
z/OS
Version 2 Release 4

MVS Programming: Product Registration

IBM

SA38-0698-40

Note

Before using this information and the product it supports, read the information in “Notices” on page
41.

This edition applies to Version 2 Release 4 of z/OS (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2019-07-10
© Copyright International Business Machines Corporation 1997, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. v

About this document..vii
Who should use this document..vii
How to use this document..vii
Where to find more information... vii
What Java level support is necessary for product registration... vii

How to send your comments to IBM...ix
If you have a technical problem..ix

Summary of changes...xi
Summary of changes for z/OS MVS Programming: Product Registration for Version 2 Release 4

(V2R4)...xi
Summary of changes for z/OS MVS Programming: Product Registration for Version 2 Release 3

(V2R3) and its updates...xi
Summary of changes V2R2... xi

Chapter 1. Using Registration Services... 1
Registering a Product...2

Using the Register Service ...2
Using the Deregister Service ... 3
Checking Product Status ... 3

Chapter 2. Coding Registration Services .. 5
Invoking the Services ..5
Register Service (IFAEDREG) ..6

Syntax... 7
Parameters... 8
Return Codes.. 11

Deregister Service (IFAEDDRG) ..13
Syntax... 13
Parameters... 14
Return Codes.. 14

Query_Status Service (IFAEDSTA) ..15
Syntax... 16
Parameters... 16
Return Codes.. 18

List_Status Service (IFAEDLIS) ...19
Syntax... 20
Parameters... 20
Return Codes.. 23

IFAEDC... 24

Chapter 3. Examples..31
Registering a product, checking the status of another product, then deregistering the first product

using assembler..31
Obtaining a list of information about products that are registered using assembler.............................. 32
Registering and deregistering a product using Java .. 34

 iii

Appendix A. Accessibility.. 37
Accessibility features...37
Consult assistive technologies.. 37
Keyboard navigation of the user interface.. 37
Dotted decimal syntax diagrams...37

Notices..41
Terms and conditions for product documentation... 42
IBM Online Privacy Statement.. 43
Policy for unsupported hardware.. 43
Minimum supported hardware.. 44
Trademarks.. 44

Index.. 45

iv

Figures

1. An Overview of Product Enablement.. 1

2. IFAEDC from SYS1.SAMPLIB.. 25

3. Example 1 — Using IFAEDREG, IFAEDSTA and IFAEDDRG..31

4. Example 2 — Using IFAEDLIS... 33

 v

vi

About this document

Product registration services allow products to register with MVS™ when they are running on a particular
system. Other products can then use registration services to determine what products are running on a
particular system.

Product registration provides an additional function for optional products, or elements, of z/OS. These
optional products, which can be either products, product features, or combinations of product and
feature, can use registration services to determine, based on a policy the customer sets, whether they are
enabled to run on a particular system.

This book describes how to use registration services.

Who should use this document
This book is for programmers who design and write, in assembler, C, or Java™ programs that use
registration services. It requires an understanding of how to work with MVS system interfaces.

How to use this document
This book is one of the set of programming books for MVS. This set describes how to write programs in
assembler language or high-level languages, such as C, FORTRAN, and COBOL. For more information
about the content of this set of books, see z/OS Information Roadmap.

Note: If you call the services described in this book from assembler language programs, you must use a
high-level assembler.

Where to find more information
Where necessary, this book references information in other books, using shortened versions of the book
title. For complete titles, and order numbers of the books for all products that are part of z/OS, see z/OS
Information Roadmap.

What Java level support is necessary for product registration
The product registration Java support requires that the following Java level or higher be installed:

• IBM® SDK for z/OS® Java 2 Technology Edition, Version 1.4 PTF UQ93743, product number 5655-I56.

© Copyright IBM Corp. 1997, 2019 vii

viii z/OS: MVS Programming: Product Registration

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page ix.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM Knowledge Center function
If your comment or question is about the IBM Knowledge Center functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Knowledge Center
Support at ibmkc@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS MVS Programming: Product Registration,

SA38-0698-40
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 1997, 2019 ix

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmkc@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

x z/OS: MVS Programming: Product Registration

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

Summary of changes for z/OS MVS Programming: Product Registration for
Version 2 Release 4 (V2R4)

This information contains no technical changes for this release.

Summary of changes for z/OS MVS Programming: Product Registration for
Version 2 Release 3 (V2R3) and its updates

This information contains no technical changes for this release.

Summary of changes for z/OS MVS Programming: Product Registration for
Version 2 Release 2

The following changes are made for z/OS Version 2 Release 2 (V2R2).

(No new, changed, or deleted content yet for V2R2.)

© Copyright IBM Corp. 1997, 2019 xi

xii z/OS: MVS Programming: Product Registration

Chapter 1. Using Registration Services

Product registration provides a common mechanism for products to:

• Register (indicate that they are running) on a particular system
• Determine what products are registered (running) on a particular system

With z/OS, products, such as z/OS features, can use registration services to determine if they are enabled
to run on a particular system. z/OS MVS Product Management describes product enablement, which
requires that the product be defined appropriately in the enablement policy for the system.

The IFAPRDxx parmlib member contains the enablement policy, which the customer defines for a system.

Figure 1 on page 1 shows how the product code, the enablement policy, and MVS registration services
fit together to determine whether a product is enabled.

Figure 1. An Overview of Product Enablement

As Figure 1 on page 1 shows, the product code issues the register request to indicate that it is running and
check its enablement status. The customer policy in IFAPRDxx defines enablement status for products.
When MVS processes the register request, it matches the product name definition in the request with the
entries in the enablement policy to determine if the product is enabled on the system, then issues a
return code to indicate enablement status. Based on the return code, the product continues to run or ends
its processing.

If you are interested in how to enable a product, see:

• z/OS MVS Product Management for information about product enablement and reporting on registered
products.

• z/OS MVS Initialization and Tuning Reference for an explanation of how to update IFAPRDxx.
• z/OS Planning for Installation for a description of how to enable z/OS features.

This book, in contrast, describes how to use registration services. It is for the product programmer who
needs to know:

• How to use registration services to register a product. See “Registering a Product” on page 2.
• How to use registration services to check product status — determine if a product is registered or

enabled, or both, on a particular system. See “Checking Product Status ” on page 3.

Registration services provide a standard mechanism for determining when a product is running or enabled
on a system. Thus, the services are useful for all products with known dependencies on other IBM
products or the products of independent software vendors or solution providers.

Examples of using the services appear in Chapter 3, “Examples,” on page 31.

© Copyright IBM Corp. 1997, 2019 1

Registering a Product
To register a product, issue the Register service. See “Using the Register Service ” on page 2. When a
product calls the Register service, MVS determines, based on the register request and the enablement
policy defined in IFAPRDxx, whether or not the product is enabled to run on the system.

If the Register request type and the policy entry indicate that the product can run on the system, MVS
registers the product as one that is running. Other products can then use the Query_Status and
List_Status services to check whether your product is running. The system and other products assume
that a product that is registered is a product that is running on a particular system.

Thus, it is important that, when your product finishes processing, it issue the Deregister service to tell
MVS that it is no longer running. See “Using the Deregister Service ” on page 3.

Using the Register Service
When a product issues the Register service, the system checks the enablement policy in IFAPRDxx. If the
check is successful, MVS issues a return code of 0 and adds the product to its list of registered (running)
products.

For the check to be successful, you need to select the type of Register request very carefully, depending
on what you want to do:

• To register your product without regard to the enablement policy, select Ifaedreg_Type_Required.
When it processes your request, the system does not check the enablement policy. Use this register
request when you are registering only to allow other products:

– To determine if your product is running.
– To access information you provide through the Features parameter.

• To register your product and consider it enabled even if there is no entry in the policy, select
Ifaedreg_Type_Standard. This type of request is useful when your product can be enabled without any
user change to the policy in IFAPRDxx. With the standard register request, you get return code 4
(indicating that the product is disabled) only when there is a matching statement that explicitly disables
the product.

• To register your product and consider it disabled when there is no entry in the policy, select
Ifaedreg_Type_NotFoundDisabled. For the request to be successful, there must be a matching
statement in the policy that explicitly enables the product. You get return code 4 when the product is
explicitly disabled or when there is no matching statement.

The product definitions in the enablement policy can contain wildcard characters (? and *), and MVS
allows wildcard matching so that a single policy statement can apply to multiple products.

Because of the interaction between the product definition in the register request, the type of register
request, and the contents of IFAPRDxx, make sure that your product documentation provides the
information users need to update IFAPRDxx, as described in z/OS MVS Initialization and Tuning Reference.

The placement of the Register request in your product code is also important. Most products and
separately orderable features would invoke the Register service during initialization. Products or features
that have multiple entry points or that allow branch entry must consider registering at each possible point
of invocation.

If other products need information about your product, you can use the Features parameter to pass the
information. Callers of the Query_Status service can obtain this information, but you need to define its
contents and format to enable the callers to interpret the information correctly.

See “Register Service (IFAEDREG) ” on page 6 for a complete description of the service, including the
various types of register request.

2 z/OS: MVS Programming: Product Registration

Using the Deregister Service
While the system can automatically deregister a product during task or address space termination, it is a
good practice to issue the Deregister service when a registered product completes its processing.

Issuing the Deregister service ensures that any status queries that other products issue return correct
results. The system considers a registered product to be a running product. If your product stops running
but does not deregister, any query of its status will indicate that it is still running.

See “Deregister Service (IFAEDDRG) ” on page 13 for a complete description of the service.

Checking Product Status
There are two services you can use to check product status:

• Query_Status, described in “Query_Status Service (IFAEDSTA) ” on page 15
• List_Status, described in “List_Status Service (IFAEDLIS) ” on page 19

Which service you need depends on the information your product requires:

• To determine if a specific product is registered and obtain its enablement status (enabled, disabled, or
not known), issue the Query_Status service.

• To obtain information about the registration and enablement status of one or more products, issue the
List_Status service.

• To determine what entry in the enablement policy the system would use to determine the enablement
status of a particular product, issue the List_Status service.

Both services return information in data areas mapped for the assembler language programmer in
mapping macro IFAEDIDF and for the C programmer in include file IFAEDC.

Before you issue either service, you need to know how any product you are interested in was defined
when it was registered.

If you are using Query_Status to request the status of a specific product, you might need additional
documentation from the product. When a product registers, it can provide information for the system to
pass to the caller of Query_Status. If you are interested in a product that provides this additional
information, you need to understand the content and format of the information you will receive.

Using Registration Services 3

4 z/OS: MVS Programming: Product Registration

Chapter 2. Coding Registration Services

There are four registration services:

• Register service — registers a product or feature with MVS
• Deregister service — deregisters a product, usually done when an element completes processing.
• Query_Status service — checks the status of a specific product
• List_Status service — checks the status of one or more products

These callable services share common invocation characteristics and common processing considerations.

Invoking the Services
The following information describes the environment required, restrictions, register information,
performance implications, and abend codes for the registration services.

Environment

The environment for the callers are:
Minimum authorization:

Problem state and any PSW key
Dispatchable unit mode:

Task
Cross memory mode:

PASN=HASN=SASN
AMODE:

31-bit
ASC mode:

Primary
Interrupt Status:

Enabled for I/O and external interrupts
Locks:

No locks may be held.
Control parameters:

Control parameters must be in the primary address space.

Programming Requirements

• If you are coding in assembler, include mapping macro IFAEDIDF. It provides return code equates for
the various services and mappings for the output from the Query_Status service and the List_Status
service. For a description of IFAEDIDF, see z/OS MVS Data Areas in the z/OS Internet library
(www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

• If you are coding in C, include file IFAEDC provides data definitions for the various services. For a
description of IFAEDC, see “IFAEDC” on page 24.

• If you are coding in Java, use the methods in the IFAEDJReg class. See “Registering and deregistering a
product using Java ” on page 34 for more information.

Restrictions

• The caller cannot have an established FRR.
• An unauthorized caller of the Register service cannot register if there are already 10 successful

registrations (counting all products) made by unauthorized callers from that address space.
• An unauthorized caller cannot deregister a product that was registered by an authorized caller.

© Copyright IBM Corp. 1997, 2019 5

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

• An unauthorized caller cannot deregister a product that was registered from another address space.

Input Register Information

Before issuing any registration service, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of register on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance Implications

These services should not be used in a performance-sensitive environment.

ABEND Codes

Callers of the registration services might encounter the following ABEND codes:
0C4

Meaning: The system cannot properly access a user-provided parameter.
B78

Meaning: The caller was not enabled for I/O and external interrupts.

Register Service (IFAEDREG)
Use the Register service (IFAEDREG) to register a product with MVS. You can register a product or a
unique product/feature combination. When you register a product with MVS, you indicate that the
registered product is running on the system.

The Register service returns information to the caller and also maintains information that other callers can
query to determine if products are registered (running) and enabled on the system.

If the product is an optional z/OS element, feature, or element/feature combination, MVS can also
determine whether the element is enabled on this system.

To determine enablement, the system matches the product identified in the call against the policy
statements in parmlib member IFAPRDxx.

Register Service (IFAEDREG)

6 z/OS: MVS Programming: Product Registration

It is possible, because of wildcard characters (? and *) in the policy statements, that multiple policy
statements might match the given input product. In that case, MVS uses the "best" match to determine
whether or not the product is enabled, using the following rules:

1. An exact match is better than a wildcard match. There is no differentiation between two wildcard
matches.

2. The parameters are processed in the following order: Prodowner, ProdID, Prodname, Featurename,
Prodvers, Prodrel, and Prodmod. An exact match on a parameter earlier in the list (such as Prodowner)
is better than a match on a parameter later in the list (such as Prodname).

3. If, after applying the first two rules, more than one match remains, MVS uses the first match of those
that remain.

If product code is neither in supervisor state nor running under a system key, it cannot issue more than 10
register requests.

Syntax

CALL IFAEDREG, (Type
,Prodowner
,Prodname
,Featurename
,Prodvers
,Prodrel
,Prodmod
,ProdID
,Featureslen
,Features
,Prodtoken
,Returncode)

In C: the syntax is similar. You can use either of the following techniques to invoke the service:

1. ifaedreg (Type,...Returncode);

When you use this technique, you must link edit your program with a linkage-assist routine (also called
a stub) in SYS1.CSSLIB.

2. ifaedreg_byaddr (Type,...Returncode);

This second technique requires AMODE=31, and, before you issue the CALL, you must verify that the
IFAEDREG service is available (in the CVT, both CVTOSEXT and CVTOS390 bits are set on).

In Assembler: Link edit your program with a linkage-assist routine (also called a stub) in SYS1.CSSLIB
unless you use either of the following techniques as an alternative to CALL IFAEDREG:

1. LOAD EP=IFAEDREG
 Save the entry point address
 ...
 Put the saved entry point address into R15
 Issue CALL (15),...

2. L 15,X'10' Get CVT
 L 15,X'8C'(,15) Get ECVT
 L 15,X'1C0'(,15)
 L 15,4(,15)
 L 15,0(,15) Get address of IFAEDREG
 CALL (15),(...)

Both of these techniques require AMODE=31. If you use the second technique, before you issue the
CALL, you must verify that the IFAEDDRG service is available (in the CVT, both CVTOSEXT and
CVTOS390 bits are set on).

Register Service (IFAEDREG)

Coding Registration Services 7

In Java: Use the methods in the IFAEDJReg class. Prior to invoking your application, the ifaedjreg.jar file
must be available on the application's classpath and the registration native library must be available on
the application's libpath. See “Registering and deregistering a product using Java ” on page 34 for more
information.

Parameters
Type

Supplied parameter:

• Type: Integer
• Length: Full word

Type identifies the type of register request. The field must contain a value that represents one or more
of the possible types. You add the values to create the full word. Do not specify a type more than once.
The possible types, and their meanings, are:
Ifaedreg_Type_Standard

The system is to register the product, check the enablement policy, and issue a successful return
code unless the product is explicitly disabled in the policy. If the product is explicitly disabled, the
system does not register the product and does issue return code 4. If you want the service to
issue return code 4 (Ifaedreg_Disabled) when the product is not found in the policy, specify
Ifaedreg_Type_NotFoundDisabled.

Ifaedreg_Type_Required
The system is to register the product but not check the enablement policy. Use this option when
registering solely for status queries. Because the system does not check the enablement policy,
you cannot get return code 4 (Ifaedreg_Disabled).

Ifaedreg_Type_NoReport
The system is to register the product but not report the product in the software registration report
or the response to a DISPLAY command (unless the command specifies ALL). You might use this
option when registering solely for status queries. Because the system does not check the
enablement policy, you cannot get return code 4 (Ifaedreg_Disabled).

Ifaedreg_Type_LicensedUnderProd
The system is to register the product/feature combination, but the product/feature combination
cannot be ordered separately. The software registration report will differentiate this type of
registration from others; a person looking at the report can easily tell that there is no need to
check the ordering information for this product/featurename combination.

Ifaedreg_Type_DisabledMessage
The system, if it finds the product to be disabled, is to issue message IFA104I, described in z/OS
MVS System Messages, Vol 8 (IEF-IGD). Thus, the caller does not have to issue the message. The
system issues message IFA104I with no console ID specified, and with routing codes 10 (System/
Error Maintenance) and 11 (Programmer Information).

Ifaedreg_Type_NotFoundDisabled
The system, if it does not find the product in the enablement policy, is to treat the product as
disabled rather than enabled. That is, if the product is not found, the system does not register the
product and does issue return code 4 (Ifaedreg_Disabled). If you also specify
Ifaedreg_Type_DisabledMessage, the system issues message IFA104I. For a description of this
message, see z/OS MVS System Messages, Vol 8 (IEF-IGD).

,Prodowner
Supplied parameter:

• Type: EBCDIC
• Length: 16 bytes

Prodowner specifies the name of the product owner (vendor). IBM products, for example, always use
IBM CORP or IBM_CORP.

Register Service (IFAEDREG)

8 z/OS: MVS Programming: Product Registration

The characters can be upper-case or lower-case alphabetics, numerics, national (@, #, $), underscore
(_), slash (/), hyphen (-), and period (.). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

If the name is less than 16 bytes, left-justify the name in the field and pad it on the right with EBCDIC
blanks.

,Prodname
Supplied parameter:

• Type: EBCDIC
• Length: 16 bytes

Prodname specifies the name of the product.

The characters can be upper-case or lower-case alphabetics, numerics, national (@, #, $), underscore
(_), slash (/), hyphen (-), and period (.). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

If the name is less than 16 bytes, left-justify the name in the field and pad it on the right with EBCDIC
blanks.

,Featurename
Supplied parameter:

• Type: EBCDIC
• Length: 16 bytes

Featurename specifies the name of the feature within the product or blanks if there is no feature
name.

The characters can be upper-case or lower-case alphabetics, numerics, national (@, #, $), underscore
(_), slash (/), hyphen (-), and period (.). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

If the name is less than 16 bytes, left-justify the name in the field and pad it on the right with EBCDIC
blanks.

,Prodvers
Supplied parameter:

• Type: EBCDIC
• Length: 2 bytes

Prodvers specifies the product version identification or blanks if there is no version identification.

The characters can be upper-case or lower-case alphabetics and numerics. You can use embedded
blanks.

The system performs all comparisons in upper case.

If the version identification is less than 2 bytes, left-justify it in the field and pad it on the right with
EBCDIC blanks.

,Prodrel
Supplied parameter:

• Type: EBCDIC
• Length: 2 bytes

Prodrel specifies the product release identification or blanks if there is no release identification.

Register Service (IFAEDREG)

Coding Registration Services 9

The characters can be upper-case or lower-case alphabetics and numerics. You can use embedded
blanks.

The system performs all comparisons in upper case.

If the release identification is less than 2 bytes, left-justify it in the field and pad it on the right with
EBCDIC blanks.

,Prodmod
Supplied parameter:

• Type: EBCDIC
• Length: 2 bytes

Prodmod specifies the product modification level or blanks if there is no modification level.

The characters can be upper-case or lower-case alphabetics and numerics. You can use embedded
blanks.

The system performs all comparisons in upper case.

If the modification level is less than 2 bytes, left-justify it in the field and pad it on the right with
EBCDIC blanks.

,ProdID
Supplied parameter:

• Type: EBCDIC
• Length: 8 bytes

ProdID specifies the product identifier. IBM products, for example, use the product's program number.

The characters can be upper-case or lower-case alphabetics, numerics, national (@, #, $), underscore
(_), slash (/), hyphen (-), and period (.). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

If the name is less than 8 bytes, left-justify the name in the field and pad it on the right with EBCDIC
blanks.

,Featureslen
Supplied parameter:

• Type: Integer
• Range: 0-1024
• Length: Full word

Featureslen specifies the length of the features parameter that follows.

,Features
Supplied parameter:

• Type: Character (EBCDIC recommended)
• Length: 1-1024 bytes

Features contains any information that you want the system to pass to the caller of the Query_Status
service. (Featureslen specifies the length of the information.)

If you do not need to pass information to callers of the Query_Status service, code 0 in the
Featureslen parameter. The system then ignores the contents of the Features parameter, but the
service syntax requires that you supply a value.

If you do need to pass information to the callers of Query_Status, using EBCDIC can simplify the
parsing requirements for the caller, but you do need to provide a mapping of the information for the
caller to use. An alternate approach is to set up self-defining features information (such as

Register Service (IFAEDREG)

10 z/OS: MVS Programming: Product Registration

feature1=value1,feature2=value2,...). This approach has the advantage of simplicity, but
does use more system (common) storage.

If the product you are registering is already registered, the features information you specify here will
replace the features information provided on any previous call, but only for the length provided on the
previous call. For example, if the previous call specified a Featureslen of 16, and this call specifies 32,
the system uses only the first 16 bytes of features information from this call.

,Prodtoken
Returned parameter:

• Type: Character
• Length: 8 bytes

Prodtoken contains the token the system returns to identify this particular registration. Save this
token to supply as input to the Deregister service.

,Returncode
Returned parameter:

• Type: Integer
• Length: Full word

Returncode contains the return code from the Register service.

Return Codes
When the Register service returns control to the caller, Returncode contains the return code. To obtain the
equates for the return codes:

• If you are coding in assembler, include mapping macro IFAEDIDF. See z/OS MVS Data Areas in the z/OS
Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

• If you are coding in C, use include file IFAEDC. See “IFAEDC” on page 24.

The following table describes the return codes, shown in decimal.

Return Code
(decimal)

Equate Symbol Meaning and Action

00 Equate Symbol: IFAEDREG_SUCCESS

Meaning: The product/feature combination is enabled and is permitted to execute.
Note that, unless you request option Ifaedreg_Type_NotFoundDisabled, you will get
this return code when the system does not find a policy statement that matches the
product.

Action: Proceed with normal execution.

04 Equate Symbol: IFAEDREG_DISABLED

Meaning: The product/feature combination is not enabled; it is explicitly disabled
and is not permitted to execute. To get this return code when the system does not
find a policy statement that matches the product, you must also request option
Ifaedreg_Type_NotFoundDisabled.

Action:

1. Write the appropriate termination message to the terminal or log, unless the
operator message issued because you requested
Ifaedreg_Type_DisabledMessage provides enough information.

2. Set a return code to indicate termination for ‘not ordered or not permitted to run’
condition.

3. Terminate requestor's use of program.

Register Service (IFAEDREG)

Coding Registration Services 11

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Return Code
(decimal)

Equate Symbol Meaning and Action

08 Equate Symbol: IFAEDREG_NOTAVAILABLE

Meaning: Environmental error: The Register service is not available on this system.

Action:

• If this version of the program must execute on a system that provides registration
services:

1. Write the appropriate termination message to the terminal or log.
2. Set a return code to indicate termination because registration services are not

available on this system.
3. Terminate requestor's use of program.

• If this version of the program does not need to execute on a system that provides
registration services, take the actions appropriate for the product/feature when
you cannot determine if it is enabled.

12 Equate Symbol: IFAEDREG_LIMITEXCEEDED

Meaning: Environmental error: This request exceeds the limit of 10 register requests
by an unauthorized caller in this address space.

Action: Use the Deregister service to remove unneeded registrations.

16 Equate Symbol: IFAEDREG_NOTTASKMODE

Meaning: User error: The service was not called in task mode.

Action: Avoid calling in this environment.

20 Equate Symbol: IFAEDREG_XM

Meaning: User error: The service was called in cross-memory mode but requires
PASN=HASN=SASN.

Action: Avoid calling in this environment.

24 Equate Symbol: IFAEDREG_BADFEATURESLEN

Meaning: User error: The Featureslen parameter was not in the range 0-1024.

Action: Correct the parameter.

28 Equate Symbol: IFAEDREG_NOSTORAGE

Meaning: Environmental error: The system could not obtain the storage it needed to
satisfy the request.

Action: Contact the system programmer.

32 Equate Symbol: IFAEDREG_BADTYPE

Meaning: User error: The type parameter did not specify a word formed from any
combination of Ifaedreg_Type_Standard, Ifaedreg_Type_Required,
Ifaedreg_Type_NoReport, Ifaedreg_Type_LicensedUnderProd,
Ifaedreg_Type_DisabledMessage, and Ifaedreg_Type_NotFoundDisabled.

Action: Correct the parameter.

Register Service (IFAEDREG)

12 z/OS: MVS Programming: Product Registration

Return Code
(decimal)

Equate Symbol Meaning and Action

36 Equate Symbol: IFAEDREG_LOCKED

Meaning: User error: The service was called while holding a system lock.

Action: Avoid calling in this environment.

40 Equate Symbol: IFAEDREG_FRR

Meaning: User error: The service was called while having a functional recovery
routine (FRR) established.

Action: Avoid calling in this environment.

Deregister Service (IFAEDDRG)
Use the Deregister service (IFAEDDRG) to indicate that a registered product or product/feature
combination is ending its processing. When a product registers with MVS, it indicates that it is running on
the system. When it ends, the product issues the Deregister service to indicate that it has finished
processing.

A product that issues the Register service receives a token that identifies the unique instance of the
product. To deregister, the product calls the Deregister service and supplies the token. Note that the
system automatically deregisters the product on termination of:

• The cross-memory resource owning task (TCB address in ASCBXTCB) that was active when the register
request was done

• The address space that was the home address space when the register request was done.

If the product code is neither in supervisor state nor running under a system key, there are limitations on
the use of Deregister:

1. You cannot deregister a product that was registered by a caller in supervisor state or running under a
system key.

2. You can deregister only a product that was registered from your home address space.

Syntax

CALL IFAEDDRG, (Prodtoken
,Returncode)

In C: the syntax is similar. You can use either of the following techniques to invoke the service:

1. ifaeddrg (Type,...Returncode);

When you use this technique, you must link edit your program with a linkage-assist routine (also called
a stub) in SYS1.CSSLIB.

2. ifaeddrg_byaddr (Type,...Returncode);

This second technique requires AMODE=31, and, before you issue the CALL, you must verify that the
IFAEDDRG service is available (in the CVT, both CVTOSEXT and CVTOS390 bits are set on).

Deregister Service (IFAEDDRG)

Coding Registration Services 13

In Assembler: Link edit your program with a linkage-assist routine (also called a stub) in SYS1.CSSLIB
unless you use either of the following techniques as an alternative to CALL IFAEDDRG:

1. LOAD EP=IFAEDDRG
 Save the entry point address
 ...
 Put the saved entry point address into R15
 Issue CALL (15),...

2. L 15,X'10' Get CVT
 L 15,X'8C'(,15) Get ECVT
 L 15,X'1C0'(,15)
 L 15,4(,15)
 L 15,4(,15) Get address of IFAEDDRG
 CALL (15),(...)

Both of these techniques require AMODE=31. If you use the second technique, before you issue the
CALL, you must verify that the IFAEDDRG service is available (in the CVT, both CVTOSEXT and
CVTOS390 bits are set on).

In Java: Use the methods in the IFAEDJReg class. Prior to invoking your application, the ifaedjreg.jar file
must be available on the application's classpath and the registration native library must be available on
the application's libpath. See “Registering and deregistering a product using Java ” on page 34 for more
information.

Parameters
Prodtoken

Supplied parameter:

• Type: Character
• Length: 8 bytes

Prodtoken contains the token the system returned when the product issued the Register service.

,Returncode
Returned parameter:

• Type: Integer
• Length: Full word

Returncode contains the return code from the Deregister service.

Return Codes
When the Deregister service returns control to the caller, Returncode contains the return code. To obtain
the equates for the return codes:

• If you are coding in assembler, include mapping macro IFAEDIDF. See z/OS MVS Data Areas in the z/OS
Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

• If you are coding in C, use the include file IFAEDC. See “IFAEDC” on page 24.

The following table describes the return codes, shown in decimal.

Return Code
(decimal)

Equate Symbol Meaning and Action

00 Equate Symbol: IFAEDDRG_SUCCESS

Meaning: The product/feature combination has been deregistered.

Action: No action is required.

Deregister Service (IFAEDDRG)

14 z/OS: MVS Programming: Product Registration

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Return Code
(decimal)

Equate Symbol Meaning and Action

08 Equate Symbol: IFAEDDRG_NOTAVAILABLE

Meaning: Environmental error: The Deregister service is not available on this system.

Action: Avoid calling the Deregister service on this system.

12 Equate Symbol: IFAEDDRG_NOTREGISTERED

Meaning: User error: The product identified by the Prodtoken parameter was not
registered.

Action: In Prodtoken. provide a correct product token, as returned by the Register
service.

16 Equate Symbol: IFAEDDRG_NOTTASKMODE

Meaning: User error: The service was not called in task mode.

Action: Avoid calling in this environment.

20 Equate Symbol: IFAEDDRG_XM

Meaning: User error: The service was called in cross-memory mode but requires
PASN=HASN=SASN.

Action: Avoid calling in this environment.

24 Equate Symbol: IFAEDDRG_NOTAUTH

Meaning: User error: A caller running in problem state tried to deregister a product
that had been registered by an authorized caller (a program running in supervisor
state or under a system key).

Action: Avoid trying to deregister a product registered by an authorized caller.

36 Equate Symbol: IFAEDDRG_LOCKED

Meaning: User error: The service was called while holding a system lock.

Action: Avoid calling in this environment.

40 Equate Symbol: IFAEDDRG_FRR

Meaning: User error: The service was called while having a functional recovery
routine (FRR) established.

Action: Avoid calling in this environment.

Query_Status Service (IFAEDSTA)
Use the Query_Status service (IFAEDSTA) to request information about the registration or enablement
status of a particular product. The system will indicate, through a combination of return code value and
output area content:

• If the product is registered (running)
• If the product is enabled

When it searches for the product you identify, the system does not use wildcard matching; there is no
special treatment for a wildcard character (* or ?). You can, however, indicate fields that are not important
to your search, and the system will try to find the best match it can for the parameters that you provide. If
two matches are equivalently good, and one of them contains a registration from the current home
address space, then that match is used.

Query_Status Service (IFAEDSTA)

Coding Registration Services 15

Syntax

CALL IFAEDSTA
(Prodowner
,Prodname
,Featurename
,ProdID
,Outputinfo
,Featureslen
,Features
,Returncode)

In C: the syntax is similar. You can use either of the following techniques to invoke the service:

1. ifaedsta (Type,...Returncode);

When you use this technique, you must link edit your program with a linkage-assist routine (also called
a stub) in SYS1.CSSLIB.

2. ifaedsta_byaddr (Type,...Returncode);

This second technique requires AMODE=31, and, before you issue the CALL, you must verify that the
IFAEDSTA service is available (in the CVT, both CVTOSEXT and CVTOS390 bits are set on).

In Assembler: Link edit your program with a linkage-assist routine (also called a stub) in SYS1.CSSLIB
unless you use either of the following techniques as an alternative to CALL IFAEDSTA:

1. LOAD EP=IFAEDSTA
 Save the entry point address
 ...
 Put the saved entry point address into R15
 Issue CALL (15),...

2. L 15,X'10' Get CVT
 L 15,X'8C'(,15) Get ECVT
 L 15,X'1C0'(,15)
 L 15,4(,15)
 L 15,8(,15) Get address of IFAEDSTA
 CALL (15),(...)

Both of these techniques require AMODE=31. If you use the second technique, before you issue the
CALL, you must verify that the IFAEDDRG service is available (in the CVT, both CVTOSEXT and
CVTOS390 bits are set on).

Note: This service is not available in Java.

Parameters
,Prodowner

Supplied parameter:

• Type: EBCDIC
• Length: 16 bytes

Specifies the name of the product owner you are searching for. IBM products always use IBM CORP or
IBM_CORP. If the product owner is not important to your search, set the first character of the field to
an EBCDIC blank or hexadecimal zeroes.

The characters can be upper-case or lower-case alphabetics, numerics, national (@, #, $), underscore
(_), slash (/), hyphen (-), and period (.). You can use embedded blanks.

Query_Status Service (IFAEDSTA)

16 z/OS: MVS Programming: Product Registration

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

If the name is less than 16 bytes, left-justify the name in the field and pad it on the right with EBCDIC
blanks.

,Prodname
Supplied parameter:

• Type: EBCDIC
• Length: 16 bytes

Specifies the name of the product you are searching for. If the product name is not important to your
search, set the first character of the field to EBCDIC blank or hexadecimal zeroes.

The characters can be upper-case or lower-case alphabetics, numerics, national (@, #, $), underscore
(_), slash (/), hyphen (-), and period (.). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

If the name is less than 16 bytes, left-justify the name in the field and pad it on the right with EBCDIC
blanks.

,Featurename
Supplied parameter:

• Type: EBCDIC
• Length: 16 bytes

Specifies the name of the feature you are searching for. If the feature name is not important to your
search, set the first character of the field to EBCDIC blank or hexadecimal zeroes.

The characters can be upper-case or lower-case alphabetics, numerics, national (@, #, $), underscore
(_), slash (/), hyphen (-), and period (.). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

If the name is less than 16 bytes, left-justify the name in the field and pad it on the right with EBCDIC
blanks.

,ProdID
Supplied parameter:

• Type: EBCDIC
• Length: 8 bytes

ProdID specifies the product identifier you are searching for. IBM products use the product's program
number as the product identifier. If the product identifier is not important to your search, set the first
character of the field to EBCDIC blank or hexadecimal zeroes.

The characters can be upper-case or lower-case alphabetics, numerics, national (@, #, $), underscore
(_), slash (/), hyphen (-), and period (.). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

If the name is less than 8 bytes, left-justify the name in the field and pad it on the right with EBCDIC
blanks.

,Outputinfo
Returned parameter:

• Type: Character
• Length: 16

Query_Status Service (IFAEDSTA)

Coding Registration Services 17

Specifies an output area, mapped by DSECT EDOI (in mapping macro IFAEDIDF) or structure EDOI (in
C include file IFAEDC). If the return code is 0, this area contains information about the product you
defined.

,Featureslen
Supplied parameter:

• Type: Integer
• Range: 0-1024
• Length: Full word

Featureslen specifies the length of the Features parameter that follows.

,Features
Returned parameter:

• Type: Character (EBCDIC recommended)
• Length: 1-1024 bytes

Features contains information provided by the caller of the Register service, and you need
documentation from that caller about the length, format, and use of the information.

If the information is larger than the length you specify in Featureslen, the system returns only the
information that fits in the area you provide. In that case, bit EdoiNotAllFeaturesReturned and field
EdoiNeededFeaturesLen are set in the outputinfo area. You can use the length to call the
Query_Status service again with an expanded area.

If you are not expecting any information from the caller of the Register service, code 0 in the
Featureslen parameter. This system will then ignore the Features parameter, but the service syntax
requires that you supply a value.

,Returncode
Returned parameter:

• Type: Integer
• Length: Full word

Returncode contains the return code from the Query_Status service.

Return Codes
When the Query_Status service returns control to the caller, Returncode contains the return code. To
obtain the equates for the return codes:

• If you are coding in assembler, include mapping macro IFAEDIDF. See z/OS MVS Data Areas in the z/OS
Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

• If you are coding in C, use the include file IFAEDC. See “IFAEDC” on page 24.

The following table describes the return codes, shown in decimal.

Return Code
(decimal)

Equate Symbol Meaning and Action

00 Equate Symbol: IFAEDSTA_SUCCESS

Meaning: The product/feature combination is known to be registered or to be
enabled or disabled.

Action: Check the outputinfo area for further information.

Query_Status Service (IFAEDSTA)

18 z/OS: MVS Programming: Product Registration

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Return Code
(decimal)

Equate Symbol Meaning and Action

04 Equate Symbol: IFAEDSTA_NOTDEFINED

Meaning: The product/feature combination is not known to be registered or to be
enabled or disabled.

Action: Check that the operands are correct.

08 Equate Symbol: IFAEDSTA_NOTAVAILABLE

Meaning: Environmental error: The Status service is not available on this system.

Action: Avoid calling the Status service on this system.

16 Equate Symbol: IFAEDSTA_NOTTASKMODE

Meaning: User error: The service was not called in task mode.

Action: Avoid calling in this environment.

20 Equate Symbol: IFAEDSTA_XM

Meaning: User error: The service was called in cross-memory mode but requires
HASN=PASN=SASN.

Action: Avoid calling in this environment.

36 Equate Symbol: IFAEDSTA_LOCKED

Meaning: User error: The service was called while holding a system lock.

Action: Avoid calling in this environment.

40 Equate Symbol: IFAEDSTA_FRR

Meaning: User error: The service was called while having a functional recovery
routine (FRR) established.

Action: Avoid calling in this environment.

List_Status Service (IFAEDLIS)
Use the List_Status service (IFAEDLIS) to request information about the registration and enablement of
one or more products. The system returns information about the products that match the product
definition you supply.

You can also use the List_Status service to determine what, according to the current policy, the
enablement state would be for the product you define. You might use this service to determine whether or
not registering the product would require a change to the enablement policy in IFAPRDxx.

The system returns the information in the answer area you specify on the List_Status request:

• In assembler language, the answer area is mapped by DSECTs EDAAHDR and EDAAE in mapping macro
IFAEDIDF.

• In C language, the answer area is mapped by structures EDAAHDR and EDAAE in include file IFAEDC.

EDAAHDR maps information about the request, including the number of entries returned. EDAAE maps
each returned entry.

List_Status Service (IFAEDLIS)

Coding Registration Services 19

Syntax

CALL IFAEDLIS, (Type
,Prodowner
,Prodname
,Featurename
,ProdID
,Anslen
,Ansarea
,Returncode)

In C: the syntax is similar. You can use either of the following techniques to invoke the service:

1. ifaedlis (Type,...Returncode);

When you use this technique, you must link edit your program with a linkage-assist routine (also called
a stub) in SYS1.CSSLIB.

2. ifaedlis_byaddr (Type,...Returncode);

This second technique requires AMODE=31, and, before you issue the CALL, you must verify that the
IFAEDLIS service is available (in the CVT, both CVTOSEXT and CVTOS390 bits are set on).

In Assembler: Link edit your program with a linkage-assist routine (also called a stub) in SYS1.CSSLIB
unless you use either of the following techniques as an alternative to CALL IFAEDLIS:

1. LOAD EP=IFAEDLIS
 Save the entry point address
 ...
 Put the saved entry point address into R15
 Issue CALL (15),...

2. L 15,X'10' Get CVT
 L 15,X'8C'(,15) Get ECVT
 L 15,X'1C0'(,15)
 L 15,4(,15)
 L 15,12(,15) Get address of IFAEDLIS
 CALL (15),(...)

Both of these techniques require AMODE=31. If you use the second technique, before you issue the
CALL, you must verify that the IFAEDDRG service is available (in the CVT, both CVTOSEXT and
CVTOS390 bits are set on).

Note: This service is not available in Java.

Parameters
Type

Supplied parameter:

• Type: Integer
• Length: Full word

Identifies the type of list request. The field must contain a value that represents a combination of one
or more of the possible types. You add the values to create the full word. Do not specify a type more
than once. The possible types, and their meanings, are:

List_Status Service (IFAEDLIS)

20 z/OS: MVS Programming: Product Registration

Ifaedlis_Type_Registered
The system is to return data about any matching products that are registered. The number of
entries returned appears in field EdaahNumR in the answer area. The address of the first entry
appears in field EdaahFirstRAddr. DSECT EDAAE maps each entry. If you specify * or ? in the
product definition, the system treats the character as a wildcard character.

Ifaedlis_Type_State
The system is to return data about the current policy state (enabled or disabled) of any matching
products. The number of entries returned appears in field EdaahNumS. The address of the first
entry appears in field EdaahFirstSAddr. DSECT EDAAE maps each entry. If you specify * or ? in the
product definition, the system treats the character as a wildcard character.

Ifaedlis_Type_Status
The system is to return data about the enablement policy entry that would apply if the specified
product registered. If there is no matching entry, the system sets Field EdaahStatusAddr in the
answer area to 0; otherwise, it contains the address of the entry (mapped by DSECT EDAAE).

Note: For this request type, the system does not use wildcard matching when it searches the
policy. If you specify * or ? in the product definition, the system does not treat the character as a
wildcard character. To indicate that a field is not important, however, you can set the first
character of the field to an EBCDIC blank or hexadecimal zeroes.

Ifaedlis_Type_NoReport
Specify this request type to indicate the system is to return information about all matching entries,
including those that registered with Ifaedreg_Type_NoReport.

,Prodowner
Supplied parameter:

• Type: EBCDIC
• Length: 16 bytes

Specifies the name of the product owner you are searching for. IBM products always use IBM CORP or
IBM_CORP.

The characters can be upper-case or lower-case alphabetics, numerics, national (@, #, $), underscore
(_), slash (/), hyphen (-), period (.), asterisk (*), or question mark (?). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

If the request specifies Ifaedlis_Type_Registered or Ifaedlis _Type_State, the system treats * and ?
as wildcard characters; it uses wildcard matching. When you specify Ifaedlis_Type_Status, the
system does not use wildcard matching, and * or ? receive no special treatment. If the product owner
is not important to your search, set the first character of the field to an EBCDIC blank or hexadecimal
zeroes.

If the name is less than 16 bytes, left-justify the name in the field and pad it on the right with EBCDIC
blanks.

,Prodname
Supplied parameter:

• Type: EBCDIC
• Length: 16 bytes

Specifies the name of the product you are searching for.

The characters can be upper-case or lower-case alphabetics, numerics, national (@, #, $), underscore
(_), slash (/), hyphen (-), period (.), asterisk (*), or question mark (?). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

If the request specifies Ifaedlis_Type_Registered or Ifaedlis _Type_State, the system treats * and ?
as wildcard characters; it uses wildcard matching. When you specify Ifaedlis_Type_Status, the

List_Status Service (IFAEDLIS)

Coding Registration Services 21

system does not use wildcard matching, and * or ? receive no special treatment. If the product name
is not important to your search, set the first character of the field to an EBCDIC blank or hexadecimal
zeroes.

If the name is less than 16 bytes, left-justify the name in the field and pad it on the right with EBCDIC
blanks.

,Featurename
Supplied parameter:

• Type: EBCDIC
• Length: 16 bytes

Specifies the name of the feature you are searching for.

The characters can be upper-case or lower-case alphabetics, numerics, national (@, #, $), underscore
(_), slash (/), hyphen (-), period (.), asterisk (*), or question mark (?). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

If the request specifies Ifaedlis_Type_Registered or Ifaedlis _Type_State, the system treats * and ?
as wildcard characters; it uses wildcard matching. When you specify Ifaedlis_Type_Status, the
system does not use wildcard matching, and * or ? receive no special treatment. If the feature name is
not important to your search, set the first character of the field to an EBCDIC blank or hexadecimal
zeroes.

If the name is less than 16 bytes, left-justify the name in the field and pad it on the right with EBCDIC
blanks.

,ProdID
Supplied parameter:

• Type: EBCDIC
• Length: 8 bytes

ProdID specifies the product identifier you are searching for. IBM products, for example, use the
product's program number as the product identifier.

The characters can be upper-case or lower-case alphabetics, numerics, national (@, #, $), underscore
(_), slash (/), hyphen (-), period (.), asterisk (*), or question mark (?). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

If the request specifies Ifaedlis_Type_Registered or Ifaedlis _Type_State, the system treats * and ?
as wildcard characters; it uses wildcard matching. When you specify Ifaedlis_Type_Status, the
system does not use wildcard matching, and * or ? receive no special treatment. If the product
identifier is not important to your search, set the first character of the field to an EBCDIC blank or
hexadecimal zeroes.

If the name is less than 8 bytes, left-justify the name in the field and pad it on the right with EBCDIC
blanks.

,Anslen
Supplied parameter:

• Type: Integer
• Minimum Value: 32
• Length: Full word

Specifies the length of the answer area parameter that follows. Specify a value of at least 32, the
length of the answer area header (DSECT EDAAHDR in macro IFAEDIDF) that the system returns. Add
72 for each entry that you expect the system to return.

List_Status Service (IFAEDLIS)

22 z/OS: MVS Programming: Product Registration

,Ansarea
Returned parameter:

• Type: Character
• Length: Specified on Anslen parameter

The answer area where the system is to place information about the request and the entries that
match the product definition. The contents depend on the type of the request:

• If you specified Ifaedlis_Type_Registered, the answer area consists of a header area and a queue
of 0 or more entries. The number of entries is in EDAAHNUMR, and EDAAHFIRSTRADDR points to
the first entry. If you did not specify Ifaedlis_Type_Registered, both fields are 0.

• If you specified Ifaedlis_Type_State, the answer area consists of a header area and a queue of 0 or
more entries. The number of entries is in EDAAHNUMS, and EDAAHFIRSTSADDR points to the first
entry. If you did not specify Ifaedlis_Type_State, both fields are 0.

• If you specified Ifaedlis_Type_Status, the answer area consists of a header area and a single entry.
EDAAHSTATUSADDR points to an entry that defines the policy that would be used to determine
whether the product is enabled or disabled. The field is 0 if there is no matching policy entry, and it
is always 0 when you did not specify Ifaedlis_Type_Status.

If the returned information exceeds the length you specify in Anslen, the system returns only the
information that fits in the area you provided. EDAAHTLEN indicates the total length of the information
available to be returned. If the length is longer than the length you specified in Anslen, increase
Anslen and issue the request again.

,Returncode
Returned parameter:

• Type: Integer
• Length: Full word

Returncode contains the return code from the List_Status service.

Return Codes
When the List_Status service returns control to the caller, Returncode contains the return code. To obtain
the equates for the return codes:

• If you are coding in assembler, include mapping macro IFAEDIDF. See z/OS MVS Data Areas in the z/OS
Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

• If you are coding in C, use the include file IFAEDC. See “IFAEDC” on page 24.

The following table describes the return codes, shown in decimal.

Return Code
(decimal)

Equate Symbol Meaning and Action

00 Equate Symbol: IFAEDLIS_SUCCESS

Meaning: The system returned all the requested data.

Action: No action is required.

04 Equate Symbol: IFAEDLIS_NOTALLDATARETURNED

Meaning: The answer area was too small. Some of the requested data was not
returned.

Action: Provide a larger answer area and call the service again.

List_Status Service (IFAEDLIS)

Coding Registration Services 23

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Return Code
(decimal)

Equate Symbol Meaning and Action

08 Equate Symbol: IFAEDLIS_NOTAVAILABLE

Meaning: Environmental error: The IFAEDLIS service is not available on this system.

Action: Avoid calling the IFAEDLIS service on this system.

12 Equate Symbol: IFAEDLIS_ANSAREATOOSMALL

Meaning: User error: The answer area length you provided was less than the
minimum needed, 32.

Action: Provide a larger answer area.

16 Equate Symbol: IFAEDSTA_NOTTASKMODE

Meaning: User error: The service was not called in task mode.

Action: Avoid calling in this environment.

20 Equate Symbol: IFAEDLIS_XM

Meaning: User error: The service was called in cross-memory mode but requires
PASN=HASN=SASN.

Action: Avoid calling in this environment.

32 Equate Symbol: IFAEDLIS_BADTYPE

Meaning: User error: The type parameter did not specify a word formed from any
combination of Ifaedlis_Type_Registered, Ifaedlis_Type_State, Ifaedlis_Type_Status,
and Ifaedlis_Type_Noreport.

Action: Correct the parameter.

36 Equate Symbol: IFAEDLIS_LOCKED

Meaning: User error: The service was called while holding a system lock.

Action: Avoid calling in this environment.

40 Equate Symbol: IFAEDLIS_FRR

Meaning: User error: The service was called while having a functional recovery
routine (FRR) established.

Action: Avoid calling in this environment.

IFAEDC
For the C programmer, include file IFAEDC provides equates for return codes and data constants, such as
Register service request types. To use IFAEDC, copy the file from SYS1.SAMPLIB to the appropriate local
C library. The contents of the file are displayed in Figure 2 on page 25.

IFAEDC

24 z/OS: MVS Programming: Product Registration

#ifndef __IFAED

#define __IFAED

/***
 * *
 * Name: IFAEDC *
 * *
 * Descriptive Name: SMF Product enable/disable services C declares *
 * */
 /*01* PROPRIETARY STATEMENT= */
 /***PROPRIETARY_STATEMENT**/
 /* */
 /* */
 /* LICENSED MATERIALS - PROPERTY OF IBM */
 /* THIS MACRO IS "RESTRICTED MATERIALS OF IBM" */
 /* 5645-001 (C) COPYRIGHT IBM CORP. 1996 */
 /* SEE COPYRIGHT INSTRUCTIONS */
 /* */
 /* STATUS= HBB6601 */
 /* */
 /***END_OF_PROPRIETARY_STATEMENT*************************************/
 /* */
 /*01* EXTERNAL CLASSIFICATION: GUPI */
 /*01* END OF EXTERNAL CLASSIFICATION: */
 /* */
/* Function: *
 * IFAEDC defines types, related constants, and function *
 * prototypes for the use of SMF Product enable/disable services *
 * from the C language *
 * *
 * Usage: *
 * #include <IFAEDC.H> *
 * *
 * Notes: *
 * 1. This member should be copied from SAMPLIB to the *
 * appropriate local C library. *
 * *
 * 2. The Product enable/disable services do not use a null *
 * character to terminate strings. The services expect the *
 * character operands to be a fixed-length type. *
 * Use memcpy to move into and from these fields. *
 * *
 * Change Activity: *
 *$L0=PRDEDSMF,HBB6601, 950601, PDXB: SMF Product enable/disable *
 * *
 ***/

Figure 2. IFAEDC from SYS1.SAMPLIB

/***
 * Type Definitions for User Specified Parameters *
 ***/

/* Type for TYPE operand of IFAEDREG */
typedef int IfaedType;

/* Type for Product Owner */
typedef char IfaedProdOwner??(16??);

/* Type for Product Name */
typedef char IfaedProdName??(16??);

/* Type for Feature Name */
typedef char IfaedFeatureName??(16??);

/* Type for Product Version */
typedef char IfaedProdVers??(2??);

/* Type for Product Release */
typedef char IfaedProdRel??(2??);

/* Type for Product Modification level */
typedef char IfaedProdMod??(2??);

/* Type for Product ID */
typedef char IfaedProdID??(8??);

IFAEDC

Coding Registration Services 25

/* Type for Product Token */
typedef char IfaedProdToken??(8??);

/* Type for Features Length */
typedef int IfaedFeaturesLen;

/* Type for Return Code */
typedef int IfaedReturnCode;

/***
 * Type Definitions for User Specified Parameters *
 ***/

/* Type for user supplied EDOI */
typedef struct ??<
 struct ??<
 int EdoiRegistered : 1; /* The product is registered */
 int EdoiStatusNotDefined : 1; /* The product is not known to
 be enabled or disabled */
 int EdoiStatusEnabled : 1; /* The product is enabled */
 int EdoiNotAllFeaturesReturned : 1; /* The featureslen
 area was too small to hold the features
 provided at registration time. Field
 EdoiNeededFeaturesLen contains the size
 provided at registration time. */
 int Rsvd0 : 4; /* Reserved */
 ??> EdoiFlags ;
 char Rsvd1??(3??); /* Reserved */
 int EdoiNeededFeaturesLen; /* The featureslen size provided at
 registration time */
 struct ??<
 IfaedProdVers EdoiProdVers; /* The version information
 provided at registration time */
 IfaedProdRel EdoiProdRel; /* The release information
 provided at registration time */
 IfaedProdMod EdoiProdMod; /* The mod level information
 provided at registration time */
 ??> EdoiProdVersRelMod;
 char Rsvd2??(2??); /* Reserved */
??> EDOI;

/* Type for user supplied EDAAHDR */
typedef struct ??<
 int EdaahNumR; /* Number of EDAAE entries which
 follow indicating registered entries. The first one
 is pointed to by EdaahFirstRAddr. */
 int EdaahNumS; /* Number of EDAAE entries which
 follow indicating state entries. The first one
 is pointed to by EdaahFirstSAddr. */
 int EdaahTLen; /* Total length of answer area
 needed to contain all the requested information.
 This includes the area for the records
 that were returned on this call. */
 void *EdaahFirstRAddr; /* Address of first registered
 entry EDAAE */
 void *EdaahFirstSAddr; /* Address of first state entry
 EDAAE */
 void *EdaahStatusAddr; /* Address of the EDAAE that
 represents the policy entry that would be used to
 determine if the input product was enabled. 0 if
 no such policy entry exists. */
 char Rsvd1??(8??); /* Reserved */
??> EDAAHDR;

/* Type for user supplied EDAAE */
typedef struct ??<
 void *EdaaeNextAddr; /* Address of next EDAAE. EdaahNumR
 (for the registered queue) or EdaahNumS (for the
 state queue) must be used to determine how far
 along this chain to go. Not relevant for
 EdaahStatusAddr. */
 struct ??<
 IfaedProdOwner EdaaeProdOwner; /* Product owner */
 IfaedProdName EdaaeProdName; /* Product name */
 IfaedFeatureName EdaaeFeatureName; /* Feature name */
 IfaedProdVers EdaaeProdVers; /* Product version */
 IfaedProdRel EdaaeProdRel; /* Product release */
 IfaedProdMod EdaaeProdMod; /* Product mod level */
 IfaedProdID EdaaeProdID; /* Product ID */

IFAEDC

26 z/OS: MVS Programming: Product Registration

 ??> EdaaeInfo;
 struct ??<
 int EdaaeStatusNotDefined : 1; /* This will never be on for
 entries on the state queue. If on, indicates that
 the state information does not have an entry that
 matches this product. */
 int EdaaeStatusEnabled : 1; /* If on, indicates that the
 product is considered to be enabled */
 int EdaaeNoReport : 1; /* This will never be on for
 entries on the state queue. If on, indicates that
 the product registered with
 Ifaedreg_Type_NoReport. */
 int EdaaeLicensedUnderProd : 1; /* This will never be on for
 entries on the state queue. If on, indicates that
 the product registered with
 Ifaedreg_Type_LicensedUnderProd. */
 int Rsvd0 : 4; /* Reserved */
 ??> EdaaeFlags ;
 char Rsvd1??(1??); /* Reserved */
 int EdaaeNumInstances; /* Number of concurrent instances of
 this registration. */
??> EDAAE;

/***
 * Fixed Service Parameter and Return Code Defines *
 ***/

/* Product enable/disable Register Constants */
#define Ifaedreg_Type_Standard 0
#define Ifaedreg_Type_Required 2
#define Ifaedreg_Type_NoReport 4
#define Ifaedreg_Type_LicensedUnderProd 8
#define Ifaedreg_Type_DisabledMessage 16
#define Ifaedreg_Type_NotFoundDisabled 32
#define IFAEDREG_TYPE_STANDARD 0
#define IFAEDREG_TYPE_REQUIRED 2
#define IFAEDREG_TYPE_NOREPORT 4
#define IFAEDREG_TYPE_LICENSEDUNDERPROD 8
#define IFAEDREG_TYPE_DISABLEDMESSAGE 16
#define IFAEDREG_TYPE_NOTFOUNDDISABLED 32

/* Product enable/disable Register Return codes */
#define Ifaedreg_Success 0
#define Ifaedreg_Disabled 4
#define Ifaedreg_NotAvailable 8
#define Ifaedreg_LimitExceeded 12
#define Ifaedreg_NotTaskMode 16
#define Ifaedreg_XM 20
#define Ifaedreg_BadFeaturesLen 24
#define Ifaedreg_NoStorage 28
#define Ifaedreg_BadType 32
#define Ifaedreg_Locked 36
#define Ifaedreg_FRR 40
#define IFAEDREG_SUCCESS 0
#define IFAEDREG_DISABLED 4
#define IFAEDREG_NOTAVAILABLE 8
#define IFAEDREG_LIMITEXCEEDED 12
#define IFAEDREG_NOTTASKMODE 16
#define IFAEDREG_XM 20
#define IFAEDREG_BADFEATURESLEN 24
#define IFAEDREG_NOSTORAGE 28
#define IFAEDREG_BADTYPE 32
#define IFAEDREG_LOCKED 36
#define IFAEDREG_FRR 40

/* Product enable/disable Deregister Return codes */
#define Ifaeddrg_Success 0
#define Ifaeddrg_NotAvailable 8
#define Ifaeddrg_NotRegistered 12
#define Ifaeddrg_NotTaskMode 16
#define Ifaeddrg_XM 20
#define Ifaeddrg_NotAuth 24
#define Ifaeddrg_Locked 36
#define Ifaeddrg_FRR 40
#define IFAEDDRG_SUCCESS 0
#define IFAEDDRG_NOTAVAILABLE 8
#define IFAEDDRG_NOTREGISTERED 12
#define IFAEDDRG_NOTTASKMODE 16

IFAEDC

Coding Registration Services 27

#define IFAEDDRG_XM 20
#define IFAEDDRG_NOTAUTH 24
#define IFAEDDRG_LOCKED 36
#define IFAEDDRG_FRR 40

/* Product enable/disable Status Return codes */
#define Ifaedsta_Success 0
#define Ifaedsta_NotDefined 4
#define Ifaedsta_NotAvailable 8
#define Ifaedsta_NotTaskMode 16
#define Ifaedsta_XM 20
#define Ifaedsta_Locked 36
#define Ifaedsta_FRR 40
#define IFAEDSTA_SUCCESS 0
#define IFAEDSTA_NOTDEFINED 4
#define IFAEDSTA_NOTAVAILABLE 8
#define IFAEDSTA_NOTTASKMODE 16
#define IFAEDSTA_XM 20
#define IFAEDSTA_LOCKED 36
#define IFAEDSTA_FRR 40

/* Product enable/disable List Constants */
#define Ifaedlis_Type_Registered 1
#define Ifaedlis_Type_State 2
#define Ifaedlis_Type_Status 4
#define Ifaedlis_Type_NoReport 8
#define IFAEDLIS_TYPE_REGISTERED 1
#define IFAEDLIS_TYPE_STATE 2
#define IFAEDLIS_TYPE_STATUS 4
#define IFAEDLIS_TYPE_NOREPORT 8

/* Product enable/disable List Return codes */
#define Ifaedlis_Success 0
#define Ifaedlis_NotAllDataReturned 4
#define Ifaedlis_NotAvailable 8
#define Ifaedlis_AnsAreaTooSmall 12
#define Ifaedlis_NotTaskMode 16
#define Ifaedlis_XM 20
#define Ifaedlis_BadType 32
#define Ifaedlis_Locked 36
#define Ifaedlis_FRR 40
#define IFAEDLIS_SUCCESS 0
#define IFAEDLIS_NOTALLDATARETURNED 4
#define IFAEDLIS_NOTAVAILABLE 8
#define IFAEDLIS_ANSAREATOOSMALL 12
#define IFAEDLIS_NOTTASKMODE 16
#define IFAEDLIS_XM 20
#define IFAEDLIS_BADTYPE 32
#define IFAEDLIS_LOCKED 36
#define IFAEDLIS_FRR 40

/***
 * Function Prototypes for Service Routines *
 ***/

#ifdef __cplusplus
 extern "OS" ??<
#else
 #pragma linkage(ifaedreg_calltype,OS)
 #pragma linkage(ifaeddrg_calltype,OS)
 #pragma linkage(ifaedsta_calltype,OS)
 #pragma linkage(ifaedlis_calltype,OS)
#endif
typedef void ifaedreg_calltype(
 IfaedType __TYPE, /* Input - request type */
 IfaedProdOwner __PRODOWNER, /* Input - product owner */
 IfaedProdName __PRODNAME, /* Input - product name */
 IfaedFeatureName __FEATURENAME, /* Input - feature name */
 IfaedProdVers __PRODVERS, /* Input - product version */
 IfaedProdRel __PRODREL, /* Input - product release */
 IfaedProdMod __PRODMOD, /* Input - product modification */
 IfaedProdID __PRODID, /* Input - product ID */
 IfaedFeaturesLen __FEATURESLEN, /* Input - length of features */
 void *__FEATURES, /* Input - features area */
 IfaedProdToken *__PRODTOKEN, /* Output - product token */
 IfaedReturnCode *__RC); /* Output - return code */

typedef void ifaeddrg_calltype(

IFAEDC

28 z/OS: MVS Programming: Product Registration

 IfaedProdToken __PRODTOKEN, /* Input - product token */
 IfaedReturnCode *__RC); /* Output - return code */

typedef void ifaedsta_calltype(
 IfaedProdOwner __PRODOWNER, /* Input - product owner */
 IfaedProdName __PRODNAME, /* Input - product name */
 IfaedFeatureName __FEATURENAME, /* Input - feature name */
 IfaedProdID __PRODID, /* Input - product ID */
 EDOI *__EDOI, /* Output - output information */
 IfaedFeaturesLen __FEATURESLEN, /* Input - length of features */
 void *__FEATURES, /* Output - features area */
 IfaedReturnCode *__RC); /* Output - return code */

typedef void ifaedlis_calltype(
 IfaedType __TYPE, /* Input - request type */
 IfaedProdOwner __PRODOWNER, /* Input - product owner */
 IfaedProdName __PRODNAME, /* Input - product name */
 IfaedFeatureName __FEATURENAME, /* Input - feature name */
 IfaedProdID __PRODID, /* Input - product ID */
 int __ANSLEN, /* Input - length of answer area */
 void *__ANSAREA, /* Output - answer area */
 IfaedReturnCode *__RC); /* Output - return code */
extern ifaedreg_calltype ifaedreg;
extern ifaeddrg_calltype ifaeddrg;
extern ifaedsta_calltype ifaedsta;
extern ifaedlis_calltype ifaedlis;

#ifdef __cplusplus
 ??>
#endif

struct IFAED_PREDVT ??<
 ifaedreg_calltype* ifaed_regaddr;
 ifaeddrg_calltype* ifaed_drgaddr;
 ifaedsta_calltype* ifaed_staaddr;
 ifaedlis_calltype* ifaed_lisaddr;
??>;

struct IFAED_PRED ??<
 unsigned char ifaed_pred_filler1 ??(4??);
 struct IFAED_PREDVT * ifaed_predvt;
??>;

#ifndef __cplusplus
#define ifaedreg_byaddr(Type, Owner, Name, Fname, Vers, Rel, Mod, \
 Id, Flen, Fptr , Tptr, Rcptr) \
??< \
 struct IFAED_PSA* ifaed_pagezero = 0; \
 ifaed_pagezero->ifaed_cvt->ifaed_cvtecvt->ifaed_ecvtpred-> \
 ifaed_predvt->ifaed_regaddr \
 (Type,Owner,Name,Fname,Vers,Rel,Mod,Id,Flen,Fptr, \
 Tptr,Rcptr); \
??>;
#define ifaeddrg_byaddr(Token, Rcptr) \
??< \
 struct IFAED_PSA* ifaed_pagezero = 0; \
 ifaed_pagezero->ifaed_cvt->ifaed_cvtecvt->ifaed_ecvtpred-> \
 ifaed_predvt->ifaed_drgaddr \
 (Token,Rcptr); \
??>;
#define ifaedsta_byaddr(Owner, Name, Fname, Id, Eptr, Flen, \
 Fptr, Rcptr) \
??< \
 struct IFAED_PSA* ifaed_pagezero = 0; \
 ifaed_pagezero->ifaed_cvt->ifaed_cvtecvt->ifaed_ecvtpred-> \
 ifaed_predvt->ifaed_staaddr \
 (Owner,Name,Fname,Id,Eptr,Flen,Fptr,Rcptr); \
??>;
#define ifaedlis_byaddr(Type, Owner, Name, Fname, Id, Alen, \
 Aptr, Rcptr) \
??< \
 struct IFAED_PSA* ifaed_pagezero = 0; \
 ifaed_pagezero->ifaed_cvt->ifaed_cvtecvt->ifaed_ecvtpred-> \
 ifaed_predvt->ifaed_lisaddr \
 (Type,Owner,Name,Fname,Id,Alen,Aptr,Rcptr); \
??>;
#endif

IFAEDC

Coding Registration Services 29

struct IFAED_ECVT ??<
 unsigned char ifaed_ecvt_filler1 ??(448??);
 struct IFAED_PRED * ifaed_ecvtpred; /*
 product enable/disable block */
 unsigned char ifaed_ecvt_filler2 ??(24??);
 unsigned char ifaed_ecvtpseq ??(4??); /* product sequence number */
 IfaedProdOwner ifaed_ecvtpown; /* product owner */
 IfaedProdName ifaed_ecvtpnam; /* product name */
 IfaedProdVers ifaed_ecvtpver; /* product version */
 IfaedProdRel ifaed_ecvtprel; /* product release */
 IfaedProdMod ifaed_ecvtpmod; /* product mod level */
 unsigned char ifaed_ecvt_filler3 ??(26??);
??>;

struct IFAED_CVT ??<
 unsigned char ifaed_cvt_filler1 ??(116??);
 struct ??<
 int ifaed_cvtdcb_rsvd1 : 4; /* Not needed */
 int ifaed_cvtosext : 1; /* If on, indicates that the
 CVTOSLVL fields are valid */
 int ifaed_cvtdcb_rsvd2 : 3; /* Not needed */
 ??> ifaed_cvtdcb;
 unsigned char ifaed_cvt_filler2 ??(23??);
 struct IFAED_ECVT * ifaed_cvtecvt;
 unsigned char ifaed_cvt_filler3 ??(1120??);
 unsigned char ifaed_cvtoslv0;
 struct ??<
 int ifaed_cvtoslv1_rsvd1 : 6; /* Not needed */
 int ifaed_cvtprded : 1; /* If on, indicates that the
 product enable/disable services are available */
 int ifaed_cvtoslv1_rsvd2 : 1; /* Not needed */
 ??> ifaed_cvtoslv1;
 unsigned char ifaed_cvt_filler4 ??(14??);
??>;

struct IFAED_PSA ??<
 char ifaed_psa_filler??(16??);
 struct IFAED_CVT* ifaed_cvt;
??>;

/* End of SMF Product Enable/Disable Services Header */

#endif

IFAEDC

30 z/OS: MVS Programming: Product Registration

Chapter 3. Examples

The following examples show possible uses of the registration services. The examples are written in
assembler and Java.

Detailed information about the services appears in Chapter 2, “Coding Registration Services ,” on page 5.

Registering a product, checking the status of another product, then
deregistering the first product using assembler

Figure 3 on page 31 shows code that registers a product, checks the status of another product, then
deregisters the first product and uses the MF parameter of the CALL macro to generate reentrant code.

PUBEX1 CSECT
PUBEX1 AMODE 31
PUBEX1 RMODE ANY
 STM 14,12,12(13)
 LR 12,15
 USING PUBEX1,12
 GETMAIN RU,LV=DYNAREALEN
 LR 14,1
 ST 13,4(,14)
 ST 14,8(,13)
 LR 13,14
 USING DYNAREA,13
DYNAREA DSECT
SAVEAREA DS CL72
PUBEX1 CSECT
EXAMPLE1 DS 0H

* Register a product *

 CALL IFAEDREG,(RTYPE,ROWNER,RNAME, *
 RFEATURENAME,RVERSION,RRELEASE, *
 RMOD,RID,RFEATURESLEN,RFEATURES,PRODTOKEN,RETCODE), *
 MF=(E,PL)
*
* Place code to check return code here
*

* Check the status of another product *

 CALL IFAEDSTA,(SOWNER,SNAME,SFEATURENAME, *
 SID,SOUTPUTINFO,
 SFEATURESLEN,SFEATURES,RETCODE),MF=(E,PL)
*
* Place code to check return code here
*

Figure 3. Example 1 — Using IFAEDREG, IFAEDSTA and IFAEDDRG

* Deregister the product *

 CALL IFAEDDRG,(PRODTOKEN,RETCODE),MF=(E,PL)
*
* Place code to check return code here
*
 B ENDEXAMPLE
*
* Values for REGISTER
*
RTYPE DC AL4(IFAEDREG_TYPE_STANDARD)
ROWNER DC CL16'VENDOR X'
RNAME DC CL16'Y_PROD1 '

Examples

© Copyright IBM Corp. 1997, 2019 31

RFEATURENAME DC CL16' '
RID DC CL8'1234-567'
RVERSION DC CL2'01'
RRELEASE DC CL2'01'
RMOD DC CL2'00'
RFEATURESLEN DC AL4(L'RFEATURES)
RFEATURES DC C'FEATURE1,FEATURE2OPT=2'
*
* Values for STATUS
*
SOWNER DC CL16'VENDOR Y'
SNAME DC CL16'Y_PROD2 '
SFEATURENAME DC CL16' '
SID DC CL8'8888-888'
SFEATURESLEN DC AL4(L'SFEATURES)
 IFAEDIDF , Return code information
DYNAREA DSECT
RETCODE DS F
PRODTOKEN DS CL8
SOUTPUTINFO DS CL16
SFEATURES DS CL1024
PL CALL ,(,,,,,,,,,,,),MF=L Call parm list for 12 parameters
DYNAREALEN EQU *-DYNAREA
PUBEX1 CSECT
ENDEXAMPLE DS 0H
 LR 1,13 Dynamic area address
 L 13,4(,13) Previous save area address
 FREEMAIN RU,A=(1),LV=DYNAREALEN
 LM 14,12,12(13)
 SLR 15,15
 BR 14
 END PUBEX1

Obtaining a list of information about products that are registered using
assembler

Figure 4 on page 33 shows code that obtains a list of information about products that are registered,
including information about their enablement state and uses the MF parameter of the CALL macro to
generate reentrant code..

Examples

32 z/OS: MVS Programming: Product Registration

PUBEX2 CSECT
PUBEX2 AMODE 31
PUBEX2 RMODE ANY
 STM 14,12,12(13)
 LR 12,15
 USING PUBEX2,12
 GETMAIN RU,LV=DYNAREALEN
 LR 14,1
 ST 13,4(,14)
 ST 14,8(,13)
 LR 13,14
 USING DYNAREA,13
DYNAREA DSECT
SAVEAREA DS CL72
PUBEX2 CSECT
EXAMPLE3 DS 0H
* Following is an assembler example of getting registration and
* state information about all of the products
 L 2,=AL4(INITEDAA) Initial answer area size
 ST 2,SIZEEDAA Save it
 GETMAIN RU,LV=(2) Allocate the answer area
 ST 1,EDAA@ Save address of answer area
LAB1 DS 0H
 L 4,EDAA@ Address of answer area
 CALL IFAEDLIS,(REQ_INFO, *
 ALL_OWNER,ALL_NAME,ALL_FN,ALL_ID, *
 SIZEEDAA,(4),LRETCODE),MF=(E,PL)
 CLC LRETCODE(4),=AL4(IFAEDLIS_NOTALLDATARETURNED) Warning?
 BNE LAB2 No, request successful or error
* Yes, not enough room
 LR 3,2 Save current size
 L 2,EDAAHTLEN-EDAAHDR(4) Get required size
 FREEMAIN RU,A=(4),LV=(3) Release old area
 ST 2,SIZEEDAA Save it
 GETMAIN RU,LV=(2) Allocate new area
 ST 1,EDAA@ Save address of answer area
 B LAB1 Retry List operation
LAB2 DS 0H
 CLC LRETCODE(4),=AL4(IFAEDLIS_SUCCESS) Success?
 BNE LAB3 No, error

Figure 4. Example 2 — Using IFAEDLIS

* *
* Process information in answer area when RC=0 *
* *

 USING EDAAHDR,4 EDAAHDR DSECT
*
* Process registered entry information
*
 L 5,EDAAHNUMR Find how many EDAAE registered entries
 LTR 5,5 Are there any entries
 BZ LAB4 No, check state entries
 L 6,EDAAHFIRSTRADDR Get first entry
 USING EDAAE,6 EDAAE DSECT
LAB5 DS 0H EDAAE loop
*
* Put code to process information contained in EDAAE here
*
 L 6,EDAAENEXTADDR Get next EDAAE
 BCT 5,LAB5 Continue while there are more
 DROP 6
*
* Process state entry information
*
LAB4 DS 0H EDAAE loop
 L 5,EDAAHNUMS Find how many EDAAE state entries
 LTR 5,5 Are there any entries
 BZ LAB10 No, done
 L 6,EDAAHFIRSTSADDR Get first entry
 USING EDAAE,6 EDAAE DSECT
LAB6 DS 0H EDAAE loop
*

Examples

Examples 33

* Put code to process information contained in EDAAE here
*
 L 6,EDAAENEXTADDR Get next EDAAE
 DROP 6
 BCT 5,LAB6 Continue while there are more
 B LAB4 Skip error case
LAB3 DS 0H Error return
*
* Process error case
*
LAB10 DS 0H Common path
 L 2,SIZEEDAA Get size of area
 L 4,EDAA@ Get address of area
 FREEMAIN RU,A=(4),LV=(2) Release area
 B ENDEXAMPLE

INITEDAA EQU 4096 Initial size of answer area
DYNAREA DSECT
EDAA@ DS A Address of answer area
SIZEEDAA DS F Size of answer area
TEMPSIZE DS F Temporary
LRETCODE DS F Return code
PL CALL ,(,,,,,,,),MF=L Call parameter list for 8 parameters
PUBEX2 CSECT
REQ_INFO DC A(IFAEDLIS_TYPE_REGISTERED+IFAEDLIS_TYPE_STATE)
ALL_OWNER DC CL16'*' Match all product owners
ALL_NAME DC CL16'*' Match all product names
ALL_FN DC CL16'*' Match all feature names
ALL_ID DC CL8'*' Match all product IDs
 IFAEDIDF , Service equates
DYNAREA DSECT
DYNAREALEN EQU *-DYNAREA
PUBEX2 CSECT
ENDEXAMPLE DS 0H
 LR 1,13 Dynamic area address
 L 13,4(,13) Previous save area address
 FREEMAIN RU,A=(1),LV=DYNAREALEN
 LM 14,12,12(13)
 SLR 15,15
 BR 14
 END PUBEX2

Registering and deregistering a product using Java
The IFAEDJReg class provides access to the z/OS product registration and deregistration services through
Java. The IFAEDJReg class allows Java programs to use the product registration services by wrapping the
system IFAEDREG (register) and IFAEDDRG (deregister) callable services.

A product is identified through various parameters such as product name, product owner, and feature
name. These fields are set in the IFAEDJReg object and then the register method can be called.

After a successful registration, a registration token (also referred to as a product token) is returned by the
system. This token is used by the deregister method to deregister the product.

The registration or deregistration return code provided by the system is returned by the methods.

The product registration Java support requires that the following Java level or higher be installed:

• IBM SDK for z/OS Java 2 Technology Edition, Version 1.4 PTF UQ93743, product number 5655-I56

To run an application that uses the product registration Java classes, you must add the jar file containing
the product registration classes to your path, and add the native library to your libpath.

Note in the examples below, the default installation paths are shown. If you have changed the default by
adding a path prefix, modify the commands accordingly.

Add the /usr/include/java_classes/ifaedjreg.jar file to your application classpath. In the z/OS UNIX
System Services shell, this can be done with the command:

export CLASSPATH=/usr/include/java_classes/ifaedjreg.jar:$CLASSPATH

Examples

34 z/OS: MVS Programming: Product Registration

Add the path to the native library /usr/lib/java_runtime/libifaedjreg.so to your library path (LIBPATH). In
the z/OS Unix System Services shell, this can be done with the command:

export LIBPATH=/usr/lib/java_runtime:$LIBPATH

The documentation for the using the methods in the Java classes is contained in the Javadoc for the
IFAEDJReg class. The Java doc is installed to /usr/include/java_classes/ifadjregDoc.jar by default.

All of the Javadoc files for product registration have been included in the jar. To view the Javadoc, it is
necessary to download the jar file in binary to your workstation, unjar the file to make the individual files
accessible, and then use your browser to open the index.html file.

Example: Registering a product using Java

The product name "TESTPROD" with product owner "IBM" and product number 9999-999 is to be
registered. If the product is disabled, the program will exit. Registration is done using the system service
IFAEDREG.

IFAEDJReg reg = new IFAEDJReg();
reg.setRegisterType(IFAEDJReg.IFAEDREG_TYPE_STANDARD +
IFAEDJReg.IFAEDREG_TYPE_NOTFOUNDDISABLED);
reg.setProductName("TESTPROD");
reg.setProductOwner("IBM");
reg.setProductID("9999-999");
int rc = reg.register(); // Invoke registration service
if (rc != IFAEDJReg.IFAEDREG_SUCCESS) {
 System.out.println("TESTPROD registration failed due to the return code from IFAEDJReg,
rc="+rc);
 System.exit(1);
}

Example: Deregistering a product using Java

A previously registered product is to be deregistered. The same object that was used during registration is
used for the deregistration. Deregistration is done using the system service IFAEDDRG.

nt rc = reg.deregister(); // Invoke deregistration service
if (rc != IFAEDJReg.IFAEDDRG_SUCCESS) {
 System.out.println("TESTPROD deregistration failed due to the return code from
 IFAEDJReg, rc="+rc);
 System.exit(2);
}

Examples

Examples 35

Examples

36 z/OS: MVS Programming: Product Registration

Appendix A. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (www.ibm.com/
support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the
Contact z/OS web page (www.ibm.com/systems/z/os/zos/webqs.html) or use the following mailing
address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision
use software products successfully. The accessibility features in z/OS can help users do the following
tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with
a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or
more syntax elements are always present together (or always absent together), they can appear on the
same line because they are considered a single compound syntax element.

© Copyright IBM Corp. 1997, 2019 37

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)
are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax
element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax
element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if
you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax element can be used zero
or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data
area, you know that you can include one data area, more than one data area, or no data area. If you

38 z/OS: MVS Programming: Product Registration

hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Accessibility 39

40 z/OS: MVS Programming: Product Registration

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for the Knowledge Centers. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1997, 2019 41

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or

42 z/OS: MVS Programming: Product Registration

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details in
the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease if
a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Notices 43

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

44 z/OS: MVS Programming: Product Registration

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Index

A
accessibility

contact IBM 37
features 37

assistive technologies 37

C
checking product status 3
coding registration services 5
contact

z/OS 37

D
Deregister service

example 31
invoking 5
Java example 34
using 3

dynamic enablement 1

E
enablement, product 1
examples, product registration services 31

F
feedback ix

I
IFAEDC include file 18, 19, 24
IFAEDDRG service

example 31
Java example 34

IFAEDIDF mapping macro 5, 18, 19
IFAEDLIS service

example 32
IFAEDREG service

example 31
Java example 34

IFAEDSTA service
example 31

IFAPRDxx 1, 6

J
Java

deregistering a product 34
registering a product 34

K
keyboard

navigation 37
PF keys 37
shortcut keys 37

L
List_Status service

example 32
invoking 5
using 3

N
navigation

keyboard 37

O
overview of product registration 1

P
product enablement 1
product registration

checking product status 3
coding the services 5
Deregister service 13
examples 31
List_Status service 19
overview 1
Query_Status service 15
Register service 6

Q
Query_Status service

example 31
invoking 5
using 3

R
Register service

example 31
invoking 5
Jave example 34
using 2

registration services 1
registration, product 1
request type

List_Status service 20
Register service 8

 45

S
sending to IBM

reader comments ix
shortcut keys 37
summary of changes

z/OS MVS Programming: Product Registration xi

T
trademarks 44

U
user interface

ISPF 37
TSO/E 37

Z
z/OS MVS Programming: Product Registration

summary of changes xi

46

IBM®

SA38-0698-40

	Contents
	Figures
	About this document
	Who should use this document
	How to use this document
	Where to find more information
	What Java level support is necessary for product registration

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS MVS Programming: Product Registration for Version 2 Release 4 (V2R4)
	Summary of changes for z/OS MVS Programming: Product Registration for Version 2 Release 3 (V2R3) and its updates
	Summary of changes V2R2

	Chapter 1. Using Registration Services
	Registering a Product
	Using the Register Service
	Using the Deregister Service
	Checking Product Status

	Chapter 2. Coding Registration Services
	Invoking the Services
	Register Service (IFAEDREG)
	Syntax
	Parameters
	Return Codes

	Deregister Service (IFAEDDRG)
	Syntax
	Parameters
	Return Codes

	Query_Status Service (IFAEDSTA)
	Syntax
	Parameters
	Return Codes

	List_Status Service (IFAEDLIS)
	Syntax
	Parameters
	Return Codes

	IFAEDC

	Chapter 3. Examples
	Registering a product, checking the status of another product, then deregistering the first product using assembler
	Obtaining a list of information about products that are registered using assembler
	Registering and deregistering a product using Java

	Appendix A. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Index

