
z/OS
Version 2 Release 4

MVS Initialization and Tuning Guide

IBM

SA23-1379-40

Note

Before using this information and the product it supports, read the information in “Notices” on page
111.

This edition applies to Version 2 Release 4 of z/OS (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2020-09-21
© Copyright International Business Machines Corporation 1991, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. vii

Tables.. ix

About this information.. xi
Who should use this information.. xi
z/OS information..xi

How to send your comments to IBM...xiii
If you have a technical problem..xiii

Summary of changes..xv
Summary of changes for z/OS MVS Initialization and Tuning Guide for Version 2 Release 4 (V2R4)..... xv
Summary of changes for z/OS Version 2 Release 3 (V2R3).. xv
Summary of changes for z/OS Version 2 Release 2 (V2R2) as updated December 2015...................... xvi
Summary of changes for z/OS Version 2 Release 2 (V2R2)... xvi
z/OS Version 2 Release 1 summary of changes... xvi

Chapter 1. Storage management overview... 1
Initialization process..1

Creating address spaces for system components.. 2
Master scheduler initialization... 5
Subsystem initialization... 5
START/LOGON/MOUNT processing...5

Processor storage overview...6
System preferred area..7
Nucleus area...7
The fixed link pack area (FLPA).. 7
System queue area (SQA-Fixed).. 8
Fixed LSQA storage requirements... 8
V=R area..8
Memory pools... 9

Virtual storage overview.. 13
The virtual storage address space and ESA extensions..13
The 64-bit high virtual storage address space..15
General virtual storage allocation considerations...15
System Queue Area (SQA/Extended SQA).. 16
Pageable link pack area (PLPA/Extended PLPA)... 17
Placing modules in the system search order for programs.. 18
Modified link pack area (MLPA/Extended MLPA).. 24
Common service area (CSA/Extended CSA)..25
Restricted use common service area (RUCSA/Extended RUCSA)..25
Local system queue area (LSQA/Extended LSQA).. 28
Address space layout randomization.. 28
Large pages and LFAREA..29
Scheduler work area (SWA/Extended SWA)..35
Subpools 229, 230, 249 - Extended 229, 230, 249... 36
System region...36
The private area user region/extended private area user region..36

 iii

Identifying problems in virtual storage (DIAGxx parmlib member)... 44
Auxiliary storage overview...45

System data sets.. 45
Paging data sets... 46
Using storage-class memory (SCM)...48

Improving module fetch performance with LLA... 49
LLA and module search order.. 50
Planning to use LLA.. 50
Coding the required members of parmlib... 51
Controlling LLA and VLF through operator commands... 52

Allocation considerations.. 57
Serialization of resources during allocation.. 57
Improving allocation performance.. 58
The volume attribute list.. 58
Use and mount attributes.. 59

Chapter 2. Auxiliary storage management initialization.. 63
Page operations... 63

Paging operations and algorithms... 63
Page data set sizes.. 65
Storage requirements for page data sets..66
Page data set protection..66

SYSTEMS level ENQ..66
Status information record.. 67

Space calculation examples.. 67
Example 1: Sizing the PLPA page data set, size of the PLPA and extended PLPA unknown..............67
Example 2: Sizing the PLPA page data set, size of the PLPA and extended PLPA known..................67
Example 3: Sizing the common page data set...67
Example 4: Sizing local page data sets..68
Example 5: Sizing page data sets when using storage-class memory (SCM).................................... 69

Performance recommendations..69
Estimating total size of paging data sets...71

Using measurement facilities.. 71
Adding paging space.. 71
Deleting, replacing or draining page data sets.. 71

Questions and answers... 72

Chapter 3. The system resources manager... 75
System tuning and SRM...75
Section 1: Description of the system resources manager (SRM)... 75

Controlling SRM..76
Objectives... 76
Types of control..76
Functions.. 77
I/O service units... 83

Section 2: Basic SRM parameter concepts... 83
MPL adjustment control... 84
Transaction definition for CLISTs.. 84
Directed VIO activity.. 84
Alternate wait management.. 84
Dispatching mode control.. 85

Section 3: Advanced SRM parameter concepts..85
Selective enablement for I/O...85
Adjustment of constants options...87

Section 4: Guidelines... 88
Defining installation requirements.. 88
Preparing an initial OPT..89

iv

Section 5: Installation management controls.. 106
Operator commands related to SRM... 106

Appendix A. Accessibility...107
Accessibility features.. 107
Consult assistive technologies..107
Keyboard navigation of the user interface..107
Dotted decimal syntax diagrams...107

Notices..111
Terms and conditions for product documentation...112
IBM Online Privacy Statement.. 113
Policy for unsupported hardware..113
Minimum supported hardware..113
Programming Interface Information...114
Trademarks..114

Index.. 115

 v

vi

Figures

1. Virtual storage layout for multiple address spaces..4

2. Virtual storage layout for a single address space (not drawn to scale)...14

3. Auxiliary storage requirement overview...46

4. Auxiliary storage diagram with SCM... 49

 vii

viii

Tables

1. Partial list of component address spaces...2

2. Threshold limits in ascending order... 10

3. Offsets for the SQA/CSA threshold levels.. 17

4. The two supported LFAREA syntax methods... 31

5. LFAREA calculation example 1... 32

6. LFAREA calculation example 2... 33

7. LFAREA calculation example 3... 34

8. LFAREA calculation example 4... 34

9. LFAREA calculation example 5... 35

10. FREEZE|NOFREEZE processing.. 55

11. Processing order for allocation requests requiring serialization...57

12. Summary of mount and use attribute combinations... 60

13. Sharable and nonsharable volume requests..61

14. ASM criteria for paging to storage-class memory (SCM) or page data sets.. 64

15. Page data set values... 67

16. Summary of MPL adjustment control... 84

17. Summary of variables used to determine if changes are needed to the number of processors
enabled for I/O interruptions...85

18. Relating SRM seconds to real time...86

19. Keywords provided in OPT to single pageable storage shortage.. 88

20. IBM zEnterprise 196 (z196) processor models... 90

21. IBM System z10 Enterprise Class (z10 EC) processor models... 93

22. IBM System z9 Business Class (z9 BC) processor models..96

 ix

23. IBM System z9 Enterprise Class (z9 EC) processor models..98

24. zSeries 990 processor models... 101

25. zSeries 900 processor models... 101

26. zSeries 890 processor models... 103

27. zSeries 800 processor models... 104

28. S/390 9672 processor models...104

29. S/390 3000 processor models...105

x

About this information

This information is a preliminary tuning guide for the MVS™ element of z/OS®. The information describes
how to initialize the system and how to get improved system performance.

This information is a companion to the z/OS MVS Initialization and Tuning Reference.

You can find more information about system capacity planning best practices, techniques, and tooling at
IBM Techdocs (www.ibm.com/support/techdocs/atsmastr.nsf/Web/TechDocs).

For information about how to install the software products that are necessary to run z/OS, see z/OS
Planning for Installation.

Who should use this information
This information is for anyone whose job includes designing and planning to meet installation needs
based on system workload, resources, and requirements. For that audience, the information is intended
as a guide to what to do to implement installation policies.

The information is also for anyone who tunes the system. This person must be able to determine where
the system needs adjustment, to understand the effects of changing the system parameters, and to
determine what changes to the system parameters will bring about the desired effect.

z/OS information
This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS library, go to IBM Knowledge Center (www.ibm.com/support/
knowledgecenter/SSLTBW/welcome).

© Copyright IBM Corp. 1991, 2020 xi

http://www.ibm.com/support/techdocs/atsmastr.nsf/Web/TechDocs
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

xii z/OS: z/OS MVS Initialization and Tuning Guide

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xiii.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM® Knowledge Center function
If your comment or question is about the IBM Knowledge Center functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Knowledge Center
Support at ibmkc@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS MVS Initialization and Tuning Guide,

SA23-1379-40
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 1991, 2020 xiii

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmkc@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xiv z/OS: z/OS MVS Initialization and Tuning Guide

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

Summary of changes for z/OS MVS Initialization and Tuning Guide for
Version 2 Release 4 (V2R4)

The following content is new, changed, or no longer included in V2R4.

New

The following content is new.
September 2020 refresh

• The topic, “The 64-bit high virtual storage address space” on page 15, has been added.

Prior to September 2020 refresh

• New information has been added in “The virtual storage address space and ESA extensions” on
page 13 and “The 64-bit high virtual storage address space” on page 15.

• Guidance about using the CHKPT macro and dynamic LPA has been added in “Recommendations for
Improving System Performance” on page 23.

• Guidance about determining LFAREA target values has been added in “LFAREA parameter” on page
29.

• The topic, “Address space layout randomization” on page 28, has been added.

Changed

The following content is changed.
September 2020 refresh

• The following topics have been updated:

– “Virtual storage overview” on page 13
– “The virtual storage address space and ESA extensions” on page 13

Prior to September 2020 refresh

• Changes have been made in “Restricted use common service area (RUCSA/Extended RUCSA)” on
page 25 to support RUCSA as an optional, priced feature.

Summary of changes for z/OS Version 2 Release 3 (V2R3)
The following changes are made for z/OS V2R3.

New

• Information about RUCSA has been added in “Restricted use common service area (RUCSA/Extended
RUCSA)” on page 25 (APAR OA56180).

• Information about memory pools was added and updated. See “Memory pools” on page 9 for more
information.

© Copyright IBM Corp. 1991, 2020 xv

Changed

• The figure illustrating the virtual storage address space layout has been updated in “The virtual storage
address space and ESA extensions” on page 13.

• Information changed to ignore the IEFUSI output values when applying SMFLIMxx rules(s) that contain
SYSRESVBELOW and/or SYSRESVABOVE. See “Overview of the SMFLIM keywords” on page 40 and
“What happens when there are multiple rules, or if there is an SMFLIMxx active and an IEFUSI exit
active” on page 42.

• Information about Virtual Flash Memory (VFM) was added. See “Using storage-class memory (SCM)” on
page 48 for more information.

• “Creating address spaces for system components” on page 2 changed with the following:

– Added new JES2EDS address space.
– Added new descriptions for OAM and OTIS address spaces.

• Information about LFAREA was changed. See “Large pages and LFAREA” on page 29 for more
information.

Summary of changes for z/OS Version 2 Release 2 (V2R2) as updated
December 2015

The following changes are made for z/OS V2R2 as updated December 2015.

New

• To improve management of region sizes, a new parmlib member was added. See “Using SMFLIMxx to
control the REGION and MEMLIMIT” on page 39.

Summary of changes for z/OS Version 2 Release 2 (V2R2)
The following changes are made for z/OS Version 2 Release 2 (V2R2):

New

• With APAR OA46291, information about freemained frames was added in “Virtual regions” on page
36.

• With APAR OA46475, “Paging operations and algorithms for storage-class memory (SCM) ” on page 64
was updated with considerations for the PAGESCM IEASYSxx parmlib member.

Changed

• In “Status information record” on page 67, the 025 wait state code was changed to the 02E wait state
code.

z/OS Version 2 Release 1 summary of changes
See the Version 2 Release 1 (V2R1) versions of the following publications for all enhancements related to
z/OS V2R1:

• z/OS Migration
• z/OS Planning for Installation
• z/OS Summary of Message and Interface Changes
• z/OS Introduction and Release Guide

xvi z/OS: z/OS MVS Initialization and Tuning Guide

Chapter 1. Storage management overview

To tailor the system's storage parameters, you need a general understanding of the system initialization
and storage initialization processes.

For information about the storage management subsystem (SMS), see the DFSMS library.

Initialization process
The system initialization process prepares the system control program and its environment to do work for
the installation. The process essentially consists of:

• System and storage initialization, including the creation of system component address spaces.
• Master scheduler initialization and subsystem initialization.

When the system is initialized and the job entry subsystem is active, the installation can submit jobs for
processing by using the START, LOGON, or MOUNT command.

The initialization process begins when the system operator selects the LOAD function at the system
console. MVS locates all of the usable central storage that is online and available to the system, and
creates a virtual environment for the building of various system areas.

IPL includes the following major initialization functions:

• Loads the DAT-off nucleus into central storage.
• Loads the DAT-on nucleus into virtual storage so that it spans above and below 16 megabytes (except

the prefixed storage area (PSA), which IPL loads at virtual zero).
• Builds the nucleus map, NUCMAP, of the DAT-on nucleus. NUCMAP resides in virtual storage above the

nucleus.
• Allocates the system's minimum virtual storage for the system queue area (SQA) and the extended

SQA.
• Allocates virtual storage for the extended local system queue area (extended LSQA) for the master

scheduler address space.

The system continues the initialization process, interpreting and acting on the system parameters that
were specified. NIP carries out the following major initialization functions:

• Expands the SQA and the extended SQA by the amounts that are specified on the SQA system
parameter.

• Creates the pageable link pack area (PLPA) and the extended PLPA for a cold start IPL; resets tables to
match an existing PLPA and extended PLPA for a quick start or a warm start IPL. For more information
about quick starts and warm starts, see z/OS MVS Initialization and Tuning Reference.

• Loads modules into the fixed link pack area (FLPA) or the extended FLPA. NIP carries out this function
only if the FIX system parameter is specified.

• Loads modules into the modified link pack area (MLPA) and the extended MLPA. NIP carries out this
function only if the MLPA system parameter is specified.

• Allocates virtual storage for the common service area (CSA) and the extended CSA. The amount of
storage that is allocated depends on the values that are specified on the CSA system parameter at IPL.

• Allocates virtual storage for the restricted use common service area (RUCSA) and the extended RUCSA.
The amount of storage that is allocated depends on the values that are specified on the RUCSA system
parameter at IPL. If the RUCSA system parameter is not specified, there will be no RUCSA storage.

• Page protects the: NUCMAP, PLPA and extended PLPA, MLPA and extended MLPA, FLPA and extended
FLPA, and portions of the nucleus.

Note: An installation can override page protection of the MLPA and FLPA by specifying NOPROT on the
MLPA and FIX system parameters.

© Copyright IBM Corp. 1991, 2020 1

See Figure 1 on page 4 for the relative position of the system areas in virtual storage. Most of the
system areas exist both below and above 16 megabytes, providing an environment that can support both
24-bit and 31-bit addressing. However, each area and its counterpart above 16 megabytes can be
thought of as a single logical area in virtual storage.

Creating address spaces for system components
In addition to initializing system areas, MVS creates address spaces for system components. MVS
establishes an address space for the master scheduler (the master scheduler address space) and other
system address spaces for various subsystems and system components. Some of the component address
spaces are listed in Table 1 on page 2.

Table 1. Partial list of component address spaces

Address space Description

MASTER Master address space

ABARS, ABARxxxx 1 to 15 DFSMShsm secondary address spaces to perform aggregate backup
or aggregate recovery processing.

ALLOCAS Allocation services and data areas

ANTMAIN Concurrent copy support

APPC APPC/MVS component

ASCH APPC/MVS scheduling

CATALOG Catalog functions. Also known as CAS (catalog address space).

BPXOINIT z/OS UNIX System Services

CONSOLE Communications task

DFM Distributed File Manager

DFMCAS Distributed File Manager

DLF Data lookaside facility

DUMPSRV Dumping services

HSM DFSMShsm

HZSPROC IBM Health Checker for z/OS

FTPSERVE FTP servers; can be user-specified names.

GDEDFM For each Distributed File Manager/MVS user conversation that is active, an
address space named GDEDFM is created.

GRS Global resource serialization

IEFSCHAS Scheduler address space

IOSAS I/O supervisor, ESCON, I/O recovery

IXGLOGR System logger

JES2 JES2

JES2AUX JES2 additional support

JES2CIxx 1-25 JES2 address spaces used to perform z/OS converter and interpreter
functions

JES2EDS JES2 Email Delivery Services (EDS)

2 z/OS: z/OS MVS Initialization and Tuning Guide

Table 1. Partial list of component address spaces (continued)

Address space Description

JES2MON JES2 address space monitor

JES3 JES3

JES3AUX JES3 additional support

JES3DLOG JES3 hardcopy log (DLOG)

JESXCF JES common coupling services address space

LLA Library Lookaside

NFS Network File System address space

OAM DFSMSdfp Object Access Method (OAM). In a classic OAM configuration,
there may be one address space to perform tape library and/or object
processing; in a multiple OAM configuration there may be multiple Object
OAM address spaces and/or a Tape Library OAM address space.

OMVS z/OS UNIX System Services

OTIS DFSMSdfp Object Access Method (OAM) Thread Isolation Support. In either
a classic OAM configuration or a multiple OAM configuration, there might be
one address space to perform object-related processing and enable
subsystem deletion.

PCAUTH Cross-memory support

PORTMAP Portmapper function

RASP Real storage manager (includes support for advanced address space
facilities)

RMM DFSMSrmm

RRS Resource recovery services (RRS)

SMF System management facilities

SMS Storage management subsystem

SMSPDSE1 Optional restartable PDSE address space. If the SMSPDSE1 address space
is started, SMSPDSE manages PDSEs in the LINKLST concatenation and
SMSPDSE1 manages all other PDSEs.

SMSVSAM VSAM record level sharing

TCP/IP TCP/IP

TRACE System trace

VLFf Virtual lookaside facility

XCFAS Cross system coupling facility

VTAM VTAM

WLM Workload management

Chapter 1. Storage management overview 3

Figure 1. Virtual storage layout for multiple address spaces

Address spaces differ in their ability to use system services depending on whether the address space is a
limited function or full function address space.

• Limited function address space

If the specific initialization routines provided by the components that use IEEMB881 enter a wait state,
pending Master Scheduler Initialization, STC does no additional address space initialization. Thus, the
functions that component address spaces can perform are limited. Components with limited function
address spaces cannot:

– Allocate data sets.
– Read JCL procedures from SYS1.PROCLIB.
– Allocate a SYSOUT file through the Job Entry Subsystem.
– Use some system services because the components frequently run in cross memory mode.

• Full function address space

If, after a component completes its own initialization, it returns to IEEPRWI2 and completes STC
processing, the address space is fully initialized. Such an address space is called a full function address
space.

The component creating a full function address space does not need to provide a procedure in
SYS1.PROCLIB. If specified to IEEMB881, a common system address space procedure, IEESYSAS, will
invoke a specified program to run in the address space.

For example, if a full function address space called FFA is to be started using the module IEEMB899,
the component would ordinarily need to supply a procedure of the following form:

4 z/OS: z/OS MVS Initialization and Tuning Guide

//FFA PROC
// EXEC PGM=IEEMB899

The procedure will be invoked as follows:

//IEESYSAS JOB
//FFA EXEC IEESYSAS

The procedure IEESYSAS consists of the following statements:

//IEESYSAS PROG=IEFBR14
// EXEC PGM=&PROG

Master scheduler initialization
Master scheduler initialization routines initialize system services such as the system log and
communications task, and start the master scheduler itself. They also cause creation of the system
address space for the job entry subsystem (JES2 or JES3), and then start the job entry subsystem.

Note: When JES3 is the primary job entry subsystem, a second JES3 address space (JES3AUX)can be
optionally initialized after master scheduler initialization completes. The JES3AUX address space is an
auxiliary address space that contains JES3 control blocks and data.

Subsystem initialization
Subsystem initialization is the process of readying a subsystem for use in the system. IEFSSNxx members
of SYS1.PARMLIB contain the definitions for the primary subsystems, such as JES2 or JES3, and the
secondary subsystems, such as VPSS and DB2®. For detailed information about the data contained in
IEFSSNxx members for secondary systems, please refer to the installation information for the specific
system.

During system initialization, the defined subsystems are initialized. You should define the primary
subsystem (JES) first, because other subsystems, such as DB2, require the services of the primary
subsystem in their initialization routines. Problems can occur if subsystems that use the subsystem
affinity service in their initialization routines are initialized before the primary subsystem. After the
primary JES is initialized, then the subsystems are initialized in the order in which the IEFSSNxx parmlib
members are specified by the SSN parameter. For example, for SSN=(aa,bb) parmlib member IEFSSNaa
would be processed before IEFSSNbb.

Note: The storage management subsystem (SMS) is the only subsystem that can be defined before the
primary subsystem. Refer to the description of parmlib member IEFSSNxx in z/OS MVS Initialization and
Tuning Reference for SMS considerations.

Using IEFSSNxx to initialize the subsystems, you can specify the name of a subsystem initialization
routine to be given control during master scheduler initialization, and you can specify the input parameter
to be passed to the subsystem initialization routine. IEFSSNxx is described in more detail in z/OS MVS
Initialization and Tuning Reference.

START/LOGON/MOUNT processing
After the system is initialized and the job entry subsystem is active, jobs may be submitted for processing.
When a job is activated through START (for batch jobs), LOGON (for time-sharing jobs) or MOUNT, a new
address space must be allocated. Note that before LOGON, the operator must have started TCAM or
VTAM/TCAS, which have their own address spaces. Figure 1 on page 4 is a virtual storage map containing
or naming the basic system component address spaces, the optional TCAM and VTAM® system address
spaces, and a user address space.

The system resources manager decides, based on resource availability, whether a new address space can
be created. If not, the new address space will not be created until the system resources manager finds
conditions suitable.

Chapter 1. Storage management overview 5

Processor storage overview
Processor storage only consists of real storage (formerly called central storage) in the z/Architecture®

mode. This section provides an overview of real storage. Note that unlike the combination of central and
expanded storage in the ESA/390 environment, expanded storage is not supported in the z/Architecture
mode.

The system uses a portion of both central storage and virtual storage. To determine how much central
storage is available to the installation, the system's fixed storage requirements must be subtracted from
the total central storage. The central storage available to an installation can be used for the concurrent
execution of the paged-in portions of any installation programs.

The real storage manager (RSM) controls the allocation of central storage during initialization and pages
in user or system functions for execution. Some RSM functions:

• Allocate central storage to satisfy GETMAIN requests for SQA and LSQA.
• Allocate central storage for page fixing.
• Allocate central storage for an address space that is to be swapped in.

If there is storage above 16 megabytes, RSM allocates central storage locations above 16 megabytes for
SQA, LSQA, and the pageable requirements of the system. When non-fixed pages are fixed for the first
time, RSM:

• Ensures that the pages occupy the appropriate type of frame
• Fixes the pages and records the type of frame used

Pages that must reside in central storage below 16 megabytes include:

• SQA subpool 226 pages.
• Fixed pages obtained using the RC, RU, VRC, or VRU form of GETMAIN if one of the following is true:

– LOC=24 is specified.
– LOC=RES, the default, is either specified or taken, and the program issuing the GETMAIN resides

below 16 megabytes, runs in 24-bit mode, and has not requested storage from a subpool supported
only above 16 megabytes.

• Fixed pages obtained using the LU, LC, EU, EC, VU, VC, or R form of GETMAIN.
• Storage whose virtual address and real address are the same (V=R pages).

Pages that can reside in central storage above 16 megabytes include:

• Nucleus pages.
• SQA subpools 239 and 245 pages.
• LSQA pages.
• All pages with virtual addresses greater than 16 megabytes.
• Fixed pages obtained using the RC, RU, VRC, or VRU form of GETMAIN if one of the following is true:

– LOC=(24,31) is specified.
– LOC=(RES,31) is specified.
– LOC=31 is specified.
– LOC=(31,31) is specified.
– LOC=RES, the default, is either specified or taken, and the program issuing the GETMAIN resides

above 16 megabytes virtual.
– LOC=RES, the default, is either specified or taken, and the program issuing the GETMAIN resides

below 16 megabytes virtual, but runs in 31-bit mode and has requested storage from a subpool
supported only above 16 megabytes.

• Any non-fixed page.

6 z/OS: z/OS MVS Initialization and Tuning Guide

Note: The system backs nucleus pages in real storage below 2 gigabytes. You can however, back SQA and
LSQA pages above 2 gigabytes when you specify LOC=(24,64) or LOC=(31,64).

Each installation is responsible for establishing many of the central storage parameters that govern RSM's
processing. The following overview describes the function of each area composing central storage.

The primary requirements/areas composing central storage are:

1. The basic system fixed storage requirements — the nucleus, the allocated portion of SQA, and the
fixed portion of CSA.

2. The private area fixed requirements of each swapped-in address space — the LSQA for each address
space and the page-fixed portion of each virtual address space.

Once initialized, the basic system fixed requirements (sometimes called global system requirements)
remain the same until system parameters are changed. Fixed storage requirements (or usage) will,
however, increase as various batch or time sharing users are swapped-in. Thus, to calculate the
approximate fixed storage requirements for an installation, the fixed requirements for each swapped-in
address space must be added to the basic fixed system requirements. Fixed requirements for each virtual
address space include system storage requirements for the LSQA (which is fixed when users are swapped
in) and the central storage estimates for the page-fixed portions of the installation's programs.

The central storage for the processor, reduced by the global fixed and paged-in virtual storage required to
support installation options, identifies the central storage remaining to support swapped-in address
spaces. The total number of jobs that can be swapped in concurrently can be determined by estimating
the working set (the amount of virtual storage that must be paged in for the program to run effectively) for
each installation program. The working set requirements will vary from program to program and will also
change dynamically during execution of the program. Allowances should be made for maximum
requirements when making the estimates.

System preferred area
To enable a V=R allocation to occur and storage to be varied offline, MVS performs special handling for
the following types of pages:

• SQA
• LSQA for non-swappable address spaces
• Fixed page frame assignments for non-swappable address spaces.

Because MVS cannot, upon demand, free the frames used for these page types, central storage could
become fragmented (by the frames that could not be freed). Such fragmentation could prevent a V=R
allocation or prevent a storage unit from being varied offline. Therefore, for all storage requests for the
types of pages noted, RSM allocates storage from the preferred area to prevent fragmentation of the non-
preferred "reconfigurable" area.

A system parameter, RSU, allows the installation to specify the number of storage units that are to be
kept free of long-term fixed storage allocations, and thus be available for varying offline. Once this limit is
established, the remainder of central storage, excluding storage reserved for V=R allocation, the LFAREA
(when used as 4 KB frames) and some system reserved areas, is marked as preferred area storage and
used for long-term fixed storage allocation.

Nucleus area
The nucleus area contains the nucleus load module and extensions to the nucleus that are initialized
during IPL processing.

The nucleus includes a base and an architectural extension.

The fixed link pack area (FLPA)
An installation can elect to have some modules that are normally loaded in the pageable link pack area
(PLPA) loaded into the fixed link pack area (FLPA). This area should be used only for modules that

Chapter 1. Storage management overview 7

significantly increase performance when they are fixed rather than pageable. Modules placed in the FLPA
must be reentrant and refreshable.

The FLPA exists only for the duration of an IPL. Therefore, if an FLPA is desired, the modules in the FLPA
must be specified for each IPL (including quick-start and warm-start IPLs).

It is the responsibility of the installation to determine which modules, if any, to place in the FLPA. Note
that if a module is heavily used and is in the PLPA, the system's paging algorithms will tend to keep that
module in central storage. The best candidates for the FLPA are modules that are infrequently used but
are needed for fast response to some terminal-oriented action.

Specified by: A list of modules to be put in FLPA must be established by the installation in the fixed
LPA list (IEAFIXxx) member of SYS1.PARMLIB. Modules from any partitioned data set can be included in
the FLPA. FLPA is selected through specification of the FIX system parameter in IEASYSxx or from the
operator's console at system initialization.

Any module in the FLPA will be treated by the system as though it came from an APF-authorized library.
Ensure that you have properly protected any library named in IEAFIXxx to avoid system security and
integrity exposures, just as you would protect any APF-authorized library. This area may be used to
contain reenterable routines from either APF-authorized or non-APF-authorized libraries that are to be
part of the pageable extension to the link pack area during the current IPL.

System queue area (SQA-Fixed)
SQA is allocated in fixed storage upon demand as long-term fixed storage and remains so until explicitly
freed. The number of central frames assigned to SQA may increase and decrease to meet the demands of
the system.

All SQA requirements are allocated in 4K frames as needed. These frames are placed within the preferred
area (above 16 megabytes, if possible) to keep long-term resident pages grouped together.

If no space is available within the preferred area, and none can be obtained by stealing a non-fixed/
unchanged page, then the "reconfigurable area" is reduced by one storage increment and the increment
is marked as preferred area storage. An increment is the basic unit of physical storage. If there is no
"reconfigurable area" to be reduced, a page is assigned from the V=R area. Excluded from page stealing
are frames that have been fixed (for example, through the PGFIX macro), allocated to a V=R region,
placed offline using a CONFIG command, have been changed, have I/O in progress, or contain a storage
error.

Fixed LSQA storage requirements
Except for the extended private area page tables, which are pageable, the local system queue area (LSQA)
for any swapped-in address space is fixed in central storage (above 16 megabytes, if possible). It remains
so until it is explicitly freed or until the end of the job step or task associated with it. The number of LSQA
frames allocated in central storage might increase or decrease to meet the demands of the system. If
preferred storage is required for LSQA and no space is available in the preferred area, and none can be
obtained by stealing a non-fixed/unchanged page, then the "reconfigurable area" is reduced by one
storage increment, and the increment is marked as preferred area storage. If there is no "reconfigurable
area" to be reduced, a page is assigned from the V=R area.

V=R area
This area is used for the execution of job steps specified as fixed because they are assigned to V=R
regions in virtual storage (see “Real regions” on page 37). Such jobs run as nonpageable and
nonswappable.

The V=R area is allocated starting directly above the system region in central storage. The virtual
addresses for V=R regions are mapped one-to-one with the central addresses in this area. When a job
requests a V=R region, the lowest available address in the V=R area in central storage, followed by a
contiguous area equal in size to the V=R region in virtual storage, is located and allocated to the region.

8 z/OS: z/OS MVS Initialization and Tuning Guide

If there is not enough V=R space available in the V=R area, the allocation and execution of new V=R
regions are prohibited until enough contiguous storage is made available.

The V=R area can become fragmented because of system allocation for SQA and LSQA or because of
long-term fixing. When this happens, it becomes more difficult — and may be impossible — for the system
to find contiguous storage space for allocating V=R regions. Such fragmentation may last for the duration
of an IPL. It is possible that fragmentation will have a cumulative effect as long-term fixed pages are
occasionally assigned frames from the V=R area.

Specified by:

• The REAL parameter of the IEASYSxx member
• Use of the REAL parameter from the operator's console during NIP.

Memory pools
When you use a workload management (WLM) policy that classifies work into a WLM resource group with
a real storage memory limit, you can explicitly restrict physical real memory consumption of work that is
running in concurrent address spaces. An address space that is associated with the resource group
through classification connects to the resource group's memory pool. All real storage that is used to
manage the address space and any data space or hiperspace that is created by the address space,
including the backing of its virtual storage, are counted towards the collective pool limit. However,
auxiliary storage resources that are used for virtual storage paging, continue to be shared by all address
spaces in the system.

A memory pool does not reserve real storage frames for its exclusive use. When unused frames are
available in the system, the collection of address spaces is restricted to using up to the real memory limit
of the memory pool. When a memory pool gets near its limit, the system starts to page-out pages from
the memory pool to free frames. It also reduces any real storage that is kept for performance only
reasons. The memory pool protects physical memory allocation from other units of work that are running
on the system. If the system gets low on real storage, it initiates paging from any of the address spaces
regardless of being in a memory pool. Address spaces that are not classified to a memory pool, connect to
the global pool. Common storage and shared storage are always backed by frames from the global pool.

The relationship between virtual and real storage includes setting limits through a consideration of
various resources. The amount of virtual storage that an address space can allocate (obtain), but not
necessarily reference is controlled by limits that are not defined through WLM resource groups. Virtual
limits are only defined at an address space basis where real storage limits cannot be controlled. Real
storage limits can be defined only at the memory pool collective address space level.

The amount of virtual storage that an address space can obtain is limited by the following controls.

• Region size for 31-bit storage
• Memory limit (MEMLIMIT) for above the bar storage
• Program Properties Table (PPT)
• Installation exits.
• Data spaces and hiperspace region limits

For more information about virtual storage, see “Virtual storage overview” on page 13.

Allocated and referenced virtual storage can be backed by either real storage or paged-out to auxiliary
storage. More virtual storage can be allocated than referenced and more storage cannot be referenced
than allocated. An address space can never use more real storage than its virtual storage limit. However,
the real storage that is used for dynamic address translation (DAT) tables and other system-related
control blocks are also used to manage virtual storage and virtual I/O (VIO). Storage that is used by the
system for performance reasons is also accumulated to real storage used by an address space. The
additional real storage that the system uses makes it possible for real storage usage to be higher than the
virtual storage limits and what is allocated for storage. In addition, all real storage that is associated with
creating the address space is used to manage hiperspace, data spaces, and the common area data
spaces.

Chapter 1. Storage management overview 9

An allocation service, such as STORAGE OBTAIN, GETMAIN, and IARV64, can reject a request when it
causes the associated address spaces virtual storage limit to be exceeded. Various memory pool
thresholds, which start with the OK threshold, are derived by the system from the memory pool's
resource group memory limit and are used to control system behavior. The limit threshold attributes are
defined in Table 2 on page 10.

Table 2. Threshold limits in ascending order

Threshold name Thresholds main attributes

OK Within normal limits.

Steal The system initiates paging in an attempt to return
to the OK threshold.

High Selective real storage requesters are suspended
until the limit falls below the high threshold. When
the pool remains above the high threshold for the
system defined period, pool members are subject
to abend X'E22'.

Maximum The memory pool limit that is defined by the WLM
policy.

When the memory pool is over its high threshold, similar to virtual storage limits, system services might
reject fixed storage allocation and page fix requests. The system might also take the following actions.

• Suspend users of services that require real storage and keep services suspended until the memory pool
falls below its high threshold. For example, a unit of work that takes an enabled page fault is suspended
when the memory pool is above the high threshold. When the pool falls below the high threshold, the
unit of work resumes.

• Allow others to temporarily exceed the high threshold even when above the memory pool limit. For
example, a unit of work, running with a program status word (PSW) that is disabled for interrupts, which
page fixes a virtual page, can exceed the limit because it cannot be suspended.

To contain a pool within its memory pool limit and reduce the need for suspending requesters, the system
begins paging the storage of memory pool member address spaces when the memory pool is at its steal
threshold. Suspended units of work are resumed when the memory pool is below its high threshold. The
system issues messages at different thresholds and might end the current job step of any pool member if
the memory pool exceeds the threshold for the system defined time frame.

The following information summarizes the types of thresholds and actions.

When at the steal threshold

• The system issues message IAR055I to indicate that paging of memory pool members is started.
• The system starts to page out backed virtual storage from any number of members of the memory

pool to bring the memory pools overall consumption down below the OK threshold. Only virtual
storage for non-fixed pools and non-disabled reference (DREF) can be paged out.

When at or above the high threshold

• Message IAR052E is issued when the high threshold is reached. The system continues paging to
reduce the memory pool real storage usage to the OK threshold, and then message IAR052E is
deleted.

• Task processing that requires the system to back referenced virtual memory with real memory is
suspended and not resumed until the memory pool falls below the high threshold. The suspension
is done to prevent the pool from going over its limit. Requests can be in the form of page faults,
STORAGE OBTAIN, GETMAIN, IARV64, and others. To accommodate system requesters that must
not be suspended because of memory pool limits, the system allows certain requesters to increase
the real storage usage above any threshold. The requesters include the following types.

– Units of work that are:

10 z/OS: z/OS MVS Initialization and Tuning Guide

- Operating in service request block (SRB) mode
- Running on behalf of DUMP processing
- Disabled (and cannot be suspended)
- Holding a system suspend lock (such as a local lock)
- Going through termination

– Other cases when the system code must obtain real storage.
• When real storage usage does not decrease below the high threshold within the system-defined

time frame and the initial reason for reaching the high threshold is from reclassification, memory
pool size reduction, or neither, the system action is explained below.

– Not from reclassification of an address space into the memory pool or from the reduction in the
pool size.

The system might abnormally end the currently running job step of one or more memory pool
classified address spaces. The job ends with an X'E22' abend code, which can or cannot
terminate the job step. Real storage usage can decrease by either the system paging storage
or when jobs within the memory pool release storage (including fixed storage that the system
cannot page).

– From reclassification of an address space into the memory pool or the reduction in the pool
size.

The system issues message IAR058E to indicate that the memory pool is over the limit. The
system is not able to reduce the size below the high threshold within the system defined time
frame. Unless a new steal reason is triggered, the system stops stealing pages from the
memory pool. The memory pool is allowed to persist over the high threshold. However, you
must take the appropriate action, to either increase the size of the memory pool or remove
members from the pool. For more information about the appropriate actions, see message
IAR058E in z/OS MVS System Messages, Vol 6 (GOS-IEA).

When back at or below the OK threshold

• Message IAR054I is issued indicating that the memory pool is no longer approaching the memory
pool limit.

• Any outstanding related memory pool messages are deleted.

For more information about all IAR messages, see the IAR message in z/OS MVS System Messages, Vol 6
(GOS-IEA).

Things to consider when your installation uses memory pools

• Understand how workloads behave in a memory pool. For more information, see z/OS MVS Planning:
Workload Management.

• IBM suggests that you use memory pools when you need to limit memory consumption for workloads.
For example, Apache Spark provides guidance about how to operate workloads in a memory pool. For
more information, see "Configuring z/OS workload management for Apache Spark" in IBM Knowledge
Center (www.ibm.com/support/knowledgecenter)

• The WLM policy is sysplex wide, which results in resource groups that exist on each system in the
sysplex, yet memory pools are managed on a per system basis. Therefore, a 100 GB memory pool in a
two-way sysplex might use nearly 200 GB of real storage, but only 100 GB per system. For the resource
group memory pool definition and policy scope, review z/OS MVS Planning: Workload Management.

• Understand the difference between virtual storage and real storage limits. For more information, see
“Virtual storage overview” on page 13.

• Paging to auxiliary storage

The system can start paging for one or more memory pools and all or some of pool members
simultaneously. The system does not differentiate between auxiliary storage resources that are used for
memory pools and the global pool. As such, reevaluate your real memory to auxiliary storage size
requirements to ensure that auxiliary storage resources meet your paging needs.

Chapter 1. Storage management overview 11

http://www.ibm.com/support/knowledgecenter
http://www.ibm.com/support/knowledgecenter

Understand memory pool storage requirements and appropriate classification rules for a workload
before you run the workload in production. Review the related product documentation for guidance on
memory pool usage. For example, putting all elements of a workload in the same memory pool cannot
be correct for that workload.

Memory pool paging uses system resources that might cause a performance impact on work that runs
outside the memory pool. Evaluate frequent memory pool paging in the overall system context.
Understand if paging is acceptable always, sometimes, a long period, at specific times, or never, and
when you must intercede if an unacceptable condition occurs. For example, consider system
automation that monitors memory pool-related paging messages and changes in paging, and raises
alerts.

• Consider automation that can possibly increase the memory pool size to prevent unnecessary
processing delays or termination. See the previous section for paging considerations and automation.

• Prevent contention with resources that are shared outside memory pool boundaries. As a memory pool
is capping the amount of real storage that can be used by its members possibly resulting in execution
threads or suspended work units when limits are reached, resources must not be shared across
memory pool boundaries in a way that might block others outside the pool. This includes other memory
pools and those running under the global pool. Doing so can result in unnecessary delays. For example,
a memory pool member must not get exclusive ownership of a data set, file system that is used by a
unit work that is running outside its memory pool.

• Any address space that runs a function that is considered important by the installation are not to be
capped in general and must not be classified to a resource group with a memory limit.

Reducing memory pool thresholds and reclassifying pool members

Consider the following points when you want to reduce the memory limit of a resource group, reclassify
address spaces from a memory pool to the global pool, or reclassify address spaces from the global pool
to a memory pool.

The following actions can result in the memory pool possibly reaching thresholds that can have negative
affects on what is running in the memory pool. The affects of reaching the various thresholds can vary by
what is running in the memory pool and how the program reacts to the limitation. For more information,
see the following sections:

To understand how the thresholds are defined, see Table 2 on page 10.
To understand the actions and subsequent implications, see “Things to consider when your
installation uses memory pools” on page 11.

• If the steal threshold is reached, the system starts to steal frames, which causes paging in an attempt
to enforce the memory pool threshold.

– Long-term paging can have negative affects on other programs that are running outside the memory
pool. For more information, see "Paging to auxiliary storage" in “Things to consider when your
installation uses memory pools” on page 11.

– If the system cannot reduce the memory pool real storage usage to an acceptable level, message
IAR058E is issued. Message IAR058E indicates that the pool is over its limit, the system cannot
reduce it, and your installation must take further action. If reclassification or reduction in the memory
pool caused the exceeded limit, the system cannot terminate any address spaces in the memory
pool. For more information, see message IAR058E in z/OS MVS System Messages, Vol 6 (GOS-IEA).

The reason the system cannot reduce real storage usage, with the previously larger pool or without
the new reclassified address spaces, is that the collective memory pool address spaces were
previously able to fix more storage than is allowed in the memory pool. Because the system cannot
page fixed storage, it cannot reduce the current usage. Your installation must correct the condition.

Note: If the high threshold is reached, units of work in the address space can be suspended until the
condition is fixed.

12 z/OS: z/OS MVS Initialization and Tuning Guide

Virtual storage overview
While there is no theoretical limit to 64-bit virtual storage ranges, practical limits exist to the finite real
storage frames (formally called central storage) and auxiliary storage pages (slots) that back the virtual
storage. Thus, estimating and limiting the virtual storage allocated on a system is important primarily
because some percentage, for instance 25 percent, of the virtual storage must be backed by real storage
for the system to function and perform well. In cases where there is insufficient real storage to contain all
the backed virtual storage of all the active address spaces, the system can, based on work importance,
postpone new work, or page out the contents of pageable (not fixed) real storage frames to auxiliary
storage, or both. Paging frees up the frames for use by more important work. A real storage memory pool
limit can also cause the system to page out real frames of pool members even though there are plenty of
available real frames on the system.

For information about estimating the amount of auxiliary storage your system will need, see the
discussion of paging data space in Chapter 2, “Auxiliary storage management initialization,” on page 63.

Each installation can use virtual storage parameters to specify how certain virtual storage areas are to be
allocated and limited. These parameters have an impact on real storage use and overall system
performance. The following overview describes the function of each virtual storage area. For information
about identifying problems with virtual storage requests, see “Identifying problems in virtual storage
(DIAGxx parmlib member)” on page 44.

The virtual storage address space and ESA extensions
The long history of z/OS has resulted in the current 24-bit, 31-bit, and 64-bit virtual storage addressing
modes (AMODE) and the Enterprise System Architecture (ESA) address space control (ASC) modes. These
modes are used to enable and prevent virtual storage reference to the various address space virtual
storage areas: the 64-bit high virtual areas, the 31-bit extended areas, and the 24-bit non-extended
areas. For each virtual storage area, specific z/OS services and constructs define how the storage is
allocated, deallocated, formatted, fixed, and so on.

Figure 2 on page 14 shows the layout of virtual storage for an address space and the various storage
areas. The following information provides some necessary background about these areas. (For detailed
information, see z/OS MVS Programming: Assembler Services Guide and z/OS MVS Programming: Extended
Addressability Guide.)

• The 24-bit and 31-bit virtual storage areas are managed according to the concept of subpools, where
each subpool has specific characteristics, such as authorization requirements, fixed or pageable
storage, common (available to all address spaces) or private storage area, a system or application
program area, and so on.

– For each area below the 16 MB line, there is an equivalent area above the line. For example, the
System Queue Area (SQA) is common fixed storage below the line, and Extended SQA is above the
line but below the 2 GB bar.

– Services such as GETMAIN, STORAGE OBTAIN, CPOOL are used to allocate, deallocate, and alter
storage in these areas on a byte basis.

– Specific virtual private ranges can be shared between address spaces.
– Real frames backing these areas are restricted in size and, when fixed, must reside in a real storage

area that meets the requirements of the virtual storage addressing mode.
• The 64-bit virtual storage areas are managed according to the concept of memory objects. Memory

objects are allocated in megabyte increments and have specific attributes.

– Services such as IARV64 and IARCP64 are used to allocate, deallocate, and alter storage in these
areas.

– Specific virtual storage ranges can be defined as common or private and, if private, can be shared
among different address spaces.

– Real frames backing the virtual storage in these areas, both pageable and fixed, can reside anywhere.
• Data spaces have the following characteristics:

Chapter 1. Storage management overview 13

– They are limited to 2 GB and provide additional 31-bit addressable storage ranges for programs
running in AR ASC mode.

– The DSPSERV service is the primary means of allocating, deallocating, and manipulating data space
storage.

– Although data spaces are still prevalent, the support for 64-bit high virtual storage has removed their
main benefit of providing additional virtual storage capacity.

– Data spaces are owned by a specific address space, and an address space can own more than one
data space.

– Data spaces can be addressable by one or more address spaces.
– Data spaces can have pageable or non-pageable storage.
– Data spaces can be backed by various real storage frame sizes.

• Hiperspaces are similar to data spaces. See z/OS MVS Programming: Extended Addressability Guide for
more information.

Figure 2. Virtual storage layout for a single address space (not drawn to scale)

14 z/OS: z/OS MVS Initialization and Tuning Guide

Note: This topic does not cover 64-bit high virtual storage (above the 2-gigabyte address) in detail. For
more information about 64-bit high virtual storage, see z/OS MVS Programming: Extended Addressability
Guide.

The common area contains system control programs and control blocks. The following storage areas are
located in the common area:

• Prefixed storage area (PSA)
• Common service area (CSA)
• Restricted use common service area (RUCSA)
• Pageable link pack area (PLPA)
• Fixed link pack area (FLPA)
• Modified link pack area (MLPA)
• System queue area (SQA)
• Nucleus, which is fixed and non-swappable.

Each storage area in the common area (below 16 megabytes) has a counterpart in the extended common
area (above 16 megabytes) with the exception of the PSA.

Each address space uses the same common area. Portions of the common area are paged in and out as
the demands of the system change and as new user jobs (batch or time-shared) start and old ones
terminate.

The private area contains:

• A local system queue area (LSQA).
• A scheduler work area (SWA).
• The authorized user-key area (AUK).
• A 16K system region area.
• Either a V=V (virtual = virtual) or V=R (virtual = real) private user region for running programs and storing

data.

Except for the 16K system region area and V=R user regions, each storage area in the private area below
16 megabytes has a counterpart in the extended private area above 16 megabytes.

Each address space has its own unique private area allocation. The private area (except LSQA) is
pageable unless a user specifies a V=R region. If assigned as V=R, the actual V=R region area (excluding
SWA, the 16K system region area, and AUK area) is fixed and non-swappable.

The 64-bit high virtual storage address space
See “The virtual storage address space and ESA extensions” on page 13 for a basic understanding of high
virtual storage. See z/OS MVS Programming: Extended Addressability Guide for details.

There are controls similar to the 31-bit address space controls for limiting (MEMLIMIT) the amount of
high virtual storage that an address space can consume. These are specifically described in Limiting the
use of memory objects in z/OS MVS Programming: Extended Addressability Guide.

General virtual storage allocation considerations
Virtual storage allocated in each address space is divided between the system's requirements and the
user's requirements. The base system control programs require space from each of the basic areas.

Storage for SQA, CSA, LSQA, and SWA is assigned for either the system or a specific user. Generally,
space is assigned to the system in SQA and CSA and, for users, in LSQA or SWA.

Chapter 1. Storage management overview 15

System Queue Area (SQA/Extended SQA)
This area contains tables and queues relating to the entire system. Its contents are highly dependent on
configuration and job requirements at an installation. The total amount of virtual storage and number of
private virtual storage address spaces are two of the factors that affect the system's use of SQA.

The SQA is allocated directly below the nucleus; the extended SQA is allocated directly above the
extended nucleus.

The size of the SQA can be specified through the:

• SQA parameter in the IEASYSxx member of SYS1.PARMLIB
• NIP or operator's console.

If the specified amount of virtual storage is not available during initialization, a warning message will be
issued. The SQA parameter may be respecified at that time from the operator's console.

Virtual SQA is allocated as a number of 64K blocks to be added to the minimum system requirements for
SQA. If the SQA required by the system configuration exceeds the amount that has been reserved through
the SQA parameter, the system attempts to allocate additional virtual SQA from the CSA area. When
certain storage thresholds are reached, as explained in “SQA/CSA thresholds” on page 16, the system
stops creating new address spaces. When SQA is in use, it is fixed in central storage.

The size of the SQA cannot be increased or decreased by the operator during a restart that reuses the
previously initialized PLPA (a quick start). The size will be the same as during the preceding IPL.

SQA/CSA thresholds

Ensuring the appropriate size of the extended SQA and extended CSA storage is critical to the long-term
operation of the system.

If the size allocated for SQA is too large, the thresholds for the IRA100E and IRA101E messages will not
be met and CSA can become exhausted and cause a system outage. One way to avoid this problem is to
allocate the minimum SQA required or allow for some CSA conversion so that the storage thresholds that
trigger the IRA100E and IRA101E messages are based only on the remaining CSA.

If the size allocated for extended SQA is too small or is used up very quickly, the system attempts to use
extended CSA. When both extended SQA and extended CSA are used up, the system allocates space from
SQA and CSA below 16 megabytes. The allocation of this storage could eventually lead to a system
failure.

• When the size, in bytes, of combined total of free SQA + CSA pages falls below the "high insufficient"
threshold, the system issues message IRA100E

• If the size, in bytes, of available SQA and SQA pages falls below the "low insufficient" threshold, the
system issues message IRA101E

• If storage is freed such that the available SQA+CSA amount reaches the "high sufficient" threshold, the
system issues message IRA102I

The following conditions may be responsible for a shortage of SQA/CSA:

• There has been storage growth beyond the previous normal range.
• Allocation of SQA and/or CSA is inadequate.
• The current thresholds at which the IRA100E and/or IRA101E messages are issued are too high for

your installation.

Note: IBM recommends that you do not change the storage thresholds set by the system. Setting the
thresholds too low can hamper the ability of the system to recover from storage shortages and may result
in unscheduled system outages. Setting the thresholds too high can cause IRA100E, IRA101E, and
IRA102I messages to be issued excessively. If you do change the storage thresholds, you should be sure
that the threshold is not being reached because of a problem in the system or inadequate allocation of
CSA/SQA.

16 z/OS: z/OS MVS Initialization and Tuning Guide

The SQA/CSA threshold levels are contained in the IGVDCLIM CSECT in load module IEAIPL04. Table 3
on page 17 shows the offsets of the threshold values.

Table 3. Offsets for the SQA/CSA threshold levels

Offset Default
Value

System Enforced
Minimum

Description Comments

0000 x'41000' x'9000' Sufficient space high IRA102I message issued at this
threshold

0004 x'21000' x'5000' Sufficient space low IRA102I message issued at this
threshold

0008 x'40000' x'8000' Insufficent space high IRA100E message issued at this
threshold

000C x'20000' x'4000' Insufficient space low IRA101E message issued at this
threshold

If you change the default thresholds, make sure that the new sufficient threshold values are at least
x'1000' larger than the insufficient values. The new values become effective at the next IPL.

Pageable link pack area (PLPA/Extended PLPA)
This area contains SVC routines, access methods, and other read-only system programs along with any
read-only reenterable user programs selected by an installation that can be shared among users of the
system. Any module in the pageable link pack area will be treated by the system as though it came from
an APF-authorized library. Ensure that you have properly protected SYS1.LPALIB and any library named in
LPALSTxx or on an LPA statement in PROGxx to avoid system security and integrity exposures, just as you
would protect any APF-authorized library.

It is desirable to place all frequently used refreshable SYS1.LINKLIB and SYS1.CMDLIB modules in the
PLPA because of the following advantages:

• If possible, PLPA is backed by central storage above 16 megabytes; central storage below 16
megabytes is then available for other uses.

• The length of time that a page occupies central storage depends on its frequency of use. If the page is
not used over a period of time, the system will reuse (steal) the central storage frame that the page
occupies.

• The most frequently used PLPA modules in a time period will tend to remain in central storage.
• PLPA paged-in modules avoid program fetch overhead.
• Two or more programs that need the same PLPA module share the common PLPA code, thus reducing

the demand for central storage.
• The main cost of unused PLPA modules is paging space, because only auxiliary storage is involved when

modules are not being used.
• All modules in the PLPA are treated as refreshable, and are not paged-out. This action reduces the

overall paging rate compared with modules in other libraries.

See “Placing modules in the system search order for programs” on page 18 for an alternative suggestion
on the placement of some PLPA and SYS1.CMDLIB modules. Any installation may also specify that some
reenterable modules from the LNKLST concatenation, SYS1.SVCLIB, and/or the LPALST concatenation be
placed in a fixed extension to the link pack area (FLPA) to further improve performance (see “The fixed
link pack area (FLPA)” on page 7).

Modules loaded into the PLPA are packed within page boundaries. Modules larger than 4K begin on a
page boundary with smaller modules filling out. PLPA can be used more efficiently through use of the LPA
packing list (IEAPAKxx). IEAPAKxx allows an installation to pack groups of related modules together,
which can sharply reduce page faults. The total size of modules within a group should not exceed 4K, and
the residence mode (RMODE) of the modules in a group should be the same. For more information about
IEAPAKxx, see z/OS MVS Initialization and Tuning Reference.

Chapter 1. Storage management overview 17

Placing modules in the system search order for programs
Modules (programs), whether stored as load modules or program objects, must be loaded into both
virtual storage and central storage before they can be run. When one module calls another module, either
directly by asking for it to be run or indirectly by requesting a system service that uses it, it does not begin
to run instantly. How long it takes before a requested module begins to run depends on where in its
search order the system finds a usable copy and on how long it takes the system to make the copy it finds
available.

You should consider these factors when deciding where to place individual modules or libraries
containing multiple modules in the system-wide search order for modules:

• The search order the system uses for modules
• How placement affects virtual storage boundaries
• How placement affects system performance
• How placement affects application performance

Search order the system uses for programs

When a program is requested through a system service (like LINK, LOAD, XCTL, or ATTACH) using default
options, the system searches for it in the following sequence:

1. Job pack area (JPA)

A program in JPA has already been loaded in the requesting address space. If the copy in JPA can be
used, it will be used. Otherwise, the system either searches for a new copy or defers the request until
the copy in JPA becomes available. (For example, the system defers a request until a previous caller is
finished before reusing a serially-reusable module that is already in JPA.)

2. TASKLIB

A program can allocate one or more data sets to a TASKLIB concatenation. Data sets concatenated to
TASKLIB are searched for after JPA but before any specified STEPLIB or JOBLIB. Modules loaded by
unauthorized tasks that are found in TASKLIB must be brought into private area virtual storage before
they can run. Modules that have previously been loaded in common area virtual storage (LPA modules
or those loaded by an authorized program into CSA) must be loaded into common area virtual storage
before they can run. For more information about TASKLIB, see z/OS MVS Programming: Assembler
Services Guide.

3. STEPLIB or JOBLIB

STEPLIB and JOBLIB are specific DD names that can be used to allocate data sets to be searched
ahead of the default system search order for programs. Data sets can be allocated to both the
STEPLIB and JOBLIB concatenations in JCL or by a program using dynamic allocation. However, only
one or the other will be searched for modules. If both STEPLIB and JOBLIB are allocated for a
particular jobstep, the system searches STEPLIB and ignores JOBLIB. Any data sets concatenated to
STEPLIB or JOBLIB will be searched after any TASKLIB but before LPA. Modules found in STEPLIB or
JOBLIB must be brought into private area virtual storage before they can run. Modules that have
previously been loaded in common area virtual storage (LPA modules or those loaded by an authorized
program into CSA) must be loaded into common area virtual storage before they can run. For more
information about JOBLIB and STEPLIB, see z/OS MVS JCL Reference.

4. LPA, which is searched in this order:

a. Dynamic LPA modules, as specified in PROGxx members
b. Fixed LPA (FLPA) modules, as specified in IEAFIXxx members
c. Modified LPA (MLPA) modules, as specified in IEALPAxx members
d. Pageable LPA (PLPA) modules, loaded from libraries specified in LPALSTxx or PROGxx

LPA modules are loaded in common storage, shared by all address spaces in the system. Because
these modules are reentrant and are not self-modifying, each can be used by any number of tasks in

18 z/OS: z/OS MVS Initialization and Tuning Guide

any number of address spaces at the same time. Modules found in LPA do not need to be brought into
virtual storage, because they are already in virtual storage.

5. Libraries in the linklist, as specified in PROGxx and LNKLSTxx.

By default, the linklist begins with SYS1.LINKLIB, SYS1.MIGLIB, SYS1.CSSLIB, SYS1.SIEALNKE, and
SYS1.SIEAMIGE. However, you can change this order using SYSLIB in PROGxx and add other libraries
to the linklist concatenation. The system must bring modules found in the linklist into private area
virtual storage before the programs can run.

Notes:

1. For more information about which system services load modules, see:

• z/OS MVS Programming: Assembler Services Guide
• z/OS MVS Programming: Assembler Services Reference ABE-HSP
• z/OS MVS Programming: Authorized Assembler Services Guide
• z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
• z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
• z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
• z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO

2. The default search order can be changed by specifying certain options on the macros used to call
programs. The parameters that affect the search order the system will use are EP, EPLOC, DE, DCB,
and TASKLIB. For more information about these parameters, see the topic about the search for the
load module in z/OS MVS Programming: Assembler Services Guide.

3. Some IBM subsystems (notably CICS® and IMS) and applications (such as ISPF) use the facilities
described in the above note to establish other search orders for programs.

4. A copy of a module already loaded in virtual storage might not be accessible to another module that
needs it. For example, the copy might reside in another address space, or might have been used or be
in use and not be reusable or reentrant. Whenever an accessible copy is not available, any module to
be used must be loaded. For more information about the system's search order for programs and
when modules are usable or unusable, see the information on Program Management in z/OS MVS
Programming: Assembler Services Guide.

Module placement effect on application performance

Modules begin to run most quickly when all these conditions are true:

• They are already loaded in virtual storage
• The virtual storage they are loaded into is accessible to the programs that call them
• The copy that is loaded is usable
• The virtual storage is backed by central storage (that is, the virtual storage pages containing the

programs are not paged out).

Modules that are accessible and usable (and have already been loaded into virtual storage but not backed
in central storage) must be returned to central storage from page data sets on DASD or SCM. Modules in
the private area and those in LPA (other than in FLPA) can be in virtual storage without being backed by
central storage. Because I/O is very slow compared to storage access, these modules will begin to run
much faster when they are in central storage.

Modules placed anywhere in LPA are always in virtual storage, and modules placed in FLPA are also
always in central storage. Whether modules in LPA, but outside FLPA, are in central storage depends on
how often they are used by all the users of the system, and on how much central storage is available. The
more often an LPA module is used, and the more central storage is available on the system, the more
likely it is that the pages containing the copy of the module will be in central storage at any given time.

LPA pages are only stolen, and never paged out, because there are copies of all LPA pages in the LPA page
data set. But the results of paging out and page stealing are usually the same; unless stolen pages are

Chapter 1. Storage management overview 19

reclaimed before being used for something else, they will not be in central storage when the module they
contain is called.

LPA modules must be referenced very often to prevent their pages from being stolen. When a page in LPA
(other than in FLPA) is not continually referenced by multiple address spaces, it tends to be stolen. One
reason these pages might be stolen is that address spaces often get swapped out (without the PLPA
pages to which they refer), and a swapped-out address space cannot refer to a page in LPA.

When all the pages containing an LPA module (or its first page) are not in central storage when the
module is called, the module will begin to run only after its first page has been brought into central
storage.

Modules can also be loaded into CSA by authorized programs. When modules are loaded into CSA and
shared by multiple address spaces, the performance considerations are similar to those for modules
placed in LPA. (However, unlike LPA pages, CSA pages must be paged out when the system reclaims
them.)

When a usable and accessible copy of a module cannot be found in virtual storage, either the request
must be deferred or the module must be loaded. When the module must be loaded, it can be loaded from
a VLF data space used by LLA, or from load libraries or PDSEs residing on DASD.

Modules not in LPA must always be loaded the first time they are used by an address space. How long this
takes depends on:

• Whether the directory for the library in which the module resides is cached
• Whether the module itself is cached in storage
• The response time of the DASD subsystem on which the module resides at the time the I/O loads the

module.

The LLA address space caches directory entries for all the modules in the data sets in the linklist
concatenation (defined in PROGxx and LNKLSTxx) by default. Because the directory entries are cached,
the system does not need to read the data set directory to find out where the module is before fetching it.
This reduces I/O significantly. In addition, unless the system defaults are changed, LLA will use VLF to
cache small, frequently-used load modules from the linklist. A module cached in VLF by LLA can be
copied into its caller's virtual storage much more quickly than the module can be fetched from DASD.

You can control the amount of storage used by VLF by specifying the MAXVIRT parameter in a COFVLFxx
member of PARMLIB. You can also define additional libraries to be managed by LLA and VLF. For more
information about controlling VLF's use of storage and defining additional libraries, see z/OS MVS
Initialization and Tuning Reference.

When a module is called and no accessible or usable copy of it exists in central storage, and it is not
cached by LLA, the system must bring it in from DASD. Unless the directory entry for the module is
cached, this involves at least two sets of I/O operations. The first reads the data set's directory to find out
where the module is stored, and the second reads the member of the data set to load the module. The
second I/O operation might be followed by additional I/O operations to finish loading the module when
the module is large or when the system, channel subsystem, or DASD subsystem is heavily loaded.

How long it takes to complete these I/O operations depends on how busy all of the resources needed to
complete them are. These resources include:

• The DASD volume
• The DASD controller
• The DASD control unit
• The channel path
• The channel subsystem
• The CPs enabled for I/O in the processor
• The number of SAPs (CMOS processors only).

In addition, if cached controllers are used, the reference patterns of the data on DASD will determine
whether a module being fetched will be in the cache. Reading data from cache is much faster than reading

20 z/OS: z/OS MVS Initialization and Tuning Guide

it from the DASD volume itself. If the fetch time for the modules in a data set is important, you should try
to place it on a volume, string, control unit, and channel path that are busy a small percentage of the time,
and behind a cache controller with a high ratio of cache reads to DASD reads.

Finally, the time it takes to read a module from a load library (not a PDSE) on DASD is minimized when the
modules are written to a data set by the binder, linkage editor, or an IEBCOPY COPYMOD operation when
the data set has a block size equal to or greater than the size of the largest load module or, if the library
contains load modules larger than 32 kilobytes, set to the maximum supported block size of 32760 bytes.

Access time for modules

From a performance standpoint, modules not already loaded in an address space will usually be available
to a program in the least time when found at the beginning of the following list, and will take more time to
be available when found later in the list. Remember that the system stops searching for a module once it
has been found in the search order; so, if it is present in more than one place, only the first copy found will
be used. The placement of the first copy in the search order will affect how long it takes the system to
make the module available. Possible places are:

1. LPA
2. Link list concatenation (all directory entries and some modules cached automatically)
3. TASKLIB/STEPLIB/JOBLIB (with LLA caching of the library)
4. TASKLIB/STEPLIB/JOBLIB (without LLA caching of the library).

For best application performance, you should place as many frequently-used modules as high on this list
as you can. However, the following system-wide factors must be considered when you decide how many
load modules to place in LPA:

• Performance

When central storage is not constrained, frequently-used LPA routines almost always reside in central
storage, and access to these modules will be very fast.

• Virtual Storage

How much virtual storage is available for address spaces that use the modules placed in LPA, and how
much is available for address spaces that do not use the modules placed in LPA.

Module placement effect on system performance

Whether the placement of a module affects system performance depends on how many address spaces
use the module and on how often the module is used. Placement of infrequently-used modules that are
used by few address spaces have little effect on system-wide performance or on the performance of
address spaces that do not use the modules. Placement of frequently-used modules used by a large
number of address spaces, particularly those used by a number of address spaces at the same time, can
substantially affect system performance.

Placement of modules in LPA

More central storage can be used when a large number of address spaces each load their own copy of a
frequently-used module, because multiple copies are more likely to exist in central storage at any time.
One possible consequence of increased central storage use is increased paging.

When frequently-used modules are placed in LPA, all address spaces share the same copy, and central
storage usage tends to be reduced. The probability of reducing central storage usage increases with the
number of address spaces using a module placed in LPA, with the number of those address spaces
usually swapped in at any given time, and with how often the address spaces reference the module. You
should consider placing in LPA modules used very often by a large number of address spaces.

By contrast, if few address spaces load a module, it is less likely that multiple copies of it will exist in
central storage at any one time. The same is true if many address spaces load a module, run it once, and
then never run it again, as might happen for those used only when initializing a function or an application.
This is also true when many address spaces load a module but use it infrequently, even when a large
number of these address spaces are often swapped in at one time; for example, some modules are used

Chapter 1. Storage management overview 21

only when unusual circumstances arise within an application. Modules that fit these descriptions are
seldom good candidates for placement in LPA.

You can add modules to LPA in these ways:

• Add the library containing the modules to the LPA list

Any library containing only reentrant modules can be added to the LPA list, which places all its modules
in LPA. Note that modules are added to LPA from the first place in the LPA list concatenation they are
found.

• Add the modules to dynamic LPA

Use this approach instead of placing modules in FLPA or MLPA whenever possible. Searches for
modules in dynamic LPA are approximately as fast as those for modules in LPA, and placement of
modules in dynamic LPA imposes no overhead on searches for other modules. Note that another LPA
module whose address was stored before a module with the same name was loaded into dynamic LPA
might continue to be used.

• Add the modules to FLPA

Modules in the fixed LPA list will be found very quickly, but at the expense of modules that must be
found in the LPA directory. It is undesirable to make this list very long because searches for other
modules will be prolonged. Note that modules placed in IEAFIXxx that reside in an LPA List data set will
be placed in LPA twice, once in PLPA and once in FLPA.

• Add the modules to MLPA

Like placement in FLPA, placing a large number of modules in MLPA causes searches for all modules to
be delayed, and this should be avoided. The delay will be proportional to the number of modules placed
in MLPA, and it can become significant if you place a large number of modules in MLPA.

Placement of modules outside LPA

In addition to the effects on central storage, channel subsystem and DASD subsystem load are increased
when a module is fetched frequently from DASD. How much it increases depends on how many I/O
operations are required to fetch the module and on the size of the module to be fetched.

Module placement effect on virtual storage

When a module is loaded into the private area for an address space, the region available for other things is
reduced by the amount of storage used for the module. Modules loaded from anywhere other than LPA
(FLPA, MLPA, dynamic LPA, or PLPA) will be loaded into individual address spaces or into CSA.

When a module is added to LPA below 16 megabytes, the size of the explicitly-allocated common area
below 16 megabytes will be increased by the amount of storage used for the module. When the explicitly-
allocated common area does not end on a segment boundary, IPL processing allocates additional CSA
down to the next segment boundary. Therefore, which virtual storage boundaries change when modules
are added to LPA depends on whether a segment boundary is crossed or not.

When modules are added to LPA below 16 megabytes, and this does not result in the expansion of
explicitly-allocated common storage past a segment boundary, less virtual storage will be available for
CSA (and SQA overflow) storage. The amounts of CSA and SQA specified in IEASYSxx will still be
available, but the system will add less CSA to that specified during IPL.

When the addition of modules to LPA does not result in a reduction in the size of the private area below 16
megabytes, adding load modules to LPA increases the amount of private area available for address
spaces that use those load modules. This is because the system uses the copy of the load module in LPA
rather than loading copies into each address space using the load module. In this case, there is no change
to the private area storage available to address spaces that do not use those load modules.

When modules are added to LPA below 16 megabytes, the growth in LPA can cause the common area
below 16 megabytes to cross one or more segment boundaries, which will reduce the available private
area below 16 megabytes by a corresponding amount; each time the common area crosses a segment
boundary, the private area is reduced by the size of one segment. The segment size in z/OS is one
megabyte.

22 z/OS: z/OS MVS Initialization and Tuning Guide

When the size of the private area is reduced as a result of placing modules in LPA below 16 megabytes,
the private area virtual storage available to address spaces that use these modules might or might not be
changed. For example, if an address space uses 1.5 megabyte of modules, all of them are placed in LPA
below 16 megabytes, and this causes the common area to expand across two segment boundaries, .5
megabytes less private area storage will be available for programs in that address space. But if adding the
same 1.5 megabytes of modules causes only one segment boundary to be crossed, .5 megabytes more
will be available, and adding exactly 1 megabytes of modules would cause no change in the amount of
private area storage available to programs in that address space. (These examples assume that no other
changes are made to other common virtual storage area allocations at the same time.)

When the size of the private area is reduced as a result of placing modules in LPA below 16 megabytes,
less storage will be available to all address spaces that do not use those modules.

A process similar to the process described for LPA is used when ELPA, the other Extended common areas,
and the Extended private area are built above 16 megabytes. The only difference is that common storage
areas above 16 megabytes are built from 16 megabytes upward, while those below 16 megabytes are
built from 16 megabytes downward.

Modules can also be loaded in CSA, and some subsystems (like IMS) make use of this facility to make
programs available to multiple address spaces. The virtual storage considerations for these modules are
similar to those for LPA.

Recommendations for Improving System Performance

The following recommendations should improve system performance. They assume that the system's
default search order will be used to find modules. You should determine what search order will be used
for programs running in each of your applications and modify these recommendations as appropriate
when other search orders will be used to find modules.

• Determine how much private area, CSA, and SQA virtual storage are required to run your applications.
• Determine which modules or libraries are important to the applications you care most about. From this

list, determine how many are reentrant to see which are able to be placed in LPA. Of the remaining
candidates, determine which can be safely placed in LPA, considering security and system integrity.

Note: All modules placed in LPA are assumed to be authorized. IBM publications identify libraries that
can be placed in the LPA list safely, and many list modules you should consider placing in LPA to
improve the performance of specific subsystems and applications.

Note that the system will try to load RMODE(ANY) modules above 16 megabytes whenever possible.
RMODE(24) modules will always be loaded below 16 megabytes.

• To the extent possible without compromising required virtual storage, security, or system integrity,
place libraries containing a high percentage of frequently-used reentrant modules (and containing no
modules that are not reentrant) in the LPA list. For example, if TSO/E response time is important and
virtual storage considerations allow it, add the CMDLIB data set to the LPA list.

• To the extent possible without compromising available virtual storage, place frequently or moderately-
used refreshable modules from other libraries (like the linklist concatenation) in LPA using dynamic LPA
or MLPA. Make sure you do not inadvertently duplicate modules, module names, or aliases that already
exist in LPA. For example, if TSO/E performance is important, but virtual storage considerations do not
allow CMDLIB to be placed in the LPA list, place only the most frequently-used TSO/E modules on your
system in dynamic LPA.

Use dynamic LPA to do this rather than MLPA whenever possible. Modules that might be used by the
system before a SET PROG command can be processed cannot be placed solely in dynamic LPA. If
these modules are not required in LPA before a SET PROG command can be processed, the library in
which they reside can be placed in the linklist so they are available before a SET PROG can be
processed, but enjoy the performance advantages of LPA residency later. For example, Language
Environment® runtime modules required by z/OS UNIX System Services initialization can be made
available by placing the SCEERUN library in the linklist, and performance for applications using
Language Environment (including z/OS UNIX System Services) can be improved by also placing selected
modules from SCEERUN in dynamic LPA.

Chapter 1. Storage management overview 23

For more information about dynamic LPA, see the information about PROGxx in z/OS MVS Initialization
and Tuning Reference. For information about MLPA, see the information about IEALPAxx in z/OS MVS
Initialization and Tuning Reference.

To load modules in dynamic LPA, list them on an LPA ADD statement in a PROGxx member of PARMLIB.
You can add or remove modules from dynamic LPA without an IPL using SET PROG=xx and SETPROG
LPA operator commands. For more information, z/OS MVS Initialization and Tuning Reference and z/OS
MVS System Commands.

Note: If an application uses the CHKPT macro and dynamic LPA modules are in use at the time the
checkpoint is taken, dynamic LPA must not be altered until you no longer intend to attempt a restart
from the identified checkpoint. When a dynamic LPA module is detected on the load list, the CHKPT
macro returns RC=16, RSN=64. If dynamic LPA was altered and the module has a different entry point
address in dynamic LPA at deferred checkpoint restart, the restart fails with ABEND S13F. For more
information about checkpoint/restart facilities, see z/OS DFSMSdfp Checkpoint/Restart.

• By contrast, do not place in LPA infrequently-used modules, those not important to critical applications
(such as TSO/E command processors on a system where TSO/E response time is not important), and
low-use user programs when this placement would negatively affect critical applications. Virtual
storage is a finite resource, and placement of modules in LPA should be prioritized when necessary.
Leaving low-use modules from the linklist (such as those in CMDLIB on systems where TSO/E
performance is not critical) and low-use application modules outside LPA so they are loaded into user
subpools will affect the performance of address spaces that use them and cause them to be swapped in
and out with those address spaces. However, this placement usually has little or no effect on other
address spaces that do not use these modules.

• If other measures (like WLM policy changes, managing the content of LPA, and balancing central and
expanded storage allocations) fail to control storage saturation, and paging and swapping begin to
affect your critical workloads, the most effective way to fix the problem is to add storage to the system.
Sometimes, this is as simple as changing the storage allocated to different LPARs on the same
processor. You should consider other options only when you cannot add storage to the system. For
additional paging flexibility and efficiency, you can add optional storage-class memory (SCM) on Flash
Express® solid-state drives (SSD) or the Virtual Flash Memory (VFM) as a second type of auxiliary
storage. DASD auxiliary storage is required. For details refer to “Using storage-class memory (SCM)” on
page 48.

Modified link pack area (MLPA/Extended MLPA)
This area may be used to contain reenterable routines from either APF-authorized or non-APF-authorized
libraries that are to be part of the pageable extension to the link pack area during the current IPL. Any
module in the modified link pack area will be treated by the system as though it came from an APF-
authorized library. Ensure that you have properly protected any library named in IEALPAxx to avoid
system security and integrity exposures, just as you would protect any APF-authorized library.

The MLPA exists only for the duration of an IPL. Therefore, if an MLPA is desired, the modules in the MLPA
must be specified for each IPL (including quick start and warm start IPLs).

The MLPA is allocated just below the FLPA (or the PLPA, if there is no FLPA); the extended MLPA is
allocated above the extended FLPA (or the extended PLPA if there is no extended FLPA). When the system
searches for a routine, the MLPA is searched before the PLPA.

Note: Loading a large number of modules in the MLPA can increase fetch time for modules that are not
loaded in the LPA. This could affect system performance.

The MLPA can be used at IPL time to temporarily modify or update the PLPA with new or replacement
modules. No actual modification is made to the quick start PLPA stored in the system's paging data sets.
The MLPA is read-only, unless NOPROT is specified on the MLPA system parameter.

Specified by:

• Including a module list as an IEALPAxx member of SYS1.PARMLIB; where xx is the specific list.
• Including the MLPA system parameter in IEASYSxx or specifying MLPA from the operator's console

during system initialization.

24 z/OS: z/OS MVS Initialization and Tuning Guide

Common service area (CSA/Extended CSA)
This area contains pageable and fixed data areas that are addressable by all active virtual storage address
spaces. CSA normally contains data referenced by a number of system address spaces, enabling address
spaces to communicate by referencing the same piece of CSA data.

CSA is allocated directly below the MLPA; extended CSA is allocated directly above the extended MLPA. If
the virtual SQA space is depleted, the system will allocate additional SQA space from the CSA.

Specified by:

• The SYSP parameter at the operator's console to specify an alternative system parameter list
(IEASYSxx) that contains a CSA specification.

• The CSA parameter at the operator's console during system initialization. This value overrides the
current system parameter value for CSA that was established by IEASYS00 or IEASYSxx.

Note: If the size allocated for extended SQA is too small or is used up very quickly, the system attempts
to steal space from extended CSA. When both extended SQA and extended CSA are used up, the system
allocates space from SQA and CSA below 16 megabytes. The allocation of this storage could eventually
lead to a system failure. Ensuring the appropriate size of extended SQA and extended CSA storage is
critical to the long-term operation of the system.

SQA/CSA shortage thresholds

Ensuring the appropriate size of extended SQA and extended CSA storage is critical to the long-term
operation of the system. If the size allocated for extended SQA is too small or is used up very quickly, the
system attempts to use extended CSA. When both extended SQA and extended CSA are used up, the
system allocates space from SQA and CSA below 16 megabytes. The allocation of this storage could
eventually lead to a system failure.

• When the size, in bytes, of combined total of free SQA + CSA pages falls below the "high insufficient"
threshold, the system issues message IRA100E

• If the size, in bytes, of available SQA and SQA pages falls below the "low insufficient" threshold, the
system issues message IRA101E

For more information about SQA shortages and the thresholds, see “SQA/CSA thresholds” on page 16.

Restricted use common service area (RUCSA/Extended RUCSA)
IBM recommends the elimination of all user-key (8 - 15) common storage, as it creates a security risk
because the storage can be modified or referenced, even if fetch protected, by any unauthorized program
from any address space.

For earlier releases, IBM has provided APARs OA53355 and OA56180 to assist with identifying software
programs that use user-key common storage. For those who cannot immediately eliminate all affected
software programs or who need additional assistance in identifying all programs that reference user-key
CSA storage, the more secure restricted use common service area (RUCSA) provided in earlier releases by
the PTF for APAR OA56180 and as an optional, priced feature in z/OS V2R4 can be used. However, IBM
still recommends the elimination of all user-key common storage.

RUCSA is a separate area from CSA that is situated between the CSA and PVT areas. Because it is a
separate area, it can be managed as a secure resource. The security administrator can define, via the
System Authorization Facility (SAF), which users have access to the RUCSA. Only those with SAF READ
authority to the IARRSM.RUCSA profile in the FACILITY class can have access. Once defined, all requests
for user key CSA storage will transparently obtain storage from the RUCSA. Application changes might not
be necessary.

RUCSA (and extended RUCSA) are similar to CSA (and extended CSA) in that their storage ranges reduce
the size of the 24-bit and 31-bit private area ranges for all address spaces. However, RUCSA (and
extended RUCSA) differ in the following ways:

• Only required by installations that have programs that require them.
• Exclusively used as a user-key CSA area.

Chapter 1. Storage management overview 25

• Accessible only from address spaces that are running under user IDs that have SAF READ authority to
the IARRSM.RUCSA profile in the FACILITY class, or, on z/OS V2R3 or earlier systems that have the VSM
ALLOWUSERKEYCSA(YES) parameter specified in the DIAGxx member of parmlib. To ensure that a job
has a consistent SAF authority while it is running, the authorization is checked at job start and not
altered until the job ends. As such, a never-ending job that requires SAF authorization after it starts
must be restarted.

• Never converted to SQA or extended SQA.

The RUCSA is allocated just below the CSA, and the extended RUCSA is allocated above the extended
CSA. They are specified in the following ways:

• The SYSP parameter at the operator's console to specify an alternative system parameter list
(IEASYSxx) that contains a RUCSA specification.

• The RUCSA parameter at the operator's console during system initialization. This value overrides the
current system parameter value for RUCSA that was established in the IEASYSxx member.

Note: Unless otherwise noted in z/OS documentation, consider RUCSA and extended RUCSA areas to be
part of the CSA and extended CSA areas.

Considerations for RUCSA

Consider the following points to evaluate whether RUCSA meets your needs:

• As RUCSA is one resource that is shared by multiple users, it does not prevent different SAF-authorized
applications from altering or referencing each other's RUCSA storage.

• RUCSA storage can only be specified in 1 MB increments. There is an approximate total of 16 MB of
storage in the non-extended area; therefore, when a non-extended RUCSA is required, adding 1 MB
might not be acceptable, as it might not leave enough non-extended CSA for system-key users or non-
extended private area for all address spaces.

• RUCSA is only used for user-key CSA storage.

– Unlike CSA, SQA cannot overflow into RUCSA storage.
– RUCSA cannot be used for system-key CSA.
– System-key CSA cannot be used for RUCSA.
– It is possible for you to define a larger overall common area in order to accommodate peaks in user-

key CSA (now RUCSA) and CSA usage at different times. A larger common area reduces the size of all
the private areas.

• RUCSA programming considerations:

– RUCSA storage cannot be shared by using the IARVSERV SHARE service. RUCSA is common storage
and does not need to be explicitly shared. Attempts to issue IARVSERV SHARE on RUCSA storage will
be abended (ABEND-6C5 RSN-xx0132xx) regardless of having SAF READ authority to the
IARRSM.RUCSA resource in the FACILITY class.

– Unlike CSA storage which all address spaces share, first references to fixed RUCSA storage by
instructions that do not cause a page fault (such as LRA, LRAY, and TPROT) from an address space
other than the obtainer's address space will fail with a condition code indicating that the storage is
not valid. Issuers of such instructions must ensure that a page fault has occurred on RUCSA storage
from the referencing address space prior to issuing the instruction.

Migrating to RUCSA
IBM recommends the following steps to properly use RUCSA storage.

Procedure

1. Determine the maximum amount of user-key CSA storage that you want to define with the RUCSA
parameter. Consider reducing the CSA size by what is required for RUCSA.

26 z/OS: z/OS MVS Initialization and Tuning Guide

Like all the common areas, ensuring the appropriate size of the RUCSA and extended RUCSA is critical
to the long-term operation of the system. Regardless of whether or not a RUCSA is defined, you can
determine the maximum required size by using the following resources:

• The RMF Monitor I VSTOR (or equivalent) report. In the ALLOCATED CSA BY KEY section of the
report, use the values under the MAX columns in the 8-F row to size the (BELOW 16M) and
EXTENDED (ABOVE 16M) RUCSA.

• The following high-water marks:

– GDA_RUCSA_HWM contains the high-water mark for use of non-extended user-key CSA storage.
– GDA_ERUCSA_HWM contains the high-water mark for use of extended user-key CSA storage.

You can view the high-water marks in IPCS from active system storage. Ensure that the dump source
is set to ACTIVE and issue the CBF GDA command. Control block names RUCSAHWM and
ERUCSAHW contain the high-water marks for non-extended and extended user-key CSA storage,
respectively.

2. Determine the effects on programs that are running in your environment.
a) Apply any required monitoring program service and be prepared for any report differences.
b) Ensure software that uses RUCSA abides by the programming interface differences outlined in

“Considerations for RUCSA” on page 26.
3. Use SAF universal read access to authorize all users to have access to RUCSA.

The following example shows the commands to define the resource profile and provide universal read
access:

RDEFINE FACILITY IARRSM.RUCSA UACC(READ)
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST(FACILITY) REFRESH

4. Follow the instructions in z/OS Planning for Installation to acquire licensing for the RUCSA feature and
update the product enablement policy in the IFAPRDxx member of parmlib.

Note: You must complete these actions before you proceed to the next step, as z/OS V2R4 requires a
license to use the RUCSA feature.

5. IPL the system with an IEASYSxx member that contains a RUCSA specification that matches the sizes
determined in step “1” on page 26.

Defining a RUCSA will cause allocations to come from RUCSA and allow the system to monitor user-
key CSA storage usage. As long as all users have SAF READ access to RUCSA and any relevant issues
that you identified in earlier steps have been mitigated, usage of user-key CSA storage is not restricted
even though a RUCSA is defined.

6. Authorize those users who truly require access to user-key CSA storage.
a) Determine who should be using user-key CSA storage.

• The SMF30_UserKeyRucsaUsage field in SMF type 30 records reports all attempted uses of
RUCSA storage. The SMF30_UserKeyCsaUsage field provided by APAR OA53355 only indicates
attempts to obtain user-key CSA storage and is set whether or not a RUCSA is defined.

• Using the SMF type 30 records, create a list of user IDs that truly require access to RUCSA.
b) Authorize the required user IDs by permitting SAF READ authority to the IARRSM.RUCSA resource

profile in the FACILITY class.
These will be the only users that can obtain and access storage from RUCSA.
The following example shows the commands to define the SAF resource profile and authorize a
single user ID:

PERMIT IARRSM.RUCSA CLASS(FACILITY) ID(user1) ACCESS(READ)
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST(FACILITY) REFRESH

Chapter 1. Storage management overview 27

c) Authorization changes only take effect when a job starts; therefore, ensure that all users (jobs)
identified as having used RUCSA have been recycled or ended to ensure that no unauthorized users
still have access to RUCSA.

7. When you are comfortable with restricting non-SAF authorized user IDs from using RUCSA, change the
SAF UACC value to NONE.
The following example shows the commands to do this:

RALTER FACILITY IARRSM.RUCSA UACC(NONE)
SETROPTS RACLIST(FACILITY) REFRESH

• Prior to removing SAF universal READ access, all user-key CSA creations, accesses, deletions,
IARVSERV CHANGEACCESS requests, and PGSER PROTECT and UNPROTECT requests will be
successful.

• After removing SAF universal READ access, only SAF-authorized user IDs can obtain or access user-
key CSA storage. Other users will be abnormally ended, as follows:

– ABEND-0C4 RSN-10 will be issued to indicate access failures.
– ABEND-Bxx RSN-5C will be issued to indicate obtain or release failures, where xx is 04, 05, 0A, or

78, depending on whether the request is from the GETMAIN, FREEMAIN, STORAGE, or CPOOL
service.

– ABEND-6C5 RSN-xx0340xx will be issued to indicate IARVSERV CHANGEACCESS failures.
– ABEND-18A RSN-xxxxxxxx will be issued to indicate PGSER failures, where xxxxxxxx is xx0705xx

or xx0805xx, depending on whether it is a PROTECT or UNPROTECT request.

Local system queue area (LSQA/Extended LSQA)
Each virtual address space has an LSQA. The area contains tables and queues associated with the user's
address space.

LSQA is intermixed with SWA and subpools 229, 230, and 249 downward from the bottom of the CSA into
the unallocated portion of the private area, as needed. Extended LSQA is intermixed with SWA and
subpools 229, 230, and 249 downward from 2 gigabytes into the unallocated portion of the extended
private area, as needed. (See Figure 2 on page 14.) LSQA will not be taken from space below the top of
the highest storage currently allocated to the private area user region. Any job will abnormally terminate
unless there is enough space for allocating LSQA.

Address space layout randomization
Address space layout randomization (ASLR) is a technique that is used to increase the difficulty of
performing a buffer overflow attack that requires the attacker to know the location of an executable in
memory. A buffer overflow vulnerability is a flaw in software written in a memory-unsafe programming
language, such as C. Such a flaw is characterized by a failure of an application to validate the size of user
input data that is written to memory. An application can remedy this flaw by checking the length of the
user input data and throwing an exception or issuing an error message if the actual length does not match
the expected length.

z/OS provides options to enable ASLR for 24-bit and 31-bit low private storage as well as for 64-bit
private storage. When enabled, the feature affects all storage allocations in the specified storage ranges
(not just executables). Common storage, 24- and 31-bit high private storage (including LSQA), high virtual
shared, the high virtual local system area and the 2G-64G area are unaffected.

Enabling ASLR

By default, ASLR is disabled. To enable ASLR, either IPL the system using a DIAGxx member that
specifies the ASLR option or issue the SET DIAG=xx command after IPL. If you enable ASLR after IPL, only
those jobs that are subsequently started and that are not exempt from ASLR will have ASLR enabled. The
ASLR enablement options provide a way to restrict ASLR to subsets of address spaces where it is less
likely to cause a storage constraint issue. For details about the options, see the description of the ASLR
parameter in DIAGxx parmlib member in z/OS MVS Initialization and Tuning Reference.

28 z/OS: z/OS MVS Initialization and Tuning Guide

Impact of ASLR on virtual storage

The decision to enable ASLR represents a tradeoff between enhanced security and a reduction in the
amounts of available 24-bit, 31-bit, and 64-bit private storage. When enabled for 24- and 31-bit virtual
storage, the size of available private storage will be reduced by up to 63 pages and 255 pages,
respectively. A job’s requested region size must still be satisfied from within the reduced private area in
order for the job to be started. Jobs whose region size cannot be satisfied will result in an ABEND 822. If a
job’s requested region size is satisfied, it is still possible that the reduced size of private storage prevents
the job from completing, resulting in an ABEND 878.

One way to determine whether jobs would not be able to run under the constrained size of 24- or 31-bit
private storage that would occur with ASLR enabled is to specify a larger value for the CSA parameter in
parmlib. Increasing the sizes of both 24- and 31-bit CSA by 1M effectively reduces the sizes of 24- and
31-bit private storage by 1M, which is greater than the maximum reduction that would occur under ASLR.

Excluding individual address spaces from ASLR

When ASLR is enabled, you can use SAF authorization to exempt selected address spaces from ASLR. To
do this, permit SAF READ authority to the IARRSM.EXEMPT.ASLR.jobname resource in the FACILITY class
to fully exempt the job or to the IARRSM.EXEMPT.ASLR24.jobname resource to exempt the job from only
24-bit ASLR. The following example shows the set of commands to fully exempt a job from ASLR:

RDEFINE FACILITY IARRSM.EXEMPT.ASLR.jobname UACC(READ)
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST(FACILITY) REFRESH

Certain system address spaces, such as MASTER, which initialize early during the IPL process are not
randomized. High virtual storage may not be randomized in address spaces with initialization exits that
obtain high virtual storage. Job steps that obtain high virtual storage and assign it to a task not within the
program task tree of that job step limit the ability of the system to set up randomization for the next job
step if the obtained storage persists across job steps.

Large pages and LFAREA
MVS supports the use of 1 MB and 2 GB large pages. Using large pages can improve performance for
some applications by reducing the overhead of dynamic address translation. This is achieved by each
large page requiring only one entry in the Translation Look-aside Buffer (TLB), as compared to the larger
number of entries required for an equivalent number of 4 KB pages. A single TLB entry improves TLB
coverage for exploiters of large pages by increasing the hit rate and decreasing the number of TLB misses
that an application incurs.

Attention: Large pages are a performance improvement feature for some cases; switching to large
pages is not recommended for all workloads.

Large pages provide performance value to a select set of applications that can generally be characterized
as memory access-intensive and long-running. These applications meet the following criteria:

1. They must reference large ranges of memory.
2. They tend to exhaust the private storage areas available within the 2 GB address space (such as the

IBM WebSphere® application), or they use private storage above the 2 GB address space (such as IBM
DB2 software).

Displaying LFAREA information
You can use the MODIFY AXR,IAXDMEM command to display memory utilization statistics associated
with the large frame area.

For more information, see Displaying real storage memory statistics in z/OS MVS System Commands.

LFAREA parameter

The IEASYSxx LFAREA parameter specifies the maximum amount of real storage that can be used to
satisfy fixed 1 MB and 2 GB page requests. All fixed 1 MB and 2 GB pages are backed by contiguous 4 KB
real storage frames. Specifying the LFAREA parameter for fixed 1 MB pages does not reserve an amount

Chapter 1. Storage management overview 29

of real storage to be used exclusively for fixed 1 MB page requests. If the system becomes constrained by
a lack of sufficient 4 KB frames to handle workload demand, it can use any available real storage specified
by the LFAREA 1M parameter to back 4 KB page requests, enabling the system to react dynamically to
changing system storage frame requirements.

If 1 MB large frames are required but none are currently available, the system attempts to defragment
real storage to form 1 MB large frames. However, frequent defragment attempts can indicate a system
configuration and tuning issue. To resolve this issue, you can either decrease the size of the LFAREA,
adjust the workload to reduce the demand for 4 KB frames, or add more real storage.

Because the IEASYSxx LFAREA parameter requires an IPL in order to change the LFAREA value, the
following considerations apply:

• If the value specified for LFAREA is too small, available 1 MB and 2 GB pages might not exist for
applications that could benefit from large page usage.

• The LFAREA request can be specified with target and minimum values for 2 GB and 1 MB pages.
Additionally, a NOPROMPT option allows the IPL to continue with no LFAREA with no operator
intervention even if the minimum value is not met.

• Determine the total number of 1 MB and 2 GB pages that your applications require, and consider using
this number as a starting point for your LFAREA target values. Also add a small amount of 1 MB pages to
your starting point for use by the system. Use your existing performance monitor to determine how
much 1 MB pages are used by your system.

• Use output from the MODIFY AXR,IAXDMEM system command as an estimate for the maximum number
of 1 MB pages used on behalf of fixed 1 MB page requests. Use this estimate to determine if your
LFAREA value is too small; refer to the IAR049I message in z/OS MVS System Messages, Vol 6 (GOS-IEA)
for additional details.

Refer to the following documentation for additional details about LFAREA:

• For specific details on specifying the IEASYSxx LFAREA parameter, see LFAREA parameter in IEASYSxx
in z/OS MVS Initialization and Tuning Reference.

• For information on calculating the LFAREA value based on DB2 requests, see IBM DB2 10 for z/OS
Managing Performance.

• For information on calculating the LFAREA value based on JAVA heaps, see IBM SDK for z/OS, Java™

Technology Edition.

LFAREA syntax and examples

Specifying the LFAREA parameter is done using one of the two separate and distinct syntax methods and
percentage calculation formulas, which are shown in Table 4 on page 31. Following Table 4 on page
31, the subsequent tables show examples of specific LFAREA calculations and specifications.

Attention: All LFAREA calculation and specification examples are examples only, and are never to
be used as a substitute for the specific calculations and specifications that are required for your
z/OS system.

Table 4 on page 31 describes the two LFAREA syntax methods, and the formulas for the percentage
specification.

Note: The LFAREA parameter is also described in z/OS MVS Initialization and Tuning Reference.

30 z/OS: z/OS MVS Initialization and Tuning Guide

Table 4. The two supported LFAREA syntax methods

Syntax Percentage formula (optional) Usage notes

LFAREA=xM|xG|xT|x% If a percentage (x%) is specified,
the system calculates the
requested maximum amount of real
storage that can be used to satisfy
fixed 1 MB page requests using the
following formula:

Maximum number of 1 MB pages
that
can be used to satisfy fixed 1
MB
page requests=
(x% * online real storage at
IPL in megabytes) - 2048 MB

Note: The resulting 1 MB number of
pages is rounded down to the next
whole number of 1 MB pages
(which will be zero for values less
than 1 MB).

Consider the following usage notes
before using this syntax method:

• The variable x specifies the
LFAREA size in megabytes (M),
gigabytes (G), or terabytes (T), or
as a percentage (%).

• This syntax method can only be
used to specify the maximum
amount of real storage that can
be used to satisfy fixed 1 MB
page requests. To specify the
maximum amount of real storage
that can be used to satisfy 2 GB
page requests,you must use the
alternative syntax method which
specifies 1M= and 2G= values.

LFAREA=(1M=(target[%],minimum[
%]), 2G=(target[%],minimum[%]))

If percentages (target% and
minimum%) are specified, the
requested target and minimum
number of 1 MB pages that can be
used to satisfy fixed 1 MB page
requests are calculated using the
formula:

Maximum number of 1 MB pages
to
satisfy fixed 1 MB page
requests =
(target% or minimum%) *
(online
real storage at IPL in
megabytes
- 4096 MB)

If percentages (target% and
minimum%) are specified, the
requested target or minimum
number of 2 GB pages that can be
used to satisfy 2 GB page requests
is calculated using the formula:

number of 2 GB pages to
reserve =
target% or minimum% * (online
real storage at IPL in 2
gigabytes
- 4 GB)

Note: The resulting 1 MB or 2 GB
number of pages is rounded down
to the next respective 1 MB or 2 GB
whole number of pages (which will
be zero for values less than 1 MB or
2 GB).

Consider the following usage notes
before using this syntax method:

• The target and minimum values
specify either the number of
pages or the percentage of online
real storage at IPL as calculated
using the percentage formula.

• This syntax method can be used
to specify the maximum amount
of real storage to be used to
satisfy both fixed 1 MB and 2 GB
page requests.

• You cannot combine both fixed
and percentage target and
minimum values within each 1 MB
or 2 GB specification.

Chapter 1. Storage management overview 31

LFAREA calculation example 1

Table 5 on page 32 shows an example of the maximum amount of LFAREA that can be configured for
various amounts of online real storage using the LFAREA=(1M=(target,minimum),2G=(target,minimum))
syntax. The maximum amount is calculated using the formula: 80% of (online storage at IPL – 4GB). Also
shown are the smallest percentages that can be specified for an LFAREA request for 1 MB or 2 GB pages
to satisfy at least one 1 MB page or one 2 GB page request, respectively.

For example, on a z/OS system with 16 GB of online storage at IPL, LFAREA=(2G=17%) must be specified
to satisfy at least one 2 GB page request. This is calculated as percentage * (online storage at IPL – 4GB) =
0.17 * (16GB – 4GB) = 0.17 * 12GB = 2.04 GB, which is rounded down to the 2 GB boundary at 2 GB. To
satisfy this request, the system must have 2 GB of contiguous real storage on a 2 GB boundary above the
bar. The request will be refused if there are offline storage increments that create discontiguous areas
which prevent contiguous 2 GB pages from being formed.

Table 5. LFAREA calculation example 1

Amount of online real
storage at IPL in
gigabytes (GB)

Maximum amount
available for LFAREA in
gigabytes (GB)

Minimum percentage
request for at least one 1
MB page

Minimum percentage
request for at least one 2
GB page

4 0 Not applicable Not applicable

4.25 0.2 1% (results in two 1 MB
pages)

Not applicable

6.5 2 1% (results in 25 1 MB
pages)

80%

6.75 2.2 1% (results in 28 1 MB
pages)

79%

8 3.2 1% (results in 40 1 MB
pages)

50%

16 9.6 1% (results in 122 1 MB
pages)

17%

32 22.4 1% (results in 286 1 MB
pages)

8%

64 48 1% (results in 614 1 MB
pages)

4%

128 99.2 1% (results in 1269 1 MB
pages)

2%

208 163.2 1% (results in 2088 1 MB
pages)

1%

256 201.6 1% (results in 2580 1 MB
pages)

1%

512 406.4 1% (results in 5201 1 MB
pages)

1% (results in two 2 GB
pages)

1024 816 1% (results in 10444 1
MB pages)

1% (results in five 2 GB
pages)

2048 1635.2 1% (results in 20930 1
MB pages)

1% (results in ten 2 GB
pages)

4096 3273.6 1% (results in 41902 1
MB pages)

1% (results in twenty 2
GB pages

32 z/OS: z/OS MVS Initialization and Tuning Guide

Note the following additional points regarding Table 5 on page 32:

• 4 GB is not enough online real storage to support fixed 1 MB or 2 GB page requests.
• 4.25 GB is the next incremental size up from 4096 MB (using an increment size of 256 MB) and the

smallest amount of online real storage that can be configured for LFAREA=(1M=1%) to satisfy at least
one 1 MB page request (in this case two 1 MB page requests).

• 6.5 GB is the smallest amount of online real storage that can be configured to satisfy at least one 2 GB
page request. Note that LFAREA=(2G=80%) is required to satisfy that one 2 GB page request, leaving no
storage available for 1 MB pages (because the sum of 1 MB and 2 GB pages must not exceed 80% of
online real storage).

• 6.75 GB is the next incremental size up from 6656 MB (using an increment size of 256 MB) and the
smallest amount of online real storage that can be configured for LFAREA=(1M=1%,2G=79%) to satisfy
at least one 1 MB page and one 2 GB page request (in this case 28 1 MB page requests).

• 208 GB is the smallest amount of online real storage for LFAREA=(2G=1%) to satisfy one 2 GB page
request (below 208 GB, a percentage higher than 1% is required to satisfy at least one 2 GB page
request).

LFAREA calculation examples 2 and 3

The specific numbers of 1 MB pages and 2 GB pages that your system requires depend on multiple
factors. One factor is the number of 1 MB pages and 2 GB pages that exploiting applications require for
various workloads to gain a performance benefit. The following LFAREA specification examples illustrate
how various amounts of online storage at IPL affect the resulting number of 1 MB and 2 GB pages.

Table 6 on page 33 and Table 7 on page 34 illustrate a simplified approach, using a LFAREA percentage
specification, that works for any amount of online real storage without operator intervention. The
specified minimum percentage of 0% allows the system to continue the IPL after setting the cap of the
most 1 MB and 2 GB pages that can be used to satisfy both fixed 1 MB and 2 GB page requests, up to the
specified target percentages. For these examples, some amount of real storage will always be used to
satisfy fixed 1 MB page requests when the online real storage at IPL is above 4 GB. However, real storage
will only be used for 2 GB page requests when the amount of online real storage at IPL is sufficiently
large. Note that Table 7 on page 34 doubles the requested percentage, which provides a similar number
of 1 MB and 2 GB pages at lower amounts of online storage.

Table 6. LFAREA calculation example 2

LFAREA=(1M=(10%,0%),2G=(10%,0%))

Amount of online real storage at
IPL in gigabytes (GB)

Resulting number of 1 MB pages Resulting number of 2 GB pages

2 0 0

4 0 0

8 409 0

16 1228 0

32 2867 1

64 6144 3

128 12697 6

256 25804 12

512 52019 25

1024 104448 51

2048 209305 102

4096 419020 204

Chapter 1. Storage management overview 33

Table 7. LFAREA calculation example 3

LFAREA=(1M=(20%,0%),2G=(20%,0%))

Amount of online real storage at
IPL in gigabytes (GB)

Resulting number of 1 MB pages Resulting number of 2 GB pages

2 0 0

4 0 0

8 819 0

16 2457 1

32 5734 2

64 12288 6

128 25395 12

256 51609 25

512 104038 50

1024 208896 102

2048 418611 204

4096 838041 409

LFAREA calculation example 4

Table 8 on page 34 shows a series of LFAREA requests on a z/OS system with 64 GB of online real
storage at IPL. The 1 MB pages are requested with target and minimum percentages of 40% and 20%,
respectively, while the 2 GB pages are requested as a target numerical value that is increased with each
request. This illustrates how the 1 MB pages are reduced toward the minimum to satisfy the requested
target number of 2 GB pages. Table 8 on page 34 also shows that as the number of 2 GB pages reaches
19, the required reduction in 1 MB pages would be below the requested minimum. In this case, the
system prompts to re-specify LFAREA. Also shown is a case where the requested number of 2 GB pages is
25, which by itself exceeds the 80% system limit and results in a prompt to re-specify LFAREA.

Table 8. LFAREA calculation example 4

LFAREA request with 64 GB of
online real storage available at
IPL

Resulting number of 1 MB pages Resulting number of 2 GB pages

LFAREA=(1M=(40%,20%),2G=11 24576 (40%) 11

LFAREA=(1M=(40%,20%),2G=12 24576 (40%) 12

LFAREA=(1M=(40%,20%),2G=13 22118 (36%) 13

LFAREA=(1M=(40%,20%),2G=14 20275 (33%) 14

LFAREA=(1M=(40%,20%),2G=15 18432 (30%) 15

LFAREA=(1M=(40%,20%),2G=16 15974 (26%) 16

LFAREA=(1M=(40%,20%),2G=17 14131 (23%) 17

LFAREA=(1M=(40%,20%),2G=18 12288 (20%) 18

LFAREA=(1M=(40%,20%),2G=19 Unable to satisfy 1 MB minimum Unable to satisfy 1 MB minimum

LFAREA=(1M=(40%,20%),2G=25 Above 80% limit Above 80% limit

34 z/OS: z/OS MVS Initialization and Tuning Guide

LFAREA calculation example 5

In comparison to Table 8 on page 34, Table 9 on page 35 also shows a series of LFAREA requests on a
system with 64 GB of online real storage at IPL. The 1 MB pages are again requested with target and
minimum percentages of 40% and 20%, respectively. The 2 GB pages, however, are requested as
minimum and target numerical values that are increased with each request. This example illustrates how
the 1 MB pages are again reduced toward the minimum to satisfy the target number of 2 GB pages, but
when the 1 MB minimum cannot be reduced further, the 2 GB request is reduced toward its minimum. As
shown in Table 9 on page 35, when the number of 2 GB pages reaches 19, the required reduction in 1
MB pages is below the requested minimum. At this point, the 2 GB request is reduced to 18, which is still
above its minimum. When the 2 GB request reaches 21, it can no longer be satisfied by reducing either
the 1 MB request or the 2 GB request, because either reduction would be below the requested minimum.
At this point, a prompt to re-specify LFAREA is issued. Note also that this example illustrates how the
system prioritizes the 2 GB request over the 1 MB request, provided that the request can be satisfied at or
above the requested minimum.

Table 9. LFAREA calculation example 5

LFAREA request with 64 GB of
online real storage available at
IPL

Resulting number of 1 MB pages Resulting number of 2 GB pages

LFAREA=(1M=(40%,20%),2G=(11,
9)

24576 (40%) 11

LFAREA=(1M=(40%,20%),2G=(12,
10)

24576 (40%) 12

LFAREA=(1M=(40%,20%),2G=(13,
11)

22118 (36%) 13

LFAREA=(1M=(40%,20%),2G=(14,
12)

20275 (33%) 14

LFAREA=(1M=(40%,20%),2G=(15,
13)

18432 (30%) 15

LFAREA=(1M=(40%,20%),2G=(16,
14)

15974 (26%) 16

LFAREA=(1M=(40%,20%),2G=(17,
15)

14131 (23%) 17

LFAREA=(1M=(40%,20%),2G=(18,
16)

12288 (20%) 18

LFAREA=(1M=(40%,20%),2G=(19,
17)

12288 (20%) 18

LFAREA=(1M=(40%,20%),2G=(20,
18)

12288 (20%) 18

LFAREA=(1M=(40%,20%),2G=(21,
19)

Unable to satisfy minimum Unable to satisfy minimum

Scheduler work area (SWA/Extended SWA)
This area contains control blocks that exist from task initiation to task termination. It includes control
blocks and tables created during JCL interpretation and used by the initiator during job step scheduling.
Each initiator has its own SWA within the user's private area.

To enable recovery, the SWA can be recorded on direct access storage in the JOB JOURNAL. SWA is
allocated at the top of each private area intermixed with LSQA and subpools 229, 230, and 249.

Chapter 1. Storage management overview 35

Subpools 229, 230, 249 - Extended 229, 230, 249
This area allows local storage within a virtual address space to be obtained in the requestor's storage
protect key. The area is used for control blocks that can be obtained only by authorized programs having
appropriate storage protect keys. These control blocks were placed in storage by system components on
behalf of the user.

These subpools are intermixed with LSQA and SWA. Subpool 229 is fetch protected; subpools 230 and
249 are not. All three subpools are pageable. Subpools 229 and 230 are freed automatically at task
termination; subpool 249 is freed automatically at jobstep task termination.

System region
This area is reserved for GETMAINs by all system functions (for example, ERPs) running under the region
control tasks. It comprises 16K (except in the master scheduler address space, in which it has a 200K
maximum) of each private area immediately above the PSA. V=V region space allocated to user jobs is
allocated upwards from the top of this area. This area is pageable and exists for the life of each address
space.

The private area user region/extended private area user region
The portion of the user's private area within each virtual address space that is available to the user's
problem programs is called the user region.

Types of user regions

There are two types of user regions: virtual (or V=V) and real (or V=R). Virtual and real regions are
mutually exclusive; private areas can be assigned to V=R or V=V, but not to both. The installation
determines the region to which jobs are assigned. Usually, V=R should be assigned to regions containing
jobs that cannot run in the V=V environment, or that are not readily adaptable to it. Programs that require
a one-to-one mapping from virtual to central storage, such as program control interruption (PCI) driven
channel programs, are candidates for real regions.

Two significant differences between virtual and real regions are:

• How they affect an installation's central storage requirements
• How their virtual storage addresses relate to their central storage addresses.

For virtual regions, which are pageable and swappable, the system allocates only as many central storage
frames as are needed to store the paged-in portion of the job (plus its LSQA). The processor translates the
virtual addresses of programs running in virtual regions to locate their central storage equivalent.

For real regions, which are nonpageable and nonswappable, the system allocates and fixes as many
central storage frames as are needed to contain the entire user region. The virtual addresses for real
regions map one-for-one with central storage addresses.

Virtual regions

Virtual regions begin at the top of the system region (see Figure 2 on page 14) and are allocated upward
through the user region to the bottom of the area containing the LSQA, SWA, and the user key area
(subpools 229, 230, and 249). Virtual regions are allocated above 16 megabytes also, beginning at the
top of the extended CSA, and upward to the bottom of the extended LSQA, SWA, and the user key area
(subpools 229, 230, and 249).

As a portion of any V=V job is paged in, 4K multiples (each 4K multiple being one page) of central storage
are allocated from the available central storage. Central storage is dynamically assigned and freed on a
demand basis as the job executes. V=V region requests that specify a specific region start address, are
supported only for restart requests, and must specify an explicit size through JCL (see “Specifying region
size” on page 38).

As a special optimization for IBM z13® and compatible hardware, the system resource manager (SRM)
may decide to maintain the backing real storage after a page of low private (or region) storage is storage
released (FREEMAINed). Low private storage, like all 31-bit virtual storage, is categorized into subpools

36 z/OS: z/OS MVS Initialization and Tuning Guide

0-127, 129-132, 240, 244, 250, 251 and 252, which are described in z/OS MVS Diagnosis: Reference.
When a page in one such subpool is backed by such a frame, the backing frame is called a freemained
frame. FREEMAINed frames are still considered to be owned by the address space, but can be easily
reclaimed if the system runs low on storage. On z14 compatible hardware, this feature is extended to high
private storage. Thus when any 31 bit private storage is released (FREEMAINed) it can remain backed by
a FREEMAINed frame. The contents of such frames are cleared or dirtied at Storage Release (FREEMAIN)
time when it is possible for an unauthorized unit of work to access the data.The
RAX_FREEMAINEDFRAMES field in the RAX data area contains the number of FREEMAINed frames
owned by a given address space.

FREEMAINed frames have consequences both for the system and applications using 31-bit storage.
Address spaces may appear to own more real storage than they are actually using, and the system may
appear to have less available storage. Applications that issue the TPROT instruction or reference storage
that was FREEMAINed will not always get a condition code of 3 or an 0C4 system abend as they would
when this feature is disabled. Applications can either change their behavior or request that this feature be
disabled, either within a set of address spaces or system wide.

• The VSMLOC and VSMLIST services can be used as alternatives to TPROT to determine whether areas
of virtual storage are GETMAIN assigned. These services are described in z/OS MVS Programming:
Authorized Assembler Services Reference SET-WTO.

• The IARBRVER and IARBRVEA services are higher performance callable services that provide the same
results as TPROT while taking FREEMAINed frames into account. These services are described in z/OS
MVS Programming: Authorized Assembler Services Reference EDT-IXG.

• The FREEMAINEDFRAMES and FF31HIGH parameters in the DIAGxx parmlib member provides a way to
deactivate these features either system wide or per address space. See z/OS MVS Initialization and
Tuning Reference for more information.

When the RCEOA46291APPLIED bit is set (b'1') in the RCE data area, application programs can use the
RAX_FREEMAINEDFRAMES value along with the RAX_PARMLIBSAYSKEEPFREEMAINEDFRAMES flag to
determine whether the FREEMAINed frames feature is disabled for an address space. For instance, if
RAX_FREEMAINEDFRAMES equals 0 and RAX_PARMLIBSAYSKEEPFREEMAINEDFRAMES equals b'0',
the feature is disabled for that address space. Similarly when RCEOA51864 applied bit is set to b'1' in
the RCE data area, application programs can use Rax64_FFHighFrames value along with the value of
Rax_ParmlibSaysKeepHighFreemainedFrames flag to determine whether the high FREEMAINed frames
feature is disabled for an address space.

Note: When Rax_ParmlibSaysKeepFreemainedFrames is b'0',
Rax_ParmlibSaysKeepHighFreemainedFrames will also be b'0''. Rax_FreemainedFrames includes all
FREEMAINed Frames that back low and high private.

Real regions

Real regions begin at the top of the system region (see Figure 2 on page 14) and are allocated upward to
the bottom of the area containing LSQA, SWA, and the user key area (subpools 229, 230, and 249). Unlike
virtual regions, real regions are only allocated below 16 megabytes.

The system assigns real regions to a virtual space within the private area that maps one-for-one with the
real addresses in central storage below 16 megabytes. Central storage for the entire region is allocated
and fixed when the region is first created.

Specifying region type

A user can assign jobs (or job steps) to virtual or real regions by coding a value of VIRT or REAL on the
ADDRSPC parameter on the job's JOB or EXEC statement. For more information on coding the ADDRSPC
parameter, see z/OS MVS JCL Reference.

The system uses ADDRSPC with the REGION parameter. The relationship between the ADDRSPC and
REGION parameter is explained in z/OS MVS JCL User's Guide.

Region size and region limit

Chapter 1. Storage management overview 37

What is region size?

The region size is the amount of storage in the user region available to the job, started task, or TSO/E
user. The system uses region size to determine the amount of storage that can be allocated to a job or
step when a request is made using the STORAGE or GETMAIN macros and a variable length is requested.
The region size minus the amount of storage currently allocated, determines the maximum amount of
storage that can be allocated to a job by any single variable-length GETMAIN request.

What is region limit?

The region limit is the maximum total storage that can be allocated to a job by any combination of
requests for additional storage using the GETMAIN or STORAGE macros. It is, in effect, a second limit on
the size of the user's private area, imposed when the region size is exceeded.

Specifying region size

Users can specify a job's region size by coding the REGION parameter on the JOB or EXEC statement. The
system rounds all region sizes to a 4K multiple.

The region size value should be less than the region limit value to protect against programs that issue
variable length GETMAINs with very large maximums, and then do not immediately free part of that space
or free such a small amount that a later GETMAIN (possibly issued by a system service) causes the job to
fail.

For V=V jobs, the region size can be as large as the entire private area, minus the size of LSQA/SWA/user
key area (subpools 229, 230, and 249) and the system region (see Figure 2 on page 14).

For V=R jobs, the REGION parameter value cannot be greater than the value of the REAL system
parameter specified at IPL. If the user does not explicitly specify a V=R job's region size in the job's JCL,
the system uses the VRREGN system parameter value in the IEASYS00 member of SYS1.PARMLIB.

For more information on coding the REGION parameter, see z/OS MVS JCL Reference.

Note: VRREGN should not be confused with the REAL system parameter. REAL specifies the total amount
of central storage that is to be reserved for running all active V=R regions. VRREGN specifies the default
subset of that total space that is required for an individual job that does not have a region size specified in
its JCL.

An installation can override the VRREGN default value in IEASYS00 by:

• Using an alternate system parameter list (IEASYSxx) that contains the desired VRREGN parameter
value.

• Specifying the desired VRREGN value at the operator's console during system initialization. This value
overrides the value for VRREGN that was specified in IEASYS00 or IEASYSxx.

For V=R requests, if contiguous storage of at least the size of the REGION parameter or the system
default is not available in virtual or central storage, a request for a V=R region is placed on a wait queue
until space becomes available.

Note that V=R regions must be mapped one for one into central storage. Therefore, they do not have their
entire virtual storage private area at their disposal; they can use only that portion of their private area
having addresses that correspond to the contiguous central storage area assigned to their region, and to
LSQA, SWA, and subpools 229, 230, and 249.

Limiting user region size

Why control region size or region limit?

Placing controls on a program's maximum region size or region limit is optional. The region size allowed to
users can affect performance of the entire system. When altering the region size for an address space,
you would also consider how it is related to any WLM resource group memory limit (memory pool) that the
job might run under. Increasing the region size for instance, might require an increase in the memory pool
limit to prevent unwanted paging. You might want to decrease the memory pool size for the same reasons
you are decreasing the region size for address spaces classified to the resource group. For more

38 z/OS: z/OS MVS Initialization and Tuning Guide

information about memory pools and WLM resource groups see the “Processor storage overview” on page
6 section and the z/OS MVS Planning: Workload Management.

When there is no limit on region size and the system uses its default values, users might obtain so much
space within a region (by repeated requests for small amounts of storage or a single request for a large
amount) that no space would remain in the private area for the system to use. This situation is likely to
occur when a program issues a request for storage and specifies a variable length with such a large
maximum value that most or all of the space remaining in the private area is allocated to the request. If
this program actively uses this large amount of space (to write tables, for example), it can affect central
storage (also known as real storage) and thus impact performance.

To avoid an unexpected out-of-space condition, the installation should require the specification of some
region size on the REGION parameter of JOB or EXEC JCL statements. Also, the installation can set
system-wide defaults for region size through the job entry subsystem (JES) or with MVS installation exit
routines. The installation can control user region limits for varying circumstances by selecting values and
associating them with job classes or accounting information.

Using JES to limit region size

After interpreting the user-coded JCL, JES will pass to MVS either the value requested by the user on the
REGION parameter, or the installation-defined JES defaults. JES determines the REGION value based on
various factors, including the source of the job, or the class of the job, or both.

The limit for the user region size below 16 megabytes equals (1) the region size that is specified in the
JCL, plus 64K, or (2) the JES default, plus 64K, if no region size is specified in the JCL. The IBM default
limit for the user region size above 16 megabytes is 32 megabytes.

Note: If the region size specified in the JCL is zero, the region will be limited by the size of the private
area.

For more information on JES defaults, see either z/OS JES2 Initialization and Tuning Reference or z/OS
JES3 Initialization and Tuning Reference, depending on which JES your system is using.

Using exit routines to limit region size

Two MVS installation exits are available to override the region values that JES passes to MVS. The exit
routines are called IEFUSI and IEALIMIT and are described in detail in z/OS MVS Installation Exits.

The installation can use either IEFUSI or IEALIMIT to change the job's limit for the region size below 16
megabytes of virtual storage. However, to change the limit for the region size above 16 megabytes, the
installation must code the IEFUSI installation exit.

If your installation does not supply an IEFUSI exit routine, the system uses the default values in the IBM-
supplied IEALIMIT exit routine to determine region size. To determine region limit, the system adds 64K
to the default region size.

Region and MEMLIMIT values and limits set by the IEFUSI exit will not be honored for programs with the
NOHONORIEFUSIREGION program property table (PPT) attribute specified. The
NOHONORIEFUSIREGION PPT attribute can be specified in the SCHEDxx member of SYS1.PARMLIB, or
as an IBM supplied PPT default. This PPT attribute is used to bypass IEFUSI region controls for specific
programs that require a larger than normal region in order to successfully execute.

Using SMFLIMxx to control the REGION and MEMLIMIT

In today's systems, above the bar storage amounts are vastly larger than the amount of private storage in
the first 2 GB of an address space. This reduces the effectiveness of instituting controls over how the
private region storage is used. However, ensuring private storage availability for system-key functions
remains a high priority for system programmers. Establishing a MEMLIMIT to limit the amount of 64-bit
storage that a program can use is also a high priority. In addition, trying to maintain controls over these
storage amounts with an assembler module (installation exit IEFUSI) causes intolerable overhead for
many of today's clients.

The SMFLIMxx parmlib member addresses that problem by allowing the system programmer to set rules
for storage usage in a member in parmlib. The SMFLIMxx parmlib member reduces or may even eliminate

Chapter 1. Storage management overview 39

the need to update assembler code to establish or change limits on how much storage a user key job step
program can use.

Note: This parmlib member is powerful and its effects can be far reaching. You must select values and
filter keywords carefully and test them thoroughly before the member is put into production. The values
in this parmlib member require as much thought, consideration, and testing as the CSA and SQA values in
IEASYSxx.

Overview of the SMFLIM keywords

An SMFLIMxx parmlib member consists of an ordered set of rules, each starting with the word REGION to
begin the rule. The keywords that follow the REGION statement are composed of filters and attributes.

Filter keywords are used by the system to match the jobstep being initiated to the rule. If any filter does
not match, the attributes are not used and processing continues with the next rule. Filter keywords allow
up to eight values to be specified for each, applied in an OR fashion. For example, a REGION statement
with SUBSYS(JES*,STC) would match any jobstep that started as an STC or a JES-initiated job (provided
all other filter keywords match as well). Each filter keyword that is used must have at least one matching
string for the rule to match. In other words, the filter keywords are applied in an AND fashion. For
example, a rule that consists of the following keywords:

REGION
JOBNAME(ABC) SUBSYS(STC,JES2)
MEMLIMIT(32T)

would match a jobname of ABC, started as either a started task or a job under JES2, but would not match
a started task of XYZ.

The filter keywords allow for wildcard characters to help match rules generically. The * character is
defined to match 0 or more characters, while the ? character matches exactly one character. The
statements are ordered; subsequent statements with matching filters that appear later in the parmlib
member or in a subsequent parmlib member override the values of statements that appeared earlier.

The following are the filter keywords:
JOBNAME

Matches a REGION statement to the jobname specified in the JCL.
JOBCLASS

Matches a REGION statement to the JES jobclass for the job.
JOBACCT

Matches the accounting information that is specified on the JCL JOB statement.
STEPNAME

Matches a REGION statement to the stepname specified in the JCL.
STEPACCT

Matches the accounting information that is specified on the JCL EXEC statement.
PGMNAME

Matches the jobstep program that is specified on the PGM= keyword of the EXEC.
USER

Matches the userid that is associated with the job, either specified on the USER keyword on the JOB
statement, or the user that submitted the job. For more information about the USER keyword, see the
z/OS MVS JCL User's Guide.

SUBSYS
Matches the subsystem that is associated with the job. This subsystem is often JES2 or JES3, but it
might also be STC or some other subsystem name.

SYSNAME
Matches the name of the system. The SYSNAME keyword is handled differently than the other filter
keywords, as detailed in the z/OS MVS Initialization and Tuning Reference.

See the z/OS MVS Initialization and Tuning Reference for the complete syntax and examples.

40 z/OS: z/OS MVS Initialization and Tuning Guide

The other part of a REGION statement is the attributes to apply. These attributes consist of the following
keywords:
SYSRESVABOVE
SYSRESVBELOW

Use these keywords to set aside part of the private area for system-key functions and services, which
prevents the user-key jobstep program from obtaining all available private storage and causing
system functions to fail.

REGIONABOVE
REGIONBELOW

Use these keywords to override the JCL REGION or REGIONX specification on a job to increase or
decrease the job step's requested region size, up to the region limit set by the SYSRESVBELOW and
SYSRESVABOVE keywords.

In today's systems with large amounts of real storage, it is oftenless important to enforce a restrictive
REGION size on a jobstep. However, it might be useful to code REGIONABOVE(NOLIMIT)
REGIONBELOW(NOLIMIT) to easily give the jobstep program access to the entire below-the-bar
private area without altering the default for the jobclass or altering the REGION statements of many
JCL jobs.

Another use might be to reduce the storage available to a job step. Consider this SMFLIMxx
statement:

 REGION JOBNAME(*) SUBSYS(JES*,STC)
 REGIONABOVE(1G) REGIONBELOW(5M)
 SYSRESVABOVE(50M) SYSRESVBELOW(512K)

With SYSRESVABOVE(50M), the region limit is likely to be more than 1.6 GB, but the REGIONABOVE
further reduces the region available to only 1 GB, perhaps to enforce some service level agreement or
avoid some installation constraint.

Note: Coding REGIONABOVE(NOLIMIT) REGIONBELOW(NOLIMIT) (or using large specific values) is
still subject to the SYSRESVABOVE and SYSRESVBELOW values that ensure that private storage is still
available to system-key functions. For example, coding a rule such as:

REGION JOBNAME(*) SUBSYS(JES*,STC)
 REGIONABOVE(NOLIMIT) REGIONBELOW(NOLIMIT)
 SYSRESVABOVE(50M) SYSRESVBELOW(512K)

can meet the same goal as the coded IEFUSI exit used by your system for many years. In this
example, the system will ensure that 50M of above-the-line storage and 512K of below the line
storage is available to system-key functions, and the remaining above-the-line and below-the-line
storage is available to the user program.

MEMLIMIT
Use the MEMLIMIT keyword to override the MEMLIMIT value that is provided as a default in
SMFPRMxx or with the JCL MEMLIMIT= keyword. NOLIMIT is accepted for MEMLIMIT. Using NOLIMIT
might leave your system exposed to storage shortages if the jobstep program attempts to obtain and
use all of the above-the-bar virtual storage in its address space.

Establishing SMFLIM rules in SMFLIMxx

1. Determine the type of work to affect: all jobs, all started tasks, all job classes, jobs that are associated
with one particular userid, and so on. Carefully plan what job values to override: execution status
(EXECUTE keyword), private region storage (REGIONBELOW and REGIONABOVE keywords), system
reserved storage (SYSRESVBELOW and SYSRESVABOVE keywords), or overall MEMLIMIT for the step
(MEMLIMIT keyword). Code only the keywords for things you want to change about the unit of work.
For example, by default, a given job step will be executed; that is why it was submitted. Therefore, you
do not need to code EXECUTE(YES), unless some prior matching rule coded EXECUTE(CANCEL). See
“SMFLIM examples” on page 43 for details on the interaction between rules.

2. Determine the attributes that you want to establish:

Chapter 1. Storage management overview 41

a. If you want to restrict the user-key job step program from getting all available private storage, code
the SYSRESVABOVE and SYSRESVBELOW keywords, with a reasonable amount of storage for your
installation. A good value to choose might be the value that is formerly used in an IEFUSI exit. They
are often coded such that the REGION LIMIT is reduced by some factor like 50M and 512K,
respectively. If you don't have any values that are established in the IEFUSI exit, select some
values that seem reasonable, such as SYSRESVABOVE(50M) and SYSRESVBELOW(512K). Then,
test the values off-shift or on a test system that has a similar workload on it and similar storage
amounts.

Reminder: The more storage that is reserved with the SYSRESVxxxxx keywords, the less storage is
available for user-key storage GETMAIN and STORAGE OBTAIN activity. This is a similar trade-off
to selecting CSA and SQA storage values in IEASYSxx.

If you code these keywords, IBM recommends that you reserve a minimum of 512K for
SYSRESVBELOW and 50M for SYSRESVABOVE, ensuring you reserve some of your available
extended private area for system use.

b. If you want to override the REGION setting of the work unit, code the REGIONBELOW and
REGIONABOVE keywords. If you are satisfied with the job using the REGION or REGIONX it coded,
do not code the REGIONxxxxx keywords. Consider the following examples:

• If you want to override the REGION setting and give a program access to all private storage,
because you know that you established some reserved storage for system-key programs with the
SYSRESVxxxxx keywords, you can code REGIONBELOW(NOLIMIT) and
REGIONABOVE(NOLIMIT).

• If you have a series of jobs that code REGION=200M but 200M is no longer sufficient, you can
add a rule that overrides the 200M value to increase storage.

c. If you want to override the MEMLIMIT value, code the MEMLIMIT keyword with the desired value.

Reminder: Started tasks are often long running subsystems, such as LLA or DB2, providing services
to other jobs. If you choose to set the MEMLIMIT with SMFLIMxx, you would likely use larger values
for long running server address spaces than for batch jobs (where each step likely needs less
storage than a server address space).

3. Examine the rules that are already created in the active SMFLIMxx parmlib members to see how these
attributes are different.

a. If you want to use the same attributes, you can update the filter keywords for that rule to include
that additional type of work.

b. If you want to use different attributes, select a set of filter keywords that the system can use to
determine that the attributes should be applied:

• The available filters are JOBNAME, STEPNAME, PGMNAME, JOBACCT, STEPACCT, USER,
JOBCLASS, and SUBSYS. See the z/OS MVS Initialization and Tuning Reference for details on
these keywords

• The two accounting filters, JOBACCT and STEPACCT, are the most powerful because they let you
code rules for job steps across all of the other keywords. For example, two jobs that have
accounting data of "(D2405X,NY,POK)" could be treated the same, despite running in different
job classes, with different job names and assigned user IDs, and so on. Given that accounting
information is only defined by the installation, these keywords provide the most end-user-
oriented way of selecting job step attributes.

c. IBM recommends that you code separate rules to cover jobs and started tasks by using the SUBSYS
keyword. In addition, by using the SUBSYS keyword, you can automatically exclude spawned z/OS
UNIX work. For example, use SUBSYS(JES*,STC) for a rule that covers only JES initiated job steps
and started tasks.

What happens when there are multiple rules, or if there is an SMFLIMxx active and an IEFUSI exit active

As the system prepares to run a job step program, it runs the current IEFUSI exit. Upon return, it
processes the set of rules that are built from the REGION statements that are specified in the set of
parmlib members in SMFLIMxx. If the filters on a specified REGION statement match the job step, the

42 z/OS: z/OS MVS Initialization and Tuning Guide

REGION (above and below), SYSRESV (above and below), MEMLIMIT, and EXECUTE attributes are
updated. Processing will continue with the next REGION statement, and the filters for which might or
might not match. If a subsequent REGION statement does match, the system updates the attributes
again. The result is a compendium of the IEFUSI exit results (those not supported by SMFLIMxx or that
were not changed by matching SMFLIMxx rules) and the results of the various SMFLIMxx statements that
matched this job step program.

SMFLIM examples

1. The following example sets a limit on the amount of storage that is used by all JES-initiated programs,
but it does not change how the program obtains its private storage:

REGION JOBNAME(*) SUBSYS(JES*)
SYSRESVABOVE(50M) SYSRESVBELOW(512K)
MEMLIMIT(10T)

2. The following example sets a larger limit on the amount of storage that is used by started tasks
(including those tasks that are started with SUB=MSTR). This example also overrides the REGION (or
REGIONX) specification to allow access to all storage that is not otherwise reserved for the system:

REGION JOBNAME(*) SUBSYS(STC)
REGIONABOVE(NOLIMIT) REGIONBELOW(NOLIMIT)
SYSRESVABOVE(50M) SYSRESVBELOW(512K)
MEMLIMIT(NOLIMIT)

3. The following example allows user SBJ access to all available 64-bit storage when a large DFSORT job
named SBJSORT is running. This example also cancels any other user that attempts to run DFSORT
(this example requires two REGION statements):

REGION JOBNAME(*) USER(*) PGMNAME(ICEMAN)
EXECUTE(CANCEL)
REGION JOBNAME(SBJSORT) USER(SBJ) PGMNAME(ICEMAN) SUBSYS(JES*)
/* do not change SYSRESV values, prior rule establishes the correct amounts */
MEMLIMIT(NOLIMIT) EXECUTE(YES)

4. The following example cancels a job that did not code any accounting data, or coded null accounting
data:

REGION SUBSYS(JES*)
JOBACCT(,()) EXECUTE(CANCEL)

Because these examples really affect different work, they would be coded in the same parmlib member,
as follows:

REGION JOBNAME(*) SUBSYS(JES*)
 SYSRESVABOVE(50M) SYSRESVBELOW(512K)
 MEMLIMIT(10T)
REGION JOBNAME(*) SUBSYS(STC)
 REGIONABOVE(NOLIMIT) REGIONBELOW(NOLIMIT)
 SYSRESVABOVE(50M) SYSRESVBELOW(512K)
 MEMLIMIT(NOLIMIT)
REGION JOBNAME(*) USER(*) PGMNAME(ICEMAN)
 EXECUTE(CANCEL)
REGION JOBNAME(SBJSORT) USER(SBJ) PGMNAME(ICEMAN) SUBSYS(JES*)
REGION SUBSYS(JES*)
 JOBACCT(,())

Notes:

• A job that is running under JES2 with jobname BDOALLOC would have 50 MB and 512 KB reserved for
system-key storage, but it would run with whatever REGION was specified in its jobclass or on its JCL.

• The same job that is started as a started task would have unlimited extended and non-extended private
region, regardless of what it specified in its JCL.

• Any job with program name ICEMAN would be cancelled, unless it had JOBNAME SBJSORT, and was
running under JES2 or JES3, with user SBJ assigned.

• Any job without JOB accounting information would be cancelled.

Chapter 1. Storage management overview 43

Identifying problems in virtual storage (DIAGxx parmlib member)
This section describes functions you can use to identify problems with virtual storage requests (such as
excessive use of common storage, or storage that is not freed at the end of a job or address space). The
functions are as follows; you can control their status in the DIAGxx parmlib member.:

• Common storage tracking
• GETMAIN/FREEMAIN/STORAGE (GFS) trace.

Using the common storage tracking function

Common storage tracking collects data about requests to obtain or free storage in CSA, ECSA, SQA, and
ESQA. You can use this data to identify jobs or address spaces that use up an excessive amount of
common storage or have ended without freeing common storage. If those jobs or address spaces have
code to free that storage when they are canceled, you might relieve the shortage and avoid an IPL if you
cancel those jobs or address spaces using an operator command.

You can use Resource Measurement Facility (RMF) or a compatible monitor program to display the data
that the storage tracking function collects. You can also format storage tracking data in a dump using
interactive problem control system (IPCS). For information on how to use IPCS to format common storage
tracking data, see the description of the VERBEXIT VSMDATA subcommand in z/OS MVS IPCS Commands.

The OWNER parameter on the CPOOL BUILD, GETMAIN, and STORAGE OBTAIN macros assigns
ownership of the obtained CSA, ECSA, SQA, or ESQA storage to a particular address space or the system.
To get the most value from the common storage tracking function, ensure that authorized programs
specify the OWNER parameter on all CPOOL BUILD, GETMAIN, and STORAGE OBTAIN macros that:

• Request storage in CSA, ECSA, SQA, or ESQA, and
• Have an owning address space that is not the home address space.

IBM recommends that common storage tracking always be activated.

You can turn storage tracking on by activating a DIAGxx parmlib member, either at IPL (specify DIAG=xx
as a system parameter) or during normal processing (enter a SET DIAG=xx command). For more
information about using SET DIAG=xx, see z/OS MVS System Commands.

If you do not specify a DIAGxx parmlib member at IPL, the system processes the default member
DIAG00. If DIAG00 does not exist, common storage tracking will not be turned on. Common storage
remains active until turned off through a SET DIAG=xx command. DIAG00 also turns off the GFS trace
function, which is described in “Using GETMAIN/FREEMAIN/STORAGE (GFS) trace” on page 44.

IBM also provides the DIAG01 parmlib member, which turns the common storage tracking function on,
and DIAG02, which turns the common storage tracking function off. Your installation must create any
additional DIAGxx parmlib members.

Using GETMAIN/FREEMAIN/STORAGE (GFS) trace

GFS trace helps you identify problems related to requests to obtain or free storage. GFS trace uses the
generalized trace facility (GTF) to collect data about storage requests, and places this data in USRF65
user trace records in the GTF trace. You can use IPCS to format the GTF trace records.

To turn GFS trace on or off, activate a DIAGxx parmlib member, either at IPL (specify DIAG=xx as a
system parameter) or during normal processing (enter a SET DIAG=xx operator command). If you do not
specify a DIAGxx parmlib member at IPL, the system processes the default member DIAG00, which turns
GFS trace off. See z/OS MVS System Commands for more information about using SET DIAG=xx.

The DIAGxx parmlib member also allows you to specify:

• GFS trace filtering data, which limits GFS trace output according to:

– Address space identifier (ASID)
– Storage subpool
– The length of the storage specified on a request

44 z/OS: z/OS MVS Initialization and Tuning Guide

– Storage key
• GFS trace record data, which determines the data to be placed in each record, according to one or more

data items specified on the DATA keyword.

GFS trace degrades performance to a degree that depends on the current workload in the system.
Therefore, it is a good idea to activate GFS trace only when you know there is a problem. For information
about a GFS trace, see z/OS MVS Diagnosis: Tools and Service Aids.

Auxiliary storage overview
Auxiliary storage DASD hard disk drives are required on z/OS systems for storing all system data sets. For
additional paging flexibility and efficiency, you can add optional storage-class memory (SCM) on Flash
Express solid-state drives or the Virtual Flash Memory (VFM) as a second type of auxiliary storage.

You must have enough auxiliary storage available to store the programs and data that comprise your z/OS
system. This auxiliary storage that supports basic system requirements has three logical areas (see
Figure 3 on page 46):

• System data set storage area.
• Paging data sets for backup of all pageable address spaces.
• TSO data sets.

If your auxiliary storage includes SCM on Flash drives, you must be aware of the data storage
requirements and limitations for each storage medium, which are described in the following sections.
Refer to Chapter 2, “Auxiliary storage management initialization,” on page 63, and to the PAGE,
PAGESCM, NONVIO and PAGTOTL parameters (IEASYSxx PARMLIB member) in z/OS MVS Initialization
and Tuning Reference.

System data sets
During z/OS system installation, you must allocate space for the required system data sets on appropriate
direct access devices. The DEFINE function of access method services defines both the storage
requirements and the volume for each system data set. Some data sets must be allocated on the system
residence volume, while others can be placed on other direct access volumes.

Chapter 1. Storage management overview 45

Figure 3. Auxiliary storage requirement overview

Paging data sets
When you are creating WLM resource groups with a memory limit, you need to consider the impact that
potential paging of the memory pool might have on system paging resources. For more information see
the section on “Memory pools” on page 9.

46 z/OS: z/OS MVS Initialization and Tuning Guide

Paging data sets and optional storage-class memory (SCM), contain the paged-out portions of all virtual
storage address spaces. In addition, output to virtual I/O devices might be stored in the paging data sets.
VIO data cannot be stored on SCM because SCM does not currently support persistence across IPLs.
Before the first IPL, you must allocate sufficient space to back up the following virtual storage areas:

• Primary storage for the pageable portions of the common area
• Secondary storage for duplicate copies of the pageable common area
• The paged-out portions of all swapped-in address spaces - both system and installation
• Space for all address spaces that are, or were, swapped out
• VIO data sets that are backed by auxiliary storage.

Note: VIO data must remain on page data sets even when SCM is installed. All other data types can be
paged to page data sets or to SCM.

Paging data sets are specified in IEASYSxx members of SYS1.PARMLIB. When this is done, any PAGE
parameter in an IEASYSxx specified during IPL overrides any PAGE parameter in IEASYS00. For paging to
SCM, use the PAGESCM IEASYSxx member.

To add paging space to the system after system installation, the installation must use the access method
services to define and format the new paging data sets. To add the new data sets to the existing paging
space, either use the PAGEADD operator command or re-IPL the system, issuing the PAGE parameter at
the operator's console. To delete paging space, use the PAGEDEL operator command. To bring additional
SCM online after an IPL, use the CONFIG ONLINE command.

During initialization, paging spaces are set up by merging the selected IEASYSxx parmlib member list of
data set names with any names that are provided by the PAGE parameter (issued at the operator console)
and any names from the previous IPL.

Directed VIO

When backed by auxiliary storage, VIO data set pages can be directed to a subset of the local paging data
sets through directed VIO, which allows the installation to direct VIO activity away from selected local
paging data sets and use these data sets only for non-VIO paging. With directed VIO, faster paging
devices can be reserved for paging where good response time is important. The NONVIO system
parameter, with the PAGE parameter in the IEASYSxx parmlib member, allows the installation to define
those local paging data sets that are not to be used for VIO, leaving the rest available for VIO activity.
However, if space is depleted on the paging data sets that were made available for VIO paging, the non-
VIO paging data sets will be used for VIO paging.

The installation uses the DVIO keyword in the IEAOPTxx parmlib member to either activate or deactivate
directed VIO. To activate directed VIO, the operator issues a SET OPT=xx command where the xx
specifies the IEAOPTxx parmlib member that contains the DVIO=YES keyword; to deactivate directed
VIO, xx specifies an IEAOPTxx parmlib member that contains the DVIO=NO keyword. The NONVIO
parameter of IEASYSxx and the DVIO keyword of IEAOPTxx is explained more fully in z/OS MVS
Initialization and Tuning Reference.

Primary and secondary PLPA

During initialization, both primary and secondary PLPAs are established. The PLPA is established initially
from the LPALST concatenation.

On the PLPA page dataset, ASM maintains records that have pointers to the PLPA and extended PLPA
pages. During quick start and warm start IPLs, the system uses the pointers to locate the PLPA and
extended PLPA pages. The system then rebuilds the PLPA and extended PLPA page and segment tables,
and uses them for the current IPL.

If CLPA is specified at the operator's console, indicating a cold start is to be performed, the PLPA storage
is deleted and made available for system paging use. A new PLPA and extended PLPA is then loaded, and
pointers to the PLPA and extended PLPA pages are recorded on the PLPA page dataset. CLPA also implies
CVIO.

Chapter 1. Storage management overview 47

If storage-class memory (SCM) is installed, ASM pages PLPA to the PLPA data set and also to SCM. ASM
then uses the PLPA data set for warm starts, and the PLPA on SCM for resolving page faults.

Virtual I/O storage space

Virtual I/O operations may send VIO dataset pages to the local paging dataset space. During a quick start,
the installation uses the CVIO parameter to purge VIO dataset pages. During a warm start, the system can
recover the VIO dataset pages from the paging space. If an installation wants to delete VIO page space
reserved during the warm start, it issues the CVIO system parameter at the operator's console. CVIO
applies only to the VIO dataset pages that are associated with journaled job classes. (The VIO journaling
dataset contains entries for the VIO datasets associated with journaled job classes.) If there are no
journaled job classes or no VIO journaling dataset, there is no recovery of VIO dataset pages. Instead, all
VIO dataset pages are purged and the warm start is effectively a quick start.

If the SPACE parameter for a DD statement having a UNIT parameter, associated with a UNITNAME that
was defined with having VIO=YES, is not specified, the default size is 10 primary and 50 secondary blocks
with an average block length of 1000 bytes.

The cumulative number of page datasets must not exceed 256. This maximum number of 256 page data
sets should follow these guidelines:

• There must either be one PLPA page data set or *NONE* must be specified to indicate that SCM is to be
substituted. In either case, the specification counts toward the 256 maximum.

• There must either be one common page data set or *NONE* must be specified to indicate that SCM is to
be substituted. In either case, the specification counts toward the 256 maximum.

• There must be at least one local page data set, but no more than 253.

The actual number of pages required in paging data sets depends on the system load, including the size of
the VIO data sets being created and the rates at which they are created and deleted.

Using storage-class memory (SCM)
Adding optional storage-class memory (SCM) on Flash Express cards, including Virtual Flash Memory
(VFM), to your auxiliary storage can increase paging performance and flexibility. Even with SCM usage,
page data sets on DASD are required for auxiliary storage. With the exception of VIO data, which must
remain on page data sets, all other data types can be paged out to SCM. ASM pages out from main
memory to either storage medium based on the response times and on data set characteristics, critical
paging requirements, disk availability (during a HyperSwap® failover, for example) and available storage
space. For additional information, refer to Chapter 2, “Auxiliary storage management initialization,” on
page 63.

Figure 4 on page 49 depicts the required auxiliary storage management page data sets with the addition
of optional SCM. For additional information on using SCM, refer to Chapter 2, “Auxiliary storage
management initialization,” on page 63 and the PAGE, PAGESCM, NONVIO and PAGTOTL parameters of
parmlib member IEASYSxx in z/OS MVS Initialization and Tuning Reference.

48 z/OS: z/OS MVS Initialization and Tuning Guide

Figure 4. Auxiliary storage diagram with SCM

Improving module fetch performance with LLA
You can improve the performance of module fetching on your system by allowing library lookaside (LLA)
to manage your production load libraries. LLA reduces the amount of I/O needed to locate and fetch
modules from DASD storage.

Chapter 1. Storage management overview 49

Specifically, LLA improves module fetch performance in the following ways:

• By maintaining (in the LLA address space) copies of the library directories the system uses to locate
load modules. The system can quickly search the LLA copy of a directory in virtual storage instead of
using costly I/O to search the directories on DASD.

• By placing (or staging) copies of selected modules in a virtual lookaside facility (VLF) data space (when
you define the LLA class to VLF, and start VLF). The system can quickly fetch modules from virtual
storage, rather than using slower I/O to fetch the modules from DASD.

LLA determines which modules, if staged, would provide the most benefit to module fetch performance.
LLA evaluates modules as candidates for staging based on statistics it collects about the members of
the libraries it manages (such as module size, frequency of fetches per module (fetch count), and the
time required to fetch a particular module).

If necessary, you can directly influence LLA staging decisions through installation exit routines
(CSVLLIX1 and CSVLLIX2). For information about coding these exit routines, see z/OS MVS Installation
Exits.

LLA and module search order
When a program requests a module, the system searches for the requested module in various system
areas and libraries, in the following order:

1. Modules that were loaded under the current task (LLEs)
2. The job pack area (JPA)
3. Tasklib, steplib, joblib, or any libraries that were indicated by a DCB specified as an input parameter to

the macro used to request the module (LINK, LINKX, LOAD, ATTACH, ATTACHX, XCTL or XCTLX).
4. Active link pack area (LPA), which contains the FLPA and MLPA
5. Pageable link pack area (PLPA)
6. SYS1.LINKLIB and libraries concatenated to it through the LNKLSTxx member of parmlib. (“Placing

modules in the system search order for programs” on page 18 explains the performance
improvements that can be achieved by moving modules from the LNKLST concatenation to LPA.)

When searching TASKLIBs, STEPLIBs, JOBLIBs, a specified DCB, or the LNKLST concatenation for a
module, the system searches each data set directory for the first directory entry that matches the name
of the module. The directory is located on DASD with the data set, and is updated whenever the module is
changed. The directory entry contains information about the module and where it is located in storage.
(For more information, see the "Program Management" topic in the z/OS MVS Programming: Assembler
Services Guide.)

As mentioned previously, LLA caches, in its address space, a copy of the directory entries for the libraries
it manages. For modules that reside in LLA-managed libraries, the system can quickly search the
directories in virtual storage instead of using I/O to search the directories on DASD.

Planning to use LLA
To use LLA, do the following:

1. Determine which libraries LLA is to manage
2. Code members of parmlib (see “Coding the required members of parmlib” on page 51)
3. Control LLA through operator commands (see “Controlling LLA and VLF through operator commands”

on page 52).

When determining which data sets LLA is to manage, try to limit these choices to production load libraries
that are rarely changed. Because LLA manages LNKLST libraries by default, you need only determine
which non-LNKLST libraries LLA is to manage. If, for some reason, you do not want LLA to manage
particular LNKLST libraries, you must explicitly remove such libraries from LLA management (as
described in “Removing libraries from LLA management” on page 54).

50 z/OS: z/OS MVS Initialization and Tuning Guide

Using VLF with LLA

Because you obtain the most benefit from LLA when you have both LLA and VLF functioning, you should
plan to use both. When used with VLF, LLA reduces the I/O required to fetch modules from DASD by
causing selected modules to be staged in VLF data spaces. LLA does not use VLF to manage library
directories. When used without VLF, LLA eliminates only the I/O the system would use in searching library
directories on DASD.

LLA notes

1. All LLA-managed libraries must be cataloged. This includes LNKLST libraries. A library must remain
cataloged for the entire time it is managed by LLA. Please see “Recataloging LLA-managed data sets
while LLA is active” on page 57 for additional information about recataloging LLA-managed libraries.

2. The benefits of LLA load module caching applies only to modules that are retrieved through the
following macros: LINK, LINKX, LOAD, ATTACH, ATTACHX, XCTL and XCTLX.

3. LLA does not stage load modules in overlay format. LLA manages the directory entries of overlay
format modules, but the modules themselves are provided through program fetch. If you want to
make overlay format modules eligible for staging, you must re-linkedit the modules as non-overlay
format. These reformatted modules might occupy more storage when they execute and, if LLA does
not stage them, might take longer to be fetched.

Coding the required members of parmlib
LLA and VLF are associated with parmlib members, as follows:

• Use the CSVLLAxx member to identify the libraries that LLA is to manage.
• Use the COFVLFxx member to extend VLF services to LLA.

This information provides guidance information for coding the keywords of CSVLLAxx. For information
about the required syntax and rules for coding CSVLLAxx and COFVLFxx, see z/OS MVS Initialization and
Tuning Reference.

Coding CSVLLAxx

Use CSVLLAxx to specify which libraries LLA is to manage and how it is to manage them.

IBM does not provide a default CSVLLAxx member (such as CSVLLA00). If you do not supply a CSVLLAxx
member by the LLA=xx parameter of the LLA procedure on the first starting of LLA for this IPL, or if you
specify a parameter of LLA=NONE, LLA by default manages only the libraries that are accessed through
the LNKLST concatenation. If you have started LLA successfully with a CSVLLAxx member and then stop
LLA, a subsequent start of LLA uses that CSVLLAxx member unless you supply another CSVLLAxx
member. If you want to return to the default settings, specify LLA=NONE LLA=00.

Using multiple CSVLLAxx members

To use more than one CSVLLAxx member at a time, specify the additional members to be used on the
PARMLIB and SUFFIX keywords in the original CSVLLAxx member. The CSVLLAxx members pointed to by
the PARMLIB and SUFFIX keywords must not point back to the original member, nor to each other.

You can use the PARMLIB and SUFFIX keywords to specify CSVLLAxx members that reside in data sets
other than PARMLIB. You can then control LLA's specifications without having update access to PARMLIB.

You can also use the PARMSUFFIX parameter of the CSVLLAxx parmlib member to specify additional
CSVLLAxx members. PARMSUFFIX differs from the PARMLIB(dsn) SUFFIX(xx) statement in that no data
set name is specified. PARMSUFFIX searches the logical parmlib for the CSVLLAxx member.

Example of multiple CSVLLAxx members

Let's say you want two parmlibs (IMS.PARMLLA and AMVS.LLAPARMS) so that a TSO REXX exec can
automatically activate a new module in LNKLST when it has copied the new module into a LNKLST library.

Do the following; START LLA,LLA=IM,SUB=MSTR with CSVLLAIM as shown:

Chapter 1. Storage management overview 51

 FREEZE(-LNKLST-)
 PARMLIB(IMS.PARMLLA)
 SUFFIX(IA)
 PARMLIB(AMVS.LLAPARMS)
 SUFFIX(RX)

where AMVS.LLAPARMS (CSVLLARX) would contain the latest update requested by the REXX exec, such
as:

 REMOVE(...)/LIBRARIES(...)MEMBERS...
 or
 PARMSUFFIX(...)
 or
 PARMLIB(...) SUFFIX(...)

The REXX exec can either use multiple members and use the PARMSUFFIX to identify them, or move the
old CSVLLARX to CSVLLARn before building the new one.

Storing program objects in PDSEs

With SMS active, you can produce a program object, and executable program unit that can be stored in a
partitioned data set extended (PDSE) program library. Program objects resemble load modules in
function, but have fewer restrictions and are stored in PDSE libraries instead of PDS libraries. PDSE
libraries that are to be managed by LLA must contain program objects. LLA manages both load and
program libraries.

Coding COFVLFxx

To have VLF stage load modules from LLA-managed libraries, you can use the default COFVLFxx member
that is shipped in parmlib (COFVLF00), or, optionally, an installation-supplied COFVLFxx member. The
installation-supplied member must contain a CLASS statement for LLA (see COFVLF00 for an example).

If you modify the COFVLFxx parmlib member, you must stop and restart VLF to make the changes
effective.

If you want to use an installation-supplied COFVLFxx member instead of COFVLF00, do the following:

• Specify a CLASS statement for LLA in the alternative COFVLFxx member
• Specify the suffix of the alternative COFVLFxx member on the START VLF command. Otherwise, the

system uses COFVLF00 by default.

For information about the required syntax and rules for coding the COFVLFxx member, see z/OS MVS
Initialization and Tuning Reference.

Controlling LLA and VLF through operator commands
Use the following commands to control LLA:

• START LLA and START VLF
• STOP LLA and STOP VLF
• MODIFY LLA.

This information explains how to use commands to control LLA. For information about the required syntax
and rules for entering commands, see z/OS MVS System Commands.

Starting LLA

The START LLA command is included in the IBM-supplied IEACMD00 member of parmlib. Therefore, the
system automatically starts LLA when it reads the IEACMD00 member during system initialization.

Although the system automatically starts LLA, it does not, by default, activate a CSVLLAxx member. To
activate a CSVLLAxx member at system initialization, specify the suffix (xx) of the CSVLLAxx member in
either of the following places:

52 z/OS: z/OS MVS Initialization and Tuning Guide

• In the LLA procedure in SYS1.PROCLIB, as shown, where 'xx' matches the suffix on the CSVLLAxx
member to be used:

//LLA PROC LLA=xx
//LLA EXEC PGM=CSVLLCRE,PARM='LLA=&LLA'

• On the START LLA command in the IEACMD00 member, as shown, where 'xx' matches the suffix on the
CSVLLAxx member to be used:

COM='START LLA,SUB=MSTR,LLA=xx'

You should not set a region limit for LLA, either by setting a region size or by an IEFUSI exit. This will avoid
storage exhaustion abends in the LLA address space.

If you do not supply a CSVLLAxx member by the LLA=xx parameter of the LLA procedure on the first
starting of LLA for this IPL, or if you specify a parameter of LLA=NONE, LLA will by default manage only
the libraries that are accessed through the LNKLST concatenation. If you have started LLA successfully
with a CSVLLAxx member and then stop LLA, a subsequent start of LLA will use that CSVLLAxx member
unless you supply another CSVLLAxx member. If you want to get back to the default settings, specify
LLA=NONE.

When started, LLA manages both the libraries specified in the CSVLLAxx member as well as the libraries
in the LNKLST concatenation.

If you wish to use something other than the parmlib concatenation for LLA, specify the data set LLA is to
use on an //IEFPARM DD statement in the LLA procedure in PROCLIB.

Starting LLA after system initialization

IBM recommends that you specify SUB=MSTR on the START LLA command to prevent LLA from failing if
JES fails. For example, in the following command, 'xx' matches the suffix on the CSVLLAxx member to be
used, if any:

START LLA,SUB=MSTR,LLA=xx

Starting VLF

LLA provides better performance when VLF services are available, so it is better (although not necessary)
to start VLF before LLA. However, the operation of LLA does not depend on VLF.

To allow VLF to be started through the START command, create a VLF procedure, or use the following
procedure, which resides in SYS1.PROCLIB:

//VLF PROC NN=00
//VLF EXEC PGM=COFMINIT,PARM='NN=&NN'

When you issue the START VLF command, the VLF procedure activates the IBM-supplied COFVLF00
member, which contains a CLASS statement for LLA.

Stopping LLA and VLF

You can stop LLA and VLF through STOP commands. Note that stopping VLF purges all the data in VLF
data spaces for all classes defined to VLF (including LLA), and will slow performance.

If LLA or VLF is stopped (either by a STOP command or because of a system failure), you can use a START
command to reactivate the function.

Modifying LLA

You can use the MODIFY LLA command to change LLA dynamically, in either of the following ways:

• MODIFY LLA,REFRESH. Rebuilds LLA's directory for the entire set of libraries managed by LLA. This
action is often called a complete refresh of LLA.

• MODIFY LLA,UPDATE=xx. Rebuilds LLA's directory only for specified libraries or modules. xx identifies
the CSVLLAxx member that contains the names of the libraries for which directory information is to be

Chapter 1. Storage management overview 53

refreshed. This action is often called a selective refresh of LLA. (For details, see “Identifying members
for selective refreshes” on page 54.)

When an LLA-managed library is updated, the version of a module that is located by a directory entry
saved in LLA will differ from the version located by the current directory entry on DASD for that module. If
you update a load module in a library that LLA manages, it is a good idea to follow the update by issuing
the appropriate form of the MODIFY LLA command to refresh LLA's cache with the latest version of the
directory information from DASD. Otherwise, the system will continue to use an older version of a load
module.

Notes:

1. Applications can use the LLACOPY macro to refresh LLA's directory information. For information about
the LLACOPY macro, see z/OS MVS Programming: Authorized Assembler Services Guide.

2. You can specify up to 255 concurrent LLA modify commands before the system reports that LLA is
busy.

Identifying members for selective refreshes

In CSVLLAxx, specify the MEMBERS keyword to identify members of LLA-managed libraries for which
LLA-cached directory entries are to be refreshed during selective refreshes of LLA. If you issue the
MODIFY LLA,UPDATE=xx command to select a CSVLLAxx member that has libraries specified on the
MEMBERS keyword, LLA will update its directory for each of the members listed on the MEMBERS
keyword.

Selectively refreshing LLA directory allows updated LLA-managed modules to be activated without
activating other changed LLA-managed modules. Selective LLA refresh also avoids the purging and
restaging of modules that have not changed. When a staged module is refreshed in the LLA directory, LLA
purges the copy of the module in the virtual lookaside facility (VLF) data space and may then restage the
module into VLF.

For more information about specifying the MEMBERS keyword, see the description of the CSVLLAxx
member in z/OS MVS Initialization and Tuning Reference.

Removing libraries from LLA management

In CSVLLAxx, specify the REMOVE keyword for libraries that are to be removed dynamically from LLA
management. If you issue the MODIFY LLA,UPDATE=xx command (selective refresh) to select a
CSVLLAxx member that lists libraries on the REMOVE keyword, LLA no longer provides directory entries or
staged modules for these libraries, regardless of whether the libraries are included in the LNKLST
concatenation. (Note that you cannot use REMOVE to change the order or contents of the LNKLST
concatenation itself.)

You can also use the MODIFY LLA,REFRESH command (complete refresh) to remove libraries from LLA
management. This command rebuilds the entire LLA directory, rather than specified entries in LLA's
directory. To limit the adverse effects on performance caused by an LLA refresh, whenever possible, use a
selective refresh of LLA instead of a complete refresh, or stopping and restarting LLA.

In any case, when LLA directory entries are refreshed, LLA discards directory information of the
associated module and causes VLF (if active) to remove the module from the VLF cache. This reduces
LLA's performance benefit until LLA stages them again. Because LLA stages modules using the cached
directory entries, you should refresh LLA whenever a change is made to an LLA-managed data set.

The MODIFY LLA command does not reload (or refresh) modules that are already loaded into virtual
storage, such as modules in long-running or never-ending tasks.

For more information about specifying the REMOVE keyword, see the description of the CSVLLAxx
member in z/OS MVS Initialization and Tuning Reference.

Modifying shared data sets

You can allow two or more systems to share access to the same library directory. When modifying or
stopping LLA in this case, your changes must take effect simultaneously on all systems that share access
to the directory.

54 z/OS: z/OS MVS Initialization and Tuning Guide

In cases where you simply want to update an LLA-managed data set, it is easier to remove the data set
from LLA management and update it, rather than stopping LLA on all systems. To do so, enter a MODIFY
LLA,UPDATE=xx command on each system that shares access to the data set, where 'xx' identifies a
CSVLLAxx member that specifies, on the REMOVE keyword, the data set to be removed from LLA
management.

When you have completed updating the data set, enter the MODIFY LLA,UPDATE=xx command again, this
time specifying a CSVLLAxx parmlib member in which the keyword LIBRARIES specifies the name of the
data set.

In any case, whenever multiple systems share access to an LLA-managed data set, STOP, START, or
MODIFY commands must be entered for LLA on all the systems.

Using the FREEZE|NOFREEZE option

For an LLA-managed library, use the FREEZE|NOFREEZE option to indicate whether the system is to
search the LLA-cached or DASD copy of a library directory. With FREEZE|NOFREEZE, which you code in
the CSVLLAxx member, you specify on a library-by-library basis which directory copy the system is to
search, as follows:

• If you specify FREEZE, the system uses the copy of the directory that is maintained in the LLA address
space (the library is "frozen").

• If you specify NOFREEZE, the system searches the directory that resides in DASD storage.

The system always treats libraries in the LNKLST concatenation as frozen. Therefore, you need only
specify the FREEZE option for non-LNKLST libraries, or for LNKLST libraries that are referenced through
TASKLIBs, STEPLIBs, or JOBLIBs.

When an LLA-managed library is frozen, the following is true:

• Users of the library always receive versions of the library's modules that are pointed to by the LLA-
cached directory.

• Users do not see any updates to the library until LLA is refreshed. If a user does multiple linkedits to a
member in a FREEZE data set, the base for each subsequent linkedit does not include the previous
linkedits; the base is the LLA version of the member.

• If the version of a requested module matches the version of the module in VLF, the users receive the
module from VLF. Otherwise, users receive the module from DASD.

To take full advantage of LLA's elimination of I/O for directory search, specify FREEZE for as many read-
only or infrequently updated libraries as appropriate.

Having NOFREEZE in effect for an LLA-managed library means that your installation does not eliminate
I/O while searching the library's directory. However, LLA can still improve performance when the system
fetches load modules from the VLF data space instead of DASD storage.

Table 10 on page 55 summarizes the affects of the FREEZE|NOFREEZE option on directory search and
module fetch.

Table 10. FREEZE|NOFREEZE processing

Action FREEZE or
NOFREEZE

LNKLST Libraries
Accessed From LNKLST

LNKLST Libraries
Accessed Outside
LNKLST

Other Non-LNKLST
Libraries

Directory
Search

FREEZE LLA directory is used. LLA directory is used. LLA directory is used.

NOFREEZE LLA directory is used. DASD directory is used
(I/O occurs)

DASD directory is used
(I/O occurs)

Chapter 1. Storage management overview 55

Table 10. FREEZE|NOFREEZE processing (continued)

Action FREEZE or
NOFREEZE

LNKLST Libraries
Accessed From LNKLST

LNKLST Libraries
Accessed Outside
LNKLST

Other Non-LNKLST
Libraries

Module
Fetch

FREEZE Requestor receives LLA
version of module (from
VLF data space or DASD).

Requestor receives LLA
version of module (from
VLF data space or DASD).

Requestor receives LLA
version of module (from
VLF data space or DASD).

NOFREEZE Requestor receives LLA
version of module (from
VLF data space or DASD).

Requestor receives most
current version of module
(from DASD or VLF data
space, if staged).

Requestor receives most
current version of module
(from DASD or VLF data
space, if staged).

You can change the FREEZE|NOFREEZE status of an LLA-managed library at any time through the
MODIFY LLA command. Changing a library from NOFREEZE to FREEZE also causes a refresh of the
directory information for that library (note that when a library is refreshed, all of its modules are destaged
from the VLF data space, which will slow performance until new versions are staged).

For more information about specifying the FREEZE|NOFREEZE option, see the description of the
CSVLLAxx member in z/OS MVS Initialization and Tuning Reference.

Changing LLA-managed libraries

After changing a module in, or adding a module to, an LLA-managed library, IBM recommends that you
refresh LLA for the library. A module that is changed and has a new location is not considered for staging
until that member is refreshed.

The recommended way to make updates in the production system is to use IEBCOPY under FREEZE
mode. The member to be updated should be copied to another data set, the linkedits run against the
second data set and then the updated member can be copied back to the LLA-managed data set. If LLA-
managed production libraries must be updated directly, LLA should be refreshed to manage the data set
in NOFREEZE mode.

LLA ENQ consideration

By default, LLA allocates the libraries it manages as DISP=SHR. This means that if a job attempts to
allocate an LLA-managed library as DISP=OLD, the job is enqueued until LLA is stopped or the library is
removed from LLA management. Before adding a library to the libraries that LLA manages, review and, if
necessary, change the jobs that reference the library.

Using the GET_LIB_ENQ keyword

The GET_LIB_ENQ keyword in the CSVLLAxx member allows you to prevent LLA from obtaining an
exclusive enqueue on the libraries it manages. If you specify GET_LIB_ENQ (NO), your installation's jobs
can update, move, or delete LLA-managed libraries while other users are accessing the libraries.
GET_LIB_ENQ (NO) is generally not recommended, however, because of the risks it poses to data set
integrity.

Compressing LLA-managed libraries

If you compress an LLA-managed library, LLA continues to provide the obsolete directory entries. For
members that have been staged to the VLF data space, the system will operate successfully. If the
member is not currently staged, however, the cached obsolete directory entry can be used to fetch the
member at the old TTR location from DASD.

Because using obsolete directory entries can cause such problems as abends, breaches of system
integrity, and system failures, use the following procedure to compress LLA-managed libraries:

1. Issue a MODIFY LLA,UPDATE=xx command, where the CSVLLAxx parmlib member includes a REMOVE
statement identifying the library that needs to be compressed.

2. Compress the library

56 z/OS: z/OS MVS Initialization and Tuning Guide

3. Issue a MODIFY LLA,UPDATE=xx command, where the CSVLLAxx parmlib member includes a
LIBRARIES statement to return the compressed library to LLA management.

This procedure causes all members of that library to be discarded from the VLF data space. The members
are then eligible to be staged again.

Recataloging LLA-managed data sets while LLA is active

LLA dynamically allocates the library data sets it manages. To re-catalog an LLA-managed library data set
while LLA is active, do the following:

1. Remove the library data set from LLA. (Issue a MODIFY LLA,UPDATE=xx command, where xx identifies
the suffix of the CSVLLAxx parmlib member that includes a REMOVE statement that identifies the
library data set to be removed from LLA management.)

2. Recatalog the library data set.
3. Return the library data set to LLA. (Issue a MODIFY LLA,UPDATE=xx command, where xx identifies the

suffix of the CSVLLAxx parmlib member that includes a LIBRARIES statement that identifies the
recataloged library data set to be returned to LLA management.) Recataloged LNKLST libraries cannot
be put back into LLA management. This causes fetch failures.

Allocation considerations
Before a job can execute, the operating system must set aside the devices, and space on the devices, for
the data that is to be read, merged, sorted, stored, punched, or printed. In MVS, the "setting-aside"
process is called allocation.

MVS assigns units (devices), volumes (space for data sets), and data sets (space for collections of data)
according to the data definition (DD) and data control block (DCB) information included in the JCL for the
job step.

When the data definition or DCB information is in the form of text units, the allocation of resources is said
to be dynamic. Dynamic allocation means you are requesting the system to allocate and/or deallocate
resources for a job step while it is executing.For details on the use of dynamic allocation, see z/OS MVS
Programming: Authorized Assembler Services Guide.

Serialization of resources during allocation
When the system is setting aside non-sharable devices, volumes and data sets for a job or a step, it must
prevent any other job from using those resources during the allocation process. To prevent a resource
from changing status while it is being allocated to a job, the system uses serialization. Serialization during
allocation causes jobs to wait for the resources and can have a major impact on system performance.
Therefore, the system attempts to minimize the amount of time lost to serialization by providing a specific
order of allocation processing. See Table 11 on page 57.

Knowing the order in which the system chooses devices, you can improve system performance by making
sure your installation's jobs request resources that require the least possible serialization.

The system processes resource allocation requests in the order shown in Table 11 on page 57. As you
move down the list, the degree of serialization – and processing time – increases.

Table 11. Processing order for allocation requests requiring serialization

Kinds of allocation requests Serialization required

Requests requiring no specific units or volumes; for
example, DUMMY, VIO, and subsystem data sets.

No serialization.

Requests for sharable units: DASD that have permanently
resident or reserved volumes mounted on them.

No serialization.

Teleprocessing devices. Serialized on the requested devices.

Chapter 1. Storage management overview 57

Table 11. Processing order for allocation requests requiring serialization (continued)

Kinds of allocation requests Serialization required

Pre-mounted volumes, and devices that do not need
volumes.

Serialized on the group(s) of devices eligible to satisfy
the request. A single generic device type is serialized
at a time.

Online, nonallocated devices that need the operator to
mount volumes.

Serialized on the group(s) of devices eligible to satisfy
the request. A single generic device type is serialized
at a time.

All other requests: offline devices, nonsharable devices
already allocated to other jobs.

Serialized on one or more groups of devices eligible to
satisfy the request. A single generic device type is
serialized at a time.

Improving allocation performance
You can contribute to the efficiency of allocation processing throughout your installation in several ways:

• For devices:

– Use the device preference table, specified through the Hardware Configuration Definition (HCD) to
set up the order for device allocation. See the z/OS MVS Device Validation Support appendix for a
listing of the device preference table installation's devices as esoteric groups, and to group them for
selection by allocation processing.

– Use the eligible device table (EDT) to identify the I/O devices that you want to include in the esoteric
groups.

For more information on the device preference table and the EDT, see z/OS HCD Planning.
• For volumes, use the VATLSTxx members of SYS1.PARMLIB to specify volume attributes at IPL.
• For data sets, you can specify the JCL used for your installation's applications according to the device

selection criteria you have set up through the HCD process and IPL.

The volume attribute list
In MVS, each online device in the installation has a mount attribute and each mounted volume has a use
attribute.

The mount attributes determine when the volume on that device should be removed. This information is
needed when selecting a device and during step unallocation processing. The mount attributes are:

• Permanently resident
• Reserved
• Removable.

The use attributes determine the type of nonspecific requests eligible to that volume. The use attributes
are:

• Public
• Private
• Storage.

Allocation routines use the volumes' mount and use attributes in selecting devices to satisfy allocation
requests. Thoughtful selection of the use and mount attributes is important to the efficiency of your
installation. For example, during allocation, data sets on volumes marked permanently resident or
reserved are selected first because they require no serialization, thus minimizing processing time.

During system initialization, you can assign volumeattributes to direct access volumes by means of the
volume attribute list. The volume attribute list is defined at IPL time using the VATLSTxx member of
SYS1.PARMLIB.

58 z/OS: z/OS MVS Initialization and Tuning Guide

After an IPL, you can assign volume attributes to both direct access and tape volumes using the MOUNT
command. The USE= parameter on the MOUNT command defines the use attribute the volume is to have;
a mount attribute of reserved is automatic. For the details of using the MOUNT command, see z/OS MVS
System Commands.

When volumes are not specifically assigned a use attribute in the VATLSTxx member or in a MOUNT
command, the system assigns a default. You can specify this default using the VATDEF statement in
VATLSTxx. If you do not specify VATDEF, the system assigns a default of public. For details on including a
volume attribute list in IEASYSxx,and on coding the VATLSTxx parmlib member itself, see z/OS MVS
Initialization and Tuning Reference.

Use and mount attributes
Every volume is assigned use and mount attributes through an entry in the VATLSTxx member at IPL, a
MOUNT command, or by the system in response to a DD statement.

The relationships between use and mount attributes are complex, but logical. The kinds of devices
available in an installation, the kinds of data sets that will reside on a volume, and the kinds of uses the
data sets will be put to, all have a bearing on the attributes assigned to a volume. Generally, the operating
system establishes and treats volume attributes as outlined in the following sections.

Use attributes

• Private — meaning the volume can only be allocated when its volume serial number is explicitly or
implicitly specified.

• Public — meaning the volume is eligible for allocation to a temporary data set, provided the request is
not for a specific volume and PRIVATE has not been specified on the VOLUME parameter of the DD
statement.

Both tape and direct access volumes are given the public use attribute.

A public volume may also be allocated when its volume serial number is specified on the request.
• Storage — meaning the volume is eligible for allocation to both temporary and non-temporary data sets,

when no specific volume is requested and PRIVATE is not specified. Storage volumes usually contain
non-temporary data sets, but temporary data sets that cannot be assigned to public volumes are also
assigned to storage volumes.

Mount attributes

• Permanently resident — meaning thevolume cannot be demounted. Only direct access volumes can be
permanently resident. The following volumes are always permanently resident:

– All volumes that cannot be physically demounted, such as drum storage and fixed disk volumes
– The IPL volume
– The volume containing the system data sets

In the VATLSTxx member, you can assign a permanently-residentvolume any of the three use
attributes. If you do not assign a use attribute to a permanently-resident volume, the default is public.

• Reserved — meaning the volume is to remain mounted until the operator issues an UNLOAD command.

Both direct access and tape volumes can be reserved because of the MOUNT command; only DASD
volumes can be reserved through the VATLSTxx member.

The reserved attribute is usually assigned to a volume that will be used by many jobs to avoid repeated
mounting and demounting.

You can assign a reserved direct access volume any of the three use attributes, through the USE
parameter of the MOUNT command or the VATLSTxx member, whichever is used to reserve the volume.

A reserved tape volume can only be assigned the use attributes of private or public.

Chapter 1. Storage management overview 59

• Removable — meaning that the volume is not permanently resident or reserved. A removable volume
can be demounted either after the end of the job in which it is last used, or when the unit it is mounted
on is needed for another volume.

You can assign the use attributes of private or public to a removable direct access volume, depending on
whether VOLUME=PRIVATE is coded on the DD statement: if this subparameter is coded, the use
attribute is private; if not, it is public.

You can assign the use attributes of private or public to a removable tape volume under one of the
following conditions:

– Private

- The PRIVATE subparameter is coded on the DD statement.
- The request is for a specific volume.
- The data set is nontemporary (not a system-generated data set name, and a disposition other than

DELETE).

Note: The request must be for a tape only data set. If, for example, an esoteric group name includes
both tape and direct access devices, a volume allocated to it will be assigned a use attribute of
public.

– Public

- The PRIVATE subparameter is not coded on the DD statement.
- A nonspecific volume request is being made.
- The data set is temporary (a system-generated data set name, or a disposition of DELETE).

Table 12 on page 60 summarizes the mount and use attributes and how they are related to allocation
requests.

Table 12. Summary of mount and use attribute combinations

Volume State Temporary
Data Set

Nontemporary
data set

How Assigned How Unmounted

Type of Volume Request

Public and Permanently
Resident (see note)

Nonspecific or
Specific

Specific VATLSTxx entry or by default Always mounted

Private and Permanently
Resident (see note)

Specific Specific VATLSTxx entry Always mounted

Storage and Permanently
Resident (see note)

Nonspecific or
Specific

Nonspecific or
Specific

VATLSTxx entry Always mounted

Public and Reserved
(Tape and direct access)

Nonspecific or
Specific

Specific Direct access: VATLSTxx
entry or MOUNT command;
Tape: MOUNT command

UNLOAD or VARY OFFLINE
commands

Private and Reserved
(Tape and direct access)

Specific Specific Direct access: VATLSTxx
entry or MOUNT
command ;Tape: MOUNT
command

UNLOAD or VARY OFFLINE
commands

Storage and Reserved
(see note)

Nonspecific or
Specific

Nonspecific or
Specific

VATLSTxx entry or MOUNT
command

UNLOAD or VARY OFFLINE
commands

Public and Removable
(Tape and direct access)

Nonspecific or
Specific

Specific VOLUME=PRIVATE is not
coded on the DD statement.
(For tape, nonspecific
volume request and a
temporary data set also
cause this assignment.)

When unit is required by
another volume; or by
UNLOAD or VARY OFFLINE
commands.

60 z/OS: z/OS MVS Initialization and Tuning Guide

Table 12. Summary of mount and use attribute combinations (continued)

Volume State Temporary
Data Set

Nontemporary
data set

How Assigned How Unmounted

Type of Volume Request

Private and Removable
(Tape and direct access)

Specific Specific VOLUME=PRIVATE is coded
on the DD statement. (For
tape, a specific volume
request or a nontemporary
data set also cause this
assignment).

At job termination for
direct access; at step
termination or dynamic
unallocation for tape
(unless VOL=RETAIN or a
disposition of PASS was
specified); or when the
unit is required by another
volume.

The nonsharable attribute

Some allocation requests imply the exclusive use of a direct access device while the volume is mounted
or unmounted. The system assigns the nonsharable attribute to volumes that might require demounting
during step execution.

When a volume is thus made non-sharable, it cannot be assigned to any other data set until the non-
sharable attribute is removed at the end of step execution.

The following types of requests cause the system to automatically assign the nonsharable attribute to a
volume:

• A specific volume request that specifies more volumes than devices.
• A nonspecific request for a private volume that specifies more volumes than devices.
• A volume request that includes a request for unit affinity to a preceding DD statement, but does not

specify the same volume for the data set. For more information, see the discussion of unit affinity in
z/OS MVS JCL Reference.

• A request for deferred mounting of the volume on which a requested data set resides.

Except for one situation, the system will not assign the non-sharable attribute to a permanently-resident
or reserved volume. The exception occurs when the allocation request is for more volumes than units, and
one of the volumes is reserved. The reserved volume is to share a unit with one or more removable
volumes, which precede it in the list of volume serial numbers.

Consider the following example, where volume A is removable and volume B is reserved. In this example,
both volumes are assigned the non-sharable attribute; neither of them can be used in another job at the
same time. To avoid this situation, do one of the following:

• Specify the same number of volumes as units
• Specify parallel mounting
• Set the mount attribute of volume A as resident or reserved.

 DSN=BCA.ABC,VOL=SER=(A,B),UNIT=DISK

System action

Table 13 on page 61 shows the system action for sharable and non-sharable requests.

Table 13. Sharable and nonsharable volume requests

The Request is: The Volume is Allocated:

Sharable Nonsharable

Sharable allocate the volume wait (see note)

Nonsharable wait (see note) wait (see note)

Chapter 1. Storage management overview 61

Table 13. Sharable and nonsharable volume requests (continued)

The Request is: The Volume is Allocated:

Sharable Nonsharable

Note: The operator has the option of failing the request. The request will always fail if waiting is not allowed.

For more detailed information on how an application's JCL influences the processing of allocation
requests, see z/OS MVS JCL Reference.

For details on how dynamic allocation affects the use attributes of the volumes in your installation, see
z/OS MVS Programming: Assembler Services Guide.

62 z/OS: z/OS MVS Initialization and Tuning Guide

Chapter 2. Auxiliary storage management
initialization

This topic describes the effective initialization and use of paging, which can use page data sets only, or
page data sets in addition to optional storage-class memory (SCM).

Paging is the process that z/OS uses to select which pages to move from central storage to auxiliary
storage. Auxiliary storage requires page data sets on DASD, and can also include the optional SCM on
Flash Express (SSD) cards or the Virtual Flash Memory (VFM). If SCM is available and online, ASM uses
both SCM and page data sets for auxiliary storage by paging data to the preferred storage medium, based
on response times and additional factors.

Adding SCM to your system can increase the flexibility and performance of your paging operations.
However, because SCM is not persistent across IPLs, SCM cannot be used for paging Virtual I/O (VIO)
data or PLPA data for warm starts.

For additional information on ASM, refer to “Auxiliary storage overview” on page 45, and the PAGE,
PAGESCM, NONVIO and PAGTOTL parameters of parmlib member IEASYSxx in z/OS MVS Initialization
and Tuning Reference.

Page operations
Auxiliary storage manager (ASM) paging controllers attempt to maximize I/O efficiency by incorporating a
set of algorithms to distribute the I/O load as evenly as is practical. In addition, priority is given to keeping
the system operable in situations where a shortage of a specific type of page space exists.

If you are using optional storage-class memory (SCM) in addition to the required page data sets, ASM
selects the optimal paging medium by comparing the observed latency times for I/O (response times). To
ASM, the response time is the average time that it takes to complete an I/O request divided by the
number of pages that are serviced by a request. ASM also analyzes data characteristics, critical paging
requirements, availability of the DASD (during a HyperSwap failover, for example) and available storage
space before selecting a paging target.

A HyperSwap failover is a data availability mechanism that permits replacing a DASD with a backup DASD.
During a HyperSwap failover the DASD is not available for paging, so address spaces in main memory,
some of which are critical, cannot be paged out to the disk. In this case, SCM can be used for critical
address space paging to reduce the risk of critical data loss.

Paging operations and algorithms
To page efficiently and expediently, ASM divides z/OS system pages into classes, namely PLPA, common
and local. Contention is reduced when these classes of pages are placed on different physical devices.
Multiple local page data sets are recommended. Although the system requires only one local page data
set, performance can be improved when local page data sets are distributed across multiple devices,
even if one device is large enough to hold the entire amount of required page space.

The PLPA and common page data sets are optional if storage-class memory (SCM) is available (specify
NONE to use SCM), but there can be only one of each. Spillage back and forth between the PLPA and
common page data sets is permissible, but in the interest of performance, only spilling from PLPA to
common should be permitted.

The general intent of the ASM algorithms for page data set selection construction is to:

• Use all available local page data sets: When ASM writes a group of data, it selects a local page data set
in a circular order within each type of device, considering the availability of free space and device
response time.

© Copyright IBM Corp. 1991, 2020 63

When ASM selects a data set, the paging data sets that reside on Parallel Access Volume (PAV) devices
are examined first because of reliability and performance characteristics. Because preference is given
to PAV devices, it is normal to have a higher usage of PAV data sets as compared to non-PAV data sets.

• Write group requests to contiguous slots: ASM selects contiguous space in local page data sets on
moveable-head devices to receive group write requests. For certain types of requests, ASM's slot
allocation algorithm tries to select sequential (contiguous) slots within a cylinder. The reason for doing
this is to shorten the I/O access time needed to read or write a group of requests. For other types of
requests (such as an individual write request), or if there are no sequential slots, ASM selects any
available slots.

• Limit the apparent size of local page data sets to reduce seek time: If possible, ASM concentrates group
requests and individual requests that are within a subset of the space allocated to a local page data set.

Paging operations and algorithms for storage-class memory (SCM)

On IBM zEnterprise® EC12 (zEC12), BC12 (zBC12) and later processors, storage-class memory (SCM)
implemented through the optional Flash Express feature or the Virtual Flash Memory (VFM) can be used
for auxiliary storage in conjunction with page data sets.

Once page data sets on DASD are selected by ASM as the preferred storage medium, all of the factors in
“Paging operations and algorithms” on page 63 remain applicable. However, if ASM selects SCM as the
preferred storage medium, then additional operations and algorithms apply.

Because SCM does not support persistence of data across IPLs, VIO data can only be paged out to DASD.
Therefore, even when SCM is installed you must still maintain a minimum amount of storage that
supports paging for all of your VIO data, and a minimum amount of local paging data sets. All other data
types can be paged out to SCM.

With the use of SCM, all PLPA pages can be stored on both SCM and optionally, on the PLPA data set. If
the PLPA page data set exists, it is used during warm starts, and the PLPA on SCM is used to resolve any
page faults. Resolving PLPA page faults on SCM provides system resiliency, particularly during HyperSwap
failovers.

Table 14 on page 64 summarizes the criteria that ASM uses to determine which storage medium to use
for paging to auxiliary storage from central storage.

Table 14. ASM criteria for paging to storage-class memory (SCM) or page data sets

Main memory data
type ASM selection criteria for paging to SCM or DASD

PLPA At IPL/NIP, PLPA pages can be paged to both SCM and the PLPA data set. If
the PLPA data set exists, it is used for warm starts, and SCM is used to resolve
PLPA page faults.

VIO (Virtual I/O) VIO data is paged to local page data sets only; first to VIO-accepting data
sets, and then to any overflow to non-VIO data sets.

HyperSwap Critical
Address Space data

If SCM space is available, all pages that are assigned to a HyperSwap Critical
Address Space are paged to SCM. If SCM space is not available, HyperSwap
pages are kept in main memory and are only paged to page data sets if real
storage becomes constrained and no other alternative exists.

Pageable large pages If contiguous SCM space is available, pageable large pages are paged to SCM.
If contiguous SCM is not available, large pages are demoted to SCM or DASD
as 4 K page data sets, depending on service request response times. If SCM is
selected, the large page is demoted to 256 4-K blocks and stored across
noncontiguous SCM. If paging data sets is selected, the large page is also
demoted to 256 4-K blocks and stored across noncontiguous 4 K blocks on
paging data sets.

64 z/OS: z/OS MVS Initialization and Tuning Guide

Table 14. ASM criteria for paging to storage-class memory (SCM) or page data sets (continued)

Main memory data
type ASM selection criteria for paging to SCM or DASD

All other data types,
including Common,
Local, and Private Area
data

If available space exists on both page data sets and on SCM, the system
allocates data to the preferred storage medium based on response times. If
the CriticalPaging function is active, data in Common and address spaces are
subject to critical paging.

When using or planning to use SCM, the PAGESCM IEASYSxx parameter specifies the amount of SCM that
is to be reserved for auxiliary storage.

When setting the PAGESCM value, you need to take some items into consideration.

When PAGESCM=ALL (default) or some value other than NONE:

• Should be specified if SCM is available and are used for auxiliary storage. If SCM is not currently
available but is planned to be used at some time during this IPL, specifying a PAGESCM value allows
SCM to be subsequently brought online and used for auxiliary storage without the need for an IPL

• Pageable large pages are defined, regardless of whether SCM is installed. Pageable large pages are
requested via the IARV64, DSPSERV, CPOOL and STORAGE OBTAIN services.

If SCM is not in use and the need arises to page out pageable large page, the page will be paged-out as
256 4-K pages thus losing some of benefits that are provided by the large page.

• When specifying a value other than NONE, it is recommended to specify ALL (or take the default of ALL)
since auxiliary storage is currently the only exploiter of SCM in z/OS. This value will need to be
reexamined if other exploiters are introduced.

When PAGESCM=NONE:

• Indicates that SCM will not be used during this IPL. Subsequent use of SCM will require an IPL with a
PAGESCM value other than none.

Configuring storage-class memory (SCM)

The amount of storage-class memory (SCM) that is available to a z/OS system is specified using the
Manage Flash Allocation dialog from the SE/HMC Configuration menu. This dialog also specifies the
amount of SCM that is initially brought online to the LPAR, after which additional SCM can be brought
online using the CONFIG ONLINE command. For complete command usage information refer to z/OS
MVS System Commands.

z/OS currently supports up to 16 TB of SCM within a single system image, but the maximum amount of
SCM that is available to the central-processing complex (CPC) is limited by the hardware model. SCM and
the data that resides on it can only be accessed from the partition on which the SCM was defined.

Page data set sizes
The size of a page data set can affect system performance. The maximum number of slots that a page
data set can be is 16,777,215. However, the amount of available free space on the volume that the page
data set is allocated to limits the size that can be allocated. A 3390 device with 65,520 cylinders contains
11,793,600 slots.

Note: If you are using storage-class memory (SCM), the size of your page data sets can be reduced,
assuming that SCM has demonstrated faster I/O response times.

Note the following recommendations:

• PLPA data set. The total combined size of the PLPA page data set and common page data set cannot
exceed the size of the PLPA (and extended PLPA) plus the amount that is specified for the CSA and the
size of the MLPA. In defining the size of these data sets, a reasonable starting value might be four
megabytes for PLPA and 20 megabytes for common, as spilling occurs if the PLPA data set becomes
full.

Chapter 2. Auxiliary storage management initialization 65

RMF reports can be used to determine the size requirements for these data sets. During system
initialization, check the size of the page data sets in the page data set activity report. If the values of the
used slots are very close to the values of the allocated slots, the size should be enlarged. For more
information, see the activity report of the page data set in z/OS RMF Report Analysis.

• Common page data set. The common page data set should be large enough to contain all of the
common area pages plus room for any expected PLPA spill. Although it is possible for the common page
data set to spill to the PLPA page data set, this situation should not be allowed to occur because it might
heavily affect performance. As noted for the PLPA data set, a reasonable starting size for the common
page data set might be twenty megabytes.

• Local page data sets. The local page data sets must be large enough to hold the private area and VIO
pages that cannot be contained in real storage. To ensure an even distribution of paging requests across
as many data sets as possible, all local paging data sets should be approximately the same size.

Note: When all local paging data sets are not the same size, the smaller data sets might reach a full
condition sooner than the large data sets. This reduces the number of data sets that are available to
ASM for subsequent paging requests. Depending on the paging configuration, this situation could
degrade paging performance because the I/O workload and contention for the remaining available data
sets might increase.

To minimize the path length in the ASM slot selection code (bitmap search), plan for local page data
sets to not exceed 30% of their capacity under normal system workloads.

Storage requirements for page data sets
ASM allocates storage in extended system queue area (ESQA) for every page data set that is in use. For
data sets that are defined during IPL, this storage is obtained during IPL. For data sets that are added
dynamically after IPL, this storage is obtained during the processing of the PAGEADD command.

Regardless of the page data set size, the ESQA consists of the following:

• A fixed amount of bytes (approximately 32,000 bytes)
• A variable amount that is determined by the size of the data set (24 bytes for each cylinder)

Page data set protection
The page data set protection feature was introduced in z/OS V1R3 to help guard you from unintentionally
IPLing with a page data set that is already in use. It does this by formatting and maintaining a status
information record at the beginning of each page data set and by using an ENQ to serialize usage of the
data sets.

The page data set protection feature prevents two systems from accidentally using the same physical
data set. However, it is not possible to prevent the same data sets from being used when:

• the request to use the data set comes from a system outside of the GRS Ring/Star configuration.
• the installation has excluded the data sets from multi-system serialization. See z/OS MVS Planning:

Global Resource Serialization for more information on SYSTEMS Exclusion RNL.

Page data sets are protected by a two-tier mechanism using:

• “SYSTEMS level ENQ” on page 66 .
• “Status information record” on page 67 .

SYSTEMS level ENQ
Page data sets are protected with a SYSTEMS level ENQ that contains the name of the page data set and
the volser it resides on. The qname used on the ENQ is SYSZILRD, and the rname used on the ENQ is the
dsname + volser. This ENQ is obtained during master scheduler initialization for the IPL-specified page
data sets. For example, the ENQ would be obtained from the definitions in the IEASYSxx parmlib member.
The ENQ is also obtained whenever a page data set is added or replaced after IPL.

66 z/OS: z/OS MVS Initialization and Tuning Guide

A warning-level message is issued if the ENQ cannot be obtained successfully during IPL for the IPL-
specified page data sets. Processing for the command is terminated if the ENQ cannot be obtained for a
page data set that is being added or replaced with the PAGEADD or PAGEDEL command.

Status information record
A data set status information record is written to every page data set. The status record identifies the
system using the data set.

The status record is validated during IPL. If the record indicates that the data set is in use by another
system, message ILR030A is issued and the system waits for an operator response to allow or disallow
use of the data set.

Note that this feature does not offer full protection in the case of a page data set that was defined on, or
was last used by a pre-z/OS V1R3 environment. This is because the status record used to perform this
check did not exist prior to V1R3. The z/OS V1.3 system will format the status record, issue ILR029I as an
informational message and continue to use the data set (along with the other system).

Once the IPL is complete, the status record is validated on a regular interval. If concurrent use of a data
set is detected, both systems will be terminated with a 02E wait state code. Catalog information will also
be validated with the status record. If the data set is deleted or key catalog information changes, the
system will be terminated with a 02E wait state code.

Space calculation examples
Table 15 on page 67 shows the values for page data sets. The examples following these figures show
how to apply their tabular information to typical initialization considerations.

Note: After the system is running, you can use RMF reports to determine the sizes of page data sets. RMF
reports provide the minimum, maximum, and average number of slots in use for page data sets. Thus, you
can use the reports to adjust data set sizes, as needed.

Table 15. Page data set values

Device Type Slots/Cyl Cyl/Meg

3380
3390

150
180

1.7
1.42

Example 1: Sizing the PLPA page data set, size of the PLPA and extended PLPA unknown
Define the PLPA page data set to hold four megabytes; if that amount of space is exceeded, the remainder
can be placed on the common page data set until the PLPA value is determined exactly.

Therefore: From the tables, 7 cylinders on a 3380 are needed for the 4-megabyte PLPA page data set. For
the 3390, 6 cylinders are needed for the 4-megabyte PLPA page data set.

Example 2: Sizing the PLPA page data set, size of the PLPA and extended PLPA known
Assume the PLPA size is known to be 10 megabytes. Define the PLPA page data set to hold 10 megabytes
plus 5%, or 10.5 megabytes. (The extra 5% allows for loss of space as a result of permanent I/O errors.)

Therefore: From the tables, 18 cylinders on a 3380 are needed for the 10.5-megabyte PLPA page data set.
For the 3390, 15 cylinders are needed for the 10.5-megabyte PLPA page data set.

Note: This example provides no warm start capability. If installed, SCM can provide warm start capability.

Example 3: Sizing the common page data set
Use the size of the virtual common service area (CSA) and extended CSA, defined by the CSA= parameter
in the IEASYSxx parmlib member, as the minimum size for the common page data set. If the system is
IPLed with a specification of CSA=(3000,80000), then the total CSA specified is 83000 kilobytes

Chapter 2. Auxiliary storage management initialization 67

(approximately 81 megabytes). However, CSA and extended CSA always end on a segment boundary, so
the system may round the size up by as much as 1023 kilobytes each. That rounding could make the CSA
size as large as 83 megabytes with the CSA=(3000,80000) specification. After the system is running, you
can use RMF reports to determine how much of the common page data set is being used and adjust the
size of the data set accordingly.

Therefore: From the tables, 118 cylinders on a 3390 are needed to start with an 83-megabyte common
page data set.

Note: If you are using storage-class memory (SCM), the size of your common page data set can be
reduced, assuming that SCM has demonstrated faster I/O response times.

Note: This example provides no warm start capability. If installed, SCM can provide warm start capability.

Example 4: Sizing local page data sets
Assume that the master scheduler address space and JES address space can each use about eight
megabytes of private area storage. Next, determine the number of address spaces that will be used for
subsystem programs such as VTAM and the system component address spaces, and allow eight
megabytes of private area storage for each. To determine the amount of space necessary for batch
address spaces, multiply the maximum number of batch address spaces that will be allowed to be active
at once by the average size of a private area (calculated by the installation or approximated at eight
megabytes).

Note: If you are using storage-class memory (SCM), the size of your local page data sets can be reduced,
assuming that SCM has demonstrated faster I/O response times.

To determine the amount of space necessary for TSO/E, multiply the maximum number of TSO/E address
spaces allowed on the system at once by the average size of a private area (calculated by the installation
or approximated at eight megabytes).

Next, determine the amount of space required for any large swappable applications which run
concurrently. Use the allocated region size for the calculation.

Finally, estimate the space requirements for VIO data sets. Approximate this requirement by multiplying
the expected number of VIO data sets used by the entire system by the average size of a VIO data set for
the installation. After the system is fully loaded, you can use RMF reports to evaluate the estimates.

Note: If your local DASD storage is not large enough to contain your VIO data, VIO data will not be paged
out to SCM.

For example purposes, assume that the total space necessary for local page data sets is:

8 megabytes for the master scheduler address space

8 megabytes for the PC/AUTH address space

8 megabytes for the system trace address space

8 megabytes for the global resource serialization address space

8 megabytes for the allocation address space

8 megabytes for the communications task address space

8 megabytes for the dumping services address space

8 megabytes for the system management facilities address space

8 megabytes for the VTAM address space

8 megabytes for the JES address space

8 megabytes for the JES3AUX address space if JES3 is used

10 megabytes for the batch address space (10 batches x 1 megabyte each)

50 megabytes for TSO/E address spaces (50 TSO/E users x 1 megabyte each)

102 megabytes for large swappable application

68 z/OS: z/OS MVS Initialization and Tuning Guide

+ 40 megabytes for VIO data sets (200 data sets x 0.2 megabyte each)

290 megabytes total + 15 meg (approx. 5%) buffer = 305 megabytes

Therefore: From the tables, 549 cylinders on 3380 type devices are necessary. For the 3390, 434
cylinders are necessary.

Note: Even when the local page data sets will fit on one 3390, you should spread them across more than
one device. See performance recommendation number 5. If large swappable jobs or large VIO users are
started and there is insufficient allocation of space on local page data sets, a system wait X'03C' could
result.

The installation should also consider the extent of the use of data-in-virtual when calculating paging data
set requirements. Users of data-in virtual may use sizable amounts of virtual storage which may put
additional requirements on paging data sets.

The calculations shown here will provide enough local page space for the system to run. However, if a
program continually requests virtual storage until the available local page data set space is constrained,
this will not be enough space to prevent an auxiliary storage shortage.

Auxiliary storage shortages can cause severe performance degradation, and if all local page data set
space is exhausted the system might fail. To avoid this, you can do one or more of the following:

• Use the IEFUSI user exit to set REGION limits for most address spaces and data spaces. If you have
sufficient DASD, add enough extra local page data set space to accommodate one address space or
data space of the size you allow in addition to the local page data set space the system usually requires,
multiply the sum by 1.43, and allocate that amount of local page data set space. For more information
about IEFUSI, see z/OS MVS Installation Exits.

• Overallocate local page data set space by 300% if you have sufficient DASD. This is enough auxiliary
storage to prevent the system from reaching the auxiliary storage shortage threshold when the
maximum amount of storage is obtained in a single address space or data space.

Example 5: Sizing page data sets when using storage-class memory (SCM)
You can replace some of your DASD paging space with SCM. VIO paging, however, must still be paged to
DASD so adequate DASD storage is required to avoid local storage overruns.

For example, if your VIO local page data sets require a given amount of storage, but you have only one
local storage DASD allocated for VIO, local storage could become critical. In this case, allocating three
times the amount of VIO space required across several DASDs can provide capacity for local storage
overruns and also for disk failover.

When migrating to SCM, be aware of the following recommendations:

• Maintain your original paging data set configuration while you integrate SCM into your system
configuration.

• Once SCM has become fully integrated into your system configuration, you can choose to reduce the
number of local paging data sets.

• Maintain sufficient local paging data space to accommodate VIO pages, because VIO pages are not
written to SCM.

Performance recommendations
The following recommendations can improve system performance through the careful use of paging data
sets and devices.

1. Allocate only one paging data set per device. Doing this reduces contention among more than one data
set for the use of the device. If you do define more than one paging data set for each device, the use of
Parallel Access Volume (PAV) devices can help to reduce contention for a device.

Chapter 2. Auxiliary storage management initialization 69

Reason: If there is more than one paging data set on the same device, a significant seek penalty is
incurred. Additionally, if the data sets are local page data sets, placing more than one on a device can
cause the data sets to be selected less frequently to fulfill write requests.

Comments: You might, however, place low-activity non-paging data sets on a device that holds a page
data set and check for device contention by executing RMF to obtain direct access device activity
reports during various time intervals. The RMF data on device activity count, percent busy, and average
queue length should suggest whether device contention is a problem. RMF data for devices that
contain only a page data set can be used as a comparison base.

2. Over-specify space for all page data sets.

Reason: Over-specifying space allows for the creation of additional address spaces before the
deletion of current ones and permits some reasonable increase in the number of concurrent VIO data
sets which may be backed by auxiliary storage. VIO data set growth might become a problem because
there is no simple way to limit the total number of VIO data sets used by multiple jobs and TSO/E
sessions. VIO data set paging can be controlled by restricting it to certain page data sets through the
use of directed VIO.

VIO data set pages can be purged by a reIPL specifying CVIO (or CLPA). CVIO indicates that the system
is to ignore any VIO pages that exist on the page data sets and treat the page data sets initially as if
there is no valid data on them (that is, there are no allocated slots). Thus, specifying CVIO prevents the
warm start of jobs that use VIO data sets because the VIO pages have been purged. (For additional
space considerations, see the guideline for estimating the total size of paging data sets in “Estimating
total size of paging data sets” on page 71.)

In all cases, ASM avoids scattering requests across large, over-specified, page data sets by
concentrating its activity to a subset of the space allocated.

3. Use more than one local page data set, each on a unique device, even if the total required space is
containable on one device.

Reason: When ASM uses more than one data set, it can page concurrently on more than one device.
This is especially important during peak loads.

4. Distribute ASM data sets among channel paths and control units.

Reason: Although ASM attempts to use more than one data set concurrently, the request remains in
the channel subsystem queues if the channel path or control unit is busy.

5. Dedicate channel paths and control units to paging devices.

Reason: In heavy paging environments, ASM can use the path to the paging devices exclusively for
page-ins and page-outs and avoid interference with other users, such as IMS.

6. Make a page data set the only data set on the device.

Reason: Making a paging data set the only data set on the device enables ASM to avoid contention.
ASM can monopolize the device to its best performance advantage by controlling its own I/O
processing of that data set. ASM does not have to perform the additional processing that it would
otherwise have to perform if I/O for any other data set, especially another page data set, were on the
same device. If another data set must be placed on the device, select a low-use data set to minimize
contention with the page data set.

7. Do not share volumes that contain page data sets among multiple systems.

Reason: While page data sets may be defined on volumes that contain shared non-paging data sets,
they cannot be shared between systems.

8. Take one of the following actions to control the risk of auxiliary storage shortages. Auxiliary storage
shortages have severe effects on system performance when they occur, and can also cause the
system to fail. When a shortage occurs, the system rejects LOGON, MOUNT, and START commands
and keeps address spaces with rapidly increasing auxiliary storage requirements from running until
the shortage is relieved.

a. Use the SMF Step Initiation Exit, IEFUSI, to limit the sizes of most address spaces and data spaces.

70 z/OS: z/OS MVS Initialization and Tuning Guide

b. If you do not establish limits using IEFUSI, consider over-allocating local page space by an amount
sufficient to allow a single address space or data space to reach the virtual storage limit (as might
happen if a program looped obtaining storage) without exhausting virtual storage shortage.

See “Example 4: Sizing local page data sets” on page 68 for more information about calculating local
page data set space requirements.

Estimating total size of paging data sets
You can obtain a general estimate of the total size of all paging data sets by considering the following
space factors.

1. The space needed for the common areas of virtual storage (PLPA and extended PLPA, MLPA, and CSA).
2. The space needed for areas of virtual storage: private areas of concurrent address spaces, and

concurrently existing VIO page data sets. (The system portion of concurrent address spaces needs to
be calculated only once, because it represents the same system modules.)

3. If you add storage-class memory (SCM) to your system, the required sizes of your paging data sets for
VIO and local page data sets must be large enough to accommodate VIO workload, plus additional
space for paging spikes beyond what SCM can accommodate.

Using measurement facilities
You can possibly simplify the space estimate for the private areas mentioned in “Estimating total size of
paging data sets” on page 71 by picking an arbitrary value. Set up this amount of paging space, and then
run the system with some typical job loads. To determine the accuracy of your estimate, start RMF while
the jobs are executing. The paging activity report of the measurement program gives data on the number
of unused 4K slots, the number of VIO data set pages backed by auxiliary storage, address space pages,
and the number of unavailable (defective) slots.

The RMF report also contains the average values based on a number of samples taken during the report
interval. These average values are in a portion of the report entitled "Local Page data set Slot Counts".
They are somewhat more representative of actual slot use because slot use is likely to vary during the
report interval. The values from the paging activity report should enable you to adjust your original space
estimate as necessary.

Adding paging space
To add paging space for page data sets on DASD HDDs, you must use the DEFINE PAGESPACE command
of Access Method Services to pre-format and catalog each new page data set. To add the page data set,
you can use the PAGEADD operator command, or specify the data set at the next IPL on the PAGE
parameter.

To dynamically add paging space to storage-class memory (SCM) on Flash Express SSDs or the Virtual
Flash Memory (VFM), use the CONFIG ONLINE command. For complete command usage information
refer to z/OS MVS System Commands.

For more information refer to the following information:

• See z/OS DFSMS Access Method Services Commands for information about the DEFINE PAGESPACE
command, and on the related commands - ALTER and DELETE - used for the handling of VSAM data
sets.

• See z/OS MVS System Commands for a description of the PAGEADD command.
• See the description of the PAGE parameter in parmlib member IEASYSxx in z/OS MVS Initialization and

Tuning Reference.

Deleting, replacing or draining page data sets
You might need to remove a local page data set from the system for any of the following reasons:

• The hardware is being reconfigured.

Chapter 2. Auxiliary storage management initialization 71

• The hardware is generating I/O errors.
• The configuration of the page data set is being changed.
• System tuning requires the change.

To remove local page data sets or SCM from your system, use the CONFIG OFFLINE command.

The PAGEDEL command allows you to delete, replace or drain local page data set without an IPL, though
the command can be disruptive and must be used judiciously. See z/OS MVS System Commands for the
description of the PAGEDEL command.

ASM will reject a PAGEDEL command that will decrease the amount of auxiliary storage below an
acceptable limit. ASM determines what is acceptable by examining SRM's auxiliary storage threshold
constant, MCCASMTI. If it is determined that too much storage would be deleted by the PAGEDEL
command, ASM will fail the page delete request.

Questions and answers
The following questions and answers describe ASM functionality:

Q:
Does ASM use I/O load balancing?

A:
Yes, ASM does its own I/O load balancing.

When selecting a local page data set to fulfill a write request, ASM attempts to avoid overloading page
data sets. ASM also attempts to favor those devices or channel paths that are providing the best
service. If SCM demonstrates a performance advantage, then SCM is selected over any page data set.

Q:
How does the auxiliary storage shortage prevention algorithm in SRM prevent shortages?

A:
It does so by swapping out address spaces that are accumulating paging space at a rapid rate. Page
space is not immediately freed, but another job or TSO/E session (still executing) will eventually
complete and free page space. SRM also prevents the creation of new address spaces and informs the
operator of the shortage so that he can optionally cancel a job.

Q:
Is running out of auxiliary storage (paging space) catastrophic?

A:
No, not necessarily; it might be possible to add more page data sets with the PAGEADD operator
command, optionally specifying the NONVIO system parameter. It may be necessary to reIPL to
specify an additional pre-formatted and cataloged page data set. (See the description of the PAGE
parameter of the IEASYSxx member in z/OS MVS Initialization and Tuning Reference.)

Q:
Can we dynamically allocate more paging space?

A:
Yes. Additional paging space may be added with the PAGEADD operator command if the PAGTOTL
parameter allowed for expansion (see the description of the PAGTOTL parameter of the IEASYSxx
member in z/OS MVS Initialization and Tuning Reference and the PAGEADD command in z/OS MVS
System Commands).

If you are using storage-class memory (SCM), you can dynamically allocate additional paging space to
SCM using the CONFIG ONLINE command.

Q:
Can we remove paging space from system use?

A:
Yes. Use the PAGEDEL command for local page data sets.

72 z/OS: z/OS MVS Initialization and Tuning Guide

Q:
How does ASM select slots?

A:
ASM selects slots when writing out pages to page data sets based on whether the write request is an
individual request or a group request. For an individual write request, such as a request to write stolen
pages (those pages changed since they were last read from the page data set), ASM selects any
available slots. For a group write request, such as a request that results from a VIO move-out of
groups of pages to page data sets, ASM attempts to select available slots that are contiguous. ASM
also attempts to avoid scattering requests across large page data sets.

If you are using storage-class memory (SCM), ASM pages to contiguous blocks of SCM, if available.

Q:
How does ASM select a local page data set for a page-out?

A:
ASM selects a local page data set for page-out from its available page data sets. ASM selects these
data sets in a circular order within each type of data set, subject to the availability of free space and
the device response time.

If you are using storage-class memory (SCM), ASM selects paging space first from available
contiguous blocks of SCM, and then from available noncontiguous blocks of SCM.

Q:
What factors should I consider when allocating storage-class memory (SCM) to a partition?

A:

1. Continue to define page data sets on DASD, which provides improved availability compared to
failure scenarios that could consume all of your paging space.

2. Configure approximately the same amount of paging space for storage-class memory (SCM) on
Flash Express cards or the Virtual Flash Memory (VFM) feature as you have defined for page data
sets on DASD. For many configurations, a single pair of Flash Express cards or the Virtual Flash
Memory (VFM) feature provides enough paging space for an entire z/OS partition.

3. Using 1 MB pageable large pages with SCM can improve system performance by paging a smaller
number of larger pages to SCM than would be paged to 4 KB page data sets on DASD. If contiguous
space is not available on SCM, 1 MB large pages are demoted to 256 4 KB blocks and paged to
either 4 KB page data sets or to SCM, based on response time.

4. Because SCM is not persistent across IPLs, PLPA data is also required for warm starts. The PLPA
copy on page data sets is used for warm starts, and the PLPA copy on SCM is used for resolving
page faults. In addition, local page data sets must accommodate all VIO paging.

5. For additional SCM configuration options, refer to “Space calculation examples” on page 67,
“Estimating total size of paging data sets” on page 71 and the IEASYSxx system parameter list in
z/OS MVS Initialization and Tuning Reference.

Q:
Will data-in-virtual users increase the need for paging data sets?

A:
Data-in-virtual does provide applications with functions that would encourage extensive use of virtual
storage. Depending on the extent of the usage of data-in-virtual, paging data set requirements may
increase.

Chapter 2. Auxiliary storage management initialization 73

74 z/OS: z/OS MVS Initialization and Tuning Guide

Chapter 3. The system resources manager

Important: Beginning with z/OS V1R3, WLM compatibility mode is no longer available. Accordingly, the
IEAICSxx member, the IEAIPSxx member are no longer valid. Options in the IEAOPTxx member that were
valid only in compatibility mode also are no longer valid. However, there are some parameters in
IEAOPTxx that are still valid and still used by SRM in goal mode. For information on compatibility mode,
see a previous version of this publication.

See z/OS MVS Planning: Workload Management for more information on WLM goal mode.

To a large degree, an installation's control over the performance of the system is exercised through the
system resources manager (SRM).

“Section 1: Description of the system resources manager (SRM)” on page 75 discusses the types of
control available through SRM, the functions used to implement these controls, and the concepts inherent
in the use of SRM parameters. The parameters themselves are described in z/OS MVS Initialization and
Tuning Reference.

“Section 2: Basic SRM parameter concepts” on page 83 discusses some basic OPT parameters. z/OS
MVS Initialization and Tuning Reference provides descriptions of the OPT parameters and syntax rules.

“Section 3: Advanced SRM parameter concepts” on page 85 discusses some more advanced topics.

“Section 4: Guidelines” on page 88 provides some guidelines for defining installation requirements and
preparing an initial OPT.

“Section 5: Installation management controls” on page 106 contains information about commands for
SRM-related functions.

System tuning and SRM
The task of tuning a system is an iterative and continuous process. The controls offered by SRM and WLM
are only one aspect of this process. Initial tuning consists of selecting appropriate parameters for various
system components and subsystems. Once the system is operational and criteria have been established
for the selection of jobs for execution via job classes and priorities, SRM and WLM will control the
distribution of available resources according to the parameters specified by the installation.

However SRM and WLM, can only deal with available resources. If these are inadequate to meet the
needs of the installation, even optimal distribution may not be the answer — other areas of the system
should be examined to determine the possibility of increasing available resources. Therefore, installations
must perform regular capacity planning as outlined by the information available at IBM Techdocs
(www.ibm.com/support/techdocs/atsmastr.nsf/Web/TechDocs).

When requirements for the system increase and it becomes necessary to shift priorities or acquire
additional resources, such as a larger processor, more storage, or more terminals, the SRM and WLM
parameters might have to be adjusted to reflect changed conditions.

Section 1: Description of the system resources manager (SRM)
SRM is a component of the system control program. It determines which address spaces, of all active
address spaces, should be given access to system resources and the rate at which each address space is
allowed to consume these resources.

Before an installation turns to SRM, it should be aware of the response time and throughput requirements
for the various types of work that will be performed on its system. Questions similar to the following
should be considered:

• How important is turnaround time for batch work, and are there distinct types of batch work with
differing turnaround requirements?

© Copyright IBM Corp. 1991, 2020 75

http://www.ibm.com/support/techdocs/atsmastr.nsf/Web/TechDocs
http://www.ibm.com/support/techdocs/atsmastr.nsf/Web/TechDocs

• Should subsystems such as IMS and CICS be controlled at all, or should they receive as much service as
they request? That is, should they be allowed unlimited access to resources without regard to the
impact this would have on other types of work?

• What is acceptable TSO/E response time for various types of commands?
• What is acceptable response time for compiles, sorts, or other batch-like work executed from a

terminal?

Guidelines for defining installation requirements are discussed in “Section 4: Guidelines” on page 88.

Once these questions have been answered and, whenever possible, quantified, and the installation is
reasonably confident that its requirements do not exceed the physical capacity of its hardware, it should
then turn to SRM to specify the desired degree of control.

Controlling SRM
You can control the system resources manager (SRM) through the workload manager. In releases earlier
than z/OS V1R3, an installation controlled SRM either through the IEAIPSxx and IEAICSxx parmlib
members or through the workload manager. Controlling SRM through parmlib members was called
workload management compatibility mode. Controlling SRM through the workload manager is called goal
mode. Some parameters in the IEAOPTxx parmlib member applied only to compatibility mode (and are no
longer valid), and some apply to goal mode.

With workload manager, you specify performance goals for work, and SRM adapts the system resources
to meet the goals. SRM uses the same controls that exist today, but it sets them all dynamically based on
the goals. For information on how to use workload manager, see z/OS MVS Planning: Workload
Management.

While most information about how to use workload manager is in z/OS MVS Planning: Workload
Management, many of the concepts that SRM uses dynamically in goal mode are explained in this
publication, including the IEAOPTxx parameters.

Objectives
SRM bases its decision on two fundamental objectives:

1. To distribute system resources among individual address spaces in accordance with the installation's
response, turnaround, and work priority requirements.

2. To achieve optimal use of system resources as seen from the viewpoint of system throughput.

SRM attempts to ensure optimal use of system resources by periodically monitoring and balancing
resource utilization. If resources are under-utilized, SRM will attempt to increase the system load. If
resources are overutilized, SRM will attempt to reduce the system load.

Types of control
SRM offers three distinct types of control to an installation:

• Service classes
• Dispatching control, for all address spaces
• Period

SRM sets the values of controls dynamically based on the performance goals for work defined in a service
policy. The remainder of this section describes these types of controls and the functions that SRM uses to
implement them.

Dispatching control

Dispatching priorities control the rate at which address spaces are allowed to consume resources after
they have been given access to these resources. This form of competition takes place outside the sphere

76 z/OS: z/OS MVS Initialization and Tuning Guide

of domain control, that is, all address spaces compete with all other address spaces with regard to
dispatching priorities.

Functions
This topic discusses the functions used by SRM to implement the controls described in “Dispatching
control” on page 76. The functions are as follows:

• Swapping (see “Swapping” on page 77)
• Dispatching of work (see “Dispatching of work” on page 78)
• Resource use functions (see “Resource use functions” on page 78)
• Enqueue delay minimization (see “Enqueue delay minimization” on page 80)
• I/O priority queueing (see “I/O priority queueing” on page 80)
• DASD device allocation (see “DASD device allocation” on page 80)
• Prevention of storage shortages (see “Prevention of storage shortages” on page 81)
• Pageable frame stealing (see “Pageable frame stealing” on page 83).

Swapping

Swapping is the primary function used by SRM to exercise control over distribution of resources and
system throughput. Using system status information that is periodically monitored, SRM determines
which address spaces should have access to system resources.

In addition to the swapping controls described in the following text, SRM also provides an optional swap-
in delay to limit the response time of TSO/E transactions.

There are several reasons for swapping. Some swaps are used for control of domains and the competition
for resources between individual address spaces within a domain, while others provide control over
system-wide performance and help increase the throughput.

Domain-related swaps

• Unilateral swap in: If the number of a domain's address spaces that are in the multiprogramming set
(MPS) is less than the number SRM has set for the swap-in target, SRM swaps in additional address
spaces for that domain, if possible.

• Unilateral swap out: If the number of a domain's address spaces that are in the multiprogramming set is
greater than the number SRM has set for the swap-out target, SRM swaps out address spaces from that
domain.

• Exchange swap: All address spaces of a domain compete with one another for system resources. When
an address space in the multiprogramming set has exceeded its allotted portion of resources, relative to
an address space of the same domain waiting to be swapped in, SRM performs an exchange swap. That
is, the address space in the multiprogramming set is swapped out and the other address space is
swapped in. (The multiprogramming set consists of those address spaces that are in central storage
and are eligible for access to the processor.) This competition between address spaces is described in
detail in “Section 2: Basic SRM parameter concepts” on page 83.

System-related swaps

• Swaps due to storage shortages: Two types of shortages cause swaps: auxiliary storage shortages and
pageable frame shortages. If the number of available auxiliary storage slots is low, SRM will swap out
the address space that is acquiring auxiliary storage at the fastest rate. For a shortage of pageable
frames, if the number of fixed frames is very high, SRM will swap out the address space that acquired
the greatest number of fixed frames. This process continues until the number of available slots rises
above a fixed target, or until the number of fixed frames falls below a fixed target.

• Swaps to improve central storage usage: The system will swap out an address space when the system
determines that the current mix of address spaces is not best utilizing central storage. The system
swaps out address spaces to create a positive effect on system paging and swap costs.

Chapter 3. The system resources manager 77

• Swap out an address space to make room for an address space: The system will swap in an address
space when the system determines that it has been out longer than its recommendation value would
dictate. See “Working set management” on page 79 for information about the recommendation value.

• Swaps due to wait states: In certain cases, such as a batch job going into a long wait state (LONG option
specified on the WAIT SVC, an STIMER wait specification of greater than or equal to 0.5 seconds, an
ENQ for a resource held by a swapped out user), the address space will itself signal SRM to be swapped
out in order to release storage for the use of other address spaces. Another example would be a time
sharing user's address space that is waiting for input from the terminal after a transaction has
completed processing. SRM also detects address spaces in a wait state. That is, address spaces in
central storage that are not executable for a fixed interval will be swapped. (See “Logical swapping” on
page 79.)

• Request Swap: The system may request that an address space be swapped out. For example, the
CONFIG STOR, OFFLINE command requests the swap out of address spaces that occupy frames in the
storage unit to be taken offline.

• Transition Swap: A transition swap occurs when the status of an address space changes from
swappable to nonswappable. For example, the system performs a transition swap out before a
nonswappable program or V=R step gets control. This special swap prevents the job step from
improperly using reconfigurable storage.

Swap recommendation value

SRM calculates a swap recommendation value to determine which address spaces to use in an exchange
or unilateral swap. A high swap recommendation value indicates that the address space is more likely to
be swapped in. As the swap recommendation value decreases, that address space is more likely to be
swapped out.

The swap recommendation value for an address space that is swapped in ranges from 100 to -999 as
service is accumulated. An address space must accumulate enough CPU service to justify the cost of a
swap out. Once the swap recommendation value goes below 0, the address space is ready to be swapped
out in an exchange swap.

The swap recommendation value for an address space that is swapped out and ready to come in ranges
from 0 to 998 as the address space remains out. Once the swap recommendation value goes above 100,
the address space has been out long enough to justify the cost of the exchange swap.

For an address space that is swapped out but not ready to come in, the swap recommendation value as
reported by the RMF Monitor II ASD report is meaningless. The swap recommendation value for an
address space that is out too long is reported as 999. Also, if an address space has been assigned long-
term storage protection (as described in the “Storage Protection” section of the “Workload Management
Participants” chapter in z/OS MVS Planning: Workload Management), then the swap recommendation
value is 999.

For monitored address spaces, SRM calculates a working set manager recommendation value. See
“Working set management” on page 79 for information about the working set manager recommendation
value.

Dispatching of work

Dispatching of work is done on a priority basis. That is, the ready work with the highest priority is
dispatched first. The total range of priorities is from 191 to 255.

Note: Certain system address spaces execute at the highest priority and are exempt from installation
prioritization decisions.

Resource use functions

The resource use functions of SRM attempt to optimize the use of system resources on a system-wide
basis, rather than on an individual address space basis. The functions are as follows:

• Logical swapping - SRM automatically performs logical swapping when sufficient central storage is
available.

78 z/OS: z/OS MVS Initialization and Tuning Guide

• Working set management - SRM automatically determines the best mix of work in the
multiprogramming set (MPS) and the most productive amount of central storage to allocate to each
address space.

Multiprogramming level adjusting

SRM monitors system-wide utilization of resources, such as the CPU and paging subsystem, and seeks to
alleviate imbalances, that is, over-utilization or under-utilization. This is accomplished by periodically
adjusting the number of address spaces that are allowed in central storage and ready to be dispatched for
appropriate domains (multiprogramming set).

When system contention factors indicate that the system is not being fully utilized, SRM will select a
domain and increase the number of address spaces allowed access to the processor for that domain,
thereby increasing utilization of the system.

Logical swapping

To use central storage more effectively and reduce processor and channel subsystem overhead, the SRM
logical swap function attempts to prevent the automatic physical swapping of address spaces. Unlike a
physically swapped address space, where the LSQA, fixed frames, and recently referenced frames are
placed on auxiliary storage, SRM keeps the frames that belong to a logically swapped address space in
central storage.

Address spaces swapped for wait states (for example, TSO/E terminal waits) are eligible to be logically
swapped out whenever the think time associated with the address space is less than the system
threshold value. SRM adjusts this threshold value according to the demand for central storage. SRM uses
the unreferenced interval count (UIC) to measure this demand for central storage. As the demand for
central storage increases, SRM reduces the system threshold value; as the demand decreases, SRM
increases the system threshold value.

The system threshold value for think time fluctuates between low and high boundary values. The
installation can change these boundary values in the IEAOPTxx parmlib member. The installation can also
set threshold values for the UIC; setting these threshold values affects how SRM measures the demand
for central storage.

SRM logically swaps address spaces if the real frames they own are not required to immediately replenish
the supply of available real frames. Any address space subject to a swap out can become logically
swapped as long as there is enough room in the system. Address spaces with pending request swaps or
those marked as swaps due to storage shortages are the only address spaces that are physically swapped
immediately.

Large address spaces that have been selected to be swapped to replenish central storage are trimmed
before they are swapped. The trimming is done in stages and only to the degree necessary for the address
space to be swapped. In some cases, it might be necessary to trim pages that have been recently
referenced in order to reduce the address space to a swappable size.

SRM's logical swapping function periodically checks all logically swapped out address spaces to
determine how long they've been logically swapped out. SRM physically swaps out those address spaces
that have been logically swapped out for a period greater than the system threshold value for think time
only when it is necessary to replenish the supply of available frames.

Working set management

SRM automatically determines the best mix of work in the multiprogramming set (MPS) and the most
productive amount of central storage to allocate to each address space within MPL constraints.

To achieve this, SRM monitors the system paging, page movement, and swapping rates and productive
CPU service for all address spaces to detect when the system might run more efficiently with selected
address space working sets managed individually. If the system is spending a significant amount of
resources for paging, SRM will start monitoring the central storage of selected address spaces.

After SRM decides that an address space should be monitored, SRM collects additional address space
data. Based on this data, SRM might discontinue implicit block paging.

Chapter 3. The system resources manager 79

For monitored address spaces, SRM calculates a working set manager recommendation value that can
override the swap recommendation value. See “Swap recommendation value” on page 78 for information
about the swap recommendation value. The working set manager recommendation value measures the
value of adding the address space to the current mix of work in the system. Even when the swap
recommendation value indicates that a specific address space should be swapped in next, the working
set manager recommendation value might indicate that the address space should be bypassed. To ensure
that no address space is repeatedly bypassed, the system swaps in a TSO/E user 30 seconds after being
bypassed. For all other types of address spaces, the system will swap in the address space 10 minutes
after being bypassed.

If a monitored address space is paging heavily, SRM might manage its central storage usage. When an
address space is managed, SRM imposes a central storage target (implicit dynamic central storage
isolation maximum working set) on an address space.

Enqueue delay minimization

This function deals with the treatment of address spaces enqueued upon system resources that are in
demand by other address spaces or resources for which a RESERVE has been issued and the device is
shared. If an address space controlling an enqueued resource is swapped out and that resource is
required by another address space, SRM will ensure that the holder of the resource is swapped in again as
soon as possible.

Once in central storage, a swap out of the controlling address space would increase the duration of the
enqueue bottleneck. Therefore, the controlling address space is given a period of CPU service during
which it will not be swapped due to service considerations (discussed in “Section 2: Basic SRM parameter
concepts” on page 83.) The length of this period is specified by the installation by means of a tuning
parameter called the enqueue residence value (ERV), contained in parmlib member IEAOPTxx.

I/O priority queueing

I/O priority queueing is used to control deferred I/O requests. If this function is invoked, all deferred I/O
requests, except paging and swapping, will be queued according to the I/O priorities associated with the
requesting address spaces. Paging and swapping are always handled at the highest priority. An address
space's I/O priority is by default the same as its dispatching priority. All address spaces in one mean-
time-to-wait group fall into one I/O priority. In addition, address spaces that are time sliced have their I/O
queued at their time slice priority. Changes to an address space's dispatching priority when the address
space is time sliced up or down, do not affect the I/O priority.

An installation can assign an I/O priority that is higher or lower than the dispatching priority for selected
groups of work. For example, if the installation is satisfied with the dispatching priority of an interactive
application but would like the application's I/O requests to be processed before those of other address
spaces executing at the same priority, the application could be given an I/O priority higher than its
dispatching priority.

If I/O priority queueing is not invoked, all I/O requests are handled in a first-in/first-out (FIFO) manner.

DASD device allocation

Device allocation selects the most responsive DASD devices as candidates for permanent data sets on
mountable devices (JCL specifies nonspecific VOLUME information or a specific volume and the volume is
not mounted).

The ability of SRM to control DASD device allocation is limited by the decision an installation makes at
system installation time and at initial program loading (IPL) time, as well as by the user's JCL parameters.
SRM can only apply its selection rules to a set of DASD devices that are equally acceptable for scheduler
allocation. This set of devices does not necessarily include all the DASD devices placed in an esoteric
group during system installation. At that time, an esoteric group is defined by the UNITNAME macro and
entered in the eligible device table (EDT). During system installation each esoteric group is partitioned
into subgroups if either of the following conditions occurs:

• The group includes DASD devices that are common with another esoteric group.

80 z/OS: z/OS MVS Initialization and Tuning Guide

• The group includes DASD devices that have certain generic differences. System installation partitions
only esoteric groups that consist of magnetic tape or direct access devices.

For example, assume that you specify the following at system installation time:

UNITNAME=DASD,UNIT=((470,7),(478,8),(580,6))
UNITNAME=SYSDA,UNIT=((580,6))

Because of the intersection with SYSDA (580,6), the DASD group is divided into two subgroups: (470,7)
and (478,8) in one subgroup and (580,6) in the other.

Allocation allows SRM to select from only one subgroup at a time. After allocating all devices in the first
subgroup, allocation selects DASD devices from the next subgroup. Using the previous example, when a
job requests UNIT=DASD, allocation tells SRM to select a device from the first group (470-476 and
478-47F) regardless of the relative use of channel paths 4 and 5. After all of the DASD devices in the first
group have been allocated, allocation tells SRM to select devices from the second group (580-585).

Prevention of storage shortages

SRM periodically monitors the availability of three types of storage and attempts to prevent shortages
from becoming critical. The three types of storage are:

• Auxiliary storage
• SQA
• Pageable frames.

Auxiliary storage

When more than a fixed percentage (constant MCCASMT1) of auxiliary storage slots have been allocated,
SRM reduces demand for this resource by taking the following steps:

• LOGON, MOUNT and START commands are inhibited until the shortage is alleviated.
• Initiators are prevented from executing new jobs.
• The target MPL (both in and out targets) in each domain is set to its minimum value.
• The operator is informed of the shortage.
• Choosing from a subset of swappable address spaces, SRM stops the address space(s) acquiring slots

at the fastest rate and prepares the address space for swap-out (logical swap). When SRM swaps-out
an address space because of excessive slot usage, SRM informs the operator of the name of the job that
is swapped out, permitting the operator to cancel the job.

If the percentage of auxiliary slots allocated continues to increase (constant MCCASMT2), SRM informs
the operator that a critical shortage exists. SRM then prevents all unilateral swap-ins (except for domain
zero). This action allows the operator to cancel jobs or add auxiliary paging space to alleviate the
problem.

When the shortage has been alleviated, the operator is informed and SRM halts its efforts to reduce the
demand for auxiliary storage.

SQA

When the number of available SQA and CSA pages falls below a threshold, SRM:

• Inhibits LOGON, MOUNT, and START commands until the shortage is alleviated.
• Informs the operator that an SQA shortage exists.

If the number of available SQA and CSA pages continues to decrease, SRM informs the operator that a
critical shortage of SQA space exists and, except for domain zero, SRM prevents all unilateral swap-ins.

When the shortage has been alleviated, the operator is informed and SRM halts its efforts to prevent
acquisition of SQA space.

Chapter 3. The system resources manager 81

Pageable frames

SRM attempts to ensure that enough pageable central storage is available to the system. SRM monitors
the amount of pageable storage available, ensures that the currently available pageable storage is greater
than a threshold, and takes continuous preventive action from the time it detects a shortage of pageable
storage until the shortage is relieved.

When SRM detects a shortage of pageable frames caused by an excess of fixed or DREF storage, SRM
uses event code ENVPC055 to signal an ENF event. When the shortage is relieved, SRM signals another
ENVPC055 event to notify listeners that the shortage is relieved. SRM does not raise the signal for the
“shortage relieved” condition until a delay of 30 seconds following the most recent occurrence of a fixed-
storage shortage. The intent of signalling this event is to give system components and subsystems that
use fixed or DREF storage an opportunity to help relieve the shortage.

Regardless of the cause of a shortage of pageable storage, SRM takes these actions:

• Inhibits LOGON, MOUNT, and START commands until the shortage is relieved
• Prevents initiators from executing new jobs
• Informs the operator that a shortage of pageable storage exists

Further SRM actions to relieve the shortage depend on the particular cause of the shortage.

The following system conditions can cause a shortage of pageable storage:

• Too many address spaces are already in storage.

Too many address spaces in storage does not usually, of itself, cause a shortage of pageable storage
because SRM performs MPL adjustment and logical swap threshold adjustment, which generally keep
an adequate amount of fixed storage available to back the address spaces.

• Too much page fixing is taking place.

One or more address spaces are using substantial amounts of storage either through explicit requests
to fixed virtual storage or by obtaining virtual storage that is page fixed by attributes such as LSQA or
SQA.

There are different types of pageable storage shortages:

• A shortage of pageable storage below 16 megabytes.
• A shortage when pageable storage has reached a threshold.
• A shortage when fixed and DREF allocated to CASTOUT=NO ESO Hiperspaces has reached a threshold.

If too much page fixing is the cause of the shortage of pageable storage, SRM:

1. Identifies the largest swappable user or users of fixed storage. If any of these users own more frames
than three times the median fixed frame count, SRM begins to physically swap them out, starting with
the user with the largest number of fixed pages. SRM continues to swap users out until it releases
enough fixed storage to relieve the shortage.

2. Begins to physically swap out the logically-swapped out address spaces if swapping out the largest
users of fixed storage does not relieve the shortage of pageable storage.

3. Decreases the MPLs for those domains that have the lowest contention indices if physically swapping
out the logically-swapped out address spaces does not relieve the shortage of pageable storage. This
MPL adjustment allows the swap analysis function of SRM to swap out enough address spaces to
relieve the shortage.

SRM takes the following additional actions if the shortage of pageable storage reaches a critical
threshold:

1. Informs the operator that there is a critical shortage.
2. Repeats all the steps described above that are applicable to the cause of the shortage.
3. Prevents any unilateral swap-in, except for domain zero.

When the shortage of pageable storage is relieved, SRM waits for a delay of 30 seconds following the
most recent occurrence of a fixed shortage, and then:

82 z/OS: z/OS MVS Initialization and Tuning Guide

• Allows new address spaces to be created through the LOGON, MOUNT, and START commands.
• Notifies the operator that the shortage is relieved.
• Allows initiators to process new jobs.
• Allows unilateral swap-ins.

Note: Those address spaces that SRM swapped out to relieve the shortage of pageable storage are not
swapped back in if their storage requirements would potentially cause another shortage to occur.

Pageable frame stealing

Pageable frame stealing is the process of taking an assigned central storage frame away from an address
space to make it available for other purposes, such as to satisfy a page fault or swap in an address space.

When there is a demand for pageable frames, SRM will steal those frames that have gone unreferenced
for a long time and return them to the system. The unreferenced interval count (UIC) represents the time
in seconds for a complete steal cycle. A complete steal cycle is the time the stealing routine needs to
check all frames in the system. When there is a demand for storage, the stealing routine:

• tests the reference bit of a frame
• decides whether to steal the frame
• schedules the page-out.

When there is no demand for storage, no stealing occurs.

The UIC algorithm forecasts the UIC, based on the current stealing rate. The UIC can vary between 0 and
65535 and gets calculated every second. When there is no demand for storage in the system (no stealing
occurs) the system has a UIC of 65535. If there is a very high demand for storage in the system, the
system has a UIC close to 0.

Stealing takes place strictly on a demand basis, that is, there is no periodic stealing of long-unreferenced
frames. A complete steal cycle can take days.

SRM modifies the stealing process for address spaces that it is managing and for address spaces that are
storage critical. For these address spaces, SRM attempts to enforce the address space's real storage
target that was set when SRM decided that the address space was to be managed.

I/O service units
The number of I/O service units is a measurement of individual data set I/O activity and JES spool reads
and writes for all data sets associated with an address space. SRM calculates I/O service using I/O block
(EXCP) counts.

When an address space executes in cross-memory mode (that is, during either secondary addressing
mode or a cross-memory call), the EXCP counts are included in the I/O service total. This I/O service is
not counted for the address space that is the target of the cross-memory reference.

Section 2: Basic SRM parameter concepts
This section discusses the OPT parameters for these basic SRM specifications:

• MPL adjustment control
• Transaction definition for CLISTs
• Directed VIO activity
• Alternate wait management

For explanations of the OPT parameters, see z/OS MVS Initialization and Tuning Reference.

See “Section 3: Advanced SRM parameter concepts” on page 85 for information about advanced OPT
concepts.

Chapter 3. The system resources manager 83

MPL adjustment control
The OPT provides keywords to specify upper and lower thresholds for the variables that SRM uses to
determine if it should increase, decrease, or leave the MPL unchanged. When one of these variables
exceeds its threshold value, SRM regards this change as a signal to adjust the MPL. Table 16 on page 84
summarizes the internal names for the control variables, their thresholds, and conditions that can
influence a change.

Table 16. Summary of MPL adjustment control

Control variable and internal name Thresholds that can influence an MPL
change:

Keyword in OPT

decrease increase

CPU utilization (RCVCPUA) >RCCCPUTH <RCCCPUTL RCCCPUT

Page fault rate (RCVPTR) >RCCPTRTH <RCCPTRTL RCCPTRT (see note)

UIC (RCVUICA) <RCCUICTL >RCCUICTH RCCUICT

Percentage of online storage fixed (RCVFXIOP) >RCCFXTTH <RCCFXTTL RCCFXTT

Percentage of storage that is fixed within the first
16 megabytes (RCVMFXA)

>RCCFXETH <RCCFXETL RCCFXET

Note: The default thresholds for this keyword causes the corresponding control variable to have no effect on MPL
adjustment.

Transaction definition for CLISTs
An installation can specify whether the individual commands in a TSO/E CLIST are treated as separate
TSO/E commands for transaction control. Specifying CNTCLIST=YES causes a new transaction to be
started for each command in the CLIST. A possible exposure of specifying CNTCLIST=YES is that long
CLISTs composed of trivial and intermediate commands might monopolize a domain's MPL slots and
cause interactive terminal users to be delayed. Specifying CNTCLIST=NO (the default) causes the entire
CLIST to constitute a single transaction.

Directed VIO activity
VIO data set pages can be directed to a subset of the local paging data sets through directed VIO, which
allows the installation to direct VIO activity away from selected local paging data sets that will be used
only for non-VIO paging. With directed VIO, faster paging devices can be reserved for paging where good
response time is important. The NONVIO system parameter, with the PAGE system parameter, allows the
installation to define those local paging data sets that are not to be used for VIO, leaving the rest available
for VIO activity. However, if space is depleted on the paging data sets made available for VIO paging, the
non-VIO paging data sets will be used for VIO paging.

The installation uses the DVIO keyword to either activate or deactivate directed VIO.

Note: The NONVIO and PAGE system parameters are in the IEASYSxx parmlib member.

Alternate wait management
An installation can specify whether to activate or deactivate alternate wait management (AWM). If AWM is
activated, SRM and LPAR cooperate to reduce low utilization effects and overhead.

For HIPERDISPATCH=NO (the default value), specifying CCCAWMT with any value in the range 1 to
499999 makes AWM active. Specifying CCCAWMT with any value in the range of 500000 to 1000000
makes AWM inactive. AWM is active or inactive only for any general CP, IBM zEnterprise Application Assist
Processor (zAAP), and IBM z Integrated Information Processor (zIIP). The default is 12000 (when AWM is
active) for all CPU types.

84 z/OS: z/OS MVS Initialization and Tuning Guide

For HIPERDISPATCH=YES, the valid range for CCCAWMT is 1600 to 3200. For ZAAPAWMT and
ZIIPAWMT, the valid range is 1600 to 499999. Any other value will be set to the default of 3200. Note
that AWM cannot be turned off.

Dispatching mode control
An installation can switch between the HiperDispatch mode enabled or HiperDispatch mode disabled by
specifying the HIPERDISPATCH keyword for the parmlib member IEAOPT.

For more information about the HIPERDISPATCH parameter, see z/OS MVS Initialization and Tuning
Reference.

Section 3: Advanced SRM parameter concepts
This section includes information about selective enablement for I/O and adjustment of constants
options.

Selective enablement for I/O
Selective enablement for I/O is a function that SRM uses to control the number of processors that are
enabled for I/O interruptions. The intent of this function is to enable only the minimum number of
processors needed to handle the I/O interruption activity without the system incurring excessive delays.
That is, if one processor can process the I/O interruptions without excessive delays, then only one
processor need be enabled for I/O interruptions.

At system initialization, one processor is enabled for I/O interruptions. To determine if a change should be
made to the number of processors that are enabled, SRM periodically monitors I/O interruptions.

By comparing this value to threshold values, SRM determines if another processor should be enabled or if
an enabled processor should be disabled for I/O interruptions. If the computed value exceeds the upper
threshold, I/O interruptions are being delayed, and another processor (if available) will be enabled for I/O
interruptions. If the value is less than the lower threshold (and more than one processor is enabled), a
processor will be disabled for I/O interruptions. The installation can change the threshold values using
the CPENABLE parameter in the IEAOPTxx parmlib member.

In addition to enabling a processor when I/O activity requires it, SRM also enables another processor for
I/O interruptions if one of the following occurs:

• An enabled processor is taken offline.
• An enabled processor has a hardware failure.
• SRM detects that no I/O interruptions have been taken for a predetermined period of time and

concludes that the enabled processor is unable to accept interrupts.

An installation can use the CPENABLE keyword to specify low and high thresholds for the percentage of
I/O interruptions to be processed through the test pending interrupt (TPI) instruction. SRM uses these
thresholds to determine if a change should be made to the number of processors enabled for I/O
interruptions.

The following chart gives the internal names of the control variables and indicates their relation to the
condition.

Table 17. Summary of variables used to determine if changes are needed to the number of processors enabled for I/O
interruptions

Control variable and internal name Percentage of I/O Interruptions Keyword in OPT

under over

Percentage of I/O interruptions through TPI
instruction (ICVTPIP)

<ICCTPILO >ICCTPIHI CPENABLE

Chapter 3. The system resources manager 85

Table 18 on page 86 relates SRM seconds to real time. The SRM constants that are shown in this table
are merely generalizations and approximations. For more accurate comparisons of processors, see the
internal throughput rate (ITR) numbers in Large Systems Performance Reference (LSPR), SC28-1187.

Table 18. Relating SRM seconds to real time

Processor Model SRM Seconds/Real Seconds

Processors: zSeries 990

zSeries 990 Models 301 - 332 508.1298

Processors: zSeries 900

zSeries 900 Models 101–109 269.3964

zSeries 900 Models 110–116, 1C1–1C9 281.5314

Processors: zSeries 890

zSeries 890 Models 110, 210, 310, 410 29.4117

zSeries 890 Models 120, 220, 320, 420 52.0399

zSeries 890 Models 130, 230, 330, 430 99.5222

zSeries 890 Models 140, 240, 340, 440 124.2544

zSeries 890 Models 150, 250, 350, 450 194.0993

zSeries 890 Models 160, 260, 360, 460 236.7423

zSeries 890 Models 170, 270, 370, 470 413.9071

Processors: zSeries 800

zSeries 800 Model 0E1 45.4545

zSeries 800 Model 0A1 90.8430

zSeries 800 Model 0X2 98.5804

zSeries 800 Model 0B1 130.4801

zSeries 800 Model 0C1 162.3376

zSeries 800 Model 0A2 160.2563

zSeries 800 Model 001 - 004 217.0138

Processors: S/390® 9672 G6 Models

S/390 Models 9672-X17 - 9672-XZ7 194.0993

S/390 Models 9672-Z17 - 9672-ZZ7 224.8200

Processors: S/390 9672 G5 Models

S/390 Model 9672-R16 129.9376

S/390 Model 9672-R26 129.9376

S/390 Models 9672-R36 - 9672-R96 141.0834

S/390 Models 9672-RA6, 9672-RB6 97.9623

S/390 Models 9672-RC6, 9672-RD6 129.9376

S/390 Models 9672-RX6, 9672-T16, 9672-T26 141.0834

S/390 Models 9672-Y16 - 9672-YX6 168.4635

Processors: S/390 3000

S/390 3000 Model A10 41.6666

86 z/OS: z/OS MVS Initialization and Tuning Guide

Table 18. Relating SRM seconds to real time (continued)

Processor Model SRM Seconds/Real Seconds

S/390 3000 Model A20 39.9872

Processors: S/390 2003

S/390 2003 Model 107 27.8520

S/390 2003 Model 124 (All Models) 30.3988 (per CPU)

S/390 2003 Model 1C5 (All Models) 37.6279 (per CPU)

S/390 2003 Model 2X7 (All Models) 46.0914 (per CPU)

S/390 2003 Model 203 6.1814

S/390 2003 Model 204 10.3203

S/390 2003 Model 205 14.4375

S/390 2003 Model 206 18.5680

S/390 2003 Model 207 27.8520

S/390 2003 Model 215 33.3333

S/390 2003 Model 216 41.6666

S/390 2003 Model 224 (All Models) 30.5325 (per CPU)

S/390 2003 Model 225 (All Models) 39.9872 (per CPU)

S/390 2003 Model 246 (All Models) 41.1455 (per CPU)

S/390 2003 Model 2C5 (All Models) 37.6279 (per CPU)

Adjustment of constants options
Certain OPT parameters make it more convenient for installations with unique resource management
requirements to change some SRM constants. The defaults provided are adequate for most installations.
A parameter needs to be specified only when its default is found to be unsuitable for a particular system
environment. The following functions can be modified by parameters in the OPT:

• Enqueue residence control
• SRM invocation interval control
• Pageable storage control
• Central storage control

Enqueue residence control

This parameter, specified by the ERV keyword, defines the amount of CPU service that the address space
is allowed to receive before it is considered for a workload recommendation swap out. The parameter
applies to all swapped-in address spaces that are enqueued on a resource needed by another user. For
more information, see “Enqueue delay minimization” on page 80.

SRM invocation interval control

This parameter, specified by the RMPTTOM keyword, controls the invocation interval for SRM timed
algorithms. Increasing this parameter above the default value reduces the overhead caused by SRM
algorithms, such as swap analysis and time slicing. However, when these algorithms are invoked at a rate
less than the default, the accuracy of the data on which SRM decisions are made, and thus the decisions
themselves, might be affected.

Chapter 3. The system resources manager 87

Pageable storage control

Two keywords are provided in the OPT to signal a shortage of pageable storage. Keyword MCCFXTPR
specifies the percentage of storage that is fixed. Keyword MCCFXEPR specifies the percentage of storage,
within the first 16 MB, that needs to be fixed before SRM detects a shortage. Table 19 on page 88
summarizes these keywords.

Table 19. Keywords provided in OPT to single pageable storage shortage

Control variable and internal name Shortage of pageable storage
exists

Keyword in OPT

Percentage of storage that is fixed RCETOTFX >MCCFXTPR MCCFXTPR

Percentage of storage that is fixed within the first 16
megabytes (RCEBELFX)

>MCCFXEPR MCCFXEPR

Note: These variables are actual frame counts rather than percentages. SRM multiplies the MCCFXTPR threshold by
the amount of online storage and multiplies the MCCFXEPR threshold by the amount of storage eligible for fixing in
order to arrive at the threshold frame counts that it uses to compare against the actual frame counts. If MCCFXEPR
x (amount of storage eligible for fixing) is greater than MCCFXTPR x (amount of online storage), then the threshold
frame counts that SRM uses to compare against the actual frame counts are set equal.

Central storage control

This parameter, specified by the MCCAFCTH keyword, indicates the number of frames on the available
frame queue when stealing begins and ends. The range of values on this keyword determines the block
size that SRM uses for stealing. In order to get a block into central storage, the lower value of the range
must be greater than the block size.

Section 4: Guidelines
This section provides some guidelines for these tasks:

• Defining installation requirements and objectives
• Preparing the initial OPT

Defining installation requirements
Before specifying any parameters to SRM, an installation must define response and throughput
requirements for its various classification of work. Examples of specific questions that should be
answered are listed in the following sections. The applicability of these questions will, of course, vary
from installation to installation. In addition, an installation must perform a capacity planning review as
outlined by information available at IBM Techdocs (www.ibm.com/support/techdocs/atsmastr.nsf/Web/
TechDocs). All of these tasks should be done on a periodic basis.

Subsystems

• How many subsystems will be active at any one time and what are they?
• For IMS, how many active regions will there be?
• Will the subsystem address space(s) be nonswappable?
• What is the desired response time and how will it be measured?

Batch

• What is the required batch throughput or turnaround for various job classes?
• How much service do batch jobs require, and what service rate is needed to meet the turnaround

requirement?

– An RMF workload report or reduction of SMF data in type 5 or type 30 records will provide the
average service consumed by jobs of different classes. Based on service definition coefficients of
CPU=10.0,IOC=5.0,MSO=3.0,SRB=10.0; the following approximations can be made:

88 z/OS: z/OS MVS Initialization and Tuning Guide

http://www.ibm.com/support/techdocs/atsmastr.nsf/Web/TechDocs
http://www.ibm.com/support/techdocs/atsmastr.nsf/Web/TechDocs

- Short jobs use 30,000 service units or less.
- Long jobs use more than 30,000 units.

• What is the average number of ready jobs?

– Most likely, this is the number of active initiators. A few extra initiators may be started to decrease
turnaround times.

TSO/E

• What is the number of terminals?
• What is the average number of ready users?

– As a guideline for installations new to TSO/E, assume that an installation doing program development
on 3270 terminals will have two ready users for every ten users logged on. This average will vary,
depending on the type of terminal and on the type of TSO/E session (data entry, problem solving,
program development).

• What is the required response time and expected transaction rate for different categories of TSO/E
transactions at different times, such as peak hours?

• What is the expected response time for short transactions?
• How will this response time be measured?
• Should response time be different for select groups of TSO/E users?
• How should semi-trivial and non-trivial transactions be treated?
• How are they defined?

– An installation can use RMF workload reports or SMF data in type 34 and 35 records available to help
define trivial and non-trivial TSO/E work. Based on service definition coefficients of
CPU=10.0,IOC=5.0,MSO=3.0,SRB=10.0; the following approximations can be made:

- Short TSO/E commands use 200 service units or less.
- Medium length commands use between 200 and 1000 service units.
- Long TSO/E commands use 1000 service units or more.

• What is the required service rate for TSO/E users?

– If 2-second response time (as reported by RMF) is required for very short TSO/E commands (100
service units), the required service rate for such a transaction is 100/2 or 50 service units per second.
Service rates for other types of transactions should be computed also.

General

• What is the importance level of TSO/E, batch, IMS, and special batch classes in relation to one another?
• Which may be delayed or "tuned down" to satisfy other requirements?

– In other words, which response requirements are fixed and which are variable?
• What percentage of system resources should each group receive?

Preparing an initial OPT
There are several approaches to preparing an initial OPT.

• Use the default OPT.
• Modify the default OPT.
• Create a new OPT.

The following tables describe the service consumed per second of execution time by CPU model. The
values listed are SRM constants. The total system absorption rate reported by RMF will not equal the
values listed here because these do not include certain types of system processing.

Chapter 3. The system resources manager 89

For the latest information about the processor version codes and SRM constants, see Processor version
codes and SRM constants (www.ibm.com/servers/resourcelink/lib03060.nsf/pages/srmindex).

Table 20. IBM zEnterprise 196 (z196) processor models

z196 processor model Service units per second of task or
SRB execution time

Seconds task or SRB execution time per
service unit

z196, Model 401 12648.2213 0.000079

z196, Model 402 12075.4717 0.000083

z196, Model 403 11782.0324 0.000085

z196, Model 404 11552.3466 0.000087

z196, Model 405 11371.7129 0.000088

z196, Model 406 11220.1964 0.000089

z196, Model 407 11080.3324 0.000090

z196, Model 408 10951.4031 0.000091

z196, Model 409 10832.7691 0.000092

z196, Model 410 10716.6778 0.000093

z196, Model 411 10603.0484 0.000094

z196, Model 412 10491.8033 0.000095

z196, Model 413 10389.6104 0.000096

z196, Model 414 10289.3891 0.000097

z196, Model 415 10191.0828 0.000098

z196, Model 501 30888.0309 0.000032

z196, Model 502 29520.2952 0.000034

z196, Model 503 28776.9784 0.000035

z196, Model 504 28218.6949 0.000035

z196, Model 505 27729.6360 0.000036

z196, Model 506 27303.7543 0.000037

z196, Model 507 26890.7563 0.000037

z196, Model 508 26533.9967 0.000038

z196, Model 509 26186.5794 0.000038

z196, Model 510 25848.1422 0.000039

z196, Model 511 25518.3413 0.000039

z196, Model 512 25196.8504 0.000040

z196, Model 513 24883.3593 0.000040

z196, Model 514 24577.5730 0.000041

z196, Model 515 24279.2109 0.000041

z196, Model 601 40404.0404 0.000025

z196, Model 602 38369.3046 0.000026

z196, Model 603 37296.0373 0.000027

z196, Model 604 36529.6804 0.000027

90 z/OS: z/OS MVS Initialization and Tuning Guide

http://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/srmindex
http://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/srmindex

Table 20. IBM zEnterprise 196 (z196) processor models (continued)

z196 processor model Service units per second of task or
SRB execution time

Seconds task or SRB execution time per
service unit

z196, Model 605 35874.4395 0.000028

z196, Model 606 35320.0883 0.000028

z196, Model 607 34782.6087 0.000029

z196, Model 608 34261.2420 0.000029

z196, Model 609 33755.2743 0.000030

z196, Model 610 33264.0333 0.000030

z196, Model 611 32786.8852 0.000031

z196, Model 612 32323.2323 0.000031

z196, Model 613 31872.5100 0.000031

z196, Model 614 31434.1847 0.000032

z196, Model 615 31007.7519 0.000032

z196, Model 701 61776.0618 0.000016

z196, Model 702 58394.1606 0.000017

z196, Model 703 56939.5018 0.000018

z196, Model 704 55749.1289 0.000018

z196, Model 705 54421.7687 0.000018

z196, Model 706 53691.2752 0.000019

z196, Model 707 52805.2805 0.000019

z196, Model 708 51948.0519 0.000019

z196, Model 709 50793.6508 0.000020

z196, Model 710 49844.2368 0.000020

z196, Model 711 48929.6636 0.000020

z196, Model 712 48048.0480 0.000021

z196, Model 713 47337.2781 0.000021

z196, Model 714 46647.2303 0.000021

z196, Model 715 45845.2722 0.000022

z196, Model 716 44943.8202 0.000022

z196, Model 717 44444.4444 0.000023

z196, Model 718 44077.1350 0.000023

z196, Model 719 43596.7302 0.000023

z196, Model 720 43360.4336 0.000023

z196, Model 721 42895.4424 0.000023

z196, Model 722 42666.6667 0.000023

z196, Model 723 42328.0423 0.000024

z196, Model 724 42105.2632 0.000024

z196, Model 725 41775.4569 0.000024

Chapter 3. The system resources manager 91

Table 20. IBM zEnterprise 196 (z196) processor models (continued)

z196 processor model Service units per second of task or
SRB execution time

Seconds task or SRB execution time per
service unit

z196, Model 726 41558.4416 0.000024

z196, Model 727 41343.6693 0.000024

z196, Model 728 40920.7161 0.000024

z196, Model 729 40712.4682 0.000025

z196, Model 730 40404.0404 0.000025

z196, Model 731 40100.2506 0.000025

z196, Model 732 39900.2494 0.000025

z196, Model 733 39603.9604 0.000025

z196, Model 734 39312.0393 0.000025

z196, Model 735 39119.8044 0.000026

z196, Model 736 38929.4404 0.000026

z196, Model 737 38740.9201 0.000026

z196, Model 738 38554.2169 0.000026

z196, Model 739 38369.3046 0.000026

z196, Model 740 38095.2381 0.000026

z196, Model 741 37914.6919 0.000026

z196, Model 742 37825.0591 0.000026

z196, Model 743 37647.0588 0.000027

z196, Model 744 37470.7260 0.000027

z196, Model 745 37296.0373 0.000027

z196, Model 746 37122.9698 0.000027

z196, Model 747 36951.5012 0.000027

z196, Model 748 36866.3594 0.000027

z196, Model 749 36781.6092 0.000027

z196, Model 750 36613.2723 0.000027

z196, Model 751 36446.4692 0.000027

z196, Model 752 36363.6364 0.000028

z196, Model 753 36281.1791 0.000028

z196, Model 754 36199.0950 0.000028

z196, Model 755 36117.3815 0.000028

z196, Model 756 36036.0360 0.000028

z196, Model 757 35955.0562 0.000028

z196, Model 758 35874.4395 0.000028

z196, Model 759 35794.1834 0.000028

z196, Model 760 35714.2857 0.000028

z196, Model 761 35634.7439 0.000028

92 z/OS: z/OS MVS Initialization and Tuning Guide

Table 20. IBM zEnterprise 196 (z196) processor models (continued)

z196 processor model Service units per second of task or
SRB execution time

Seconds task or SRB execution time per
service unit

z196, Model 762 35555.5556 0.000028

z196, Model 763 35476.7184 0.000028

z196, Model 764 35398.2301 0.000028

z196, Model 765 35320.0883 0.000028

z196, Model 766 35242.2907 0.000028

z196, Model 767 35164.8352 0.000028

z196, Model 768 35087.7193 0.000029

z196, Model 769 34934.4978 0.000029

z196, Model 770 34782.6087 0.000029

z196, Model 771 34632.0346 0.000029

z196, Model 772 34482.7586 0.000029

z196, Model 773 34334.7639 0.000029

z196, Model 774 34188.0342 0.000029

z196, Model 775 34042.5532 0.000029

z196, Model 776 33898.3051 0.000030

z196, Model 777 33684.2105 0.000030

z196, Model 778 33472.8033 0.000030

z196, Model 779 33264.0333 0.000030

z196, Model 780 33057.8512 0.000030

Table 21. IBM System z10 Enterprise Class (z10 EC) processor models

System z10® EC processor
models

Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

z10 EC, Model 401 11291.4608 0.000089

z10 EC, Model 402 10680.9079 0.000094

z10 EC, Model 403 10315.9252 0.000097

z10 EC, Model 404 10050.2513 0.000100

z10 EC, Model 405 9846.1538 0.000102

z10 EC, Model 406 9673.5187 0.000103

z10 EC, Model 407 9518.1440 0.000105

z10 EC, Model 408 9373.1693 0.000107

z10 EC, Model 409 9243.2120 0.000108

z10 EC, Model 410 9111.6173 0.000110

z10 EC, Model 411 8973.6399 0.000111

z10 EC, Model 412 8834.8978 0.000113

z10 EC, Model 501 24427.4809 0.000041

z10 EC, Model 502 23021.5827 0.000043

Chapter 3. The system resources manager 93

Table 21. IBM System z10 Enterprise Class (z10 EC) processor models (continued)

System z10® EC processor
models

Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

z10 EC, Model 503 22222.2222 0.000045

z10 EC, Model 504 21621.6216 0.000046

z10 EC, Model 505 21136.0634 0.000047

z10 EC, Model 506 20725.3886 0.000048

z10 EC, Model 507 20356.2341 0.000049

z10 EC, Model 508 20025.0313 0.000050

z10 EC, Model 509 19680.1968 0.000051

z10 EC, Model 510 19370.4600 0.000052

z10 EC, Model 511 19070.3218 0.000052

z10 EC, Model 512 18735.3630 0.000053

z10 EC, Model 601 32989.6907 0.000030

z10 EC, Model 602 31128.4047 0.000032

z10 EC, Model 603 30018.7617 0.000033

z10 EC, Model 604 29143.8980 0.000034

z10 EC, Model 605 28469.7509 0.000035

z10 EC, Model 606 27874.5645 0.000036

z10 EC, Model 607 27350.4274 0.000037

z10 EC, Model 608 26890.7563 0.000037

z10 EC, Model 609 26402.6403 0.000038

z10 EC, Model 610 25931.9287 0.000039

z10 EC, Model 611 25477.7070 0.000039

z10 EC, Model 612 25078.3699 0.000040

z10 EC, Model 701 47619.0476 0.000021

z10 EC, Model 702 44692.7374 0.000022

z10 EC, Model 703 43010.7527 0.000023

z10 EC, Model 704 41666.6667 0.000024

z10 EC, Model 705 40404.0404 0.000025

z10 EC, Model 706 39603.9604 0.000025

z10 EC, Model 707 38834.9515 0.000026

z10 EC, Model 708 38004.7506 0.000026

z10 EC, Model 709 37037.0370 0.000027

z10 EC, Model 710 36281.1791 0.000028

z10 EC, Model 711 35476.7184 0.000028

z10 EC, Model 712 34782.6087 0.000029

z10 EC, Model 713 34188.0342 0.000029

z10 EC, Model 714 33613.4454 0.000030

94 z/OS: z/OS MVS Initialization and Tuning Guide

Table 21. IBM System z10 Enterprise Class (z10 EC) processor models (continued)

System z10® EC processor
models

Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

z10 EC, Model 715 33057.8512 0.000030

z10 EC, Model 716 32454.3611 0.000031

z10 EC, Model 717 32064.1283 0.000031

z10 EC, Model 718 31746.0317 0.000032

z10 EC, Model 719 31434.1847 0.000032

z10 EC, Model 720 31128.4047 0.000032

z10 EC, Model 721 30769.2308 0.000033

z10 EC, Model 722 30534.3511 0.000033

z10 EC, Model 723 30303.0303 0.000033

z10 EC, Model 724 30075.1880 0.000033

z10 EC, Model 725 29850.7463 0.000034

z10 EC, Model 726 29629.6296 0.000034

z10 EC, Model 727 29411.7647 0.000034

z10 EC, Model 728 29143.8980 0.000034

z10 EC, Model 729 28933.0922 0.000035

z10 EC, Model 730 28725.3142 0.000035

z10 EC, Model 731 28520.4991 0.000035

z10 EC, Model 732 28318.5841 0.000035

z10 EC, Model 733 28119.5079 0.000036

z10 EC, Model 734 27923.2112 0.000036

z10 EC, Model 735 27777.7778 0.000036

z10 EC, Model 736 27633.8515 0.000036

z10 EC, Model 737 27491.4089 0.000036

z10 EC, Model 738 27303.7543 0.000037

z10 EC, Model 739 27118.6441 0.000037

z10 EC, Model 740 26936.0269 0.000037

z10 EC, Model 741 26755.8528 0.000037

z10 EC, Model 742 26666.6667 0.000038

z10 EC, Model 743 26533.9967 0.000038

z10 EC, Model 744 26402.6403 0.000038

z10 EC, Model 745 26272.5780 0.000038

z10 EC, Model 746 26101.1419 0.000038

z10 EC, Model 747 25974.0260 0.000039

z10 EC, Model 748 25848.1422 0.000039

z10 EC, Model 749 25764.8953 0.000039

z10 EC, Model 750 25641.0256 0.000039

Chapter 3. The system resources manager 95

Table 21. IBM System z10 Enterprise Class (z10 EC) processor models (continued)

System z10® EC processor
models

Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

z10 EC, Model 751 25477.7070 0.000039

z10 EC, Model 752 25356.5769 0.000039

z10 EC, Model 753 25236.5931 0.000040

z10 EC, Model 754 25117.7394 0.000040

z10 EC, Model 755 25039.1236 0.000040

z10 EC, Model 756 24960.9984 0.000040

z10 EC, Model 757 24883.3593 0.000040

z10 EC, Model 758 24806.2016 0.000040

z10 EC, Model 759 24729.5209 0.000040

z10 EC, Model 760 24615.3846 0.000041

z10 EC, Model 761 24502.2971 0.000041

z10 EC, Model 762 24390.2439 0.000041

z10 EC, Model 763 24279.2109 0.000041

z10 EC, Model 764 24169.1843 0.000041

Table 22. IBM System z9 Business Class (z9 BC) processor models

System z9® BC processor
models

Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

z9® BC, Model A01 1316.9808 0.000759

z9 BC, Model A02 1265.3223 0.000790

z9 BC, Model A03 1229.1619 0.000814

z9 BC, Model B01 1927.0143 0.000519

z9 BC, Model B02 1851.4233 0.000540

z9 BC, Model B03 1798.5612 0.000556

z9 BC, Model C01 2341.5776 0.000427

z9 BC, Model C02 2249.7188 0.000445

z9 BC, Model C03 2185.4938 0.000458

z9 BC, Model D01 3000.1875 0.000333

z9 BC, Model D02 2882.3635 0.000347

z9 BC, Model D03 2800.1400 0.000357

z9 BC, Model E01 3560.3026 0.000058

z9 BC, Model E02 3420.9964 0.000059

z9 BC, Model F01 4413.7931 0.000060

z9 BC, Model F02 4240.6573 0.000062

z9 BC, Model G01 5588.5435 0.000179

z9 BC, Model H01 6611.5702 0.000151

z9 BC, Model I01 7615.4212 0.000131

96 z/OS: z/OS MVS Initialization and Tuning Guide

Table 22. IBM System z9 Business Class (z9 BC) processor models (continued)

System z9® BC processor
models

Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

z9 BC, Model J01 8743.1694 0.000114

z9 BC, Model 1way L0x LPAR 3560.3026 0.000281

z9 BC, Model 2way L0x LPAR 3420.9964 0.000292

z9 BC, Model L03 3322.9491 0.000301

z9 BC, Model L04 3238.8664 0.000309

z9 BC, Model 1way M0x LPAR 4413.7931 0.000227

z9 BC, Model 2way M0x LPAR 4240.6573 0.000236

z9 BC, Model M03 4119.4645 0.000243

z9 BC, Model M04 4016.0643 0.000249

z9 BC, Model 1way N0x LPAR 5588.5435 0.000179

z9 BC, Model N02 5369.1275 0.000186

z9 BC, Model N03 5215.1239 0.000192

z9 BC, Model N04 5084.2072 0.000197

z9 BC, Model 1way O0x LPAR 6611.5702 0.000151

z9 BC, Model O02 6351.7269 0.000157

z9 BC, Model O03 6170.4589 0.000162

z9 BC, Model O04 6015.0376 0.000166

z9 BC, Model 1way P0x LPAR 7615.4212 0.000131

z9 BC, Model P02 7315.9579 0.000137

z9 BC, Model P03 7107.9520 0.000141

z9 BC, Model P04 6929.4067 0.000144

z9 BC, Model 1way Q0x LPAR 8743.1694 0.000114

z9 BC, Model Q02 8398.9501 0.000119

z9 BC, Model Q03 8159.1025 0.000123

z9 BC, Model Q04 7952.2863 0.000126

z9 BC, Model R01 9809.9326 0.000102

z9 BC, Model R02 9422.8504 0.000106

z9 BC, Model R03 9153.3181 0.000109

z9 BC, Model R04 8923.5917 0.000112

z9 BC, Model S01 10996.5636 0.000091

z9 BC, Model S02 10568.0317 0.000095

z9 BC, Model S03 10262.9891 0.000097

z9 BC, Model S04 10006.2539 0.000100

z9 BC, Model T01 12298.2321 0.000081

z9 BC, Model T02 11816.8390 0.000085

z9 BC, Model T03 11477.7618 0.000087

Chapter 3. The system resources manager 97

Table 22. IBM System z9 Business Class (z9 BC) processor models (continued)

System z9® BC processor
models

Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

z9 BC, Model T04 11188.8112 0.000089

z9 BC, Model U01 13710.3685 0.000073

z9 BC, Model U02 13168.7243 0.000076

z9 BC, Model U03 12789.7682 0.000078

z9 BC, Model U04 12470.7716 0.000080

z9 BC, Model V01 15399.4225 0.000055

z9 BC, Model V02 14801.1101 0.000055

z9 BC, Model V03 14375.5615 0.000056

z9 BC, Model V04 14010.5079 0.000056

z9 BC, Model W01 17278.6177 0.000058

z9 BC, Model W02 16597.5104 0.000060

z9 BC, Model W03 16129.0323 0.000062

z9 BC, Model W04 15717.0923 0.000064

z9 BC, Model X01 19347.0735 0.000052

z9 BC, Model X02 18583.0430 0.000054

z9 BC, Model X03 18058.6907 0.000055

z9 BC, Model X04 17601.7602 0.000057

z9 BC, Model Y01 21419.0094 0.000047

z9 BC, Model Y02 20592.0206 0.000049

z9 BC, Model Y03 20000.0000 0.000050

z9 BC, Model Y04 19488.4287 0.000051

z9 BC, Model Z01 24427.4809 0.000041

z9 BC, Model Z02 23460.4106 0.000043

z9 BC, Model Z03 22792.0228 0.000044

z9 BC, Model Z04 22222.2222 0.000045

Table 23. IBM System z9 Enterprise Class (z9 EC) processor models

System z9 EC processor
models

Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

z9 EC, Model 401 10107.3910 0.000099

z9 EC, Model 402 9708.7379 0.000103

z9 EC, Model 403 9433.9623 0.000106

z9 EC, Model 404 9195.4023 0.000109

z9 EC, Model 405 8958.5666 0.000112

z9 EC, Model 406 8762.3220 0.000114

z9 EC, Model 407 8565.3105 0.000117

z9 EC, Model 408 8368.2008 0.000120

98 z/OS: z/OS MVS Initialization and Tuning Guide

Table 23. IBM System z9 Enterprise Class (z9 EC) processor models (continued)

System z9 EC processor
models

Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

z9 EC, Model 501 19631.9018 0.000051

z9 EC, Model 502 18867.9245 0.000053

z9 EC, Model 503 18327.6060 0.000055

z9 EC, Model 504 17857.1429 0.000056

z9 EC, Model 505 17391.3043 0.000058

z9 EC, Model 506 17003.1881 0.000059

z9 EC, Model 507 16614.7456 0.000060

z9 EC, Model 508 16227.1805 0.000062

z9 EC, Model 601 22774.1456 0.000042

z9 EC, Model 602 22857.1429 0.000044

z9 EC, Model 603 22191.4008 0.000045

z9 EC, Model 604 21621.6216 0.000046

z9 EC, Model 605 21052.6316 0.000048

z9 EC, Model 606 20592.0206 0.000049

z9 EC, Model 607 20125.7862 0.000050

z9 EC, Model 608 19656.0197 0.000051

z9 EC, Model 701 29520.2952 0.000034

z9 EC, Model 702 28368.7943 0.000035

z9 EC, Model 703 27538.7263 0.000036

z9 EC, Model 704 26845.6376 0.000037

z9 EC, Model 705 26143.7908 0.000038

z9 EC, Model 706 25559.1054 0.000039

z9 EC, Model 707 25000.0000 0.000040

z9 EC, Model 708 24427.4809 0.000041

z9 EC, Model 709 23845.0075 0.000042

z9 EC, Model 710 23391.8129 0.000043

z9 EC, Model 711 22922.6361 0.000044

z9 EC, Model 712 22566.9958 0.000044

z9 EC, Model 713 22099.4475 0.000045

z9 EC, Model 714 21739.1304 0.000046

z9 EC, Model 715 21390.3743 0.000047

z9 EC, Model 716 21052.6316 0.000048

z9 EC, Model 717 20833.3333 0.000048

z9 EC, Model 718 20592.0206 0.000049

z9 EC, Model 719 20356.2341 0.000049

z9 EC, Model 720 20125.7862 0.000050

Chapter 3. The system resources manager 99

Table 23. IBM System z9 Enterprise Class (z9 EC) processor models (continued)

System z9 EC processor
models

Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

z9 EC, Model 721 19900.4975 0.000050

z9 EC, Model 722 19777.5031 0.000051

z9 EC, Model 723 19656.0197 0.000051

z9 EC, Model 724 19536.0195 0.000051

z9 EC, Model 725 19417.4757 0.000052

z9 EC, Model 726 19300.3619 0.000052

z9 EC, Model 727 19070.3218 0.000052

z9 EC, Model 728 18845.7008 0.000053

z9 EC, Model 729 18735.3630 0.000053

z9 EC, Model 730 18626.3097 0.000054

z9 EC, Model 731 18518.5185 0.000054

z9 EC, Model 732 18411.9678 0.000054

z9 EC, Model 733 18285.7143 0.000055

z9 EC, Model 734 18161.1805 0.000055

z9 EC, Model 735 18161.1805 0.000055

z9 EC, Model 736 18038.3315 0.000055

z9 EC, Model 737 17917.1333 0.000056

z9 EC, Model 738 17797.5528 0.000056

z9 EC, Model 739 17679.5580 0.000057

z9 EC, Model 740 17563.1175 0.000057

z9 EC, Model 741 17448.2007 0.000057

z9 EC, Model 742 17448.2007 0.000057

z9 EC, Model 743 17334.7779 0.000058

z9 EC, Model 744 17222.8202 0.000058

z9 EC, Model 745 17112.2995 0.000058

z9 EC, Model 746 17003.1881 0.000059

z9 EC, Model 747 16895.4593 0.000059

z9 EC, Model 748 16895.4593 0.000059

z9 EC, Model 749 16771.4885 0.000060

z9 EC, Model 750 16649.3236 0.000060

z9 EC, Model 751 16528.9256 0.000061

z9 EC, Model 752 16410.2564 0.000061

z9 EC, Model 753 16293.2790 0.000061

z9 EC, Model 754 16177.9575 0.000062

100 z/OS: z/OS MVS Initialization and Tuning Guide

Table 24. zSeries 990 processor models

zSeries 990 processor models Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

zSeries 990, Model 301 21857.9 0.000046

zSeries 990, Model 302 20752.3 0.000048

zSeries 990, Model 303 20075.3 0.000050

zSeries 990, Model 304 19559.9 0.000051

zSeries 990, Model 305 19047.6 0.000053

zSeries 990, Model 306 18626.3 0.000054

zSeries 990, Model 307 18202.5 0.000055

zSeries 990, Model 308 17777.8 0.000056

zSeries 990, Model 309 17353.6 0.000058

zSeries 990, Model 310 17003.2 0.000059

zSeries 990, Model 311 16666.7 0.000060

zSeries 990, Model 312 16326.5 0.000061

zSeries 990, Model 313 15984.0 0.000063

zSeries 990, Model 314 15640.3 0.000064

zSeries 990, Model 315 15296.4 0.000065

zSeries 990, Model 316 14953.3 0.000067

zSeries 990, Model 317 14787.4 0.000068

zSeries 990, Model 318 14611.9 0.000068

zSeries 990, Model 319 14532.2 0.000069

zSeries 990, Model 320 14440.4 0.000069

zSeries 990, Model 321 14349.8 0.000070

zSeries 990, Model 322 14260.2 0.000070

zSeries 990, Model 323 14171.8 0.000071

zSeries 990, Model 324 14084.5 0.000071

zSeries 990, Model 325 13998.3 0.000071

zSeries 990, Model 326 13913.0 0.000072

zSeries 990, Model 327 13828.9 0.000072

zSeries 990, Model 328 13745.7 0.000073

zSeries 990, Model 329 13663.5 0.000073

zSeries 990, Model 330 13582.3 0.000074

zSeries 990, Model 331 13490.7 0.000074

zSeries 990, Model 332 13400.3 0.000075

Table 25. zSeries 900 processor models

zSeries 900 processor
model

Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

zSeries 900, Model 101 11585.8 0.000086

Chapter 3. The system resources manager 101

Table 25. zSeries 900 processor models (continued)

zSeries 900 processor
model

Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

zSeries 900, Model 102 10891.8 0.000092

zSeries 900, Model 103 10430.2 0.000096

zSeries 900, Model 104 10081.9 0.000099

zSeries 900, Model 105 9732.4 0.000103

zSeries 900, Model 106 9384.2 0.000107

zSeries 900, Model 107 9153.3 0.000109

zSeries 900, Model 108 8805.7 0.000114

zSeries 900, Model 109 8456.7 0.000118

zSeries 900, Model 110 9334.9 0.000107

zSeries 900, Model 111 9211.3 0.000109

zSeries 900, Model 112 8968.6 0.000112

zSeries 900, Model 113 8724.1 0.000115

zSeries 900, Model 114 8602.2 0.000116

zSeries 900, Model 115 8359.5 0.00012

zSeries 900, Model 116 8117.7 0.000123

zSeries 900, Model 1C1 12112 0.000083

zSeries 900, Model 1C2 11502.5 0.000087

zSeries 900, Model 1C3 11142.1 0.00009

zSeries 900, Model 1C4 10781.7 0.000093

zSeries 900, Model 1C5 10540.2 0.000095

zSeries 900, Model 1C6 10296 0.000097

zSeries 900, Model 1C7 10056.6 0.000099

zSeries 900, Model 1C8 9816 0.000102

zSeries 900, Model 1C9 9575.1 0.000104

zSeries 900, Model 210 11165.3873 0.000090

zSeries 900, Model 211 10869.5652 0.000092

zSeries 900, Model 212 10723.8606 0.000093

zSeries 900, Model 213 10430.2477 0.000096

zSeries 900, Model 214 10139.4170 0.000099

zSeries 900, Model 215 9993.7539 0.000100

zSeries 900, Model 216 9696.9697 0.000103

zSeries 900, Model 2C1 14692.3783 0.000068

zSeries 900, Model 2C2 13961.6056 0.000072

zSeries 900, Model 2C3 13377.9264 0.000075

zSeries 900, Model 2C4 13082.5838 0.000076

zSeries 900, Model 2C5 12638.2306 0.000079

102 z/OS: z/OS MVS Initialization and Tuning Guide

Table 25. zSeries 900 processor models (continued)

zSeries 900 processor
model

Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

zSeries 900, Model 2C6 12345.6790 0.000081

zSeries 900, Model 2C7 12048.1928 0.000083

zSeries 900, Model 2C8 11756.0617 0.000085

zSeries 900, Model 2C9 11461.3181 0.000087

Table 26. zSeries 890 processor models

zSeries 800 processor model Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

zSeries 890, Model 110 1264.9221 0.000791

zSeries 890, Model 210 1225.2087 0.000816

zSeries 890, Model 310 1200.3901 0.000833

zSeries 890, Model 410 1175.6062 0.000851

zSeries 890, Model 120 2238.0753 0.000447

zSeries 890, Model 220 2167.7280 0.000461

zSeries 890, Model 320 2123.7059 0.000471

zSeries 890, Model 420 2079.8128 0.000481

zSeries 890, Model 130 4280.3638 0.000234

zSeries 890, Model 230 4146.1519 0.000241

zSeries 890, Model 330 4061.9447 0.000246

zSeries 890, Model 430 3978.1203 0.000251

zSeries 890, Model 140 5344.0214 0.000187

zSeries 890, Model 240 5176.3183 0.000193

zSeries 890, Model 340 5071.3154 0.000197

zSeries 890, Model 440 4965.8597 0.000201

zSeries 890, Model 150 8346.3745 0.000120

zSeries 890, Model 250 8084.8914 0.000124

zSeries 890, Model 350 7920.7921 0.000126

zSeries 890, Model 450 7755.6956 0.000129

zSeries 890, Model 160 10184.5958 0.000098

zSeries 890, Model 260 9864.3650 0.000101

zSeries 890, Model 360 9661.8357 0.000104

zSeries 890, Model 460 9461.8569 0.000106

zSeries 890, Model 170 17797.5528 0.000056

zSeries 890, Model 270 17241.3793 0.000058

zSeries 890, Model 370 16895.4593 0.000059

zSeries 890, Model 470 16546.0186 0.000060

Chapter 3. The system resources manager 103

Table 27. zSeries 800 processor models

zSeries 800 processor model Service units per second of task or
SRB execution time

Seconds Task or SRB Execution Time Per
Service Unit

zSeries 800, Model 0E1 1955.0 0.000512

zSeries 800, Model 0A1 3907.2 0.000256

zSeries 800, Model 0X2 UNI 4239.5 0.000236

zSeries 800, Model 0X2 3900.5 0.000256

zSeries 800, Model 0B1 5612.0 0.000178

zSeries 800, Model 0C1 6980.8 0.000143

zSeries 800, Model 0A2 UNI 6893.6 0.000145

zSeries 800, Model 0A2 6341.7 0.000158

zSeries 800, Model 001 9334.9 0.000107

zSeries 800, Model 002 8588.3 0.000116

zSeries 800, Model 003 8121.8 0.000123

zSeries 800, Model 004 7843.1 0.000128

Table 28. S/390 9672 processor models

S/390 9672 processor model Service units per second of task or
SRB execution time

Seconds of Task or SRB Execution Time
Per Service Unit

S/390 9672, Model T16 6067.5 0.000165

S/390 9672, Model T26 5643.7 0.000177

S/390 9672, Model R36 5460.8 0.000183

S/390 9672, Model R46 5278.8 0.000189

S/390 9672, Model R56 5158.0 0.000194

S/390 9672, Model R66 5036.2 0.000199

S/390 9672, Model R76 4915.5 0.000203

S/390 9672, Model R86 4733.7 0.000211

S/390 9672, Model R96 4490.6 0.000223

S/390 9672, Model RX6 4247.4 0.000235

S/390 9672, Model Y16 7246.4 0.000138

S/390 9672, Model Y26 6739.7 0.000148

S/390 9672, Model Y36 6449.0 0.000155

S/390 9672, Model Y46 6230.5 0.000161

S/390 9672, Model Y56 6086.0 0.000164

S/390 9672, Model Y66 5941.3 0.000168

S/390 9672, Model Y76 5797.1 0.000173

S/390 9672, Model Y86 5578.8 0.000179

S/390 9672, Model Y96 5361.9 0.000187

S/390 9672, Model YX6 5071.3 0.000197

S/390 9672, Model RA6 4212.7 0.000237

104 z/OS: z/OS MVS Initialization and Tuning Guide

Table 28. S/390 9672 processor models (continued)

S/390 9672 processor model Service units per second of task or
SRB execution time

Seconds of Task or SRB Execution Time
Per Service Unit

S/390 9672, Model RB6 3960.4 0.000253

S/390 9672, Model R16 5588.5 0.000179

S/390 9672, Model R26 5141.4 0.000194

S/390 9672, Model RC6 5029.9 0.000199

S/390 9672, Model RD6 4918.5 0.000203

S/390 9672, Model X17 8346.4 0.000120

S/390 9672, Model X27 7928.6 0.000126

S/390 9672, Model X37 7677.5 0.000130

S/390 9672, Model X47 7511.7 0.000133

S/390 9672, Model X57 7262.8 0.000138

S/390 9672, Model X67 7095.3 0.000141

S/390 9672, Model X77 6762.5 0.000148

S/390 9672, Model X87 6512.0 0.000154

S/390 9672, Model X97 6177.6 0.000162

S/390 9672, Model XX7 6010.5 0.000166

S/390 9672, Model XY7 5759.5 0.000174

S/390 9672, Model XZ7 5592.5 0.000179

S/390 9672, Model Z17 9667.7 0.000103

S/390 9672, Model Z27 9184.8 0.000109

S/390 9672, Model Z37 8893.8 0.000112

S/390 9672, Model Z47 8700.4 0.000115

S/390 9672, Model Z57 8412.2 0.000119

S/390 9672, Model Z67 8217.8 0.000122

S/390 9672, Model Z77 7831.6 0.000128

S/390 9672, Model Z87 7540.1 0.000133

S/390 9672, Model Z97 7249.7 0.000138

S/390 9672, Model ZX7 6959.5 0.000144

S/390 9672, Model ZY7 6765.3 0.000148

S/390 9672, Model ZZ7 6475.1 0.000154

Table 29. S/390 3000 processor models

S/390 3000 processor model Service units per second of task or
SRB execution time

Seconds of Task or SRB Execution Time
Per Service Unit

S/390 3000, Model A10 1792.1 0.000558

S/390 3000, Model A20 1582.3 0.000632

If you plan to use these constants for purposes other than those suggested in this information, observe
the following limitations:

Chapter 3. The system resources manager 105

• Actual customer workloads and performance may vary. For a more exact comparison of processors, see
the internal throughput rate (ITR) numbers in Large Systems Performance Reference (LSPR).

• CPU time can vary for different runs of the same job step. One or more of the following factors might
cause variations in the CPU time: CPU architecture (such as storage buffering), cycle stealing with
integrated channels, and the amount of the queue searching (see z/OS MVS System Management
Facilities (SMF)).

• The constants do not account for multiprocessor effects within logical partitions. For example, a logical
1-way partition in an S/390 9672, Model RX3, has 1090 service units per second, while a 10-way
partition on the same machine has 839.3 service units per second.

Using SMF task time

For installations with no prior service data, the task time reported in SMF record Type 4, 5, 30, 34, and 35
records can be converted to service units using the preceding tables.

Section 5: Installation management controls
This section contains information about commands for SRM-related installation management functions.

Operator commands related to SRM
The system operator can directly influence SRM's control of specific jobs or groups of jobs by entering
commands from the console. The exact formats of these commands are defined in z/OS MVS System
Commands.

The SET command with the OPT parameter is used to switch to a different OPT after an IPL. SRM bases all
control decisions for existing and future jobs on the parameters in the new parmlib member.

106 z/OS: z/OS MVS Initialization and Tuning Guide

Appendix A. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (www.ibm.com/
support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the
Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited
vision use software products successfully. The accessibility features in z/OS can help users do the
following tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with
a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or
more syntax elements are always present together (or always absent together), they can appear on the
same line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)
are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

© Copyright IBM Corp. 1991, 2020 107

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one
syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the
syntax element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted
decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However,
if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times.
A dotted decimal number followed by the * symbol indicates that this syntax element can be used
zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data area, or no data area.
If you hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

108 z/OS: z/OS MVS Initialization and Tuning Guide

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix A. Accessibility 109

110 z/OS: z/OS MVS Initialization and Tuning Guide

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for the Knowledge Centers. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1991, 2020 111

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

112 z/OS: z/OS MVS Initialization and Tuning Guide

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details
in the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease
if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

Notices 113

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle

• For information about currently-supported IBM hardware, contact your IBM representative.

Programming Interface Information
This book is intended to help the customer initialize and tune the MVS element of z/OS. This book
documents information that is NOT intended to be used as Programming Interfaces of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

114 z/OS: z/OS MVS Initialization and Tuning Guide

http://www.ibm.com/legal/copytrade.shtml

Index

A
access time

for modules 21
accessibility

contact IBM 107
features 107

address space
creating for system components 2
layout in virtual storage 4, 15
swapping 77

address space layout randomization 28
algorithm

auxiliary storage shortage prevention 72
paging operations 63
slot allocation 64

allocation
considerations 57
device allocation 58
improving performance 58
virtual storage

considerations 15
alternate wait management 84
ASLR, See address space layout randomization
ASM (auxiliary storage manager)

I/O load balancing 72
initialization 63
local page data set selection 73
overview 45
page data set

effect on system performance 65
estimating total size 71
protection 66
size 65
space calculation 67

page data set protection
Status information record 67
SYSTEMS level ENQ 66

page operations 63
performance

recommendations 69
questions and answers 72
shortage prevention 72
storage-class memory (SCM) 48

assistive technologies 107

B
batch

requirements 88

C
central storage control

modifying 88
central storage space

V=R region 8

central storage usage
swaps used 77

COFVLFxx member
coding 52

command
SRM, relationship 106

common area
in virtual storage 15

common page data set
sizing 67

common storage tracking function
tracking use of common storage 44

compatibility mode 76
constant

adjusting through IEAOPTxx 87
contact

z/OS 107
CSA (common service area)

description 25
tracking use of common storage 44
using the common storage tracking function 44

CSVLLAxx member
coding 51
example of multiple members 51
specifying the FREEZE|NOFREEZE option 55
specifying the GET_LIB_ENQ keyword 56
specifying the MEMBERS keyword 54
specifying the REMOVE keyword 54
using multiple members 51

CVIO specification 70

D
data set

page
size recommendations 65

paging
description 46
estimating total size 71

system data set
description 45

data-in-virtual
page data set

affected by data-in-virtual 73
demand swap 79
device allocation

DASD
function used by SRM 80

device selection
recommendations 69

directed VIO
page data set 47

dispatching
controlled by SRM 76
priority 78

Dispatching Mode Control 85
dynamic allocation 57

Index 115

E
EDT (eligible device table) 58
enqueue delay minimization

function used by SRM 80
enqueue residence control

modifying 87
exchange swap 77

F
feedback xiii
fixed LSQA

storage requirements 8
FLPA (fixed link pack area)

description 7
FREEZE|NOFREEZE option 55

G
GET_LIB_ENQ keyword 56
GETMAIN macro

macro request
variable-length 38

GETMAIN/FREEMAIN/STORAGE (GFS) trace
tracing the use of storage macros 44

goal mode 76

H
high virtual storage

limiting 15

I
I/O (input/output)

load balancing
by ASM 72
function supported by DASD device allocation 80

selective enablement for I/O by SRM 85
storage space

virtual 48
I/O priority

queueing function used by SRM 80
I/O service units

definition 83
used by SRM 83

IBM zEnterprise (zEnterprise)
processor models

z196 90–93
IEALIMIT installation exit

description 39
IEASYSxx LFAREA 29
IEASYSxx LFAREA examples 30
IEASYSxx parmlib member 59
IEFUSI installation exit

description 39
initialization

JES2 5
JES3 5
master scheduler 5

installation requirements
defining 88

IPL (initial program load)
major functions 1

J
JES2

initialization 5
region size

limiting 39
JES3

address space
auxiliary 5

initialization 5
region size

limiting 39
JES3AUX address space 5
job pack area

in system search order 18
JOBLIB

in system search order 18

K
keyboard

navigation 107
PF keys 107
shortcut keys 107

L
large frame area

description 29
examples 30

layout of virtual storage
single address space 15

LFAREA
description 29

LFAREA calculation example 1 32
LFAREA calculation example 4 34
LFAREA calculation example 5 35
LFAREA calculation examples 2 and 3 33
LFAREA parameter 29
LFAREA syntax and examples 30
LLA (library lookaside)

CSVLLAxx member 51
LLACOPY macro 53
modification 53
MODIFY LLA command 53
modifying shared data sets 54
overview 49
planning to use 50
refreshing LLA-managed libraries 54
removing libraries from LLA management 54
START command 52
STOP LLA command 53
using the FREEZE|NOFREEZE option 55
using the GET_LIB_ENQ keyword 56

LLACOPY macro
directory

modification 53
load balancing

DASD device allocation 80
local page data set

116 z/OS: z/OS MVS Initialization and Tuning Guide

local page data set (continued)
selection by ASM 73
sizing 68

logical swapping
used by SRM 79

LOGON command
processing 5

LPA
in system search order 18
placement of modules 21

LSQA (local system queue area)
description 28
fixed storage requirement 8
storage requirement

fixed 8

M
map of virtual storage

address space 4
master scheduler

initialization, description 5
MEMBERS keyword

of CSVLLAxx 54
MEMLIMIT 15, 39, 41, 42
memory pools 38
memory storage

reclassification 9
memory storagedescription

memory pools 9
MLPA (modified link pack area)

description 24
specification at IPL 24

MODIFY LLA command 53
module library 57
module search order

description 18, 50
mount and use attribute for volume

assigning
using a VATLSTxx parmlib member 58
using the MOUNT command 59

MOUNT command
processing 5

MPL (multiprogramming level)
adjusting function used by SRM 79

MPL adjustment control
modifying 84

multiprogramming set 77

N
navigation

keyboard 107
NIP (nucleus initialization program)

major functions 1
non-sharable attribute 61
nucleus area

description 7

O
OPT

initial parameter values

OPT (continued)
initial parameter values (continued)

selecting 89
parameter on the SET command 106
preparing the initial 89

out-of-space condition 38

P
page data set

description 46
directed VIO 47
estimating size

measurement facilities 71
size

recommendations 65
space calculation

values 67
page operation

algorithms 63
page space

adding 71
pageable frame stealing

used by SRM 83
pageable storage control

modifying 88
paging

space
adding 72
depletion 72
effects of data-in-virtual 73
removing 72

paging operation
algorithms 63

PDSE
storing program objects 52

performance
affected by storage placement 19, 21
recommendations

ASM (auxiliary storage manager) 69
permanently resident volume

mount attribute 59
notes 59
use attributes

assigning 59
volumes that are always permanently resident 59

PLPA (pageable link pack area)
data set 65
description 17
IEAPAKxx 17
primary and secondary 47

priority
dispatching 78

private area
in virtual storage 15

private area user region
description 36
real region 37
virtual region 36

processor model
related to SRM seconds 86
service units 90
task/SRB execution time 90

processor models

Index 117

processor models (continued)
IBM zEnterprise (zEnterprise)

z196 90–93
S/390 3000 105
S/390 9672 104, 105
System z10 EC 93–96
System z9 BC 96–98
System z9 EC 98–100
z196 90–93
zSeries 800 104
zSeries 890 103
zSeries 900 101–103
zSeries 990 101

processor storage
overview 6

R
real regions in private area user region 37
real time

related to SRM seconds 86
reclassification

high limit 9
recommendation value

swap 78
working set manager 80

region
size

limiting 37
REGION parameter

on the JOB/EXEC statement 38
REMOVE keyword

of CSVLLAxx 54
request swap 78
resource use function

used by SRM 78
Restricted use common service area (RUCSA)

migrating to 26
RUCSA , See Restricted use common service area

S
S/390 3000

processor models 105
S/390 9672

processor models 104, 105
SCM

allocating 73
auxiliary storage 48
paging operations and algorithms 64
questions and answers 72
sizing 69

search order
for modules 18, 50

selective enablement for I/O
by SRM 85
modifying 85

sending to IBM
reader comments xiii

serialization
of devices during allocation 57

service unit
processor model 90

service unit (continued)
task/SRB execution time 90

SET command 106
shortcut keys 107
slot

algorithm for allocating 64
ASM selection 73

SMFLIMxx parmlib member
examples 43
overview 40
rules 41

space over-specification 70
SQA (system queue area)

fixed, description 8
storage shortage prevention 81
virtual, description 16

SRB (service request block)
execution time

processor model 90
service units 90

SRM (system resources manager)
and system tuning 75
constants 87
control, types 76
description 75
dispatching control 76
examples 88
functions used by 77
guidelines 88
installation control specification

concepts 83
installation management controls 106
installation requirements

batch 88
guidelines 89
subsystems 88

introduction 75
invocation interval control

modifying 87
IPS (installation performance specification)

concepts 83
objectives 76
operator commands related to SRM 106
OPT concepts 83
options 76
parameters

concepts 83
preparing initial OPT 89
requirements

TSO/E 89
SRM seconds

based on processor model 86
related to real time 86

timing parameters 86
START command

processing 5
START LLA command 52
STEPLIB

in system search order 18
storage

auxiliary storage
overview 45

processor storage
overview 6

118 z/OS: z/OS MVS Initialization and Tuning Guide

storage (continued)
virtual storage

overview 13
storage initialization

ASM 63
storage management

initialization process 1
overview 1

storage shortage
prevention

for pageable frames 82
swaps result 77

storage shortage prevention
for auxiliary storage 81
for SQA 81
function used by SRM 81

storage-class memorh
configuring 65

storage-class memory
sizing 69

storage-class memory (SCM)
allocating 73
auxiliary storage 48

subpools 229, 230, 249
description 36

subsystem
requirements 88

summary of changes
for z/OS V2R2 xvi
z/OS MVS Initialization and Tuning Guide xv

Summary of changes xvi
SWA (scheduler work area)

description 35
swap

causes
improve system paging rate 77
storage shortage 77
to improve central storage usage 77

demand 79
wait state 78

swap dataset
and virtual I/O storage space 48

swap recommendation value 78
swapping

logical
used by SRM 79

types 77
used by SRM 77

system address space
creating 2
creation 4

system data set
description 45

system initialization
process 1

system paging rate
swap used 77

system preferred area 7
system region

description 36
system tuning

SRM discussion 75
System z10 EC

processor models 93–96

System z9 BC
processor models 96–98

System z9 EC
processor models 98–100

T
task

processor model 90
TASKLIB

in system search order 18
trademarks 114
transaction

definition
for CLIST 84

transition swap 78
TSO/E

requirements 89

U
UIC (unreferenced interval count)

definition 83
unilateral swap out 77
unilateral swap-in 77
user interface

ISPF 107
TSO/E 107

user region 37

V
V=R central storage space

description 8
VATLSTxx parmlib member 58
VIO (virtual input/output)

dataset page
directed 84

directed
paging data set 47

storage space 48
virtual region

in private area user region 36
virtual storage

affect of placement of modules 22
allocation

considerations 15
common area 15
layout 15
map 15
overview 13
private area 15
problem identification 44
single address space 15
tracing the use of storage macros 44
using GETMAIN/FREEMAIN/STORAGE (GFS) trace 44

virtual storageMEMLIMIT
memory limit 9

VLF (virtual lookaside facility)
starting 53
STOP VLF command 53
used with LLA 51

volume attribute list 58

Index 119

W
wait state

swaps result 78
wall clock time

related to SRM seconds 86
WLM resource group

policy 9
working set management 79
working set manager

recommendation value 80

Z
z/OS MVS Initialization and Tuning Guide

content, changed xv
content, new xv
summary of changes xv

z196
processor models 90–93

zSeries 800
processor models 104

zSeries 890
processor models 103

zSeries 900
processor models 101–103

zSeries 990
processor models 101

120 z/OS: z/OS MVS Initialization and Tuning Guide

IBM®

Product Number: 5650-ZOS

SA23-1379-40

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS MVS Initialization and Tuning Guide for Version 2 Release 4 (V2R4)
	Summary of changes for z/OS Version 2 Release 3 (V2R3)
	Summary of changes for z/OS Version 2 Release 2 (V2R2) as updated December 2015
	Summary of changes for z/OS Version 2 Release 2 (V2R2)
	z/OS Version 2 Release 1 summary of changes

	Chapter 1. Storage management overview
	Initialization process
	Creating address spaces for system components
	Master scheduler initialization
	Subsystem initialization
	START/LOGON/MOUNT processing

	Processor storage overview
	System preferred area
	Nucleus area
	The fixed link pack area (FLPA)
	System queue area (SQA-Fixed)
	Fixed LSQA storage requirements
	V=R area
	Memory pools
	Things to consider when your installation uses memory pools
	Reducing memory pool thresholds and reclassifying pool members

	Virtual storage overview
	The virtual storage address space and ESA extensions
	The 64-bit high virtual storage address space
	General virtual storage allocation considerations
	System Queue Area (SQA/Extended SQA)
	SQA/CSA thresholds

	Pageable link pack area (PLPA/Extended PLPA)
	Placing modules in the system search order for programs
	Search order the system uses for programs
	Module placement effect on application performance
	Access time for modules

	Module placement effect on system performance
	Placement of modules in LPA
	Placement of modules outside LPA

	Module placement effect on virtual storage
	Recommendations for Improving System Performance

	Modified link pack area (MLPA/Extended MLPA)
	Common service area (CSA/Extended CSA)
	SQA/CSA shortage thresholds

	Restricted use common service area (RUCSA/Extended RUCSA)
	Migrating to RUCSA

	Local system queue area (LSQA/Extended LSQA)
	Address space layout randomization
	Large pages and LFAREA
	Displaying LFAREA information
	LFAREA parameter
	LFAREA syntax and examples
	LFAREA calculation example 1
	LFAREA calculation examples 2 and 3
	LFAREA calculation example 4
	LFAREA calculation example 5

	Scheduler work area (SWA/Extended SWA)
	Subpools 229, 230, 249 - Extended 229, 230, 249
	System region
	The private area user region/extended private area user region
	Types of user regions
	Virtual regions
	Real regions
	Specifying region type

	Region size and region limit
	What is region size?
	What is region limit?
	Specifying region size

	Limiting user region size
	Why control region size or region limit?
	Using JES to limit region size
	Using exit routines to limit region size
	Using SMFLIMxx to control the REGION and MEMLIMIT
	Overview of the SMFLIM keywords
	Establishing SMFLIM rules in SMFLIMxx
	What happens when there are multiple rules, or if there is an SMFLIMxx active and an IEFUSI exit active
	SMFLIM examples

	Identifying problems in virtual storage (DIAGxx parmlib member)
	Using the common storage tracking function
	Using GETMAIN/FREEMAIN/STORAGE (GFS) trace

	Auxiliary storage overview
	System data sets
	Paging data sets
	Directed VIO
	Primary and secondary PLPA
	Virtual I/O storage space

	Using storage-class memory (SCM)

	Improving module fetch performance with LLA
	LLA and module search order
	Planning to use LLA
	Using VLF with LLA
	LLA notes

	Coding the required members of parmlib
	Coding CSVLLAxx
	Using multiple CSVLLAxx members
	Example of multiple CSVLLAxx members
	Storing program objects in PDSEs

	Coding COFVLFxx

	Controlling LLA and VLF through operator commands
	Starting LLA
	Starting LLA after system initialization

	Starting VLF
	Stopping LLA and VLF
	Modifying LLA
	Identifying members for selective refreshes

	Removing libraries from LLA management
	Modifying shared data sets
	Using the FREEZE|NOFREEZE option
	Changing LLA-managed libraries
	LLA ENQ consideration
	Using the GET_LIB_ENQ keyword
	Compressing LLA-managed libraries

	Recataloging LLA-managed data sets while LLA is active

	Allocation considerations
	Serialization of resources during allocation
	Improving allocation performance
	The volume attribute list
	Use and mount attributes
	Use attributes
	Mount attributes
	The nonsharable attribute
	System action

	Chapter 2. Auxiliary storage management initialization
	Page operations
	Paging operations and algorithms
	Paging operations and algorithms for storage-class memory (SCM)
	Configuring storage-class memory (SCM)

	Page data set sizes
	Storage requirements for page data sets
	Page data set protection
	SYSTEMS level ENQ
	Status information record

	Space calculation examples
	Example 1: Sizing the PLPA page data set, size of the PLPA and extended PLPA unknown
	Example 2: Sizing the PLPA page data set, size of the PLPA and extended PLPA known
	Example 3: Sizing the common page data set
	Example 4: Sizing local page data sets
	Example 5: Sizing page data sets when using storage-class memory (SCM)

	Performance recommendations
	Estimating total size of paging data sets
	Using measurement facilities
	Adding paging space
	Deleting, replacing or draining page data sets

	Questions and answers

	Chapter 3. The system resources manager
	System tuning and SRM
	Section 1: Description of the system resources manager (SRM)
	Controlling SRM
	Objectives
	Types of control
	Dispatching control

	Functions
	Swapping
	Domain-related swaps
	System-related swaps

	Swap recommendation value
	Dispatching of work
	Resource use functions
	Multiprogramming level adjusting
	Logical swapping
	Working set management

	Enqueue delay minimization
	I/O priority queueing
	DASD device allocation
	Prevention of storage shortages
	Auxiliary storage
	SQA
	Pageable frames

	Pageable frame stealing

	I/O service units

	Section 2: Basic SRM parameter concepts
	MPL adjustment control
	Transaction definition for CLISTs
	Directed VIO activity
	Alternate wait management
	Dispatching mode control

	Section 3: Advanced SRM parameter concepts
	Selective enablement for I/O
	Adjustment of constants options
	Enqueue residence control
	SRM invocation interval control
	Pageable storage control
	Central storage control

	Section 4: Guidelines
	Defining installation requirements
	Subsystems
	Batch
	TSO/E
	General

	Preparing an initial OPT
	Using SMF task time

	Section 5: Installation management controls
	Operator commands related to SRM

	Appendix A. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

