
z/OS
2.4

MVS Using the Functional Subsystem
Interface

IBM

SA38-0678-40

Note

Before using this information and the product it supports, read the information in “Notices” on page
135.

This edition applies to Version 2 Release 4 of z/OS (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2021-06-21
© Copyright International Business Machines Corporation 1988, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... ix

Tables.. xi

About this information.. xiii
How this information is organized...xiii
How to use this information.. xiv
z/OS information..xiv

How to send your comments to IBM..xv
If you have a technical problem...xv

Summary of changes.. xvii
Summary of changes for z/OS Version 2 Release 4...xvii
Summary of changes for z/OS Version 2 Release 3...xvii
Summary of changes for z/OS Version 2 Release 2...xvii

Chapter 1. Functional Subsystem Interface Concepts... 1
What is a Functional Subsystem?.. 1

Managing an FSS...1
What is a Functional Subsystem Application?.. 1
What is the Functional Subsystem Interface?...1

Invoking the FSI... 3
FSI Services.. 3

FSS interface example... 5

Chapter 2. An Overview of FSI Processing.. 7
FSS Startup...7
FSI data set processing... 8
FSS Shutdown.. 9

Chapter 3. Installing a Functional Subsystem... 11
FSS-Related Initialization Statements..11

JES2 FSS-related initialization statements... 11
JES3 FSS-related initialization statements... 11

Defining JCL Procedure Used to Start an FSS... 12

Chapter 4. The FSIREQ Macro.. 13
FSIREQ Macro format.. 13
FSIREQ Macro Execution...14

Chapter 5. FSI Communication...17
Order Processing - Communication from JES to the FSS/FSA... 17

The FSI Order Routine..17
Order processing parameter list.. 17

Responding to an Order - Communication from the FSS/FSA to JES.. 20
Send processing in response to an order.. 20
Issuing the FSIREQ SEND Request..22

 iii

Unsolicited Send Processing..22
CONNECT/DISCONNECT Processing in Response to an Order...23

Post Processing..23
The FSI Post Routine..24
Function of the FSI Post Routine... 24
Post processing parameter list.. 24

Types of orders.. 25
Addressing mode - AMODE... 25

Pointer-defined Linkage... 26
Residency mode - RMODE...26

Chapter 6. Establishing FSS/JES Communication... 27
Starting an FSS...27
Initializing the FSS address space...28

Retrieving the MVS START Command and Token.. 29
Preparing for FSS CONNECT..29

Initializing the FSS level FSIREQ CONNECT parameter list.. 29
Issuing the FSS Level FSIREQ CONNECT Request..32

FSS CONNECT processing... 32
How JES Handles Logic Errors and Abends...32

How JES Monitors Timing of FSS CONNECT... 33

Chapter 7. Establishing FSA/JES communication... 35
Processing the START FSA order...35

Initializing the FSA... 39
FSA Successfully Started...39

Preparing for FSA CONNECT.. 39
FSA CONNECT processing..42

FSA Could Not Be Started..42

Chapter 8. Starting an FSS device.. 43
Processing the START device order...43
Notifying JES of Device Status...45

SEND Processing.. 45

Chapter 9. Issuing Data Requests to JES.. 47
Getting a SYSOUT Data Set (GETDS)... 47

Providing an FSA Checkpoint Area...49
Initializing the GETDS Parameter List..49
Issuing the FSIREQ GETDS Request..50
JES GETDS Processing... 51
No work exists for printing... 60
Notifying JES that the Data Set Reached the OOP.. 62

Getting SYSOUT records from an acquired data set... 64
Specific record retrieval... 66
Initializing the GETREC Parameter List..67
Issuing the FSIREQ GETREC Request... 68
JES GETREC Processing...69

Releasing a SYSOUT record... 72
Initializing the FREEREC parameter list...72
Issuing the FSIREQ FREEREC Request..74
JES FREEREC Processing... 74

Releasing a SYSOUT data set.. 74
Data Set Processing Status.. 75
Initializing the RELDS parameter list... 75
Issuing the FSIREQ RELDS Request.. 77
JES RELDS Processing..77

iv

SMF Record Writing.. 77
Requesting a Checkpoint of Processing.. 77

Purpose of the FSI CHKPT Service.. 78
Preparing for Checkpointing.. 78
JES CHKPT Processing... 80

Chapter 10. Responding to Device Orders From JES..81
The Query Order...81

Examples of JES Commands Resulting in a Query Order... 81
Processing the query order.. 81

The Set Order... 83
Examples of JES Commands Resulting in a Set Order..83
Processing the set order.. 83

The Synch Order.. 85
Examples of JES Commands Resulting in a Synch Order... 85
Processing the synch order..85

The Intervention Order.. 89
Processing the intervention order..89

Notifying JES of Order Completion..92
SEND Processing.. 92

Chapter 11. Stopping an FSS device... 93
Processing the STOP device order...93
Notifying JES When the Device is Stopped... 95

SEND Processing.. 95

Chapter 12. Stopping an FSA..97
Processing the STOP FSA order...97
Preparing for FSA Disconnect..99

Initializing the FSIREQ DISCONNECT Parameter List...99
Issuing the FSIREQ DISCONNECT Request.. 100

FSA-Initiated Termination... 100
Initializing the FSIREQ SEND Parameter List..100
Issuing the FSIREQ SEND Request... 101
SEND Processing.. 101

DISCONNECT FSA Processing...101
How JES Handles Logic Errors and Abends.. 102

How JES Monitors Timing of FSA DISCONNECT...102

Chapter 13. Stopping an FSS..103
Processing the STOP FSS order...103
Preparing for FSS Disconnect..105

Initializing the FSIREQ DISCONNECT Parameter List...105
Issuing the FSIREQ DISCONNECT Request.. 106

DISCONNECT FSS Processing... 106
How JES Handles Logic Errors and Abends.. 106

How JES Monitors Timing of FSS DISCONNECT... 106

Chapter 14. FSS Output Descriptor Support..107
The Scheduler JCL Facility.. 107

Overview of OUTPUT processing... 107
Using SJF Services...108

Requirements for Using SJF Services..108
The Scheduler JCL Facility RETRIEVE Request.. 108

Initializing the Keyword List...109
Establishing a Storage area..109
Initializing the SJF RETRIEVE parameter list.. 109

 v

Issuing the SJFREQ RETRIEVE Request... 110
SJF RETRIEVE Processing... 110

Chapter 15. FSI Trace.. 113
Using GTF to Trace FSI Communication... 113

Starting GTF..113
Specifying GTF Trace Options.. 113
Recreating the Problem... 115
Stopping GTF.. 115

Viewing FSI Trace Data..115
Reading GTF records.. 116
Summary of FSI Trace Output... 117

Appendix A. FSIREQ Parameter List... 121
CDFPAIRS.. 121
Orders Parameter Section... 121

Common order header... 121
START/STOP Order Data Section...122

Device Initialization Area for START FSA Order.. 122
Message Routing Information Area for Start FSA Order... 122

SET Order Data Section... 122
SYNCH Order Data Section..122
INTERVENTION Order Data Section... 123

IAZRESPA - Order Response Data Area.. 123
GETDS Function Dependent Area... 124

GETDS Function Dependent Extension Area...124
IAZJSPA - JES Job Separator Page Data Area.. 124
IAZJSPA - JES Dependent Section.. 124
IAZJSPA - User Dependent Section...125

GETREC Function Dependent Area... 125
IAZIDX - Index Returned by GETREC..125
Index Header Area... 125
Index Entry... 125

FREEREC Function Dependent Area... 126
RELDS Function Dependent Area..126
CHKPT Function Dependent Area... 126

IAZCHK - FSI Checkpoint Record.. 126
POST Dependent Section.. 127
SEND Dependent Section.. 127
FSIUDATA - User Trace Data Area...127

Appendix B. Numeric Values of FSI Services and Orders..................................... 129

Appendix C. Accessibility...131
Accessibility features.. 131
Consult assistive technologies.. 131
Keyboard navigation of the user interface.. 131
Dotted decimal syntax diagrams...131

Notices..135
Terms and conditions for product documentation... 136
IBM Online Privacy Statement.. 137
Policy for unsupported hardware..137
Minimum supported hardware..137
Programming interface information..138
Trademarks.. 138

vi

Index.. 139

 vii

viii

Figures

1. Address Space Communication Between JES2 and the FSS...2

2. Address Space Communication Between JES3 and the FSS...3

3. Overview of FSS Startup Processing... 7

4. Overview of FSI data set processing...8

5. Overview of FSI Shutdown Processing... 9

6. Parameter list for order processing.. 18

7. Parameter list for send processing... 20

8. Parameter list for post processing..24

9. An Overview of FSI Startup Processing.. 27

10. FSSDEF/MVS START command parameter relationships.. 28

11. FSIREQ parameter lists for FSS CONNECT processing..30

12. Overview of FSI startup processing..35

13. FSIREQ parameter lists for the START FSA order.. 36

14. FSIREQ parameter lists for FSA CONNECT.. 40

15. Overview of FSI startup processing..43

16. FSIREQ parameter lists for the START device order.. 44

17. Overview of FSI data set processing.. 48

18. FSIREQ parameter lists GETDS processing..49

19. The IAZJSPA (job separator page area)... 55

20. Overview of data set processing...61

21. FSIREQ parameter lists for POST processing.. 62

22. FSIREQ parameter lists for send processing... 63

23. Overview of data set processing...65

 ix

24. Index (mapped by IAZIDX) returned from GETREC request... 66

25. FSIREQ parameter lists for GETREC processing..69

26. Overview of data set processing...72

27. FSIREQ Parameter Lists for FREEREC Processing... 73

28. Overview of data set processing...75

29. FSIREQ parameter lists for RELDS processing...76

30. FSIREQ parameter lists for CHKPT processing.. 79

31. FSIREQ parameter lists for the QUERY order...82

32. FSIREQ parameter lists for SET order processing... 83

33. FSIREQ parameter Lists for synch order processing... 85

34. FSIREQ parameter lists for intervention order processing..90

35. Overview of FSI shutdown processing... 93

36. FSIREQ parameter lists for STOP device processing... 94

37. Overview of FSI shutdown processing... 97

38. FSIREQ Parameter Lists for STOP FSA Processing.. 98

39. Overview of FSI shutdown processing... 103

40. FSIREQ parameter lists for STOP FSS processing... 104

41. OUTPUT JCL processing... 108

42. SJF control blocks returned from SJF RETRIEVE.. 111

x

Tables

1. FSS interface example components... 5

2. Orders and Responses.. 25

3. Allowable AMODE values.. 26

4. Allowable RMODE values for the FSI parameter list..26

5. FSIREQ GETDS parameter values ..49

6. Contents of the GETDS parameter list..51

7. IAZJSPA macro..56

8. Fields in the SEND parameter list that require initialization..63

9. Contents of the GETREC parameter list..70

10. Fields in the index returned by GETREC processing.. 71

11. FSIREQ parameters for the query order...82

12. FSIREQ parameters for the set order... 84

13. FSIREQ parameters for the synch order.. 86

14. FSIREQ parameters for the intervention order.. 90

15. SJF RETRIEVE parameter list... 109

16. FSI Trace Output Summary.. 117

17. Numerical Values of FSIFUNC.. 129

18. Numerical Values of ORDID..129

 xi

xii

About this information

This book is intended for anyone responsible for writing and installing a functional subsystem (FSS) and
its functional subsystem applications (FSA). This book describes the functional subsystem interface (FSI)
and shows how the FSS and a job entry subsystem (JES) communicate using the FSI.

How this information is organized
The organization and content of each section are:

• Chapter 1, “Functional Subsystem Interface Concepts,” on page 1, briefly describes functional
subsystem concepts, terminology, address space relationships, and services that the functional
subsystem interface supplies.

• Chapter 2, “An Overview of FSI Processing,” on page 7, describes the overall flow of processing from
the time the FSS is started, through data set processing, until the FSS is terminated.

• Chapter 3, “Installing a Functional Subsystem,” on page 11, provides examples of JES initialization
statements needed to install a functional subsystem and a sample JCL procedure.

• Chapter 4, “The FSIREQ Macro,” on page 13, presents the FSIREQ macro and explanations of the
macro parameters.

• Chapter 5, “FSI Communication,” on page 17, describes the communication mechanisms that allow
JES to make service requests to the FSS or FSA and allows the FSS or FSA to respond to JES.

• Chapter 6, “Establishing FSS/JES Communication,” on page 27, describes the processing for starting
the functional subsystem.

• Chapter 7, “Establishing FSA/JES communication,” on page 35, describes the processing for starting a
functional subsystem application that is associated with an individual device.

• Chapter 8, “Starting an FSS device,” on page 43, describes the processing for starting a device that
runs under an FSS.

• Chapter 9, “Issuing Data Requests to JES,” on page 47, describes how to obtain and free a data set
and its records, and how to ask JES to record checkpoint information.

• Chapter 10, “Responding to Device Orders From JES,” on page 81, describes the processing for orders
that request a change in device or data set characteristics, affects the flow of data through the device,
or requests information about a data set currently being processed by an FSA device.

• Chapter 11, “Stopping an FSS device,” on page 93, describes the processing involved in stopping a
device that is running under an FSS.

• Chapter 12, “Stopping an FSA,” on page 97, describes the processing for stopping a functional
subsystem application that is associated with an individual device.

• Chapter 13, “Stopping an FSS,” on page 103, describes the processing for terminating the functional
subsystem address space.

• Chapter 14, “FSS Output Descriptor Support,” on page 107, describes the scheduler JCL facility and
how it interfaces with JES and the FSS to provide FSS scheduler work block support.

• Chapter 15, “FSI Trace,” on page 113, describes FSI trace facilities useful for diagnosing problems with
the FSI.

• Appendix A, “FSIREQ Parameter List,” on page 121, contains storage representations for the fields in
the IAZFSIP mapping macro and other related storage.

• Appendix B, “Numeric Values of FSI Services and Orders,” on page 129, provides the numeric values for
the FSI services.

• “Notices” on page 135, provides notices, programming interface information, and trademark
information.

• A Glossary and Index are also provided.

© Copyright IBM Corp. 1988, 2020 xiii

How to use this information
Use Chapter 1, “Functional Subsystem Interface Concepts,” on page 1, and Chapter 2, “An Overview of
FSI Processing,” on page 7, to familiarize yourself with the terminology and processing related to the
functional subsystem interface.

Use Chapter 3, “Installing a Functional Subsystem,” on page 11, to install the functional subsystem.

Use Chapter 4, “The FSIREQ Macro,” on page 13, through Chapter 14, “FSS Output Descriptor Support,”
on page 107, when you are coding your functional subsystem and your functional subsystem applications.
These chapters explain how to use the FSI to make requests to JES and explains how JES will respond to
those requests. These sections explain the values that JES expects to receive from your functional
subsystem during processing. These sections also show the values that your functional subsystem can
expect to receive from JES when your FSS receives control.

Use Chapter 15, “FSI Trace,” on page 113, to diagnose any problems your FSS might encounter.

z/OS information
This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS® library, go to IBM Documentation (www.ibm.com/docs/en/zos).

xiv z/OS: z/OS MVS Using the Functional Subsystem Interface

https://www.ibm.com/docs/en/zos

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xv.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM® Documentation function
If your comment or question is about the IBM Documentation functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Documentation Support
at ibmdocs@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS MVS Using the Functional Subsystem

Interface, SA38-0678-50
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 1988, 2020 xv

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmdocs@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xvi z/OS: z/OS MVS Using the Functional Subsystem Interface

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

Summary of changes for z/OS Version 2 Release 4
May 2021

• For APAR OA60528, support was added for blank truncation at FSS, FSA, and GETDEV levels. These
sections are updated:

– “Initializing the FSS level FSIREQ CONNECT parameter list” on page 29
– “Initializing the FSIREQ Connect parameter list” on page 39
– “Specific record retrieval” on page 66
– “Initializing the GETREC Parameter List” on page 67
– “GETDS Function Dependent Area” on page 124

Summary of changes for z/OS Version 2 Release 3
This information contains no technical changes for this release.

Summary of changes for z/OS Version 2 Release 2
This information contains no technical changes for this release.

© Copyright IBM Corp. 1988, 2020 xvii

xviii z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 1. Functional Subsystem Interface Concepts

The functional subsystem interface (FSI) allows communication between JES and your functional
subsystem (FSS) and functional subsystem application (FSA). The FSS/FSA allows installations to support
sophisticated devices.

Besides using an FSS to drive sophisticated printers, the FSS can also drive a simple device, or a process
that is not a device at all. This chapter defines the key concepts related to the functional subsystem
interface.

What is a Functional Subsystem?
A functional subsystem (FSS) is a collection of programs residing in an address space separate from JES
that communicates with JES to provide a JES-related function, such as print processing. An FSS extends
the scope of JES processing. Because an FSS operates in its own address space, it functions
independently of JES in several areas.

An FSS is responsible for:

• The management of storage resources that it needs during data set processing including print buffers.
• Its own recovery and serviceability.
• Its performance and accounting measurements.
• The security of its own resources.

Managing an FSS
An FSS is dependent on JES for control and services. JES manages an FSS in the following ways:

• The FSS is defined during JES initialization using JES initialization statements and parameters.
• JES initiates the FSS address space.
• JES provides services for use by the FSS. FSS messages sent to the JES operator are in a format chosen

by the writer of the FSS.
• JES controls its own resources, such as the job queues and spool.
• JES controls output scheduling for FSS-controlled devices. The FSS application does not control

selection criteria when acquiring data sets for print processing. JES uses its own work selection criteria
to provide the proper data sets to the FSS application.

• JES coordinates the termination and restart of the FSS.

What is a Functional Subsystem Application?
A functional subsystem application (FSA) is a collection of programs residing in the FSS address space
that control one device. There can be multiple FSAs per FSS. IBM recommends that each of the FSAs for
the FSS be a separate task. The FSA can be thought of as a logical subset of the FSS and is the lowest
level of connection with JES.

What is the Functional Subsystem Interface?
JES and the FSS/FSA communicate through the functional subsystem interface (FSI). The FSI is a one-
level interface which provides two way communication. The FSI consists of a set of macro-invoked service
routines provided by both JES and the FSS/FSA. These service routines are:

• JES routines that reside in the FSS address space
• SSI routines that JES provides

FSI Concepts

© Copyright IBM Corp. 1988, 2020 1

• FSS/FSA-supplied routines.

Figure 1 on page 2 shows the types of address space communication (SSI,XM, and FSI) that exist
between JES2 and the FSS. Figure 2 on page 3 shows the types of address space communication (SSI
and FSI) that exist between JES3 and the FSS.

FSS ADDRESS SPACEJES2 ADDRESS SPACE

FSS PROCESSOR

JES2

SPOOL PRINTER

FSI

SSI

J

E

S

2

A

P

P

L

I

C

A

T

I

O

N

XM

FSS FUNCTION

FSA FUNCTIONS

XX

COMMON AREA

Figure 1. Address Space Communication Between JES2 and the FSS

FSI Concepts

2 z/OS: z/OS MVS Using the Functional Subsystem Interface

JES3

SPOOL

PRINTER

COMMON AREA

FSS ADDRESS SPACEJES3 GLOBAL ADDRESS SPACE

WRITER DSP

FSSSI

J

E

S

3

A

P

P

L

I

C

A

T

I

O

N

FSS FUNCTIONS

FSA FUNCTIONS

XX

Figure 2. Address Space Communication Between JES3 and the FSS

Invoking the FSI
The FSS/FSA and JES use the FSIREQ macro to invoke functional subsystem interface (FSI) services. The
FSIREQ macro allows JES to issue orders to the FSS/FSA and the FSS/FSA to issue requests to JES.

The IAZFSIP mapping macro maps the FSIREQ function-dependent parameter lists. The FSS/FSA and JES
use these parameter lists to pass information to each other. On the FSIREQ macro call, the caller specifies
the service requested, the subsystem (FSS or JES) that provides the service, and the address of the
caller's parameter list. Chapter 4, “The FSIREQ Macro,” on page 13 describes each operand on the
FSIREQ macro and Appendix A, “FSIREQ Parameter List,” on page 121 illustrates the storage maps for
the associated FSIREQ parameter lists.

FSI Services
FSI services are actually JES and FSS/FSA supplied routines that allow interaction between JES and the
FSS/FSA. FSI services fall into three categories:

• Communication services
• Data access services
• Control services.

Communication Services
The functions of the individual FSI communication services are:

• FSI CONNECT

The FSS and FSA invoke the FSI CONNECT service to establish the functional subsystem interface to
JES. FSI CONNECT processing tells JES that the FSS/FSA is started. It also identifies to the FSI the
addresses of FSS/FSA routines that are to receive control when JES issues the FSIREQ macro and the
addresses of JES routines that are to receive control when the FSS/FSA issues the FSIREQ macro.

• FSI DISCONNECT

FSI Concepts

Chapter 1. Functional Subsystem Interface Concepts 3

The FSS and FSA invoke the FSI DISCONNECT service to terminate connection with JES.
• FSI ORDER

JES invokes the FSI ORDER service to issue orders to the FSS/FSA. When an operator issues a JES
command that requires the participation of an FSS/FSA, JES converts that command into an order. An
order represents a unit of work known to both JES and the FSS/FSA. The FSS/FSA performs the actions
associated with the order and then responds to JES with the required information. The valid orders are:
Start FSA

Requests the FSS to start the FSA. When the FSA is started, the FSA responds to JES with the FSA
CONNECT request.

Start Device
Requests the FSA to start the device. Once the device is started, the FSA can begin requesting data
sets for processing.

Stop Device
Requests the FSA to stop the device. Once the FSA stops the device, it does not request any more
work.

Stop FSA
Requests the FSS to stop the FSA. When the FSA completes its processing, it responds to JES with
an FSA DISCONNECT request.

Stop FSS
Requests the FSS to shut down. When the FSS completes its processing, it responds to JES with an
FSS DISCONNECT request.

Query
Requests the FSA to obtain information about the data set currently at the operator observation
point (OOP).

Set
Requests the FSA to set or change device characteristics.

Synch
Requests the FSA to synchronize its processing to the point of actual printing. JES issues a synch
order when an action needs to be performed against the data set currently at the operator
observation point (OOP) of the device.

Intervention
Requests the FSA to prepare the device for operator intervention. JES issues this order when a
change in device setup (such as a change in forms) that involves operator intervention is required.

• FSI SEND

The FSS/FSA invokes the FSI SEND service to send an asynchronous response to a JES order. The
FSS/FSA can also use the SEND to send unsolicited material to the JES.

Data Access Services
The functions of the individual FSI data access services are:

• FSI GETDS

The FSA invokes the FSI GETDS service to request access to a JES spool data set and its characteristics.
The GETDS service is functionally equivalent to allocating and opening a data set.

• FSI GETREC

The FSA invokes the FSI GETREC service to obtain one or more records from a data set obtained by use
of the FSI GETDS service.

• FSI FREEREC

The FSA invokes the FSI FREEREC service to free one or more logical records that it previously acquired
with a GETREC request.

• FSI RELDS

FSI Concepts

4 z/OS: z/OS MVS Using the Functional Subsystem Interface

The FSA invokes the FSI RELDS service to release a data set previously obtained by the FSI GETDS
service. The RELDS service is functionally equivalent to closing and unallocating a data set.

• FSI CHKPT

The FSA invokes the FSI CHKPT service to request JES to record checkpoint information for the JES
spool data set currently being processed on the FSA device.

The checkpoint information recorded is used for restart situations. For example, if processing of the
data set is interrupted, the FSA returns the data set to JES with an incomplete processing status. When
the data set is again selected for processing, the device can begin printing the data set from the point of
the last valid checkpoint taken.

Control Services
The FSI POST service is the only FSI control service. JES invokes the FSI POST service to signal
completion of asynchronous requests. If no work is available to satisfy a GETDS request, JES returns
control to the FSA indicating it will satisfy the request at a later time. When work becomes available, JES
issues an FSI POST request to notify the FSA that GETDS requests can now be satisfied and that the FSA
should reissue the request.

The following table lists each FSI service and shows the type of interaction it allows, the valid caller(s) of
the service, and the subsystem/application that provides the service.

FSI Service Type of Interaction Used by Provided by

CHKPT Data Access FSA JES

CONNECT Communication FSS/FSA JES

DISCONNECT Communication FSS/FSA JES

FREEREC Data Access FSA JES

GETDS Data Access FSA JES

GETREC Data Access FSA JES

ORDER Communication JES FSS/FSA

POST Control JES FSA

RELDS Data Access FSA JES

SEND Communication FSS/FSA JES

FSS interface example
IBM provides a functional subsystem (FSS) interface example in SYS1.SAMPLIB. The example is a working
illustration of how you might implement functional subsystem interface (FSI) functions. This example is
meant as a starting point for applications programmers to develop their own FSS applications, which can
include functions such as driving output devices, for example, plotters and microfiche writers, or other
devices.

The example is written in S/370 basic assembler language. Its component members, as well as a brief
description of each, are listed in Table 1 on page 5.

Table 1. FSS interface example components

Member name Description

IAZSFSS Module that operates the (main) FSS task. This module contains the entry point
for the load module. It also contains general documentation for the FSS interface
example.

IAZSFSA Module that operates the FSA subtask(s).

IAZSFSD Module that operates an output device.

IAZSFSJ The module that facilitates communication between JES and the FSS or an FSA.

FSI Concepts

Chapter 1. Functional Subsystem Interface Concepts 5

Table 1. FSS interface example components (continued)

Member name Description

IAZSFSE Module that provides recovery for the FSS and FSA tasks.

IAZSSCB
IAZSDTE
IAZSACB
IAZSDCB
IAZSPLE
IAZSSMF
IAZSMSG
IAZSOPT

Macros that describe data areas specific to the FSS interface example.

In addition to providing an illustration of basic FSI functions, the example also provides function and/or
logic that may or may not be appropriate for your general-purpose FSS. These functions appear
throughout the code and are denoted in comment boxes that contain the following special header:

 * <<<<<<<<<<<< SUPPLEMENTARY INFORMATION >>>>>>>>>>>>>>>>>>>>> *

As appropriate for your application, you should delete and/or modify these additional functions or logic.

The example is meant only as a documentation and coding shell for the general flow for JES/FSS
processing and does not:

• Use all of the functions of the FSI
• Fully complete, in every case, a function that was initiated. (For example, you might receive console

messages indicating a function completed, when in fact, it did not actually perform the function.)
• Show a definitive way to develop an FSS
• Attempt to match the requirements of any particular installation-written FSS.

FSI Concepts

6 z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 2. An Overview of FSI Processing

Functional subsystem interface (FSI) processing consists of three major consecutive stages: FSS startup,
data set processing, and FSS termination. Figure 3 on page 7 illustrates the logical processing steps
within each stage of FSI processing and shows the flow of control between JES and the FSS for each step.

FSS Startup

Initialize PRINTER
FSIREQ REQUEST=FSISEND

JES CODE FSS/FSA CODE

Address space created
FSS Initialization
FSS Connect Request
FSIREQ REQUEST=FSICON

Receive response of started device

Issue Start FSA
FSIREQ REQUEST=FSIORDER

START procname...

Issue start device
FSIREQ REQUEST=FSIORDER

WAIT

FSS waits for orders

WAIT
FSA Initialization
FSA Connect Request
FSIREQ REQUEST=FSICON

1

2

3

4

6

5
WAIT

FSA waits for orders

Figure 3. Overview of FSS Startup Processing

Figure 3 on page 7 shows how JES starts an FSS, one or more FSAs associated with the FSS, and the FSA
printer.

1. JES starts the FSS either during JES initialization or in response to an operator command to start a
printer under control of the FSS. JES gets information from the FSS initialization statement to use in
the MVS START command. JES then issues the MVS START command causing the creation of the FSS
address space.

2. Once the FSS address space is created, the FSS performs initialization. When initialization is complete,
the FSS responds to JES with an FSIREQ CONNECT request. Successful completion of FSS CONNECT
processing signals JES to issue a START FSA order.

3. JES issues the START FSA order to the FSS order routine.
4. The FSS order routine receives the order and then the FSS attaches an FSA task to perform FSA and

device initialization. When FSA initialization is complete, the FSA responds to JES with an FSIREQ
CONNECT request. Successful completion of FSA CONNECT processing signals JES to issue a START
DEVICE order.

5. JES issues the START DEVICE order to the FSA order routine.
6. The START DEVICE order indicates to the FSA that JES is ready to receive GETDS requests. The

FSIREQ SEND request notifies JES that the FSA has completed the order. At this point, the FSA can
issue GETDS requests.

FSI Overview

© Copyright IBM Corp. 1988, 2020 7

FSI data set processing
FSA CODE

WAIT

2d

3

5

7

4

6

8

1

2

2c

2a

2b

JES CODE

Works is available
Select WORK
Fill WORK REQUEST

Select WORK
Tell FSA work exists
FSIREQ REQUEST=FSIPOST

Process RELDS
Closes the data set and deallocates
its storage

No work found
Return from GETDS
Indicating no work available

Fill WORK REQUEST

Build INDEX and Parameter List

Process FREEREC

PROCESS RECORD

Next GETDS

Issue GETDS Request
FSIREQ REQUEST=FSIGDS

Respond to Post
FSIREQ REQUEST=FSIGDS

ISSUE FREEREC REQUEST
FSIREQ REQUEST=FSIFREC

ISSUE RELDS Request
FSIREQ REQUEST=RELDS

ISSUE GETREC REQUEST
FSIREQ REQUEST=FSIREC

WAIT

WAIT

WAIT

2d

3

5

7

4

6

8

1

2

2c

2a

2b

Figure 4. Overview of FSI data set processing

Once the device is started, the FSA can begin issuing data requests to JES. Figure 4 on page 8 shows the
FSI data set processing steps.

1. The FSA issues an FSIREQ GETDS request to JES to obtain a JES spool data set and its attributes for
processing. The GETDS service is functionally equivalent to allocating and opening a data set.

2. If work is available, JES immediately satisfies the GETDS request. JES assigns a data set to the FSA
and returns data set related information in the GETDS parameter list.

a. If no work exists for print processing, JES returns control to the FSA. The FSA will not issue GETDS
requests until JES notifies the FSA by using the FSI POST service. JES will issue an FSIREQ POST
request when JES determines that work has become available.

b. When work becomes available, JES issues a FSIREQ POST request.
c. The FSA POST routine gets control and posts the FSA task to reissue the GETDS request.
d. When JES receives the GETDS request, JES satisfies the GETDS request as described earlier.

3. Once the FSA has obtained access to a SYSOUT data set, it uses the data set identifier returned to
issue a FSIREQ GETREC request to JES to obtain logical records for the data set.

4. When JES receives the GETREC request, it obtains one or more logical record pointers using an index
table. JES then returns a pointer to the index in the GETREC parameter list to the FSA.

5. The FSA processes the records associated with the index and then issues a FSIREQ FREEREC request
to release the storage associated with these logical records. Storage resources are a fixed quantity. It

FSI Overview

8 z/OS: z/OS MVS Using the Functional Subsystem Interface

is important that the FSA issue FREEREC requests or record processing may eventually not be able to
continue because of a buffer shortage.

6. JES processes the FREEREC request by releasing the storage for the specified record. This storage is
then available for subsequent GETREC processing.

7. After all of the records in a data set have been processed or when end-of-file is reached, the FSA
issues a FSIREQ RELDS request to return the data set to JES.

8. When JES receives the RELDS request, it closes the data set and deallocates the storage resources
associated with it. If the FSA indicated that valid checkpoint information exists for the data set, JES
writes the final checkpoint record to spool. JES then waits for the next GETDS request.

FSS Shutdown

WAIT

WAIT

JES CODE FSA CODE

Handle response
Issue stop FSA
FSIREQ REQUEST=FSIORDER

Stop all active FSAs
Issue stop FSS
FSIREQ REQUEST=FSIORDER

Handle response

Stop device
FSIREQ REQUEST=FSISEND

Clean up FSA structure
FSIREQ REQUEST=FSIDCON

Clean up FSS structure
FSIREQ REQUEST=FSIDCON

WAIT

Issue stop device
FSIREQ REQUEST=FSIORDER

Handle response
Put out appropriate message

1

2

3

4

6

5

Figure 5. Overview of FSI Shutdown Processing

Figure 5 on page 9 shows how JES stops a printer, the FSA associated with that printer, and the
corresponding FSS.

1. When an operator issues a command to either drain a specific device or to shut down JES cleanly, JES
issues a STOP device order to the FSA order routine for the FSA controlling that device.

2. The FSA order routine processes the order and the appropriate FSA task stops the printer device.
When the printer is stopped, the FSA must issue an FSIREQ SEND request to notify JES that the FSA
has completed the order and that the printer is stopped. At this point, JES can pass another order to
the FSA.

3. After the FSA notifies JES that a device was stopped, JES issues a STOP FSA order to the FSS order
routine.

4. The STOP FSA order causes the FSA to perform cleanup processing and then terminate itself by issuing
an FSA-level DISCONNECT to JES. When JES receives the FSA-level DISCONNECT it validates the
information and then issues a message the operator.

5. An FSS receives a STOP FSA order for every active FSA that it controls. After all active FSAs are
stopped, JES issues the STOP FSS order to the FSS order routine.

FSI Overview

Chapter 2. An Overview of FSI Processing 9

6. The STOP FSS order causes the FSS to perform cleanup processing and then terminate itself by issuing
an FSS-level DISCONNECT to JES. JES validates the FSS information and terminates the FSS address
space.

FSI Overview

10 z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 3. Installing a Functional Subsystem

To install an FSS, you need to:

• Code FSS-related initialization statements and include these in your JES initialization stream.
• Define a JCL procedure that will be used to start the FSS.

The following sections contain examples of the required initialization statements and an example JCL
procedure.

FSS-Related Initialization Statements
Both JES2 and JES3 have FSS-related initialization statements that you use to define the FSS
requirements and install the FSS.

JES2 FSS-related initialization statements
JES2 has two FSS-related initialization statements. These are:
Statement

Function
PRTnnnn

Defines each FSS printer device to JES2.
FSSDEF

Defines the characteristics of an FSS to JES2.

The following example shows how you might code these statements to define an FSS and an IBM 3820
printer device running under that FSS.

PRT1000 FSS=MYFSS,MODE=FSS,CKPTPAGE=100,PAGECKPT

FSSDEF FSSNAME=MYFSS,PROC=SAMPPROC,HASPFSSM=HASPFSSM

Refer to z/OS JES2 Initialization and Tuning Reference for more information about each of these
statements and the parameters defined on them.

JES3 FSS-related initialization statements
JES3 has three FSS-related initialization statements. Which ones you use depends on the type of printer
that will run under the FSS. The three JES3 statements are:
Statement

Function
DEVICE

Defines each FSS printer device to JES3.
SETNAME

Specifies all user-assigned names and device type names associated with MDS-managed devices (for
example, 3800 printers). MDS-managed devices are those devices which JES3 allocates, instead of
MVS.

FSSDEF
Defines the characteristics of an FSS to JES3.

Installing An FSS

© Copyright IBM Corp. 1988, 2020 11

See z/OS JES3 Initialization and Tuning Reference for more information about each of these statements.
The following example shows possible initialization statements for defining an FSS to control two IBM
3820 printer devices.

DEVICE,DTYPE=PRT3820,JNAME=P2G18,MODE=FSS,FSSNAME=MYFSS,JUNIT=(,SY1,D1,ON)
DEVICE,DTYPE=PRT3820,JNAME=P2X43,MODE=FSS,FSSNAME=MYFSS,JUNIT=(,SY1,D2,ON)

Defining JCL Procedure Used to Start an FSS
The following is an example of a JCL procedure used to define requirements for a printing device running
under an FSS.

//SAMPPROC PROC
//STEP01 EXEC PGM=MYFSS,REGION=1750K

Installing An FSS

12 z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 4. The FSIREQ Macro

The FSIREQ macro enables communication to be established between JES and the FSS/FSA. The
following types of communication can be established by invoking the FSIREQ macro.

• Connect the FSS/FSA to JES (CONNECT)
• Disconnect the FSS/FSA from JES (DISCONNECT)
• Get a SYSOUT data set from JES (GETDS)
• Get records for a SYSOUT data set (GETREC)
• Release records for a SYSOUT data set (FREEREC)
• Release a SYSOUT data set (RELDS)
• Write checkpoint information to spool (CHKPT)
• Send a response to JES (SEND)
• Notify the FSA that a request was completed (POST)
• Send an order to the FSS/FSA (ORDER)

The FSIREQ function dependent parameter lists are mapped by the IAZFSIP mapping macro. The
FSS/FSA and JES use the FSIREQ parameter lists to pass information.

In addition to the information in the IAZFSIP macro, other information is passed in additional parameter
lists pointed to by the IAZFSIP. The appendix describes these parameter lists and their relationship to the
IAZFSIP macro.

This section describes the parameters on the FSIREQ macro and explains the rules for executing the
macro. The specific values that the FSS and JES assign are discussed in the chapter specific to the task
being performed.

FSIREQ Macro format
The format of the FSIREQ macro is:

 {FSICON}
 {FSIDCON }
 {FSIGDS }
 {FSIRDS }
 FSIREQ REQUEST = {FSIGREC }
 {FSIFREC }
 {FSICKPT }
 {FSISEND }
 {FSIORDER}
 {FSIPOST }

 { ,TARGET = JES }
 { FSS }

 { ,PARM = parm list address }
 { (R1) }

 { ,FSID = functional subsystem identifier }
 { (R2 - R12) }

REQUEST =
Specifies the FSI service to be invoked by either JES or the FSS. If you do not specify REQUEST, you
must have previously stored one of the following values in the FSIFUNC field of the FSI parameter list
(IAZFSIP).

Note: You must specify the REQUEST= parameter for FSICON and FSIDCON requests.

FSIREQ Macro

© Copyright IBM Corp. 1988, 2020 13

FSICON
The FSI CONNECT service communicates the initiated status of the FSS/FSA to JES and identifies
FSI routines supplied by the FSS/FSA.

FSIDCON
The FSI DISCONNECT service communicates the terminated status of the FSS/FSA to JES.

FSIGDS
The FSI GETDS service enables the FSA to get a data set from JES.

FSIRDS
The FSI RELDS service enables the FSA to release a data set to JES.

FSIGREC
The FSI GETREC service enables the FSA to get records from an obtained data set.

FSIFREC
The FSI FREEREC service enables the FSA to free records from an obtained data set.

FSICKPT
The FSI CHKPT service allows the FSA to request JES to record checkpoint information about a
data set currently undergoing print processing on an FSS device.

FSISEND
The FSI SEND service enables the FSS/FSA to send a response to JES.

FSIORDER
The FSI ORDER service enables JES to send an order to the FSS/FSA.

FSIPOST
The FSI POST service enables JES to notify the FSA that work is now available and that the GETDS
request can be reissued.

TARGET =
Specifies the subsystem whose routines are invoked when the FSIREQ macro is executed. If target is
not specified, JES is the default.
JES

Indicates that JES is to receive control. TARGET=JES is only used by the FSS/FSA.
FSS

Indicates that the FSS is to receive control. TARGET=FSS is only used when JES issues the FSIREQ
macro for POST and ORDER requests.

PARM=
Specifies the address of the FSI parameter list. This list contains the data that the specified service
will use. If PARM is not specified, JES assumes that you have put the address of the FSI parameter list
in register 1. IBM recommends that you save the address of the parameter list somewhere other than
register 1. When JES returns control to the FSS the contents of register 1 may be unpredictable.

The RMODE (residency mode) values that are allowed for the FSI parameter lists depend upon the
settings of the CDFFL331 and CDFS1A31 bits.

FSID=
Specifies a value that uniquely identifies the FSS/FSA. JES assigns the FSS an identifier of the form
xxxx0000, where xxxx is a unique number. JES assigns the FSA an identifier of the form xxxxyyyy,
where xxxx corresponds to the controlling FSS identifier, and yyyy is a unique number for each the
FSA. If FSID is not specified, you must have previously stored the FSID in the FSIFSID field of the FSI
parameter list.

FSIREQ Macro Execution
The FSIREQ macro is used to request all of the FSI services. When JES or your FSS/FSA issues the
FSIREQ macro, the FSI services that receive control are actually JES and FSS/FSA supplied routines. Each
subsystem or subsystem application identifies the addresses of its FSI routines during CONNECT
processing. The definition of each function's input and output parameters is supplied in the IAZFSIP
mapping macro.

FSIREQ Macro

14 z/OS: z/OS MVS Using the Functional Subsystem Interface

Note: The FSI routines adhere to standard OS linkage conventions.

The register conventions on entry to all the services are:
Register 1

Contains the address of the parameter list (FSIPARM).
Register 13

Contains the address of a save area provided by the issuer of the FSIREQ macro.
Register 14

Contains the address of the return point.
Register 15

Contains the address of the entry point.

The FSIREQ macro services return the following return codes in register 15:
0

Successful
non-zero

Request failed

FSIREQ Macro

Chapter 4. The FSIREQ Macro 15

FSIREQ Macro

16 z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 5. FSI Communication

The communication mechanism of the FSI allows JES to make service requests to the FSS or FSA. The
FSS or FSA receives the request, attempts to provide the requested service, and then returns an
indication to JES of whether or not the request was successfully processed. In most cases, JES initiates
the communication. The case where the FSA initiates the communication (unsolicited FSIREQ SEND
function call) is discussed later in this section.

JES tells the FSS/FSA about the service that the FSS/FSA needs to provide through the FSIREQ ORDER
function call.

JES sends only one service request (order) at a time to the FSS or FSA for processing. JES will not send
another order to the FSS or FSA until it has received a response from the FSS or FSA indicating the status
of the previous order. The response clears the order path and allows JES to issue other orders to the FSS
or FSA. If the FSS or FSA does not respond to a JES order, JES cannot communicate with the FSS or FSA.
The FSS/FSA responds to JES through the FSIREQ SEND or FSIREQ CONNECT/DISCONNECT function
calls.

JES uses the FSA POST service to let the FSA know that it has data sets that are ready to be processed.

Order Processing - Communication from JES to the FSS/FSA
JES tells the FSS/FSA that there is work to be done by using the FSI ORDER service. When an operator
issues a JES command that requires the FSS/FSA to do some work, JES converts that command into an
order. That order represents work that the FSS/FSA will do on behalf of JES.

The FSI Order Routine
The FSI order routine receives control when JES issues the FSIREQ ORDER function call. There must be
an FSI order routine associated with the FSS and each FSA. JES knows about the FSI order routine
because the FSS/FSA supplied the address of the order routine during FSS or FSA Connect processing as
part the CONNECT parameter list. See “Preparing for FSS CONNECT” on page 29 for more information
about FSS Connect processing. See “Preparing for FSA CONNECT” on page 39 for more information
about FSA Connect processing.

Although part of the FSS or FSA, the FSI order routine runs under the control of a JES TCB or SRB. While
the order routine runs, JES is unable to provide any other services and overall system performance may
be impacted. Therefore, the order routine should not do any lengthy processing.

FSI ORDER function calls are split into two categories; synchronous orders that require minimal
processing and can be responded to immediately, and asynchronous orders that require substantial
processing by the FSS or FSA and therefore cannot be responded to immediately. The order routine of the
FSS or FSA responds directly to the order. IBM recommends that the order routine immediately return
control to JES with an indication that the order response will be returned later. Later sections describe
how to respond to the JES order.

Since orders occur asynchronously, the FSS or FSA main task will check at appropriate points in its
processing to see if an order has been issued.

Order processing parameter list
Before JES issues the FSIREQ macro to initiate FSI Order processing, JES fills in the fields of the FSIREQ
parameter list. The address of the FSIREQ parameter list is in register 1. This section discusses those
fields that are common to all order processing. Fields that are specific to a particular order are discussed
in the section where the particular order is discussed (Chapter 6, “Establishing FSS/JES Communication,”
on page 27 through Chapter 13, “Stopping an FSS,” on page 103).

FSI Communication

© Copyright IBM Corp. 1988, 2020 17

ORDER RESPONSE
AREA

(IAZRESPA)

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

SPECIFIC ORDER
SECTION

FSILEN
FSIFUNC
FSIFSID

ORDFDATA
ORDRSPAD
ORDID
ORDFLGS1

Figure 6. Parameter list for order processing

JES fills in the following fields of the common parameter header portion of the FSIREQ parameter list:
FSILEN

The total length of the order parameter list. The order parameter list consists of the common
parameter header, the common order header and the section for the specific order.

FSIFUNC
JES assigns the symbolic value FSIORDER to this field to indicate the type of function that is required.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA. JES assigns the FSS an
identifier of the form xxxx0000, where xxxx is a unique number. JES assigns the FSA an identifier of
the form xxxxyyyy, where xxxx corresponds to the controlling FSS identifier, and yyyy is a unique
number for each FSA.

FSIPEXT
If this field is non-zero, then there is an existing extension to this parameter list. The address of the
extension is the contents of this field.

The only function that has an extension area is GETDS.

JES fills in the following fields of the common order header portion of the FSIREQ parameter list:
ORDFDATA

A 4-byte field that is used by the FSS or FSA. This field can be the address of a control block that
contains information to allow the order routine to respond immediately to orders or notify (POST) the
appropriate FSS or FSA task that an order is waiting to be processed. The FSS/FSA passed this
address to JES in the CDFFDATA field of the CONNECT parameter list. JES returns this value in the
order parameter list.

ORDRSPAD
The address of the order response area (IAZRESPA).

ORDID
The specific order ID number. Refer to Chapter 6, “Establishing FSS/JES Communication,” on page
27 through Chapter 13, “Stopping an FSS,” on page 103 to determine the order ID number for each
specific order.

The FSA is responsible for filling in the following field of the common order header portion of the FSIREQ
parameter list:
ORDFLGS1

An indicator for whether the FSA is responding to the order synchronously or asynchronously.

FSI Communication

18 z/OS: z/OS MVS Using the Functional Subsystem Interface

ORDSRESP
Synchronous response - The order response area is currently filled in. The FSS or FSA needs to do
no further processing.

ORDARESP
Asynchronous response - The order response area is not currently filled in. The FSS or FSA needs
to do further processing and will notify JES, by using an FSIREQ SEND function call, that it has
completed processing the order.

Function of the FSI Order Routine
When the FSI order routine receives the order, it:

• Determines the type of order issued
• Either processes the order directly or posts the appropriate FSS/FSA task to process the order

asynchronously
• Saves the FSIPARM parameter list.

The order routine determines the type of order by testing the value of the ORDID field in the common
order header of the order parameter list. The address of the order parameter list is in register 1.

The order routine also has the responsibility of determining whether to respond to the order
synchronously or asynchronously.

Synchronous Processing
If the FSS/FSA can immediately respond to the order, it must:

1. Initialize the appropriate field(s) of the order response area. The ORDRSPAD field of the order
parameter list contains the address of the order response area (mapped by IAZRESPA).

2. Set ORDFLG1 equal to ORDSRESP to inform JES that the required information is in the order response
area. (ORDFLG1 is a field in the common order header of the IAZFSIP mapping macro.)

3. Return control to JES.

Notes:

1. If, for some reason, the FSS/FSA cannot handle a specific order, the FSS/FSA should set register 15
equal to a non-zero return code and return control to JES. This will cause JES to terminate the FSS
address space.

2. If, for some reason, the FSS/FSA decides to ignore a specific order, the FSS/FSA should respond to the
order synchronously by using the previous procedure. In this case, however, no processing will be done
by the FSS or FSA before control is returned to JES. JES will think that the order has been processed
and processing will continue.

Asynchronous Processing
If the FSS/FSA cannot immediately respond to the order, it must:

1. Set ORDFLG1 equal to ORDARESP to inform JES that the FSA will respond to the order at a later time
by means of a FSI SEND request. (ORDFLG1 is a field in the common order header of the IAZFSIP
mapping macro.)

2. The order routine should save the address of the FSIREQ parameter list into storage the FSS/FSA has
access to. The ORDFDATA field can be used to accomplish this.

3. Let the FSS/FSA main line code know that an order has been received. The FSS/FSA main line code
initializes the appropriate field(s) of the order response area after the request from JES has been
fulfilled. The ORDRSPAD field of the order parameter list contains the address of the order response
area (mapped by IAZRESPA). Register 1 contains the address of the order parameter list. The FSS or
FSA responds to the order by using the FSI SEND request.

4. Return control to JES.

FSI Communication

Chapter 5. FSI Communication 19

Coding Considerations
When coding the FSI order routine you must consider that:

• The FSI order routine must reside below the 16-megabyte line.
• No SVCs can be issued from an FSI Order routine.

Responding to an Order - Communication from the FSS/FSA to JES
The FSS/FSA tells JES that it has completed a piece of work by using the FSIREQ SEND or FSIREQ
CONNECT/DISCONNECT function calls. These function calls are used only for asynchronous responses.
“Synchronous Processing” on page 19 discusses immediate (synchronous) responses to an order from
JES.

When the FSS/FSA uses the FSIREQ SEND function call to respond to an order from JES, it is referred to
as a solicited SEND request. Most instances of the FSI SEND service are for solicited SEND requests.
When the FSS/FSA uses the FSI SEND service for a reason other than a response to a JES order, it is
referred to as an unsolicited SEND request.

Send processing in response to an order
Before the FSS or FSA issues the FSIREQ macro to initiate FSI SEND processing, the FSS or FSA fills in the
fields of the FSIREQ parameter list.

RESPID
RESPLEN
RESPFL1
RESPFL2
RESPRETC
RESPCPYC
RESPPGEC
RESPPREC
RESPOOPI

FSILEN
FSIFUNC
FSIFSID

PARM HEADER
(IAZFSIP)

SEND HEADER
(SNDPARM)

ORDER RESPONSE
AREA

(IAZRESPA)

SNDTYPE
SNDRSPTR

Figure 7. Parameter list for send processing

The FSS/FSA needs to initialize the following parameters in the common parameter header section before
it issues the FSIREQ SEND function call:

Field Name Value (bytes) Value to be Assigned

Common Parameter Header Section

FSILEN 4 Length of SEND parameter list

FSIFUNC 4 FSISEND

FSIFSID 4 The FSS/FSA identifier.

SEND Function Dependent Area Section

FSI Communication

20 z/OS: z/OS MVS Using the Functional Subsystem Interface

Field Name Value (bytes) Value to be Assigned

SNDTYPE 1 SNDTYRSP

SNDRSPTR 4 Address of the order response area for unsolicited
send requests

FSILEN
The length of the entire SEND parameter list. The SEND parameter list consists of both the IAZFSIP
common header section and the SEND function dependent section.

FSIFUNC
The SEND function ID number. The FSS/FSA assigns the symbolic value FSISEND to this field.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.
FSIFSSID

This field contains the FSS portion of the FSS/FSA identifier.
FSSFSAID

This field contains the FSA portion of the FSS/FSA identifier.

The FSS/FSA needs to initialize the following parameters in the SEND function dependent section before it
issues the FSI SEND request:
SNDTYPE

The SNDTYPE ID number. The FSS/FSA sets this field equal to SNDTYRSP. SNDTYRSP indicates that
the SEND request is in response to an order.

SNDRSPTR
The address of the order response area. For a solicited SEND request, JES supplies this address in the
ORDRSPAD field. For an unsolicited SEND request, the FSA supplies the address.

Initializing the order response area
After the FSS or FSA does some processing to fulfill the JES order, the FSS or FSA initializes the order
response area (IAZRESPA).

The following table lists the IAZRESPA fields, the lengths of these fields, and the information the FSA may
provide in each field. Detailed descriptions of the value assignments follow the table.

Field name Length (bytes) Value to be assigned

IAZRESPA Order Response Area

RESPID 4 “RESP”

RESPLEN 4 Length of the response area

RESPFL1 1 Device status

RESPFL2 1 Order processing status

RESPRETC 4 Return code of requested function

RESPCPYC 2 Copy number of data set at OOP

RESPPGEC 4 Page number of data set at OOP

RESPLREC 4 Logical record number of data set at OOP

RESPOOPI 12 Identifier of data set at OOP

The FSS/FSA needs to initialize the following parameters in the Order Response Area before it issues the
FSI SEND request:

FSI Communication

Chapter 5. FSI Communication 21

RESPID
"RESP" - The identifier of the response area

RESPLEN
The length of the response area

RESPFL1
If the device is not active, the FSA initializes this flag byte with one of the following indicators:
RESP1DIN

The device is inactive
RESP1DSP

The device is stopped
RESPFL2

The FSA uses this flag byte to notify JES of order processing status. The FSA can set one of the
following indicators:
RESP2EOD

The end of data (EOD) was reached on a forward synch action.
RESP2NDS

No data set was active at the OOP (operator observation point).
RESP2ETE

Environmental-type error. An environmental-type error is one that can be fixed without bringing
the FSA down. For example, the printer might simply need more toner. The FSS uses RESP2ETE to
tell JES not to bring the FSA down for this minor problem.

RESPRETC
The return code for the requested function. If the FSS or FSA completed the order successfully, this
field is set to zero. If the FSS or FSA could not complete the order, it sets this field to a value greater
than zero.

RESPCPYC
The copy number of the data set at the OOP.

RESPPGEC
The page number of the data set at the OOP.

RESPLREC
The approximate logical record number of the data set at the OOP.

RESPOOPI
The identifier of the data set at the OOP.

Specific responses to individual orders will vary in the amount of this information that needs to be
included in the order response area. Refer to Chapter 7, “Establishing FSA/JES communication,” on page
35 through Chapter 13, “Stopping an FSS,” on page 103, for that specific information.

Issuing the FSIREQ SEND Request
When the FSA completes the initialization of the response area and SEND parameter list, it issues the
FSIREQ macro to invoke the FSI SEND communication service. The format of this macro call is:

FSIREQ REQUEST=FSISEND,TARGET=JES,PARM=SEND
parm-list-addr,FSID=value-addr

Note: See “FSIREQ Macro format” on page 13 for a complete description of this macro.

On return from SEND processing, register 15 contains either a zero return code indicating success or a
non-zero return code indicating an error occurred.

Unsolicited Send Processing
The FSA can initiate communication with JES through unsolicited SEND requests. The FSA processes an
unsolicited SEND the same way it processes a solicited SEND (a send in response to an order). The same

FSI Communication

22 z/OS: z/OS MVS Using the Functional Subsystem Interface

parameter list is used, the parameter list is filled in the same, and it is passed to JES by using the FSIREQ
SEND function call.

The only difference is that for an unsolicited SEND request, the FSA must provide the order response area.
The FSIREQ SEND parameter list the address of this order response area. JES will not provide the order
response area for unsolicited SEND requests.

There are four occasions when the FSS/FSA can use the FSI SEND service to initiate an unsolicited SEND
request. The first is when a data set has reached the operator observation point (OOP) of a device. The
second occasion is when the FSA needs to notify JES that it is terminating. The third occasion is when
intervention is required, and the fourth occasion is when intervention is cleared.

Initializing the FSIREQ Parameter List
The FSA must fill in the following parameters in the common parameter section before it issues the FSI
SEND request:
FSILEN

The length of the entire SEND parameter list. The SEND parameter list consists of both the IAZFSIP
common header section and the SEND function dependent section.

FSIFUNC
The SEND function ID number. The FSA assigns the symbolic equate value FSISEND to this field.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

The FSA must fill in the following parameters in the SEND parameter section before it issues the FSI SEND
request:

SNDTYPE
The FSA uses this flag byte to indicate to JES the type of information being sent. For this issuance of
the SEND request, the FSA is expected to set the following indicator:
SNDTYTDS or SNDTYFIT

The FSA is satisfying JES's request for notification (GDSTRKDS) when the data set reaches the
OOP or the FSA is terminating. Refer to Chapter 9, “Issuing Data Requests to JES,” on page 47
and Chapter 12, “Stopping an FSA,” on page 97 for more information.

SNDTYINT
The FSA is satisfying JES's request for intervention.

SNDTYICL
The FSA is satisfying JES's request to clear intervention.

SNDRSPTR
The address of the FSA-provided response area.

CONNECT/DISCONNECT Processing in Response to an Order
During FSS and FSA initialization and termination the CONNECT/DISCONNECT FSIREQ function call is
used to indicate to JES that processing of a START FSS or START FSS order is complete. The FSS or FSA
CONNECT request is issued as a response to a START FSS request or START FSA order from JES. The FSS
or FSA DISCONNECT request is issued as a response to a STOP FSA or STOP FSS order from JES.

Post Processing
The FSI post routine receives control when JES issues the FSIREQ POST function call. There must be an
FSI post routine associated with each FSS and FSA. The FSS/FSA supplies the address of the post routine
during FSS or FSA Connect processing as part of the CONNECT parameter list. See “Preparing for FSS
CONNECT” on page 29 for more information about FSS Connect processing. See “Preparing for FSA
CONNECT” on page 39 for more information about FSA Connect processing.

FSI Communication

Chapter 5. FSI Communication 23

The FSI Post Routine
Although part of the FSS/FSA, the FSI post routine code runs under the control of a JES TCB or SRB. While
the post routine is running, JES is unable to provide any other services and overall system performance
may be impacted. Therefore, the post routine should not do any lengthy processing.

Function of the FSI Post Routine
The only use of the FSIREQ POST function call is for JES to notify the FSA that there are data sets
available for processing.

The FSA POST routine uses information passed in the POST parameter list to indicate to the appropriate
FSA that GETDS requests are now allowed. The POSFDATA field points to this information This field is
filled in from the CDFFDATA field during connect processing.

If the POST processing is successful, the FSA POST routine returns control to JES with a zero return code
in register 15. If an error occurs during processing, the FSA POST routine returns control to JES with a
non-zero return code in register 15. JES abnormally terminates the FSS address space if JES receives a
non-zero return code.

Post processing parameter list
Before JES issues the FSIREQ macro to initiate FSI POST processing, JES fills in the fields of the FSIREQ
parameter list.

PARM HEADER
(IAZFSIP)

POST HEADER
(POSTPARM)

FSILEN
FSIFUNC
FSIFSID

POSTFLS1
POSTFDATA

Figure 8. Parameter list for post processing

In the common parameter header section of the POST parameter list, JES passes the following
information:
FSILEN

The length of the POST parameter list, which consists of the common header section and the POST
function dependent section.

FSIFUNC
The POST function ID number. The symbolic equate FSIPOST represents this value.

FSIFSID
The FSS/FSA IDs that JES assigned to the FSS/FSA during startup.

In the function dependent section of the POST parameter list, JES passes the following information:
POSTFLS1

This status flag byte indicates the reason for the POST request. The following indicator is set:
POSTGDS B‘10000000’

GETDS requests can now be satisfied.
POSFDATA

A 4-byte field that is used by the FSS or FSA. This field can be the address of a control block that
contains information that allows the post routine to notify the appropriate FSA task that a GETDS can
be issued.

FSI Communication

24 z/OS: z/OS MVS Using the Functional Subsystem Interface

Types of orders
There are ten types of orders or work that the FSS/FSA does when JES invokes the FSI ORDER service.
The following table describes:

• The function you want to perform (Function)
• The order needed to perform that function (Order)
• The expected response to that order (Response)
• The response method required (Response Method)
• A reference to where detailed information about that order can be found (Reference)

Table 2. Orders and Responses

Function Order Response Response
Method

Reference

Start an FSS MVS START
command

Connect Asynchronous Chapter 6,
“Establishing FSS/JES
Communication,” on
page 27

Start an FSA Start FSA Connect Asynchronous Chapter 7,
“Establishing FSA/JES
communication,” on
page 35

Start device Send Asynchronous Chapter 8,
“Starting an FSS
device,” on page
43

Stop a device Stop device Send Asynchronous Chapter 11, “Stopping
an FSS device,” on
page 93

Stop an FSA Stop FSA Disconnect Asynchronous Chapter 12, “Stopping
an FSA,” on page 97

Stop an FSS Stop FSS Disconnect Asynchronous Chapter 13, “Stopping
an FSS,” on page 103

Obtain information about the
current data set

Query Send Synchronous “The Query Order” on
page 81

Change device
characteristics

Set Send Asynchronous “The Set Order” on
page 83

After the current data set Synch Send Asynchronous “The Synch Order” on
page 85

Change the set up of the
device

Intervention Send Asynchronous “The Intervention
Order” on page 89

Addressing mode - AMODE
AMODE is a program attribute that can be specified (or defaulted) for each CSECT, load module, and load
module alias. AMODE states the addressing mode that is expected to be in effect when the program is
entered. AMODE can have one of the following values:
AMODE 24

The program is designed to receive control in 24-bit addressing mode.

FSI Communication

Chapter 5. FSI Communication 25

AMODE 31
The program is designed to receive control in 31-bit addressing mode.

AMODE ANY
The program is designed to receive control in either 24-bit or 31-bit addressing mode.

You should be concerned about allowable values for the following:

• AMODE in which your FSS/FSA code runs. This AMODE value is set by the CDFFL331 bit in the CONNECT
parameter list.

• AMODE in which JES enters FSS/FSA code. This AMODE value is set by the CDFS1A31 bit in the
CONNECT parameter list.

Initially the FSS sets the CDFFL331 bit of the CONNECT parameter list to indicate whether or not it
supports AMODE(31). If the FSS supports AMODE(31), JES sends all FSI parameter lists above the line.

JES sets the CDFS1A31 bit of the CONNECT parameter list to indicate whether or not it supports
AMODE(31). If JES supports AMODE31 the FSS/FSA can, but does not necessarily have to, pass FSI
parameter lists above the line.

Table 3 on page 26 lists the allowable AMODE values under various conditions.

Table 3. Allowable AMODE values

Conditions AMODE for FSS/FSA code AMODE in which JES enters
FSS/FSA code

FSS supports AMODE(31)
JES supports AMODE(31)

31 31

FSS does not support AMODE(31) 24 24

JES does not support AMODE(31) ANY 24

Pointer-defined Linkage
Pointer-defined linkage sets the appropriate addressing mode when control is passed from one routine to
another. See z/OS MVS Programming: Assembler Services Guide.

Residency mode - RMODE
RMODE states the virtual storage location (either above 16 megabytes or anywhere in virtual storage)
where the program should reside. RMODE can have the following values:
RMODE 24

The program is designed to reside below 16 megabytes in virtual storage. MVS places the program
below 16 megabytes.

RMODE ANY
The program is designed to reside at any virtual storage location, either above or below 16
megabytes. MVS places the program above 16 megabytes unless there is no suitable storage above
16 megabytes.

Table 4 on page 26 lists the allowable RMODE values for the FSI parameter lists under various
conditions.

Table 4. Allowable RMODE values for the FSI parameter list

Conditions RMODE for FSS CONNECT
PSIPARM

RMODE for all other
FSIPARMs

FSS supports AMODE(31)
JES supports AMODE(31)

31
31

31
31

FSI Communication

26 z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 6. Establishing FSS/JES Communication

JES starts the functional subsystem (FSS) address space either during JES initialization or in response to
an operator command to start a printer under control of the FSS. When the FSS receives control, it
performs initialization and then responds to JES.

If the FSS successfully starts, it issues an FSI CONNECT request to JES to establish the FSS-level
functional subsystem interface (FSI). FSS CONNECT processing:

• Notifies JES that the FSS is started.
• Identifies to the FSI the addresses of FSS routines that are to receive control when JES issues the

FSIREQ macro.
• Identifies to the FSI the addresses of JES routines that are to receive control when the FSS issues the

FSIREQ macro.

Completion of FSS level CONNECT processing signals JES to issue a START FSA order to the FSS.

JES CODE

Receive response of started device

Issue start device
FSIREQ REQUEST=FSIORDER

WAIT

FSA Initialization
FSA Connect Request
FSIREQ REQUEST=FSICON

1

2

3

4

6

5

FSS/FSA CODE

Address space created

FSS Initialization

FSS Connect Request

FSIREQ REQUEST=FSICON

START procname...

Issue start FSA
FSIREQ REQUEST=FSIORDER

Initialize PRINTER
FSIREQ REQUEST=FSISEND

FSS waits for orders

1

2

3

4

6

5
WAIT

WAIT

FSS waits for orders

Figure 9. An Overview of FSI Startup Processing

The following topics describe:

• How JES starts the FSS
• Initialization required by the FSS
• How the FSS connects to JES.

Starting an FSS
When JES determines that an FSS should be started, it creates an MVS START command using
information from the corresponding FSSDEF initialization statement. The START command creates and
initializes the FSS address space.

Figure 10 on page 28 shows the format of the MVS START command and the relationship between the
FSSDEF parameters and the MVS START command parameters. In the diagram, for JES2 3.1.1 and later,
the FSSDEF accccccc value maps to the START ssname value, and the PROC=cccccccc value maps to the
START membername value. For JES3, the FSSDEFPNAME accccccc value maps to the START
membername value, and the FSSNAME=accccccc value maps to the START ssname value.

Establishing FSS/JES Communication

© Copyright IBM Corp. 1988, 2020 27

JES2: 3.1.1 and above
FSSDEF (accccccc), PROC=cccccccc

START membername.procid...(ssname,fsid)

JES3:
FSSDEFPNAME=accccccc,FSSNAME=accccccc

START membername.procid...(ssnname,fsid)

Figure 10. FSSDEF/MVS START command parameter relationships

membername
The membername of a procedure in SYS1.PROCLIB or one of its concatenations that contains the JCL
required to start the FSS address space.

procid
The identifier that will be assigned to the started task (the FSS) created by the issuance of the MVS
START command.

ssname
The subsystem name of the JES that issued the MVS START command.

fsid
The FSS part of the FSID for all FSAs running under this FSS (the FSS id). This field contains the
EBCDIC representation of the high-order halfword of the FSID that is assigned by JES during JES
initialization. JES assigns the FSS an identifier of the form xxxx0000, where xxxx is a unique number.
JES assigns the FSA an identifier of the form xxxxyyyy, where xxxx corresponds to the controlling FSS
identifier, and yyyy is a unique number for each the FSA.

Initializing the FSS address space
The FSS receives control from JES in the normal MVS task control block (TCB) environment created for a
started task. The FSS performs initialization and then establishes the FSS-level interface to JES. Some
general initialization procedures and recommendations follow:

• The FSS must place itself into supervisor state, key 1, to use the FSI services. The FSS uses the
MODESET macro to perform this task. The format of the MODESET macro calls are:

MODESET MODE=SUP (places the FSS in supervisor state)

MODESET EXTKEY=JES (places the FSS in key 1)

• The FSS must also be running non-swappable. The FSS uses the SYSEVENT macro to perform this task.
The format of the SYSEVENT macro call is:

SYSEVENT DONTSWAP (causes the FSS to run non-swappable)

Note: An FSS can enter supervisor state only if it is running with APF authorization.
• The name of your FSS program must be added to the program properties table (PPT) with the KEY

parameter set equal to one. Refer to z/OS MVS Initialization and Tuning Reference for information about
the SCHEDxx parmlib member.

Establishing FSS/JES Communication

28 z/OS: z/OS MVS Using the Functional Subsystem Interface

• It is recommended that the FSS establish an ESTAE routine so that it can handle its own recovery
processing.

• You should use the appropriate AMODE and RMODE values for defining the FSS load module. See
“Types of orders” on page 25 for information about the factors that govern AMODE and RMODE settings.

Retrieving the MVS START Command and Token
The FSS needs to retrieve the information passed in the MVS START command during FSS startup so that
it can perform verification and initialize the CONNECT parameter list. The FSS uses the EXTRACT macro to
retrieve information. The FSS must provide an area to receive the EXTRACT information and it must supply
the address of this ‘answer-area’ on the EXTRACT macro call.

The format of the EXTRACT macro call is:

EXTRACT answer-area-address, 'S',FIELDS=(COMM)

On return from the EXTRACT macro request, the ‘answer-area’ has the address of the communications
area (mapped by IEZCOM). This communications area consists of:

• the communications event control block
• the command input buffer (CIB) for the MVS START command

The FSS should verify that a token was provided during startup to insure it was not started by an operator-
issued MVS START command. If a token was specified, as in the case of a JES-issued START command,
the high-order bit of the token field will be set to one. If a token was not provided, the FSS needs to
decide whether or not it should terminate.

If it continues in this environment, it cannot run as an FSS in the JES environment.

The CIB contains the MVS START command parameters. The FSS must verify that the MVS START
command parameters were specified by insuring that the CIBDATLN field of the CIB is greater than zero.
If the START command parameters were not specified, the FSS must terminate.

The FSS needs to retrieve the FSS id (fsid) and JES subsystem name (ssname) from the CIB and save this
information for subsequent FSI processing. The fsid is an identifier of the form xxxx0000, where xxxx is a
unique number assigned by JES. The FSS must not release the MVS START command CIB until after
issuing the FSIREQ CONNECT request. The FSS must supply the FSS id in all FSIREQ requests. It must
supply the JES subsystem name in CONNECT/DISCONNECT FSIREQ requests.

Preparing for FSS CONNECT
If the FSS successfully starts, it can establish the FSS-level interface to JES. Preparation for the FSIREQ
CONNECT request consists of three steps. The FSS needs to:

1. GETMAIN enough storage for the IAZFSIP mapping macro and the SSOB/SSIB pair. The storage for the
SSOB/SSIB pair must be contiguous.

2. Provide an 18-word save area.
3. Initialize the CONNECT parameter list.

If the FSS discovers a problem during initialization and is unable to connect, the FSS should go through
normal MVS termination. MVS services notify JES of this termination.

Initializing the FSS level FSIREQ CONNECT parameter list
The FSS needs to initialize certain fields of the FSIREQ CONNECT parameter list. The following figure
shows the connection between the different sections of the FSIREQ parameter list.

Establishing FSS/JES Communication

Chapter 6. Establishing FSS/JES Communication 29

PARM HEADER
(IAZFSIP)

CON/DCON PARM
(CDFPARM)

CDFPAIRS

Figure 11. FSIREQ parameter lists for FSS CONNECT processing

The following table lists the required fields, the lengths of these fields, and the values that the FSS must
assign. Detailed descriptions of the value assignments follow this table.

Field Name Length (bytes) Value to be assigned

Common Parameter Header Section (IAZFSIP)

FSILEN 4 Length of CONNECT parameter list

FSIFUNC 4 FSICON

FSIFSID 4 The FSS ID

CONNECT Function Dependent Section (CDFPARM)

CDFFLGR2 1 Functions that involve operator intervention

CDFFLGR3 1 Specifies JES functions supported by the FSA

CDFSTOR 4 Address of storage for SSOB/SSIB pair

CDFFDATA 4 Address of a control block containing FSS
information

CDFIDNO 4 2

CDFIDNA 4 Address of FSS function ID/address pairs

CDFSSID 4 Name of the JES to which the FSS is connecting

CDFFLGS1 1 Functions supported by JES

Function ID/Address Pairs (CDFPAIRS)

CDFID 4 FSIORDER

CDFAD 4 Address of the FSI ORDER routine

CDFID 4 FSIPOST

CDFAD 4 Address of the FSI POST routine

FSILEN
The length of the entire CONNECT parameter list. The CONNECT parameter list consists of both the
IAZFSIP common header section and the CONNECT function dependent section. The length does not
include the CDFPAIRS section.

FSIFUNC
The CONNECT function ID number. The FSS must issue the FSIREQ macro with REQUEST=FSICON
specified.

Establishing FSS/JES Communication

30 z/OS: z/OS MVS Using the Functional Subsystem Interface

FSIFSID
The FSS ID that JES assigned when it started the FSS. The FSS obtains the FSID from the command
input buffer (CIB).

CDFFLGR2
Indicates functions that require intervention. When any of these bits are on, JES issues the setup
required message, when the device is started. When all bits are off, JES suppresses the setup required
message.
CDFFL2BT B'10000000'

FSS might use the burster-trimmer-stacker.
CDFFL2FL B'01000000'

FSS might use a flash.
CDFFL2FO B'00100000'

FSS might need a forms change.
CDFFL2CF B'00010000'

FSS might use continuous paper.
CDFFLGR3

Indicates the functions supported by this FSS. These indicators may be set:
CDFFL3MS B'10000000'

Extended message routing is supported.
CDFFL331 B'01000000'

AMODE(31) is supported.
CDFFL34D B'00100000'

Support for 4-digit device numbers.
CDF3BLKT B'00000010'

On associated FSS connect, for all relevant data sets associated with FSS, the following
processing will occur: IDXRECL will be set to the length of the data portion of the record (without
trailing blanks). IDXORECL will be set to the original LRECL of the record. The output buffer will
contain the original record supplied on the PUT. This option only pertains to non-page mode data
sets. Only JES2 will honor CDF3BLKT.

CDFSTOR
The address of the storage that the FSS GETMAINed for the contiguous SSOB/SSIB pair. The length of
the SSOB/SSIB pair can be obtained by the IEFJSSOB and IEFJSSIB macros.

CDFFDATA
A 4-byte field that is used by the FSS. This field can be the address of a control block that may contain
FSS information needed by the FSI ORDER and FSI POST routines. JES will return this field when JES
invokes the FSI POST and FSI ORDER routines. For FSI ORDER processing, JES returns the address in
the ORDFDATA field. For FSI POST processing, JES returns the address in the POSFDATA field. One of
the things this control block may contain is an ECB that the ORDER or POST routines can post.

CDFIDNO
The number of function ID/address pairs pointed to by CDFIDNA.

CDFIDNA
The address of the first function ID/address pair. The function pairs should be defined in the format
mapped by CDFID and CDFAD in the IAZFSIP mapping macro. The CDFID and CDFAD format are
repeated for each function the FSS or FSA provides. The FSS should provide a CDFID and CDFAD pair
for an FSS ORDER routine and an FSS POST routine.

CDFSSID
The name of the JES to which the FSS is issuing the CONNECT request. If the FSS does not specify this
parameter, it will be connected to the primary JES defined to your installation. The FSS obtains the
name of the JES from the CIB. In the JES2 environment, it is crucial that the FSS supply the CDFSSID
since JES2 supports poly-JES (Many versions of JES2 can run under the same MVS.)

Establishing FSS/JES Communication

Chapter 6. Establishing FSS/JES Communication 31

CDFFLGS1
Indicates functions supported by JES. The JES fills in this value which is used by the FSS on return
from the CONNECT FSIREQ.
CDFS1INT B'10000000'

Unsolicited send for intervention conditions.
CDFS1ETE B'01000000'

Support for environmental-type errors. (Environmental-type errors are minor errors that do not
require the FSS or FSA to be brought down.)

CDFS1A31 B'00100000'
Support for AMODE(31).

CDFS1ESS B'00010000'
Support for ESS keywords.

CDFS1DNR B'00001000'
Supports device not responding conditions.

CDFID
The FSI ORDER function ID. The FSS may assign the symbolic equate FSIORDER to this field.

CDFAD
The entry point address of the FSS's FSI ORDER routine.

Issuing the FSS Level FSIREQ CONNECT Request
When the FSS has completed initializing the CONNECT parameter list, it issues the FSIREQ macro to
invoke the FSI CONNECT service. communications list. The format of this macro call is:

FSIREQ REQUEST=FSICON,TARGET=JES,PARM=CONNECT
parm-list-addr,FSID=value-addr

See Chapter 4, “The FSIREQ Macro,” on page 13 for a complete description of each operand on this macro
and the defaults that may be taken.

FSS CONNECT processing
The FSIREQ CONNECT request results in a call to the SSI CONNECT routine of the subsystem specified in
the CDFSSID field of the CONNECT parameter list. The CONNECT parameter list is used as the SSOB
extension for the SSI call. The SSI CONNECT routine loads the JES functional subsystem support modules
into the FSS address space and then passes control to the FSI CONNECT routine in that module.

The FSI CONNECT routine allocates storage for and initializes the various FSI-related control blocks, for
example, the functional subsystem vector table (FSVT) and the functional subsystem control tables
(FSCTs). JES builds two FSCTs for the FSS. JES initializes one FSCT with the address of the FSS' FSI
ORDER routine which was passed in the CDFAD field of the CONNECT parameter list. JES initializes the
second FSCT with the addresses of FSS level FSI services provided by JES. On subsequent FSIREQ
requests, the FSIREQ macro searches the appropriate FSCT to obtain the address of the FSI routine it
needs to branch to. The JES also sets the flag CDFFLGS1 to indicate those special functions supported by
the JES. These functions include: Unsolicited Sends for Intervention and ETE Type Errors.

If the FSS is connecting to JES2, the FSI CONNECT routine also establishes the cross memory
environment between the FSS address space and the JES2 address space.

At completion of FSS CONNECT processing, register 15 contains the SSI CONNECT function dependent
return code. A zero return code indicates the FSS level interface to JES is established.

How JES Handles Logic Errors and Abends
If an error occurs during FSS CONNECT processing, JES sets a non-zero return code in the SSOBRETN
field of the SSOB. An invalid FSID is an example of a possible error. JES then performs the same

Establishing FSS/JES Communication

32 z/OS: z/OS MVS Using the Functional Subsystem Interface

processing as if the FSS issued a DISCONNECT request requesting abnormal termination. See Chapter 13,
“Stopping an FSS,” on page 103 for more information about DISCONNECT processing.

How JES Monitors Timing of FSS CONNECT
When JES issues the MVS START command to the FSS, it starts a timer. If the FSS does not respond with
an FSS CONNECT request in the specified time interval, JES simulates receiving an FSS level
DISCONNECT response. See Chapter 13, “Stopping an FSS,” on page 103 for more information about
DISCONNECT processing.

JES2 issues message, HASP706 every five minutes, indicating that it is still waiting for the START
command to complete, it continues to reset the timer and wait.

JES3 issues messages, IAT6373 and IAT6374, indicating that it is still waiting for the START command to
complete, it continues to reset the timer and wait.

Establishing FSS/JES Communication

Chapter 6. Establishing FSS/JES Communication 33

Establishing FSS/JES Communication

34 z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 7. Establishing FSA/JES communication

When the JES operator issues the command to start an FSS printer device, JES determines if the FSS for
which the printer is defined is currently active. If that FSS is not currently active, JES starts the FSS.
Immediately after JES receives a response for the START FSS order from the FSS, JES issues a START FSA
order for each FSA defined to that FSS. Refer to Chapter 6, “Establishing FSS/JES Communication,” on
page 27 for more information about starting an FSS. If the FSS is currently active, JES converts the
command into a START FSA order to start the printer device.

If the printer is successfully allocated and initialization is complete, the FSA issues an FSIREQ CONNECT
request to JES to establish the FSA-level functional subsystem interface (FSI). FSA CONNECT processing:

• Notifies JES that the FSA has successfully started.
• Identifies to the FSI the addresses of FSA routines that are to receive control when JES issues the

FSIREQ macro.
• Identifies to the FSI the addresses of JES routines that are to receive control when the FSA issues the

FSIREQ macro.

Completion of FSA level CONNECT processing signals JES to issue a START device order.

If the FSA could not be successfully started, either the FSS or the FSA (depending on when in time the
failure was detected) issues a SEND request to JES indicating that the START FSA order was unsuccessful.
See “FSA Could Not Be Started” on page 42 for more information about unsuccessful starts.

WAIT

Receive response of started device

JES CODE FSS/FSA CODE

START procname...

Issue Start FSA
FSIREQ REQUEST=FSIORDER

Issue start device
FSIREQ REQUEST=FSIORDER

Initialize PRINTER
FSIREQ REQUEST=FSISEND

WAIT

FSS waits for orders

FSS waits for orders

WAIT

Address space created

FSS Initialization

FSS Connect Request

FSIREQ REQUEST=FSICON

FSA Initialization
FSA Connect Request
FSIREQ REQUEST=FSICON

1

3

4

6

2

5

Figure 12. Overview of FSI startup processing

Processing the START FSA order
To start an FSA, JES issues the START FSA order to the FSS's FSI ORDER routine. During FSS CONNECT
processing, the FSS places the address of the FSI ORDER routine into the CDFAD field of the CONNECT
parameter list for use by JES. JES passes the address of the START FSA order parameter list in register 1.
The parameter list contains the address of the order response area (IAZRESPA).

Refer to Chapter 5, “FSI Communication,” on page 17 for general information about the responsibilities of
the FSS's Order routine.

The START FSA order causes the FSS to attach an FSA task that will attempt to allocate and initialize a
specific printer device. JES will not issue another order to the FSS until it receives a response to the
START FSA order.

Establishing FSA/JES Communication

© Copyright IBM Corp. 1988, 2020 35

The START FSA order parameter list consists of the following sections:

• Common parameter header
• Common order header
• START order function dependent section
• Device initialization area
• Message routing information area (JES3 only)

The following figure shows the connection between the different sections of the FSIREQ parameter list.

ORDER RESPONSE
AREA

(IAZRESPA)

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

START/STOP
(ORDSS)

DEVICE
INITIALIZATION
PARAMETERS

Figure 13. FSIREQ parameter lists for the START FSA order

The following table shows the parameters that JES initializes for the START FSA order. The values that JES
assigns are explained after the table.

Field Name Length (bytes) Value JES Assigned

Common Parameter Header (IAZFSIP)

FSILEN 4 Length of START order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS identifier

Common Order Header (ORDPARM)

ORDFDATA 4 Information supplied to JES in the FSS/FSA
CONNECT parameter list (CDFFDATA)

ORDRSPAD 4 Address of the order response area

ORDID 2 ORDSTFSA

START Order Function Dependent Section (ORDSS)

ORDSSSP 4 Address of device initialization area (ORDSSP1)

ORDSSID 4 FSS/FSA identifier of device to start

ORDSSAD4 4 Device address in 4-digit format

ORDSSAD 3 Device address in 3-digit format

ORDSSNA 8 Device name

ORDSSSP2 4 Address of message routing information

Device Initialization Area

Establishing FSA/JES Communication

36 z/OS: z/OS MVS Using the Functional Subsystem Interface

Field Name Length (bytes) Value JES Assigned

ORDSSPF1 1 Spacing flag byte

ORDSSPF2 1 Checkpoint flag byte

ORDSSPF3 1 NPRO timer flag byte

ORDSSKI 4 Initial checkpoint interval

ORDSSNI 4 Initial NPRO timer interval

Message routing information area

ORDSS2LN 2 Length of the message routing information area

ORDSS2FL 1 Message routing flag

ORDSS2RC 16 MCS routing code mask

ORDSS2CN 4 Console ID in WTO format

FSILEN
The total length of the START order parameter list. The START order parameter list consists of the
common parameter header, the common order header and the START order function dependent
section.

Note: The device initialization area and the message routing information are not part of the total
length. Field ORDSSSP contains the address of the device initialization area. Field ORDSSSP2 contains
the address of the message routing area.

FSIFUNC
The ORDER ID number. JES assigns the value FSIORDER to this field.

FSIFSID
The FSS/FSA identifier.
FSIFSSID

The FSS identifier that JES assigned when it started the FSS.
FSIFSAID

This field is initialized to zero. The FSA sets this field to the FSA identifier when it issues the FSA-
level CONNECT request. At this point in processing, the FSA identifier is contained in the ORDSSAI
field of the START FSA order dependent section of the START FSA order parameter list.

ORDFDATA
The address of a control block containing FSS-related information. The FSS passed this address to
JES in the CDFFDATA field of the CONNECT parameter list. JES returns this value in the START FSA
order parameter list so that the FSS's FSI order routine can post the appropriate FSS task to process
the order. This control block may contain the FSS or FSA ECB to be posted for processing. It may also
be used to save the order parameter list for processing by the FSS/FSA or the QUERY order
information for an immediate response.

ORDRSPAD
The address of the order response area (IAZRESPA).

ORDID
The START FSA order ID number. JES assigns the value ORDSTFSA to this field. The order routine uses
this value to determine what the order is and whether it should be responded to synchronously or
asynchronously.

ORDSSSP
The address of the device initialization area. The device initialization area contains setup
characteristics for the device.

ORDSSID
The FSS/FSA identifier of the device to start.

Establishing FSA/JES Communication

Chapter 7. Establishing FSA/JES communication 37

ORDSSSI
The FSS section of the identifier.

ORDSSAI
The FSA section of the identifier. Use this value to initialize the FSA portion of the FSIFSAID field.

ORDSSAD4
The 4-digit device address in printable form. This field will contain blanks if the printer is a non-
channel attached device.

ORDSSAD
The 3-digit device address in printable form. This field will contain blanks if the printer is a non-
channel attached device.

ORDSSNA
The device name in printable form. The device name is one of the keys that JES gives the FSS/FSA so
that it can select some device default characteristics.

ORDSSPF1
This flag byte contains the JES spacing requirements for data sets printed on this device. The
following indicators may be set:
ORDSSS1 B‘10000000’

JES requires the FSA to single space the output.
ORDSSS2 B‘01000000’

JES requires the FSA to double space the output.
ORDSSS3 B‘00100000’

JES requires the FSA to triple space the output.
ORDSSSR B‘00010000’

JES requires the FSA to space the output according to the requirements of the individual data set.
ORDSSPF2

This flag byte either specifies the type of JES checkpoint interval to be used for output checkpointing
on this device or specifies that the checkpoint feature should be disabled for this device. One of the
following indicators may be set:
ORDSSKP B‘10000000’

JES requires the FSA to take output checkpoints based on the page count specified in the
ORDSSKI field.

ORDSSKT B‘01000000’
JES requires the FSA take output checkpoints based on the time elapsed specified in the ORDSSKI
field.

ORDSSKN B‘00100000’
JES requires the FSA to disable the checkpoint feature.

ORDSSPF3
This flag byte specifies whether or not the FSA should use the NPRO (non-process runout) timer
interval specified in ORDSSNI. The NPRO time interval is the interval during which output remains in
the paper path but has not reached the stacker. This parameter is only valid for pipeline devices. After
the NPRO timer specification has elapsed, the FSA forces the output to the stacker. One of the
following indicators may be set:
ORDSSDN B‘10000000’

JES requires that the NPRO timer be disabled.
ORDSSIN B‘01000000’

JES requires that the NPRO timer interval value specified in the ORDSSNI field be used.
ORDSSKI

The initial checkpoint interval value.
ORDSSNI

The initial NPRO (non-process runout) time interval value.

Establishing FSA/JES Communication

38 z/OS: z/OS MVS Using the Functional Subsystem Interface

ORDSS2LN
The length of the message routing information area (JES3 only).

ORDSS2FL
This flag byte specifies how JES3 wants FSA-related messages routed (JES3 only). The following
indicator can be set:
ORDSS2CS B‘10000000’

JES has specified a console ID in field ORDSS2CN.
ORDSS2RC

An MCS routing code mask for FSA-related messages (JES3 only).
ORDSS2CN

The console ID in WTO format where FSA-related messages are to be routed (JES3 only).

Initializing the FSA
The FSS decides if it is able to process the START FSA order. If it can, it attaches an FSA task which will
then complete the initialization process. If the FSS cannot process the order, it must respond by using the
FSIREQ SEND function call to indicate order processing was unsuccessful.

As the FSA initialization process continues, the FSA task uses the values passed in the device initialization
area of the START FSA order. The initialization parameters included in the device initialization are spacing
requirements, checkpoint interval requirements, and NPRO (non-process runout) requirements. The
preceding section describes these parameters in detail.

The FSA is now responsible for responding to the START FSA order. The proper asynchronous responses
to this order are:

• If processing is successful - FSA level CONNECT
• If processing is unsuccessful - SEND with the RESPRETC field set to a non-zero value

FSA Successfully Started
If the FSA is successfully initialized, the FSA issues the FSA-level FSIREQ CONNECT request. This is the
response to the START FSA order.

Preparing for FSA CONNECT
Before the FSA can issue the FSA level CONNECT, it must:

• Provide an 18-word save area
• Initialize the CONNECT parameter list.

Initializing the FSIREQ Connect parameter list
The following figure shows the connection between the different sections of the FSIREQ parameter list.

Establishing FSA/JES Communication

Chapter 7. Establishing FSA/JES communication 39

PARM HEADER
(IAZFSIP)

CON/DCON PARM
(CDFPARM)

CDFPAIRS

Figure 14. FSIREQ parameter lists for FSA CONNECT

The FSA needs to initialize the following parameters before it issues the FSIREQ CONNECT request.

Field Name Value (bytes) Value to be Assigned

Common Parameter Header (IAZFSIP)

FSILEN 4 Length of CONNECT parameter list

FSIFUNC 4 FSICON

FSIFSID 4 The FSS/FSA identifier

CONNECT Function Dependent Area (CDFPARM)

CDFFLGR2 1 Specifies functions that require operator
intervention

CDFFLGR3 1 Specifies functions that FSA supports

CDFSTOR 4 Address of storage for SSOB/SSIB pair

CDFFDATA 4 Address of a control block containing FSA
information

CDFIDNO 4 2 (Number of function ID/address pairs in pointed
to by CDFIDNA)

CDFIDNA 4 Address of the function ID/address pair

CDFSSID 4 Name of the JES that the FSA is connected to

FSILEN
The length of the entire CONNECT parameter list. The CONNECT parameter list consists of the
IAZFSIP common header section and the CONNECT function dependent section.

FSIFUNC
The CONNECT function ID number. The FSA assigns the symbolic value FSICON to this field.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.
FSIFSSID

This field contains the FSS portion of the FSS/FSA identifier.
FSSFSAID

This field contains the FSA portion of the FSS/FSA identifier. Use the value JES passed in the
ORDSSAD field of the START FSA order parameter list to initialize this field.

Establishing FSA/JES Communication

40 z/OS: z/OS MVS Using the Functional Subsystem Interface

CDFFLGR2
This flag byte specifies the operator intervention required functions that the device supports. If any of
these bits are set, intervention orders for all of these functions are sent to the FSA. The FSA should
only process the ones it can and ignore any others. One or more of the following indicators can be set:
CDFFL2BT B‘10000000’

The device supports BTS (burster-trimmer-stacker) intervention.
CDFFL2FL B‘01000000’

The device supports flash intervention.
CDFFL2FO B‘00100000’

The device supports forms intervention.
CDFFL2CF B‘00010000’

The device supports continuous forms intervention.
CDFFLGR3

This flag byte specifies the JES functions that the FSA supports. The following indicator can be set:
CDFFL3MS B‘10000000’

The device supports extended message routing (JES3 only).
CDF3BLKT B 00000010‘00000010’

On associated FSA connect, for all relevant data sets associated with FSA, the following
processing will occur: IDXRECL will be set to the length of the data portion of the record (without
trailing blanks). IDXORECL will be set to the original LRECL of the record. The output buffer will
contain the original record supplied on the PUT. This option only pertains to non-page mode data
sets. Only JES2 will honor CDF3BLKT.

CDFSTOR
The address of the storage for the contiguous SSOB/SSIB pair.

CDFFDATA
The address of a control block containing FSA information that JES returns when it invokes the FSI
POST and FSI ORDER routines. This parameter enables the FSA to pass control information through
FSIREQ to its POST and ORDER routines.

CDFIDNO
The number of function ID/address pairs pointed at by CDFIDNA. JES uses this number to determine
how many pairs are contained in the CDFPAIRS portion of the CONNECT parameter list.

CDFIDNA
The address of the first pair of function ids and their respective addresses. The FSA level functions
included in this section are FSIORDER and FSIPOST.

CDFSSID
Name of the JES that the FSA is connected to. If this parameter is not specified, the FSA is connected
to the primary JES defined to your installation.

CDFFLGS1
Indicates functions supported by JES. This field is set in the FSS connect parameter list.
CDFS1INT B'10000000'

Unsolicited send for intervention conditions
CDFS1ETE B'01000000'

Support for environmental type errors
CDFS1A31 B'00100000'

Support for AMODE 31
CDFS1ESS B'00010000'

Support for ESS keywords
CDFS14DG B'00001000'

Support for 4-digit hexadecimal device numbers

Establishing FSA/JES Communication

Chapter 7. Establishing FSA/JES communication 41

Issuing the FSA Level FSIREQ CONNECT Request
When the FSA has completed initializing the CONNECT parameter list, it uses the FSIREQ macro to invoke
the FSI CONNECT service. The format of this macro call is:

FSIREQ REQUEST=FSICON,PARM=CONNECT parm-list-address,
 TARGET=JES,FSID=fsid

Refer to Chapter 4, “The FSIREQ Macro,” on page 13 for a complete description of each operand on this
macro and any defaults that you can take.

FSA CONNECT processing
When JES receives the FSA CONNECT request from the FSA, JES validates the FSA information and builds
FSI-related control blocks for use by both the FSS and JES.

JES initializes the second FSA FSCT with the addresses of the FSI service routines that JES provides.
When the FSA issues a request, the FSIREQ macro uses these addresses to branch into the appropriate
JES-provided routines.

How JES Handles Logic Errors and Abends
JES may not be able to connect the FSA for one of the following reasons:

• The parameter list is incorrect
• The function code is invalid
• The FSS identifier or the FSA identifier is invalid
• The FSA is trying to connect before the FSA is fully connected
• The FSA is already connected

If JES could not connect the FSA, the value in register 15 is non-zero to indicate that the FSA should
abnormally terminate. The FSS should correct whatever caused the error and reissue the FSA CONNECT
request.

How JES Monitors Timing of FSA CONNECT
When JES issues the START FSA order to the FSS, it starts a timer. If the FSA does not respond with a FSA
CONNECT within five minutes JES issues a STOP FSA order to the FSS. Refer to Chapter 12, “Stopping an
FSA,” on page 97 for more information about the STOP FSA order.

FSA Could Not Be Started
Depending on why the FSA could not be started, either the FSS or the FSA itself notifies JES. The FSS can
decide in its order routine that the FSA START order is to be rejected. In this case, the FSS sets a non-zero
return code in register 15 in response to the order. If the FSS does this, JES will destroy the address space
that the FSS is running in.

If the FSS determines in its mainline code that it could not start the FSA, the FSS indicates this condition
in the order response area (IAZRESPA). The FSS then issues an FSIREQ SEND request in response to the
START FSA order to notify JES that the FSA could not be started.

If the FSA determines that it cannot issue the FSA CONNECT, it will notify JES by issuing a FSIREQ SEND
function call with RESPRETC set to a non-zero value.

Establishing FSA/JES Communication

42 z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 8. Starting an FSS device

Successful completion of FSA level CONNECT processing causes JES to issue the START device order to
the FSA. When the FSA receives the START device order, it performs device processing and then responds
to JES. IBM recommends that all device initialization be done by the START FSA routine. Therefore, the
START device routine is the signal for the FSA to begin issuing GETDS requests. Once the device is started,
it can begin requesting data sets from JES for output processing.

WAIT

Receive response of started device

JES CODE FSS/FSA CODE

START procname...

Issue Start FSA
FSIREQ REQUEST=FSIORDER

Issue start device

FSIREQ REQUEST=FSIORDER

Initialize PRINTER

FSIREQ REQUEST=FSISEND

WAIT

FSS waits for orders

FSS waits for orders

WAIT

Address space created
FSS Initialization
FSS Connect Request
FSIREQ REQUEST=FSICON

FSA Initialization
FSA Connect Request
FSIREQ REQUEST=FSICON

1

3

4

6

2

5

Figure 15. Overview of FSI startup processing

The topics that follow explain how the FSA processes the START device order and responds to JES.

Processing the START device order
To start a device that is running under control of an FSS, JES issues the start device order to the FSA's FSI
ORDER routine. JES passes the address of the START device order parameter list in register 1. Refer to
Figure 16 on page 44 for a description of the START device parameter list.

When the FSI ORDER routine receives the order, it:

• Determines the type of order issued
• Either processes the order immediately or posts the appropriate FSA task to process the order.

The value of the ORDID field in the common order header section of the START device order parameter
list represents the type of order the FSA needs to process.

Note: If the order is something that may take a while and therefore can be answered asynchronously, IBM
recommends that the FSA order routine notify the FSA that there is an order to process and immediately
return control to JES. The FSI order and post routines are part of the FSS and FSA. However, JES invokes
the FSI order and post routines and they run under a JES TCB or SRB.

The START device order parameter list consists of the following sections:

• Common parameter header
• Common order header
• START order function dependent section.

The following figure shows the connection between the different sections of the FSIREQ parameter list.

Starting a Device

© Copyright IBM Corp. 1988, 2020 43

ORDER RESPONSE
AREA

(IAZRESPA)

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

START/STOP
(ORDSS)

Figure 16. FSIREQ parameter lists for the START device order

The following table shows the parameters that JES initializes for the START device order. The values that
JES assigns are explained after the table.

Field Name Length (bytes) Value JES Assigned

Common Parameter Header

FSILEN 4 Length of START order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS/FSA identifier

Common Order Header

ORDFDATA 4 Information supplied to JES in the FSS/FSA
CONNECT parameter list (CDFFDATA)

ORDRSPAD 4 Address of the order response area

ORDID 2 ORDSTDEV

START Order Function Dependent Section

ORDSSSP 4 0

ORDSSID 4 FSA identifier of device to start

ORDSSAD4 4 Device address in 4-digit format

ORDSSAD 3 Device address in 3-digit format

ORDSSNA 8 Device name

FSILEN
The total length of the START order parameter list. The START order parameter list consists of the
common parameter header, the common order header and the START order header.

FSIFUNC
The ORDER ID number. JES assigns the symbolic value FSIORDER to this field.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.

ORDFDATA
The address of a control block containing FSA-related information. The FSA passed this address to
JES in the CDFFDATA field of the CONNECT parameter list. JES returns this value in the START device

Starting a Device

44 z/OS: z/OS MVS Using the Functional Subsystem Interface

order parameter list so that the FSA's FSI ORDER routine can start the appropriate FSA task to
process the order.

ORDRSPAD
The address of the order response area (IAZRESPA).

ORDID
The START device order ID number. JES assigns the symbolic value ORDSTDEV to this field.

ORDSSSP
This field is set to zero. JES supplies the address of the device initialization area in this field for the
START FSA order only.

ORDSSID
The FSS/FSA identifier of the device to start.
ORDSSSI

The FSS section of the FSA identifier.
ORDSSAI

The FSA section of the FSA identifier.
ORDSSAD4

The 4-digit device address in printable form. This field will contain blanks if the printer is a non-
channel attached device.

ORDSSAD
The 3-digit device address in printable form. This field will contain blanks if the printer is a non-
channel attached device.

ORDSSNA
The device name in printable form.

Notifying JES of Device Status
When the FSA's FSI order routine receives the START device order from JES, the FSA decides whether it
can start the device immediately, or needs to perform additional processing before starting the device.
Refer to Chapter 5, “FSI Communication,” on page 17 for information about responding to an order from
JES.

SEND Processing
When JES receives the SEND request, it processes the return code set by the FSA in the RESPRETC field
of the order response area. If the return code is zero, JES is ready to accept GETDS requests. If the return
code is non-zero, JES issues a STOP FSA order. Refer to Chapter 12, “Stopping an FSA,” on page 97 for
more information about the STOP FSA order.

Starting a Device

Chapter 8. Starting an FSS device 45

Starting a Device

46 z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 9. Issuing Data Requests to JES

After an FSA notifies JES (using the FSI SEND request) that it successfully started the associated device, it
is ready to begin data set processing. As part of data set processing, the FSA invokes the FSI data access
services (GETDS, GETREC, FREEREC, RELDS, and CKPT) to:

• Obtain a SYSOUT data set and its characteristics from JES, as described in “Getting a SYSOUT Data Set
(GETDS)” on page 47

• Obtain logical records of an obtained data set, as described in “Getting SYSOUT records from an
acquired data set” on page 64

• Release logical records for a data set to JES, as described in “Releasing a SYSOUT record” on page 72
• Release an obtained data set to JES, as described in “Releasing a SYSOUT data set” on page 74
• Request JES to record checkpoint information for a JES spool data set currently being processed by the

FSA device. as described in “Requesting a Checkpoint of Processing” on page 77.

The information provided for each of the FSI data access services on the following pages explain:

• The tasks required to invoke the FSI service
• The FSI service processing
• The information that JES returns in response to the FSIREQ request.

JES groups similar data sets together and prints them between a set of separator pages. A header
separator page starts a group and a trailer separator page ends a group. Therefore, when the FSA receives
a request from JES to process a data set, the request will include separator page information related to
that data set's position within the group.

For example, the first data set in a group will have a header separator page and the last data set in a group
will have a trailer separator page. Data sets between the first and the last will not have header or trailer
separator pages.

Getting a SYSOUT Data Set (GETDS)
An FSA obtains a JES spool data set and its characteristics for output processing by invoking the FSI
GETDS service. The following are places the FSA gets data set characteristics in addition to the
characteristics it gets during GETDS processing:

• The job separator page area (JSPA) whose address is in the GETDS parameter list.
• The job management record (JMR) whose address is in the JSPA.
• The scheduler work blocks whose address is in the GETDS parameter list. This is the major place to find

basic SYSOUT attributes from the end user's JCL and installation defaults.
• The device settings, set explicitly from the START FSA order and possible reset by using the SET order.
• The device setting that might be implicitly set by the FSA due to the device name or UCB name that JES

passes.

GETDS

© Copyright IBM Corp. 1988, 2020 47

7

Process RELDS
Closes the data set and deallocates
its storage

Process FREEREC

Next GETDS

WAIT

JES CODE FSA CODE

Select WORK
Tell FSA work exists
FSIREQ REQUEST=FSIPOST

No work found
Return from GETDS
Indicating no work available

Works is available

Select WORK

Fill WORK REQUEST

Fill WORK REQUEST

Build INDEX and Parameter list

PROCESS RECORD

Issue GETDS Request

FSIREQ REQUEST=FSIGDS

Respond to Post
FSIREQ REQUEST=FSIGDS

ISSUE FREEREC REQUEST
FSIREQ REQUEST=FSIFREC

ISSUE RELDS Request
FSIREQ REQUEST=RELDS

ISSUE GETREC REQUEST
FSIREQ REQUEST=FSIGREC

1

2

2c

2d

3

5

7

4

6

8

2a

2b

WAIT

WAIT

WAIT

Figure 17. Overview of FSI data set processing

The FSI GETDS service is functionally equivalent to allocating and opening a SYSOUT data set. The FSA
does not specify data set selection criteria in the GETDS request; it makes a request for the next available
data set. JES uses its own work selection criteria to provide the most appropriate data set to the FSA. If
no data set is available for processing, JES notifies the FSA that it could not satisfy the GETDS request.
The FSA should not issue any more GETDS requests until the FSA is notified that work is available. When
work becomes available, JES notifies the FSA via the FSIREQ POST function that it can reissue the GETDS
request.

JES does not restrict the number of data sets that can be allocated to the FSA concurrently. Thus, the FSA
can issue multiple GETDS requests without intervening RELDS requests. However, in a JES3 environment
all GETREC requests will be satisfied from the last GETDS request.

The following figure shows the connection between the different sections of the FSIREQ parameter list for
GETDS processing. The individual parts of this diagram are explained in this section.

GETDS

48 z/OS: z/OS MVS Using the Functional Subsystem Interface

GETDS PARM
(GDSPARM)

PARM HEADER
(IAZFSIP)

CHECKPOINT AREA
(IAZCHK)

JOBSEPARATOR AREA
(IAZJSPA)

Figure 18. FSIREQ parameter lists GETDS processing

The following sections explain the tasks the FSA must complete to invoke the FSI GETDS service.

Providing an FSA Checkpoint Area
The FSA must place the address of a checkpoint area in the GETDS parameter list. JES uses this area to
return information that allows a previously interrupted data set to continue printing from the point
indicated by the last valid checkpoint. When the FSA invokes the FSI GETDS service, JES retrieves any
checkpoint information for the data set assigned to the FSA and moves that information into the FSA-
provided checkpoint area. If JES has filled in the checkpoint area, the GDSCKP bit is turned on.

When the FSA establishes a checkpoint area, the address of the checkpoint area should be placed in the
GDSCKPA field. The length of the checkpoint area should be stored in the GDSCKPL field.

IBM recommends that the size of this checkpoint area be large enough to accommodate both the IAZCHK
FSI checkpoint record and any FSA device dependent checkpoint information. The IAZCHK macro is the
JES base checkpoint information mapping. Any device dependent information must be placed at the end
of the JES base. The length that is stored in GDSCKPL is the combination of both the JES base and device
dependent sections.

The FSA should establish (GETMAIN) a unique checkpoint area for each concurrently active data set that
it is processing. For example, if the FSA issues one GETDS, processes all the records, and then releases
the data set, only one checkpoint area is needed. If the FSA issues several GETDS requests and processes
them at the same time, several checkpoint areas are needed.

Initializing the GETDS Parameter List

Both the FSA and JES use the FSIREQ GETDS parameter list to pass information to one another. The FSA
must initialize certain fields of the FSIREQ GETDS parameter list for each issuance of the GETDS request.
The following table lists the required fields, the lengths of these fields, and the values that the FSA must
assign. Detailed descriptions of the value assignments follow this table.

Table 5. FSIREQ GETDS parameter values

Field Name Length (bytes) Value to be assigned

Common Parameter Header Section

FSILEN 4 Length of GETDS parameter list

FSIFUNC 4 FSIGDS

FSIFSID 4 The FSS/FSA IDs

FSIPEXT 4 The extension area address

GETDS

Chapter 9. Issuing Data Requests to JES 49

Table 5. FSIREQ GETDS parameter values (continued)

Field Name Length (bytes) Value to be assigned

GETDS Function Dependent Section

GDSCKPL 4 Length of FSA checkpoint area

GDSCKPA 4 Address of FSA checkpoint area

GDSDSID 12 0 (zero)

GETDS Function Dependent Extension Area Header

FSIEXNUM 2 Number of extensions

FSIEXLEN 2 Length of all extensions

FSIEHID 4 Extension header ID

GETDS Function Dependent Extension Area

FSIEGLEN 2 Extension area length

FSIEGFID 4 Extension function ID

FSILEN
The length of the entire GETDS parameter list. The GETDS parameter list consists of both the IAZFSIP
common header section and the GETDS function dependent section.

FSIFUNC
The GETDS function ID number. The FSA assigns the symbolic equate value FSIGDS to this field.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

FSIPEXT
If this field is non-zero, then there is an existing extension to this parameter list. The address of the
extension is the contents of this field. See the Appendix for structure of extension area.

GDSCKPL
The length of the FSA checkpoint area.

GDSCKPA
The address of the FSA checkpoint area.

GDSDSID
The FSA must clear this field to zero before each issuance of the GETDS request because JES assigns
the data set identifier to this field.

FSIEXNUM
The number of function dependent extension areas following this header.

FSIEXLEN
The length of the function dependent extension areas. This length does not include the length of this
header.

FSIEHID
The extension header ID. This is the character string "EHID".

FSIEGLEN
The length of this function dependent extension. Set this field to the symbolic equate value FSIEASZE.

FSIEGFID
The function ID of this request. Set this field should the symbolic equate value FSIGDS.

Issuing the FSIREQ GETDS Request
When the FSA has completed initializing the GETDS parameter list, it issues the FSIREQ macro to invoke
the FSI GETDS service. The format of this macro call is:

GETDS

50 z/OS: z/OS MVS Using the Functional Subsystem Interface

FSIREQ REQUEST=FSIGDS,TARGET=JES,PARM=GETDS parm-list-addr, FSID=value-addr

See Chapter 4, “The FSIREQ Macro,” on page 13 for a complete description of each operand on this macro
and the defaults that may be taken.

JES GETDS Processing
The JES-supplied GETDS routine in the FSS address space receives control when the FSA issues the
FSIREQ GETDS macro. This routine communicates with the JES address space to process GETDS
requests. The basic function of GETDS processing is to attempt to satisfy the GETDS request immediately
by selecting a JES output data set and then despooling that data set to the FSA. JES uses its own data set
selection criteria to select the appropriate data set.

If no errors occur during GETDS processing and a data set is available, JES retrieves any checkpoint
information for the data set and moves that information into the checkpoint area provided by the FSA. JES
also determines the JES characteristics and retrieves a pointer to the scheduler work blocks for this data
set. The scheduler work blocks represent the data set's characteristics that were specified in the job's
JCL. Finally, JES initializes the GETDS parameter list with the data set information and sets a return code
of zero in register 15. JES then returns control to the FSA.

If no errors occur during GETDS processing but a data set is not available, JES sets the GDSNALLC flag on
in the GETDS parameter list and sets a return code of zero in register 15. JES then returns control to the
FSA. See “No work exists for printing” on page 60 for more information.

If an error occurs during GETDS processing (for example, JES detects that the length of the GETDS
parameter list is invalid), JES sets the GDSNALLC flag on in the GETDS parameter list and sets a non-zero
return code in register 15. JES then returns control to the FSA. When the FSA receives a non-zero return
code it should abnormally terminate and take a dump.

Information returned from GETDS processing
On return from successful GETDS processing, the GETDS parameter list contains the following
information:

Table 6. Contents of the GETDS parameter list

Field name Length (bytes) Value assigned

Common parameter header section

FSILEN * 4 Length of the GETDS parameter list

FSIFUNC * 4 FSIGDS

FSIFSID * 4 The FSS/FSA IDs

FSIPEXT* 4 The extension area address

GETDS function dependent section

GDSFLGR1 1 JES printing requirements for the data set

GDSFLGR2 1 SWB requirements for job header/trailer pages

GDSFLGS1 1 GETDS processing status information

GDSCKPL * 4 Length of FSA checkpoint area

GDSCKPA * 4 Address of the FSA checkpoint area

GDSJSPA 4 A pointer to the JSPA

GDSOUTK 8 The OUTPUT SWB token

GDSJDVTN 8 The JDVT name used at data set creation

GETDS

Chapter 9. Issuing Data Requests to JES 51

Table 6. Contents of the GETDS parameter list (continued)

Field name Length (bytes) Value assigned

GDSDSID * 12 The data set identifier

GDSRECFM 1 The data set record format

GDSMRECL 2 The data set record length

GDSSJMSG 80 The SJF error message. This field is initialized only if
the GDSFLGS1 flag byte indicates that an error
occurred in SJF processing.

GETDS function dependent extension area

FSIEGLEN* 2 Extension area length

FSIEGVSN 2 Version number field

FSIEGFID* 4 Extension function ID

FSIEGUTK 80 User token

FSIEGRTK 80 Resource token

FSIEGOGT 20 Output group token

The fields with an asterisk (*) contain values set by the FSA when it issued the GETDS request. The fields
that JES set or reset during GETDS processing are described in detail below:
GDSFLGR1

This flag byte contains the JES printing requirements for the data set returned to the FSA. The
following indicators may be set:
GDSJHDR B'10000000'

JES requires the FSA to print a job header page for the data set.
GDSJTRL B'01000000'

JES requires the FSA to print a job trailer page for the data set.

Note: JES may optionally issue a SYNCH order to request a job trailer page for the data set.

GDSHDR B'00100000'
JES requires the FSA to print a data set header page.

GDSHTDS B'00010000'
JES requires the FSA to print the data set on the same page as the job header or trailer page. If
this flag is set, either the job header or job trailer flag is also set, but never both. JES sets this flag
only if it has assigned the JESNEWS data set to the FSA.

GDSFRMRK B'00001000'
JES requires a form mark on the separator page.

GDSCMC B'00000100'
JES requires the FSA to change the copy mark for each data set. For a stacking machine, a change
of the copymark is equivalent to an offset of the paper. For a machine without a stacker, the
copymark is a black tickmark on the bottom of the page.

GDSCMCPY B'00000010'
JES requires the FSA to change the copy mark for each copy.

GDSTRKDS B'00000001'
JES requires the FSA to track the data set and issue an FSIREQ SEND request when the data set
reaches the operator observation point. See “Notifying JES that the Data Set Reached the OOP”
on page 62 for information about handling this requirement.

GETDS

52 z/OS: z/OS MVS Using the Functional Subsystem Interface

GDSFLGR2
This flag byte contains the installation defined printing requirements for the data set returned. The
following indicators may be set:
GDSJHSWB B'10000000'

The FSA is to use FSA header defaults, if they exist, defined for the job header page when printing
the data set. JES sets this flag only for the JESNEWS data set.

GDSJTSWB B'01000000'
The FSA is to use FSA trailer defaults, if they exist, defined for the job trailer page when printing
the data set.

GDS2EOG B'00100000'
End of output group.

GDSFLGS1
This flag byte contains status information related to GETDS processing. The following indicators may
be set:
GDSCKP B'10000000'

The checkpoint area contains valid information that the FSA may use to restart the processing of a
previously interrupted data set. See “Information Contained in the FSA Checkpoint Area” on page
59 for a description of each field.

GDSALLOC B'01000000'
JES successfully allocated a data set to the FSA.

GDSRSTCT B'00000100'
JES requires the FSA to reset the group page and record counts that the FSA keeps track of for the
QUERY order. See “The Query Order” on page 81 for more information about information
returned to JES for a QUERY order.

GDSSJERR B'00000010'
The JES GETDS service routine detected an error in scheduler JCL facility (SJF) processing. The
GDSSJMSG field contains a detailed error message that the FSA is to display.

GDSJSPA
A pointer to a job separator page data area (JSPA). The JSPA contains job and data set related
information that the FSA may use to generate header and trailer pages (if required), and SMF Type 6
records. The section “Information contained in the JSPA” on page 54 shows the possible settings for
each JSPA field.

GDSOUTPK
The OUTPUT SWB token. The FSA uses this token to interface with the scheduler JCL facility (SJF) to
acquire the data set's characteristics specified on the JCL OUTPUT statement. “The Scheduler JCL
Facility” on page 107 describes how to invoke SJF services and retrieve JCL data set characteristics.

GDSJDVTN
The JCL definition vector table (JDVT) name used at data set creation. The FSA uses this table to let
the Scheduler JCL Facility (SJF) know what JCL to use for the SJF RETRIEVE service. See “Using SJF
Services” on page 108 for more information about the SJF RETRIEVE service.

GDSDSID
The data set identifier. The FSA uses this identifier in subsequent FSI service requests (GETREC,
FREEREC, RELDS, CHKPT, and ORDER) to uniquely identify the data set.

GDSRECFM
The data set record format as defined in the JFCB.

GDSMRECL
The data set record length. This is the largest record length with which the data set was opened.

GDSSJMSG
The message text describing the SJF error that occurred. JES initializes this field only if the GDSSJERR
indicator is set in the GDSFLGS1 flag byte indicating that an error occurred in SJF processing. The FSA
is to print this error message with the data set.

GETDS

Chapter 9. Issuing Data Requests to JES 53

FSIEGLEN
The length of the extension area.

FSIEGVSN
The version number of the extension area.

FSIEGFID
The function ID for which this extension is created.

FSIEGUTK
This field contains the security token for the data set's. creator

FSIEGRTK
This field contains the security token of the data set.

FSIEGOGT
This field contains a number that uniquely identifies an output group.

Information contained in the JSPA
When JES returns control to the FSA, it indicates in the GETDS parameter list the job header, job trailer,
and data set header requirements. It also provides a pointer in field GDSJSPA to the JSPA created for the
assigned data set regardless of whether or not a separator page is requested by JES.

The JSPA contains job and data set related information that the FSA may use to generate the header and
trailer pages. JES does not make requirements as to what information from the JSPA should be included
on these pages.

The FSA determines how it will create the separator pages, and may freely use any or all fields passed to
it in the JSPA for those pages. The FSA may also use the job related information in the JSPA to generate
an SMF type 6 record for the assigned data set.

The JSPA consists of:

• A common JES section,
• A JES dependent section, and
• A user dependent section.

The IAZJSPA is returned to the caller above or below the 16 megabyte line based on the connect
parameters supplied by the FSS (Bit CDFFL331 in byte CDFFLGR3 is supplied by the FSS during FSS
connect to indicate if the FSS is running AMODE(31). Figure 19 on page 55 shows the structure of the
IAZJSPA control block.

GETDS

54 z/OS: z/OS MVS Using the Functional Subsystem Interface

JSPJEND

JSPUEND *

.

.

.

.

IAZFSIP

*

.

.

GDSPARM GETDS
Parms

GDSJSPA

JSPAJES

JSPAUSER

JSPEXT
JSPEXNUM
JSPEXLEN
4 Reserved Full-

words

JSPCEUID
JSPCESEC
JSOCEDSN
JSPCESEG

*
*
*

*
*
*
*

.

.
JSPA1EXT Bit

.

.

JSPAJMR Address

.

.

.

.

.

.

.

.

‘JES Dependent Section’
(Second of three in ‘base’ JSPA)

‘User Dependent Section’
(Third of these in ‘base’ JSPA)

Extension Header start
(Only one extension header)

Data fields specific to the
‘IBM Common Extension’

Multiple Extensions may exist
each containing length
version number, and
extension id, followed by
specific data fields for
that particular extension.
(Currently, only one extension
is defined, the ‘IBM Common Extension’)

Each extension follows - each
extension contains the following
four fields (named differently):
Start of Extension (label)
Length of Extension (halfword)
Version Number (halfword)
Extension ID (fullword)

JSPA1EXT - extensions follow
at the end of ‘base’ JSPA

JES - Section end

User - Section end

JSPABEND

e

x

t

e

n

s

i

o

n

a

r

e

a

exten-

sion hdr

a

single

other

exten-

sions

JSPJSIZE

JSPUSIZE

JSPEJSPS JSPEHSZE

JSPECSZE

JSPASIZE

JSPESIZE

GETDS Function of the IAZFSIP Parameter List

IAZJSPA

Start of extensions

JSPCEXT
JSPCELEN
JSPCEVSN
JSPCECID

possible extension

last extension

*
*
*

*
*
*
*

JSPALEN Halfword

.

.

.

.

.

.

.

.

.

.

.

.

Pointer to returned IAZJSPA

Job Page Separator Area (JSPA)

‘Common Section’
(First of three in ‘base’ JSPA)

‘JSPA Extensions’

JSPALEN - length of
the base JSPA

JMR Address - last field in
‘common’ section

*

*

.

.

.

.

.

.

B
A
S
E

J
S
P
A

extension

possible

possible extension

possible extension

.

Figure 19. The IAZJSPA (job separator page area)

It also may contain one or more data extensions which contain additional information about the returned
data set. The fields in the JES dependent section may or may not be set depending on whether the JES
connected to this FSA scans for their associated information and whether the information was provided
(for example, the programmer name may not have been specified).

In addition, the JES3 user exit IATUX45 allows the user to modify the information in the JES sections
and/or expand the JSPA with user defined information, while the JES2 user exit 23 allows the user to

GETDS

Chapter 9. Issuing Data Requests to JES 55

modify or expand the user section of the JSPA. If the FSA is to take advantage of information in the user
dependent section, it must provide its own user exits. Otherwise it is concerned only with the information
in the JES sections. For more information about IATUX45 or user exit 23, see the appropriate JES
Customization book.

The pointer out of the GDSPARM area is shown, along with the possible 3 sections of the BASE JSPA, the
Extension Header, and the mapping of the ‘IBM Common Extension’. The equated sizes are shown, but are
only accurate at assembly-time.

To obtain the start of the extension area (JSPEXT), the user should add the contents of field JSPALEN to
the starting address of the JSPA. Then, the extension header is a fixed size, and field JSPEXLEN contains
the lengths of all extensions (not including the extension header).

The following table lists the individual JSPA fields and the lengths of these fields, and the values that may
have been set. Any fields not containing values are set to binary zeroes unless otherwise noted.

Table 7. IAZJSPA macro

Field Name Length (bytes) Assigned Value

Common Section (All fields are set by either JES2 or JES3)

IAZJSPA (JSPA) 0 DSECT mapping name

JSPAID 4 JSPA

JSPALEN 2 Length of the IAZJSPA base section

JSPAFLG1 1 Flag byte

JSPAJBNM 8 Job name

JSPAJBID 8 Job ID

JSPADEVN 8 Device name assigned to the FSA that is associated with the
device being used to process the returned data set.

JSPADEVA 4 The 3-character or 4-character device address in EBCDIC of
the device named in JSPADEVN. See the explanation of this
field following this table.

JSPAJMR 4 Address of the JMR (job management record)

JES Dependent Section (The values are determined by JES)

JSPAJES 0 Start of JES dependent data area

JSPJGRPN 8 Output group name from the job output element (JOE)

JSPJGRP1 2 Output group first ID from the job output element (JOE)

JSPJGRP2 2 Output group second ID from the job output element (JOE)

JSPJGRPD 8 Output group's DESTID

JSPJRMNO 4 Room number from the JCT associated with the owning job

JSPJPNAM 20 Programmer name from the JOB statement

JSPJDSNM 24 Three part DD name assigned by JES to the returned SYSOUT
data set

JSPJDSPN 8 Procedure name component of JSPJDSPN

JSPJDSSN 8 Step name component of JSPJDSPN

JSPJDSDD 8 DD name component of JSPJDSPN

JSPJSOCL 1 SYSOUT class of the data set

GETDS

56 z/OS: z/OS MVS Using the Functional Subsystem Interface

Table 7. IAZJSPA macro (continued)

Field Name Length (bytes) Assigned Value

JSPJPRIO 1 Priority of the data set

User Dependent Section

JSPAUSR1 4 Reserved for the user

JSPAUSR2 4 Reserved for the user

Mappings of the extensions

JSPEXT 0 Start of the extension area

JSPEXNUM 2 Number of extensions

JSPEXLEN 2 Length of all extensions

Mappings of IBM Common Extension

JSPCEXT 0 Start of the IBM Common Extension

JSPCELEN 2 Length of IBM Common Extension

JSPCEVSN 2 Version number of this extension

JSPCECID 4 Id of this extension

First data field of the extension at offset +8

JSPCEUID 8 Userid associated with this data set

JSPCESEC 8 Security label (SECLABL) of this data set.

JSPCEDSN 53 Fully-qualified (including node name) data set entity name

JSPCESEG 4 Segment number associated with this data set

IAZJSPA (JSPA)
The DSECT mapping name.

JSPAID
JSPA

JSPALEN
The length of the IAZJSPA base section not including the extension header or any extensions. If
JSPA1EXT is set, the value in this field added to the starting address of IAZJSPA is the address of the
extension header. This value is used to obtain the address of JSPEXT.

JSPAFLG1
The flag byte is defined as follows:

• JSPA1CON identifies this data set as a continuation of a previously-passed output group. The bit
may be used to signify that this output group has may have portion(s) previously returned to a print
device and that this particular returned data set might not start at the beginning of the data set.

• JSPA1EXT signals that one or more extensions follow the base IAZJSPA.
• JSPA1UND signals that the user id contained in field JSPCEUID is undefined and is not a valid user

id.
• JSPA4DG signals that the device number is in 4-digit format.

JSPAJBNM
The job name that is assigned to the job that created this data set.

JSPAJBID
The job id assigned to the job that created this data set.

GETDS

Chapter 9. Issuing Data Requests to JES 57

JSPADEVN
The device name assigned to the FSA that is associated with the device being used to process the
returned data set.

In JES2, it is the PRT(nnnn) name of the device as assigned on the local printer initialization
statement.
In JES3, it is the JNAME of the device as assigned on the DEVICE initialization statement.

JSPADEVA
The device address in EBCDIC of the device named in JSPADEVN. If JSPA4DG in JSPAFLG1 is ON, this
field contains the 4-digit device number; otherwise, it contains the 3-digit device number in the first 3
bytes.

JSPAJMR
The address of the JMR (job management record) associated with the job that created this data set. It
is mapped by IEFJMR.

JSPAJES
The start of JES dependent data area.

JSPJGRPN
JES2 supplies the output group name from the job output element (JOE). JES3 does not use this field.

JSPJGRP1
JES2 supplies the output group first ID from the job output element (JOE). JES3 does not use this
field.

JSPJGRP2
JES2 supplies the output group second ID from the job output element (JOE). JES3 does not use this
field.

JSPJGRPD
JES2 supplies the output group's DESTID.

JSPJRMNO
JES2 supplies the room number from the JCT associated with the owning job. JES3 does not use this
field.

JSPJPNAM
The programmer name from the JOB statement, if available, or blanks (X'40's).

JSPJDSNM
The three part DD name assigned by JES to the returned SYSOUT data set (a combination of
JSPJDSPN, JSPJDSSN, and JSPJDSDD).

JSPJDSPN
The procedure name component of JSPJDSPN.

JSPJDSSN
The step name component of JSPJDSPN.

JSPJDSDD
The DD name component of JSPJDSPN.

JSPJSOCL
The SYSOUT class of the data set.

JSJPRIO
The priority of the data set.

JSPAUSR1
This field is reserved for the user.

JSPAUSR2
This field is reserved for the user.

JSPEXT
The start of the extension area. The extension header follows. The header and any extensions are only
present if JSPA1EXT has been set in the base section. See the description for field, JSPALEN in
determining where the extension header exists in storage.

GETDS

58 z/OS: z/OS MVS Using the Functional Subsystem Interface

JSPEXNUM
The number of extensions following this header.

JSPEXLEN
The length of all extensions following this header not including the extension header itself.

JSPCEXT
The start of the IBM Common Extension. Extensions must have the same first three fields containing
the extension length, version, and id.

JSPCELEN
The length of IBM Common Extension. All extensions must have a 2 byte field containing the length at
this offset (+0) into an extension.

JSPCEVSN
The version number of this extension. All extensions must have a 2 byte field containing the version at
this offset (+2) into an extension. The following versions exist:

1 - Reserved
2 - The following data fields are defined in the extensions: JSPCEUID, JSPCESEC, and JSPCEDSN.
3 - All version 2 data fields exist plus JSPCESEG are defined as well.

JSPCECID
The id of this extension JSPCEXTI indicates this particular extension is the IBM Common Extension.
All extension's data fields at offset +8 and beyond are uniquely defined for any particular extension
and begin after the id of the extension. All extensions must have a 4 byte field containing the id at this
offset (+4) into an extension.

JSPCEUID
The userid associated with this data set. This value is available only if JSPCEVSN is greater than or
equal to 2.

JSPCESEC
The security label (SECLABL) of this data set. This value is available only if JSPCEVSN is greater than
or equal to 2.

JSPCEDSN
The fully-qualified (including node name) data set entity name in the format
nodename.userid.jobname.jobid.number.name. This value is available only if JSPCEVSN is greater
than or equal to 2.

JSPCESEG
The segment number associated with this data set. This value is available only if JSPCEVSN is greater
than or equal to 3. Segment id is valid only when using the SEGMENT= DD JCL keyword. JES3 does
not support the SEGMENT= keyword on the DD JCL statement thus this field is set to binary zeroes in
JES3.

Information Contained in the FSA Checkpoint Area
If valid checkpoint information exists for the data set assigned to the FSA, JES moves this information into
the FSA checkpoint area during GETDS processing. The specific information provided depends on whether
the data set was previously being processed by an FSS- or JES-controlled device.

• If the data set was previously being processed by a JES-controlled device, JES converts its own
checkpoint data into the FSI checkpoint record format (IAZCHK) and moves the record into the FSA
checkpoint area.

• If the data set was previously being processed by an FSS-controlled device, JES retrieves FSA-supplied
checkpoint information that it recorded during FSI CHKPT processing and moves that into the FSA
checkpoint area. In this case, the FSA checkpoint area contains the FSI checkpoint record (IAZCHK)
(whose fields were set by an FSA) and any FSA device dependent checkpoint information.

The following table lists the fields of the IAZCHK record, the length of each field, and the values that may
have been assigned.

GETDS

Chapter 9. Issuing Data Requests to JES 59

Field Name Length (bytes) Assigned Value

CHKID 4 ‘CHK’ (FSI checkpoint record identifier)

CHKLNGTH 2 Length of FSI checkpoint record

CHKJESWK 64 JES dependent checkpoint information for the data
set. The FSA does not use this information.

CHKRBA 8 The JES equivalent of a relative block address
(RBA). The FSA may use this address in a
subsequent GETREC request to cause JES to begin
accessing records at this address.

CHKDEV 4 The device type

CHKMOD 4 The model number of the device

CHKCOPY 4 The number of copies that have been printed

CHKTRNC 4 The transmission count

CHKREC 4 The count of spool records processed (line mode
records with a length of zero or machine immediate
carriage controls are not counted).

CHKPAGE 4 The physical page count

CHKPROD 8 The product that created the checkpoint record

CHKVER 4 The version of the product

CHKRELS 4 The release of the product

CHKMODF 4 The modification level of the product

CHKSERV 4 The service level of the product

No work exists for printing
If JES cannot allocate a data set during GETDS processing, it sets the GDSNALLC flag on in the GETDS
parameter list and then returns control to the FSA. The GDSNALLC flag indicates that no work is currently
available and that JES will notify the FSA, via the FSIREQ POST function, when it can satisfy the GETDS
request.

GETDS

60 z/OS: z/OS MVS Using the Functional Subsystem Interface

2

2c

2d

5

7

4

8

2b

Process RELDS
Closes the data set and deallocates
its storage

Process FREEREC

Next GETDS

WAIT

JES CODE FSA CODE

Select WORK

Tell FSA work exists

FSIREQ REQUEST=FSIPOST

No work found

Return from GETDS

Indicating no work available

Works is available
Select WORK
Fill WORK REQUEST

Fill WORK REQUEST

Build INDEX and Parameter list

PROCESS RECORD

Issue GETDS Request
FSIREQ REQUEST=FSIGDS

Respond to Post

FSIREQ REQUEST=FSIGDS

ISSUE FREEREC REQUEST
FSIREQ REQUEST=FSIFREC

ISSUE RELDS Request
FSIREQ REQUEST=RELDS

ISSUE GETREC REQUEST
FSIREQ REQUEST=FSIGREC

1

3

6

2a

WAIT

WAIT

WAIT

Figure 20. Overview of data set processing

The GETDS parameter list contains the following information:

Field Name Length (bytes) Value Assigned

Common Parameter Header Section

FSILEN * 4 Length of the GETDS parameter list

FSIFUNC * 4 FSIGDS

FSIFSID * 4 The FSS/FSA IDs

GETDS Function Dependent Section

GDSFLGS1 1 GDSNALLC (indicator for data set not allocated)

GDSCKPL * 4 Length of FSA checkpoint area

GDSCKPA * 4 Address of the FSA checkpoint area

The fields with an asterisk(*) contain values set by the FSA when it issued the GETDS request.

Notifying the FSA when work becomes available
When JES determines that work is available, it notifies all FSAs that are waiting for a data set and are
eligible to process the work. Specifically, for each FSA, JES issues an FSIREQ POST request to the FSA-
supplied POST routine indicating that GETDS requests can now be satisfied and should be reissued. When

GETDS

Chapter 9. Issuing Data Requests to JES 61

the FSA POST routine receives the request, it is responsible for alerting the FSA which will cause it to
issue another GETDS request.

The following figure shows the connection between the different sections of the FSIREQ parameter list for
POST processing.

POST PARM
(POSTPARM)

PARM HEADER
(IAZFSIP)

Figure 21. FSIREQ parameter lists for POST processing

In the POST parameter list, JES passes the following information:

Field Name Length (bytes) Value Assigned

Common Parameter Header Section

FSILEN 4 Length of the POST parameter list

FSIFUNC 4 FSIPOST

FSIFSID 4 The FSS/FSA IDs

POST Function Dependent Section

POSTFLS1 1 POSTGDS

POSFDATA 4 CDFFDATA

FSILEN
The length of the POST parameter list, which consists of the common header section and the POST
function dependent section.

FSIFUNC
The POST function ID number. The symbolic equate FSIPOST represents this value.

FSIFSID
The FSS/FSA IDs that JES assigned to the FSS/FSA during start up.

POSTFLS1
This status flag byte indicates the reason for the POST request. The following indicator is set:
POSTGDS B‘10000000’

GETDS requests can now be satisfied.
POSFDATA

This field contains the value that the FSA passed to JES in the CDFFDATA field of the CONNECT
parameter list.

Processing the FSIREQ POST Request
The FSA POST routine uses the information passed in the POST parameter list to activate the appropriate
FSA. This information is pointed to by the POSFDATA field. This field is filled in from the CDFFDATA field
during connect processing. If the POST processing is successful, the FSA POST is expected to return
control to JES with a zero return code in register 15. If an error occurs during processing, the FSA POST
routine is expected to set a non-zero return code in register 15 and then return control to JES. Upon
receiving a non-zero return code, JES will abnormally terminate the FSS address space.

Notifying JES that the Data Set Reached the OOP
If JES sets the GDSTRKDS indicator on in the GDSFLGR1 flag byte in the GETDS parameter list, the FSA is
required to track the processing of the data set and then notify JES when the data set reaches the

GETDS

62 z/OS: z/OS MVS Using the Functional Subsystem Interface

operator observation point (OOP). JES expects the FSA to issue an unsolicited FSIREQ SEND request and
provide status information in a response area. In this instance however, JES has not passed the address
of the response area (IAZRESPA). The FSA must format its own response area according to the IAZRESPA
mapping macro and provide its address in the FSIREQ SEND parameter list.

Initializing the Order Response Area
The following table lists the IAZRESPA fields that require initialization, the length of each field, and the
values that the FSA must assign to those fields.

Field Name Length (bytes) Value to be assigned

Response Area Mapped by IAZRESPA

RESPID 4 ‘RESP’ (ID of response area)

RESPLEN 4 Length of response area

RESPOOPI 12 The identifier of the data set at the OOP

Initializing the SEND parameter list
The following figure shows the connection between the different sections of the FSIREQ parameter list for
Send processing.

PARM HEADER
(IAZFSIP)

SEND HEADER
(SNDPARM)

ORDER RESPONSE
AREA

(IAZRESPA)

Figure 22. FSIREQ parameter lists for send processing

Table 8 on page 63 lists the fields in the SEND parameter list that require initialization, the length of each
field, and the values that the FSA must assign to those fields. Detailed value assignments follow this table.

Table 8. Fields in the SEND parameter list that require initialization

Field Name Length (bytes) Value to be assigned

Common parameter header section

FSILEN 4 Length of SEND parameter list

FSIFUNC 4 FSISEND

FSIFSID 4 The FSS/FSA IDs

SEND function dependent section

SNDTYPE 1 SNDTYTDS

SNDRSPTR 4 The address of the response area

GETDS

Chapter 9. Issuing Data Requests to JES 63

FSILEN
The length of the entire SEND parameter list. The SEND parameter list consists of both the IAZFSIP
common header section and the SEND function dependent section.

FSIFUNC
The SEND function ID number. The FSA assigns the symbolic equate value FSISEND to this field.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

SNDTYPE
The FSA uses this flag byte to indicate to JES the type of information being sent. For this issuance of
the SEND request, the FSA is expected to set the following indicator:
SNDTYTDS B‘01000000’

The FSA is satisfying JES's request for notification (GDSTRKDS) when the data set reaches the
OOP.

SNDRSPTR
The address of the FSA-provided response area.

Issuing the FSIREQ SEND Request
When the FSA has completed initializing the response area and SEND parameter list, it issues the FSIREQ
macro to invoke the FSI SEND communication service. The format of this macro call is:

FSIREQ REQUEST=FSISEND,TARGET=JES,PARM=SEND
parm-list-addr,FSID=value-addr

Note: See Chapter 4, “The FSIREQ Macro,” on page 13 for a complete description of each operand on this
macro and the defaults that may be taken.

On return from SEND processing, register 15 contains either a zero return code indicating success or a
non-zero return code indicating an error occurred during processing.

Getting SYSOUT records from an acquired data set
Once an FSA has obtained a data set with a GETDS request, it can use the data set identifier (GDSDSID)
returned to invoke the FSI GETREC service. The FSI GETREC service acquires one or more logical records
for the specified data set and returns a pointer to the variable length index (IDX) to the FSA.

GETREC

64 z/OS: z/OS MVS Using the Functional Subsystem Interface

2

2c

2d

5

7

4

8

2b

Process RELDS
Closes the data set and deallocates
its storage

Process FREEREC

Next GETDS

WAIT

JES CODE FSA CODE

Select WORK
Tell FSA work exists
FSIREQ REQUEST=FSIPOST

No work found
Return from GETDS
Indicating no work available

Works is available
Select WORK
Fill WORK REQUEST

Fill WORK REQUEST

Build INDEX and Parameter list

PROCESS RECORD

Issue GETDS Request
FSIREQ REQUEST=FSIGDS

Respond to Post
FSIREQ REQUEST=FSIGDS

ISSUE FREEREC REQUEST
FSIREQ REQUEST=FSIFREC

ISSUE RELDS Request
FSIREQ REQUEST=RELDS

ISSUE GETREC REQUEST

FSIREQ REQUEST=FSIGREC

1

3

6

2a

WAIT

WAIT

WAIT

Figure 23. Overview of data set processing

The index (mapped by IAZIDX) contains one or more entries. Each entry normally represents one logical
record. Entries may correspond to a partial record if it is a spanned record. Each entry contains a pointer
to the data portion of the record. The FSA is responsible for accessing each of the individual record entries
contained in the index. The number of entries in the table is provided in the IDXNUM field of the fixed
index header (IAZIDX).

The storage associated with the logical records is assigned to the FSA and may not be reused by JES until
the FSA issues a FREEREC request for the index representing those records.

GETREC

Chapter 9. Issuing Data Requests to JES 65

INDEX HEADER
(IAZIDX)

RECORD ENTRY 1
(IDXENTRY)

RECORD ENTRY 2
(IDXENTRY)

DATA PORTION
OF RECORD 1

DATA PORTION
OF RECORD 2

DATA PORTION
OF RECORD N

RECORD ENTRY N
(IDXENTRY)

IDXRADR

•

•

•

IDXRADR

IDXRADR

Figure 24. Index (mapped by IAZIDX) returned from GETREC request

The FSI GETREC service supports both sequential and specific record retrieval. The FSA can specify the
type of record retrieval desired in the GETREC parameter list. The FSA may request JES to begin record
access at the beginning of the data set, at the next sequential record, or at a specific record (if the record
id is known to the FSA). If this is the first GETREC request for a data set, JES automatically begins
accessing records at the beginning of the data set, unless the FSA specifically indicates otherwise in the
GETREC parameter list. Specific record retrieval is described in more detail in “Specific record retrieval”
on page 66.

The FSI GETREC service supports multiple GETREC requests against a single data set without intervening
FREEREC requests. This allows the FSA to perform "read-ahead" processing and therefore, obtain
adequate despooling performance. The FSA, however, must be sensitive regarding storage limitations.
When the FSA finishes processing the records pointed to by an index, it should issue a FREEREC request
for that index. If the FSA issues too many GETREC requests without issuing FREEREC requests, GETREC
processing may eventually not be able to continue because of a buffer shortage. See “Releasing a SYSOUT
record” on page 72 for more information about the FSI FREEREC service.

FSI GETREC processing is asynchronous. JES does not require the FSA to finish getting all the records
from one data set before it will accept another GETDS request by the FSA.

FSI GETREC service restriction: GETREC requests for a data set's records must be made from the same
task that issued the GETDS request for that data set.

Specific record retrieval
The FSA may desire specific record retrieval for several reasons. Two examples are:

• After processing a SYNCH order, the FSA may need to reaccess data records from the resultant point of
synchronization or repositioning. If the FSA desires to support repositioning, the FSA is responsible for
collecting the required information.

GETREC

66 z/OS: z/OS MVS Using the Functional Subsystem Interface

Note: The GETREC service also allows the FSA to re-access data records from the beginning of the data
set.

• If the data set was previously interrupted, the FSA can restart the processing of the data set at the point
indicated by the last data set checkpoint.

If the FSA desires specific record retrieval, it must indicate so in the GETREC parameter list and it must
supply the identifier of the record at which JES is to begin record access. If this is not the first GETREC
request for this data set, the FSA may use the record identifier that is incorporated into each index entry
(IDXRECID) returned from a previous GETREC request. If this is the first GETREC request for this data set
and valid checkpoint information exists, the FSA may use the record identifier that is included in the
checkpoint information (the CHKRBA field of the IAZCHK record).

Blank Truncation and JES3: If the record has had trailing X'40' characters truncated by JES, then the
IDXORECL field contains the original record length before the truncation.

Blank Truncation and JES2: When BLNKTRNC=Yes has been specified on OUTCLASS statement, for non-
page mode data sets that contain trailing X'40' characters:

1. Prior to the application of SPOOL Encryption and Compression APAR OA58718 at z/OS 2.4 JES2:

• JES2 truncates the trailing blanks on the PUT.
• GETREC returns this information:

– IDXRECL set to the length of the record after the trailing blanks are truncated,
– IDXORECL set to the original length of the record (including trailing blanks), and
– - the truncated record.

2. After the application of both SPOOL Encryption and Compression APAR OA58718 and APAR OA60528
at z/OS 2.4 JES2 (or for a later release):

a. When an FSI option to return the length of the data portion of the record (without trailing blanks) is
NOT selected:

• JES2 does NOT truncate the trailing blanks on the PUT. (The BLNKTRNC setting is ignored.)
• GETREC returns this information:

– both IDXRECL and IDXORECL set to the original length of the record (including trailing blanks),
and

– the original record that was PUT.
b. When an FSI option to return the length of the data portion of the record (without trailing blanks) is

selected:

• JES2 does NOT truncate the trailing blanks on the PUT. (The BLNKTRNC setting is ignored.)
• GETREC returns this information:

– IDXRECL set to the length of the record without trailing blanks,
– IDXORECL set to the original length of the record (including trailing blanks), and
– the original record that was PUT.

Initializing the GETREC Parameter List
The FSIREQ GETREC parameter list is used by both the FSA and JES to pass information. The FSA must
initialize certain fields of the FSIREQ GETREC parameter list for each issuance of the GETREC request.
The following table lists the required fields, the offsets and lengths of these fields, and the values that the
FSA must assign. Detailed descriptions of the value assignments follow this table.

Note: The GLRECID field requires initialization only if the GETREC request is for specific record retrieval.

Field Name Length (bytes) Value to be assigned

Common Parameter Header Section

GETREC

Chapter 9. Issuing Data Requests to JES 67

Field Name Length (bytes) Value to be assigned

FSILEN 4 Length of GETREC parameter list

FSIFUNC 4 FSIGREC

FSIFSID 4 The FSS/FSA IDs

GETREC Function Dependent Section

GLRFLGR1 1 The type of record request

GLRECID 8 The record identifier

GLRDSID 12 The data set identifier

FSILEN
The length of the entire GETREC parameter list. The GETREC parameter list consists of both the
IAZFSIP common header section and the GETREC function dependent section.

FSIFUNC
The GETREC function ID number. The FSA assigns the symbolic equate value FSIGREC to this field.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

GLRFLGR1
The FSA uses this flag byte to specify the type of record request. The FSA may set one of the following
indicators:
GLRBLKT B‘00010000’

For this GETREC the following processing will occur: IDXRECL will be set to the length of the data
portion of the record (without trailing blanks). IDXORECL will be set to the original LRECL of the
record. The output buffer will contain the original record supplied on the PUT. This option only
pertains to non-page mode data sets. Only JES2 supports GLRBLKT.

GLRREC1 B‘10000000’
The FSA requests record access to begin at the first record in the data set.

GLRRECN B‘01000000’
The FSA requests record access to begin at the next sequential record in the data set.

GLRRECS B‘00100000’
The FSA requests record access to begin at the record specified in the GLRECID field.

GLRECID
The identifier of a specific record. This identifier is the JES equivalent of a relative block address
(RBA). It was passed to the FSA either in the checkpoint area returned by a previous GETDS request or
in an index returned from a previous GETREC request for this data set. The FSA needs to initialize this
field only if it has set the GLRRECS indicator indicating JES is to begin record access at this record.

GLRDSID
The data set identifier.

Issuing the FSIREQ GETREC Request
When the FSA has completed initializing the GETREC parameter list, it issues the FSIREQ macro to invoke
the FSI GETREC service. The format of this macro call is:

FSIREQ REQUEST=FSIGREC,TARGET=JES,PARM=GETREC
parm-list-addr,FSID=value-addr

See Chapter 4, “The FSIREQ Macro,” on page 13 for a complete description of each operand on this macro
and the defaults that may be taken.

GETREC

68 z/OS: z/OS MVS Using the Functional Subsystem Interface

JES GETREC Processing
The JES-supplied GETREC routine in the FSS address space receives control when the FSA issues the
FSIREQ GETREC macro. The basic function of GETREC processing is to provide the FSA access to data
records from a data set previously assigned to the FSA.

The GETREC service uses the data set identifier passed in the GETREC parameter list to locate the correct
data records. It then determines the type of record retrieval requested (sequential or specific) and uses
this information to begin assigning records to the FSA. If no errors occur during processing, the GETREC
service fills in an index with pointers to the record(s) assigned and record status information. It then
returns control to the FSA with a zero return code in register 15.

If an error occurs during GETREC processing, the GETREC service does the following:

• Indicates the error condition in the GETREC parameter list
• Indicates in the GETREC parameter list that no index was returned

If the error is the result of an invalid parameter list passed by the FSA, the GETREC service sets a non-
zero return code in register 15 and then returns control to the FSA. The FSA should correct the error in the
GETREC parameter list and then reissue the GETREC request. For other types of errors, the GETREC
service sets a zero return code in register 15, indicating that processing can continue. See the specific
error indicators in the GETREC parameter list for more information.

Information returned in GETREC parameter list
On return from successful GETREC processing, the GETREC parameter list contains the information listed
in Table 9 on page 70. If GETREC processing was not successful, the GLRINDX field in the GETREC
parameter list does not contain a pointer to an index.

Figure 25 on page 69 shows the connection between the different sections of the FSIREQ parameter list
for GETREC processing.

•

•

•

PARM HEADER
(IAZFSIP)

GETREC PARM
(GLRPARM)
(RETURNED)

RECORD ENTRY 1
(IDXENTRY)

RECORD ENTRY 2
(IDXENTRY)

RECORD ENTRY N
(IDXENTRY)

INDEX HEADER
(IAZIDX)

Figure 25. FSIREQ parameter lists for GETREC processing

Table 9 on page 70 describes the GETREC parameter list.

GETREC

Chapter 9. Issuing Data Requests to JES 69

Table 9. Contents of the GETREC parameter list

Field name Length (bytes) Value assigned

Common Parameter Header Section

FSILEN * 4 Length of GETREC parameter list

FSIFUNC * 4 FSIGREC

FSIFSID * 4 The FSS/FSA IDs

GETREC Function Dependent Section

GLRFLGR1 * 1 The type of record request

GLRFLGS1 1 GETREC processing status information

GLRINDX 4 A pointer to the index returned

GLRECID * 8 The spool record ID

GLRDSID * 12 The data set identifier

The fields with an asterisk (*) contain values set by the FSA when it issued the GETREC request. The
GLRECID field may or may not be set depending on whether the request was for specific record retrieval.
The fields that JES set during GETREC processing are described in detail:
GLRFLGS1

This flag byte contains GETREC processing status information. The following indicators may be set:
GLREOF B'10000000'

JES has reached the end of file (EOF) for the data set. If JES reaches the end of file without
encountering any additional records for the GETREC request, JES does not return an index, and
sets the GLRNOI indicator.

GLRNBA B'01000000'
No buffers are available to satisfy the GETREC request. This condition may occur when the FSA
makes several GETREC requests without subsequent FREEREC requests. The FSA can recover
from this error by issuing FREEREC requests to release the storage resources. The FSA can then
retry the GETREC request.

GLRIPL B'00100000'
The parameter list passed by the FSA was invalid. Possible reasons for this error are: 1) the FSA
specified an invalid type of record request (GLRFLGR1), 2) the FSA specified an invalid record ID
(GLRECID) and specified specific record retrieval, 3) the FSA specified an invalid data set identifier
(GLRDSID).

GLRIOE B'00010000'
The GETREC service detected a permanent hardware I/O error on the JES spool device during
processing of the current data set.

The FSA should not attempt further processing of the data set. It should issue a RELDS request for
the data set indicating in the RELDS parameter list that data set processing is complete. The FSA
can then continue processing the next data set.

GLRLGE B'00001000'
Either a logic error (for example, an incorrect spool record format) or an ABEND has occurred
during processing of the current data set. This is probably a JES error for which the JES has
already provided the diagnostic data (for example, trace and a dump).

The FSA should not attempt further processing of the data set. It should issue a RELDS request for
the data set indicating in the RELDS parameter list that data set processing is complete. The FSA
can then continue processing the next data set.

GETREC

70 z/OS: z/OS MVS Using the Functional Subsystem Interface

GLRNOI B'00000100'
JES did not return an index. This indicator is always set when one of the previous indicators
(except the GLREOF indicator) is set. If the GLREOF indicator is set, this indicator may or may not
be set.

GLRINDX
This field contains a pointer to the index returned by GETREC processing. If an index was not
returned, this field will be zero.

Information contained in index
The GLRINDX field points to the index returned from GETREC processing. The index contains a header
section and an index entry area. The index entry area is of variable length depending on how many
records were assigned to the FSA. The fields of the index are described in Table 10 on page 71. Only one
index entry is shown.

Table 10. Fields in the index returned by GETREC processing

Field name Length (bytes) Value assigned

Fixed Header of Index Table

IDXID 4 ‘IDX ’ (ID of Index table)

IDXNUM 2 Number of entries in the table. Each entry refers to
a specific logical record.

IDXTOK 2 A JES-supplied token that JES uses for validation
purposes

RESERVED 4

Index Entry Area

IDXENTRL 2 Length of the index entry

IDXRECL 2 Length of the data portion of the logical record

IDXFLAG1 1 Status information for the record

IDXRADR 4 Address of the data portion of the logical record

IDXRECID 8 The identifier of this logical record

IDXFLAG1
This flag byte contains status information for the logical record identified by IDXRECID. The following
indicators may be set in this flag byte:
IDXDSR B'10000000'

The record contains stream mode data.
IDXLMR B'01000000'

The record contains line mode data.
IDXANSI B'00100000'

The record contains ANSI control characters.
IDXMACH B'00010000'

The record contains machine control characters.
IDXSRS B'00001000'

This entry is actually the start of split record.
IDXSRM B'00000100'

This entry is the middle of a split record.
IDXSRE B'00000010'

This entry is the end of a split record.

GETREC

Chapter 9. Issuing Data Requests to JES 71

IDXOPJ B'00000001'
The OPTCODE=J was used for the record.

IDXRECID
The identifier of this logical record. The FSA may use this identifier to request JES to begin access to a
data set at this logical record by specifying this value on a GETREC request and specifying this value
as the GLRECID.

Releasing a SYSOUT record
An FSA invokes the FSI FREEREC service to release logical records previously obtained with a GETREC
request. The FSA provides a pointer to an index and JES releases the storage associated with the record
index entries. Releasing logical records allows JES to reuse the associated storage.

2

2c

2d

5

7

4

8

2b

Process RELDS
Closes the data set and deallocates
its storage

Process FREEREC

Next GETDS

WAIT

JES CODE FSA CODE

Select WORK
Tell FSA work exists
FSIREQ REQUEST=FSIPOST

No work found
Return from GETDS
Indicating no work available

Works is available
Select WORK
Fill WORK REQUEST

Fill WORK REQUEST

Build INDEX and Parameter list

PROCESS RECORD

Issue GETDS Request
FSIREQ REQUEST=FSIGDS

Respond to Post
FSIREQ REQUEST=FSIGDS

ISSUE FREEREC REQUEST

FSIREQ REQUEST=FSIFREC

ISSUE RELDS Request
FSIREQ REQUEST=RELDS

ISSUE GETREC REQUEST
FSIREQ REQUEST=FSIGREC

1

3

6

2a

WAIT

WAIT

WAIT

Figure 26. Overview of data set processing

FSI FREEREC processing is asynchronous. JES does not require the FSA to finish releasing all the records
from one data set before it will accept another GETDS request by the FSA.

FSI FREEREC Service Restriction: FREEREC requests for a data set's records must be made from the
same task that issued the GETDS request for that data set.

Initializing the FREEREC parameter list
For each FREEREC request, the FSA must initialize certain fields of the FSIREQ FREEREC parameter list.

The following figure shows the connection between the different sections of the FSIREQ parameter list for
FREEREC processing.

FREEREC

72 z/OS: z/OS MVS Using the Functional Subsystem Interface

•

•

•

PARM HEADER
(IAZFSIP)

FREEREC PARM
(FLRPARM)

RECORD ENTRY 1
(IDXENTRY)

RECORD ENTRY 2
(IDXENTRY)

RECORD ENTRY N
(IDXENTRY)

INDEX HEADER
(IAZIDX)

Figure 27. FSIREQ Parameter Lists for FREEREC Processing

The following table lists the required fields, the offsets and lengths of these fields, and the values that the
FSA must assign. Detailed descriptions of the value assignments follow this table.

Field Name Length (bytes) Value to be assigned

Common Parameter Header Section

FSILEN 4 Length of FREEREC parameter list

FSIFUNC 4 FSIFREC

FSIFSID 4 The FSS/FSA IDs

FREEREC Function Dependent Section

FLRINDX 4 The pointer to the index to be freed.

FLRDSID 12 The data set identifier

FSILEN
The length of the entire FREEREC parameter list. The FREEREC parameter list consists of both the
IAZFSIP common header section and the FREEREC function dependent section.

FSIFUNC
The FREEREC function ID number. The FSA assigns the symbolic equate value FSIFREC to this field.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

FLRINDX
The pointer to the index to be freed. JES returned this pointer on a previous GETREC request in the
GLRINDX field of the GETREC parameter list.

FLRDSID
The identifier of the data set to which the record(s) belong. This identifier was returned from GETDS
processing in the GDSDSID field in the GETDS parameter list.

FREEREC

Chapter 9. Issuing Data Requests to JES 73

Issuing the FSIREQ FREEREC Request
When the FSA has completed initializing the FREEREC parameter list, it issues the FSIREQ macro to
invoke the FSI FREEREC service. The format of this macro call is:

FSIREQ REQUEST=FSIFREC,TARGET=JES,PARM=FREEREC
parm-list-addr,FSID=value-addr

See Chapter 4, “The FSIREQ Macro,” on page 13 for a complete description of each operand on this macro
and the defaults that may be taken.

JES FREEREC Processing
The JES-supplied FREEREC routine receives control when the FSA issues the FSIREQ FREEREC macro.
The FREEREC service uses the data set identifier and the index pointer passed in the FREEREC parameter
list to de-allocate the storage areas associated with the data set's records referenced by the index. The
storage is then available for subsequent GETREC processing.

Status of Request Returned by JES
If no errors occur during FREEREC processing, JES returns control to the FSA with a zero return code in
register 15. If an error does occur that prevents FREEREC processing from continuing, JES indicates this
to the FSA by passing a non-zero return code in register 15. The error can be one of the following:

• An invalid parameter list
• The IDXTOK is invalid
• The IDX has already been freed
• The data set has already been released (RELDS)

The FSA should correct the problem and reissue the request.

Releasing a SYSOUT data set
The FSA invokes the FSI RELDS service to:

• Return a data set that was previously obtained with a GETDS request to JES
• Notify JES of the data set's processing status.

RELDS

74 z/OS: z/OS MVS Using the Functional Subsystem Interface

2

2c

2d

5

7

4

8

2b

Process RELDS

Closes the data set and deallocates

its storage

Process FREEREC

Next GETDS

WAIT

JES CODE FSA CODE

Select WORK
Tell FSA work exists
FSIREQ REQUEST=FSIPOST

No work found
Return from GETDS
Indicating no work available

Works is available
Select WORK
Fill WORK REQUEST

Fill WORK REQUEST

Build INDEX and Parameter list

PROCESS RECORD

Issue GETDS Request
FSIREQ REQUEST=FSIGDS

Respond to Post
FSIREQ REQUEST=FSIGDS

ISSUE FREEREC REQUEST
FSIREQ REQUEST=FSIFREC

ISSUE RELDS Request

FSIREQ REQUEST=RELDS

ISSUE GETREC REQUEST
FSIREQ REQUEST=FSIGREC

1

3

6

2a

WAIT

WAIT

WAIT

Figure 28. Overview of data set processing

The FSI RELDS service is functionally equivalent to closing and de-allocating the data set. The storage
associated with the data set is made available to JES for reuse. If the FSA indicates that valid checkpoint
information exists for the data set, JES writes the final checkpoint record to spool. If the FSA issues a
RELDS request for a data set before it releases all of its records (using the FREEREC request), the FSI
RELDS service also frees the storage for all outstanding records for that data set.

Data Set Processing Status
In the RELDS parameter list, the FSA indicates the data set's processing status, as follows:

• The data set has been completely processed.
• The data set has not been completely processed. Its checkpoint information is:

– valid
– invalid

• The data set is unprintable.

The descriptions of the specific indicators that may be set in the status flag byte (RDSFLGS1) explain how
JES reacts to each processing status.

Initializing the RELDS parameter list
The FSA must initialize specific fields of the FSIREQ RELDS parameter list for each issuance of the RELDS
request.

RELDS

Chapter 9. Issuing Data Requests to JES 75

The following figure shows the connection between the different sections of the FSIREQ parameter list for
RELDS processing.

PARM HEADER
(IAZFSIP)

RELDS HEADER
(RDSPARM)

Figure 29. FSIREQ parameter lists for RELDS processing

The following table lists the required fields, the offsets and lengths of these fields, and the values that the
FSA must assign. Detailed descriptions of the value assignments follow this table.

Field Name Length (bytes) Value to be assigned

Common Parameter Header Section

FSILEN 4 Length of RELDS parameter list

FSIFUNC 4 FSIRDS

FSIFSID 4 The FSS/FSA IDs

RELDS Function Dependent Section

RDSFLGS1 1 The processing status of the data set to be
released

RDSDSID 12 The data set identifier

RDSMIDSE 8 Message ID indicating data set error

FSILEN
The length of the entire RELDS parameter list. The RELDS parameter list consists of both the IAZFSIP
common header section and the RELDS function dependent section.

FSIFUNC
The RELDS function ID number. The FSA assigns the symbolic equate value FSIRDS to this field.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

RDSFLGS1
This flag byte indicates the processing status of the data set to be released. The FSA may set the
following indicators:
RDSDONE B‘10000000’

The FSA has completely processed the data set. This indicator indicates that the entire data set
has passed the data integrity point (DIP) of the device and JES may purge the data set from spool.

RDSINC B‘01000000’
The FSA has not completely processed the data set. Processing was interrupted because either
the FSA processed a SYNCH order that specified an interrupt action or an error occurred on the
device. This indicator causes JES to re-queue the data set for processing.

RDSCKPI B‘00100000’
The checkpoint information for the data set is invalid and should not be used when the data set is
again selected for processing. The data set should be printed from the beginning. JES ignores this
indicator if the FSA also sets the RDSDONE or RDSUNPR indicator.

RDSUNPR B‘00010000’
The data set is unprintable. During processing, the FSA detected an error in the data set that
prevents it from completely printing the data set. This indicator causes JES to re-queue the data
set for processing, but mark it as held. This prevents the data set from being selected until the
error is corrected and the data set is released from hold.

RELDS

76 z/OS: z/OS MVS Using the Functional Subsystem Interface

RDSDSID
The identifier of the data set that is to be released. This identifier was previously returned by JES
during GETDS processing.

RDSMIDSE
If FSA has encountered an error when processing the data set, this field contains a message ID that
describes the error. See the FSA message manual for details.

Issuing the FSIREQ RELDS Request
When the FSA has completed initializing the RELDS parameter list, it issues the FSIREQ macro to invoke
the FSI RELDS service. The format of this macro call is:

FSIREQ REQUEST=FSIRDS,TARGET=JES,PARM=RELDS
parm-list-addr,FSID=value-addr

See Chapter 4, “The FSIREQ Macro,” on page 13 for a complete description of each operand on this macro
and the defaults that may be taken.

JES RELDS Processing
The JES-supplied RELDS routine receives control when the FSA issues the FSIREQ RELDS request. This
routine closes the data set and de-allocates the storage resources associated with it. The RELDS routine
uses the data set processing status passed by the FSA to determine what additional actions are required
by JES. When the data set is processed, JES invokes the Scheduler JCL Facility (SJF) to release the SWBs
associated with the data set passed from the GETDS request. This data set is no longer available for use
by the FSA. If the data set was incompletely processed, JES updates the checkpoint data according to the
completion status provided by the FSA and writes the final checkpoint record to spool.

Status of Request Returned by JES
If no errors occur during RELDS processing, JES returns control to the FSA with a zero return code in
register 15. If an error does occur that prevents RELDS processing from continuing, JES passes a non-zero
return code in register 15 to the FSA.

SMF Record Writing
After the FSA issues a RELDS request for a data set, it is expected to write an SMF type 6 record for that
data set. The JSPA provided by JES at GETDS processing contains SMF record information. The FSA uses
this information and its own information to generate the SMF record for the assigned data set. See
“Information contained in the JSPA” on page 54 for more information about the JSPA. Refer to z/OS MVS
System Management Facilities (SMF) for more information about type 6 SMF records.

Requesting a Checkpoint of Processing
The FSA invokes the FSI CHKPT service to request JES to record checkpoint data for a spool data set
currently being processed by the FSA. The FSA passes the address of a checkpoint record containing data
set information to JES and JES writes the checkpoint record to spool. The FSA is responsible for ensuring
output checkpoints are taken at appropriate points in processing. It needs to be able to handle
checkpoint intervals specified on a data set basis using SWB information. If a checkpoint interval was not
specified in the data set's SWBs, the FSA uses the default passed by JES in the START FSA order
parameter list.

Checkpointing is not a mandatory function that must be provided by the FSA. If your FSA will only process
small data sets (1 or 2 pages), the FSA can decide not to support checkpointing.

Note: Even if your FSA does not support checkpointing, it is still responsible for providing the checkpoint
data area and checkpoint area length in the GETDS parameter list.

CHKPT

Chapter 9. Issuing Data Requests to JES 77

Purpose of the FSI CHKPT Service
The FSI CHKPT service supports data set checkpointing for restart. The checkpoint information recorded
during FSI CHKPT processing may later be used by the FSA to restart the printing of a previously
interrupted data set from the point indicated by the data set's last checkpoint. For example, if the
processing of a data set is interrupted due to a SYNCH order, the FSA returns the data set to JES (using
the RELDS request) with an incomplete processing status. If the FSA also indicates in the RELDS
parameter list that valid checkpoint information exists for the data set, JES saves the information for
future processing. If on a future GETDS request, this same data set is again assigned to an FSA, JES will
fill in the checkpoint area provided by the FSA. JES will also indicate in the GETDS parameter list that valid
checkpoint information exists for the data set. The FSA then uses this information to restart the printing of
the data set from the point indicated by the last checkpoint.

Preparing for Checkpointing
When an FSA determines an output checkpoint needs to be taken for a data set, it must:

1. Establish and initialize a checkpoint area. This checkpoint area must begin with the FSI checkpoint
record (IAZCHK). If the FSA wants to provide additional device dependent checkpoint information, that
information immediately follows IAZCHK.

2. Initialize the FSIREQ CHKPT parameter list.
3. Issue the FSIREQ CHKPT request to invoke the FSI CHKPT service.

Initializing the FSI Checkpoint Record
The following table lists the fields contained in the IAZCHK checkpoint record. The CHKID field is the only
field that JES requires the FSA to initialize. The FSA may initialize the remaining fields on a discretionary
basis.

Note: JES uses the CHKJESWK field. The FSA does not initialize this area. It is shown in the table only to
provide a complete record format.

Field Name Length (bytes) Assigned Value

CHKID 4 ‘CHK’ (FSI Checkpoint record identifier)

CHKLNGTH 2 Length of FSI checkpoint record

CHKJESWK 64 JES dependent checkpoint information for the data
set. The FSA does not use this area.

CHKRBA 8 The identifier of the record currently being
processed

CHKDEV 4 The device type

CHKMOD 4 The model number of the device

CHKCOPY 4 The number of copies that have been printed

CHKTRNC 4 The transmission count

CHKREC 4 The logical record count

CHKPAGE 4 The physical page count

CHKPROD 8 The product that created the checkpoint record

CHKVER 4 The version of the product

CHKRELS 4 The release of the product

CHKMODF 4 The modification level of the product

CHKPT

78 z/OS: z/OS MVS Using the Functional Subsystem Interface

Field Name Length (bytes) Assigned Value

CHKSERV 4 The service level of the product

Initializing the CHKPT parameter list
The FSA must initialize certain fields of the FSIREQ CHKPT parameter list for each CHKPT request.

The following figure shows the connection between the different sections of the FSIREQ parameter list for
checkpoint processing.

PARM HEADER
(IAZFSIP)

CHECK POINT PARM
(CHKPARM)

CHECK POINT AREA
(IAZCHK)

Figure 30. FSIREQ parameter lists for CHKPT processing

The following table lists the required fields, the offsets and lengths of these fields, and the values that the
FSA must assign. Detailed descriptions of the value assignments follow this table.

Field Name Length (bytes) Value to be assigned

Common Parameter Header Section

FSILEN 4 Length of CHKPT parameter list

FSIFUNC 4 FSICKPT

FSIFSID 4 The FSS/FSA IDs

CHKPT Function Dependent Section

CHKADR 4 The pointer to the FSA-supplied checkpoint area

CHKFLGR1 1 CHKFCWRT

CHKDSID 12 The data set identifier

FSILEN
The length of the entire CHKPT parameter list. The CHKPT parameter list consists of both the IAZFSIP
common header section and the CHKPT function dependent section.

FSIFUNC
The CHKPT function ID number. The FSA assigns the symbolic equate value FSICKPT to this field.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

CHKADR
The pointer to the FSA checkpoint area which contains the initialized FSI checkpoint record (IAZCHK)
and optionally, any device dependent information to be checkpointed. On return from CHKPT
processing, the FSA may reuse this area.

CHKFLGR1
This flag byte indicates the type of checkpoint request. The FSA may set the following indicator:
CHKFCWRT B‘10000000’

The FSA requires a forced write of the checkpoint record. During checkpoint processing, if I/O is
not yet complete for the checkpoint buffer and CHKFCWRT is set, JES waits for I/O completion
and then writes the record to spool before returning to the FSA. If CHKFCWRT is not set, JES
returns to the FSA without waiting for I/O completion.

For optimum performance, the FSA should set this indicator only for a checkpoint request made
immediately prior to releasing the data set with a RELDS request.

CHKPT

Chapter 9. Issuing Data Requests to JES 79

CHKDSID
The identifier of the data set that is being checkpointed. This identifier was returned to the FSA on a
previous GETDS request.

Issuing the FSIREQ CHKPT Request
When the FSA has completed initializing the CHKPT parameter list, it issues the FSIREQ macro to invoke
the FSI CHKPT service. The format of this macro call is:

FSIREQ REQUEST=FSICKPT,TARGET=JES,PARM=CHKPT parm-list-addr,
FSID=value-addr

See Chapter 4, “The FSIREQ Macro,” on page 13 for a complete description of each operand on this macro
and the defaults that may be taken.

JES CHKPT Processing
The JES-supplied CHKPT routine receives control when the FSA issues the FSIREQ CHKPT request. The
basic function of the CHKPT service is to write the checkpoint records to the JES spool data set. JES
writes the record directly from the FSS address space. The CHKPT service does not require JES address
space functions.

Before writing the checkpoint record to spool, JES copies it to its own buffer. If I/O is not yet complete
from a previous checkpoint write and a forced write was not specified, JES sets a zero return code in
register 15 and returns control to the FSA without the checkpointing of the record completed. If a
previous checkpoint I/O is not outstanding and forced write was not specified then the checkpoint write is
initiated but control will return to the FSA before the write completes.

If a forced write was specified and a previous checkpoint I/O is outstanding, JES will wait for the
outstanding I/O to complete, issue a write for the current checkpoint and wait for that I/O to complete
before returning control to the FSA. If a previous I/O is not outstanding, JES initiates a write for the
current checkpoint and waits for it to complete before returning control to the FSA.

If, during processing, JES detects an error other than a bad checkpoint record (for example, invalid
parameter list length), it sets a non-zero return code in register 15 and returns control to the FSA.

If JES detects a checkpoint write I/O error, it sets the CHKFCERR flag bit on in the CHKPT parameter list
indicating a permanent I/O error and then returns control to the FSA with a non-zero return code in
register 15.

Bad Checkpoint Record Detected by JES
If JES determines that the checkpoint record is bad, it initializes the CHKFLGS1 flag byte in the CHKPT
parameter list before returning to the FSA.

CHKFLGS1 1 CHKFCERR

CHKFCERR B‘10000000’
A permanent I/O or processing error occurred while JES was attempting a write of the checkpoint
record. JES ignores the checkpoint request and stops checkpointing the current data set. The FSA
should retry the request (resume checkpointing) for the next data set.

CHKPT

80 z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 10. Responding to Device Orders From JES

When JES determines that an operator command requires participation of an FSA, JES converts the
command into an FSI order. JES then issues an FSIREQ ORDER request to the FSA's FSI ORDER routine.
The FSA supplied the address of this routine to JES at FSA CONNECT time in the CDFAD field of the
CONNECT parameter list.

When the FSI ORDER routine receives the order, it is responsible for determining the type of order issued
and then either posting the appropriate FSA task to process the order or processing the order directly.
When order processing is complete, the FSA responds to JES with the required data. JES will not send
another order to the FSA until it receives a response for the outstanding order.

This chapter describes the processing for orders that:

• request a change in device or data set characteristics
• affect the flow of data through the device
• request information about a data set currently being processed by an FSA device.

Notes:

1. Refer to Chapter 5, “FSI Communication,” on page 17 for restrictions on responding to orders.
2. This chapter explains the tasks involved in processing orders, it does not explain how the FSI order

routine should be coded to satisfy those tasks.

The Query Order
JES issues a query order to an FSA's FSI ORDER routine when an operator command requests information
concerning the data set at the operator observation point (OOP). Because this order pertains to the data
set at the OOP, JES requires an immediate response. The query order is unique in that respect.

Note: For the 3800-3, the OOP is the point at which the output can be seen by the operator.

The following topics describe the commands resulting in a query order and the FSA processing required
for this order.

Examples of JES Commands Resulting in a Query Order
Both JES2 and JES3 issue the query order for various commands. Examples of these commands are:

• JES2

– $N PRTnnnn - repeat device.
– $DU,PRTnnnn - display device status.

• JES3

– *START,devname,P - display pending pages and records for current data set.

Processing the query order
When JES issues an FSI query order, it passes the address of the query order parameter list in register 1
to the FSA's FSI order routine. The query order parameter list consists of the following sections:

• Common parameter header
• Common order header (which contains a pointer to the JES-provided order response area (IAZRESPA))

Note: There is no variable order data section for the query order.

The following figure shows the connection between the different sections of the FSIREQ parameter list for
the QUERY order.

QUERY

© Copyright IBM Corp. 1988, 2020 81

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

ORDER RESPONSE
AREA

(IAZRESPA)

Figure 31. FSIREQ parameter lists for the QUERY order

Table 11 on page 82 lists the initialized fields, the lengths of these fields, and the values that JES has
assigned.

Table 11. FSIREQ parameters for the query order

Field name Length
(bytes)

Description Value assigned

Common Parameter Header Section

FSILEN 4 The length of the entire query order
parameter list. The query order
parameter list consists of both the
IAZFSIP common parameter header
section and the common order header
section.

Length of query order
parameter list

FSIFUNC 4 The ORDER function ID (FSIORDER). FSIORDER

FSIFSID 4 The FSS/FSA IDs that JES assigned
when it started the FSS and FSA.

The FSS/FSA IDs

Common Order Header Section

ORDFDATA 4 The address of a control block
containing FSA-related information. The
FSA passed this address to JES in the
CDFFDATA field of the CONNECT
parameter list. JES returns this value to
the FSI's ORDER routine so that it can
start the appropriate FSA.

A value supplied to JES by the
FSA as a CONNECT parameter
(CDFFDATA)

ORDRSPAD 4 The address of the order response area
(IAZRESPA).

Address of the order
response area (IAZRESPA)

ORDID 2 The query order ID number. ORDQUERY
is the symbolic equate.

ORDQUERY

The FSA's FSI ORDER routine uses the ORDID value to determine that the JES order requests a query
action. The FSI ORDER routine is then responsible for obtaining information about the data set currently
at the OOP and immediately returning that information to JES in the JES provided order response area
(IAZRESPA). If the FSI ORDER routine determines that no data set is currently active at the OOP, it
indicates this condition to JES in the order response area. Chapter 5, “FSI Communication,” on page 17
explains the IAZRESPA fields that the FSA needs to initialize.

QUERY

82 z/OS: z/OS MVS Using the Functional Subsystem Interface

The query order information can be kept in a control block whose address JES passes to the FSI order
routine in the ORDFDATA field.

Note: Because the query order requires an immediate response, it is recommended that the FSI ORDER
routine process the order directly rather than posting an FSA task to process the order.

The Set Order
JES issues a set order to an FSA's FSI ORDER routine to set or change device characteristics unrelated to
data set processing specifications. JES specifically issues the set order to set or change the non-process
runout (NPRO) timer interval. The non-process runout (NPRO) time interval is that time interval during
which output remains in the paper path but has not reached the stacker. After the NPRO time interval has
elapsed, the FSA directs the device to force the output to the stacker. The new NPRO values goes into
effect the next time the device goes idle.

The following topics describe the JES commands that result in a set order and the FSA processing
required for this order.

Examples of JES Commands Resulting in a Set Order
Examples of JES commands resulting in a set order are:

• JES2

– $T PRTnnnn,NPRO=nnnn
• JES3

– *S,devname,NPRO=nnnn
– *R,devname,NPRO=nnnn

Processing the set order
When JES issues an FSI set order, it passes the address of the set order parameter list in register 1 to the
FSA's FSI order routine. The set order parameter list consists of the following sections:

• Common parameter header
• Common order header (which contains a pointer to the JES provided order response area (IAZRESPA))
• set order dependent section.

The following figure shows the connection between the different sections of the FSIREQ parameter list for
SET order processing.

SET
(ORDST)

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

ORDER RESPONSE
AREA

(IAZRESPA)

Figure 32. FSIREQ parameter lists for SET order processing

SET

Chapter 10. Responding to Device Orders From JES 83

Table 12 on page 84 lists the initialized fields, the lengths of these fields, and the values that JES has
assigned.

Table 12. FSIREQ parameters for the set order

Field name Length
(bytes)

Description Value to be assigned

Common parameter header section

FSILEN 4 The length of the entire set order
parameter list. The set order parameter
list consists of the IAZFSIP common
parameter header section, the common
order header section, and the set order
dependent section.

Length of set order parameter
list

FSIFUNC 4 The ORDER function ID (FSIORDER). FSIORDER

FSIFSID 4 The FSS/FSA IDs that JES assigned
when it started the FSS and FSA.

The FSS/FSA IDs

Common order header section

ORDFDATA 4 The address of a control block
containing FSA-related information. The
FSA passed this address to JES in the
CDFFDATA field of the CONNECT
parameter list. JES returns this value to
the FSA ORDER routine so that it can
start the appropriate FSA.

A value supplied to JES by the
FSS/FSA as a CONNECT
parameter (CDFFDATA)

ORDRSPAD 4 The address of the order response area
(IAZRESPA).

Address of the order
response area (IAZRESPA)

ORDID 2 The set order ID number. ORDSET is the
symbolic equate.

ORDSET

Set order dependent section

ORDSTR1 1 This flag byte indicates the set action to
be performed by the FSA. JES sets one
of the following indicators:
ORDSTSN B'10000000'

The FSA is to set the NPRO timer
interval. The ORDSTNI field contains
the NPRO interval value.

ORDSTDN B'01000000'
The FSA is to disable the NPRO timer
interval.

Type of set order

ORDSTNI 4 The NPRO interval value, in seconds. If
the set order requests the FSA to disable
the NPRO timer interval (ORDSTDN is
set), this field is set to zero.

The NPRO interval value (in
seconds)

The FSA's FSI ORDER routine uses the ORDID value to determine that the JES order requests a set action.
The FSI ORDER routine then either processes the set order directly or posts an FSA task to process the
order. If a response to the order cannot be immediately provided to JES, the FSI ORDER routine sets the
ORDFLGS1 field in the common order header section equal to ORDARESP. This notifies JES that the
response to the order will be returned at a later time by means of an FSIREQ SEND request.

SET

84 z/OS: z/OS MVS Using the Functional Subsystem Interface

When set order processing is complete, the FSA responds to JES indicating whether the order was
processed successfully. Chapter 5, “FSI Communication,” on page 17 explains how the FSA responds to
JES.

The Synch Order
JES issues a synch order to an FSA's FSI ORDER routine when an action needs to be performed against
the data set currently at the operator observation point (OOP). The synch order requests that FSA
processing be synchronized to the point of actual printing.

The following topics describe the JES commands that result in a synch order and the FSA processing
required for this order.

Examples of JES Commands Resulting in a Synch Order
Examples of JES commands resulting in a synch order are:

• JES2

– $B PRTnnnn,m - backward space
– $F PRTnnnn,m - forward space
– $Z PRTnnnn - halt device.

• JES3

– *RESTART,devname - restart data set at beginning
– *CANCEL,devname - terminate data set
– *START,devname,CP=+2, - increment copy count by 2 for current data set.

Processing the synch order
When JES issues an FSI synch order, it passes the address of the synch order parameter list in register 1
to the FSA's FSI order routine. The synch order parameter list consists of the following sections:

• Common parameter header
• Common order header
• Synch order dependent section.

The following figure shows the connection between the different sections of the FSIREQ parameter list for
SYNCH order processing.

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

ORDER RESPONSE
AREA

(IAZRESPA)

SYNCH
(ORDSY)

Figure 33. FSIREQ parameter Lists for synch order processing

Table 13 on page 86 lists the initialized fields, the offsets and lengths of these fields, and the values that
JES has assigned. Detailed descriptions of the value assignments follow this table.

SYNCH

Chapter 10. Responding to Device Orders From JES 85

Table 13. FSIREQ parameters for the synch order

Field name Length (bytes) Value to be assigned

Common parameter header section

FSILEN 4 Length of synch order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS/FSA IDs

Common order header section

ORDFDATA 4 A value supplied to JES by the FSA as a CONNECT
parameter (CDFFDATA)

ORDRSPAD 4 Address of the order response area (IAZRESPA)

ORDID 2 ORDSYNC

Synch order dependent section

ORDSYR1 1 Synch action to be performed

ORDSYR2 1 Reposition action to be performed

ORDSYR3 1 Device update action to be performed

ORDSYR4 1 Data set update action to be performed

ORDSYR5 1 Interrupt action to be performed

ORDSYR6 1 Miscellaneous action to be performed

ORDSYNP 4 Number of pages to reposition

ORDSYKI 4 Checkpoint interval (seconds or pages)

ORDSYCP 2 Copy count value

ORDSYMSG 120 Message text for users output

FSILEN
The length of the entire synch order parameter list. The synch order parameter list consists of the
IAZFSIP common parameter header section, the common order header section, and the synch order
dependent section.

Note: If a pointer to the set order parameter list is provided in the synch order dependent section, the
length of the set order parameter list is not included in the FSILEN value.

FSIFUNC
The ORDER function ID number. FSIORDER is the symbolic equate.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

ORDFDATA
The address of a control block containing FSA related information. The FSA passed this address to JES
in the CDFFDATA field of the CONNECT parameter list. JES returns this value to the FSA ORDER
routine so that it can start the appropriate FSA.

ORDRSPAD
The address of the order response area (IAZRESPA).

ORDID
The synch order ID number. ORDSYNC is the symbolic equate.

SYNCH

86 z/OS: z/OS MVS Using the Functional Subsystem Interface

ORDSYR1
This flag byte indicates the type of synch action that the FSA must perform. If it equals zero and the
device is a buffered device, the FSA is to release all the data sets in its buffer. If it equals zero and the
device is not a buffered device, the FSA is to continue processing. One of the following indicators may
be set:
ORDSYBCP B'10000000'

The FSA is to synchronize the data set to the previous checkpoint.
ORDSYFCP B'01000000'

The FSA is to synchronize the data set to the next checkpoint.
ORDSYBTM B'00100000'

The FSA is to synchronize the data set to the beginning of the current transmission.
ORDSYETM B'00010000'

The FSA is to synchronize the data set to the end of the current transmission.
ORDSYBDS B'00001000'

The FSA is to synchronize the data set to the beginning of the data set.
ORDSYEDS B'00000100'

The FSA is to synchronize the data set to the end of the data set.
ORDSYR2

This flag byte indicates the type of reposition action that the FSA must perform. One of the following
indicators may be set:
ORDSYRI B'10000000'

The FSA is to increment the page position.
ORDSYRD B'01000000'

The FSA is to decrement the page position.
ORDSYNR B'00100000'

The FSA is not to reposition past the end of the data set at the OOP.

If the reposition request causes the FSA to go beyond the end of the data set, it must:

1. Stop the reposition.
2. Respond to the SYNCH order with the RESP2EOD bit on in the order response area. Chapter 5,

“FSI Communication,” on page 17 provides information about responding to JES.
3. Wait for another SYNCH order from JES. If the ORDSYR1 field of the SYNCH order parameter

list is zero, the FSA should continue RELDS processing for that data set. If the ORDSYR1 field is
non-zero, the FSA should process the SYNCH order normally.

ORDSYR3
This flag byte indicates the changes that the FSA is to make to the device characteristics. One or more
of the following indicators may be set:
ORDSYS1 B'10000000'

The device is to single space the output.
ORDSYS2 B'01000000'

The device is to double space the output.
ORDSYS3 B'00100000'

The device is to triple space the output.
ORDSYSR B'00010000'

The device is to use data set specified spacing.
ORDSYKP B'00001000'

The FSA is to take checkpoints based on page count.
ORDSYKT B'00000100'

Output checkpointing is to be based on time.

SYNCH

Chapter 10. Responding to Device Orders From JES 87

ORDSYKN B'00000010'
The FSA is to disable checkpointing.

ORDSYRL B'00000001'
The FSA is to reload electronic resources (for example, font libraries and overlays) for the data set
at the OOP.

ORDSYR4
This flag byte indicates the changes the FSA is to make to the characteristics of the data set at the
OOP. JES has rules that the maximum amount of copies that can be printed of a dataset is 255. The
FSA is responsible for checking that this rule is enforced. One of the following indicators may be set:
ORDSYCI B'10000000'

The FSA is to increment the copy count of the data set.
ORDSYCD B'01000000'

The FSA is to decrement the copy count of the data set.
ORDSYCR B'00100000'

The FSA is to replace the copy count for the data set.
ORDSYR5

This flag byte indicates the data set processing status that is to be assigned to the data set currently
at the OOP. The status depends on the type of interruption performed. The following indicators may
be set:
ORDSYDC B'10000000'

The data set at the OOP is complete.
ORDSYDI B'01000000'

The data set at the OOP is incomplete.
ORDSYVA B'00100000'

The checkpoint data for the data set is valid.
ORDSYNV B'00010000'

The checkpoint data for the data set is invalid.
ORDSYR6

This flag byte indicates miscellaneous actions that the FSA is to perform. The following indicators may
be set:
ORDSYMV B'10000000'

The FSA is to print the ORDSYMSG message on the output of the data set being synched.
ORDSYDS B'01000000'

The FSA is to reject the synch order if a data set is not currently active at the OOP.

The FSA must respond with the RESP2NDS bit on in the order response area. Chapter 5, “FSI
Communication,” on page 17 provides information about responding to JES.

ORDSYSP B'00100000'
The FSA is to print a job trailer page for the data set at the OOP.

ORD6EOG B'00010000'
End of output group.

ORD6CLP B'00010000'
The FSA clears the pipeline when this flag is on.

The FSA issues an FSI RELDS request with the data set processing status of RDSINC for all data
sets up to but not including the one active at the operator observation point (OOP).

ORDSYNP
The number of pages that the FSA is to reposition the data set. If this value is zero, the FSA should
ignore the reposition by pages request.

SYNCH

88 z/OS: z/OS MVS Using the Functional Subsystem Interface

ORDSYKI
The checkpoint interval that is to be used for checkpointing. This interval indicates a number of pages
or seconds depending on whether the FSA is to perform checkpointing based on page count or
elapsed time.

ORDSYCP
The copy count value that is used by the FSA to change the copy count of the data set.

ORDSYSMX
A pointer to the set order parameter list. If this pointer is present, the length of the set order
parameter list is not included in the FSILEN value.

ORDSYMSG
The message text that the FSA is to print on the user's output.

Determining synch action to be performed
The FSI ORDER routine uses the ORDID value to determine that the JES order requires actions against the
data set at the OOP. The synch order specifically requests the FSA to perform one to four actions against
the data set at the OOP. These are:

1. To synchronize the data set to a specified point (indicated by the ORDSYR1 flag byte)
2. To reposition the data set from the point of synchronization (indicated by the ORDSYR2 flag byte)
3. To interrupt printing of the data set (indicated by the ORDSYR5 flag byte)
4. To update device and/or data set characteristics (indicated by the ORDSYR3 and ORDSYR4 flag bytes).

The FSA performs the actions in the listed order. If an interrupt action is not specified, the FSA updates
the data set characteristics along with any synchronization and repositioning actions. If a response to the
order cannot be immediately provided to JES, the FSI ORDER routine sets the ORDFLGS1 field in the
common order header section equal to ORDARESP. This notifies JES that the response to the order will be
returned at a later time by means of an FSIREQ SEND request.

When synch order processing is complete, the FSA responds to JES with the required data. Chapter 5,
“FSI Communication,” on page 17 explains how the FSA responds to JES.

The Intervention Order
JES issues an intervention order to the FSA's FSI ORDER routine when a change in forms, flash, or
burster-trimmer-stacker specifications is required for the data set that JES is currently assigning to the
FSA in response to a GETDS request. The intervention order requires the FSA to process the device
buffered data and then ready the device for operator intervention.

Processing the intervention order
When JES issues an FSI intervention order, it passes the address of the intervention order parameter list
in register 1 to the FSA's FSI ORDER routine. The intervention order parameter list consists of the
following sections:

• Common parameter header
• Common order header
• Intervention order dependent section

The following figure shows the connection between the different sections of the FSIREQ parameter list for
intervention order processing.

INTERVENTION

Chapter 10. Responding to Device Orders From JES 89

ORDER RESPONSE
AREA

(IAZRESPA)

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

INTERVENTION
(ORDIV)

Figure 34. FSIREQ parameter lists for intervention order processing

Table 14 on page 90 lists the initialized fields, the offsets and lengths of these fields, and the values that
JES has assigned. Detailed descriptions of the value assignments follow this table.

Table 14. FSIREQ parameters for the intervention order

Field name Length (bytes) Value to be assigned

Common parameter header section

FSILEN 4 Length of intervention order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS/FSA IDs

Common order header section

ORDFDATA 4 A value supplied to JES by the FSS/FSA as a
CONNECT parameter (CDFFDATA)

ORDRSPAD 4 Address of the order response area (IAZRESPA)

ORDID 2 ORDINTV

Intervention order variable data section

ORDIVF1 1 Intervention type

ORDIVF2 1 Update type

ORDIVBTT 8 BTS intervention token

ORDIVFLT 8 Flash intervention token

ORDIVFOT 8 Forms intervention token

ORDIVCFT 8 CFS intervention token

FSILEN
The length of the entire intervention order parameter list. The intervention order parameter list
consists of the IAZFSIP common parameter header section, the common order header section, and
the intervention order dependent section.

FSIFUNC
The ORDER function ID number. FSIORDER is the symbolic equate.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

INTERVENTION

90 z/OS: z/OS MVS Using the Functional Subsystem Interface

ORDFDATA
The address of a control block containing FSA related information. The FSA passed this address to JES
in the CDFFDATA field of the CONNECT parameter list. JES returns this value to the FSA ORDER
routine so that it can notify the appropriate FSA.

ORDRSPAD
The address of the order response area (IAZRESPA).

ORDID
The intervention order ID number. ORDINTV is the symbolic equate.

ORDIVF1
This flag byte indicates the type of intervention required. The following indicators may be set:
ORDIVRBT B'10000000'

Burster-trimmer-stacker (BTS) intervention is required.
ORDIVRFL B'01000000'

Flash intervention is required.
ORDIVRFO B'00100000'

Forms intervention is required.
ORDIVRCF B'01000000'

Continuous forms stacker (CFS) intervention is required.
ORDIVF2

This flag byte indicates the type of updates required. The following indicators may be set:
ORDIVUBT B'10000000'

A BTS token update is required.
ORDIVUFL B'01000000'

A flash token update is required.
ORDIVUFO B'00100000'

A forms token update is required.
ORDIVUCF B'00010000'

A CFS token update is required.
ORDIVBTT

The token for BTS intervention ('Y' or 'N').
ORDIVFLT

The token for flash intervention (a user-supplied name).
ORDIVFOT

The token for forms intervention (a user-supplied name).
ORDIVCFT

The token for CFS intervention ('Y' or 'N').

The FSI ORDER routine uses the ORDID value to determine that the JES order requests an intervention
action. The FSI ORDER routine then either processes the order directly or posts an FSA task to process
the order. If the intervention order is for a change in forms or BTS, the FSA needs to ensure all data in the
pipeline has reached the data integrity point (DIP) before responding to JES. If the order is for a change in
forms, the FSA needs to ensure all data in the buffer has reached the OOP. If a response to the order
cannot be immediately provided to JES, the FSI ORDER routine sets the ORDFLGS1 field in the common
order header section equal to ORDARESP. This notifies JES that the response to the order will be returned
at a later time by means of an FSIREQ SEND request.

When intervention order processing is complete, the FSA responds to JES with the required data. Chapter
5, “FSI Communication,” on page 17 explains how the FSA responds to JES.

Note: When JES receives the response to the intervention order, it issues a setup message to the
operator. When the operator replies to the message that the setup is correct, JES issues an FSIREQ POST
request to the FSA indicating that GETDS requests can now be satisfied. The FSA should then reissue the
GETDS request for the data set.

INTERVENTION

Chapter 10. Responding to Device Orders From JES 91

Notifying JES of Order Completion
When the FSA complete the processing for an order it responds to JES with the required response data. If
the FSA is responding to a query, synch, or intervention order, it needs to initialize the RESPRETC field of
the order response area (IAZRESPA) with a return code and provide information about the data set at the
OOP. For the set order, the FSA needs to initialize only the RESPRETC field indicating whether the order
was processed successfully. Refer to Chapter 5, “FSI Communication,” on page 17 for information about
responding to a JES order.

SEND Processing
The FSIREQ SEND request causes control to be passed to the FSI SEND service. This service processes
the return code in the RESPRETC field of the order response area. If the return code is zero, JES continues
processing the order. If the response is to a query, synch, or intervention order, JES retrieves the data set
information from the order response area and uses this information to respond to the JES operator
command.

If the return code in the order response area is not zero, JES issues an error message to the JES operator.

INTERVENTION

92 z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 11. Stopping an FSS device

When an operator issues a command to stop a specific device, JES issues a STOP device order to the FSA.
When the FSA receives the STOP device order, it completes processing the current data set and then
performs its device termination processing. When the device finishes processing the current data set, the
FSA does not request any more work.

JES CODE FSA CODE

Handle response
Issue stop FSA
FSIREQ REQUEST=FSIORDER

Stop all active FSAs
Issue stop FSS
FSIREQ REQUEST=FSIORDER

Handle response

Stop device

FSIREQ REQUEST=FSISEND

Clean up FSA structure
FSIREQ REQUEST=FSIDCON

Clean up FSS structure
FSIREQ REQUEST=FSIDCON

WAIT

Issue stop device

FSIREQ REQUEST=FSIORDER

Handle response
Put out appropriate message

1

2

3

4

6

5

WAIT

WAIT

Figure 35. Overview of FSI shutdown processing

Processing the STOP device order
To stop a device that is running under an FSS, JES issues the STOP device order to the FSA' FSI order
routine. JES passes the address of the STOP device order parameter list in register 1. The parameter list
points to the address response area (IAZRESPA). When the FSI ORDER routine receives the order, it is
responsible for determining the type of order issued and either posting the appropriate FSA task to
process the order or processing the order directly. The value of the ORDID field in the common order
header section of the STOP device order parameter list represents the type of order the FSA needs to
process.

The STOP device order parameter list consists of the following sections:

• Common parameter header
• Common order header
• STOP order function dependent section

The following figure shows the connection between the different sections of the FSIREQ parameter list for
STOP device processing.

Stopping a Device

© Copyright IBM Corp. 1988, 2020 93

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

ORDER RESPONSE
AREA

(IAZRESPA)

START/STOP
(ORDSS)

Figure 36. FSIREQ parameter lists for STOP device processing

The following table shows the parameters that JES initializes for the STOP device order. The values that
JES assigns are explained after the table.

Field Name Length (bytes) Value JES Assigned

Common Parameter Header Section

FSILEN 4 Length of STOP order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS/FSA identifier

Common Order Header Section

ORDFDATA 4 Information supplied to JES in the FSA CONNECT
parameter list (CDFFDATA)

ORDRSPAD 4 Address of the order response area

ORDID 2 ORDSPDEV

STOP Order Function Dependent Section

ORDSSSP 4 0

ORDSSF1 1 Type of termination requested

ORDSSID 4 FSA identifier of device to stop

ORDSSAD4 4 Device address in 4-digit format

ORDSSAD 3 Device address in 3-digit format

ORDSSNA 8 Device name

FSILEN
The total length of the STOP order parameter list. The STOP order parameter list is composed of the
common parameter header, the common order header and the STOP order function dependent
section.

FSIFUNC
The ORDER ID number. JES assigns the symbolic value FSIORDER to this field.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.

Stopping a Device

94 z/OS: z/OS MVS Using the Functional Subsystem Interface

ORDFDATA
The address of a control block containing FSA-related information. The FSA supplied this address to
JES in the CDFFDATA field of the CONNECT parameter list. JES returns this value in the STOP device
order parameter list so that the FSA's FSI ORDER routine can activate the appropriate FSA task to
process the order.

ORDRSPAD
The address of the order response area (IAZRESPA).

ORDID
The STOP device order ID number. JES assigns the symbolic value ORDSPDEV to this field.

ORDSSSP
This field is set to zero. JES supplies the address of the device initialization area in this field for the
START FSA order only.

ORDSSF1
This flag byte indicates the type of device termination requested by JES.
ORDSSNO B‘10000000’

The FSA is to terminate the device normally.
ORDSSAB B‘01000000’

The FSA is to abnormally terminate the device.
ORDSSDU B‘00001000’

The FSA is to take a dump when the device terminates.
ORDSSID

The FSA identifier of the device to stop.
ORDSSSI

The FSS section of the FSA identifier.
ORDSSAI

The FSA section of the FSA identifier.
ORDSSAD4

The 4-digit device address in printable form. If the printer is a non-channel attached device, this field
will contain blanks.

ORDSSAD
The 3-digit device address in printable form. If the printer is a non-channel attached device, this field
will contain blanks.

ORDSSNA
The device name in printable form.

Notifying JES When the Device is Stopped
When the FSA receives the STOP device order from JES, the FSA decides whether it can respond
immediately, or needs to perform additional processing before it can respond. Before responding to the
stop device order, the FSA should wait for the device to finish printing the data set the printer is currently
working on and push that data set to the stacker.

Refer to Chapter 5, “FSI Communication,” on page 17 for information about responding to the STOP
device order.

SEND Processing
When JES receives the SEND request, it processes the return code set by the FSA in the RESPRETC field
of the order response area. If the return code is zero, JES issues a STOP FSA order. Refer to Chapter 12,
“Stopping an FSA,” on page 97 for more information about the STOP FSA order. If the return code is
greater than zero, JES issues another STOP device order. This second STOP device order requests the FSA
to abnormally terminate the device and take a dump.

Stopping a Device

Chapter 11. Stopping an FSS device 95

Stopping a Device

96 z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 12. Stopping an FSA

JES normally issues a STOP FSA order to the FSS in response to the FSA's notification that the device has
stopped. After the FSS receives the STOP FSA order from JES, the FSA performs whatever cleanup
processing needs to be done and then responds to JES by issuing an FSA level DISCONNECT.

There are other situations where JES issues a STOP FSA order. JES issues a STOP FSA order when the FSA
notifies JES (in response to a START device order) that the device could not be started. JES also issues a
STOP FSA order if it determines that the FSA must terminate before JES had a chance to stop the device
(that is, unrecoverable JES error).

JES CODE FSA CODE

Handle response

Issue stop FSA

FSIREQ REQUEST=FSIORDER

Stop all active FSAs
Issue stop FSS
FSIREQ REQUEST=FSIORDER

Handle response

Stop device
FSIREQ REQUEST=FSISEND

Clean up FSA structure
FSIREQ REQUEST=FSIDCON

Clean up FSS structure

FSIREQ REQUEST=FSIDCON

WAIT

Issue stop device
FSIREQ REQUEST=FSIORDER

Handle response

Put out appropriate message

1

2

3

4

6

5

WAIT

WAIT

Figure 37. Overview of FSI shutdown processing

Processing the STOP FSA order
To stop an FSA that is running under an FSS, JES issues the STOP FSA order to the FSS's FSI order routine.
Since there can be multiple FSAs running under an FSS, JES issues a STOP FSA order for each FSA in the
FSS address space. JES passes the address of the STOP FSA order parameter list in register 1. The
parameter list contains the address of the order response area (IAZRESPA). When the FSS' FSI ORDER
routine receives the order, it is responsible for determining the type of order issued and then either
posting the appropriate FSA task to process the order or processing the order directly. The value of the
ORDID field in the common order header section of the STOP FSA order parameter list represents the
type of order the FSS needs to process.

The STOP FSA order parameter list consists of the following sections:

• Common parameter header
• Common order header
• STOP FSA order dependent section

The following figure shows the connection between the different sections of the FSIREQ parameter list for
STOP FSA processing.

Stopping an FSA

© Copyright IBM Corp. 1988, 2020 97

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

ORDER RESPONSE
AREA

(IAZRESPA)

START/STOP
(ORDSS)

Figure 38. FSIREQ Parameter Lists for STOP FSA Processing

The following table shows the parameters that JES initializes for the STOP FSA order. The values that JES
assigns are explained after the table.

Field Name Length (bytes) Value JES Assigned

Common Parameter Header Section

FSILEN 4 Length of STOP order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS/FSA identifier

Common Order Header Section

ORDFDATA 4 Information supplied to JES in the FSS CONNECT
parameter list (CDFFDATA)

ORDID 2 ORDSPFSA

START/STOP Order Section

ORDSSSP 4 0

ORDSSF1 1 Type of termination requested

FSILEN
The total length of the STOP order parameter list. The STOP order parameter list is composed of the
common parameter header, the common order header and the STOP order dependent section.

FSIFUNC
The ORDER ID number. JES assigns the symbolic value FSIORDER to this field.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.

ORDFDATA
The address of a control block containing FSS-related information. The FSS passed this address to
JES in the CDFFDATA field of the CONNECT parameter list. JES returns this value in the STOP FSA
order parameter list so that the FSS' FSI ORDER routine can activate the appropriate FSA task to
process the order.

ORDID
The STOP FSA ID number. JES assigns the symbolic value ORDSPFSA to this field.

ORDSSSP
This field is set to zero. JES supplies the address of the device initialization area in this field for the
START FSA order only.

Stopping an FSA

98 z/OS: z/OS MVS Using the Functional Subsystem Interface

ORDSSF1
This flag byte indicates the type of termination requested. One or more of the following indicators can
be set:
ORDSSNO B‘10000000’

The FSA is to terminate normally.
ORDSSAB B‘01000000’

The FSA is to abnormally terminate.
ORDSSDU B‘00001000’

The FSA is to take a dump when it terminates.

Preparing for FSA Disconnect
JES notifies the FSS task when an FSA is to be stopped. The FSS is responsible for notifying the
appropriate FSA that it is to terminate. The FSA performs cleanup processing and then issues the FSA
level DISCONNECT. Cleanup processing includes issuing RELDS requests for any data sets not yet
released, freeing any storage, unallocating the device, etc. Refer to “Releasing a SYSOUT data set” on
page 74 for more information about RELDS processing.

Before the FSA can issue the DISCONNECT, it must:

• Provide an 18 word save area
• Initialize the DISCONNECT parameter list.

Initializing the FSIREQ DISCONNECT Parameter List
The FSA needs to initialize the following parameters before it issues the FSIREQ DISCONNECT request.

Field Name Value (bytes) Value to be Assigned

General Header

FSILEN 4 Length of DISCONNECT parameter list

FSIFUNC 4 FSIDCON

FSIFSID 4 The FSS/FSA identifier

DISCONNECT Function Dependent Area

CDFFLGR1 1 Specifies a normal or abnormal termination

CDFSTOR 4 Address of storage for SSOB/SSIB pair

CDFSSID 4 Name of the JES to which the FSA is connected

FSILEN
The length of the entire DISCONNECT parameter list. The DISCONNECT parameter list consists of
both the IAZFSIP common header section and the DISCONNECT function dependent section.

FSIFUNC
The DISCONNECT function ID number. The FSA assigns the symbolic value FSIDCON to this field.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.
FSIFSSID

This field contains the FSS portion of the FSS/FSA identifier.
FSSFSAID

This field contains the FSA portion of the FSS/FSA identifier.
CDFFLGR1

Specifies the type of termination requested by the FSA. One of the following indicators can be set:

Stopping an FSA

Chapter 12. Stopping an FSA 99

CDFNORM B‘10000000’
Specifies a normal DISCONNECT. The FSA is disconnecting in response to a STOP FSA order or as
a result of FSA-initiated termination.

CDFABNOR B‘01000000’
Specifies an abnormal DISCONNECT. The FSA is disconnecting because of an unrecoverable error.

CDFSTOR
Address of the storage for the SSOB/SSIB pair.

CDFSSID
Name of the JES to which the FSA is connected. If this parameter is not specified, the FSA is
disconnected from the primary JES defined to your installation.

Issuing the FSIREQ DISCONNECT Request
When the FSA has completed initializing the DISCONNECT parameter list, it uses the FSIREQ macro to
invoke the FSI DISCONNECT service. The format of this macro call is:

FSIREQ REQUEST=FSIDCON,PARM=DISCONNECT parm-list-address,
 TARGET=JES,FSID=fsid

Refer to Chapter 4, “The FSIREQ Macro,” on page 13 for a complete description of each operand on this
macro and any defaults that may be taken.

FSA-Initiated Termination
If the FSA becomes aware that it needs to initiate termination (for example, VTAM lines come down), it
issues a SEND request to JES to inform JES about the termination. JES determines the current stage of
FSA processing and then attempts to shut down the FSA as normally as possible. JES issues a STOP
device order and then a STOP FSA order. The FSA is expected to respond normally to these orders.

Initializing the FSIREQ SEND Parameter List
The FSA needs to initialize the following parameters before it issues the FSIREQ SEND request.

Field Name Value (bytes) Value to be Assigned

General Header

FSILEN 4 Length of SEND parameter list

FSIFUNC 4 FSISEND

FSIFSID 4 The FSS/FSA identifier

SEND Function Dependent Area

SNDTYPE 1 Special types of SEND

FSILEN
The length of the entire SEND parameter list. The SEND parameter list consists of both the IAZFSIP
common header section and the SEND function dependent section.

FSIFUNC
The SEND function ID number. The FSA assigns the symbolic value FSISEND to this field.

FSIFSID=
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.
FSIFSSID

This field contains the FSS portion of the FSS/FSA identifier.
FSSFSAID

This field contains the FSA portion of the FSS/FSA identifier.

Stopping an FSA

100 z/OS: z/OS MVS Using the Functional Subsystem Interface

SNDTYPE
The SNDTYPE ID number. The FSA assigns the symbolic value SNDTYFIT to this field. SNDTYFIT
indicates that the SEND request is a request for FSA-initiated termination.
SNDTYRSP

Response to an order.
SNDTYTDS

Send requested via GDSFLGR1 indicating DS reached OOP.
SNDTYFIT

Request for FSA term.
SNDTYINT

Unsolicited device intervention detected from the FSA.
SNDTYICL

Unsolicited device intervention cleared from the FSA.
SNDTYDNR

Unsolicited device not responding received from the FSA.
SNDTYDCL

Unsolicited device not responding cleared from the FSA.
SNDTYEXT

If one of the extended send types in SNDTYP2 is being used, this value must be set in SNDTYPE.
SNDTYP2

This is an extended send type. If this send type is used, SNDTYEXT must be set in SNDTYPE. SNDTYP2
can be set to one of the following values:
SNDE58OK

Unsolicited request to issue an EOD-OK ENF58 signal.
SNDE58ER

Unsolicited request to issue an EOD-Error ENF58 signal.

Issuing the FSIREQ SEND Request
When the FSA has completed initializing the SEND parameter list, it uses the FSIREQ macro to invoke the
FSI SEND service. The format of this macro call is:

FSIREQ REQUEST=FSISEND,PARM=SEND parm-list-address,
 TARGET=JES,FSID=fsid

Refer to Chapter 4, “The FSIREQ Macro,” on page 13 for a complete description of each operand on this
macro and any defaults that may be taken.

SEND Processing
If JES receives the SEND request for an FSA-Initiated termination:

• Before JES has issued the STOP device order, JES issues a STOP device order to the FSA.
• After JES has issued the STOP device order but before it has issued the STOP FSA order, JES issues a

STOP FSA order to the FSA.
• After JES has issued the STOP FSA order, JES awaits the FSA's response from the STOP FSA order (FSA-

level DISCONNECT).

DISCONNECT FSA Processing
When JES receives the FSA DISCONNECT request from the FSA, JES validates the FSA information and
decides whether it can normally terminate the FSA. As part of FSA disconnect processing, JES issues
RELDS requests for all data sets not yet released.

Stopping an FSA

Chapter 12. Stopping an FSA 101

How JES Handles Logic Errors and Abends
During the validation of the FSA information, JES may determine that it can not disconnect the FSA. If JES
could not disconnect the FSA, the value of the SSOBRETN field of the SSOB will be non-zero. This non-
zero value indicates that the FSS should abnormally terminate the FSA.

How JES Monitors Timing of FSA DISCONNECT
When JES issues the STOP FSA order to the FSS, JES starts a timer. If the FSS does not respond with a
FSA DISCONNECT within a specific length of time, JES issues a message to the operator.

Stopping an FSA

102 z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 13. Stopping an FSS

JES issues a STOP FSS order to the FSS when an operator command requests that JES be shut down. JES
will also issue the STOP FSS order when all printers are shut down at the installation anticipates that the
FSS will no longer be required. After the FSS receives the STOP FSS order from JES, the FSS performs its
cleanup processing and then responds to JES by issuing an FSS level DISCONNECT.

JES CODE FSA CODE

Handle response

Issue stop FSA

FSIREQ REQUEST=FSIORDER

Stop all active FSAs
Issue stop FSS
FSIREQ REQUEST=FSIORDER

Handle response

Stop device
FSIREQ REQUEST=FSISEND

Clean up FSA structure
FSIREQ REQUEST=FSIDCON

Clean up FSS structure

FSIREQ REQUEST=FSIDCON

WAIT

Issue stop device
FSIREQ REQUEST=FSIORDER

Handle response

Put out appropriate message

1

2

3

4

6

5

WAIT

WAIT

Figure 39. Overview of FSI shutdown processing

Processing the STOP FSS order
To stop an FSS, JES issues the STOP FSS order to the FSS' FSI ORDER routine. The FSS supplied the
address of its FSI ORDER routine to JES during FSS CONNECT processing in the CDFAD field of the
CONNECT parameter list. JES passes the address of the STOP FSS order parameter list. The parameter
list contains a pointer to the JES provided order response area (IAZRESPA).

When the FSI ORDER routine receives the order, it is responsible for determining the type of order issued
and then either posting an FSS task to process the order or processing the order directly. The value of the
ORDID field represents the type of order the FSS needs to process.

The STOP FSS order parameter list consists of the following sections:

• Common parameter header
• Common order header
• STOP FSS order dependent section

The following figure shows the connection between the different sections of the FSIREQ parameter list for
STOP FSS processing.

Stopping an FSS

© Copyright IBM Corp. 1988, 2020 103

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

ORDER RESPONSE
AREA

(IAZRESPA)

START/STOP
(ORDSS)

Figure 40. FSIREQ parameter lists for STOP FSS processing

The following table shows the parameters that JES initializes for the STOP FSS order. The values that JES
assigns are explained in the table.

Field Name Length (bytes) Value JES Assigned

Common Parameter Header Section

FSILEN 4 Length of STOP order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS identifier

Common Order Header Section

ORDFDATA 4 Information supplied to JES in the FSS CONNECT
parameter list (CDFFDATA)

ORDID 2 ORDSPFSS

STOP Order Section

ORDSSSP 4 0

ORDSSF1 1 Type of termination requested

FSILEN
The total length of the STOP order parameter list. The STOP order parameter list consists of the
common parameter header, the common order header and the STOP order header.

FSIFUNC
The ORDER ID number. JES assigns the symbolic value FSIORDER to this field.

FSIFSID
The FSS identifier that JES assigned when it started the FSS.

ORDFDATA
The address of a control block containing FSS-related information. The FSS passed this address to
JES in the CDFFDATA field of the CONNECT parameter list. JES returns this value in the STOP FSS
order parameter list so that the FSS' FSI ORDER routine can cause the appropriate FSS task to
process the order.

ORDID
The STOP FSS ID number. JES assigns the symbolic value ORDSPFSS to this field.

ORDSSSP
JES supplies this area for the START FSA order only.

Stopping an FSS

104 z/OS: z/OS MVS Using the Functional Subsystem Interface

ORDSSF1
This flag byte contains the type of termination JES is requesting.
ORDSSNO B‘10000000’

The FSS should terminate normally.
ORDSSAB B‘01000000’

The FSS should abnormally terminate because of an unrecoverable JES error.
ORDSSDU B‘00001000’

The FSS will take a dump when it terminates.

Preparing for FSS Disconnect
When the FSS receives the STOP FSS order from JES, the FSS performs cleanup processing and then
issues the FSS level DISCONNECT. Cleanup processing includes issuing FSA disconnects for all FSAs
running under the FSS that are still connected, freeing storage, deleting ESTAEs, etc. Refer to “Preparing
for FSA Disconnect” on page 99 for more information about FSA level disconnects.

Before the FSS can issue the DISCONNECT, it must:

• Provide an 18 word save area
• Initialize the DISCONNECT parameter list.

Initializing the FSIREQ DISCONNECT Parameter List
The FSS needs to initialize the following parameters before it issues the FSIREQ DISCONNECT request.

Field Name Value (bytes) Value to be Assigned

General Header

FSILEN 4 Length of DISCONNECT parameter list

FSIFUNC 4 FSIDCON

FSIFSID 4 The FSS/FSA identifier

DISCONNECT Function Dependent Area

CDFFLGR1 1 Specifies a normal or abnormal termination

CDFSTOR 4 Address of storage for SSOB/SSIB pair

CDFSSID 4 Name of the JES to which the FSS is connected

FSILEN
The length of the entire DISCONNECT parameter list. The DISCONNECT parameter list consists of
both the IAZFSIP common header section and the DISCONNECT function dependent section.

FSIFUNC
The DISCONNECT function ID number. The FSS assigns the symbolic value FSIDCON to this field.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.
FSIFSSID

This field contains the FSS portion of the FSS/FSA identifier.
FSSFSAID

This field contains the FSA portion of the FSS/FSA identifier.
CDFFLGR1

Specifies the type of termination requested by the FSS.
CDFNORM B‘10000000’

Specifies a normal DISCONNECT. The FSS is disconnecting in response to a STOP FSS order.

Stopping an FSS

Chapter 13. Stopping an FSS 105

CDFABNOR B‘01000000’
Specifies an abnormal DISCONNECT. The FSS is disconnecting because of an unrecoverable error.

CDFSTOR
Address of the storage for the SSOB/SSIB pair.

CDFSSID
Name of the JES to which the FSS is connected. If this parameter is not specified, the FSS is
disconnected from the primary JES defined to your installation.

Issuing the FSIREQ DISCONNECT Request
When the FSS has completed initializing the DISCONNECT parameter list, it uses the FSIREQ macro to
invoke the FSI DISCONNECT service. The format of this macro call is:

FSIREQ REQUEST=FSIDCON,PARM=DISCONNECT parm-list-address,
 TARGET=JES,FSID=fsid

Refer to Chapter 4, “The FSIREQ Macro,” on page 13 for a complete description of each operand on this
macro and any defaults that may be taken.

DISCONNECT FSS Processing
When JES receives the FSS DISCONNECT request from the FSS, JES validates the FSS information and
decides whether it can normally terminate the FSS address space.

How JES Handles Logic Errors and Abends
During the validation of the FSS information, JES may determine that it can not disconnect the FSS. If JES
could not normally disconnect the FSS, the value of the SSOBRETN field of the SSOB will be non-zero. This
non-zero value indicates that the FSS should abnormally terminate. If the FSS abnormally terminates
before it disconnects the FSAs running under it, JES will disconnect the FSAs.

How JES Monitors Timing of FSS DISCONNECT
When JES issues the STOP FSS order to the FSS, JES starts a timer. If the FSS does not respond with a
FSS DISCONNECT within a specific length of time, JES terminates the FSS address space.

Stopping an FSS

106 z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 14. FSS Output Descriptor Support

FSS output descriptor support allows a functional subsystem to use JCL that is not known to JES. An FSS
can use this JCL to support sophisticated printers. Users can specify complex printing requirements for
data sets that are processed by FSS devices.

Data set printing requirements are specified on the OUTPUT JCL statement. This statement supports
several FSS-specific parameters such as FORMDEF and PAGEDEF. z/OS MVS JCL Reference describes each
of the parameters on the OUTPUT JCL statement.

The following topics describe:

• The scheduler JCL facility and how it interfaces with JES and the FSS to provide FSS output descriptor
support.

• An overview of output descriptor processing as it relates to the FSS.
• The tasks involved in retrieving output descriptor information.

The Scheduler JCL Facility
The scheduler JCL facility (SJF) controls output descriptor information processing. This facility consists of
a set of service routines that interface with JES and the FSS/FSA to:

• Store JCL keyword subparameter information in the scheduler work block. For each JCL statement, SJF
builds one or more scheduler work blocks and then chains these scheduler work blocks together.

• Update the information in the scheduler work blocks if an operator command changes a keyword value.
• Retrieve JCL information from scheduler work blocks.

Overview of OUTPUT processing
At a job level, a user can specify output processing specifications on the OUTPUT JCL statement. During
the job's execution, the converter/interpreter verifies the JCL and invokes SJF to save the JCL keyword
information in scheduler work blocks. Although JES does not use the FSS-specific keyword information, it
passes the scheduler work block token to the FSA when it assigns the corresponding data set to the FSA.

The FSI GETDS service invokes the SJF PUT scheduler work block or SJF UPDATE service to obtain a
token for the data set assigned to the FSA. The FSA can use this to retrieve data set characteristics
specified on the OUTPUT JCL statement. Figure 41 on page 108 illustrates OUTPUT JCL Processing for the
FSS.

FSS Output Descriptor Support

© Copyright IBM Corp. 1988, 2020 107

JES CODE FSA CODE

Handle response

Issue stop FSA

FSIREQ REQUEST=FSIORDER

Stop all active FSAs
Issue stop FSS
FSIREQ REQUEST=FSIORDER

Handle response

Stop device
FSIREQ REQUEST=FSISEND

Clean up FSA structure
FSIREQ REQUEST=FSIDCON

Clean up FSS structure

FSIREQ REQUEST=FSIDCON

WAIT

Issue stop device
FSIREQ REQUEST=FSIORDER

Handle response
Put out appropriate message

1

2

3

4

6

5

WAIT

WAIT

Figure 41. OUTPUT JCL processing

Using SJF Services
The FSA invokes SJF services to retrieve JCL keyword subparameter information specified on the OUTPUT
JCL statement.

To retrieve JCL keyword information specified on the OUTPUT JCL statement, the FSA uses the token
obtained from GETDS processing to invoke the SJF RETRIEVE service.

Requirements for Using SJF Services
The following are rules and restrictions for using the SJF RETRIEVE service.

• The FSS/FSA must be in supervisor state, and run in key 0 - 7.
• The FSS/FSA must provide an 18-word save area.
• If the caller's storage area is referenced by SJF, it must not be fetch protected.
• SJF services are not available in cross-memory mode.
• Use of the multiple invocation facility of SJF is limited to under one task.

The Scheduler JCL Facility RETRIEVE Request
The FSS/FSA invokes the SJF RETRIEVE service to retrieve the JCL keyword subparameter information.
The FSA supplies the token to the service to identify the correct scheduler work block chain.

The SJF mapping macros related to the RETRIEVE service are:

• IEFSJREP - maps the SJF RETRIEVE parameter list
• IEFZB4D0 - maps the text unit pointer list and text units
• IEFSJRC - maps the SJF reason codes.

The following topics describe the tasks the FSA performs to invoke the SJF RETRIEVE service and the
associated SJF processing.

FSS Output Descriptor Support

108 z/OS: z/OS MVS Using the Functional Subsystem Interface

Initializing the Keyword List
The FSA needs to provide a keyword list (SJRELIST) to the SJF RETRIEVE service. The keyword list
contains paired fields, each pair consists of a keyword field and a pointer field. In the list, the FSA
specifies the JCL keywords for which information is to be retrieved. For each keyword specified, the SJF
RETRIEVE service returns a pointer to the text unit pointer list associated with the keyword.

The following table shows the SJRELIST paired fields and their lengths. The fields that the FSA initializes
are indicated.

Field Name Length (bytes) Value to be assigned

SJRELIST

SJREKEYW 8 keyword 1 (supplied by FSA)

SJRETPAD 4 pointer (supplied by SJF)

SJREKEYW 8 keyword 2 (supplied by FSA)

SJRETPAD
⋮

4
⋮

pointer (supplied by SJF)
⋮

Establishing a Storage area
For each SJF RETRIEVE request, the FSA needs to establish a storage area in which SJF is to return the
output descriptor information. The size of this storage area depends on the number of keywords for which
the FSA is requesting information. See Figure 42 on page 111 for a graphical representation of the SJF
control blocks returned in the storage area.

The FSA specifies the address and size of this storage area in the SJF RETRIEVE parameter list.

Initializing the SJF RETRIEVE parameter list
The FSA needs to initialize certain fields of the SJF RETRIEVE parameter list (IEFSJREP). Table 15 on
page 109 lists the required fields, the lengths of these fields, and the values that the FSA must assign.
Detailed descriptions of the value assignments follow the table.

Table 15. SJF RETRIEVE parameter list

Field name Length (bytes) Value to be assigned

SJREID 4 'SJRE'

SJREVERS 1 SJRECVER

SJRELEN 2 SJRELGTH

SJRESTOR 4 Local storage pointer or zero

SJREJDVT 8 GDSJDVTN or zeroes

SJRETOKN 8 output descriptor block chain token (GDSOUTPT or
SJFNTOKN)

SJREAREA 4 Storage area address

SJRESIZE 2 Size of storage area

SJRENKWD 2 Number of keywords passed

SJREKWDL 4 Keyword list address

SJREID
The identifier ‘SJRE’ of the RETRIEVE parameter list.

FSS Output Descriptor Support

Chapter 14. FSS Output Descriptor Support 109

SJREVERS
The current version number of the SJF RETRIEVE service. The FSS/FSA assigns the symbolic equate
SJRECVER to this field.

SJRELEN
The length of the RETRIEVE parameter list. The FSS/FSA assigns the symbolic equate SJRELGTH to
this field.

SJRESTOR
If this is the first SJF RETRIEVE request, the FSS/FSA sets this field to zero. If this is not the first
request, the FSS/FSA provides the local storage pointer returned from the previous FIND output
descriptor information request.

SJREJDVT
The FSA initializes this field with the name of the JCL definition vector table (JDVT) returned from FSI
GETDS processing in the GDSJDVTN field of the GETDS parameter list.

SJRETOKN
The scheduler work block chain token. The FSA initializes this field with the token returned from
GETDS processing in the GDSOUTPT field of the GETDS parameter list.

SJREAREA
The address of the storage area in which SJF is to return the output descriptor information in the form
of text units.

SJRESIZE
The amount of storage allocated for the output descriptor information.

SJRENKWD
The number of keywords passed in the keyword list (SJRELIST).

SJREKWDL
The address of the keyword list (SJRELIST).

Issuing the SJFREQ RETRIEVE Request
When the FSS has completed initializing the IEFSJREP parameter list, it issues the SJFREQ macro to
invoke the SJF RETRIEVE service.

When the FSS has completed initializing the IEFSJREP parameter list, it issues the SJFREQ macro to
invoke the SJF RETRIEVE service. The format of this macro call is:

SJFREQ REQUEST=RETRIEVE

SJF RETRIEVE Processing
The SJF RETRIEVE service uses the token provided in the IEFSJREP parameter list to locate the indicated
scheduler work block chain. When the scheduler work block chain is found, the service retrieves the text
units associated with each keyword specified in SJRELIST.

The SJF RETRIEVE service next builds a text unit pointer list for each keyword and supplies a pointer to
the list in the keyword's corresponding pointer field (SJRETPAD) of SJRELIST. The text unit pointer list
contains pointers to the individual text units associated with the keyword.

Information Returned from SJF RETRIEVE Processing
On return from SJF RETRIEVE processing, the FSA-provided storage area contains the text unit pointers
list and the individual text units associated with each keyword. The keyword list (SJRELIST) contains
paired fields, each pair consisting of a JCL keyword and a pointer to the text unit pointers lists for that
keyword. Figure 42 on page 111 shows the SJF control blocks returned from SJF RETRIEVE processing
and their relationships.

FSS Output Descriptor Support

110 z/OS: z/OS MVS Using the Functional Subsystem Interface

Support for ESS Keywords
JES sets the CDFS1ESS bit of the FSS CONNECT parameter list to indicate that JES supports ESS
keywords. These keywords specify the name, address, room and department associated with the
OUTPUT.

Writing information into SMF records
If your system uses JES2, output descriptor information can be written into the SMF records that the
FSS/FSA produces. These records include types 6, 24 and 57.

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

ORDER RESPONSE
AREA

(IAZRESPA)

START/STOP
(ORDSS)

Figure 42. SJF control blocks returned from SJF RETRIEVE

FSS Output Descriptor Support

Chapter 14. FSS Output Descriptor Support 111

FSS Output Descriptor Support

112 z/OS: z/OS MVS Using the Functional Subsystem Interface

Chapter 15. FSI Trace

This section provides Diagnosis, Modification or Tuning Information.

Through the use of the generalized trace facility (GTF), the FSI provides a method of diagnosing problems
that might occur in the FSS address space. Because FSI tracing may slow system performance, you
should request FSI tracing only when a problem has occurred.

Using GTF to Trace FSI Communication
The generalized trace facility (GTF) collects trace data about events occurring during the interaction
between JES and the FSS or FSA. You can tailor the type of tracing you want performed by specifying what
FSI function calls and/or what FSS-driven devices are to be traced.

Tracing FSI communications consists of the following steps:

• Starting GTF
• Specifying GTF trace options
• Recreating the problem
• Stopping GTF.

Starting GTF
To request FSI tracing, ask the operator to enter the following command to start GTF:

S GTF.identifier,devname,volserial,(time=yes)

where:
identifier

specifies the user-specified name identifying this specific GTF session.
devname

specifies the device number or device type of an output device to contain the trace data set.
volserial

indicates the serial number of a magnetic tape or direct access volume that is to contain the trace
data set.

time=yes
requests that every logical trace record is to be time-stamped in addition to the block time stamp
associated with every block of data.

Note: For more information about the parameter values on the START GTF command, refer to z/OS MVS
Diagnosis: Tools and Service Aids.

In response to the START GTF command, GTF issues the following message that asks the operator to
enter trace operations:

xx AHL100A SPECIFY TRACE OPTIONS

Specifying GTF Trace Options
In response to the SPECIFY TRACE OPTIONS message, you can decide to trace the FSI communications
by the specific FSI function call or the specific FSS-driven device, or both. To ask GTF to prompt you for
both the specific event id and the procname for the FSS-driven device, respond:

r xx,trace=usrp,jobnamep

FSI Trace

© Copyright IBM Corp. 1988, 2020 113

GTF responds with the following message, asking for the event ids and the name of the FSS:

xx AHL101A SPECIFY TRACE EVENT KEYWORDS--USR=,JOBNAME=

Each FSI function call is assigned a GTF event id as follows:

FSI Function Call Event id (usr=)

ORDER F54

POST F55

GETDS F56

GETREC F57

FREEREC F58

RELDS F59

CHKPT F5A

SEND F5B

CONNECT F5C

DISCONNECT F5D

To get FSI tracing for a set of specific function calls, respond to message AHL101A with the user event ids
for that set of FSI function calls.

To get FSI tracing for a specific FSS, respond to message AHL101A with the jobname parameter set equal
to the procname specified on your JES FSSDEF initialization statement. Use the following table to
determine the value to code for the jobname parameter to give you the trace you want.

Type of Tracing Value of jobname Parameter Result of Trace

Traces originating from the FSS FSS procname (from the FSSDEF
initialization statement)

All specified user events
originating from this FSS.

Traces originating from JES2 JES procname All specified user events
originating from JES2.

Note: This trace results in data
for each active FSS.

Traces originating from JES3 FSS procname (from the FSSDEF
initialization statement)

All specified user events
originating from this FSS.

The following example is a response to message AHL101A with GTF tracing for all ORDER and POST
function calls processed in the FSS whose procname is fss1:

r xx,usr=(f54,f55),jobname=(fss1)

GTF then issues the following message to ask if you want to specify more options, or are finished
specifying the trace options:

xx AHL102A CONTINUE TRACE DEFINITION OR REPLY END

If you are finished specifying the GTF options, respond:

r xx,end

GTF then issues two messages, the first to confirm your trace options and the second to allow you to re-
specify the options if they were entered incorrectly:

FSI Trace

114 z/OS: z/OS MVS Using the Functional Subsystem Interface

AHL103I TRACE OPTIONS SELECTED--USR=(f54,f55),JOBNAME=(fss1)

xx AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

If you specified the trace options correctly, respond:

r xx,u

Finally, GTF issues the following message to specify that GTF tracing is now in effect:

AHL031A GTF INITIALIZATION COMPLETE

Recreating the Problem
You can now issue JES commands to recreate the conditions under which the problem occurred. In this
example, GTF captures the information exchanged during the ORDER and POST FSI function calls. You
may need additional information to help diagnose the problem beyond that which is provided in the FSI
trace records. See Table 16 on page 117 for a summary of the information that is provided in the FSI trace
records. If you decide that you need additional information you can use the USERDATA area to record that
information. Use the following procedure to establish a user data area to record additional trace
information:

1. GETMAIN storage for the user data area.
2. Place the address of this user data area into the FSITEXT field in the IAZFSIP parameter list common

header area.
3. Use the FSIUDATA mapping (in the IAZFSIP mapping macro) to fill in the following:

FSIUDLEN
Length of the user data area, which includes the FSIUDLEN and FSIUDNAM fields as well as the
actual user data. This length cannot exceed 2,000 bytes.

FSIUDNAM
Eight-character routine name that generates the FSI function call.

FSIUDTXT
User specified data to be generated in the FSI trace record when GTF tracing is active. Include
information that is not available in the IAZFSIP. For example, the name of the data set that was
printing when the problem occurred.

Stopping GTF
After you have collected the necessary data, issue the following command to stop GTF:

P identifier

where:
identifier

specifies the user-specified name identifying this specific GTF session.

Note: For more information about the parameter values on the STOP GTF command, refer to z/OS MVS
Diagnosis: Tools and Service Aids.

Viewing FSI Trace Data
Use the MVS IPCS facility to view the information gathered by GTF. These are the steps:

• Define the default data set name used by IPCS to the data set name that contains the trace data
• Enter this command from the IPCS command panel:

 gtf usr(f54, f55, f56) terminal

FSI Trace

Chapter 15. FSI Trace 115

The formatted trace records are displayed on the terminal. For more information on the GTF command,
enter:

 h gtf

Reading GTF records
Use the following example to understand the contents of the different sections of the FSI trace record.
Table 16 on page 117 follows the example. Use this table to determine the parts of the FSI trace record
that are displayed for each FSI function call.

 IAZFSIH: 00000000
 TOD...... 01/03/89 16:19:08

 ** FSI TRACE RECORD **
 ** CALL **
 ** FREE REC **

 NAME..... PRINTR2 FSID..... 00030001 SEQ...... 00000001 FLAG... .. 01
 1 TOD...... 01/03/89 16:19:08
 D7D9C9D5 E3D9F240 00030001 00000001 01F0F161 | PRINTR2 01/ |
 IAZFSIP: 00000000
 +0000 LEN...... 00000038 FUNC..... 00000005 FSSID.... 0003 FSAID.... 0001 RESN..... 00000000
 2 +0010 TEXT..... 00000000
 +0000 00000038 00000005 00030001 00000000 00000000 00000000 | |
 FLRPARM: 00000000
 +0000 INDX..... 0010D3B0 DSID..... 9FA9F27A 67C1D401 00000000 EXTN..... 000B5208
 3 +0000 0010D3B0 9FA9F27A 67C1D401 00000000 000B5208 D1C5E2F3 00000000 | L0Z2: AM JES3 |
 +001C 00000000 | |
 FSIGPRS: 00000000
 R00...... 01FD4728 R01...... 000415DE R02...... 81A23000 R03...... 00000001 R04...... 000B51C8 R05...... 81A23000
 4 R06...... 000B4A80 R07...... 0004380B R08...... 00CACEE0 R09...... 0010D3B0 R10...... 000B51E0 R11...... 0004280C
 R12...... 0004180D R14...... 00000000 R15...... 000BEE08
 BLOCKID.. USERDATA BLOCKLEN. 00000000
 5 BLOCKID.. RSV1 BLOCKLEN. 00000000
 BLOCKID.. IAZIDX BLOCKLEN. 00000138

 1 - The common header contains the following fields:
NAME

The FSA name, if the FSA had been started; otherwise, the FSS name. To determine if the FSA has
been started, look at the FSID field. If the last four characters of the FSID field are zeros, the FSA has
not been started.

FSID
Specifies a value that uniquely identifies the FSS or FSA. JES assigns the FSS an identifier of the form
xxxx0000, where xxxx is a unique number. JES assigns the FSA an identifier of the form xxxxyyyy,
where xxxx corresponds to the controlling FSS identifier, and yyyy is a unique number for each FSA.

SEQ
Specifies the order in which this event occurred for this specific FSID.

FLAG
Specifies whether the trace record is for the function call (01) or for the return from the function call
(81).

TOD
Specifies the time of day the event was recorded.

 2 - The IAZFSIP common header contains the following fields:
LEN

Specifies the total length of the parameter list for this function call.
FUNC

The function id number of this function call. Refer to Appendix B, “Numeric Values of FSI Services and
Orders,” on page 129 for the values of the function id number.

FSSID
The FSS identifier that JES assigned when it started the FSS.

FSAID
The FSA identifier that JES assigned when it started the FSS.

FSI Trace

116 z/OS: z/OS MVS Using the Functional Subsystem Interface

RESN
The reason code for the function failure. If this value is not zero, a problem has occurred.

TEXT
The address of user-supplied trace data. You can use this to help diagnose FSI problems.

 3 - The specific function call section contains the value of the fields in the parameter lists for that
function call. Table 16 on page 117 specifies which formatted sections are included for each specific type
of FSI function call.

 4 - The general purpose register section contains the contents of registers 0-15 at the time the event
was traced.

 5 - The specific function call section contains the BLOCKID and BLOCKLEN for those function-specific
parameter lists that are not formatted. Table 16 on page 117 specifies which unformatted sections are
included for each type of FSI function call.

Summary of FSI Trace Output
The following table is arranged by FSI function calls. It gives a summary of the sections that appear in the
FSI trace output for each type of function call.

Table 16. FSI Trace Output Summary

Event id Type of Function Call Formatted Sections Unformatted Sections

F54 Start FSA • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• ORDPARM (Common order section parameter

values)
• ORDSS (Start/Stop order parameter values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)
• IAZRESPA (Order response area parameter

values)

• USERDATA (User trace data)
• RSV1

F54 Start device • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• ORDPARM (Common order section parameter

values)
• ORDSS (Start/Stop order parameter values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)
• IAZRESPA (Order response area parameter

values)

• USERDATA (User trace data)
• RSV1

F54 Stop device • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• ORDPARM (Common order section parameter

values)
• ORDSS (Start/Stop order parameter values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)
• IAZRESPA (Order response area parameter

values)

• USERDATA (User trace data)
• RSV1

FSI Trace

Chapter 15. FSI Trace 117

Table 16. FSI Trace Output Summary (continued)

Event id Type of Function Call Formatted Sections Unformatted Sections

F54 Stop FSA • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• ORDPARM (Common order section parameter

values)
• ORDSS (Start/Stop order parameter values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)
• IAZRESPA (Order response area parameter

values)

• USERDATA (User trace data)
• RSV1

F54 Stop FSS • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• ORDPARM (Common order section parameter

values)
• ORDSS (Start/Stop order parameter values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)
• IAZRESPA (Order response area parameter

values)

• USERDATA (User trace data)
• RSV1

F54 Intervention Order • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• ORDPARM (Common order section parameter

values)
• ORDIV (Intervention order parameter values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)
• IAZRESPA (Order response parameter values)

• USERDATA (User trace data)
• RSV1

F54 Set Order • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• ORDPARM (Common order section parameter

values)
• ORDST (Set order parameter values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)
• IAZRESPA (Order response parameter values)

• USERDATA (User trace data)
• RSV1

F54 Synch Order • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• ORDPARM (Common order section parameter

values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)
• IAZRESPA (Order response parameter values)

• USERDATA (User trace data)
• RSV1

FSI Trace

118 z/OS: z/OS MVS Using the Functional Subsystem Interface

Table 16. FSI Trace Output Summary (continued)

Event id Type of Function Call Formatted Sections Unformatted Sections

F54 Query Order • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• ORDPARM (Common order section parameter

values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)
• IAZRESPA (Order response parameter values)

• USERDATA (User trace data)
• RSV1

F55 POST • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• POSTPARM (POST parameter values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)

• USERDATA (User trace data)
• RSV1

F56 GETDS • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• GDSPARM (GETDS parameter values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)
• IAZCHK
• IAZJSPA

• USERDATA (User trace data)
• RSV1

F57 GETREC • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• GLRPARM (GETREC parameter values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)

• USERDATA (User trace data)
• RSV1
• IAZIDX

F58 FREEREC • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• FLRPARM (FREEREC parameter values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)

• USERDATA (User trace data)
• RSV1
• IAZIDX

F59 RELDS • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• RDSPARM (RELDS parameter values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)

• USERDATA (User trace data)
• RSV1

F5A CHKPT • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• CHKPARM (Checkpoint parameter values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)

• USERDATA (User trace data)
• RSV1

FSI Trace

Chapter 15. FSI Trace 119

Table 16. FSI Trace Output Summary (continued)

Event id Type of Function Call Formatted Sections Unformatted Sections

F5B SEND • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• SNDPARM (Send parameter values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)
• IAZRESPA (Order response area parameter

values)

• USERDATA (User trace data)
• RSV1

F5C FSA Connect • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• CDFPARM (Connect/Disconnect parameter

values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)

• USERDATA (User trace data)
• RSV1
• IEFJSSOB
• IEFJSSIB
• CDFPAIRS
• IAZFSIP
• GPRS

F5D FSS Disconnect • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• CDFPARM (Connect/Disconnect parameter

values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)

• USERDATA (User trace data)
• RSV1
• IEFJSSOB
• IEFJSSIB
• CDFPAIRS

F5D FSA Disconnect • Common Header
• IAZFSIP (IAZFSIP common header parameter

values)
• CDFPARM (Connect/Disconnect parameter

values)
• FSIGPRS (Contents of general purpose

registers R0 - R15)

• USERDATA (User trace data)
• RSV1
• IEFJSSOB
• IEFJSSIB
• CDFPAIRS

FSI Trace

120 z/OS: z/OS MVS Using the Functional Subsystem Interface

Appendix A. FSIREQ Parameter List

The mapping macro for the parameter lists of all of the FSI functions is IAZFSIP. The FSS/FSA must
provide storage for the parameter list when it issues FSIREQ requests. This macro adheres to the
following guidelines:

• A general header precedes the function-dependent parameter lists.
• Each parameter area begins on a fullword boundary. Further status information for the specific request

may be returned, depending on the service, in flag bytes of the parameter/response area. Both
successful completion and failure can have more status to report.

A non-zero return code from an FSI request always indicates an abnormal termination condition.
Therefore, the FSS/FSA should abnormally terminate when it receives a non-zero return code. The
specific non-zero return code values for all FSI functions depend on JES and FSS and are defined by the
JES or FSS owning the FSI routine.

Note: The FSS/FSA should take a dump when it receives a non-zero return code from an FSI request.

For information about the proper location for the FSIREQ parameter list, see “Types of orders” on page
25.

The following sections illustrate the storage maps for each section of the FSI parameter list. The section
that specifically deals with the corresponding function contains the parameter descriptions.

CDFPAIRS
The following area consists of pairs of function IDs and their corresponding routine entry point addresses.
The number of pairs is specified by the value of the CDFIDNO field.

0 CDFPAIRS

0 CDFID

4 CDFAD

Orders Parameter Section
The ORDER parameter list is made up of three separate sections:

• Common order header
• Variable order data section (dependent on the specified order)
• Order response area

Common order header
The common order header portion of the ORDER parameter list follows:

0 ORDFLGS1 RESERVED

4 ORDFDATA

8 ORDRSPAD

12 ORDID RESERVED

16 RESERVED

FSIREQ Parameter Lists

© Copyright IBM Corp. 1988, 2020 121

START/STOP Order Data Section
0 ORDSSSP

4 ORDSSF1 RESERVED ORDSSMX

8 ORDSSID

8 ORDSSSI ORDSSAI

12 ORDSSAD4

12 ORDSSAD RESERVED

16 ORDSSNA (an 8-byte field)

24 RESERVED

28 ORDSSSP2

32 RESERVED

36 RESERVED

Device Initialization Area for START FSA Order
0 ORDSSPF1 ORDSSPF2 ORDSSPF3 RESERVED

4 ORDSSKI

8 ORDSSNI

Message Routing Information Area for Start FSA Order
0 ORDSS2LN ORDSS2FL RESERVED

4 ORDSS2RC (a 16-byte field)

20 ORDSS2CN

24 RESERVED

28 RESERVED

32 RESERVED

SET Order Data Section
0 ORDSTRI RESERVED

4 ORDSTNI

8 RESERVED

12 RESERVED

16 RESERVED

20 RESERVED

SYNCH Order Data Section
0 ORDSYR1 ORDSYR2 ORDSYR3 ORDSYR4

FSIREQ Parameter Lists

122 z/OS: z/OS MVS Using the Functional Subsystem Interface

4 ORDSYR5 ORDSYR6 RESERVED RESERVED

8 ORDSYNP

12 ORDSYKI

16 ORDSYCP RESERVED

20 ORDSYSMX

24 RESERVED

28 RESERVED

32 RESERVED

36 RESERVED

40 ORDSYMSG (a 120-byte field)

INTERVENTION Order Data Section
0 ORDIVF1 ORDIVF2 RESERVED

4 ORDIVBTT (an 8-byte field)

12 ORDIVFLT (an 8-byte field)

20 ORDIVFOT (an 8-byte field)

28 ORDIVCFT (an 8-byte field)

36 RESERVED

40 RESERVED

44 RESERVED

48 RESERVED

IAZRESPA - Order Response Data Area
0 RESPID

4 RESPLEN

8 RESPFL1 RESPFL2 RESERVED

12 RESPRETC

16 RESERVED

20 RESPCPYC RESERVED

24 RESPPGEC

28 RESPLREC

32 RESPOOPI (a 12-byte field)

44 RESERVED

48 RESERVED

52 RESERVED

56 RESERVED

FSIREQ Parameter Lists

Appendix A. FSIREQ Parameter List 123

GETDS Function Dependent Area
The GETDS parameter list contains the following information:

0 GDSFLGR1 GDSFLGR2 GDSFLGS1 GDSFLGR3

4 GDSCKPL

8 GDSCKPA

12 GDSJSPA

16 GDSDDTK (an 8-byte field)

24 GDSOUTK (an 8-byte field)

32 GDSJDVTN (an 8-byte field)

40 GDSDSID (a 12-byte field)

52 RESERVED

56 GDSRECFM GDSMRECL RESERVED

60 RESERVED

64 RESERVED

GDSSJMSG (an 80-byte field)

GETDS Function Dependent Extension Area
0 FSIEGLEN FSIEGVSN

4 FSIEGFID

8 FSIEGUTK (80-byte field)

88 FSIEGRTK (80-byte field)

168 FSIEGOGT (20-byte field)

IAZJSPA - JES Job Separator Page Data Area
0 JSPAID

4 JSPALEN JSPAFLG1 RESERVED

8 JSPAJBNM (an 8-byte field)

16 JSPAJBID (an 8-byte field)

24 JSPADEVN (an 8-byte field)

32 JSPADEVA

36 JSPAJMR

IAZJSPA - JES Dependent Section
0 JSPAJES

0 JSPJGRPN (an 8-byte field)

8 JSPJGRP1 JSPJGRP2

FSIREQ Parameter Lists

124 z/OS: z/OS MVS Using the Functional Subsystem Interface

12 JSPJGRPD (an 8-byte field)

20 JSPJRMNO

24 JSPJPNAM (a 20-byte field)

44 JSPJDSNM

44 JSPJDSPN (an 8-byte field)

52 JSPJDSSN (an 8-byte field)

60 JSPJDSDD (an 8-byte field)

68 JSPJSOCL JSPJPRIO not part of parameter list

IAZJSPA - User Dependent Section
0 JSPAUSER

0 JSPAUSR1

4 JSPAUSR2

GETREC Function Dependent Area
0 GLRFLGR1 RESERVED GLRFLGS1 RESERVED

4 GLRINDX

8 GLRECID (an 8-byte field)

16 GLRDSID (a 12-byte field)

28 RESERVED

32 RESERVED

36 RESERVED

40 RESERVED

IAZIDX - Index Returned by GETREC

Index Header Area
0 IDXID

4 IDXNUM IDXTOK

8 RESERVED

Index Entry
0 IDXENTRY

0 IDXENTRL IDXRECL

4 IDXFLAG1 RESERVED

8 IDXRADR

12 IDXRECID (an 8-byte field)

FSIREQ Parameter Lists

Appendix A. FSIREQ Parameter List 125

FREEREC Function Dependent Area
The FREEREC parameter list contains the following information:

0 FLRINDX

4 FLRDSID (a 12-byte field)

16 RESERVED

20 RESERVED

24 RESERVED

28 RESERVED

RELDS Function Dependent Area
0 RDSFLGS1 RESERVED

4 RDSDSID (a 12-byte field)

16 RESERVED

20 RDSMIDSE (an 8-byte field)

28 RESERVED

CHKPT Function Dependent Area
0 CHKADR

4 CHKFLGR1 RESERVED CHKFLGS1 RESERVED

8 CHKDSID (a 12-byte field)

20 RESERVED

24 RESERVED

28 RESERVED

32 RESERVED

IAZCHK - FSI Checkpoint Record
0 CHKID

4 CHKLNGTH RESERVED

8 CHKJESWK (a 64-byte field)

72 CHKRBA (an 8-byte field)

80 CHKDEV

84 CHKMOD

88 CHKCOPY

92 CHKTRNC

96 CHKREC

100 CHKPAGE

FSIREQ Parameter Lists

126 z/OS: z/OS MVS Using the Functional Subsystem Interface

104 CHKPROD (an 8-byte field)

112 CHKVER

116 CHKRELS

120 CHKMODF

124 CHKSERV

POST Dependent Section
0 POSTFLS1 RESERVED

4 POSFDATA

8 RESERVED

SEND Dependent Section
0 SNDTYPE RESERVED

4 SNDRSPTR

8 RESERVED

FSIUDATA - User Trace Data Area
0 FSIUDLEN

4 FSIUDNAM (an 8-byte field)

12 FSIUDTXT (a maximum of 2000 bytes)

FSIREQ Parameter Lists

Appendix A. FSIREQ Parameter List 127

FSIREQ Parameter Lists

128 z/OS: z/OS MVS Using the Functional Subsystem Interface

Appendix B. Numeric Values of FSI Services and
Orders

The following chart provides the absolute values for the FSI services that the FSS/FSA specifies in the
FSIFUNC field of the FSI parameter list (IAZFSIP).

Table 17. Numerical Values of FSIFUNC

FSI Service Numerical Value

FSICON 254

FSIDCON 255

FSIGDS 3

FSIRDS 6

FSIGREC 4

FSIFREC 5

FSICKPT 7

FSISEND 8

FSIORDER 1

FSIPOST 2

SNDTYRSP X'80'

The following chart provides the absolute values for the orders that the JES specifies in the ORDID field of
the order function dependent area of the FSI parameter list (IAZFSIP).

Table 18. Numerical Values of ORDID

FSI Order Numerical Value

ORDSPFSS 4

ORDSTFSA 8

ORDSPFSA 12

ORDSTDEV 16

ORDSPDEV 20

ORDQUERY 24

ORDSET 28

ORDSYNCH 32

ORDINTV 36

© Copyright IBM Corp. 1988, 2020 129

130 z/OS: z/OS MVS Using the Functional Subsystem Interface

Appendix C. Accessibility

Accessible publications for this product are offered through IBM Documentation (www.ibm.com/docs/en/
zos).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the
Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision
use software products successfully. The accessibility features in z/OS can help users do the following
tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Documentation with a
screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more
syntax elements are always present together (or always absent together), they can appear on the same
line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)

© Copyright IBM Corp. 1988, 2020 131

https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax
element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax
element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if
you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax element can be used zero
or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data
area, you know that you can include one data area, more than one data area, or no data area. If you
hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

132 z/OS: z/OS MVS Using the Functional Subsystem Interface

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix C. Accessibility 133

134 z/OS: z/OS MVS Using the Functional Subsystem Interface

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for IBM Documentation. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1988, 2020 135

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or

136 z/OS: z/OS MVS Using the Functional Subsystem Interface

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details in
the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS™, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease if
a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those

Notices 137

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Programming interface information
This book is intended to help the customer write and install a function subsystem (FSS) and its functional
subsystem application (FSA). This book primarily documents Product-sensitive Programming Interface
and Associated Guidance Information provided by z/OS.

Product-sensitive programming interfaces allow the customer installation to perform tasks such as
diagnosing, modifying, monitoring, repairing, tailoring, or tuning of z/OS. Use of such interfaces creates
dependencies on the detailed design or implementation of the IBM software product. Product-sensitive
programming interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that programs written to such
interfaces may need to be changed in order to run with new product releases or versions, or as a result of
service.

However, this book also documents Diagnosis, Modification or Tuning Information, which is provided to
help the customer to do diagnosis of z/OS.

Attention: Do not use this Diagnosis, Modification or Tuning Information as a programming interface.

Diagnosis, Modification or Tuning Information is identified where it occurs by an introductory statement to
a chapter or section or by the following marking:

Diagnosis, Modification or Tuning Information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

138 z/OS: z/OS MVS Using the Functional Subsystem Interface

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Index

A
accessibility

contact IBM 131
features 131

accessing FSI services 3, 13, 14
address space communication, types

between JES3 and FSS 2
assistive technologies 131

C
CHKPT

description 77
command scheduler communications list

retrieving information from 32
specifying address on EXTRACT macro 32

communication method between JES and FSS/FSA 1
communication services

description 3
communications event control block

obtaining pointer to 29
CONNECT

parameter list
initializing by FSA 40
initializing by FSS 29

preparing for FSA level 39
preparing for FSS-level 29
processing

FSA level 35, 42
FSS level 27, 32, 33

contact
z/OS 131

control services
description 5

copy mark requirements 52
cross memory

establishing environment 32

D
data access services

description 4, 47
data set

getting 24, 47, 62
header

requirements returned by GETDS service 52
identifier 50
JES spacing requirements 38
printing requirements returned by GETDS 52
selection criteria 48
tracking processing

requirement returned by GETDS 52
device

address
in START device order parameter list 45
in START FSA order parameter list 38

device (continued)
allocating 35
characteristics

in START FSA order parameter list 38
initializing 35, 39
name

in START device order parameter list 45
in START FSA order parameter list 38

starting 43, 45
device stopped

notifying JES 95

E
establishing

FSA/JES communication 35, 42
FSS/JES communication 27, 32

ESTAE routine 29
example

FSS interface example 5
EXTRACT macro

format 29

F
feedback xv
form mark requirements 52
FREEREC

description 72
FSA

checkpoint area
creating 49
function 49
information returned by GETDS service 59
specifying in GETDS parameter list 50
status upon return from GETDS 53

connecting to JES
errors 42
initializing CONNECT parameter list 40
issuing FSIREQ CONNECT request 42
preparation 39
processing 42
timing considerations 42

description 1
FSA-initiated termination 100
FSI services provided by

identifying routines to JES 14
linkage conventions 15

getting
a data set 24, 47, 62
records 64

identifier
in START FSA order parameter list 38
specifying on FSIREQ macro 14

initializing 39
means of communication with JES 1
POST routine 24, 61

Index 139

FSA (continued)
processing data sets

supporting restart situations 49
processing POST requests 24, 62
relationship to FSS 1
responding to START FSA order

timing considerations 42
starting 35, 39
starting device 43, 45
stopping

response to unsuccessful FSA CONNECT 42
stopping an FSA 97
tracking a data set

notifying JES when data set reaches OOP 62
requirement returned by GETDS 52

FSA disconnect
FSIREQ disconnect parameter list 99
initializing the FSIREQ disconnect parameter list 99
issuing the FSIREQ disconnect request 100
preparing for 99

FSCT
creating

FSS level 32
FSI

concepts 1
description 1
establishing

FSA-level 35, 42
FSS-level 27, 32

invoking services 3, 13
processing, overview 7, 10
services

control services 5
data access services 4
description 3
return codes 15
specifying type on FSIREQ macro 13
See also specific FSI services

FSI CHKPT service
definition 5
specifying on FSIREQ macro 14

FSI communication services
description 3

FSI CONNECT service
definition 3
invoking

for FSA CONNECT 42
for FSS CONNECT 32

processing
FSA level 35, 42
FSS level 27, 33
FSS-level 32

specifying on FSIREQ macro 14, 32
FSI control services

description 5
FSI data access services

description 4
FSI DISCONNECT service

definition 4
specifying on FSIREQ macro 14

FSI FREEREC service
definition 4
specifying on FSIREQ macro 14

FSI GETDS service

FSI GETDS service (continued)
definition 4
description 47
information returned to FSA

FSA checkpoint area 59
GETDS parameter list 51

invoking 50
processing

no work available 51, 60
specifying on FSIREQ macro 14

FSI GETREC service
definition 4
specifying on FSIREQ macro 14

FSI macros
FSIREQ 3, 13, 15
iazfsip 121
IAZFSIP 3

FSI ORDER
FSI ORDER

service/routine 81
FSI ORDER service

definition 4
specifying address in CONNECT parameter list 32
specifying on FSIREQ macro 14
types of orders 4

FSI POST service
definition 5
notifying FSA when work exists 24, 61
processing 24, 62
specifying on FSIREQ macro 14

FSI RELDS service
definition 4
specifying on FSIREQ macro 14

FSI SEND service
definition 4
invoking 22, 64
notifying JES when data set reaches OOP 63
processing

for START device order 45
specifying on FSIREQ macro 14

FSI services
description

communication services 3
invoking 3, 13, 14
linkage conventions 15
numeric values 129
register conventions on entry 15
return codes 15
specifying type on FSIREQ macro 13
types 3

FSI trace 113
FSID

keyword of FSIREQ macro 14
See also FSS, identifier and FSA, identifier

FSIFUNC field of FSI parm list
numeric values 129

FSIREQ disconnect
issuing the request and associated processing 106
parameter list 105

FSIREQ macro
definition 3
description 13, 15
execution 14
format 13

140 z/OS: z/OS MVS Using the Functional Subsystem Interface

FSIREQ macro (continued)
parameters

FSID keyword 14
PARM keyword 14
REQUEST keyword 13
TARGET keyword 14

return codes 15
FSIREQ parameter list

function 3
IAZFSIP mapping macro, description

CHKPT section 126
common order header 121
FREEREC section 126
FSIUDATA 127
GETDS section 124
GETREC section 125
INTERVENTION order section 123
POST section 127
RELDS section 126
SEND section 127
SET order section 122
START/STOP order section 122
SYNCH order section 122

specifying address on FSIREQ macro 14
storage maps 127

FSIREQ send parameter list
format and contents 100

FSS
connecting to JES

errors 32
initializing CONNECT parameter list 29
issuing FSIREQ CONNECT request 32
preparation 29
processing 32
timing considerations 33

dependencies on JES 1
description 1
disconnecting from JES

response to unsuccessful FSS CONNECT 32
FSI services provided by

identifying routines to JES 14, 27
linkage conventions 15

identifier
on MVS START command 28
retrieving from CIB 29
specifying on FSIREQ macro 14

initialization statements for JES2 11
initialization statements for JES3 11
initializing, required procedures 28
installing 11
means of communication with JES 1
output descriptor information 107
responsibilities 1
sample JCL used to start the FSS 12
starting 27
starting an FSA

responding to unsuccessful start 42
stopping an FSS 103
working sample of the FSS interface 5

FSS device, stopping 93
FSS disconnect

preparing for 105
FSS interface sample

to start an FSS 5

FSSDEF initialization statement
creating MVS START command from 27
parameters

relationship to MVS START command parameters
27

FSVT
initializing 32

functional subsystem
installing 11
See also FSS

G
GETDS

parameter list
information returned by FSI service 51
initializing 49

preparation 49
processing

information returned by FSI service 51
no work available 51, 60

service
description 47
invoking 50
preparation 64

GETREC
description 64

getting
a data set 24, 47, 62
records 64

I
IAZCHK

creating FSA checkpoint area 49
information returned by GETDS service 59
storage map 126

IAZFSIP mapping macro
definition 3
description 121
obtaining storage for 29

IAZIDX
storage map 125

IAZJSPA
obtaining pointer to 53
storage map 124

IAZRESPA
initializing

unsuccessful FSA start 42
storage map 123

intervention order
definition 4
parameter list 90
processing 89

invoking FSI services 3, 13, 14
See also specific FSI services

J
JCL

OUTPUT statement 53
JCL procedure, sample

to start an FSS 12

Index 141

JES
CONNECT processing

FSA-level 42
FSS-level 32

establishing cross memory environment 32
FSI services provided by

identifying routines to FSS 14
job separator page area (IAZJSPA)

storage map 124
management of FSS 1
means of communication with the FSS/FSA 1
monitoring timing

of FSA CONNECT 42
of FSS CONNECT 33

notifying FSA when work exists 24, 61
printing requirements for data set 52
processing requirements for FSS device 38
responding to device orders from 81
starting

device 43, 45
FSA 35, 39
FSS 27

subsystem name (ssname)
retrieving from CIB 29
specifying on MVS START command 28

JES disconnect
processing 101

JES SEND
processing 92

JES2
FSS-related initialization statements 11

JES3
address space communication with FSS, types 2
FSS-related initialization statements 11

JESNEWS data set, printing requirements 52
job header

requirements returned by GETDS service 52
job trailer

requirements returned by GETDS service 52

K
keyboard

navigation 131
PF keys 131
shortcut keys 131

M
macros

FSIREQ 3, 13, 15
IAZFSIP 3

mapping FSIREQ parameter lists 3
means of communication between JES and FSS/FSA 1
MVS START command

format 27
parameters

relationship to FSSDEF parameters 27

N
navigation

keyboard 131

non-process runout timer specification 38
notifying

FSA when work exists 24, 61
JES when data set reaches OOP 62

notifying JES when the device is stopped 95
NPRO timer specification 38
numeric values of FSI services 129

O
OOP (operator observation point) 62
operator observation point (OOP) 62
order response area

format and contents 21
orders

responding to device orders from JES 81
types 4

output descriptor information
token 53

output descriptors
using SJF services to retrieve output descriptor
information 108

OUTPUT JCL statement 53
OUTPUT processing

overview 107

P
PARM keyword of FSIREQ macro 14
POST

parameter list
initializing by JES 24, 62

processing 24, 62
preparing for FSA disconnect 99

Q
query order

definition 4
examples of JES commands resulting in a query order
81
parameter list 82
processing the query order 81

R
register conventions for FSI services 15
relationship between an FSS and JES 1
RELDS

description 74
REQUEST keyword of FSIREQ macro 13
RETRIEVE service (SJF)

issuing the request and processing 110
keyword list 109
parameter list 109

return codes, FSIREQ macro 15

S
sample

FSS interface 5
save area

providing for FSIREQ CONNECT 29

142 z/OS: z/OS MVS Using the Functional Subsystem Interface

save area (continued)
providing for FSIREQ CONNECT request 39

scheduler JCL facility
error message returned by GETDS service 53
processing

error detected by GETDS service 53
RETRIEVE request 108

SEND
invoking FSI service 22, 64
notifying JES when data set reaches OOP 63
parameter list

initializing 63
processing 45

send parameter list
format and contents 100

sending to IBM
reader comments xv

set order
definition 4
examples of JES commands resulting in a set order 83
parameter list 84
processing 83

shortcut keys 131
SJF

requirements for using SJF services 108
using SJF services 108
See also scheduler JCL facility

SJF RETRIEVE service
issuing the request and processing 110
keyword list 109
parameter list 109

spacing requirements for data sets 38
SSI (subsystem interface) 14
SSOB/SSIB pair

obtaining storage for 29
start an FSS

sample FSS interface 5
sample JCL 12

start device order
definition 4
description 43
parameter list

description 43
information contained in 44

start FSA order
definition 4
description 35
parameter list

description 36
information contained in 36, 39

processing by FSS 39
responding to JES

successful start 39
timing considerations 42
unsuccessful start 42

starting
device 43, 45
FSA 35, 39
FSS 27

stop device order
definition 4

stop FSA order
definition 4
parameter list 97

stop FSA order (continued)
processing 97
response to unsuccessful FSA CONNECT 42

stop FSS order
definition 4
parameter list 94, 103
processing 93, 103

stopping
FSA

response to unsuccessful FSA CONNECT 42
stopping an FSA 97
stopping an FSS device 93
subsystem interface

CONNECT processing 32
subsystem interface (SSI) 14
synch order

definition 4
determining synch action to be performed 89
examples of JES commands resulting in a synch order
85
parameter list 85
processing 85

T
TARGET keyword of FSIREQ macro 14
task control block (TCB) 28
TCB (task control block) 28
trademarks 138

U
user interface

ISPF 131
TSO/E 131

Index 143

144 z/OS: z/OS MVS Using the Functional Subsystem Interface

IBM®

Product Number: 5650-ZOS

SA38-0678-40

	Contents
	Figures
	Tables
	About this information
	How this information is organized
	How to use this information
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 4
	Summary of changes for z/OS Version 2 Release 3
	Summary of changes for z/OS Version 2 Release 2

	Chapter 1. Functional Subsystem Interface Concepts
	What is a Functional Subsystem?
	Managing an FSS

	What is a Functional Subsystem Application?
	What is the Functional Subsystem Interface?
	Invoking the FSI
	FSI Services
	Communication Services
	Data Access Services
	Control Services

	FSS interface example

	Chapter 2. An Overview of FSI Processing
	FSS Startup
	FSI data set processing
	FSS Shutdown

	Chapter 3. Installing a Functional Subsystem
	FSS-Related Initialization Statements
	JES2 FSS-related initialization statements
	JES3 FSS-related initialization statements

	Defining JCL Procedure Used to Start an FSS

	Chapter 4. The FSIREQ Macro
	FSIREQ Macro format
	FSIREQ Macro Execution

	Chapter 5. FSI Communication
	Order Processing - Communication from JES to the FSS/FSA
	The FSI Order Routine
	Order processing parameter list
	Function of the FSI Order Routine
	Synchronous Processing
	Asynchronous Processing

	Coding Considerations

	Responding to an Order - Communication from the FSS/FSA to JES
	Send processing in response to an order
	Initializing the order response area

	Issuing the FSIREQ SEND Request
	Unsolicited Send Processing
	Initializing the FSIREQ Parameter List

	CONNECT/DISCONNECT Processing in Response to an Order

	Post Processing
	The FSI Post Routine
	Function of the FSI Post Routine
	Post processing parameter list

	Types of orders
	Addressing mode - AMODE
	Pointer-defined Linkage

	Residency mode - RMODE

	Chapter 6. Establishing FSS/JES Communication
	Starting an FSS
	Initializing the FSS address space
	Retrieving the MVS START Command and Token

	Preparing for FSS CONNECT
	Initializing the FSS level FSIREQ CONNECT parameter list
	Issuing the FSS Level FSIREQ CONNECT Request

	FSS CONNECT processing
	How JES Handles Logic Errors and Abends

	How JES Monitors Timing of FSS CONNECT

	Chapter 7. Establishing FSA/JES communication
	Processing the START FSA order
	Initializing the FSA

	FSA Successfully Started
	Preparing for FSA CONNECT
	Initializing the FSIREQ Connect parameter list
	Issuing the FSA Level FSIREQ CONNECT Request

	FSA CONNECT processing
	How JES Handles Logic Errors and Abends
	How JES Monitors Timing of FSA CONNECT

	FSA Could Not Be Started

	Chapter 8. Starting an FSS device
	Processing the START device order
	Notifying JES of Device Status
	SEND Processing

	Chapter 9. Issuing Data Requests to JES
	Getting a SYSOUT Data Set (GETDS)
	Providing an FSA Checkpoint Area
	Initializing the GETDS Parameter List
	Issuing the FSIREQ GETDS Request
	JES GETDS Processing
	Information returned from GETDS processing
	Information contained in the JSPA
	Information Contained in the FSA Checkpoint Area

	No work exists for printing
	Notifying the FSA when work becomes available
	Processing the FSIREQ POST Request

	Notifying JES that the Data Set Reached the OOP
	Initializing the Order Response Area
	Initializing the SEND parameter list
	Issuing the FSIREQ SEND Request

	Getting SYSOUT records from an acquired data set
	Specific record retrieval
	Initializing the GETREC Parameter List
	Issuing the FSIREQ GETREC Request
	JES GETREC Processing
	Information returned in GETREC parameter list
	Information contained in index

	Releasing a SYSOUT record
	Initializing the FREEREC parameter list
	Issuing the FSIREQ FREEREC Request
	JES FREEREC Processing
	Status of Request Returned by JES

	Releasing a SYSOUT data set
	Data Set Processing Status
	Initializing the RELDS parameter list
	Issuing the FSIREQ RELDS Request
	JES RELDS Processing
	Status of Request Returned by JES

	SMF Record Writing

	Requesting a Checkpoint of Processing
	Purpose of the FSI CHKPT Service
	Preparing for Checkpointing
	Initializing the FSI Checkpoint Record
	Initializing the CHKPT parameter list
	Issuing the FSIREQ CHKPT Request

	JES CHKPT Processing
	Bad Checkpoint Record Detected by JES

	Chapter 10. Responding to Device Orders From JES
	The Query Order
	Examples of JES Commands Resulting in a Query Order
	Processing the query order

	The Set Order
	Examples of JES Commands Resulting in a Set Order
	Processing the set order

	The Synch Order
	Examples of JES Commands Resulting in a Synch Order
	Processing the synch order
	Determining synch action to be performed

	The Intervention Order
	Processing the intervention order

	Notifying JES of Order Completion
	SEND Processing

	Chapter 11. Stopping an FSS device
	Processing the STOP device order
	Notifying JES When the Device is Stopped
	SEND Processing

	Chapter 12. Stopping an FSA
	Processing the STOP FSA order
	Preparing for FSA Disconnect
	Initializing the FSIREQ DISCONNECT Parameter List
	Issuing the FSIREQ DISCONNECT Request

	FSA-Initiated Termination
	Initializing the FSIREQ SEND Parameter List
	Issuing the FSIREQ SEND Request
	SEND Processing

	DISCONNECT FSA Processing
	How JES Handles Logic Errors and Abends

	How JES Monitors Timing of FSA DISCONNECT

	Chapter 13. Stopping an FSS
	Processing the STOP FSS order
	Preparing for FSS Disconnect
	Initializing the FSIREQ DISCONNECT Parameter List
	Issuing the FSIREQ DISCONNECT Request

	DISCONNECT FSS Processing
	How JES Handles Logic Errors and Abends

	How JES Monitors Timing of FSS DISCONNECT

	Chapter 14. FSS Output Descriptor Support
	The Scheduler JCL Facility
	Overview of OUTPUT processing

	Using SJF Services
	Requirements for Using SJF Services

	The Scheduler JCL Facility RETRIEVE Request
	Initializing the Keyword List
	Establishing a Storage area
	Initializing the SJF RETRIEVE parameter list
	Issuing the SJFREQ RETRIEVE Request
	SJF RETRIEVE Processing
	Information Returned from SJF RETRIEVE Processing
	Support for ESS Keywords
	Writing information into SMF records

	Chapter 15. FSI Trace
	Using GTF to Trace FSI Communication
	Starting GTF
	Specifying GTF Trace Options
	Recreating the Problem
	Stopping GTF

	Viewing FSI Trace Data
	Reading GTF records
	Summary of FSI Trace Output

	Appendix A. FSIREQ Parameter List
	CDFPAIRS
	Orders Parameter Section
	Common order header

	START/STOP Order Data Section
	Device Initialization Area for START FSA Order
	Message Routing Information Area for Start FSA Order

	SET Order Data Section
	SYNCH Order Data Section
	INTERVENTION Order Data Section
	IAZRESPA - Order Response Data Area

	GETDS Function Dependent Area
	GETDS Function Dependent Extension Area
	IAZJSPA - JES Job Separator Page Data Area
	IAZJSPA - JES Dependent Section
	IAZJSPA - User Dependent Section

	GETREC Function Dependent Area
	IAZIDX - Index Returned by GETREC
	Index Header Area
	Index Entry

	FREEREC Function Dependent Area
	RELDS Function Dependent Area
	CHKPT Function Dependent Area
	IAZCHK - FSI Checkpoint Record

	POST Dependent Section
	SEND Dependent Section
	FSIUDATA - User Trace Data Area

	Appendix B. Numeric Values of FSI Services and Orders
	Appendix C. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	A
	C
	D
	E
	F
	G
	I
	J
	K
	M
	N
	O
	P
	Q
	R
	S
	T
	U

