Reason Codes for the IWMSTEND Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041C Equate Symbol: IwmRsnCodeNotEnclave

Meaning: The current dispatchable work unit is not associated with an
enclave.

Action: None required.

4 xxxx041F Equate Symbol: IwmRsnCodeExecEnvChanged

Meaning: The execution environment has changed while the requested
function is in progress.

Action: None required.

4 xxxx042F Equate Symbol: IwmRsnCodeSecondaryWorkDeleted

Meaning: There were secondary work requests queued to this server task.
The caller was expected to process them using IWMSSEM before calling
IWMSTEND. The secondary work requests were deleted.

Action: Select all secondary work requests before issuing IWMSTEND

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: The caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: The caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay. Also check if you call this macro
in 64-bit address mode. Refer to the description of reason code xxxx089E for
further information.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: The caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: The caller invoked the service while DATOFF

Action: Avoid requesting this function in this environment.

IWMSTEND

Appendix E. WLM services supporting 31-bit addressing only 941

Table 134. Return and Reason Codes for the IWMSTEND Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: The caller invoked service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: The caller invoked the service but was not DAT on Primary ASC
mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: The Version number in the parameter list is not valid or version
length field is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller invoked service but was in cross-memory mode.

Action: Avoid requesting this function in cross-memory mode.

8 xxxx084F Equate Symbol: IwmRsnCodeWrongExecToken

Meaning: Current dispatchable work unit is not associated with the input
execution unit token.

Action: Check for possible storage overlay of the execution unit token.

8 xxxx0859 Equate Symbol: IwmRsnCodeEnclaveSubTaskExists

Meaning: The current dispatchable work unit has residual subtasks
propagated to the enclave which are still associated with the enclave.

Action: Avoid requesting this function in this environment.

8 xxxx089E Equate Symbol: IwmRsnCodeServiceAModeMismatch

Meaning: The caller is in 64-bit address mode and tried to invoke a service
macro that is only enabled for a 31-bit environment.

Action: Use the 64-bit enabled service macro (IWM4STEN) or change the
address mode of the caller to 31-bit.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To remove the environment which was previously established using IWMSTBGN:

 IWMSTEND WLMEUTKN=WLMEUTKN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
WLMEUTKN DS CL8 Contains the execution unit
* token that was specified on
* the prior invocation of
* IWMSTBGN
RC DS F Return code
RSN DS F Reason code

IWMTAFF — WLM temporal affinity service

IWMTAFF

942 z/OS: z/OS MVS Programming: Workload Management Services

The IWMTAFF service should be used to inform WLM when a temporal affinity for a specific server region
starts and when it ends. WLM will ensure that server regions will not be terminated as long as temporal
affinities exist.

The caller must have previously connected to WLM using the IWMCONN as server or as queue manager.

Note : It is recommended to use the equivalent service, IWM4TAF, which also supports 64-bit addressing.
For more information, see “IWM4TAF — WLM temporal affinity service” on page 676.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high-order halfword of register 0, and the reason code variable when specified, may be

non-zero and represents diagnostic data which is NOT part of the external interface. The high-order
halfword should thus be excluded from comparison with the reason code values described above. The
constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. This macro may not be used during task/address space termination.
2. Before using this macro the caller must connect to WLM via IWMCONN Server_Manager=YES,

Server_Type=Queue or IWMCONN Queue_Manager=YES.

Input register information
Before issuing the IWMTAFF macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code if GR15 return code is non-zero

IWMTAFF

Appendix E. WLM services supporting 31-bit addressing only 943

1
Used as work registers by the system

2-13
Unchanged

14
Used as work registers by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications

None.

Syntax
The syntax of the IWMTAFF macro is as follows:

name
IWMTAFF AFFINITY=YES

AFFINITY=NO

,REGION_TOKEN=0

,REGION_TOKEN=  region_token ,RETCODE=  retcode

,RSNCODE=  rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L ,  list addr

,0D

, attr
)

,MF=(E , list addr

,COMPLETE

)

Parameters
The parameters are explained as follows:

IWMTAFF

944 z/OS: z/OS MVS Programming: Workload Management Services

name
An optional symbol, starting in column 1, that is the name on the IWMTAFF macro invocation. The
name must conform to the rules for an ordinary assembler language symbol.

AFFINITY=YES
AFFINITY=NO

A required parameter indicating whether a temporal affinity begins or ends
AFFINITY=YES

A new temporal affinity for the server region begins. WLM will ensure that the server regions is not
terminated before all temporal affinity have ended.

AFFINITY=NO
A temporal affinity for the server region has ended. WLM will start to terminate server regions if all
temporal affinities have ended.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and
generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the
macro for applications that require reentrant code. The list form defines an area of storage that the
execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form
of the macro for applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form, and generates the macro invocation to
transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type
address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the
parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the
parameter list to a doubleword boundary. If you do not code attr, the system provides a value of
0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted
optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

IWMTAFF

Appendix E. WLM services supporting 31-bit addressing only 945

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both are assembled
with the same level of the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED_VERSION
• MAX
• A decimal value of 0

,REGION_TOKEN=region_token
,REGION_TOKEN=0

An optional input parameter, which contains the region token. The region token is not required if the
macro is invoked from the server region for which the temporal affinity should be started or stopped.
The region token must be used if the service is used from the queueing manager. The region token is
returned by the IWM4CON and IWMSSEL macro.

The caller must be supervisor state or have PSW key mask 0-7 authority to use this service with the
REGION_TOKEN parameter.

Coding REGION_TOKEN=0 is equivalent to omitting the REGION_TOKEN keyword. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return codes and reason codes
When the IWMTAFF macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason

code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated
with each reason code. IBM support personnel may request the entire reason code, including the xxxx
value.

Table 135. Return and Reason Codes for the IWMTAFF Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

IWMTAFF

946 z/OS: z/OS MVS Programming: Workload Management Services

Table 135. Return and Reason Codes for the IWMTAFF Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

Action: None required.

4 xxxx0439 Equate Symbol: IwmRsnCodeNoAffinityFound

Meaning: The service has been invoked to tell WLM that an existing server
region affinity has been terminated but WLM has no affinity defined for this
server region.

Action: If region token was not specified make sure to use the service
properly at the beginning and end of each affinity. If the region token has
been defined make sure that it is used for the correct server region.

4 xxxx043A Equate Symbol: IwmRsnCodeRegionNotFound

Meaning: The region token does not identify a valid server region.

Action: Please specify the correct region token.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay. Also check if you call this macro
in 64-bit address mode. Refer to the description of reason code xxxx089E for
further information.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit addressing mode.

Action: Request this function only when you are in 31 bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller's space connection is not enabled for this service

Action: Make sure that SERVER_MANAGER=YES and SERVER_TYPE=QUEUE
is specified on the IWMCONN request to enable this service.

IWMTAFF

Appendix E. WLM services supporting 31-bit addressing only 947

Table 135. Return and Reason Codes for the IWMTAFF Macro (continued)

Return Code Reason Code Equate Symbol, Meaning, and Action

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller is in cross-memory mode.

Action: Request this function only when you are not in cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller's space is not connected to WLM.

Action: Invoke the IWMCONN macro before invoking this macro.

8 xxxx084D Equate Symbol: IwmRsnCodeNotAuthConnect

Meaning: The caller must be supervisor state or have PSW key mask 0-7
authority to use the requested WLM service. This applies only if the caller
provides a region token for a server address space for which it wants to set
the affinity.

Action: Avoid requesting this function in this environment.

8 xxxx089E Equate Symbol: IwmRsnCodeServiceAModeMismatch

Meaning: The caller is in 64-bit address mode and tried to invoke a service
macro that is only enabled for a 31-bit environment.

Action: Use the 64-bit enabled service macro (IWM4TAF) or change the
address mode of the caller to 31-bit.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To start a temporal affinity from the server region, specify the following:

 IWMTAFF AFFINITY=YES
 RETCODE=RC,
 RSNCODE=RSN
*
* Storage areas
*
RC DS F Return code
RSN DS F Reason code

IWMTAFF

948 z/OS: z/OS MVS Programming: Workload Management Services

Appendix F. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (www.ibm.com/
support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the
Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision
use software products successfully. The accessibility features in z/OS can help users do the following
tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with
a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or
more syntax elements are always present together (or always absent together), they can appear on the
same line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)

© Copyright IBM Corp. 1988, 2021 949

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax
element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax
element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if
you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax element can be used zero
or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data
area, you know that you can include one data area, more than one data area, or no data area. If you
hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes :

950 z/OS: z/OS MVS Programming: Workload Management Services

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix F. Accessibility 951

952 z/OS: z/OS MVS Programming: Workload Management Services

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for the Knowledge Centers. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1988, 2021 953

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or

954 z/OS: z/OS MVS Programming: Workload Management Services

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details in
the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease if
a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those

Notices 955

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Programming interface information
This information documents intended programming interfaces that allow you to write programs to obtain
the services of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, and service names may be trademarks or service marks of others.

956 z/OS: z/OS MVS Programming: Workload Management Services

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Index

Special Characters
$SRMBEST 113
$SRMDI00 112
$SRMDInn 112
$SRMDUMP 113
$SRMGOD1-5 113
$SRMGOOD 113
$SRMSnnn 113

Numerics
64-bit addressing

WLM services supporting 15

A
accessibility

contact IBM 949
features 949

Address Space Paging Plots 119
administrative application services

definition 14
installing a service definition 103
summary 14

application environment
definition 71

assistive technologies 949
audit information

SMF type 99 records 14

B
buffer pool management data 116

C
C interfaces 729
calculation of server weights 90
cap slices 116
CheckSchEnv, C interface 729
classification rules

querying 109
client

definition 87
command

syntax diagrams xx
ConnectExportImport, C interface 729
ConnectServer, C interface 729
ConnectWorkMgr, C interface 729
contact

z/OS 949
ContinueWorkUnit, C interface 729
CreateWorkUnit, C interface 729

D
DeleteWorkUnit, C interface 729
dependent enclave 34, 50
DisconnectServer, C interface 729
dispatching priority 115
distributed work

services 28
DNS C interfaces 731
donors 113
DTD - XML service definition 725

E
enclave

creating 33
delays 31
deleting 51
dependent 34
dependent, using 50
independent 33
independent, using 49
leaving 32
managing work in 49
multisystem 34
performance management of address spaces 44
querying classification information 31, 50
querying enclave status of dispatchable units 50
resource accounting 46
resource use 31
scheduling SRBs 31
work-dependent 34
work-dependent, using 50

enclave services
definition 6
summary 7

enclaves 31
ENF event code

for reporting intervals 93
ENF event code 41 93
ENQ SYSZWLM QNAME 107
Enterprise Workload Manager 8
EWLM 8
execution delay monitoring services

definition 4
single address space transaction manager 22
summary 5

ExportWorkUnit, C interface 729
extracting a service definition

example 108
ExtractWorkUnit, C interface 729

F
feedback xxiii
functionality levels, XML 728

Index 957

I
ImportWorkUnit, C interface 729
independent enclave 33, 49
installing a service definition

example 107
interfaces, C 729
internal service class

names 112
IWM4AEDF macro 404
IWM4CLSY macro 404, 416
IWM4CON 65, 75
IWM4CON macro 416, 432
IWM4DIS 65, 75
IWM4DIS macro 432, 438
IWM4ECRE 65, 75
IWM4ECRE macro 451
IWM4EDEL 65, 75
IWM4EDEL macro 451
IWM4EQRY macro

example 50
IWM4HLTH macro 464, 471
IWM4MABN macro 475
IWM4MCHS macro 485
IWM4MCRE macro 496
IWM4MDEL macro 502
IWM4MDRG macro 502, 507
IWM4MGDD macro 513
IWM4MINI macro 527
IWM4MNTF macro 527
IWM4MREG macro 536, 542
IWM4MRLT macro 551
IWM4MSTO macro 557
IWM4MSTR macro 564
IWM4MSWC macro 571
IWM4MUPD macro 577
IWM4MXFR macro 584
IWM4MXTR macro 591
IWM4OPTQ macro 591
IWM4QDE 65
IWM4QDE macro 596, 601
IWM4QHLT macro 601, 607
IWM4QIN 65
IWM4QIN macro 607, 618
IWM4QTNT macro 624
IWM4RPT macro 636
IWM4SLI macro 636, 642
IWM4SRSC macro 642, 652
IWM4SSL 65
IWM4SSL macro 652, 658
IWM4SSM macro 658, 663
IWM4STBG 65
IWM4STBG macro 670
IWM4STEN 65
IWM4STEN macro 671, 676
IWM4TAF 71
IWM4TAF macro 618, 676, 682
IWMAEDEF macro 733, 740
IWMCLSFY macro 753
IWMCNTN macro 129, 137
IWMCONN macro 753, 769
IWMCQRY macro 137, 142
IWMDEXTR macro 142, 149
IWMDINST macro 150, 158

IWMDISC macro 769, 775
IWMDNDRG, C interface 731
IWMDNGRP, C interface 731
IWMDNREG, C interface 731
IWMDNSRV, C interface 731
IWMEBLK macro 158, 163, 164
IWMECQRY macro 775, 780
IWMECREA macro 780, 789
IWMEDELE macro 789, 796
IWMEDREG macro 164, 168
IWMEGCOR macro 168, 175
IWMEJOIN macro 182
IWMELEAV macro 188
IWMEQRY macro 802
IWMEQTME macro 194
IWMEREG macro 194, 199
IWMERES macro 199, 207
IWMESQRY 50, 65
IWMESQRY macro 207, 211
IWMESTOP macro 211, 216, 217
IWMESTRT macro 224
IWMEUBLK macro 224, 230
IWMEXPT macro 230, 236
IWMGCORF macro 236, 238
IWMIMPT macro 238, 244
IWMMABNL macro 802, 806
IWMMCHST macro 806, 813
IWMMCREA macro 813, 821
IWMMDELE macro 821, 825
IWMMEXTR macro 825, 831
IWMMINIT macro 831, 843
IWMMNTFY macro 844, 851
IWMMRELA macro 851, 859
IWMMSTOP macro 859, 864
IWMMSTRT macro 865, 871
IWMMSWCH macro 871, 875
IWMMUPD macro 875, 880
IWMMXDC macro 244, 249
IWMMXFER macro 880, 887
IWMMXRA macro 249, 254
IWMPACT macro 254, 260
IWMPQRY macro 260, 265
IWMQCXIT 65
IWMQCXIT macro 271
IWMQDEL macro 887, 893
IWMQINS macro 893, 903
IWMQVS, C interface 732
IWMRCOLL macro

delay state information 96, 98
response time information 96, 100

IWMRESET macro 278, 285
IWMRPT macro 903, 913
IWMRQRY macro

address space information 101
IWMSCORF macro 294
IWMSCXIT macro 299
IWMSEDES 81
IWMSEDES macro 300, 305
IWMSEQRY 81
IWMSEQRY macro 305, 310
IWMSESET 81
IWMSESET macro 310, 315
IWMSEVAL 81
IWMSEVAL macro 315, 320

958 z/OS: z/OS MVS Programming: Workload Management Services

IWMSINF 70
IWMSINF macro 320, 326
IWMSLIM macro 913, 919
IWMSRDNS macro 326, 331
IWMSRDRS macro 332, 336
IWMSRFSV 75
IWMSRFSV macro 337
IWMSRSRG macro 344, 351
IWMSRSRS macro 361
IWMSSEL macro 919, 925
IWMSSEM macro 925, 930
IWMSTBGN macro 930, 937
IWMSTEND macro 937, 942
IWMSVDEF data area

adding extensions 104
IWMTAFF macro 942, 948
IWMUEXPT macro 361, 366
IWMUIMPT macro 367, 371
IWMWDNSH header file 731
IWMWMCON

description 28
IWMWMCON macro 378
IWMWQRY macro 378, 382
IWMWQWRK macro 382, 388
IWMWRCAA data area 95
IWMWSYSQ macro 388, 394

J
JoinWorkUnit, C interface 729

K
keyboard

navigation 949
PF keys 949
shortcut keys 949

L
layout - XML service definition 725
LeaveWorkUnit, C interface 729

M
management data, of buffer pool 116
MPL-in target 115
MPL-out target 115
multisystem enclave 34

N
name spaces, XML 728
navigation

keyboard 949
number of server address spaces 116

P
performance index 114
performance management of address spaces

with enclaves 44

performance monitors
services 12

period MPL delay plot 117
period paging rate plot 118
period proportional aggregate speed plot 118
period ready user average plot 117
period swap delay plot 118
policy adjustment 113
policy management

application services 14
priority unbunching 115

Q
query virtual server, C interfaces 732
QueryMetrics, C interface 729
QuerySchEnv, C interface 729
QueryWorkUnitClassification, C interface 729
queueing manager

services 65
queueing manager services

definition 8
guidance information 65
summary 9, 65
using the queueing manager connect exit 72

QVS 732

R
receivers 113
resource adjustment 113
resource requirements 81
resource states 81
routing manager

definition 75
services 75

routing manager services
definition 10
guidance information 75
summary 10, 11, 75
using the routing manager server connect exit 78

S
scheduling environment services

definition 11, 81
guidance information 81

sending to IBM
reader comments xxiii

server
calculation of server weights 90
de-registration 88
definition 87
registration 87

server address spaces, number of 116
service definition

adding extensions 103
data validation 106
data validity checking 106
extracting 108
installing 103

service policy
activating 109

Index 959

services
multiple address space work managers 25
work manager calling data manager 24

shortcut keys 949
SMF record type 99

action codes 683
identifying work 112
management policy data 115
priority table data 120
when to use 111

SMF record Type 99
examples 121
plots 117

subsystem work manager
guidance information 19
services 3

summary of changes
z/OS V2R2 xxvii
z/OS V2R3 xxvi
z/OS V2R4 xxv

swap protect time 116
syntax diagrams

how to read xx
sysplex routing services

de-registering 88
definition 11, 87
example 88
routing work 88
server registration 87
summary 12
workload distribution 90

sysplex routing services, C interfaces 731
system paging delay plot 117

U
UnDoExportWorkUnit, C interface 729
UnDoImportWorkUnit, C interface 729
user interface

ISPF 949
TSO/E 949

W
WLM services

supporting 64-bit addressing 15
work manager services

definition 3
single address space work manager 20
summary 4

work-dependent enclave 34, 50
workload reporting services

definition 13
when to use 93

X
XML name spaces and functionality levels 728
XML output of IWMDEXTR 725
XML service definition (DTD) 725

960 z/OS: z/OS MVS Programming: Workload Management Services

IBM®

Product Number: 5650-ZOS

SC34-2663-40

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	Where to find more information
	Information updates on the web
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 4 (V2R4)
	Summary of changes for z/OS Version 2 Release 3 (V2R3)
	Summary of changes in z/OS Version 2 Release 2 (V2R2) as updated March 2017
	Summary of changes in z/OS Version 2 Release 2 (V2R2) as updated December 2015
	Summary of changes for z/OS Version 2 Release 2 (V2R2)
	Changes made in z/OS Version 2 Release 1 (V2R1) as updated December 2013
	Changes made in z/OS Version 2 Release 1

	Part 1. Using the workload management services
	Chapter 1. Introduction to the workload management services
	Services for subsystem work managers
	Why use the work manager services
	Why use the execution delay monitoring services
	Why use the enclave services
	Comparison to other services
	Enterprise Workload Manager (EWLM)

	Why use the queueing manager services
	Why use the routing manager services
	Why use the scheduling environment services
	Why use the sysplex routing services
	Why use the query system information service

	Services for performance monitors
	Why use the workload reporting services
	Getting information from SMF type 99 records

	Services for application programs
	WLM services that support 64-bit addressing

	Chapter 2. Using the subsystem work manager services
	Considerations for using the services
	Suggested services for a single address space transaction manager
	Using the execution delay monitoring services

	Suggested services for a work manager that calls a data manager
	Services for multiple address space work managers
	Execution delay monitoring services for multiple address space work managers

	Services for work managers that distribute work requests
	Determining the subsystem name and type
	Using IWMWMCON when distributing work in a sysplex

	Chapter 3. Creating and using enclaves
	Why would you use an enclave?
	SRBs in enclaves
	Tasks in enclaves
	Comparison of enclaves and execution delay services

	Creating an enclave
	Comparison between independent, dependent, and work-dependent enclaves
	Registering an enclave
	Multisystem enclaves
	Scheduling an SRB in an independent enclave
	Joining tasks to an independent enclave
	Using dependent enclaves
	Using a multisystem enclave
	Performance management of address spaces with enclaves
	Using ENQ/DEQ or latch manager services with enclaves

	Enclave resource accounting
	Managing the performance of work in enclaves
	Using independent enclaves
	Using dependent enclaves
	Using work-dependent enclaves

	Querying an enclave's classification information
	Querying a dispatchable unit's enclave status
	Deleting an enclave

	Chapter 4. Participating in Enterprise Workload Management
	Enclave Services and EWLM
	Modelling your business transactions
	Connecting with WLM as an EWLM participant
	Disconnecting from WLM
	Creating an enclave
	Deleting an enclave
	Classifying work requests
	Explicitly starting and stopping work requests
	Continuing a work request at another application
	Blocking and unblocking work requests
	Enclave services and the ARM API

	Instrumenting a C application for ARM
	Using the ARM services for instrumenting applications and for managing ARM transactions on z/OS
	Supporting transaction management
	z/OS ARM sub-buffers to support WLM management
	Sub-buffer arm_subbuffer_zos_connect
	Sub-buffer arm_subbuffer_zos_classify

	Compiling an ARM-instrumented application
	Using the C/C++ compiler in batch
	Using the C/C++ compiler under z/OS UNIX System Services

	Binding an ARM-instrumented application
	Using the binder in batch
	Using the binder under z/OS UNIX System Services

	Running an ARM-instrumented application

	Chapter 5. Using the queueing manager services
	Example of using the queueing manager services
	Managing the number of server instances per server address space
	Directing work requests to a specific server region

	Updating a service definition with application environment information
	Using the queueing manager connect exit

	Chapter 6. Using the routing manager services
	A routing manager model
	Using the routing server connect exit

	Chapter 7. Using the scheduling environment services
	Obtaining scheduling environment definitions
	Manipulating resource state settings
	A model work flow

	Chapter 8. Using the sysplex routing services
	Why use the sysplex routing services?
	When to use the sysplex routing services
	Registering as an eligible server
	Determining where to route work
	Deregistering as an eligible server

	Example of using the sysplex routing services
	WLM sysplex workload distribution
	Calculation of server weights

	Chapter 9. Using the workload reporting services
	When to use the workload reporting services
	Using ENF signals to guide data collection
	ENF event code 41

	Using the IWMRCOLL service
	Using the information in IWMWRCAA
	Using the subsystem work manager delay state information
	Using the continued state information

	Using delay states to report subsystem interactions
	Using the response time information
	Interpreting report class data

	Using the IWMRQRY service
	Using the IWM4QTNT service

	Chapter 10. Using the administrative application services
	Installing a service definition
	Mapping a service definition
	Adding program-specific extensions to a service definition
	Example of service definition extensions
	Maintaining the service definition

	Checking a service definition using IWMDINST
	Recommended validity checking
	Preventing service definition overlays
	Using the COND parameter on IWMDINST
	Using the ENQ macro

	Example of using IWMDINST to install a service definition

	Extracting a service definition
	Example of using IWMDEXTR to extract a service definition

	Activating a service policy
	Example of activating a policy using IWMPACT

	Querying the active classification rules
	Example of IWMCQRY

	Chapter 11. Using SMF record type 99
	When to start SMF record type 99
	Starting SMF record type 99

	Identifying work in SMF type 99 records
	Identifying server service classes
	Identifying internal service classes

	Interpreting trace table entries
	Policy adjustment
	Resource adjustment
	Receivers and donors
	Performance index
	Receiver value
	Net value
	Small processor consumer
	Storage housekeeping
	Reverse housekeeping

	Interpreting management policy data
	Dispatching priority
	MPL targets
	Swap protect time
	Storage target
	Cap slices
	I/O priority
	Number of server address spaces
	Buffer pool management data

	Interpreting plots
	System paging delay plot
	Period MPL delay plot
	Period ready user average plot
	Period swap delay plot
	Period paging rate plot
	Period proportional aggregate speed plot
	I/O delay plot
	Queue delay plot
	Address space paging plots
	Central storage plot
	Processor storage plot

	I/O velocity plot
	Buffer pool hit ratio plot

	Interpreting priority table data
	Interpreting lack of action
	Examples of interpreting SMF record type 99
	Action trace example
	Interpreting the trace data

	MPL policy example

	Part 2. Reference: Workload Management Services
	Chapter 12. Workload management services
	IWMCNTN — WLM contention notification
	IWMCQRY — Query classification attributes
	IWMDEXTR — Extract WLM service definition
	IWMDINST — Install a service definition
	IWMEBLK — Work request blocked
	IWMEDREG — Deregister a WLM enclave
	IWMEGCOR — Retrieve a correlator
	IWMEJOIN — Join WLM enclave
	IWMELEAV — Leave WLM enclave
	IWMEQTME — Query enclave CPU time
	IWMEREG — Register a WLM enclave
	IWMERES — Change an enclave
	IWMESQRY — Query enclave state
	IWMESTOP — Stop a work request
	IWMESTRT — Start a work request
	IWMEUBLK — Work request no longer blocked
	IWMEXPT — Export a WLM enclave
	IWMGCORF — Get correlator flags
	IWMIMPT — Import an enclave
	IWMMXDC — Exit for resource data collection
	IWMMXRA — Exit for resource adjustment
	IWMPACT — Activate service policy
	IWMPQRY — Query active service policy
	IWMQCXIT — Queue manager connect exit
	IWMRCOLL — Collect workload activity data
	IWMRESET — Change a job
	IWMRQRY — Collect address space delay information
	IWMSCORF — Set correlator flags
	IWMSCXIT — Server manager connect exit
	IWMSEDES — Scheduling environments determine execution service
	IWMSEQRY — Scheduling environments query service
	IWMSESET — Scheduling environments set resource service
	IWMSEVAL — Scheduling environments validate service
	IWMSINF — WLM server manager inform service
	IWMSRDNS — Get sysplex routing location list
	IWMSRDRS — Deregister a server for sysplex routing
	IWMSRFSV — Sysplex routing find server routine
	IWMSRSRG — Register a server for sysplex routing
	IWMSRSRS — Sysplex routing information
	IWMUEXPT — WLM undo export
	IWMUIMPT — WLM undo import
	IWMWMCON — WLM modify connect
	IWMWQRY — Query service
	IWMWQWRK — Query work service
	IWMWSYSQ — Query system information
	IWM4AEDF — WLM define dynamic application environments
	IWM4CLSY — Classify work
	IWM4CON — Connect to workload management
	IWM4DIS — Disconnect from workload management
	IWM4ECRE — Create an enclave
	IWM4EDEL — Delete an enclave
	IWM4EQRY — Query an enclave
	IWM4HLTH — Setting server health indicator
	IWM4MABN — Monitor environment abnormal event
	IWM4MCHS — Change the state of a work request
	IWM4MCRE — Create delay monitoring environment
	IWM4MDEL — Delete delay monitoring environment
	IWM4MDRG — Deregister a resource from monitoring
	IWM4MGDD — Define descriptions for generic delay states
	IWM4MINI — Monitoring environment initialization
	IWM4MNTF — Notify of work execution completion
	IWM4MREG — Register a resource for monitoring
	IWM4MRLT — Relate monitoring environments (PBs)
	IWM4MSTO — Stops a work unit
	IWM4MSTR — Indicate the start of a work unit
	IWM4MSWC — Monitoring environment switch
	IWM4MUPD — Update data for a work unit
	IWM4MXFR — Monitoring environment transfer
	IWM4MXTR — Monitoring environment extract service
	IWM4OPTQ — Query IEAOPTxx parameters
	IWM4QDE — Delete a request from the queue for an execution address space
	IWM4QHLT — Query server health indicators
	IWM4QIN — Insert a request onto the queue for an execution address space
	IWM4QTNT — Query tenant resource group consumption
	IWM4RPT — Report response time
	IWM4SLI — Application environment limit service
	IWM4SRSC — Obtain server-specific routing information
	IWM4SSL — Select a request from a caller's work manager queue
	IWM4SSM — WLM server select secondary service
	IWM4STBG — WLM begin server transaction service
	IWM4STEN — End a request from a caller's work manager queue
	IWM4TAF — WLM temporal affinity service

	Appendix A. SMF type 99 action codes
	Appendix B. Application validation reason codes
	Appendix C. Structure of the XML service definition (DTD)
	Appendix D. C language interfaces for workload management services
	Interfaces for sysplex routing services
	Interface for querying a virtual server

	Appendix E. WLM services supporting 31-bit addressing only
	IWMAEDEF — Defining Dynamic Application Environments to Workload Management
	IWMCLSFY — Classify work request
	IWMCONN — Connect to workload management
	IWMDISC — Disconnect from workload management
	IWMECQRY — Query enclave classification attributes
	IWMECREA — Create an enclave
	IWMEDELE — Delete an enclave
	IWMEQRY — Enclave query
	IWMMABNL — Record abnormal event
	IWMMCHST — Monitor change state of work unit
	IWMMCREA — Create delay monitoring environment
	IWMMDELE — Delete the monitoring environment
	IWMMEXTR — Monitoring environment extract
	IWMMINIT — Initialize monitoring environment
	IWMMNTFY — Notify of work execution completion
	IWMMRELA — Relate monitoring environment service
	IWMMSTOP — Stop a work unit
	IWMMSTRT — Indicate the start of a work unit
	IWMMSWCH — Switch monitoring environment
	IWMMUPD — Update data for a work unit
	IWMMXFER — Transfer monitoring environment
	IWMQDEL — Delete a request from the queue for an execution address space
	IWMQINS — Insert a request onto the queue for an execution address space
	IWMRPT — Report on work request completion
	IWMSLIM — Application environment limit service
	IWMSSEL — Select a request from a caller's work manager queue
	IWMSSEM — WLM server select secondary service
	IWMSTBGN — Begin a request from a caller's work manager queue
	IWMSTEND — End a request from a caller's work manager queue
	IWMTAFF — WLM temporal affinity service

	Appendix F. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	I
	J
	K
	L
	M
	N
	P
	Q
	R
	S
	U
	W
	X

