
z/OS
2.4

MVS Programming:
Extended Addressability Guide

IBM

SA23-1394-40

Note

Before using this information and the product it supports, read the information in “Notices” on page
237.

This edition applies to Version 2 Release 4 of z/OS (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2021-06-21
© Copyright International Business Machines Corporation 1988, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... ix

Tables.. xiii

About this document..xv
Who should use this document..xv
How this document is organized.. xv
How to use this document...xvi
z/OS information..xvi

How to send your comments to IBM.. xvii
If you have a technical problem... xvii

Summary of changes...xix
Summary of changes for z/OS Version 2 Release 4..xix
Summary of changes for z/OS Version 2 Release 3..xix
Summary of changes for z/OS Version 2 Release 2...xx

Chapter 1. An introduction to extended addressability..1
Basic concepts... 3

Asynchronous cross memory communication.. 3
Synchronous cross memory communication.. 3
Access register ASC mode..3
Data-in-Virtual.. 4
Virtual lookaside facility... 4
Data spaces and hiperspaces...4

Basic decision: data space or hiperspace... 5
What can a program do with a data space or a hiperspace?...5
What are the differences?.. 6
Which one should your program use?..8
Choosing VIO instead of a data space or a hiperspace... 9

Chapter 2. Linkage stack..11
Linkage stack considerations for asynchronous exit routines..12
Instructions that add and remove a linkage stack entry.. 12

Branch and stack (BAKR) instruction...12
Program return (PR) instruction...12
Example of using the linkage stack..13

Contents of the linkage stack entry...14
Instructions that manipulate the contents of a linkage stack entry.. 14

Extract stacked registers (EREG) instruction.. 14
Extract stacked state (ESTA) instruction... 15
Modify stacked state (MSTA) instruction... 16

Expanding a linkage stack to a specified size... 16
Relationship between the linkage stack and ESTAE-type recovery routines...16
Dumping the contents of the linkage stack...17

Chapter 3. Synchronous cross memory communication...19
When should you use synchronous cross memory communication?.. 19

 iii

Terminology, macros, and assembler instructions... 19
Cross memory terminology..19
Macros used for synchronous cross memory communication... 21
Instructions used for cross memory communication... 22

An overview of cross memory communication... 22
PC routines... 22
Summary of cross memory communication..25

The cross memory environment..26
Entry tables...26
Linkage tables...26
The PC number... 26
Program authorization — the PSW-key mask (PKM)... 27
Address space authorization..27

Considerations before using cross memory..30
Environmental considerations... 31
Restrictions...31
Requirements... 31

Establishing cross memory communication... 31
Making a PC routine available to all address spaces...32
Making a PC routine available to selected address spaces.. 33

Examples of how to establish a cross memory environment...35
Example 1 - Making services available to selected address spaces.. 36
Example 2 - Making services available to all address spaces.. 43
Example 3 - Providing non-space switch services.. 45

PC linkages and PC routine characteristics...45
PC linkage capabilities... 45
Defining a PC routine..45
PC routine requirements.. 48
Linkage conventions...49

Resource Management.. 52
Reusing ASIDs.. 53
Reassigning LXs when the LX reuse facility is enabled... 56
Reusing AXs and EAXs... 57
PC Routine Loading Recommendations...57
Accounting Considerations.. 57
Recovery Considerations..57

Chapter 4. Using the 64-bit address space..59
What is the 64-bit address space?..59
Why would you use virtual storage above the bar?.. 61
Memory management above the bar.. 61

Memory objects..61
Limiting the use of private memory objects.. 62
Using large pages... 67

Using assembler instructions in the 64-bit address space.. 67
64-bit binary operations.. 68
64-bit addressing mode (AMODE)... 69

Using a memory object.. 71
IARV64 macro services... 73

Protecting storage above the bar...75
Tagging 64-bit memory objects for data privacy...75
Creating private memory objects...76
Freeing a private memory object... 77
An example of creating, using, and freeing a private memory object.. 78
Creating shared memory objects...79
Freeing a shared memory object... 83
Creating common memory objects..84

iv

Freeing a common memory object.. 86
Fixing the pages of a memory object...87
Discarding data in a memory object.. 88
Releasing the physical resources that back pages of memory objects.. 88
Creating guard areas and changing their sizes..88
Listing information about the use of virtual storage above the bar.. 91
Changing the attributes of storage within a memory object... 91

Dumping 64-bit common memory objects... 91

Chapter 5. Using access registers... 93
Using access registers for data reference...93

A comparison of data reference in primary and AR mode.. 95
Coding instructions in AR mode...96

Manipulating the contents of ARs... 97
Access lists...98

Types of access lists...98
Types of access list entries.. 102

Special ALET values...103
Special ALET Values at a Space Switch... 103
Loading the Value of Zero into an AR...104

The ALESERV macro.. 105
Setting up addressability to an address/data space.. 105

Adding an entry to an access list... 106
Example of Adding an Access List Entry for a Data Space..107
Example of adding an access list entry for an address space.. 107
Obtaining and passing ALETs and STOKENs... 108
Examples of establishing addressability to data spaces.. 108
Adding an Entry for the Primary Address Space to the DU-AL... 112
Using the ALET for the Home Address Space... 113

Deleting an entry from an access list.. 113
Example of deleting a data space entry from an access list...114
Example of deleting an address space entry from an access list...114
ALET reuse by the system..114

EAX-authority to an address space...115
Setting the EAX value...117
Procedures for establishing addressability to an address space... 118
Changing an EAX value...120
Freeing an EAX value..120
Checking the authority of callers... 120

Obtaining storage outside the primary address space...122
What access lists can an asynchronous exit routine use?..123
Issuing MVS macros in AR mode...123

Passing parameters to MVS macros in AR mode.. 125
Formatting and displaying AR information... 125

Chapter 6. Creating and using data spaces... 127
Referencing data in a data space.. 127
Relationship between the data space and its owner..128

Scope=single, scope=all, and scope=common data spaces.. 128
Rules for creating, deleting, and using data spaces... 129

Example of the rules for accessing data spaces... 130
Summary of rules for creating, deleting, and using data spaces..131

Creating a data space.. 133
Choosing the name of the data space... 134
Specifying the size of the data space.. 134
Identifying the origin of the data space...136
Example of creating a data space..136

 v

Protecting data space storage... 137
Creating a data space of DREF storage... 137

Establishing addressability to a data space..138
Example of establishing addressability to a data space... 138

Managing data space storage..138
Managing data space storage across a checkpoint/restart operation... 138
Limiting data space use...139
Serializing use of data space storage..139
Examples of moving data into and out of a data space.. 139

Using callable cell pool services to manage data space areas...141
Extending the current size of a data space... 143
Deleting a data space.. 144
Example of creating, using, and deleting a data space.. 144
Creating and using SCOPE=COMMON data spaces.. 145
Attaching a subtask and sharing data spaces with it... 147

Sharing data spaces among problem state programs with PSW key 8 through F............................148
Mapping a data-in-virtual object to a data space... 148

Paging data space storage areas into and out of central storage...150
Releasing data space storage..151
How SRBs use data spaces... 151

Obtaining the TCB identifier for a task (ttoken)...154
Example of an srb routine using a data space...154

Dumping storage in a data space.. 156
Using data spaces efficiently...157

Chapter 7. Creating and using hiperspaces... 159
Managing hiperspace storage... 160

Limiting hiperspace use... 160
Managing hiperspace storage across a checkpoint/restart operation...160
Relationship between the hiperspace and its owner... 161
Serializing use of hiperspace storage..161
Standard and expanded storage only hiperspaces.. 161

Standard hiperspace.. 161
Expanded storage only hiperspaces..162
Summary of the differences...163

Rules for creating, deleting, and using hiperspace.. 163
Creating a hiperspace..164

Choosing the name of the hiperspace... 165
Specifying the size of the hiperspace.. 166
Protecting hiperspace storage...167
Identifying the origin of the hiperspace.. 168
Creating a non-shared or shared standard Hiperspace.. 168
Creating an expanded storage only Hiperspace..168

Accessing hiperspaces.. 169
How an ALET connects a program to a hiperspace...170
How problem state programs with PSW key 8 through F use a hiperspace.....................................170
How supervisor state or PSW key 0 through 7 programs use hiperspaces......................................172
Obtaining an ALET for a hiperspace...174

Transferring data to and from a hiperspace..176
Read and write operations for standard hiperspaces... 177
Read and write operations for expanded storage only hiperspaces.. 179
Obtaining improved data transfer to and from a hiperspace..180

Extending the current size of a hiperspace...190
Deleting a hiperspace.. 191
Releasing hiperspace storage... 191
Using data-in-virtual with standard hiperspaces... 192

Mapping a data-in-virtual object to a hiperspace... 193

vi

Using a hiperspace as a data-in-virtual object..195
How SRBs use hiperspaces... 196

Chapter 8. Creating address spaces... 197
Using the ASCRE macro to create an address space..197

Planning the characteristics of the address space... 198
Identifying a procedure in SYS1.PROCLIB.. 199
The address space initialization routine..200
Writing an Initialization Routine.. 200
Establishing cross memory linkages... 202
Passing a parameter list to the new address space..205
Providing an address space termination routine...205
Establishing attributes for address spaces... 206

Deleting an address space.. 207
Example of creating and deleting an address space.. 207

Chapter 9. Creating and using subspaces... 211
What is a subspace?.. 211
Deciding whether your program should run in a subspace.. 214

Benefits of subspaces..214
Limitations of subspaces... 214
System storage requirements..215

Steps to manage subspaces..215
Updating the application server to use subspaces...217

Managing subspaces when performance is a priority...217
Managing subspaces when storage is a priority..217
Creating a single subspace.. 217
Determining whether subspaces are available on your system... 218
Obtaining storage for subspaces... 219
Making a range of storage eligible to be assigned to a subspace...220
Creating the subspaces..222
Establishing addressability to a subspace.. 223
Assigning storage to the subspaces.. 223
Branching to a subspace..224
Running a program in a subspace..225
Disassociating storage from the subspaces..227
Removing the subspace entry from the DU-AL... 227
Deleting the subspace..228
Making storage ineligible to be assigned to a subspace...228
Releasing storage...228

Example of managing subspaces..228
Planning for recovery in a subspace environment..230

Planning for SPIE and ESPIE routines... 231
Planning for ESTAE-type recovery routines and FRRs.. 231

Diagnosing errors in a subspace environment..232
Diagnosing 0C4 abends... 232
Using IPCS to diagnose program errors in a subspace... 232
RSM component trace..232
Requesting a dump.. 232

Appendix A. Accessibility...233
Accessibility features.. 233
Consult assistive technologies.. 233
Keyboard navigation of the user interface.. 233
Dotted decimal syntax diagrams...233

Notices..237

 vii

Terms and conditions for product documentation... 238
IBM Online Privacy Statement.. 239
Policy for unsupported hardware..239
Minimum supported hardware..239
Programming Interface Information...240
Trademarks.. 240

Glossary.. 241

Index.. 247

viii

Figures

1. Accessing data in a data space... 7

2. Accessing data in a hiperspace...7

3. Example of using the linkage stack...13

4. Format of the information fields... 15

5. Example of an ESTA instruction.. 15

6. Example of an MSTA instruction... 16

7. PC routine invocation.. 24

8. Accessing data through the MVCP and MVCS instructions.. 25

9. PC instruction execution environment... 29

10. PT and SSAR instruction execution environment...30

11. Using ETDEF to statically define entry table descriptors...38

12. Using ETDEF to dynamically define entry table descriptors..39

13. Linkage table and entry table connection.. 41

14. Calling sequence for a stacking PC routine.. 41

15. Calling sequence for a basic PC routine... 42

16. Linkage and entry tables for a global service...44

17. Cross memory connections between address spaces...54

18. z/OS address space...60

19. Order of precedence in determining the effective MEMLIMIT value...64

20. z/OS R5 Address Space with the default shared area between 2-terabytes and 512-terabytes 80

21. A memory object eight megabytes in size..89

22. A memory object with an additional guard area.. 90

23. Example of an AR/GPR..94

 ix

24. Using an ALET to identify an address/data space..95

25. The MVC instruction in primary mode.. 96

26. The MVC Instruction in AR Mode..96

27. Comparison of addressability through a PASN-AL and a DU-AL... 101

28. PASN-ALs and DU-ALs at a space switch... 102

29. Special ALET values.. 103

30. Example 1: Adding an entry to a DU-AL... 109

31. Example 1: Sharing a data space through DU-ALs.. 109

32. Example 2: Adding an entry to a PASN-AL...110

33. Example 2: Sharing a data space through the PASN-AL..111

34. Example 3: Sharing data spaces between two address spaces..112

35. Obtaining the ALET for the Primary Address Space...112

36. Using the ALET for the Home Address Space.. 113

37. Difference Between Public and Private Entries... 116

38. Comparison of an AX and an EAX...118

39. Checking the Validity of an ALET.. 121

40. Example of Rules for Accessing Data Spaces.. 131

41. Example of Specifying the Size of a Data Space.. 136

42. Protecting storage in a data space... 137

43. Example of Using Callable Cell Pool Services for Data Spaces... 142

44. Example of Extending the Current Size of a Data Space... 143

45. Example of Using a SCOPE=COMMON Data Space..146

46. Two programs sharing a SCOPE=SINGLE data space..147

47. Example of Mapping a Data-in-Virtual Object to a Data Space... 149

48. Scheduling an SRB with an empty DU-AL and in a non-cross memory environment...........................152

x

49. Scheduling an SRB with a copy of the scheduling program's DU-AL and in the same cross memory
environment... 153

50. Example of scrolling through a standard hiperspace.. 162

51. Example of specifying the size of a hiperspace... 167

52. Protecting storage in a hiperspace...168

53. A problem state program using a non-shared standard hiperspace...170

54. Example 1: An unauthorized program using a standard hiperspace.. 171

55. Example 2: An unauthorized program using a standard hiperspace.. 172

56. A supervisor state program using a non-shared standard Hiperspace...173

57. A supervisor state program using a shared standard hiperspaces... 174

58. Illustration of the HSPSERV write and read operations...177

59. Example of creating a standard hiperspace and transferring data... 178

60. Gaining fast data transfer to and from expanded storage... 181

61. Example of extending the current size of a hiperspace...191

62. Example of mapping a data-in-virtual object to a hiperspace...194

63. A Standard hiperspace as a data-in-virtual object.. 195

64. Synchronization of the address space creation process... 201

65. An example of a cross memory environment.. 202

66. An example of cross memory environment set by the ASCRE macro...203

67. The cross memory linkages set by the ASCRE macro... 205

68. Illustration of address space that owns one subspace... 212

69. Illustration of address space that owns two subspaces... 213

70. Illustration of the range list.. 221

71. Illustration of GPR Contents in Event of Range List Error..222

 xi

xii

Tables

1. Data requirements for VIO, data spaces, and hiperspaces..9

2. Difficulty of modifying an existing application..10

3. Example of an EREG instruction... 14

4. Macros to issue for a PC routine to be available to all address spaces... 32

5. Macros that must be issued for basic and stacking PC routines... 33

6. Declared storage for cross memory examples...35

7. Comparing tasks and concepts for memory objects: Below the bar and above the bar...........................72

8. IARV64 service requests and rules for programs working with memory objects.....................................73

9. IARV64 services valid for private, shared, and common memory objects..75

10. Base and index register addressing in AR mode..97

11. Functions of the ALESERV Macro... 105

12. Relationship between the CHKEAX and ACCESS parameters on ALESERV..115

13. Creating, Deleting, and Using Data Spaces..132

14. Requirements for authorized programs using the DIV services with data spaces............................... 149

15. Addressability for each type of invocation of the SCHEDULE macro.. 153

16. Comparison of standard and ESO hiperspaces..163

17. Creating, deleting, and using hiperspace...164

18. Hiperspaces that problem state programs with PSW 8 - F can access...172

19. Hiperspaces that supervisor state or PSW key 0 - 7 programs can use... 173

20. Rules for adding access list entries for hiperspaces..175

21. Uses of hiperspaces and data-in-virtual.. 192

22. Requirements for authorized programs using the DIV services with hiperspaces...............................193

23. Planning considerations for the new address space... 198

 xiii

24. ATTR options for address spaces... 206

25. System storage requirements when managing subspaces... 215

26. Steps for creating, using, and deleting subspaces.. 215

27. How a server program manages single subspaces..217

28. Storage attributes required for subspaces...219

xiv

About this document

This document is intended for the programmer who writes programs with needs that extend beyond the
boundaries of the address space in which the programs are dispatched. Specifically, the programs need to
do one or more of the following:

• Execute in a multi-address space environment, interacting with programs running in other address
spaces

• Use data in address spaces other than the primary
• Use data in data spaces and hiperspaces
• Create another address space.

Who should use this document
This document is intended for programmers who write programs that interact with MVS™ or with
subsystems. The programs must be in supervisor state, or PSW key 0 - 7, or reside in APF-authorized
libraries, except where otherwise noted. The document assumes that the reader understands system
concepts and writes programs in assembler language.

System macros require High Level Assembler. For more information about assembler language
programming, see High Level Assembler and Toolkit Feature in IBM Documentation (www.ibm.com/
docs/en/hla-and-tf/1.6).

Using this information also requires you to be familiar with the operating system and the services that
programs running under it can invoke.

How this document is organized
This document is organized as follows:

• Chapter 1, “An introduction to extended addressability,” on page 1 describes the concepts behind a
multiple-address environment in which the functions described in the document would be appropriate.
It describes the reasons why a programmer might want to extend the addressability of a program
beyond the boundaries of a program's primary address space. It also compares two kinds of data-only
spaces: data spaces and hiperspaces.

• Chapter 2, “Linkage stack,” on page 11 describes an area that the system provides a program to save
status information at a branch or a program call instruction. This section describes the linkage stack and
the assembler instructions that cause the system to add and remove an entry and use the entry.

• Chapter 3, “Synchronous cross memory communication,” on page 19 describes cross memory
functions.

• Chapter 4, “Using the 64-bit address space,” on page 59 describes how a program can use the address
space virtual storage above the 2-gigabyte address. The chapter describes the rules for creating,
freeing, and using those virtual storage areas.

• Chapter 5, “Using access registers,” on page 93 describes how a program can use the registers known
as "access registers" to access data in address spaces and data spaces.

• Chapter 6, “Creating and using data spaces,” on page 127 describes how a program can ask the system
for an area of virtual storage known as a "data space". The chapter describes the rules for creating,
deleting, and using data spaces.

• Chapter 7, “Creating and using hiperspaces,” on page 159 describes how a program can ask the system
for an area of virtual storage known as a "hiperspace". The chapter describes the rules for creating,
deleting, and using hiperspaces.

• Chapter 8, “Creating address spaces,” on page 197 describes how a program can use the ASCRE macro
to create an address space.

© Copyright IBM Corp. 1988, 2020 xv

https://www.ibm.com/docs/en/hla-and-tf/1.6
https://www.ibm.com/docs/en/hla-and-tf/1.6

• Chapter 9, “Creating and using subspaces,” on page 211 describes how a program can use subspaces to
prevent multiple application programs running in a single address space from overwriting each other.

How to use this document
This document is one of the set of programming documents for MVS. This set describes how to write
programs in assembler language or high-level languages, such as C, FORTRAN, and COBOL. For more
information about the content of this set of documents, see z/OS Information Roadmap.

z/OS information
This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS® library, go to IBM Documentation (www.ibm.com/docs/en/zos).

xvi z/OS: z/OS MVS Extended Addressability Guide

https://www.ibm.com/docs/en/zos

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xvii.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM® Documentation function
If your comment or question is about the IBM Documentation functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Documentation Support
at ibmdocs@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS MVS Extended Addressability Guide,

SA23-1394-50
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 1988, 2020 xvii

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmdocs@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xviii z/OS: z/OS MVS Extended Addressability Guide

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

Summary of changes for z/OS Version 2 Release 4
The following information is new, changed, or deleted in z/OS Version 2 Release 4 (V2R4).

New
The following new information is added in this publication:
September 2020 refresh

• Information about CHANGEATTRIBUTE is added in Table 8 on page 73 and Table 9 on page 75
with APAR OA58289.

• The topic, “Changing the attributes of storage within a memory object” on page 91, is added with
APAR OA58289.

Prior to September 2020 refresh

• The SENSITIVE parameter is added in Tagging 64-bit memory objects for data privacy, “GETSTOR
request” on page 76, “GETSHARED request” on page 79, and “GETCOMMON request” on page
85 (APAR OA57633).

• The INORIGIN parameter is added in “GETSTOR request” on page 76.

Changed
The following information is changed in this publication:
June 2021 refresh

• Information about work units is updated in “Access lists” on page 98.

May 2021 refresh

• Programming considerations are updated in “Creating and using SCOPE=COMMON data spaces” on
page 145.

September 2020 refresh

• “Limiting the use of private memory objects” on page 62 is updated.
• “Using large pages” on page 67 is updated.

Prior to September 2020 refresh

• “Example 1 - Making services available to selected address spaces” on page 36 is updated in
“Setting Up” on page 36.

Summary of changes for z/OS Version 2 Release 3
The following information is new, changed, or deleted in z/OS Version 2 Release 3 (V2R3).

New
The following information has been added:

• Added a new section on “Authorized programs and subspaces” on page 226 for APAR OA54807.

© Copyright IBM Corp. 1988, 2020 xix

• Added a new paragraph for MEMLIMIT under the “Limiting the use of private memory objects” on page
62 section.

• Added parameters SADMP, EXECUTABLE, LOCALSYSAREA, MEMLIIT, DETACHFIXED, and DUMP under
the “GETSTOR request” on page 76 section.

• Added parameters SADMP and EXECUTABLE under the “GETCOMMON request” on page 85 section.

Changed
The following information has been changed:

• Information about the INORIGIN keyword for the IARV64 macro is added in “GETSTOR request” on
page 76 for APAR OA56664.

• Information is updated in “Using the ASCRE macro to create an address space” on page 197.
• Information about subspaces has been updated in “Limitations of subspaces” on page 214 for APAR

OA54807.
• Information about system-generated names has been updated in “Choosing the name of the data

space” on page 134.
• Information about the save area has been updated in “Providing an address space termination routine”

on page 205.

Summary of changes for z/OS Version 2 Release 2
The following information is new, changed, or deleted in z/OS Version 2 Release 2 (V2R2).

New
The following information has been added:

• Information about 64-bit common storage has been added in Chapter 4, “Using the 64-bit address
space,” on page 59.

Changed
The following information has been changed:

• “Program authorization — the PSW-key mask (PKM)” on page 27 has been updated for improved
clarity.

• “Creating guard areas and changing their sizes” on page 88 has been updated.

xx z/OS: z/OS MVS Extended Addressability Guide

Chapter 1. An introduction to extended
addressability

Over the years, MVS has changed in many ways. Two key areas of growth and change are addressability
and integrity. The concept of an address space is an integral part of both. An address space, literally
defined as the range of addresses available to a computer program, is like a programmer's map of the
virtual storage available for code and data. An address space provides each programmer with access to all
of the addresses available through the computer architecture.

Because it maps all of the available addresses, an address space includes system code and data as well
as user code and data. Thus, not all of the mapped addresses are available for user code and data. This
limit on user applications was a major reason for System/370 Extended Architecture (370-XA) and
MVS/XA. Because the effective length of an address field expanded from 24 bits to 31 bits, the size of an
address space expanded from 16 megabytes to 2 gigabytes. An MVS/XA address space is 128 times as
big as an MVS/370 address space.

A 2-gigabyte address space, however, does not, in and of itself, meet all of programmers' needs in an
environment where processor speed continues to increase, where applications must support hundreds of
users with instant response time requirements, and where businesses depend on quick access to huge
amounts of information stored on DASD.

With z/OS, the MVS address space expands to a size so vast that we need new terms to describe it. Each
address space, called a 64-bit address space, is 16 exabytes in size; an exabyte is slightly more than one
billion gigabytes. The new address space has logically 264 addresses. It is 8 billion times the size of the
former 2-gigabyte address space that logically has 231 addresses. The number is 16 with 18 zeros after it:
16,000,000,000,000,000,000 bytes, or 16 exabytes. If you are coding a new program that needs to store
large amounts of data, a 64-bit address space might work for you. See Chapter 4, “Using the 64-bit
address space,” on page 59.

If, however you need more than a large address space, other extended addressability techniques meet
that need. Extended addressability allows programmers to extend the power of applications through the
use of additional address spaces or data-only spaces. The data-only spaces that are available for your
programs are called data spaces and hiperspaces. These spaces are similar in that both are areas of
virtual storage that your program can ask the system to create. Their size can be up to 2 gigabytes, as your
program requests. Unlike an address space, a data space or hiperspace contains only user data; it does
not contain system control blocks or common areas. Program code cannot run in a data space or a
hiperspace.

The following diagram shows, at an overview level, the difference between an address space and a data
space or hiperspace.

© Copyright IBM Corp. 1988, 2020 1

Both the architecture and the system protect the integrity of code and data within an address space.
Various techniques, like storage protect key and supervisor state requirements, provide protection that is
almost like a wall around an address space, and this wall is basically a good thing from the point of view of
the work going on inside that individual address space.

The programming techniques that provide extended addressability permit programs to break through but
still preserve the wall that protects the address space.

Whether your application is one that can use extended addressability depends on many factors. One basic
factor is the amount of central, expanded, and auxiliary storage available at your installation to back up
virtual storage. Extended addressability frequently requires additional amounts of virtual storage, which
means that your installation must have sufficient central and auxiliary storage, and some of the
techniques work most efficiently only when expanded storage is available.

The goals for the design of a particular application are equally important in the decision-making process.
These goals might include:

• Performance. For an application with large numbers of online end users, achieving the best possible
response time is always a significant design goal.

• Efficient use of system resources, such as storage, and efficient use of the DASD resources.
• Ability to randomly access very large amounts of data.
• Data integrity and isolation. Data in an address space is generally available to all tasks (or TCBs) running

in that address space; access to data in a data space or hiperspace can be restricted. Code running in an
address space can inadvertently overlay data; because of its isolation, data in a data space or
hiperspace is less likely to be overlaid.

• Independence from individual device characteristics, from record-oriented processing, and from data
management concerns in general. Extended addressability can allow an application to focus on
controlling data as information in contrast to controlling data as records in data sets stored on DASD
volumes.

• Reduction in the size and complexity of the programming effort required to develop a new application.

Achieving these goals depends to a very great extent on choosing a way to extend addressability that
meets your needs. You need to understand, at a very high level, basic concepts related to each technique
and how you might apply extended addressability to specific programming situations.

At the detailed technical level, extended addressability can mean learning new programming techniques,
or new ways of applying existing techniques. At a higher level, extended addressability can open
completely different solutions to programming problems. With extended addressability, virtual storage,
backed by expanded storage, can become, conceptually, a high-performance medium for application
data. It is also important to note that you should think of extended addressability techniques as ones you
can use to modify existing applications as well as code new ones.

To use an example of how extended addressability can open up new solutions, assume you need to write
an application to sort 5000 records.

If you can hold only 50 records in storage, you must use DASD for intermediate workfile processing.
If you can hold 500 records in storage, the solution is still the same, though it requires fewer I/O
operations.
If you can hold all 5000 records in storage, the original solution still works, but it is now possible to
devise a completely different solution, one, for example, that does not depend on a DASD workfile.
This new solution could both improve performance and reduce the effort required for program
development.

This simple example illustrates how extended addressability can both improve the performance of
existing solutions and open the possibility of new solutions. The large amounts of virtual and processor
storage now available to an application can allow totally new solutions and simplify the entire process of
application development.

2 z/OS: z/OS MVS Extended Addressability Guide

Basic concepts
No single technique for extended addressability meets all possible needs. Choosing the right one for a
particular application requires you to understand the advantages and disadvantages of the technique and
some of the key differences between them. Many applications require a combination of various
techniques. Before you decide to incorporate one or more of the techniques in the design of a new
application, or decide to use a technique to modify an existing application, consult the detailed technical
description of each technique.

Asynchronous cross memory communication
Asynchronous cross memory communication is a fancy way to describe scheduling an SRB. An SRB is a
service request block that a task can schedule to request that some service take place in the same
address space or another address space. Any data that the requesting task and the service share must be
placed in common storage.

SRBs are one way to overlap processing. A task schedules an SRB to perform a service, then continues
with its work. When the service completes, it informs the task. The timing, however, is asynchronous; the
point when the SRB completes cannot be predicted.

Technical description
See "Asynchronous Inter-Address Space Communication" in z/OS MVS Programming: Authorized
Assembler Services Guide.

Synchronous cross memory communication
Synchronous cross memory communication, called cross memory, is both more complex and more
flexible than scheduling an SRB. Cross memory requires the programmer to use MVS macros to establish
a cross memory environment. This environment clearly defines the authorization requirements that
protect the integrity of the address spaces involved. Once this environment is established, the application
can use assembler instructions to transfer control from one address space to another.

Cross memory applications (as well as applications running in a single address space) can use the
processor-managed linkage stack to simplify program linkages. In a cross memory environment, the
program call (PC) instruction that transfers control to another routine can be either a basic PC or a
stacking PC. If it is a stacking PC, the system saves status on the linkage stack before it passes control to
the PC routine. When the PC routine returns control, the system automatically restores status from the
linkage stack.

The key fact to remember, however, is that cross memory provides synchronous communication or
processing across address spaces. When a task issues a PC instruction, control passes to the PC routine.
When the PC routine completes, it returns control to the calling routine. Cross memory, for example,
allows an application running in one address space to provide services for many users in other address
spaces.

Technical description
See Chapter 2, “Linkage stack,” on page 11 and Chapter 3, “Synchronous cross memory
communication,” on page 19. Chapter 8, “Creating address spaces,” on page 197 contains related
information.

Access register ASC mode
In access register address space control (ASC) mode, a program can use the full set of assembler
instructions (except MVCP and MVCS) to manipulate data in another address space or in a data space.
Unlike cross memory, access registers allow full access to data in many address spaces or data spaces.

ASC mode determines how the processor resolves address references for the executing program. In
primary ASC mode, the processor uses the contents of general purpose registers to resolve an address to

Chapter 1. An introduction to extended addressability 3

a specific location. In access register ASC mode, an access register (AR) identifies the space the
processor is to use to resolve an address. The processor uses the contents of an AR as well as the
contents of general purpose registers to resolve an address to a specific location.

In AR ASC mode, a program can move, compare, or perform operations on data in other address spaces or
in data spaces. It is important to understand, however, that ARs do not enable a program to transfer
control from one address space to another. That is, you cannot use ARs to transfer control from a program
in one address space to a program in another address space. For that, you need cross memory.

You can, however, use ARs without using cross memory. If your application needs to manipulate data in
other address/data spaces but does not need to transfer control to other address spaces, use ARs. If your
application needs to transfer control to routines in other address spaces but does not need to manipulate
data, use cross memory. If your application needs both the transfer of control and the manipulation of
data, use both cross memory and ARs.

Technical description
See Chapter 5, “Using access registers,” on page 93.

Data-in-Virtual
Data-in-virtual enables you to map data into virtual storage but deal only with the portion of it that you
need. The DIV macro provides the system services that manage the data object. It enables you to map the
object into virtual storage, create a window, and "view" through that window only the portion of the data
object that you need. The system brings into central storage only the data that you actually reference.

You can map a data-in-virtual object in either an address space, a data space, or a hiperspace. Mapping
the object into a data space or hiperspace provides additional storage for the data; the size of the window
is no longer restricted to the space available in an address space. It also provides additional isolation and
integrity for the data, as well as more direct methods of sharing access to that data.

Data-in-virtual is most useful for applications, such as graphics, that require large amounts of data but
normally reference only small portions of that data at any given time. It requires that the source of the
object be a VSAM linear data set on DASD (a permanent object) or a hiperspace (a temporary object).

Data-in-virtual is also useful for applications that require small amounts of data; data-in-virtual simplifies
the way you access data by avoiding the complexities of access methods.

Technical description
See "Data-in-Virtual" in z/OS MVS Programming: Assembler Services Guide.

Virtual lookaside facility
The virtual lookaside facility (VLF) is a set of MVS services that provide a high-performance alternate path
method of retrieving named objects from DASD on behalf of many users. VLF is designed primarily to
improve the response time for such applications.

VLF uses data spaces to hold data objects in virtual storage as an alternative to repeatedly retrieving the
data from DASD. If you have an existing data retrieval application or are considering designing one,
determine whether VLF can meet your needs.

Technical description
See "Virtual Lookaside Facility (VLF)" in z/OS MVS Programming: Authorized Assembler Services Guide.

Data spaces and hiperspaces
Data spaces and hiperspaces are data-only spaces that can hold up to 2 gigabytes of data. They provide
integrity and isolation for the data they contain in much the same way as address spaces provide integrity
and isolation for the code and data they contain. They are an extremely flexible solution to problems

4 z/OS: z/OS MVS Extended Addressability Guide

related to accessing large amounts of data. There are two basic ways to place data in a data space or a
hiperspace. One way is through buffers in the program's address space. Another way avoids using address
space virtual storage as an intermediate buffer area: through data-in-virtual services, a program can move
data into a data space or hiperspace directly. For hiperspaces, this second way reduces the amount of I/O.

Programs that use data spaces run in AR ASC mode. They use MVS macros to create, control, and delete
data spaces. Assembler instructions executing in the address space directly manipulate data that resides
in data spaces.

Programs that use hiperspaces run in primary or AR ASC mode. They use MVS macros to create, control,
and delete hiperspaces. Programs cannot directly manipulate data in a hiperspace, but use MVS macros
to transfer data to and from the hiperspace for data manipulation. Hiperspaces provide high-speed access
to large amounts of data.

Technical description
To decide whether to use a data space or a hiperspace, see “Basic decision: data space or hiperspace” on
page 5. More detailed information appears in Chapter 6, “Creating and using data spaces,” on page 127
and Chapter 7, “Creating and using hiperspaces,” on page 159.

Basic decision: data space or hiperspace
For storing data, MVS offers a program a choice of two kinds of virtual storage areas outside the program's
address space: data spaces and hiperspaces. You must make these decisions:

• Does my program need virtual storage outside the address space?
• Which kind of virtual storage is appropriate for my program?

Data spaces and hiperspaces are similar in that both are areas of virtual storage that the program can ask
the system to create. They differ in the way your program accesses data in the two areas. This difference,
and others, are described in other sections. But before you can understand the differences, you need to
understand what your program can do with these virtual storage areas.

Under certain conditions, virtual input/output (VIO) can be a better option than a data space or a
hiperspace. “Choosing VIO instead of a data space or a hiperspace” on page 9 compares data spaces,
hiperspaces, and VIO, and presents some trade-offs.

What can a program do with a data space or a hiperspace?
Programs can use data spaces and hiperspaces to:

• Obtain more virtual storage than a single address space gives a user.
• Isolate data from other tasks in the address space.

Data in an address space is accessible to all programs executing in that address space. You might want
to move some data to a data space or hiperspace for security or integrity reasons. You can restrict
access to data in those spaces to one or several units of work.

• Share data among programs that are executing in the same address space or different address spaces.

Instead of keeping the shared data in common areas, create a data space or hiperspace for the data you
want your programs to share. Use this space as a way to separate your data logically by its own
particular use.

• Provide an area in which to map a data-in-virtual object.

You can place all types of data in a data space or hiperspace, rather than in an address space or on DASD.
Examples of such data include:

• Tables, arrays, or matrixes
• Data base buffers

Chapter 1. An introduction to extended addressability 5

• Temporary work files
• Copies of permanent data sets

Because data spaces and hiperspaces do not include system areas, the cost of creating and deleting them
is less than that of an address space.

To help you decide whether you need this additional storage area, some important questions are
answered in the following sections. These same topics are addressed in greater detail in the appropriate
sections in this document.

How Does a Program Obtain a Data Space or a Hiperspace? Data spaces and hiperspaces are created
through the same system service: the DSPSERV macro. On this macro, you request either a data space or
a hiperspace. You also specify some characteristics for the space, such as:

• Its size
• Its name
• Its storage key
• Its fetch protection attributes

The macro service allocates contiguous virtual storage of the size (up to two gigabytes) you specify.

Who Owns a Data Space or Hiperspace? Although programs create data spaces and hiperspaces, they
do not own them. When a program creates a data space or hiperspace, the system assigns ownership to
the TCB that represents the program or to the TCB that your program chooses as the owner.

When a TCB terminates, the system deletes any data spaces or hiperspaces that the TCB still owns. If you
want the space to exist after the creating TCB terminates, assign the space to a TCB that will continue to
be active beyond the termination of the creating TCB.

Can Problem State Programs Use Data Spaces and Hiperspaces? Problem state programs can create
and use both data spaces and hiperspaces. Some types of data spaces and hiperspaces require that a
program be supervisor state or have PSW key 0-7.

What are the differences?
By now, you should know whether your program needs the kind of virtual storage that a data space or
hiperspace offers. Only by understanding the differences between the two types of spaces, can you
decide which one most appropriately meets your program's needs, or whether the program can use them
both.

The main difference between data spaces and hiperspaces is the way a program references data. A
program references data in a data space directly, in much the same way it references data in an address
space. It addresses the data by the byte, manipulating, comparing, and performing arithmetic operations.
The program uses the same instructions (such as load, compare, add, and move character) that it would
use to access data in its own address space. To reference the data in a data space, the program must be in
the ASC mode called access register (AR) mode. Pointers that associate the data space with the program
must be in place and the contents of ARs that the instructions use must identify the specific data space.

Figure 1 on page 7 shows a program in AR mode using a data space. The CLC instruction compares data
at two locations in the data space; the MVC instruction moves the data at location D in the data space to
location C in the address space.

6 z/OS: z/OS MVS Extended Addressability Guide

Figure 1. Accessing data in a data space

In contrast, a program does not directly access data in a hiperspace. MVS provides a system service, the
HSPSERV macro, to transfer the data between an address space and a hiperspace in 4K byte blocks. The
HSPSERV macro read operation transfers the blocks of data from a hiperspace into an address space
buffer where the program can manipulate the data. The HSPSERV write operation transfers the data from
the address space buffer area to a hiperspace for storage. You can think of hiperspace storage as a high-
speed buffer area where your program can store 4K byte blocks of data.

Figure 2 on page 7 shows a program in an address space using the data in a hiperspace. The program
uses the HSPSERV macro to transfer an area in the hiperspace to the address space. While the data is in
the address space, the program compares the values at locations A and B, and uses the MVC instruction
to move data at location D to location C. After it finishes using the data in those blocks, the program
transfers the area back to the hiperspace. The program could be in either primary or AR ASC mode.

Figure 2. Accessing data in a hiperspace

With one HSPSERV invocation, the program can transfer data in more than one area between the
hiperspace and the address space.

Comparing data space and hiperspace use of physical storage
To compare the performance of manipulating data in data spaces with the manipulating of data in
hiperspaces, you should understand how the system "backs" these two virtual storage areas. (That is,

Chapter 1. An introduction to extended addressability 7

what kind of physical storage the system uses to maintain the data in virtual storage.) The system uses
the same resources to back data space virtual storage as it uses to back address space virtual storage: a
combination of central storage and expanded storage (if available) frames, and auxiliary storage slots. The
system can move low-use pages of data space storage to auxiliary storage and bring them in again when
your program references those pages. The paging activity for a data space includes I/O between auxiliary
storage paging devices and central storage.

The system backs hiperspace virtual storage with expanded storage only, or with a combination of
expanded and auxiliary storage, depending on your choice. When you create a hiperspace, the system
gives you storage that will not be the target of assembler instructions and will not need the backing of real
storage frames. Therefore, when the system moves data from hiperspace to address space, it can make
the best use of the available resources.

Which one should your program use?
If your program needs to manipulate or access data often by the byte, data spaces might be the answer.
Use a data space if you frequently address data at a byte level, such as you would in a workfile.

If your program can easily handle the data in 4K byte blocks, a hiperspace might give you the best
performance. Use a hiperspace if you need a place to store data, but not to manipulate data. A hiperspace
has other advantages:

• The program can stay in primary mode and ignore the ARs.
• The program can benefit from the high-speed access.
• The system can use the unused central storage for other needs.

An example of using a data space
Suppose an existing program updates several rate tables that reside on DASD. Updates are random
throughout the tables. The tables are too large and too many for your program to keep in contiguous
storage in its address space. When the program updates a table, it reads that part of the table into a buffer
area in the address space, updates the table, and writes the changes back to DASD. Each time it makes an
update, it issues instructions that cause I/O operations.

Assume you want to change this application to improve its performance. If the tables were to reside in
data spaces, one table to each data space, the tables would then be accessible to the program through
assembler instructions. The program could move the tables to the data spaces (through buffers in the
address space) once at the beginning of the update operations and then move them back (through buffers
in the address space) at the end of the update operations.

If the tables are VSAM linear data sets, data-in-virtual can map the tables and move the data into the data
space where a program can access the data. Data-in-virtual can then move the data from the data space
to DASD. With data-in-virtual, the program does not have to use address space buffers as an intermediate
buffer area for transferring data to and from DASD.

Technical description
See Chapter 6, “Creating and using data spaces,” on page 127 for more information about data spaces.

An example of using a hiperspace
Suppose existing programs running in the same address spaces use a data base that resides on DASD.
The data base contains many records, each one containing personnel information about one employee.
Access to the data base is random and programs reference but do not update the records. Each time a
program wants to reference a record, it reads the record in from DASD.

This kind of application can benefit from a hiperspace. If the data base were to exist in a hiperspace, a
program would still bring one record into its address spaces at a time. Instead of reading from DASD,
however, the program would bring in the records from the hiperspace on expanded storage (or auxiliary

8 z/OS: z/OS MVS Extended Addressability Guide

storage, when expanded storage is not available). In effect, this technique can eliminate many I/O
operations and reduce execution time.

Technical description
See Chapter 7, “Creating and using hiperspaces,” on page 159 for more information about hiperspaces.

Choosing VIO instead of a data space or a hiperspace
Virtual input/output (VIO), like data spaces and hiperspaces, is designed to reduce the need for the
processor to transfer data between DASD and central storage. In this way, all three speed up the
execution of your programs. Additionally, they all use expanded storage, where possible, to back the data.
This section compares VIO with data spaces and hiperspaces and suggests the circumstances under
which you would choose VIO.

In making the decision on which to chose, you need to consider the following questions:

• How is the data in your program organized?
• How does the program use the data?
• How much programming effort is required to change an existing program to take advantage of VIO, data

spaces, or hiperspaces?

Two tables in this section help you understand facts related to these questions. Table 1 on page 9
answers questions about the data the program uses.

Table 1. Data requirements for VIO, data spaces, and hiperspaces

Question VIO Data spaces Hiperspaces

Is the data in your
program temporary?

VIO supports only
temporary data.

Data spaces support
temporary data and
permanent data (through
DIV).

Hiperspaces support
temporary data and
permanent data through
DIV or data window
services. (For information
on using data window
services, see z/OS MVS
Programming: Assembler
Services Guide.)

Is the data in your
program sequential?

VIO (through EXCP)
supports both sequential
and random access;
however, random access
requires more processor
cycles.

Data spaces have no
requirement.

Hiperspaces have no
requirement.

Is data arranged (or able
to be organized) in 4K
byte blocks?

VIO has no requirement. Data spaces have no
requirement.

Hiperspaces require that
the data be accessed and
referenced in 4K byte
increments, located on a
4K byte boundary.

You might have an existing program — either an assembler program or a high-level-language (HLL)
program — that you would like to change to use the performance benefits of VIO, data spaces, or
hiperspaces. Table 2 on page 10 compares the programming effort required to make this change.

Chapter 1. An introduction to extended addressability 9

Table 2. Difficulty of modifying an existing application

Question VIO Data spaces Hiperspaces

How difficult is it to
modify existing programs
that use I/O operations?

VIO requires no
modification to existing
programs that use an
access method that uses
EXCP. Either use storage
management subsystem
(SMS) to make global
requests to use VIO or use
JCL for an individual
program.

Assembler programs must
change to use system
macros and access
registers. Through VLF,
authorized programs can
use data spaces to store
and retrieve named
objects. HLL programs
cannot use data spaces
directly.

Assembler programs must
change to use system
macros or data window
services. HLL programs
cannot use hiperspaces
directly. They can use
hiperspaces through data
window services.

What is the performance comparison? Data spaces and hiperspaces do not have the overhead of an
access method and the device simulation of VIO; therefore, they require less processor time than VIO.

When would you choose VIO over data spaces or hiperspaces? Use VIO when you want to improve the
performance of an existing program, but you do not want to make large changes. For information about
how to use VIO, see z/OS MVS JCL User's Guide.

10 z/OS: z/OS MVS Extended Addressability Guide

Chapter 2. Linkage stack

The linkage stack is an area of protected storage that the system gives a program to save status
information at a branch or a program call. This section describes the linkage stack and the assembler
instructions that cause the system to add and remove an entry and modify the entry.

Saving status is a required part of program linkage. Status includes general purpose registers (GPRs),
access registers (ARs), the PSW, and other important information. The first thing a program does when it
receives control is save the status of its caller. The last thing the program does before it returns control is
restore the caller's status. The calling program can then resume processing with its status (including
registers and cross memory environment) intact. For example, your PC routines might have used the
PCLINK STACK macro to save a caller's status and then the PCLINK UNSTACK macro to restore the status.

An easier way to save and restore status, however, is to allow the system to do it for you through the
linkage stack. The linkage stack saves you and the system work in the following ways:

• The "chain" of status save areas is located in one place rather than chained throughout storage.
Diagnostic information thus appears in sequence on the linkage stack. (For the contents of an entry in
the stack, see “Contents of the linkage stack entry” on page 14.)

• The linkage stack provides a place for reentrant programs to save the caller's complete status before
the reentrant programs dynamically obtain their working storage. Once a program has saved the caller's
status on its linkage stack, it has all 16 GPRs and ARs available to establish its working environment.

• Your programs do not have to obtain and chain 72-byte save areas, provided all called programs are
using the linkage stack.

The following illustration shows how a program uses the linkage stack. The call from Program 1 to
Program 2 automatically places all the caller's status on the linkage stack. The return from Program 2 to
Program 1 automatically restores all the caller's status and removes the entry from the linkage stack.

The system provides each workunit (that is, TCB or SRB) with its own linkage stack. The linkage stack is
then available to all programs that the workunit represents. The programs can run in primary or AR
address space control (ASC) mode. They can be problem state or supervisor state, locked or unlocked,
enabled or disabled.

The linkage stack actually consists of two stacks: the normal linkage stack and the recovery linkage stack.
The normal linkage stack consists of at least 96 entries (for tasks) or 57 entries (for SRBs) for use by
programs that run under the workunit. (Note that under some circumstances, the system might provide
more than this.) When the system needs an entry and finds that all entries in the normal stack are used, it
abends the program with a "stack full" interruption code. After the "stack full" interruption occurs, the
system uses the recovery linkage stack. The recovery linkage stack is available to the program's recovery
routines after the "stack full" interruption occurs. If you anticipate a need for more than 96 entries, you
can use the LSEXPAND macro to expand the size of the normal and recovery stacks for tasks. For

© Copyright IBM Corp. 1988, 2020 11

information about how and when to issue the LSEXPAND macro, see “Expanding a linkage stack to a
specified size” on page 16.

Linkage stack considerations for asynchronous exit routines
A user may request an asynchronous exit routine to execute on behalf of a task. When an asynchronous
exit routine gets control, it cannot access the last entry (if any) on the linkage stack, because that entry
was created by the interrupted routine. The extract stacked registers (EREG) instruction, extract stacked
state (ESTA) instruction, and the modify stacked state (MSTA) instruction will cause a linkage stack
exception to occur.

Any routines to which the exit routine passes control are also subject to the same restriction. However,
the exit routine, or any routines to which it passes control, can manipulate linkage stack entries that they
themselves add.

Instructions that add and remove a linkage stack entry
The three instructions that cause the system to add or remove entries on the linkage stack are:

• The stacking program call (PC), which adds an entry when it passes control to another routine.
• The branch and stack (BAKR), which adds an entry whether it branches to another routine or not.
• The program return (PR), which removes an entry when it returns from a call or branch made with either

a stacking PC or a BAKR.

This section introduces each instruction and gives simple examples of each. It is not intended to direct
you in your coding. For complete descriptions of the instructions, see Principles of Operation.

The stacking PC instruction adds an entry to the linkage stack. Chapter 3, “Synchronous cross memory
communication,” on page 19 describes the two types of PC linkages. The stacking PC uses the linkage
stack to save the user's environment. The basic PC, on the other hand, requires that the PC routine
provide code to save the user's environment. The stacking and basic PC instructions are cross memory
instructions; they are described in more detail in “PC linkages” on page 23. Chapter 3, “Synchronous
cross memory communication,” on page 19 also contains a comparison of the coding of a stacking PC
and a basic PC. The linkage stack instructions BAKR and PR are described in the following sections.

Branch and stack (BAKR) instruction
The branch and stack (BAKR) instruction performs the branch and link in the same way that the BALR
does; additionally, it adds an entry to the linkage stack. The entry includes the branch address of the
calling routine.

A program can use the BAKR to branch to a subroutine in its address space and add an entry to the
linkage stack, or it can use a BAKR simply to branch to the next instruction in the program and add an
entry to the linkage stack. A program return (PR) instruction returns control to the program and removes
an entry from the linkage stack.

The BAKR instruction does not change the current addressing mode, nor does it cause a branch out of an
address space. You can be in either primary or AR ASC mode to use BAKR.

Program return (PR) instruction
The PR instruction performs several actions on the current entry in the linkage stack — the current entry
being the entry formed by the most recent BAKR or stacking PC instruction:

• If the current entry was added by a stacking PC or a BAKR instruction, the PR instruction returns control
to the calling program.

• The PR instruction restores the contents of the current entry, including the cross memory environment,
the PSW, and the contents of registers 2 - 14.

• The PR instruction removes the current linkage stack entry.

12 z/OS: z/OS MVS Extended Addressability Guide

The PR instruction can execute in either primary or AR mode.

The following example shows the PR instruction and a use of the BAKR instruction.

CALLING PROGRAM SUBROUTINE

.

.
L 15,=A(SUBR)
BALR 14,15
.
.
.
.

 .
 .
 .
SUBR EQU *
 BAKR 14,0
 .
 .
 PR

In the example, the BALR branches to subroutine SUBR. When SUBR receives control, it uses BAKR to
save the caller's status on the linkage stack. The BAKR saves the contents of register 14, which the calling
program loaded with the address of the instruction after the BALR, on the linkage stack. Zero, as the
second operand, means that the status information is saved and no branch occurs. The PR instruction in
SUBR restores the caller's status, restores the contents of register 14, removes the current linkage stack
entry, and returns to the instruction after the BALR in the calling program.

This use of the BAKR instruction is consistent with the MVS convention in which the called program saves
the status of the caller. This convention is described in the section on linkage conventions in z/OS MVS
Programming: Assembler Services Guide.

Example of using the linkage stack
Figure 3 on page 13 shows how the stacking PC and the BAKR instructions add entries to TCBA's linkage
stack and how the PR instruction removes those entries.

The program call from Program 1 to Program 2 automatically places all the caller's status on the linkage
stack (adding Entry 1 to the linkage stack). Program 2 uses the BALR instruction to branch to a subroutine,
which uses the BAKR instruction to save Program 2's status (adding Entry 2 to the stack). When the
subroutine returns to Program 2 through the PR instruction, Program 2's status is restored (removing
Entry 2 from the stack). When Program 2 uses the PR instruction to return to Program 1, Program 1's
status is restored (removing Entry 1 from the stack). At any time, the entry formed by the most recent
BAKR or stacking PC instruction contains the status of the caller of the currently executing code.

Figure 3. Example of using the linkage stack

Chapter 2. Linkage stack 13

Contents of the linkage stack entry
A linkage stack entry includes the following information:

• Contents of GPRs 0 - 15
• Contents of ARs 0 - 15
• Primary and secondary address space numbers (PASN and SASN)
• EAX
• Entire current PSW
• PSW key mask (PKM)
• PC number (if a stacking PC caused the entry) or a branch address (if a BAKR caused the entry)
• An eight-byte area that you can change with the modify stacked state (MSTA) instruction

On return from a routine, the PR instruction restores the entry and returns control to the calling program.

Instructions that manipulate the contents of a linkage stack entry
A program cannot change the order of the entries on the linkage stack, nor can it change any part of an
entry, except for the eight-byte modifiable area of the current entry. Three instructions copy information
from the current entry or copy information to the modifiable area of the current entry:

• The extract stacked registers (EREG) instruction loads ARs and GPRs from the current linkage stack
entry.

• The extract stacked state (ESTA) instruction obtains non-register information from the current linkage
stack entry.

• The modify stacked state (MSTA) instruction copies the contents of an even/odd GPR pair to the
modifiable area of the current linkage stack entry.

These instructions can execute in both primary and AR ASC mode.

Extract stacked registers (EREG) instruction
Use the extract stacked registers (EREG) instruction to load ARs and GPRs from the current linkage stack
entry. A typical use of EREG is in the middle of a subroutine after the caller's input registers have been
modified for other purposes. Use EREG to restore the contents of the AR/GPR pairs.

In the following example, EREG extracts the contents of the calling program's ARs 0-1 and GPRs 0-1 from
the current entry and loads them into ARs 0-1 and GPRs 0-1. The entry in this example was caused by the
BAKR instruction.

Table 3. Example of an EREG instruction.

The table shows how EREG extracts contents from the calling program and loads them.

CALLING PROGRAM SUBROUTINE

.
L 15,=A(SUBR)
BALR 14,15
.
.
.
.

SUBR EQU *
 BAKR 14,0
 .
 .
 .
 EREG 0,1
 .
 .
 PR

The EREG instruction does not change the current stack pointer.

Another example of using EREG to extract the contents of an AR/GPR pair appears in “Example of using
TESTART” on page 121.

14 z/OS: z/OS MVS Extended Addressability Guide

Extract stacked state (ESTA) instruction
A linkage stack entry includes the contents of the ARs and the GPRs, as well as other information. The
EREG instruction copies the ARs and GPRs from the current entry; the ESTA instruction copies the rest of
the information (that is, the non-register information) from the current entry. The non-register information
is divided into four eight-byte information fields and is identified to the ESTA instruction by a code.

Figure 4 on page 15 shows the code for each of the four information fields and the format of the fields.
The format of the third field varies depending on whether a BAKR or a stacking PC instruction caused the
entry.

Figure 4. Format of the information fields

The ESTA instruction copies one of the fields in the current entry into an even/odd pair of GPRs. It returns
a condition code that tells whether the entry on the linkage stack was formed by the BAKR (CC=0) or
stacking PC (CC=1) instruction.

In the following example, the load address instruction (LA) loads a code of "1" into register 9, where "1"
identifies the information field that contains the PSW. The ESTA instruction then copies this field into
general registers 4 and 5. The BZ instruction causes a branch if the stack entry was formed by a BAKR.

* Program entered through a stacking PC or BAKR
* Code of 1 identifies the PSW in the linkage stack entry
 .
 .
 LA 9,1 Load the code of 1 into general register 9
 ESTA 4,9 Load the PSW into general registers 4 and 5
 BZ BAKRTYPE If CC=0, then BAKR formed the stack entry
 If CC=1, then stacking PC formed the entry

Figure 5. Example of an ESTA instruction

Chapter 2. Linkage stack 15

Another example of the ESTA instruction appears in Figure 39 on page 121.

Modify stacked state (MSTA) instruction
The MSTA instruction moves the contents of an even/odd pair of GPRs into the modifiable area of the
current linkage stack entry. You might use the ESTA instruction later to load the contents of the modifiable
area into registers.

In the following example, general registers 6 and 7 contain 8 bytes to be placed into the modifiable area
of the current linkage stack entry. The MSTA instruction copies the 8 bytes to the modifiable area. The
load address (LA) instruction loads a code of 3 into GPR 1. (The code for the modifiable area is "3".) Later
in the example, the ESTA instruction copies the contents of the modifiable area into general register 2.

* Program entered through a stacking PC or BAKR
* General registers 6 and 7 contain 8 bytes to be placed
* into modifiable area of the current linkage stack entry
* Code of 3 identifies the modifiable area in entry
 .
 .
 MSTA 6 Update modifiable area
 .
 .
 LA 1,3 Load code of 3 into general register 1
 ESTA 2,1 Load modifiable area into general registers 2 and 3

Figure 6. Example of an MSTA instruction

For an example of using MSTA to pass data to an associated recovery routine (ARR), see the section on
providing recovery in the z/OS MVS Programming: Authorized Assembler Services Guide.

Expanding a linkage stack to a specified size
The system provides a way for programs running in task mode to expand the size of the normal and
recovery linkage stacks. The default size for a normal linkage stack is at least 96 entries. A linkage stack
of this size is probably sufficient for your program's needs. However, if you have a program, such as one
with recursive code, that needs more than 96 entries, you can use the LSEXPAND macro to request a
normal linkage stack of up to 16,000 entries.

When a program uses up all of the entries in the normal linkage stack, the system abends the workunit
and sets up a recovery linkage stack. The default for this linkage stack is 24 entries. The LSEXPAND macro
can increase the recovery linkage stack to 4000 entries.

The timing of the execution of the LSEXPAND macro is important. You must anticipate using up the entries
in the stack. If the program has already issued a "stack full" program interruption, the system will not
accept the LSEXPAND macro and will abend the workunit. In other words, don't wait until the normal
linkage stack is full to issue this macro.

Example of requesting larger normal and recovery linkage stacks

To request that the linkage stack have 2000 entries and the recovery linkage stack have 150 entries, code
the following LSEXPAND macro:

LSEXPAND NORMAL=2000,RECOVERY=150

Relationship between the linkage stack and ESTAE-type recovery
routines

When a user provides an ESTAE-type recovery routine through the ESTAE or ESTAEX macro, the system
saves the current linkage stack position. The user must deactivate the ESTAE-type recovery routine under
the linkage stack entry that was current when the ESTAE-type recovery routine was activated. z/OS MVS

16 z/OS: z/OS MVS Extended Addressability Guide

Programming: Authorized Assembler Services Guide describes how the macros that provide recovery for
your programs use the linkage stack.

Dumping the contents of the linkage stack
In case of an error, you might want to check the status information that the system saved when your
program gained control. Through the interactive problem control system (IPCS) FORMAT line command,
you can display or print dump data associated with a specified address space. z/OS MVS Diagnosis: Tools
and Service Aids contains an example of a dump of an entry in the linkage stack.

Chapter 2. Linkage stack 17

18 z/OS: z/OS MVS Extended Addressability Guide

Chapter 3. Synchronous cross memory
communication

Synchronous cross memory communication enables one program to provide services synchronously to
other programs. This document calls the program that provides the services, the service provider, and the
programs that use the services, users. The service provider can provide services to one user or to many.

Synchronous cross memory communication takes place between the user and the service provider when
the user issues a program call (PC) instruction. If the service provider has previously established the
necessary environment, the PC instruction transfers control to a service provider program called a PC
routine. The PC routine provides the requested service and then returns control to the user.

The user program and the PC routine can execute in the same address space or in different address
spaces. In either case, the PC routine executes under the same TCB as the user. Thus, the PC routine
provides the service synchronously.

A PC routine can access (fetch or store) data in the user's address space by using access registers (ARs)
and the full set of assembler instructions. If the PC routine has the proper authority, it can also access
data in other address spaces or in data spaces. For information about using access registers, see Chapter
5, “Using access registers,” on page 93.

The rest of this section discusses when you should consider using synchronous cross memory
communication and explains the environment the service provider must create and how to create it.

When should you use synchronous cross memory communication?
The use of synchronous cross memory communication to provide services to users can provide virtual
storage constraint relief as well as improve the integrity of the service and its data. Consider using
synchronous cross memory communication if you wish to:

• Isolate the service and its data from the user of the service
• Make the service available to multiple users without the need to store it in commonly addressable

storage
• Replace an existing service request block (SRB) routine to gain improved performance or simplify

communication
• Provide an authorized service to problem state programs

Synchronous cross memory communication enables you to provide services to many users without
making the service available in commonly addressable storage. At the same time, you can isolate the
service from the user, thus protecting it by having the service in its own address space.

Terminology, macros, and assembler instructions
To fully understand the rest of the cross memory discussion, there are some terms that you must
understand and macros and assembler instructions that you must become familiar with.

Cross memory terminology
The following terms are used within this section. For definitions of other terms used in this document, see
the glossary.

• Address space control (ASC) mode: The mode (determined by the PSW) that tells the system where to
find the data it is to reference. Two ASC modes are AR and primary. For each ASC mode, the following
table defines:

– The address space from which the system fetches instructions

© Copyright IBM Corp. 1988, 2020 19

– The address space or data space that the system accesses when an instruction, other than an MVCP
or MVCS instruction, references data

– The address space the system accesses when an MVCP or MVCS instruction references data
• AR ASC mode: The ASC mode in which the system uses both the GPR (used as the base register) and

the corresponding AR to resolve an address in an address/data space.

ASC Mode Instruction Fetch Data Access MVCP/MVCS

Primary ASC mode Primary address
space

Primary address
space

Primary or
secondary address
space

Secondary ASC mode Primary address
space (see Note)

Secondary address
space

Primary or
secondary address
space

AR ASC mode Primary address
space

Address space
indicated by the
AR

Unavailable.
Causes an abend
in AR ASC mode.

Note: Prior to ESA/370 architecture, the address space from which instructions are fetched is
unpredictable when a program is running in secondary ASC mode.

• Basic PC: Transfers control to another program, the PC routine. The basic PC requires the service
provider to save and restore the user's environment. The PC routine can be in the same address space
as the program that issues the PC instruction, or in a different address space.

• Cross memory local (CML) lock: The LOCAL lock of an address space other than the home address
space.

• Cross memory mode: Cross memory mode exists when at least one of the following conditions are true:

– The primary address space (PASN) and the home address space (HASN) are different address spaces.
– The secondary address space (SASN) and the home address space (HASN) are different address

spaces.
– The ASC mode is secondary.

• Home address space: The address space in which MVS initially dispatches a TCB or SRB (work unit). In
the case of a TCB, the home address space contains the TCB. PSAAOLD points to the home address
space. When MVS initially dispatches a work unit, the home address space, the primary address space,
and the secondary address space are all the same. During execution of the work unit, the home address
space remains the same. The primary and secondary address spaces may be changed, however,
through the PC, PR, PT, or SSAR instructions.

• LX reuse facility: The LX reuse facility is available with z/OS V1R6 to provide additional LXs and
improve reusability of LXs. It is enabled when running on a z890 or z990 processor at driver level 55 or
above, with APAR OA07708 installed. When the facility is enabled bit CVTALR in byte CVTFLAG2 of the
CVT data area is 1.

• Primary address space: The address space whose segment table is used to fetch instructions in
primary, secondary, and AR ASC modes. A program in primary mode fetches data from the primary
address space.

• Primary ASC mode: The ASC mode in which the system uses the GPRs, but not the ARs, to resolve an
address in an address space. In primary ASC mode, the system fetches instructions and data from the
primary address space.

• PC number: A number that identifies a PC routine. The service provider creates the number, by using
MVS services, and supplies it to the user. The user specifies the number in a PC instruction to identify
the PC routine that is to be invoked.

• PC routine: A program that receives control as the result of a PC instruction's executing and performs a
service for the caller.

20 z/OS: z/OS MVS Extended Addressability Guide

• Secondary address space: The address space whose segment table the system uses to access data in
secondary ASC mode.

• Secondary ASC mode: The ASC mode in which the system fetches instructions from the primary
address space and data from the secondary address space.

• Space switch routine: A program that issues a PC instruction that causes the primary address space to
change.

• Stacking PC: Transfers control to another program, the PC routine. The stacking PC uses the linkage
stack for storing the caller's status. It provides more options and more automatic function than the
basic PC instruction. The PC routine can be in the same address space as the program that issues the
PC instruction, or a different address space. IBM recommends using the stacking PC instead of the
basic PC.

Macros used for synchronous cross memory communication
MVS provides the following macros that the service provider uses to create, disconnect, or destroy the
environment (tables, linkages, and indexes) needed for cross memory communication. This section
discusses when and how to use these macros. For detailed information about the macro's syntax and
parameters, see one of the following:

• z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
• z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
• z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
• z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

A brief description of each macro follows.

• ATSET (Set Authority Table): Sets PT and SSAR authority in the home address space's authority table
entry that corresponds to a specified authorization index.

• AXEXT (Extract Authorization Index): Returns the authorization index (AX) value of a specified address
space.

• AXFRE (Free Authorization Index): Frees one or more authorization index (AX) values by returning them
to the system.

• AXRES (Reserve Authorization Index): Reserves one or more authorization index (AX) values for use by
the caller of the macro.

• AXSET (Set Authorization Index): Sets the authorization index (AX) of the home address space to the
value specified by the caller of the macro.

• ETCON (Connect Entry Table): Connects one or more entry tables to specified linkage table indexes in
the home address space.

• ETCRE (Create Entry Table): Builds a program call (PC) entry table from PC routine definitions that the
service provider defined by issuing the ETDEF macro or by defining the entry definitions directly.

• ETDEF (Create Entry Table Descriptor): Builds or modifies the PC routine definitions that ETCRE uses as
input.

• ETDES (Destroy Entry Table): Destroys an entry table.
• ETDIS (Disconnect Entry Table): Disconnects one or more entry tables from the home address space's

linkage table.
• LXFRE (Free a Linkage Index): Frees one or more previously reserved linkage indexes.
• LXRES (Reserve a Linkage Index): Reserve one or more linkage indexes for future use.
• PCLINK (Stack, Unstack, or Extract Program Call Linkage Information): Basic PC routines that receive

control in supervisor state can issue

– Save the user's environment after the PC routine gets control.
– Restore the user's environment before issuing the PT instruction to return control to the user.
– Retrieve information from a saved environment.

Chapter 3. Synchronous cross memory communication 21

Instructions used for cross memory communication
The following assembler instructions provide the control capabilities and information a program needs for
synchronous cross memory communication. For a detailed explanation of the following instructions, see
Principles of Operation.

• EPAR (extract primary ASN) - Places the ASID of the primary address space into a general purpose
register (GPR).

• EPAIR (extract primary ASN and instance) - Places the ASID and instance number of the primary
address space into a general purpose register (GPR). Bits 0-31 of the GPR contain the instance number
and bits 48-63 contain the ASID.

• ESAR (extract secondary ASN) - Places the ASID of the secondary address space into a general purpose
register.

• ESAIR (extract secondary ASN and instance) - Places the ASID and instance number of the secondary
address space into a general purpose register (GPR). Bits 0-31 of the GPR contain the instance number
and bits 48-63 contain the ASID.

• IAC (insert address space control) - Indicates, in a general purpose register, the current ASC mode.
• MVCK (move with key) - Moves data between storage areas that have different storage protection keys.
• MVCP (move to primary) - Moves data from the secondary address space to the primary address space.
• MVCS (move to secondary) - Moves data from the primary address space to the secondary address

space.
• PC (program call) - Invokes the program identified by the specified PC number. There are two types of

PC linkages, basic and stacking. Both linkages transfer control to another program, the PC routine. The
stacking PC, however, provides more capability and better performance than the basic linkage. The PC
routine that receives control can be in an address space other than the address space in which the PC
instruction was issued.

• PR (program return) - Returns control to a program that issued a stacking PC instruction.
• PT (program transfer) - Returns control to a program that issued a basic PC.
• PTI (program transfer with instance) - Return control to a program that issued a basic PC.
• SAC (set address space control) - Explicitly sets the ASC mode.
• SSAR (set secondary ASN) - Sets the secondary address space to the desired address space.
• SSAIR (set secondary ASN and instance) - Sets the secondary address space and instance number to

the desired address space and instance number.

An overview of cross memory communication
Cross memory communication takes place when a user program issues a PC instruction that specifies a
valid PC number. The PC number identifies the PC routine that the system is to invoke. The service
provider must have previously defined the PC routine and made the PC number available to the user. The
PC routine can provide the requested service or can invoke other programs to provide the service. When
the PC routine completes its function, it issues either the PR instruction (for a stacking PC) or a PT
instruction (for a basic PC) to return control to the user program.

PC routines
To provide a service, the service provider supplies a PC routine and uses MVS macros to make the PC
routine available to the address space of the user who needs the service. A service provider can make a
PC routine available to users in all address spaces or to users in selected address spaces only. Before a
user can invoke a PC routine, however, the user also needs a PC number, which the service provider must
provide. Each PC number identifies a specific PC routine.

22 z/OS: z/OS MVS Extended Addressability Guide

PC routine invocation
Any program can issue a PC instruction provided the program is running in either primary or AR ASC
mode. When a program issues a PC instruction, the system invokes the requested PC routine providing the
service provider has made the PC routine available to the calling program's address space. In addition, if
the calling program is running in problem state, it must also have a PSW-key mask (PKM) that the service
provider has authorized to invoke the PC routine. The PC routine, or other routines that it invokes,
performs the service the caller desires.

The service provider is responsible for defining the level of authorization problem programs need to
invoke a PC routine. The service provider defines the level of authorization for each PC routine by
specifying the PKM that a problem state program must have to invoke the PC routine. If the problem
program's PKM agrees with the service provider's specification, the system allows the problem program
to invoke the PC routine. Otherwise, the PC instruction causes a program interrupt (privileged operation
exception).

PC linkages
There are two types of PC linkages, basic and stacking. The terms basic and stacking refer to the type of
PC linkage used to invoke the PC routines. The basic PC linkage and the stacking PC linkage are similar in
that each invokes a program. They are different, however, in the manner of invocation and the capabilities
available on invocation.

The stacking PC provides more capability and better performance than does the basic PC. For example,
the stacking PC uses the system provided linkage stack to save and restore the user's environment. On
the other hand, the basic PC requires that the PC routine provide code to save and restore the user's
environment. For a detailed comparison of the stacking PC and the basic PC, see “PC linkages and PC
routine characteristics” on page 45.

PC routine execution
A PC routine executes in either the service provider's address space or in the user's address space. A PC
routine that causes a space switch (PC-ss) executes in the service provider's address space, which
becomes the primary address space. A PC routine that does not cause a space switch (PC-cp) executes in
the user's primary address space, which remains the primary address space. The service provider uses
the ETDEF macro to indicate whether a PC routine is to cause a space switch. Regardless of where the PC
routine executes, it always runs under the same TCB or SRB as the program that issued the PC instruction.

A PC routine may provide services directly to the user, or it may invoke other routines to provide the
services. If necessary, a PC routine can itself issue PC instructions.

Stacking pc routines
When a user invokes a stacking PC routine, the system saves the user's environment on the linkage stack.
After the PC routine completes its function, it must issue the PR instruction to restore the user's
environment and return control to the user.

Basic pc routines
When a user invokes a basic PC routine, the PC routine must save the user's environment. To save the
environment, the PC routine can issue the PCLINK macro or can provide code that performs the save
function. After completing its function, the PC routine must restore the user's environment. Again, the PC
routine can use the PCLINK macro or provide code that performs the restore function. Only PC routines
that run in supervisor state can issue the PCLINK macro. PC routines that run in problem state must
provide code that performs the same functions as the PCLINK macro.

To return control to the user, the PC routine issues the PT instruction. To execute a PT instruction, the
service provider must have previously been granted PT authority by the user. PT authority means that the
service provider is authorized to issue the PT instruction with the target being the user's address space.
The AXSET macro provides the means to grant PT authority.

The following figure shows how a user invokes a PC routine to obtain a service.

Chapter 3. Synchronous cross memory communication 23

Figure 7. PC routine invocation

Accessing data from a pc routine
To access data that is in another address space or in a data space, or to store data into another address
space or data space, IBM recommends that the PC routine use ARs. To use ARs, the PC routine must be in
AR ASC mode. A PC routine can use ARs in the same way any other program uses them. For information
about using ARs and for some examples, see Chapter 5, “Using access registers,” on page 93.

The PC routine can, if necessary, access data in the user's address space without using ARs. The MVCP
instruction moves data from the secondary address space (the user) to the primary address space (the
service provider). The MVCS instruction moves data from the primary address space (the service provider)
to the secondary address space (the user). To use the MVCP or MVCS instructions, the service provider
must have obtained SSAR authority to the user's address space before the PC routine receives control.
The AXSET macro provides the means to grant SSAR authority. The primary address space and the
secondary address space must be different address spaces (PASN¬=SASN).

The following figure shows how a PC routine can use the MVCP or MVCS instructions to access data.

24 z/OS: z/OS MVS Extended Addressability Guide

Figure 8. Accessing data through the MVCP and MVCS instructions

Summary of cross memory communication
There are several important points to remember about cross memory communication:

1. Cross memory facilities enable the service provider to provide services to some or all users.
2. The service provider code and the user code can execute in the same address space or in different

address spaces.
3. The service provider uses MVS macros to establish and maintain the environment needed for cross

memory communications.
4. The service provider supplies services through PC routines. For each PC routine, the service provider

supplies the user with a PC number that identifies the routine.

Chapter 3. Synchronous cross memory communication 25

5. To obtain a service from the service provider, the user issues a PC instruction. The instruction specifies
the PC number of the PC routine that the user wants to invoke.

6. The stacking PC provides more capability and better performance than does the basic PC. IBM
recommends using the stacking PC.

7. To store data into or retrieve data from other address spaces or from data spaces, IBM recommends
using ARs. The service provider can, if necessary, access data in the user's address space without
using ARs. To do this, the service provider can use the MVCP instruction to retrieve data from the
user's address space and the MVCS instruction to move data into the user's address space.

The cross memory environment
The term cross memory environment refers to the tables and linkages that connect the service provider's
address space to the user's address space and to the tables and linkages that provide the necessary
authorization for the service provider. The term also refers to the PC numbers used to initiate cross
memory communication.

Following this topic are two figures, Figure 9 on page 29 and Figure 10 on page 30, that show how the
cross memory environment supports communication. Refer to these figures as you read this topic.

Entry tables
For each PC routine, the service provider issues the ETDEF macro to define the PC routine's name or entry
point and its environment. A PC routine's environment refers to whether the routine runs in supervisor
state or problem state, the value of the routine's authorization key mask, whether the routine causes a
space switch, and so forth. After defining the PC routine's environment, the service provider issues ETCRE
to create an entry table. The service provider's home address space owns the entry table.

The entry table contains one entry for each PC routine. Each entry contains the operating environment
definition created by ETDEF. Before a user can invoke a PC routine, the service provider must connect the
entry table to the linkage table of the user's address space. The system might place additional entries into
the entry table, after those defined by the service provider. These additional entries help to ensure that
use of a PC number that is not one of those defined by the service provider results in system completion
code ‘0D6’.

Linkage tables
When the LX reuse facility is enabled, each address space has a linkage first table and a linkage second
table. The linkage index locates a specific entry in the linkage first table that in turn is used to locate a
specific entry in the linkage second table. Otherwise, each address space has a linkage table. The linkage
index locates a specific entry in the linkage table. For simplicity, subsequent discussion and diagrams will
not make this distinction and will refer to the linkage table.

There are two types of LXs, a non-system LX and a system LX.
non-system LX

Use to connect an entry table to the linkage table in one or more, but not all address spaces.
system LX

Use to connect an entry table to all linkage tables.
A system LX, for example, enables an installation to replace an installation written SVC routine with a PC
routine that gets invoked through a system linkage index.

The PC number
The service provider must also supply the user with a PC number. The service provider creates this
number by concatenating the LX to the entry table index (EX). As previously stated, the LX is an index into
the linkage table. The EX is an index into the entry table and identifies the relative entry in the entry table
that corresponds to the PC routine that is to receive control. Example: If the first table entry
corresponded to the PC routine, the EX would be X‘00’; if it was the second entry, the EX would be X‘01’,

26 z/OS: z/OS MVS Extended Addressability Guide

and so forth. The service provider is responsible for calculating and keeping track of entry table indexes.
When a program issues the PC instruction, the system uses the PC number to locate the correct entry
table entry and transfer control to the PC routine.

The service provider and the user must agree on a method the service provider will use to provide the
user with the PC number. The service provider might, for example, supply a macro that returns the PC
number to the user. Or the service provider could place the PC number in a storage area common to both
the service provider and the user. The user could then retrieve the PC number from the common area.

In addition, when you use a reusable LX, the service provider and the user must also agree on a method
the service provider will use to provide the user with the LX sequence number. The service provider could,
for example, supply a macro that returns the PC number/LX sequence number to the user. Or the service
provider could place the PC number/LX sequence number in a storage area that is common to both the
service provider and the user. The user would then retrieve the PC and LX sequence number from the
common area.

Program authorization — the PSW-key mask (PKM)
Each program has associated with it a PSW-key mask (PKM) value. The PKM is a string of 16 bits that
represents storage protection keys that are valid for a problem state program to use, where bit n equal to
1 indicates that the program is authorized to use key n. The system uses the PKM to check the
authorization of problem state programs only. Supervisor state programs do not require PKM authority.

For a problem state program, the PKM defines:

• The PSW key values that the program can set by means of the SPKA instruction
• The storage key values the program can specify on the MVCK, MVCS, and MVCP instructions
• PC routines that the program is authorized to invoke

All programs are initially dispatched with a PKM value representing the storage protect key of the
program's TCB or SRB, plus key 9. Each bit in the 16-bit PKM corresponds to a specific key. For instance, a
PKM value of X'0080' (bit 8, the 9th bit, is on) represents key 8 and X'0001' (bit 15, the 16th bit, is on)
represents key 15. Thus, a key 8 program is initially dispatched with a PKM value of X'00C0' (having the
bits representing key 8 and key 9 on). The PC, PR, and PT instructions can change the PKM value.

The entry that defines a PC routine in the entry table contains two fields that are related to the PKM.
Those fields are the authorization key mask (AKM) and the entry key mask (EKM). The AKM is a 16-bit
string value that indicates the keys that will authorize a problem state program to invoke the PC routine. A
problem state program can invoke the PC routine if at least one bit in the PKM and the corresponding bit
in the AKM are both on (that is, set to B'1').

The EKM is a 16-bit string value like the PKM. It can be used to alter the PSW keys under which the PC
routine will run. For a basic PC routine, the system ORs the EKM into the PKM before the PC routine
receives control. The result of the OR operation is the PKM under which the PC routine will run. A stacking
PC routine can either have the system OR the EKM into the PKM or have the system replace the PKM with
the EKM.

Address space authorization
Each address space owns an authority table. Each table entry defines the PT and SSAR authority that
another address space has with respect to the address space that owns the authority table. PT and SSAR
authority determine whether an address space can issue PT and SSAR instructions with another address
space as the instruction targets. For example, if a service provider's address space has PT and SSAR
authority with respect to a user's address space, the service provider can issue PT and SSAR instructions
with the target being the user's address space.

Each table entry corresponds to a particular authorization index (AX) value. Therefore, the service
provider's AX value corresponds to a specific entry in each user's authority table. That entry defines the
service provider's PT and SSAR authority with respect to each user's address space.

Chapter 3. Synchronous cross memory communication 27

Two AX values, 0 and 1, have the same meaning for all address spaces. A value of 0 always corresponds
to an authority table entry that provides neither PT nor SSAR authority. A value of 1 always corresponds to
an entry that provides both PT and SSAR authority.

The characteristics of the PC routines defined in the entry table determine whether the service provider
needs PT and SSAR authority. The service provider needs the authority if either of the following conditions
are true:

• The entry table defines a basic PC routine that causes a space switch
• The entry table defines a stacking PC routine for which the ETDEF macro specifies SASN=OLD.

When MVS initially creates an address space, the address space has neither PT nor SSAR authority to any
address space. The service provider uses the AXSET and ATSET macros to establish PT and SSAR
authority. If a service provider needs PT and SSAR authority to all address spaces, the service provider
must issue the AXSET macro and request an AX value of 1.

Figure 9 on page 29 and Figure 10 on page 30 show the environment needed to issue a PC instruction,
a PT instruction, or an SSAR instruction. An address space can have only one AX value at any time. The
service provider that runs in the address space owns the current AX value for the address space. Only the
service provider should set the AX value from 0 to a single nonzero value, or from a nonzero value to 0 in
the address space. Other code besides the service provider that runs in the address space should not
alter the current AX value, or unpredictable results occur.

28 z/OS: z/OS MVS Extended Addressability Guide

Figure 9. PC instruction execution environment

Chapter 3. Synchronous cross memory communication 29

Figure 10. PT and SSAR instruction execution environment

Considerations before using cross memory
Before using cross memory, there are several things of which to be aware about the cross memory
environment. The use of cross memory also places some requirements and restrictions on programs that
you must consider.

30 z/OS: z/OS MVS Extended Addressability Guide

Environmental considerations
• Resource management is different - If your cross memory programs invoke programs in other address

spaces, you might need to manage resources differently. For example, your cross memory programs
must be able to handle the situation that occurs when an invoked program in another address space
abnormally terminates.

• Accounting methods might be affected - Your cross memory programs might acquire the ownership of
resources on behalf of cross memory users. You might want to account for these resources differently
than the way you account for your own resources.

• The execution time of PC routines is attributed to the home address space, which may not be the
address space in which the program executes.

Restrictions
• MVS macros are unavailable to programs running in cross memory mode unless the macro

documentation specifically states that it is available.
• Code running in cross memory mode cannot issue an SVC except ABEND. That is, any macro that

depends on an SVC is unavailable in cross memory mode.
• Only one step of a job can establish ownership of space switch entry tables. Subsequent job steps

cannot issue the LXRES, AXRES, or ETCRE macros.
• Routines that get control as the result of a PC instruction must not use the checkpoint/restart facility.
• In order to be accessed, the address space must be one or more of the following:

– The home address space
– A non-swappable address space
– An address space whose local lock is held or whose local lock is held as a cross memory local (CML)

lock.

Requirements
Storage acquired in a cross memory environment is attributed to the job step task of the address space in
which it was obtained if the subpool it comes from is task related. A program that acquires such a
resource should provide a task termination/address space termination resource manager to clean up any
resources obtained on behalf of the terminating task or address space but attributed to another address
space's job step task. For more considerations on resource management, see “Resource Management” on
page 52.

Establishing cross memory communication
Before cross memory communication can take place, the service provider must establish the cross
memory environment. The service provider does this by supplying PC routines and by issuing the MVS
macros that establish the necessary linkages and authorizations.

The macros the service provider issues to establish, disconnect, or destroy the cross memory
environment are:

• ATSET
• AXEXT
• AXFRE
• AXRES
• AXSET
• ETCON
• ETCRE
• ETDEF

Chapter 3. Synchronous cross memory communication 31

• ETDES
• ETDIS
• LXFRE
• LXRES

The actual set of macros the service provider must issue depends on the following:

• Whether the services will be available to all address spaces or to selected address spaces only
• Whether the PC routine is space switch or non-space switch.

The service provider must issue these macros from a program that is running in supervisor state or with a
PSW-key mask of 0-7, and is enabled, unlocked, and in primary ASC mode.

In addition to the previously listed macros, the service provider might also issue the PCLINK macro. The
PCLINK macro enables a basic PC routine to save and restore the user's environment. Only basic PC
routines that are in supervisor state are permitted to issue the PCLINK macro.

These macros are fully described in one of the following:

• z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
• z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
• z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
• z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

Note: Installations that currently build their own PC routine definitions and use IHAETD to map the
format 0 ETD may continue to do so. IBM recommends the use of the ETDEF macro, however.

Making a PC routine available to all address spaces
If the PC routine is to be available to users in all address spaces, code running in the service provider's
address space must issue the macros. Table 4 on page 32 lists the macros that must be issued. For a
space switch routine, refer to the first column. For a non-space switch routine, refer to the second
column. Several of the macros shown in the table must be issued in a specific sequence. Therefore, IBM
recommends that the service provider issue the macros in the sequence listed.

Table 4. Macros to issue for a PC routine to be available to all address spaces

Space switch routine Non-space switch routine

AXSET (See note 1.)
LXRES (See note 2.)
ETDEF
ETCRE
ETCON (See note 3.)
PCLINK (See note 4.)

LXRES (See note 2.)
ETDEF
ETCRE
ETCON
PCLINK (See note 4.)

Notes:

1. Use an AX value of 1.
2. Use a system LX.
3. To determine whether address space authorization (PT and SSAR authority) is needed before issuing

the ETCON macro, see “Address space authorization” on page 32.
4. Basic PC routines must issue the PCLINK macro to save and to restore the user's environment.

Address space authorization
The types of PC routines the entry table will define determine whether the service provider needs PT and
SSAR authority to the user's address space. PT and SSAR authority are needed if either or both of the
following conditions are true:

32 z/OS: z/OS MVS Extended Addressability Guide

• The entry table defines a basic PC routine that causes a space switch
• The entry table defines a stacking PC routine for which the ETDEF macro specifies SASN=OLD.

If the service provider needs PT or SSAR authority, it must be obtained before issuing the ETCON macro.
The service provider can obtain PT and SSAR authority to all address spaces by issuing AXSET with an AX
value of 1. If the correct authorization is not established, the ETCON macro will fail.

Linkage Index
The LXRES macro supplies the service provider with a linkage index. Because the PC routine is to be
available to all users, the service provider should obtain a system LX. Note that there are a limited number
of system LXs available. You should either be prepared to reuse the system LX if your address space
terminates and then restarts, or you should specify REUSABLE=YES on the LXRES macro. See
“Reassigning LXs when the LX reuse facility is enabled” on page 56 for more information about system
LXs.

PC routines and the entry table
The service provider must also issue the ETDEF macro to define each PC routine and the ETCRE macro to
create the entry table. The service provider must then issue ETCON to connect the entry table to the
user's address space.

Basic PC routine linkage
When a basic PC routine receives control, it must save the user's environment. Before returning control to
the user, the PC routine must restore the user's environment. A basic PC routine that receives control in
supervisor state can issue the PCLINK macro to save and to restore the user's environment. A basic PC
routine that receives control in problem state must provide code that performs a function similar to the
PCLINK macro.

Making a PC routine available to selected address spaces
Characteristics of the PC routines that the entry table defines determines which macros the service
provider must issue. Table 5 on page 33 lists the macros that must be issued.

The table is divided into three columns. For a basic PC routine, refer to the first column. For a stacking PC
routine where SASN=OLD is specified, refer to the second column. For a stacking PC routine where
SASN=NEW is specified, refer to the third column. (U) identifies macros that must be issued by service
provider code that is running in the user's address space. Several macros shown in the table must be
issued in a specific sequence. Therefore, IBM recommends that the service provider issue the macros in
the listed sequence.

Table 5. Macros that must be issued for basic and stacking PC routines

Basic PC routine Stacking PC routine
SASN=OLD

Stacking PC routine
SASN=NEW

AXRES
AXSET
LXRES (See note 1)
ETDEF
ETCRE
ATSET (U)
ETCON (U) (See note 2)
PCLINK

AXRES
AXSET
LXRES (See note 1)
ETDEF
ETCRE
ATSET (U)
ETCON (U) (See note 2)

LXRES (See note 1)
ETDEF
ETCRE
ETCON (U) (See note 2)

Notes:

1. Use a non-system LX.

Chapter 3. Synchronous cross memory communication 33

2. To determine whether address space authorization (PT and SSAR authority) is needed before issuing
the ETCON macro, see “Address space authorization” on page 34 for basic PC routines and “Address
space authorization” on page 35 for stacking PC routines.

Linkage index (LX)

Regardless of the types of PC routines that the entry table defines, the service provider must always issue
the LXRES macro to reserve a non-system LX. The rest of the macros that the service provider must issue
depend on the types of PC routines the entry table will define.

Basic PC Routine

Authorization Index
The service provider must issue the AXRES macro to reserve an authorization index (AX) if address space
authorization is required. The service provider must then issue the AXSET macro using the reserved AX
value as input. AXSET assigns the AX value as the authorization index for the service provider's home
address space.

Address space authorization
The types of PC routines that the entry table defines determines whether the service provider needs PT
and SSAR authority to the user's address space. Authority is needed if:

• The entry table defines a basic PC routine that causes a space switch
• The entry table defines a stacking PC routine for which the ETDEF macro specifies SASN=OLD.

If the service provider needs PT or SSAR authority, it must be obtained before issuing the ETCON macro.
Otherwise, the ETCON macro will fail.

To obtain address space authorization, service provider code, running in the user's address space, must
issue the ATSET macro. Input to ATSET must be the AX value reserved by the service provider.

PC routines and the entry table
The service provider must issue ETDEF to define the PC routines and ETCRE to create the entry table. To
connect the entry table to the user's address space, service provider code, running in the user's address
space, must issue the ETCON macro.

Basic PC routine linkage
When a basic PC routine receives control, it must issue the PCLINK macro to save the user's environment.
Before returning to the user's the PC routine must again issue PCLINK, this time to restore the user's
environment.

Stacking PC routine

Authorization index
The types of PC routines that the entry table defines determines whether the service provider must obtain
an authorization index. If either of the following conditions are true, the service provider must obtain an
authorization index:

• The entry table defines a basic PC routine that causes a space switch
• The entry table defines a stacking PC routine for which the ETDEF macro specifies SASN=OLD.

The service provider must issue the AXRES macro to reserve an AX. The service provider must then issue
the AXSET macro using the reserved AX value as input. AXSET assigns the AX value as the authorization
index for the service provider's home address space.

34 z/OS: z/OS MVS Extended Addressability Guide

Address space authorization
If the service provider had to obtain an authorization index, address space authorization is also required.
The service provider must obtain address space authorization (PT and SSAR authority) before issuing the
ETCON macro. Otherwise, the ETCON macro will fail.

To obtain address space authorization, service provider code, running in the user's address space, must
issue the ATSET macro. Input to ATSET must be the AX value reserved by the service provider.

PC routines and the entry table
The service provider must issue ETDEF to define the PC routines and ETCRE to create the entry table. To
connect the entry table to the user's address space, service provider code, running in the user's address
space, must issue the ETCON macro.

PC number
Before the user can invoke a basic PC routine or a stacking PC routine, the service provider must supply
the user with the PC number that identifies the PC routine. For information about how to do this, see “The
PC number” on page 26.

Examples of how to establish a cross memory environment
This topic contains examples that show three ways to establish services that a user can access by issuing
a PC instruction. The tasks that the service provider must perform are grouped into the following
categories:

• SETTING UP initializes the structure that cross memory needs so the transfers of control can take
place.

• ESTABLISHING ACCESS sets up the linkage the user needs to access the services.
• PROVIDING SERVICE consists of designing a service for cross memory use.
• REMOVING ACCESS disconnects the linkage that enabled a user to use the services.
• CLEANING UP removes the structures established in the setting up step.

“Example 1 - Making services available to selected address spaces” on page 36 shows how a service
provider can supply services to users in selected address spaces. (The example shows only one user, but
the extra steps for adding users are pointed out.)

“Example 2 - Making services available to all address spaces” on page 43 shows how a service provider
can make services available to users in all address spaces.

“Example 3 - Providing non-space switch services” on page 45 explains how a service provider can
provide non-space switch services.

For each example, assume that the service provider has obtained common storage that the user can
access through name/token callable services. The service provider could use the area pointed to by the
token returned by name/token callable services to store the PC numbers corresponding to its services. It
could also store some of the lists it needs to invoke PC/AUTH services, and the lists that must be available
to different address spaces. Assume also that SERVBLK, shown in Table 6 on page 35, describes the
common storage area. All examples use the declared storage areas shown in Table 6 on page 35.

For information on using name/token callable services, see z/OS MVS Programming: Authorized Assembler
Services Guide.

Table 6. Declared storage for cross memory examples

Declared storage examples

SERVBLK DSECT

LXL DS 0F LX LIST

Chapter 3. Synchronous cross memory communication 35

Table 6. Declared storage for cross memory examples (continued)

Declared storage examples

LXCOUNT DS F NUMBER OF LXS REQUESTED

LXVALUE DS F LX RETURNED BY LXRES

ELXL DS 0F EXTENDED LX LIST

ELXCOUNT DS F NUMBER OF EXTENDED LXS REQUESTED

ELXSEQNO * DS F LX SEQUENCE NUMBER RETURNED BY LXRES

ELXVALUE* DS F LX RETURNED BY LXRES THROUGH THE ELXLIST
PARAMETER

AXL DS 0F AX LIST

AXCOUNT DS H NUMBER OF AXS REQUESTED

AXVALUE DS H AX RETURNED BY AXES

TKL DS 0F TOKEN LIST

TKCOUNT DS F NUMBER OF ETS CREATED

TKVALUE DS F TOKEN RETURNED BY ETCRE

PCTAB DS 0F TABLE OF PC NUMBERS

SERV1PC DS F PC NUMBER FOR SERVICE 1

SERV2PC DS F PC NUMBER FOR SERVICE 2

Example 1 - Making services available to selected address spaces

Setting Up
To make its services available to other address spaces through a PC instruction, the service provider sets
up the authorization structures and the linkage and entry tables.

To request that the system reserve an authorization index (AX) for the service provider's address space, or
an extended authorization index (EAX) for a PC routine, the service provider issues the AXRES macro. The
AX or EAX is reserved across the entire system. The home address space at the time the AXRES macro is
issued becomes the owner of the AX or EAX:

 LA 2,1
 STH 2,AXCOUNT REQUEST 1 AX
GETAX AXRES AXLIST=AXL,RELATED=FREEAX

See “Extended authorization index (EAX)” on page 47, “Types of access list entries” on page 102 and
“EAX-authority to an address space” on page 115 for more information about the EAX.

To set the AX of the service provider's address space to the AX value that MVS reserved, the service
provider issues the AXSET macro:

SETAX AXSET AX=AXVALUE,RELATED=(GETAX,SETAX)

To request that the system reserve a non-system LX for later use, the service provider issues the LXRES
macro to reserve a 4-byte LX. A non-system LX allows a service provider to connect to selected users. The
home address space at the time the LXRES macro is issued becomes the owner of the LX:

 .
 .
 LA 2,1
 ST 2,LXCOUNT REQUEST 1 LX
GETLX LXRES LXLIST=LXL,RELATED=FREELX

36 z/OS: z/OS MVS Extended Addressability Guide

 .
 .

To request that the system provide a non-system extended LX value, issue the following:

 .
 .
 LA 2,1
 ST 2,ELXCOUNT REQUEST 1 EXTENDED LX
 GETLX LXRES ELXLIST=ELXL,RELATED=FREELX
 .
 .

To request that the LX be a reusable extended non-system LX value, issue the following:

 .
 .
 LA 2,1
 ST 2,ELXCOUNT REQUEST 1 EXTENDED LX
GETRLX LXRES ELXLIST=ELXL,REUSABLE=YES,RELATED=FREERLX
 .
 .

To define which PC routines will be available to user, the service provider must issue two macros, ETDEF
and ETCRE. The ETDEF macro builds an entry table descriptor (ETD). Each ETD defines a PC routine. The
ETCRE macro uses the ETDs as input to build an entry table. The entry table contains ETD entries for each
of the PC routines that the service provider is making available to the user. The home address space at the
time the service provider issues the ETCRE macro becomes the owner of the entry table.

There are two ways the service provider can use the ETDEF macro:

• If all of the information about the PC routine being defined is available at the time the ETDEF macro is
assembled, the service provider can statically define an ETD by specifying the TYPE=ENTRY option.

• If some of the information about the PC routine being defined is unavailable when assembling the
ETDEF macro, the service provider must issue ETDEF twice: once with TYPE=ENTRY, and once with
TYPE=SET. TYPE=ENTRY reserves storage for an ETD entry. TYPE=SET initializes the ETD entry, and
overrides any options specified on TYPE=ENTRY. For any options the service provider omits on
TYPE=SET, the system uses the default values.

Example: if the service provider specifies TYPE=ENTRY with ASYNCH=NO, and then does not specify
the ASYNCH parameter on TYPE=SET, the system uses the default of ASYNCH=YES. (See the
description of the ETDEF macro in z/OS MVS Programming: Authorized Assembler Services Reference
EDT-IXG for more information.)

Use this method if any of the input data is unresolved when assembling the ETDEF macro. For example,
a program's name may be known at assembly time, but not the address at which it will be loaded.

To define a complete ETD suitable as input to ETCRE, the service provider must issue the ETDEF macro
three or more times:

• Once to define the beginning of the table
• Once for each PC routine to be defined in the table
• Once to define the end of the table.

Note: Instead of issuing ETDEF, the service provider has the option to code the data areas that ETDEF
builds. IBM provides a mapping macro, IHAETD, that maps the format 0 ETD. IBM recommends, however,
the use of the ETDEF macro.

The following figure shows how to use ETCRE and ETDEF to create an entry table that defines two
stacking PC routines. This example works only when the PC routines are located in LPA or in the nucleus.

Chapter 3. Synchronous cross memory communication 37

********* Executable Instructions
*
 .
 .
CET1 ETCRE ENTRIES=ETDESC,RELATED=(CONET,DISET1,DESET1)
 ST 0,TKVALUE Save Returned Token
 .
 .
********* Data Constants
*
ETDESC ETDEF TYPE=INITIAL,RELATED=(CET1)
 ETDEF TYPE=ENTRY,PROGRAM='SERVICE1',SSWITCH=YES, X
 STATE=PROBLEM,AKM=(0:15),EKM=8,EK=8,PKM=REPLACE
 ETDEF TYPE=ENTRY,PROGRAM='SERVICE2',SSWITCH=NO, X
 STATE=SUPERVISOR,AKM=(0:15),EKM=(0:15),PKM=OR
 ETDEF TYPE=FINAL

Figure 11. Using ETDEF to statically define entry table descriptors

In the previous example, the first ETDEF macro defines the beginning of the entry table definition.

The second ETDEF macro defines a space switch PC routine named Service1. This PC routine receives
control in problem state, requires that all input and output parameters be in key 8 storage, and can
reference date that is in key 8 storage only. This example of the ETDEF macro shows how to define a
stacking PC routine that decreases authority.

• The routine is a stacking PC because PC=STACKING is the default.
• The STATE=PROBLEM parameter specifies that the PC routine will receive control in problem state.
• The parameter AKM=(0:15) specifies that programs running with any PSW key may invoke the PC

routine.
• The parameter EK=8 specifies that the PC routine will run with PSW key 8.
• The parameter PKM=REPLACE specifies that the system is to replace the PSW-key mask with the mask
specified by the parameter EKM=8 before invoking the PC routine.

The third ETDEF macro defines a non-space switch PC routine named Service2. This PC routine can
reference input/output parameters in any key. This example of the ETDEF macro shows how to define a
stacking PC routine that increases authority.

• The routine is a stacking PC because PC=STACKING is the default.
• The STATE=SUPERVISOR parameter specifies that the PC routine, Service2, will receive control in

supervisor state.
• The parameter AKM=(0:15) specifies that programs running with any PSW key may invoke the PC

routine.
• The parameter EKM=(0:15) specifies that the program will run with all PKM bits on.
• The parameter PKM=OR specifies that the system is to OR the PSW key mask of the caller with the mask
specified by EKM=(0:15) before invoking the PC routine.

The last ETDEF macro defines the end of this entry table definition.

When a PC routine is not in LPA and is not in the nucleus, the service provider will not know the location of
the PC routine until it is loaded. Also, the service provider will not know the address of the PC routine's
associated recovery routine (ARR) until it is loaded, and will not know the EAX value until the AXRES
macro is issued. Therefore, the service provider must create at least part of the entry table definitions
dynamically. The following figure shows how the service provider could create the entry table if the PC
routine, Service1, and the ARR, ARR1, were loaded into private storage first. The figure shows code for a
non-reentrant program. ETDEF TYPE=SET specifies a complete entry replacement. All options are either
set or defaulted. Nothing is carried over from the TYPE=ENTRY declaration. Note that, in this example, the
service provider uses the AX value, provided through the AXRES macro, as an EAX value.

38 z/OS: z/OS MVS Extended Addressability Guide

*
********* Executable Instructions
*
 LA 1,1
 STH 1,AXNUM
 AXRES AXLIST=AXL GET AN EAX FOR SERVICE1 (THE X
 PC ROUTINE)
 LH 4,AXVAL
 LOAD EP=SERVICE1 GET ADDRESS OF SERVICE1
 ST 0,SRV1ADDR SAVE ADDRESS OF SERVICE1
 LR 2,0
 LOAD EP=ARR1 GET ADDRESS OF ARR1
 ST 0,ARR1ADDR SAVE ADDRESS OF ARR1
 LR 3,0
 .
 .
 ETDEF TYPE=SET,ETEADR=ETD1,ROUTINE=(2),SSWITCH=YES, X
 STATE=PROBLEM,AKM=(0:15),EKM=8,EK=8,PKM=REPLACE, X
 ARR=(3),EAX=(4)
 .
 .
CET1 ETCRE ENTRIES=ETDESC,RELATED=(CONET,DISET1,DESET1)
 ST 0,TKVALUE SAVE RETURNED TOKEN
*
********* Data Definition area
*
SRV1ADDR DS F ADDRESS OF SERVICE1
ARR1ADDR DS F ADDRESS OF ARR1
ETDESC ETDEF TYPE=INITIAL
ETD1 ETDEF TYPE=ENTRY,ROUTINE=0
ETD2 ETDEF TYPE=ENTRY,PROGRAM='SERVICE2',SSWITCH=NO, X
 STATE=SUPERVISOR,AKM=(0:15),EKM=(0:15),PKM=OR
 ETDEF TYPE=FINAL
AXL DS 0F AXLIST
AXNUM DS H NUMBER OF AXs REQUESTED
AXVAL DS H RETURNED AX (OR EAX)

Figure 12. Using ETDEF to dynamically define entry table descriptors

The preceding example of the ETDEF macro shows how to define a stacking PC routine that uses an ARR
and an EAX:

• The parameter ROUTINE=(2) specifies that the PC entry point address is in register 2.
• The parameter ARR=(3) specifies that the address of the ARR to receive control if the stacking PC

routine ends abnormally is in register 3.
• The parameter EAX=(4) specifies that the EAX value for the PC routine is in register 4.

Once the linkage and entry tables have been created, the service provider can construct the PC numbers
that identify the PC routines. A PC number is a fullword value formed by combining an LX and an EX.

The LXRES macro returns the LX in the format that's shown below. This format allows the service provider
to OR the LX with an EX to form a PC number:

Shown below is an LX that is available only when the LX reuse facility is enabled:

The LXRES macro returns the LX in the format that's shown below. This format allows the service provider
to OR the LX with an EX to form a PC number:

Chapter 3. Synchronous cross memory communication 39

 L 2,LXVALUE LX=PC# WITH EX OF 0
 ST 2,SERV1PC SAVE EX=0 PC# FOR FIRST SERVICE
 LA 2,1(,2) CONSTRUCT EX=1 PC#
 ST 2,SERV2PC SAVE PC# FOR SECOND SERVICE

To make the PC numbers accessible, the service provider can save the address of its SERVBLK by using
name/token callable services:

 LA 2,SERVBLK
 ST 2,SERVBLKA
 CALL IEANTCR,(LEVEL,NAME,TOKEN,PERSOPT,RETCODE)
 .
 .
 .
LEVEL DC A(IEANT_SYSTEM_LEVEL)
NAME DC CL16'SERVBLK'
TOKEN DS 0XL16
SERVBLKA DS A
 DS XL12
PERSOPT DC A(IEANT_NOPERSIST)
RETCODE DS F
 IEANTASM INCLUDE NAME/TOKEN SERVICES X
 ASSEMBLER DECLARATION STATEMENTS

Establishing access
The next two steps make the service provider's services available to a user. The instructions used for
these two steps must be issued from the user's address space by a program running in supervisor state or
with a PKM value of 0-7. If the user is a problem state program, the service provider must provide code
that executes on behalf of the user with the user's address space as the home address space. The service
provider must repeat these two steps for each user.

1. Set the PT and SSAR authority in the user's authority table entry that corresponds to the service
provider's AX value. This action allows the service provider to issue a PT or SSAR instruction with the
user's address space as the instruction target.

SETAT ATSET AX=AXVALUE,PT=YES,SSAR=YES,RELATED=RESETAT

2. Connect the service provider's entry table to the user's linkage table at the entry that corresponds to
the service provider's LX. After the system completes the connection, the linkage table entry points to
the service provider's entry table.

 LA 2,1
 ST 2,TKCOUNT SET COUNT OF ETS TO BE CONNECTED
CONET ETCON TKLIST=TKL,LXLIST=LXL,RELATED=DISET1

Or connect the service provider's entry table to the linkage tables at the entry that corresponds to the
service provider's extended LX values. After the system completes the connection, the linkage table
entry points to the service provider's entry table.

 LA 2,1
 ST 2,TKCOUNT SET COUNT OF ETS TO BE CONNECTED
CONETX ETCON TKLIST=TKL,ELXLIST=ELXL,RELATED=DISETX

To invoke a PC routine, the user still needs a PC number. The service provider and the user must have
previously agreed on a method the service provider will use to provide a PC number. For example, the
service provider could provide a macro that the user issues to find the PC number that the service
provider has stored in a table in commonly addressable storage. In addition, if a reusable LX was reserved
by the service provider, the LX sequence number associated with the LX/PC number must also be
provided to the user. The service provider could use the same macro that the user issued to find the PC
number, to provide the LX sequence number.

40 z/OS: z/OS MVS Extended Addressability Guide

At this point in the example, the service provider has provided two services that the user can access using
PC instructions. The service provider has also established authority to issue PT and SSAR instructions to
the user's address space. The user's linkage table is connected to the service provider's entry table as
shown in Figure 13 on page 41.

Figure 13. Linkage table and entry table connection

Invoking a PC routine
The PC instruction gives control to a PC routine. The PC number determines the specific PC routine that
receives control. The entry table entry that corresponds to the PC number defines the PC routine's
location and environment. To return to the caller, a stacking PC routine issues the PR instruction; a basic
PC routine issues the PT instruction.

Figure 14 on page 41 shows the instruction sequence needed to invoke a stacking PC routine. The
stacking PC automatically saves the user's environment. When the PC routine issues the PR instruction to
return control to the caller, the system restores the caller's environment.

Note: Getting the LX sequence number and putting it in the high-order half of register 15 is necessary only
for a reusable LXs, but it will not interfere with a non-reusable LX. For more information on reusable LXs,
see “Reassigning LXs when the LX reuse facility is enabled” on page 56.

 .
 .
 USING PSA,0
 CALL IEANTRT,(LEVEL,NAME,TOKEN,RETCODE) OBTAIN SERVBLK ADDRESS
 CLC RETCODE,=A(IEANT_OK) CHECK RETURN CODE
 BNE NOSERVIC IF NO TOKEN, SERVICES NOT AVAILABLE
 L 14,SERVBLKA
 USING SERVBLK,14 ACCESS SERVBLK
 LMH 15,15,SERV1LXSEQNO GET LX SEQUENCE NUMBER AND PUT IN HIGH-ORDER

*
 HALF (BITS 0-31) OF REG 15
 L 14,SERV1PC GET PC NUMBER
 DROP 14
 PC 0(14) ISSUE THE PC
 .
 .
 LEVEL DC A(IEANT_SYSTEM_LEVEL)
 NAME DC CL16'SERVBLK'
 TOKEN DS 0CL16
 SERVBLK DS 0F
 SERV1PC DS F
 SERV1LXSEQNO DS F RETCODE DS F
 IEANTASM INCLUDE NAME/TOKEN SERVICES X
 ASSEMBLER DECLARATION STATEMENTS

Figure 14. Calling sequence for a stacking PC routine

Chapter 3. Synchronous cross memory communication 41

Figure 15 on page 42 shows the instruction sequence needed to invoke a basic PC routine. The calling
program must save registers and its SASID before issuing the PC instruction. When the PC returns control,
the caller must restore registers and the SASID.

 .
 .
 STM 14,12,12(13) SAVE REGISTERS
 ESAR 2 SAVE CALLER'S SASID IN THE
 ST 2,16(,13) REG 15 SLOT OF SAVEAREA
 USING PSA,0
 CALL IEANTRT,(LEVEL,NAME,TOKEN,RETCODE) OBTAIN SERVBLK ADDRESS
 CLC RETCODE,=A(IEANT_OK) CHECK RETURN CODE
 BNE NOSERVIC IF NO TOKEN, SERVICES NOT AVAILABLE
 L 15,SERVBLKA
 USING SERVBLK,15 ACCESS SERVBLK
 L 2,SERV1PC OBTAIN SERVICE1 PC NUMBER
 DROP 15
 PC 0(2) ISSUE THE PC
 L 14,12(,13) RESTORE REG 14
 L 2,16(,13) LOAD SAVED SASID
 SSAR 2 RESTORE CALLER'S SASID
 LM 2,12,28(13) RESTORE REGS 2-12
 .
 .
 LEVEL DC A(IEANT_SYSTEM_LEVEL)
 NAME DC CL16'SERVBLK'
 TOKEN DS 0CL16
 SERVBLKA DS A
 DS XL12
 RETCODE DS F
 IEANTASM INCLUDE NAME/TOKEN SERVICES X
 ASSEMBLER DECLARATION STATEMENTS

Figure 15. Calling sequence for a basic PC routine

To make it easier for the user to invoke a PC routine, the service provider can provide a macro that
generates the needed instruction sequence.

Removing Access
The next two steps remove access to previously provided services. The steps must be performed with the
user's address space as the home address space. These steps are essentially the opposite of the steps
used to establish access. First, the service provider removes PT and SSAR authority to the user's address
space.

RESETAT ATSET AX=AXVALUE,PT=NO,SSAR=NO,RELATED=(SETAT)

The service provider then disconnects the entry table from the user's linkage table.

DISET1 ETDIS TKLIST=TKL,RELATED=CONET

Cleaning Up
Before shutting down, the service provider must remove all cross memory connections and release any
cross memory resources it owns. After ensuring that all connections to the entry table have been
disconnected, the service provider destroys the entry table.

DESET1 ETDES TOKEN=TKVALUE,RELATED=CET1

The service provider then frees the LX so it will be available for reuse. If this is not a reusable LX, the
address space will only be available for reuse if no other address space is connected to the LX.

Non-extended LXLIST

FREELX LXFRE LXLIST=LXL,RELATED=LXRES

42 z/OS: z/OS MVS Extended Addressability Guide

Extended LXLIST

FREELX LXFRE ELXLIST=ELXL,RELATED=ELXRES

The service provider then resets the AX of its address space to zero.

 SR 2,2 ZERO VALUE
RESETAX AXSET AX=(2),RELATED=LXRES RESET AX TO ZERO

Finally, the service provider frees the AX so the system can reuse it. Freeing the AX removes PT and SSAR
authority corresponding to the service provider's AX in all authority tables in the system.

FREEAX AXFRE AXLIST=AXL,RELATED=GETAX

Example 2 - Making services available to all address spaces
This example shows how a service provider makes services available to all users. The example uses the
same storage areas as Example 1 (see Table 6 on page 35 for the storage areas used), however, it does
not need the AX list. The main difference between Example 1 and Example 2 is Example 2's use of a
system LX and an AX value of 1. A system LX allows the service provider to connect an entry table to all
address spaces, and the AX gives the service provider PT and SSAR authority to all address spaces.

Note: Do not use a system LX unless your service is intended for all address spaces. Establishing a system
LX makes the ASID of the address space unusable until the next IPL. For more information about ASID
reuse, see “Reusing ASIDs” on page 53.

Setting up
The service provider first obtains a system LX. MVS sets aside part of the available LXs for use as system
LXs. When the service provider connects an entry table to a system LX, the entry table is connected to all
present and future address spaces.

Unlike a non-system LX, a non-reusable system LX cannot be freed for reuse. When an address space that
owns a non-reusable system LX terminates, the LX becomes dormant. The system allows a dormant
system LX to be reconnected to an address space different from the original owning address space. This is
an important consideration for a service provider that can be terminated and then restarted. The service
provider must have a way to remember the non-reusable system LX it owned so that it can connect the LX
to an entry table when it is restarted. A reusable system LX, on the other hand, can be freed for reuse. See
“Reassigning LXs when the LX reuse facility is enabled” on page 56 for more information.

In the example, the service provider would first test LXVALUE. If LXVALUE was zero, the service provider
would issue the LXRES macro. Otherwise the service provider would pass the value found in LXVALUE to
the ETCON macro.

The code shown in the following three steps runs with the service provider's address space as the home
address space. The first step obtains a system LX. If the service provider's address space is coming up for
the first time since IPL, the service provider issues the LXRES macro with the SYSTEM=YES option. The
service provider must then save the LX somewhere, probably in common storage, so it is accessible if the
service provider is restarted.

 LA 2,1
 ST 2,LXCOUNT REQUEST 1 SYSTEM LX
GETSLX LXRES LXLIST=LXL,SYSTEM=YES

The service provider then sets its address space AX to a value of 1. An AX value of 1 authorizes the service
provider to issue a PT or SSAR instruction to all other address spaces. (Because the service provider is
providing a service to all users, the service provider does not need to obtain a unique AX.)

 LA 2,1
 AXSET AX=(2)

Chapter 3. Synchronous cross memory communication 43

The service provider then issues the ETCRE macro to create the entry table.

 ETCRE ENTRIES=ETDESC
 ST 0,TKVALUE SAVE THE ET TOKEN

The service provider can construct the PC numbers and make them accessible the same way it did in
“Example 1 - Making services available to selected address spaces” on page 36.

Establishing access
To connect the entry table to the linkage table in each current and future address space, the service
provider issues the ETCON macro. In this case, the service provider can issue the ETCON macro from any
address space.

 LA 2,1
 ST 2,TKCOUNT SET COUNT OF ETS TO BE CONNECTED
 ETCON LXLIST=LXL,TKLIST=TKL

All address spaces in the system now have access to the service provider's services. Figure 16 on page
44shows how the linkage and entry tables appear at this point.

Figure 16. Linkage and entry tables for a global service

Providing Service
The service provider supplies services in the same way as in Example 1. The users of the services must be
aware of the PC number associated with each service.

Removing Access
To remove access, the service provider disconnects all users and destroys the entry table by issuing the
ETDES macro with the PURGE=YES option. This disconnects the entry table from all linkage tables in the
system and then destroys it. For information about how the system reuses the system LX, see
“Reassigning LXs when the LX reuse facility is enabled” on page 56. (ETDIS cannot be used to
disconnect an entry table that is connected to a system LX.)

 ETDES TOKEN=TKVALUE,PURGE=YES

Cleaning Up
Finally, the service provider sets the AX of its address space to 0.

 SR 2,2
 AXSET AX=(2)

44 z/OS: z/OS MVS Extended Addressability Guide

Example 3 - Providing non-space switch services
This example is similar to “Example 1 - Making services available to selected address spaces” on page 36
except the service provider will provide only non-space switch PC routines. The service provider code will
be the same as in example 1 or 2 with the following exceptions:

• The ETDEF macros that define PC routines will all specify SSWITCH=NO.
• The service provider will not issue the AXRES, AXSET, or ATSET macros.

PC linkages and PC routine characteristics
When a user issues a PC instruction, the system transfers control to a PC routine. An entry in the service
provider's entry table defines the PC routine that is to receive control. Data in this entry also determines
the type of linkage the system will use to invoke the PC routine. The types of linkages are stacking and
basic.

The stacking and basic PC linkages share some common capabilities. The stacking linkage, however,
offers more capability and provides better performance than does the basic linkage. The service provider
uses the PC parameter on the ETDEF macro to define the type of linkage that will be used. Stacking is the
default. IBM recommends the use of the stacking PC linkage. This document refers to a PC routine as
either a stacking PC routine or a basic PC routine depending on the linkage used to invoke the routine.

PC linkage capabilities
The stacking PC linkage and the basic PC linkage provide the following capabilities:

• The PC routine's PKM authority can be increased.
• Basic PC routines must receive control in primary mode; stacking PC routines have the option to do so.
• Basic PC routines must receive control with SASN=old PASN; stacking PC routines have the option to do

so.
• The PC routine can receive control in either problem state or supervisor state.
• The PC routine can be either a space switch routine or a non-space switch routine.

The stacking PC linkage also provides the following additional capabilities that the basic PC linkage does
not provide:

• The PC routine's PKM authority can be decreased.
• The PC routine's PSW key can be set from data in the entry table.
• The PC routine can receive control in AR mode.
• An entry point to an associated recovery routine (ARR) can be defined in the entry table.
• The system automatically uses the linkage stack to save and restore the user's environment.

Defining a PC routine
When you define a PC routine, you define its operating characteristics and its environment. Several
definitions apply to both basic and stacking PC routines. Other definitions apply to stacking PC routines
only.

For each PC routine, you must specify the type of linkage, basic or stacking, that the system is to use
when a user invokes the routine. IBM recommends that you use only the stacking linkage. To define the
type of linkage, use the PC keyword on the ETDEF macro.

Note: If you currently provide basic PC routines, you may continue to use these basic PC routines without
change.

All of the information that you provide to define a basic PC routine you also provide to define a stacking PC
routine. There is also additional information that you can provide for stacking PC routines only. The topic

Chapter 3. Synchronous cross memory communication 45

“Definitions common to both stacking and basic PC routines” on page 46 explains how to provide the
definitions common to both types of PC routines. The topic “Definitions for stacking PC routines only” on
page 47 explains how to provide the definitions that apply to stacking PC routines only.

Definitions common to both stacking and basic PC routines
The PC routine definitions explained in this topic apply to both stacking and basic PC routines. For each
PC routine you must define:

• Whether the PC routine will receive control in supervisor state or problem state
• Whether the PC routine is a space switch routine or a non-space switch routine
• The PSW key-mask (PKM) that a problem state program must have in order to invoke the PC routine
• The addressing mode of the PC routine if you specified the ROUTINE parameter on the ETDEF macro
• Whether the PC routine will run under the user's PSW-key mask or under a different PSW-key mask

Supervisor state or problem state
A PC routine can receive control in either supervisor state or problem state. A PC routine must receive
control in supervisor state if:

• The PC routine uses system services that are available only to programs that run in supervisor state. An
example of such a service is the PCLINK macro.

• The PC routine can be invoked by a basic PC issued from a program that runs in supervisor state. This
requirement exists because the system does not allow a basic PC routine that receives control in
problem state to issue the PT instruction to return to a program that runs in supervisor state.

Otherwise, the PC routine can run in problem state.

To specify whether a PC routine receives control in supervisor state or in problem state, use the STATE
parameter on the ETDEF macro. The default is to receive control in problem state.

Space switch or non-space switch
You can define a PC routine as either a space switch routine or a non-space switch routine. When making
this decision, consider the nature of the PC routine and the data it manipulates.

Use a non-space switch PC routine if the PC routine must support problem state callers and must run in
supervisor state in the caller's address space. If you do not have these requirements, you can use a space
switch routine, which has certain advantages. A space switch routine:

• Provides code isolation
• Allows you to access data in multiple address spaces
• Prevents you from having to place your code in common storage.

To define a PC routine as either a space switch or non-space switch routine, specify the SSWITCH
parameter on the ETDEF macro. The default is to define the routine as a non-space switch routine.

Problem state program authorization
You can specify the PSW key mask (PKM) that a problem state program must be running under in order to
invoke a PC routine. When a program in problem state issues a PC instruction, the system uses the
program's PKM and the PC routine's authorization key mask (AKM) to determine whether the program is
authorized to invoke the PC routine. If any bit in the program's PKM is on and the corresponding bit in the
AKM is also on, the program is authorized and the system invokes the PC routine. Otherwise, the system
disallows the invocation.

To define the AKM, specify the AKM parameter on the ETDEF macro.

46 z/OS: z/OS MVS Extended Addressability Guide

Addressing mode
A PC routine can receive control in either 24-bit addressing mode or 31-bit addressing mode. If you
specify the ROUTINE parameter on the ETDEF macro, you can specify RAMODE on ETDEF to indicate the
PC routine's addressing mode. If you specify the PROGRAM parameter on ETDEF, then the system locates
the PC routine and determines its addressing mode. The default is to pass control to the PC routine in 31-
bit addressing mode.

PSW-key mask (PKM)
You can specify the PKM that a PC routine is to run under. The PKM, which has meaning only for PC
routines that run in problem state, defines:

• The PSW key values that the PC routine can set by means of the MODESET macro or the SPKA
instruction

• Whether the PC routine is authorized to use the MVCK, MVCS, and MVCP instructions
• Other PC routines that the PC routine can invoke

Basic PC routines and stacking PC routines can run under the user's PKM, or they can run under a PKM
that provides greater authority than does the user's PKM. The EKM and PKM parameters on the ETDEF
macro enable you to define the PKM the PC routine will run under.

If the user's PKM provides sufficient authority for the PC routine, use the user's PKM by omitting the EKM
parameter from the ETDEF macro.

If the PC routine needs more authority than the user has, use the EKM parameter to increase the
authority. You must also omit the PKM parameter or specify PKM=OR. When you specify PKM=OR or omit
PKM, the system determines the PKM authority for the PC routine by ORing the caller's PKM value with
the EKM value.

For a stacking PC routine only, you can decrease authority or define a new authority. You do this by
defining the authority in the EKM value and specifying PKM=REPLACE. Specifying PKM=REPLACE causes
the system to use the EKM value as the new PKM value for the PC routine.

Definitions for stacking PC routines only
In addition to the previously discussed definitions, for each stacking routine you can define:

• The ASC mode of the PC routine
• The PC routine's extended authorization index (EAX)
• The value that SASN is to assume after the PC instruction executes
• The address of an associated recovery routine (ARR)
• The PSW key under which the PC routine is to execute

ASC mode
A stacking PC routine can receive control in either primary address space control (ASC) mode or in AR ASC
mode. The ASC mode determines whether the PC routine can use ARs. AR ASC mode is required to use
ARs. The ASCMODE parameter on the ETDEF macro determines the mode. The default is for the PC
routine to receive control in primary ASC mode.

Extended authorization index (EAX)
A stacking PC routine can receive control with the same extended authorization index (EAX) value as the
user who issued the PC instruction, or with a new EAX value. The EAX controls authorization for the PC
routine to use access list entries. To specify a new EAX, use the EAX parameter on the ETDEF macro. The
default is for the PC routine to use the user's EAX. For more information about the function of the EAX,
see “Types of access list entries” on page 102.

Chapter 3. Synchronous cross memory communication 47

SASN value
A stacking PC routine can receive control with the secondary address space number (SASN) set to one of
two values:

• SASN can equal the number of the user's primary address space (the address space from which the PC
instruction was issued).

• SASN can equal the number of the service provider's address space (the address space where the PC
routine executes)

The SASN parameter on the ETDEF macro determines the SASN value. The default is for SASN to equal
the number of the user's primary address space.

Here are two examples of how you might use the SASN parameter:

• If the PC routine does not run in AR mode and you want to access data in the user's address space (by
using the MVCP or MVCS instructions), specify SASN=OLD. This will give the PC routine the authority it
needs to issue those two instructions.

• If you do not need or want the PC routine to have secondary authority to the user's address space,
specify SASN=NEW.

Associated recovery routine (ARR)
A stacking PC routine can identify an ARR that is to receive control if the PC routine encounters an error.
An ARR enables a stacking PC routine to avoid the overhead of defining and activating a recovery routine
each time it's invoked. See the section on providing recovery in z/OS MVS Programming: Authorized
Assembler Services Guide for more information about ARRs.

PSW key
By default, a PC routine runs under the caller's PSW key. You have the option to run under a different key.
To specify a different PSW key, use the EK parameter on the ETDEF macro.

PC routine requirements
All PC routines must meet certain requirements depending on the type of PC routine, stacking or basic.

Stacking PC routines
Stacking PC routines must meet the following requirements:

• They must not use the checkpoint/restart facility.
• They must be either permanently resident in LPA or the nucleus, or they must be loaded under the job

step task of the address space that created the entry table.
• They must issue the PR instruction to return control to the user.
• Stacking PC routines that cause a space switch must:

– Run in an address space that is non-swappable
– Use only those MVS services that are supported in cross memory mode.

Basic PC routines
Basic PC routines must meet the following requirements:

• They must not use the checkpoint/restart facility.
• They must be either permanently resident in LPA or the nucleus, or they must be loaded under the job

step task of the address space that created the entry table.
• They must use the PCLINK macro or provide code to save and restore the user's environment.
• They must use the PT instruction to return control to the user.

48 z/OS: z/OS MVS Extended Addressability Guide

• Basic PC routines that cause a space switch must:

– Run in an address space that is non-swappable
– Use only those MVS services that are supported in cross memory mode.

Linkage conventions
There are linkage conventions that user programs must observe and linkage conventions that PC routines
must observe. These conventions vary depending on the type of PC linkage used, basic or stacking, and
the ASC mode of the programs. For basic PC routines, receiving control in supervisor state requires the
use of different conventions than does receiving control in problem state.

Basic PC
A basic PC routine receives control in primary mode and only from a user program that's running in
primary mode. The PC routine can receive control in either problem state or in supervisor state. In order
to return control to the user's program, the PC routine must save the user's environment. Before issuing
the PT instruction to return to the user, the PC routine must restore the previously saved environment.

User program
Before issuing a PC instruction, the user's program must:

• Save general registers 14 through 12 at the location starting at offset 12 (word 4) in the save area
pointed to by general register 13. The program must save registers before issuing a PC instruction
because the basic PC linkage updates general registers 3, 4, and 14. As a result of the update, the
address space where the save area resides might no longer be the currently addressable address space.

• Save the current SASID in bits 16-31 of save area word 5.
• Optionally load general registers 0, 1, and 15 as parameter registers.
• Load general register 2 with the PC number.
• Issue the PC instruction specifying general register 2.

When the PC routine returns control to the user's program, the user's program must restore its general
registers and its secondary address space identifier (SASID).

PC routine that receives control in supervisor state
A basic PC routine that receives control in supervisor state can use the PCLINK macro to save and restore
the user's environment. Although the use of PCLINK is optional, IBM recommends its use. A PC routine
that does not use the PCLINK macro must provide a method of saving and restoring the users
environment.

The PCLINK STACK macro saves the following information:

• Caller's save area address from caller's general register 13
• AMODE, return address, and PSW problem state bit from caller's general register 14
• Parameter registers: general registers 0, 1, and 15
• Caller's PSW key and other information from caller's general register 2 as follows:

In bits 0-23, bits 8-31 of caller's general register 2
In bits 24-27, PSW key
In bits 28-31, zeroes

• Caller's PSW key mask and PASID from caller's general register 3
• Latent parameter list address for this entry from caller's general register 4
• Return address from the PCLINK service routine to the program that issued PCLINK STACK. This point is

just after the PC routine entry point.
• Program mask from current PSW.

Chapter 3. Synchronous cross memory communication 49

After issuing PCLINK STACK, the PC routine can begin processing. If necessary, the PC routine can use the
PCLINK macro with the EXTRACT option to get information from the PCLINK stack.

When the PC routine is ready to return control to the user's program, the PC routine must load into
general registers 0, 1, and 15 any data to be returned to the user. The PC routine can then issue PCLINK
with the UNSTACK,THRU option. This option restores general registers 3, 13, 14, the program mask and,
optionally, the original PSW protection key. The PC routine can then issue the PT instruction to return
control.

For information about coding the PCLINK macro, see z/OS MVS Programming: Authorized Assembler
Services Reference LLA-SDU.

PC Routine That Receives Control In Problem State
A basic PC routine that receives control in problem state must provide a method for saving and restoring
the user's environment. The PC routine cannot use the PCLINK macro because that macro works only in
supervisor state. IBM recommends that a PC routine that receives control in problem state use the
stacking PC linkage.

Stacking PC
A stacking PC routine can receive control in either primary mode or AR mode. The user program that
issues the PC instruction can be in either primary mode or AR mode. When the user's program issues the
PC instruction, the system saves the user's environment on the linkage stack. When the PC routine issues
the PR instruction to return to the user, the system restores the user's environment from the stack before
returning control. Thus, there is no need for the caller or the PC routine to either save or restore the
environment. The system saves the caller's general registers (0 - 15), ARs (0 - 15), PASN, SASN, PKM, and
PSW. If necessary, the PC routine can issue the extract stacked state instruction (ESTA) to examine the
stacked entry.

User in Primary Mode
A user program that's running in primary mode can invoke a PC routine that receives control in either
primary mode or AR mode. Any addresses that the user program passes must be located within the user's
primary address space. The user must not use ARs to pass parameter values or addresses. Before issuing
a PC instruction, the user must:

• Load the PC number into general register 14.
• If there is a parameter list to pass, load its address into general register 1.

When the PC routine returns control, GPRs 2 - 13 and ARs 2 - 13 are restored to their original values.
GPRs 0, 1, and 15, and ARs 0, 1, and 15 contain the values that were in them when the PC routine issued
the PR instruction. GPR 14 and AR 14 are used as work registers by the system.

User In AR Mode
A user program that's running in AR mode can invoke a PC routine that receives control in either AR mode
or primary mode.

• If the PC routine receives control in AR mode:

Parameter lists that the user passes can be located in the user's primary address space or any other
address space except the user's secondary address space. An ALET must qualify any address that the
user passes to the PC routine (An ALET identifies the address space that contains the passed address).
An address passed in a general register must be qualified by an ALET in the AR that corresponds to the
general register. If you are passing ALETs, you should be aware of the rules for passing ALETs, and how
to check the validity of passed ALETs. For further information on passing ALETs, see “Special ALET
Values at a Space Switch” on page 103, “Rules for passing ALETs” on page 108, and “Checking the
authority of callers” on page 120.

The user must not use ARs to pass anything except ALETs. For information on using ALETs, see Chapter
5, “Using access registers,” on page 93.

50 z/OS: z/OS MVS Extended Addressability Guide

• If the PC routines receives control in primary mode:

All addresses passed by the user's program must reside in the user's primary address space. IBM
recommends that those addresses be ALET qualified. The value of the ALET must be 0.

Before issuing a PC instruction, the user must:

• Load the PC number into general register 14.
• If there is a parameter list to pass, load its address into general register 1. If the address is ALET
qualified, load AR 1 with the ALET.

For more information about using ARs, see Chapter 5, “Using access registers,” on page 93.

PC routine that receives control in primary mode
After receiving control, the PC routine must establish a general register as a base register. The PC routine
must also initialize general register 13:

• If the PC routine calls other routines, the PC routine must initialize general register 13 to the address of
an 18-word save area that's located on a word boundary in the PC routine's primary address space. The
PC routine must initialize the second word of the save area to the value C‘F1SA’. The value C‘F1SA’
indicates that the system saved the user's environment on the linkage stack. IBM recommends that all
PC routines that receive control in primary mode initialize general register 13 in this way.

• A PC routine that does not call other routines and does not wish to provide an 18-word save area must
initialize general register 13 to one of the following values.

– Zero.
– The address of a two word save area that's located on a word boundary in the PC routine's primary

address space. The PC routine must initialize the second word of the area to the value C‘F1SA’.

Either value, zero or C‘F1SA’, in general register 13 indicates that the system saved the user's
environment on the linkage stack.

Addressability to the latent parameter area is through the primary address space. When the PC routine
receives control, general register 4 contains the address of the latent parameter area.

Before returning control to the user, the PC routine must:

• Free any save area or work area it obtained.
• If there are parameters to pass, place their address into general register 0 or 1.
• If there is a return code, place it into general register 15.

To restore the user's environment and to return control, the PC routine must issue the PR instruction.

PC routine that receives control in AR mode
After receiving control, the PC routine must establish addressability by loading a base register. The PC
routine must also load an ALET of 0 into the AR that corresponds to the base register.

Addresses that the caller passes to the PC routine must be qualified by an ALET. Before using an ALET, the
PC routine must check the ALET:

• If the caller passes an ALET of 0, a space switch PC routine for which SASN=OLD has been specified
must change the ALET to 1 before using it.

• If the caller passes other ALETs, the PC routine must use them to qualify addresses that the caller has
passed.

• The PC routine must never use an ALET of 1 that the caller has passed. If a caller passes an ALET of 1,
the PC routine might, for example, set an error return code and return to the caller.

Addressability to the latent parameter area is through the primary address space. When the PC routine
receives control, general register 4 contains the address of the latent parameter area. Before referencing
the latent parameter area, the PC routine must set AR 4 to a value of 0.

Before returning control to the user, the PC routine must do the following:

Chapter 3. Synchronous cross memory communication 51

• If there are parameters to pass, place the address of the parameters into general register 0 or 1 and the
ALET the caller will use to address the data into the corresponding AR. Remember that the address of
any data in the caller's address space is qualified by an ALET of 0 for the caller, but an ALET of 1 for the
PC routine if SASN=OLD. When passing the ALET to qualify the address of data in the caller's address
space, IBM recommends that the PC routine pass an ALET of 0 rather than depending on the caller to
change the ALET from 1 to 0.

• If there is a return code, place it into general register 15.

To restore the caller's environment and return control, the PC routine must issue the PR instruction.

The following examples compare the linkage conventions for the basic PC (first example) to the
conventions for the stacking PC (second example). Both the user program and the PC routine are in
primary mode.

User PC Routine

⋮
*
* BASIC PC LINKAGE
*
STM 14,12,12(13)
ESAR 2
ST 2,16(,13)
L 2,PCNUMBER
PC 0(2)
L 2,16(,13)
SSAR 2
LM 2,12,28(13)
⋮

BALR 6,0
PCLINK STACK
⋮
PCLINK UNSTACK
PT 3,14

User PC Routine

 .
 .
*
* STACKING PC LINKAGE
*
L 14,PCNUMBER
PC 0(14)

 .

BALR 6,0
⋮
PR

If the PC routine is in AR mode, the following is an example of the instructions you can use to establish
addressability:

BALR 6,0
USING *,6
SLR 7,7
SAR 6,7

See Chapter 5, “Using access registers,” on page 93 for information about being in AR mode and
manipulating the contents of ARs.

Resource Management
IBM recommends that a program running under the job step task, rather than under a subtask of the job
step task, acquire and release these cross memory resources: AXs, EAXs, LXs, authority tables, and entry
tables. Likewise, the same program should load the PC routines.

During normal termination, the program that obtained cross memory resources should release those
resources. If this is not done, however, MVS releases these resources during termination of the job step
task.

52 z/OS: z/OS MVS Extended Addressability Guide

When the job step task of an address space terminates, MVS eliminates any cross memory connections
between the terminating address space and other address spaces. After these connections are
eliminated:

• Programs executing in other address spaces cannot access the terminating address space through a PT,
SSAR, or PC instruction.

• Programs executing in other address spaces cannot use ARs to access the terminating address space.
• Subsequent job steps can execute but cannot obtain cross memory resources. If such a job step issues

an LXRES, AXRES, or ETCRE macro, the system returns an X'052' abend code.

Reusing ASIDs
The system assigns an ASID to an address space when the address space is created. A limited number of
ASIDs are available for the system to assign. When all ASIDs are assigned to existing address spaces, the
system is unable to start a new address space. This condition might be the result of too many lost ASIDs
in the system. A lost ASID is one that is associated with an address space that has terminated, but
because of the address space's cross memory connections, the system does not reuse the ASID. In effect,
the ASID is "lost from use" for the duration of the IPL, or until all connected address spaces have
terminated.

This section tells you two ways to reduce the possibility that the system will run out of ASIDs for
assignment to new address spaces. One is through coding cross memory services to avoid losing ASIDs
and the second is through the installation's use of parameters in the IEASYSxx member of SYS1.PARMLIB.

Coding cross memory services to avoid the loss of ASIDs from reuse
A reusable ASID is one which has at some time been assigned to an address space created by a START
command which specified REUSASID=YES, or an ASCRE macro which specified ATTR=REUSASID. Other
ASIDs are referred to as ordinary ASIDs. All ASIDs are initially ordinary ASIDs. If no reusable ASIDs are
available when a START command or ASCRE requests a reusable ASID, the system converts an available
ordinary ASID into a reusable ASID. Once converted, an available reusable ASID can be used only to
satisfy a request for a reusable ASID. The system honors a request for a reusable ASID only if
REUSASID(YES) is specified in parmlib member DIAGxx. Otherwise, the system assigns an ordinary ASID.
This allows the installation to enable reusable ASIDs only after testing its product set to verify that any
maintenance required to support reusable ASIDs has been installed.

As you code cross memory services, try whenever possible to allow the ASID of an address space to be
free for reuse at address space termination. To do this, you need to know the circumstances under which
the system does not reuse an ordinary ASID. When an ordinary address space terminates, the system
considers reusing the ASID that is associated with that address space. Whether the ordinary ASID is
available for reuse depends on the cross memory connections that have been established between that
address space and other address spaces.

An ordinary ASID is unavailable for reuse when the address space owns entry tables that contain space
switch entries (created through SSWITCH=YES on the ETDEF macro), and when one of the following is
true:

• Those tables connect to other address spaces through a non-system LX (created through SYSTEM=NO
on the LXRES macro), in which case the ASID is not eligible for reuse until all connected address spaces
terminate

• Those tables connect to other address spaces through a system LX, in which case the ASID is not
eligible for reuse for the duration of the IPL.

The ASID of an ordinary address space with no entry tables, or with entry tables that contain only non-
space switch entries (created through SSWITCH=NO on the ETDEF macro), is available for reuse when the
address space terminates. A reusable ASID is available for reuse when the address space terminates (but
only by a subsequent request for a reusable ASID) regardless of non-system LX or system LX connections.

For an example of ordinary ASID reuse, see Figure 17 on page 54, which describes the cross memory
relationships between four ordinary address spaces. Address spaces A, B, and C own entry tables with

Chapter 3. Synchronous cross memory communication 53

space switch entries. Address space B is a server address space. It has a system LX; its PC routines are
available to all address spaces. Address spaces A and C have non-system LXs; their PC routines are
available to selected address spaces. Address space D owns no entry tables.

Figure 17. Cross memory connections between address spaces

To maintain the integrity of an address space, the system does not reuse an ASID until all programs that
could potentially access that address space have completed. This means that the system reuses the
ASIDs of the address spaces in the figure as follows:

• A's and B's ASIDs are reusable only after a reIPL.
• C's ASID is reusable after both C and D terminate.
• D's ASID is reusable after D terminates.

A's and B's ASIDs are the lost ASIDs. Because programs in all address spaces potentially have the ability
to transfer control to address space B, and programs in B can transfer control to address space A, A's and
B's ASIDs are not reusable within an IPL. (Consider the consequences of the system reusing A's ASID at
termination of A. Then, a program in B could pass control to code running in the address space that
received the reused ASID.)

Connecting an entry table with space-switch entries through a non-system LX to a system address space
or a long-running address space (such as VTAM®, CICS®, DB2®, or JES) makes the ordinary ASID of the
owner of the entry table non-reusable. Therefore, to avoid unnecessary loss of ASIDs, IBM recommends
that you follow these rules:

• Use system LXs only when the cross memory service is to be used by all address spaces and the cross
memory service provider is a long-running address space. If possible, use a reusable ASID for the cross
memory service provider when using a system LX.

• Avoid connecting non-system LXs to long-running address spaces, or if possible, use reusable ASIDs for
address spaces which own non-system LXs which are connected to long-running address spaces.

Coding to allow use of reusable ASIDs
Look for instances in your program where any of the following macros are specified in cross-memory
mode (that is, when Primary ASID (PASID) ^= Secondary ASID (SASID)):

54 z/OS: z/OS MVS Extended Addressability Guide

ATSET
AXEXT
AXFRE
AXRES
AXSET
CPOOL

CPUTIMER
DIV
ETCON
ETCRE
ETDES
ETDIS

GQSCAN
LXFRE
LXRES
SYMREC
VSMLIST
VSMLOC

Prior to z/OS 1.6, these services used a basic PC, and the macros generated a SSAR to restore SASID
upon return from the PC. If the macro is issued when PASID ^= SASID and SASID is a reusable ASID, the
SSAR causes a program check code X'0013', which results in a 0D3 abend.

In z/OS 1.6, these services were changed to use a stacking PC, so the SSAR generated by the macros is
unnecessary when the program executes on z/OS 1.6, or later release. The macros avoid generating the
SSAR if SYSSTATE OSREL=ZOSV1R6 has been used to indicate that the program can assume it is running
on a z/OS1.6 or later level system. If the program could run on earlier levels, then it is necessary to
generate two expansions of the macro—one with SYSSTATE OSREL=ZOSV1R6 , and one without, and then
test CVTH7709 at execution time and execute the appropriate expansion.

Note: GQSCAN was changed to a stacking PC in OS/390® V1R2, but the GQSCAN macro continued to
generate a SSAR so that the expansion would be compatible with earlier releases. In z/OS 1.6, the
GQSCAN macro was changed to avoid generating SSAR regardless of SYSSTATE OSREL, since the SSAR
was required only when executing on a release earlier than OS/390 V1R2.

Look for instances in your program where you code a SSAR instruction. If PASID ^= the target SASID and
the target SASID is a reusable ASID, the SSAR gets a program check code X'0013', which results in a
X'0D3' abend. You must obtain the instance number of the intended target address space (the EPAIR,
ESAIR, or ESTA code 5 instructions may be useful for this), and use SSAIR instead of SSAR. Note that your
program might be executing on a processor or old level (pre-1.6) level of z/OS where these instructions
are not available. CVTALR or PSAALR should be tested to see if the new instructions are available.
Continue to use SSAR when CVTALR or PSAALR is off. If you know that your program will be running on
z/OS 2.1 or later, you do not need to check CVTALR or PSAALR because those bits will always be on for
those releases.

Look for instances in your program where you code a PT instruction, where the target PASID is not the
current PASID. In most cases, this would be a PT to return to the issuer of a space-switching basic PC. For
these cases, the preferred solution is to convert to a stacking PC, and return via PR instead of PT. This
solution can be used regardless of the setting of CVTALR and PSAALR. For other uses of PT, if CVTALR or
PSAALR is on, obtain the instance number of the intended target address space at an appropriate time,
and use PTI instead of PT.

Make sure that your program does not cause X'0D3' abends when other products exploit reusable
ASIDs. Look at code that can be invoked in other address spaces. Be especially aware of code that runs in
all address spaces, such as a task termination resource manager established through RESMGR
TYPE=TASK,ASID=ALL or an SSI EOT function routine.

When to use a reusable ASID
Consider the following situations when determining when to use a reusable ASID:

• If you have an address space that becomes nonreusable when it terminates, as identified by the
message IEF352I ADDRESS SPACE UNAVAILABLE at termination, consider using a reusable ASID with
it.

• If you have an address space that does not become nonreusable when it terminates, do not use a
reusable ASID with it.

To use a reusable ASID, specify REUSASID=YES on the START command for the address space or specify
ATTR=(REUSASID) on the ASCRE.

Note: If there is a request for a reusable ASID but there are no available ASIDs that were previously used
as reusable ASIDs, z/OS takes an ASID from the pool of available ordinary ASIDs to satisfy the request.

Chapter 3. Synchronous cross memory communication 55

If any 0D3 abends then result from the use of a reusable ASID, investigate and resolve them.

Attention: As soon as an ASID is used to satisfy a request for a reusable ASID, it must always
serve as a reusable ASID; you cannot then use it for a START without REUSASID=YES or an ASCRE
without ATTR=(REUSASID). Unnecessary use of REUSASID=YES or ATTR=(REUSASID) can reduce
the number of ordinary ASIDs that are available for satisfying ordinary address space requests.

Using IEASYSxx to Avoid Running Out of ASIDs
A second way you can reduce the possibility that the system will run out of ASIDs is to reserve ASIDs
through the RSVNONR and RSVSTRT parameters in the IEASYSxx member of SYS1.PARMLIB. The
reserved ASIDs replace those lost due to cross memory activity. See z/OS MVS Initialization and Tuning
Reference for more information about specifying those parameters.

Reassigning LXs when the LX reuse facility is enabled
The limit on the number of LXs is 32768. Some of the LXs are reserved as system LXs; the rest are
available as non-system LXs. You can use the NSYSLX parameter in the IEASYSxx member of
SYS1.PARMLIB to set the number of system LXs available for the system's use. System and non-system
LXs are subdivided into 12-bit LXs and 24-bit LXs. 12-bit LXs are in the range 0-2047, and 24-bit LXs are
in the range 2048-32768 (the specific value of the LX depends upon the LXSIZE parameter of the LXRES
macro).

Use the LXRES macro with SYSTEM=YES to obtain a system LX; with SYSTEM=NO to obtain a non-system
LX. Use the LXRES macro with LXSIZE=12 to obtain a 12-bit LX; with LXSIZE=16|23|24 to obtain a 24-bit
LX. 24-bit LXs are further subdivided into reusable and non-reusable LXs.

Guideline: Always request a 24-bit LX when running on z/OS V1R6 or later.

There are different rules for each category of LX.
Non-Reusable system LX

The system does not reassign the LX. The original requestor of the LX should reconnect to the LX if the
address space terminates and then restarts.

Reusable system LX
The system reassigns the LX after the owning address space has terminated or after the owner has
used LXFRE to free the LX.

Non-Reusable non-system LX
The system reassigns the LX after all entry tables are disconnected from the LX. This is the case when
the owning address space terminates or when the owner uses ETDIS to disconnect the entry table
from the LX and uses LXFRE to free the LX; and all address spaces that have used ETCON to connect
the LX to that entry table have either terminated or used ETDIS to disconnect the entry table from the
LX.

Reusable non-system LX
The system reassigns the LX after the owning address space has terminated or after the owner has
used LXFRE to free the LX.

Guideline: IBM suggests that when using non-system LXs you use reusable non-system LXs.

Reassigning LXs when the LX Reuse Facility is not enabled:
The limit on the number of LXs is 2048. Some of the LXs are reserved as system LXs; the rest are available
as non-system LXs. You can use the NSYSLX parameter in the IEASYSxx member of SYS1.PARMLIB to set
the number of system LXs available for the system's use. Use the LXRES macro with SYSTEM=YES to
obtain a system LX; with SYSTEM=NO to obtain a non-system LX. The rule for the reuse of a system LX is
simple: the system does not reassign it. The original requester of the LX can choose to reconnect to the LX
should the address space terminate and then restart. The system considers reusing a non-system LX
when all entry tables are disconnected from the LX. This is the case when:

• an address space that owns a non-system LX terminates or when the owner of the non-system LX uses
ETDIS to disconnect all entry tables the entry table from the LX and uses LXFRE to free the LX; and

56 z/OS: z/OS MVS Extended Addressability Guide

• all address spaces that have used ETCON to connect the LX to that entry table have either terminated or
used ETDIS to disconnect the entry table from the LX.

Example of Reassigning LXs
In the example in Figure 17 on page 54, assume that all entry tables are disconnected by the system
during address space termination. This means the system reassigns non-system LXs as follows:

• A's non-system LX is reassignable when

– A terminates or issues LXFRE; and
– B terminates or issues ETDIS to disconnect from A's LX. If this had been a reusable non-system LX, it

would become reassignable regardless of B's action.
• C's non-system LX is reassignable when

– C terminates or issues LXFRE; and
– D terminates or issues ETDIS to disconnect from C's LX. If this had been a reusable non-system LX, it

would become reassignable regardless of D's action.

Reusing AXs and EAXs
The combined number of AXs and EAXs available for all programs in the system is 16382. When an
address space that owns AXs terminates or when the AXs are explicitly freed through AXFRE, those AXs
are available for the system to reassign.

The system reuses EAXs in the same way it reuses ASIDs. The system does not reuse an EAX until all
programs that could potentially access the address space have completed. In the example in Figure 17 on
page 54, assume that A owns an EAX in the entry table connected to B, and B owns an EAX in an entry
table connected to all address spaces (because B has a system LX), and C owns an EAX in the entry table
connected to D. In this example, the system reuses the EAXs as follows:

• A's EAX is reusable only after a reIPL (because A connected to B, which owns a system LX).
• B's EAX is reusable only after a reIPL (because B owns a system LX).
• C's EAX is reusable after both C and D terminate.

PC Routine Loading Recommendations
MVS deletes PC routines when the task that loaded the PC routine terminates. Therefore, IBM
recommends that PC routines be loaded by a program running under the job step task of the address
space that creates and owns the PC entry tables. If the program that loads the PC routine is running under
a task that's subordinate to the job step task and the subordinate task terminates, the PC routine will be
deleted from virtual storage. Cross memory connections to that PC routine remain, however, until the job
step task terminates. If a program issues a PC instruction to invoke the deleted PC routine, the results will
be unpredictable: a program interrupt may occur or other random errors may occur if the virtual storage
previously occupied by the deleted program has been reused.

Accounting Considerations
CPU execution time for space switch PC routines is attributed to the home address space of the work unit
that invokes the PC routine. The PC routine execution time is not attributed to the address space where
the PC routine itself resides. For example, address space A owns a space switching PC routine that is
invoked by a task whose home address space is B. When the task in B executes the PC routine in space A,
that CPU time is attributed to address space B.

Recovery Considerations
Space switch PC routines have special recovery considerations. A space switch PC routine has active
binds to address spaces other than home. If the PC routine tries to access data in one of these address
spaces after the address space has terminated, the PC routine will incur a program check and its recovery

Chapter 3. Synchronous cross memory communication 57

routine might get control. The SETFRR macro provides options that specify the cross memory mode in
which the recovery routine must get control. The ETDEF macro with the ARR parameter and the ESTAEX
macro also can define recovery routines for PC routines in cross memory mode. However, these recovery
routines are not protected against memory terminations of associated address spaces.

There are also options that enable a recovery routine to get control as a resource manager when the
requested cross memory mode cannot be established in order to recover resources serialized by local
(CML) or global locks. For information on recovery in cross memory mode, see z/OS MVS Programming:
Authorized Assembler Services Guide.

58 z/OS: z/OS MVS Extended Addressability Guide

Chapter 4. Using the 64-bit address space

This chapter describes how to use the address space virtual storage above 2 gigabytes and control the
physical frames that back this storage.

What is the 64-bit address space?
Because of changes in the architecture that supports the Multiple Virtual Storage (MVS) operating system,
there have been two different address spaces prior to the 64-bit address space. The address space of the
1970s began at address 0 and ended at 16 megabytes. The architecture that created this address space
provided 24-bit addresses.

In the early 1980s, XA (extended architecture) introduced an address space that began at address 0 and
ended at two gigabytes. The architecture that created this address space provided 31-bit addresses. To
maintain program compatibility, MVS provided two addressing modes (AMODEs):

• Programs that run in AMODE 24 can use only the first 16 megabytes of the address space
• Programs that run in AMODE 31 can use the entire 2 gigabytes.

Today, the address space begins at address 0 and ends at 16 exabytes. The architecture that creates this
address space provides 64-bit addresses. The address space structure below the 2 gigabyte address has
not changed; all programs in AMODE 24 and AMODE 31 continue to run without change. In some
fundamental ways, the address space is much the same as the XA address space.

In the 31-bit address space, a virtual line marks the 16-megabyte address. The 64-bit address space also
includes the virtual line at the 16-megabyte address; additionally, it includes a second virtual line called
the bar that marks the 2-gigabyte address. The bar separates storage below the 2-gigabyte address,
called below the bar, from storage above the 2-gigabyte address, called above the bar. The area above
the bar is intended for data; no programs run above the bar. IBM reserves an area of storage above the bar
for special uses to be developed in the future.

You can set a limit on how much virtual storage above the bar each address space can use. This limit is
called the MEMLIMIT. If you do not set a MEMLIMIT, the system default is 2G, meaning that the address
space can use up to 2G of virtual storage above the bar. If you want an address space to have access to
more or less virtual storage above the bar, you must explicitly set the MEMLIMIT to the limit you want. You
can set an installation default MEMLIMIT through System Management Facility (SMF). You can also set a
MEMLIMIT for a specific address space in the job control language (JCL) that creates the address space or
by using SMF exit IEFUSI or the SMFLIMxx parmlib member. For information about how to set MEMLIMIT
explicitly, see “Limiting the use of private memory objects” on page 62.

Figure 18 on page 60 shows a z/OS address space, including the line that marks the 16-megabyte
address, the bar that marks the 2-gigabyte address, and the default shared area starting at 2 terabytes
and ending at 512 terabytes.

© Copyright IBM Corp. 1988, 2020 59

Figure 18. z/OS address space

Before z/OS Version 1 Release 3, all programs in AMODE 31 or AMODE 24 were unable to work with data
above the bar. To use virtual storage above the bar, a program must request storage above the bar, be in
AMODE 64, and use the z/Architecture® assembler instructions.

As of z/OS Version 1 Release 5, the following enhancements for 64-bit virtual storage have been added:

• 64-bit shared memory support
• Multiple guard area support for private high virtual storage
• Default shared memory addressing area between 2 terabytes and 512 terabytes

As of z/OS Version 1 Release 10, support for 64-bit common virtual storage has been added. The size of
the 64-bit common area can be specified using the HVCOMMON keyword in the IEASYSxx member of
parmlib or during system IPL in response to the IEA101A message. The 64-bit common area will reside
on a 2-gigabyte boundary and the total size will be a multiple of 2 GB. The minimum size is 2 GB, the
maximum is 1 TB, and the default is 64 GB.

60 z/OS: z/OS MVS Extended Addressability Guide

Why would you use virtual storage above the bar?
The reason why someone designing an application would want to use the area above the bar is simple:
the program needs more virtual storage than the first 2-gigabyte address space provides. Prior to z/OS
Version 1 Release 2, a program's need for storage beyond what the former 2-gigabyte address space
provided was sometimes met by creating one or more data spaces or hiperspaces and then designing a
memory management schema to keep track of the data in those spaces. Sometimes programs written
before z/OS Version 1 Release 2 used complex algorithms to manage storage, reallocate and reuse areas,
and check storage availability. With the 16-exabyte address space, these kinds of programming
complexities are unnecessary. (An exabyte is slightly more than one billion gigabytes.) A program can
potentially have as much virtual storage as it needs, while containing the data within the program's
primary or home address space.

A good example of a programming model that can successfully take advantage of the 16-exabyte address
space is a program that needs very large buffer pools. This program has typically used multiple data
spaces and then managed them separately and uniquely. With the 16-exabyte address space, a program
can use the area above two gigabytes for a buffer pool. A simple memory mapping scheme is all that is
needed to keep track of the data.

Memory management above the bar
Virtual memory above 2 GB is organized as memory objects that a program creates. A memory object is a
contiguous range of virtual addresses that are allocated by programs as a number of application pages
which are 1-megabyte multiples on a 1 MB boundary. Programs continue to run and execute in the first 2
GB of the address space.

Memory objects
Programs obtain storage above the bar in "chunks" of virtual storage called memory objects. The system
allocates a memory object as a number of virtual segments; each segment is a megabyte in size and
begins on a megabyte boundary. A memory object can be as large as the memory limits set by your
installation and as small as 1 megabyte. Other attributes of a memory object include the following
characteristics:

• The storage key is defined by the program; for an unauthorized program, the storage key at the time of
issuing the IARV64 macro is the program's PSW key.

• You can specify whether or not you want the memory object to be fetch protected. There is no change
key support for virtual storage above the bar.

• The owner of a private memory object is the TCB of the program that creates the private memory object,
or a TCB to which the creating program assigns ownership. If an SRB creates a private memory object,
the SRB must assign ownership of the private memory object to a task.

• A shared memory object is system-owned. The cross-memory resource owner (CMRO) TCB of the
address space owns the shared interest in the shared memory object.

• A common memory object is visible at the same address in every address space and, once it is created,
every address space has access to a common memory object without having to explicitly request
access. An owner is associated with a common memory object for diagnostic purposes.

Using the IARV64 macro, a program can create and free a memory object and manage the physical frames
that back the virtual storage. You can think of IARV64 as the GETMAIN/FREEMAIN or STORAGE macro for
virtual storage above the bar. (GETMAIN/FREEMAIN and STORAGE do not work on virtual storage above
the bar.)

When a program creates a memory object, it provides an area in which the system returns the memory
object's low address. You can think of the address as the name of the memory object. After creating the
memory object, the program can use the storage in the memory object as it used storage in the 2-
gigabyte address space; see “Using a memory object” on page 71. The program cannot safely operate
on storage areas that span more than one memory object.

Chapter 4. Using the 64-bit address space 61

An authorized program can ask the system to pagefix areas of private memory objects, making pages
unavailable for stealing. The program specifies the ranges of pages that the system is to fix. Later, the
program can undo the pagefix operation.

An authorized program cannot pagefix 64-bit shared memory objects. For more information about shared
memory objects, see “Creating shared memory objects” on page 79.

To help the system manage the physical pages that back ranges of addresses in memory objects, a
program can alert the system to its use of some of those pages by issuing an IARV64 PAGEOUT request
thereby making them available for the system to steal.

The program can free the physical pages that back ranges of memory objects and, optionally, clear those
ranges to zeros. Later, the program can ask the system to return the physical backing from auxiliary
storage. When it no longer needs the memory object, the program frees it in its entirety.

The program can identify one user token for both private and shared memory objects. Then, if a IARV64
DETACH AFFINITY=LOCAL request is issued for that user token, the private memory objects will be
detached and destroyed and the interest in the shared memory objects specified by the user token will be
removed from the shared memory object.

Limiting the use of private memory objects
While there is no practical limit to the virtual storage above the bar, practical limits exist to the finite real
storage frames and auxiliary storage slots that back the virtual storage. Limiting the virtual storage that an
address space can consume will directly limit its real frame and auxiliary storage usage. In addition to
limiting the virtual storage usage to control real frame usage, your installation can limit an address space
or set of address space's real frame usage by classifying the address spaces to a WLM resource group
with a real storage memory limit. However, the amount of auxiliary storage cannot be limited by resource
group. For more information about WLM resource groups, see z/OS MVS Initialization and Tuning Guide
and z/OS MVS Planning: Workload Management.

Conceptually, the aggregate of the unlimited virtual storage for all concurrently active address spaces
must fit into the amount of real storage and auxiliary storage defined on a given system. The fixed virtual
storage, which is not pageable, must fit in the available real storage, and anything else can potentially be
paged out to auxiliary storage. However, WLM controls system resources such that when resources are
limited, WLM attempts to control address space consumption by taking actions such as altering dispatch
priorities, swapping out address spaces, and so on. Even so, there are conditions under which the system
may run out of these resources (such as when real storage is constrained) and require the system to start
swapping or paging, which can unacceptably impact system performance. For more information about
real frame and auxiliary storage resources and how to determine your required auxiliary and real storage
requirements, see Auxiliary storage management initialization in z/OS MVS Initialization and Tuning
Guide.

The amount of virtual storage that an address space can use for private memory objects at any given time
is controlled by the MEMLIMIT (memory limit) specification. However, note that authorized users of
IARV64 GETSTOR who specify the MEMLIMIT=NO or MEMLIMIT=COND parameters may request that the
storage obtained for that specific GETSTOR request not be subject to the MEMLIMIT; they may use other
means of determining whether or not the storage associated with the allocation will have an impact on the
system. The MEMLIMIT for an address space can be set via the IEFUSI installation exit, an SMFLIMxx
parmlib member specification, a JCL specification, the system's default MEMLIMIT (specified in the
SMFPRMxx parmlib member), and other means if under the control of z/OS UNIX Systems Services (z/OS
UNIX).

It is recommended that you review the requirements for your applications and use those requirements as
a guide to setting the MEMLIMIT for those application address spaces. In many cases, JCL, SMFLIMxx, or
z/OS UNIX (also known as OMVS) controls would be recommended based on the expected workload
demand and configuration. For all other ad hoc types of address spaces, the system-wide default would
most likely apply.

z/OS UNIX address spaces have additional MEMLIMIT controls (such as the MEMLIMIT parameter in the
RACF OMVS segment, the SETOMVS MEMLIMIT command, and others) that control dubbed address
spaces that are also under its control. The default MEMLMIT specified in the SMFPRMxx parmlib member

62 z/OS: z/OS MVS Extended Addressability Guide

may still apply to those address spaces. Before proceeding, see z/OS UNIX System Services Planning for
more information.

After an address space is started, its MEMLIMIT can only be changed if its MEMLIMIT is currently
assigned via the SMF default or it is a dubbed z/OS UNIX address space.

Determining the effective MEMLIMIT value
Outside of z/OS UNIX controls that can take precedence over all other controls, the MEMLIMIT that is
used at the start of a job step is based on the following conditions, in order of precedence, as shown in
Figure 19 on page 64. The first condition that is satisfied determines the MEMLIMIT value. (The
numbered blocks in the figure refer to the numbered steps in the detailed list that immediately follows the
figure.)

Chapter 4. Using the 64-bit address space 63

Figure 19. Order of precedence in determining the effective MEMLIMIT value

The following sequence describes the order of precedence, as shown in Figure 19 on page 64, for
determining the MEMLIMIT value to apply:

64 z/OS: z/OS MVS Extended Addressability Guide

1. A matching MEMLIMIT specification is found in the SMFLIMxx parmlib member.

• SMFLIMxx provides a broad set of filter keywords with wild card capabilities, such as JOBNAME,
JOBCLASS, USER, SUBSYS, and PGMNAME.

Note: It is possible to use SMFLIMxx REGION MEMLIMIT(nn) to set a MEMLIMIT for all job steps that
do not contain a more specific SMFLIMxx filter specification.

• The NOHONORIEFUSIREGION attribute in the program property table (PPT) for the job prevents
SMFLIMxx from altering the MEMLIMIT.

• See Using SMFLIMxx to control the REGION and MEMLIMIT in z/OS MVS Initialization and Tuning
Guide for more information.

2. A specific MEMLIMIT for the job is specified via the IEFUSI exit.

• The IEFUSI exit can override SMFLIMxx, if requested.
• The NOHONORIEFUSIREGION attribute in the program property table (PPT) for the job prevents

IEFUSI from altering the MEMLIMIT.
• See Using exit routines to limit region size in z/OS MVS Initialization and Tuning Guide, and IEFUSI —

Step initiation exit in z/OS MVS Installation Exits for more information.
3. The MEMLIMIT is determined from JOB or EXEC statement specifications.

• When the MEMLIMIT parameter is specified, it is used. Specifying MEMLIMIT on the JOB statement
overrides MEMLIMIT on the EXEC statement.

• When REGION=0K, REGION=0M, or REGIONX=(0M,0M) is specified, the MEMLIMIT is set to
NOLIMIT.

• If REGION=0K, REGION=0M, or REGIONX=(0M,0M) is specified and the IEFUSI exit or SMFLIMxx
member limits the REGION size but does not set a MEMLIMIT, MEMLIMIT is defaulted to the
REGION size above 16 MB.

• See z/OS MVS JCL Reference for more information.
4. A system-wide default SMF MEMLIMIT value has been specified in the current SMF option.

• The SETSMF command can be used to change the current default SMF MEMLIMIT value from the one
specified in the active SMFPRMxx parmlib member.

By contrast, the SET SMF command can be used to change the active SMFPRMxx parmlib member,
which may specify a new default SMF MEMLIMIT value.

You can use the D SMF,O command to display the SMF options and values that are currently in effect.
• The SETSMF and SET SMF commands temporarily change the options that are in use on the system

on which they are issued; the changes are lost upon the next IPL of the system. To make the changes
permanent, update the SMFPRMxx parmlib member that is used during IPL.

• See “Setting the system-wide default SMF MEMLIMIT value” on page 65, “Altering the default SMF
MEMLIMIT value” on page 66, and SMFPRMxx in z/OS MVS Initialization and Tuning Reference for
more information about using the SET SMF and SETSMF commands.

5. If no default SMF MEMLIMIT parameter has been specified in the active SMFPRMxx parmlib member
and no SETSMF command has been issued to specify a default SMF MEMLIMIT value, the system uses
a MEMLIMIT value of 2G.

Setting the system-wide default SMF MEMLIMIT value
You can set the current system-wide SMF MEMLIMIT default in the following ways:

• The MEMLIMITparameter in the active SMFPRMxx parmlib member, where the active SMFPRMxx
member was established either at IPL time or changed via the SET SMF=xx command.

• The SETSMF MEMLIMIT(nn) command on a specific system or systems without changing the active
SMFPRMxx member.

Chapter 4. Using the 64-bit address space 65

The default SMF MEMLIMIT does not apply to all address spaces; thus, you cannot use the SET SMF or
SETSMF commands to change an address space's MEMLIMIT value that was last set by any means other
than the default SMF MEMLIMIT.

Note that a MEMLIMIT value can be set for all job steps through a generic REGION MEMLIMIT(xx)
specification in the active SMFLIMxx parmlib member. However, for the purpose of this documentation,
this is not considered the SMF default; rather, it is an SMFLIMxx specification match, which differs in the
following ways:

• An SMFLIMxx specification always takes precedence over the SMF default value.
• An SMFLIMxx specification only takes effect at the start of the next job step, whereas the SMF default

takes effect immediately even for currently running job steps.

Altering the default SMF MEMLIMIT value
Before altering the default SMF MEMLIMIT, keep in mind that only address spaces that are currently using
the default SMF MEMLIMIT or will use it on the next JOB step start will be affected.

• Before increasing the default SMF MEMLIMIT, you must consider how it might impact real and auxiliary
resources, especially when many address spaces might be affected. How applications manage their
memory restrictions can also have unexpected, and perhaps unpredictable, impact. Some application
behavior conditions to consider are:

– An application might never approach its MEMLIMIT, so increasing the MEMLIMIT would have no
effect on that application.

– An application might conditionally allocate virtual storage based on its MEMLIMIT at the start of a job
step and, thus, might allocate more storage at the start of the next job step.

– An application might attempt to allocate virtual storage on a periodic or demand basis and, thus,
would increase its memory usage at some future time or without starting a new job step.

– An application might allocate more virtual storage if it detects a change in its MEMLIMIT.
• Before decreasing the default SMF MEMLIMIT, consider the following points:

– The effect that the change may have on job steps that previously allocated or required more 64-bit
high virtual storage than the new lower MEMLIMIT.

– The dynamic affect that the change will have on currently running job steps that are were assigned
the default SMF MEMLIMIT.

- Their effective MEMLIMIT is always the maximum of what the last job step started with and the
current MEMLIMIT. As such, their highest previous allocation amount is not taken into account.

- Their current allocation may be higher than their effective MEMLIMIT. In such cases, they continue
to run, but they cannot allocate any 64-bit high virtual storage because they are beyond their limit.

The MEMLIMIT for job steps that use the SMF system default limit is always the higher of the current SMF
system default MEMLIMIT or the SMF default MEMLIMIT at job step start. Thus, if a SET SMF or SETSMF
command changes the default MEMLIMIT for an address space that is already created, the following
changes occur:

• If the command increases the current default MEMLIMIT, all address spaces whose MEMLIMIT values
are set through SMF run with the new, higher default.

• If the command decreases the current default MEMLIMIT, all address spaces whose MEMLIMIT values
are set through SMF use the higher of the new (lower) default MEMLIMIT and their original (higher)
system default that was assigned at job step start time.

Lowering the default MEMLIMIT makes it possible for address spaces to have more allocated virtual
storage than their current MEMLIMIT. Their deallocation of high virtual storage will bring their allocated
storage down, but new allocations are restricted by their current MEMLIMIT and not the previously
attained highest allocation level that they achieved at any time in the past.

66 z/OS: z/OS MVS Extended Addressability Guide

MEMLIMIT and the 64-bit high virtual services
The system enforces the MEMLIMIT on the IARV64 REQUEST=GETSTOR, IARV64
REQUEST=CHANGEGUARD, and any other 64-bit high virtual services that allocate virtual storage. Note
that guard areas and memory objects allocated by authorized programs that specify the MEMLIMIT=NO
attribute are not subject to MEMLIMIT restrictions. As guard areas are never backed, they do not consume
real frames or auxiliary storage, but MEMLIMIT=NO areas do. The SMF 30 field SMF30HVH provides the
high-water mark for high virtual allocations for a given address, which includes MEMLIMIT=NO and
MEMLIMIT=YES but not the GUARDAREAS. When an unconditional request for new storage (either for a
new memory object or for more usable storage in an existing memory object) causes the MEMLIMIT to be
exceeded, the system abends the program. IBM recommends that programs use the COND parameter to
make a conditional request and check the return code to ensure that the storage is available.

Using SMF type 30 records to track real and auxiliary storage usage
SMF type 30 (common address space work) records provide several fields related to 64-bit, high virtual
private storage, real frame, and auxiliary storage usage. Note that SMF30HVH, the high-water value for
the number of 64-bit high virtual bytes, includes MEMLIMIT=NO and MEMLIMIT=YES allocated storage
but not guard areas, so it is useful for noting potential real and auxiliary storage usage. However, since it
includes MEMLIMIT=NO allocations, it is not exactly what is compared to the MEMLIMIT.

Using large pages
A large page has a page size larger than 4K, such as a 1 MB or 2 GB page, and is a special-purpose
performance feature for memory objects. 1 MB pages can be pageable or fixed, but 2 GB pages are always
fixed.

To request large pages for backing a memory object, authorized programs and unauthorized programs
with read authority to the IARRSM.LRGPAGES resource in the FACILITY class can specify the
PAGEFRAMESIZE parameter when issuing the IARV64 GETSTOR request. Programs can choose to have
the system acquire and permanently fix 1 MB pages when allocated or dynamically fix and unfix them by
using the IARV64 PAGEFIX and PAGEUNFIX requests. For pageable 1 MB pages, the system uses 4K
pages when a page is referenced and there is not enough contiguous storage to back the page with a 1 MB
page. Authorized programs can also request large pages for common memory objects by using the
PAGEFRAMESIZE parameter when issuing the IARV64 GETCOMMON request. 1 MB pageable pages can
also be used to back dataspace storage by using the PAGEFRAMESIZE parameter on the DSPSERV
service.

The system programmer should carefully consider the following factors while determining which
applications are to be granted access to large pages:

• Memory usage
• Page translation overhead for the workload
• Availability of fixed 1 MB and 2 GB pages

Long-running memory-intensive applications benefit most from using large pages. Short-lived processes
with a small memory working set are not good candidates. The system programmer uses the LFAREA
system parameter to define the amount of real storage that can be used for 2 GB pages and 1 MB fixed
pages that are initially obtained via the IARV64 service. See IEASYSxx (system parameter list) in z/OS MVS
Initialization and Tuning Reference.

Using assembler instructions in the 64-bit address space
With z/Architecture, two facts are prominent: the address space is 16 exabytes in size, and the general
purpose registers (GPRs) are 64 bits in length. You can ignore these facts and continue to use storage
below the bar. If, however, you want to enhance old programs or design new ones to use the virtual
storage above the bar, you will need to use the new Assembler instructions. This section introduces the
concepts that provide context for your use of these instructions.

z/Architecture provides two new major capabilities that are related but are also somewhat independent:

Chapter 4. Using the 64-bit address space 67

• 64-bit binary operations
• 64-bit addressing mode (AMODE).

64-bit binary operations
64-bit binary operations perform arithmetic and logical operations on 64-bit binary values. 64-bit AMODE
allows access to storage operands that reside anywhere in the 16-exabyte address space. In support of
both, z/Architecture extends the GPRs to 64 bits. There is a single set of 16 64-bit GPRs, and the bits in
each are numbered from 0 to 63.

All S/390® instructions are carried forward into z/Architecture and continue to operate using the low-order
half of the z/Architecture 64-bit GPRs. That is, an S/390 instruction that operates on bit positions 0
through 31 of a 32-bit GPR in S/390 operates instead on bit positions 32 through 63 of a 64-bit GPR in z/
Architecture. You can think of the S/390 32-bit GPRs as being imbedded in the new 64-bit GPRs.

Throughout the discussion of GPRs, bits 0 through 31 of the 64-bit GPR are called the high-order half,
and bits 32 through 63 are called the low-order half.

The purpose of this section is to help you use the 64-bit GPR and the 64-bit instructions as you want to
save registers, perform arithmetic operations, access data. It is not a tutorial about how to use the new
instruction set. Principles of Operation is the definitive reference book for these instructions. This section,
however, describes some concepts that provide the foundation you need. After you understand these, you
can go to Principles of Operation and read the introduction to z/Architecture that appears in the first
chapter and then refer to the specific instructions you need to write your program.

How z/Architecture processes S/390 instructions
First of all, your existing programs work, unchanged, in z/Architecture mode. This section describes how
z/Architecture processes S/390 instructions. The best way to describe this processing is through
examples of common S/390 instructions. First, consider a simple Add instruction: A R3,NUM31. This
instruction takes the value of a fullword binary integer at location NUM31 and adds it to the contents of
the low-order half of GPR3, placing the sum in the low-order half of GPR3. The high-order half of GPR3 is
unchanged.

Second, consider the LOAD instruction: L R3,MYDATA. This instruction takes the 4 bytes of data at location
MYDATA and puts them into the low order bits of GPR3.

The high-order half is not changed by the ADD instruction or the LOAD instruction. The register forms of
these instructions (AR and LR) work similarly, as do Add Logical instructions (AL and ALR).

68 z/OS: z/OS MVS Extended Addressability Guide

z/Architecture instructions that use the 64-bit GPR
z/Architecture provides many new instructions that use two 64-bit binary integers to produce a 64-bit
binary integer. These instructions include a "G" in the instruction mnemonic (AG and LG). Some of these
instructions are similar to S/390 instructions. Consider the example of an Add G instruction: AG
R3,NUM64. This instruction takes the value of a doubleword binary integer at location NUM64 and adds it
to the contents of GPR3, placing the sum in GPR3:

The second example, LG R3,TWOWORDS, takes a doubleword at location TWOWORDS and puts it into
GPR3.

Because 32-bit binary integers are prevalent in S/390, z/Architecture also provides instructions that use a
64-bit binary integer and a 32-bit binary integer. These instructions include a "GF" in the instruction
mnemonic (AGF and LGF). Consider AGF. In AGF R3,MYDATA, assume that MYDATA holds a 32-bit positive
binary integer, and GPR3 holds a 64-bit positive binary integer. (The numbers could have been negative.)
The AGF instruction adds the contents of MYDATA to the contents of GPR3 and places the resulting signed
binary integer in GPR3; the sign extension, in this case, is zeros.

The AGFR instruction adds the contents of the low-order half of a 64-bit GPR to bits 0 through 63 in
another 64-bit GPR. Instructions that include "GF" are very useful as you move to 64-bit addressing.

64-bit addressing mode (AMODE)
When generating addresses, the processor performs address arithmetic; it adds three components: the
contents of the 64-bit GPR, the displacement (a 12-bit value), and (optionally) the contents of the 64-bit
index register. Then, the processor checks the addressing mode and truncates the answer accordingly. For
AMODE 24, the processor truncates bits 0 through 39; for AMODE 31, the processor truncates bits 0
through 32; for AMODE 64, no truncation (or truncation of 0 bits) occurs. In S/390 architecture, the
processor added together the contents of a 32-bit GPR, the displacement, and (optionally) the contents of
a 32-bit index register. It then checked to see if the addressing mode was 31 or 24 bits, and truncated
accordingly. AMODE 24 caused truncation of 8 bits. AMODE 31 caused a truncation of bit 0.

The addressing mode also determines where the storage operands can reside. The storage operands for
programs running in AMODE 64 can be anywhere in the 16-exabyte address space, while a program
running in AMODE 24 can use only storage operands that reside in the first 16 megabytes of the 16-
exabyte address space.

Non-modal instructions
An instruction that behaves the same, regardless of the AMODE of the program, is called a non-modal
instruction. The only influence AMODE exerts on how a non-modal instruction performs is where the
storage operand is located. Two excellent examples of non-modal instructions have already been
described: the Load and the Add instructions. Non-modal z/Architecture instructions that are already
described also include the LG instruction and the AGF instruction. For example, programs of any AMODE
can issue AG R3,NUM64, described earlier, which adds the value of a doubleword binary integer at
location NUM64 to the contents of GPR3, placing the sum in GPR3.

Chapter 4. Using the 64-bit address space 69

The LGF instruction is another example of a non-modal instruction. In LGF R3,MYDATA, assume MYDATA
is a signed negative binary integer. This instruction places MYDATA into the low-order half of GPR3 and
propagates the sign (1s) to the high-order half, as follows:

If the current AMODE is 64, MYDATA can reside anywhere in the address space; if the AMODE is 31,
MYDATA must reside below 2 gigabytes; if the AMODE is 24, MYDATA must reside below 16 megabytes.

Other 64-bit instructions that are non-modal are the register form of AGF, which is AGFR, and the register
form of LGF, which is LGFR. Others are LGR, AGR, ALGR, and ALG.

Modal instructions
Modal instructions are instructions where the addressing mode is a factor in the output of the instruction.
The AMODE determines the width of the output register operands. A good example of a modal instruction
is Load Address (LA). If you specify LA R3,VIRT_PTR successively in the three AMODEs, what are the three
results?

• In AMODE 24, the address of VIRT_PTR is a 24-bit address that is loaded into bits 40 through 63 of
GPR3 (or bits 8 through 31 of the 32-bit register imbedded in the 64-bit GPR). The processor places
zeros into bits 32 through 39, and leaves the first 31 bits unchanged, as follows:

• In AMODE 31, the address of VIRT_PTR is loaded into bits 33 through 63 of GPR3. The processor places
zero into bit 32 and leaves the first 32 bits unchanged, as follows:

• In AMODE 64, the address of VIRT_PTR fill the entire 64-bit GPR3:

Other modal instructions are Move Long (MVCL), Branch and Link (BALR), and Branch and Save (BASR).

Setting and checking the addressing mode
z/Architecture provides three new Set Addressing Mode instructions that allow you to change addressing
mode. The instructions are SAM24, which changes the current AMODE to 24, SAM31, which changes the
current AMODE to 31, and SAM64, which changes the current AMODE to 64.

Starting with z/OS V1R3, there are other ways for a program to be in AMODE 64:

70 z/OS: z/OS MVS Extended Addressability Guide

• If your program uses the assembler AMODE 64 statement, and is bound that way, then the load module
is AMODE 64 and the system will give it control in AMODE 64.

• You could use the binder AMODE(64) statement to define that your load module is AMODE 64 and the
system will give it control in AMODE 64.

• You could be a target PC routine and have set up the entry table entry to indicate that your routine is to
be given control in AMODE 64.

• Your interface could be via BASSM and you could have set up an 8-byte target with the last bit on;
callers can then load and then issue BASSM. Your routine would then be entered in AMODE 64.

The AMODE bits in the PSW tell the processor what AMODE is currently in effect. You can obtain the
current addressing mode of a program by using the Test Addressing Mode (TAM) instruction. In response,
TAM sets a condition code based on the setting in the PSW; 0 indicates AMODE 24, 1 indicates AMODE 31,
and 3 indicates AMODE 64.

Linkage conventions
In z/OS R2, program entry is in AMODE 24 or AMODE 31; therefore linkage conventions you have used in
S/390 apply, which means passing 4-byte parameter lists and a 72-byte save area.

An older program changing from AMODE 31 to AMODE 64 to exploit z/Architecture instructions should
expect to receive 31-bit addresses and the 72-byte save area from its callers. If you are running in
AMODE 64 and want to use an address a caller has passed to you, the high-order half of the GPR will
probably not be cleared to zeros. As soon as you receive this address, use the Load Logical G Thirty One
Bits (LLGT or LLGTR) instruction to change this 31-bit address into a 64-bit address that you can use.

Pitfalls to avoid
As you begin to use the 64-bit instructions, consider the following:

1. Some instructions reference or change all 64 bits of a GPR regardless of the AMODE.
2. Some instructions reference or change only the low-order half of a GPR regardless of the AMODE.
3. Some instructions reference or change only the high-order half of a GPR regardless of the AMODE.
4. When you are using signed integers in arithmetic operations, you can't mix instructions that handle 64-

bit integers with instructions that handle 31-bit integers. The interpretation of a 32-bit-signed number
differs from the interpretation of a 64-bit-signed number. With the 32-bit-signed number, the sign is
extended in the low half of the doubleword. With the 64-bit-signed number, the sign is extended to the
left for the entire doubleword.

Consider the following example, where a 31-bit subtraction instruction has left a 31-bit negative integer in
bits 32 through 63 of GPR3 and has left the high-order half unchanged.

Next, the instruction AG R3,MYDOUBLEWORD, mentioned earlier, adds the doubleword at the location
MYDOUBLEWORD to the contents of the GPR3 and places the sum at GPR3. Because the high-order half
of the GPR has uncertain contents, the result of the AG instruction is incorrect. To change the value in the
GPR3 so that the AG instruction adds the correct integers, before you use the AG instruction, use the Load
G Fullword Register (LGFR) instruction to propagate the sign to the high-order half of GPR3.

Using a memory object
To use the storage in a memory object, the program must be in AMODE 64. (See “Setting and checking the
addressing mode” on page 70 for ways to get into AMODE 64.) While in AMODE 64, a program can issue
the IARV64 macro to create and free memory objects and to manage the physical frames behind the
storage. The parameter lists the program passes to IARV64 can reside above or below the bar.

To invoke macros other than those capable of being issued in AMODE 64, a program must be in AMODE
31 or AMODE 24. This restriction might mean that the program must first issue SAM31 to return to

Chapter 4. Using the 64-bit address space 71

AMODE 31. After a program issues a macro that is not capable of being issued in AMODE 64, it can return
to AMODE 64 through SAM64. To learn whether a program is in AMODE 64, see “Setting and checking the
addressing mode” on page 70.

Managing the data, such as serializing the use of a memory object, is no different from serializing the use
of an area obtained through GETMAIN or STORAGE.

Although few macros can be issued in AMODE 64, other interfaces support storage above the bar. For
example, the DUMP command with the STOR=(beg,end[,beg,end]...) parameter specifies ranges of
virtual storage to be dumped. Those ranges can be above the bar.

In summary, there are major differences between how you manage storage below the bar and how you
manage storage above the bar. Table 7 on page 72 can help you understand the differences and some of
the similarities. The first column identifies a task or concept, the second column applies to storage below
the bar, and the third column applies to storage above the bar.

Table 7. Comparing tasks and concepts for memory objects: Below the bar and above the bar

Task or concept Below the bar Above the bar

Obtaining storage GETMAIN, STORAGE, CPOOL macros and
callable cell pool services. On GETMAIN and
STORAGE, you can request to have a return
code indicate whether the storage is cleared
to zeros.

IARV64 GETSTOR request creates private
memory objects; storage is cleared to zeros.

IARV64 GETSHARED request creates shared
memory objects; storage is cleared to zeros.

IARV64 GETCOMMON request creates 64-
bit common memory objects; storage is
cleared to zeros.

Creating a 64-bit common memory object Not applicable. The request can be conditional or
unconditional. The request specifies the size
of the memory object in megabytes.

Increments of storage allocation In 8-byte increments, on a double-word
boundary.

In megabyte increments, on a megabyte
boundary.

Requirements for requestor GETMAIN with BRANCH=NO cannot be
issued by an SRB or a program in AR mode.
GETMAIN with BRANCH=YES can be issued
by an SRB or a program in AR mode.
STORAGE can be issued by an SRB or by a
program in AR mode. CPOOL can be issued
by an SRB but not by a program in AR mode.
Callable cell pool services can be issued in
either mode and by an SRB.

IARV64 GETSTOR can be issued in SRB
mode and in AR mode. The invoker of the
IARV64 service must be enabled and hold
local lock when issuing the GETSTOR
request.

There is no restriction on FRRs.

IARV64 GETCOMMON can be issued in task
mode or in AR mode. The invoker of the
service can be enabled or disabled.

Freeing storage FREEMAIN, STORAGE, CPOOL macros, and
callable cell pool services. Any 8-byte
increment of the originally-obtained storage
can be freed. An entire subpool can be freed
with a single request. At task termination,
storage owned by task is freed; some
storage (common, for example) does not
have an owner.

Use the IARV64 DETACH request. Memory
objects can only be freed in their entirety; no
partial detaches are allowed. All memory
objects obtained with a specified user-
defined token can be freed with a single
request. At task termination, private storage
owned by task is freed; all private storage
has an owner and that owner is a task. For
shared memory objects, see “Freeing a
shared memory object” on page 83.

Page fixing virtual storage and making those
pages available to be paged out

PGSER FIX request and PGSER FREE request
for any storage.

IARV64 PAGEFIX and IARV64 PAGEUNFIX
requests.

Notifying the system of an anticipated use of
storage

PGSER LOAD request PGSER OUT request. IARV64 PAGEIN and IARV64 PAGEOUT
requests.

Making a range of storage read-only or
modifiable

PGSER PROTECT request and PGSER
UNPROTECT request.

Use the IARV64 CHANGEACCESS request for
shared memory objects.

72 z/OS: z/OS MVS Extended Addressability Guide

Table 7. Comparing tasks and concepts for memory objects: Below the bar and above the bar (continued)

Task or concept Below the bar Above the bar

Discard data in physical pages and optionally
clear the pages to zeros.

PGSER RELEASE request clears the storage
to zeros. Note that PGRLSE, PGSER
RELEASE, PGSER FREE with RELEASE=Y,
and PGFREE RELEASE=Y may ignore some
or all of the pages in the input range, and will
not notify the caller if this was done.

Any pages in the input range that match any
of the following conditions will be skipped,
and processing continues with the next page
in the range:

• Storage is not allocated or all pages in a
segment have not yet been referenced.

• Page is in PSA, SQA or LSQA.
• Page is V=R. Effectively, it's fixed.
• Page is in BLDL, (E)PLPA, or (E)MLPA.
• Page has a page fix in progress, or a

nonzero FIX count.
• Pages with COMMIT in progress or with

DISASSOCIATE in progress.

IARV64 DISCARDDATA request. CLEAR=YES
must be specified to guarantee the storage is
cleared to zeros on the next usage.

Obtaining information about use of storage
areas

VSMLIST service. IARV64 LIST request.

Storage key and fetch protection attributes Apply to the entire allocated area. Apply to the entire allocated area.

What the area consists of System programs and data, user programs
and data.

User data only.

Performing I/O VSAM, BSAM, BPAM, QSAM, VTAM, Media
Manager, and EXCP and EXCPVR services.

EXCP and EXCPVR requests and Media
Manager.

Accessing storage To access data in the 2-gigabyte address
space, a program must run in AMODE 31 or
AMODE 64. S/390 and z/Architecture
instructions can be used.

To access data in the 16-exabyte address
space, a program must run in AMODE 64. To
load an address of a location above the bar
into a GPR, a program must use a z/
Architecture instruction.

IARV64 macro services
The IARV64 macro provides services to manage the 64-bit virtual storage for your programs. Table 8 on
page 73 introduces these services and the rules for what programs can do with the memory objects your
programs create and use. The first column identifies the particular IARV64 request, the second column
describes what a program can do if it is in problem state or has PSW key 8 - F, and the third column
describes what a program can do if it is in supervisor state or has PSW key 0 - 7.

Table 8. IARV64 service requests and rules for programs working with memory objects

IARV64 request A program in problem state, key 8 - F A program in supervisor state or key 0 - 7

GETSTOR — Create a private memory object Can get a private memory object in the
primary address space, only when the
program's home and primary address space
is the same.

The storage key of the memory object will be
the same as the PSW key of the caller.

Can assign ownership of the memory object
to the TCB of the job step task or the mother
task (the task of the program that issued the
ATTACHX).

Can get a private memory object in the
primary or home address space, as specified
by ALETVALUE.

Can assign ownership of the private memory
object to a TCB, specified by the TTOKEN, in
the address space indicated by ALETVALUE.

Can define the storage key of the private
memory object.

Can specify whether the private memory
object can be freed by an unauthorized
program and whether it can be pagefixed
and unpagefixed.

Chapter 4. Using the 64-bit address space 73

Table 8. IARV64 service requests and rules for programs working with memory objects (continued)

IARV64 request A program in problem state, key 8 - F A program in supervisor state or key 0 - 7

GETSHARED — Create a shared memory
object

Cannot use this service. Can create shared memory objects in the
primary or home address space.

GETCOMMON — Create a common memory
object

Cannot use this service. Can use this service in the primary or home
address space.

DETACH — Free one or more memory
objects

Can free a memory object it owns. Can free a memory object it owns.

Can free a memory object it does not own if
the memory object is in the primary or home
address space of the program issuing in
IARV64.

PAGEFIX — Fix physical pages

If you specify a list of page ranges, PAGEFIX
can fix the physical pages that back more
than one nonshared memory object.

Cannot fix pages. Can fix pages in one or more nonshared
memory objects in the primary or home
address space.

UNPAGEFIX — Undo a PAGEFIX operation Cannot unfix pages. Can unfix pages in one or more nonshared
memory objects in the primary or home
address space.

PAGEOUT — Alert the system that physical
pages will not be used so that the system
can optimize the use of the physical pages

Can use only if the memory object is in the
primary address space.

Can use for pages that back memory objects
in the primary or home address space.

PAGEIN — Alert the system that pages will
be needed soon

Can use only if the memory object is in the
primary address space.

Can use for pages that back memory objects
in the primary or home address space.

DISCARDATA — Discard data in physical
pages and optionally clear the pages to
zeros.

Also, you can optionally free the real frames
for these pages. If you specify a list of page
ranges, DISCARDDATA can discard data in
more than one memory object.

Can use if all of the following conditions are
true:

• The PSW key of caller is the same as the
storage key of the memory object.

• The memory object is in the primary
address space.

Can use for memory objects in the primary
or home address space.

Can use if the PSW key does not match the
storage key of the memory object.

CHANGEGUARD — See “Creating guard
areas and changing their sizes” on page 88

Can use this service only if it owns the
memory object or if an ancestor task or the
job step task owns the memory object.

Can use this service in the primary or home
address space.

LIST — List the memory objects Cannot list memory objects. Can list memory objects in the primary or
home address space.

SHAREMEMOBJ — Request that the
specified address space be given access to
one or more shared memory objects

Cannot use this service. Can use this service in the primary or home
address space.

CHANGEACCESS — Request that a view
type for segments within the specified
shared memory objects be changed

Cannot use this service. Can use this service in the primary or home
address space.

CHANGEATTRIBUTE — Change an attribute
of storage within one or more memory
objects.

Can request to change an attribute of
storage within one or more memory objects
that have a storage key that matches the
PSW key.

Can request to change an attribute of
storage within one or more memory objects.

Table 9 on page 75 lists the various IARV64 requests and whether they are valid for private, shared, and
common memory objects.

74 z/OS: z/OS MVS Extended Addressability Guide

Table 9. IARV64 services valid for private, shared, and common memory objects

IARV64 request

Memory object was obtained with this IARV64 request:

GETSTOR GETSHARED GETCOMMON

PAGEFIX Yes, with restrictions. See the
IARV64 service in z/OS MVS

Programming: Authorized
Assembler Services Reference

EDT-IXG.

No Yes, with restrictions. See the
IARV64 service in z/OS MVS

Programming: Authorized
Assembler Services Reference

EDT-IXG.

PAGEUNFIX Yes, when CONTROL=AUTH is
specified on the GETSTOR

request

No Yes

PAGEOUT Yes Yes Yes

PAGEIN Yes Yes Yes

DISCARDDATA Yes Yes Yes

CHANGEGUARD Yes No No

PROTECT Yes No Yes

UNPROTECT Yes No Yes

LIST Yes Yes Yes

COUNTPAGES Yes Yes Yes

DETACH Yes Yes Yes

SHAREMEMOBJ No Yes No

CHANGEACCESS No Yes No

CHANGEATTRIBUTE Yes Yes Yes

In summary, an unauthorized program can:

• Create memory objects in its own address space and relate them to each other
• Issue a CHANGEGUARD for memory objects it owns, or for memory objects that an ancestor task or its

job-step task owns
• Page out and page in the physical pages that back the memory objects it owns
• Discard data in the physical pages that back the memory objects it owns
• Detach the memory objects it owns.

This document discusses how to use the IARV64 services, but does not describe environmental or
programming requirements, register usage, or syntax rules. For that information, see the description of
the IARV64 macro in z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG.

Protecting storage above the bar
To limit access to the memory object, the creating program can use the FPROT and KEY parameters on
IARV64. KEY assigns the storage key for the memory object, and FPROT specifies whether the storage in
the memory object is fetch-protected. Storage protection and fetch protection attributes apply for the
entire memory object. A program can only reference storage in a fetch-protected memory object that runs
with the same PSW key as the storage key of the memory object or PSW key 0.

Tagging 64-bit memory objects for data privacy
To control the distribution of sensitive data in 64-bit memory objects, the creating program can use the
SENSITIVE parameter on the IARV64 service. SENSITIVE=YES indicates that the memory object contains
sensitive data. Tagged sensitive data in dumps can be secured and redacted when post processed by Data

Chapter 4. Using the 64-bit address space 75

Privacy for Diagnostics (DPfD). For more information about DPfD, see z/OS MVS Diagnosis: Tools and
Service Aids.

• Consider tagging memory objects as SENSITIVE=YES when they contain data of a personal or
confidential nature that can cause harm to the individual or business if not safeguarded, such as
regulated data as defined by General Data Protection Regulation (GDPR), Health Insurance Portability
and Accountability Act (HIPAA), or other legal requirements.

• Consider tagging memory objects as SENSITIVE=NO when they do not contain data of a personal or
confidential nature.

• Consider tagging memory objects as SENSITIVE=UNKNOWN, which is the default, when you are unsure
of the sensitive nature of the data.

• IARV64 REQUEST=CHANGEATTRIBUTE can be used to specify different sensitive states for subsections
of the memory object, but there will be higher system memory overhead than for a memory object with
a uniform SENSITIVE setting.

Creating private memory objects
The GETSTOR request of the IARV64 service creates private memory objects.

GETSTOR request
To create a memory object, use the IARV64 GETSTOR request. However, when you create a memory
object, request a size large enough to meet long-term needs; the system abends a program that
unconditionally tries to obtain more storage above the bar than the MEMLIMIT allows. IBM recommends
that you specify COND=YES on the request to avoid the abend. In this case, if the request exceeds the
MEMLIMIT, the system rejects the request, but the program continues to run. The IARV64 service returns
to the caller with a nonzero return code. The recovery routine would be similar to one that would respond
to unsuccessful STORAGE macro conditional requests for storage.

The SEGMENTS parameter specifies the size, in megabytes, of the memory object you are creating. The
system returns the address of the memory object in the ORIGIN parameter.

Parameters for GETSTOR include:

• FPROT=YES gives it fetch protection.
• SENSITIVE is an optional parameter that specifies whether the memory object contains sensitive data

(for instance, personal or confidential data), as described in Tagging 64-bit memory objects for data
privacy.

• KEY=key specifies its storage key (authorized programs only).
• TTOKEN=ttoken indicates what task is to own the memory object.
• ALETVALUE=alet identifies the address space in which the memory object is to reside, either the home

or primary address space (authorized users only).
• USERTKN=user token is an 8-byte token that relates two or more memory objects to each other. Later,

the program can request a list of memory objects that have that same token and can delete them as a
group.

• SVCDUMPRGN=YES specifies that the storage in the memory object is to be included when an SVC
dump is requested through SDUMPX SDATA=(RGN). SVCDUMPRGN=NO specifies that the virtual storage
in the memory object is not to be included when an SVC dump is requested through SDUMPX
SDATA=(RGN). There are other ways to include this storage in the dump, such as the SDUMPX
SUMLIST64 or SDUMPX LIST64 requests.

• LOCALSYSAREA=YES specifies that the storage is not copied to the child address space when the POSIX
FORK system call is invoked. In general, this option is appropriate for system-related control blocks like
that a 31-bit application would obtain out of high private. Only authorized invokers can specify
LOCALSYSAREA=YES. When this option is specified the size of the obtained object is not subject to the
MEMLIMIT threshold.

76 z/OS: z/OS MVS Extended Addressability Guide

• LOCALSYSAREA=NO specifies that the storage is copied to the child address space when the POSIX
FORK system call is invoked. In general, this option is appropriate for application-related storage that is
analogous to storage that a 31-bit application would obtain out of region.

• MEMLIMIT=YES specifies that the request is subject to MEMLIMIT threshold.
• MEMLIMIT=NO specifies that the request is not subject to MEMLIMIT threshold. If you need to specify

this option, consider whether LOCALSYSAREA=YES should also be specified.
• DUMP=LIKELSQA indicates that the memory object should be included in an SVC dump when LSQA is

included. Strongly consider this option if LOCALSYSAREA=YES is specified.
• DETACHFIXED=YES indicates that it is acceptable to detach the memory object with fixed pages. If the

application intends to use the storage like fixed LSQA (for example, fix once and leave it fixed for the life
of the object), then this option might be appropriate to avoid having to unfix the storage before
detaching it.

• SADMP=YES specifies that the memory object is to be captured in a stand-alone dump.
• SADMP=NO Specifies that the memory object is not captured in a stand-alone dump unless explicitly

requested by the stand-alone dump program. Consider this option if LOCALSYSAREA=NO is specified.
• EXECUTABLE=YES indicates that code is able to be executed from the obtained storage.
• EXECUTABLE=NO indicates that code will not be able to be executed from the obtained storage on a

system that has implemented Instruction_Execution_Protection.
• CONTROL=AUTH prevents a memory object from being freed by an unauthorized program (authorized

users only). Additionally, CONTROL=AUTH is required if you plan to fix and unfix pages.
• INORIGIN=inorigin specifies the address of the desired storage to be obtained.

When a program creates a memory object, it can specify, through the GUARDSIZE and GUARDHIGH and
GUARDLOW parameters, that the memory object is to consist of two different areas. One area is called a
guard area; this storage is not accessible; the other area is called the usable area. A later request can
change the guard area into a usable area. The section “Creating guard areas and changing their sizes” on
page 88 can help you understand the important purposes for this kind of memory object.

Before issuing IARV64, issue SYSSTATE ARCHLVL=2 so that the macro generates the correct parameter
addresses.

For a complete description of the IARV64 GETSTOR request, see z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG.

Example of creating a private memory object
The following example creates a memory object one megabyte in size. It specifies a constant with value of
one as a user token.

IARV64 REQUEST=GETSTOR,
 SEGMENTS=ONE_SEG,
 USERTKN=USER_TOKEN,
 ORIGIN=VIRT64_ADDR,
 COND=YES
ONE_SEG DC ADL8(1)
USER_TOKEN DC ADL8(1)
VIRT64_ADDR DS AD

Freeing a private memory object
When your program no longer needs the memory object, it uses IARV64 DETACH to free (delete) the
memory object. You can free memory objects that are related to each other through the user token
defined on the IARV64 GETSTOR request. Additionally, all programs can use the following parameters:

• MATCH=SINGLE,MEMOBJSTART frees a specific memory object, as identified by its origin address.
• MATCH=USERTKN, USERTKN frees a related set of memory objects by providing the user token
specified when the memory objects were created.

Chapter 4. Using the 64-bit address space 77

• COND=YES makes the request conditional, but only when you also pass a user token. IBM recommends
you use COND to avoid having the program abend because it asked to free a memory object that doesn't
exist.

Authorized programs can use additional parameters:

• ALETVALUE frees all memory objects in the primary address space or the home address space.
• OWNER=YES,TTOKEN frees only memory objects that are owned by a specified task.
• OWNER=NO (without TTOKEN) frees memory objects regardless of which task owns them.

Three conditions to avoid when you try to free a memory object are:

• Freeing a memory object that does not exist.

If you try to free a memory object that doesn't exist, the system abends your program.
• Freeing a memory object that has a range of addresses PAGEFIXED.

If you try to free a memory object that has a range of addresses pagefixed, the system will abend and
address space termination might follow. See the paragraph about task information in this section.

• Freeing a memory object that has I/O in progress.

If you specify the COND=YES parameter, you must also specify a user token. In the recovery routine that
gets control at an abend, you can try one of the following:

• Unfix any fixed pages. If you can unfix the pages, you can try again to free the memory object.
• Ignore the abend and leave the memory object in an unusable state.

As part of normal task termination, RSM frees the memory objects owned by the terminating task; if RSM
determines that there are fixed pages in the memory object, the system issues a CALLRTM
TYPE=MEMTERM request that results in address space termination. To avoid this MEMTERM, your
recovery routine should try to terminate any active I/O into the memory object that your program created
and free any pages that your program fixed.

Example of freeing a private memory object
The program frees all memory objects that have the user token specified in "USER_TOKEN":

IARV64 REQUEST=DETACH,
 MATCH=USERTOKEN,
 USERTKN=USER_TOKEN
USER_TOKEN DC ADL8(1)

An example of creating, using, and freeing a private memory object
The following program creates a 1-megabyte memory object and writes the character string "Hi Mom"
into each 4k page of the memory object. The program then frees the memory object.

 TITLE 'TEST CASE DUNAJOB'
 ACONTROL FLAG(NOALIGN)
DUNAJOB CSECT
DUNAJOB AMODE 31
DUNAJOB RMODE 31
 SYSSTATE ARCHLVL=2
* Begin entry linkage
 BAKR 14,0
 CNOP 0,4
 BRAS 12,@PDATA
 DC A(@DATA)
@PDATA LLGF 12,0(12)
 USING @DATA,12
 LHI 0,DYNAREAL
 STORAGE OBTAIN,LENGTH=(0),SP=0,CALLRKY=YES
 LLGTR 13,1
 USING @DYNAREA,13
 MVC 4(4,13),=C'F6SA'
* End entry linkage
*
 SAM64 Change to amode64

78 z/OS: z/OS MVS Extended Addressability Guide

 IARV64 REQUEST=GETSTOR, +
 SEGMENTS=ONE_SEG, +
 USERTKN=USER_TOKEN, +
 ORIGIN=VIRT64_ADDR
 LG 4,VIRT64_ADDR Get address of memory obj
 LHI 2,256 Set loop counter
LOOP DS 0H
 MVC 0(10,4),=C'HI_MOM!' Store HI MOM!
 AHI 4,4096
 BRCT 2,LOOP
* Get rid of all memory objects created with this
* user token
 IARV64 REQUEST=DETACH, +
 MATCH=USERTOKEN, +
 USERTKN=USER_TOKEN, +
 COND=YES
*
* Begin exit linkage
 LHI 0,DYNAREAL
 LR 1,13
 STORAGE RELEASE,LENGTH=(0),ADDR=(1),SP=0,CALLRKY=YES
 PR
* End exit linkage
@DATA DS 0D
ONE_SEG DC FD'1'
USER_TOKEN DC FD'1'
 LTORG
@DYNAREA DSECT
SAVEAREA DS 36F
VIRT64_ADDR DS AD
DYNAREAL EQU *-@DYNAREA
 END DUNAJOB

Creating shared memory objects
This section explains how to create shared memory objects:

• The “GETSHARED request” on page 79 of the IARV64 service creates shared memory objects that can
be shared across address spaces.

• The “SHAREMEMOBJ request” on page 81 allows an address space to access the shared memory
object.

• The “CHANGEACCESS request” on page 82 manages the type of access that is allowed to the shared
memory object.

For a complete description of the IARV64 macro, see z/OS MVS Programming: Authorized Assembler
Services Reference EDT-IXG.

GETSHARED request
To create a shared memory object, use the IARV64 GETSHARED service. While shared memory storage is
like common storage in that it is shared across address spaces, it differs because there is not automatic
addressability or access to it.

The shared memory object is allocated when you use the GETSHARED service. To access data in a shared
memory object you need to use the IARV64 GETSHARED request to create the shared memory object,
and the IARV64 “SHAREMEMOBJ request” on page 81 to specify an interest in the shared memory
object.

Chapter 4. Using the 64-bit address space 79

Figure 20. z/OS R5 Address Space with the default shared area between 2-terabytes and 512-terabytes

Notice that when you create a shared memory object, you specify some of the same attributes as when
you create a non-shared memory object through the GETSTOR service.

Parameters for the IARV64 GETSHARED service include:

• SEGMENTS=segments specifies the size, in megabytes, of the shared memory object you are creating.
• FPROT=YES gives the memory object fetch protection. The default is FPROT=NO.
• SENSITIVE is an optional parameter that specifies whether the memory object contains sensitive data

(for instance, personal or confidential data), as described in Tagging 64-bit memory objects for data
privacy.

• KEY=key specifies its storage key. The key must be in bits 0-3 of the specified byte.
• CHANGEACCESS=scope identifies whether subsequent CHANGEACCESS requests change the access for

only the address space specified (LOCAL), or all the address spaces sharing the memory object
(GLOBAL). The default is CHANGEACCESS=LOCAL.

• USERTKN=usertoken is a required 8-byte token that relates two or more memory objects to each other.
Associate the user token with the memory object, so later you can free several shared memory objects
at one time.

• ORIGIN= origin is the name or address that will contain the lowest address in the memory object.

For an example of this request, see “Example of creating and using a shared memory object –
GETSHARED” on page 82.

Relationship between the shared memory object and its owner
When your program creates shared memory objects you need to understand ownership issues in order to
prevent illegal operations that will be identified by an ABEND from z/OS. A program creates a shared
memory object, but it does not own the shared memory object. A shared memory object is always owned
by the system. A program gains access to a shared memory object by creating an interest in the shared
memory object. Shared interest is owned by the CMRO (cross memory resource owner) TCB of an address
space. Once a program has gained access to a shared memory object, any program running in that
address space has access to the shared memory object.

If the unit of work is an SRB, the program must assign ownership to a TCB. Because of this assignment of
ownership, the owner of the memory object and the creator of the memory object might not always be the
same.

80 z/OS: z/OS MVS Extended Addressability Guide

The memory object is available to programs with the correct PSW key and ALET value. The memory object
can be accessed by programs running under the owning TCB and other programs running in the same
address space. A program can use a memory object in its primary address space if its PSW key matches
the storage key of the memory object. An authorized program can use a memory object in another
address space if it has the ALET for that address space on its access list and if its PSW key matches the
storage key of the memory object.

When an address space terminates, or when a batch job completes execution under an initiator, the
system removes any shared interest the address space had in the shared memory objects. If the
terminating address space was the only address space with an interest in the shared memory object and
the system affinity has been removed from the shared memory object, the system deletes the shared
memory object. The memory object is no longer available for use.

When a TCB terminates, the system deletes the memory objects that the TCB owns. The system swaps a
memory object in and out as it swaps in and out the address space that dispatched the owning TCB.

A memory object can remain active even after the creating TCB terminates if a program assigns ownership
of the memory object to a TCB that will outlive the creating TCB. In this case, termination of the creating
TCB does not affect the memory object. To illustrate the importance of assigning ownership to the
appropriate TCB, consider the following example:

• PGMA, a program running in its home address space AS1, issues the PC instruction to call PGMB which
runs in AS2.

• While in AS2, PGMB creates a memory object and assigns ownership to TCB2 in AS2. PGMB also
ALESERV ADDs AS2 to PGMA's dispatchable unit access list (DUAL), so that PGMA can continue to
reference the memory object after PGMB PR's back to PGMA in AS1.

• After PGMB issues the PR to return to AS1, PGMA continues to use the memory object created by
PGMB. Sometime later, TCB2 terminates and the system deletes the memory object. The next time
PGMA references the memory object, the system issues an abend.

When assigning ownership of a memory object to a TCB, make sure the owning TCB will exist for the life of
its address space and the memory object will exist for the life of the TCB. Such a TCB would be the TCB
that owns the cross memory resources of the address space; the address of the cross memory owning
TCB of AS2 is stored in the ASCBXTCB field of the ASCB of AS1.

SHAREMEMOBJ request
To get access to the shared memory object, a program uses the SHAREMEMOBJ service. An address
space can issue more than one SHAREMEMOBJ request for the same memory object. To separate each of
the requests for the same memory object you need to specify a different user token.

Parameters for the IARV64 SHAREMEMOBJ service include:

• USERTKN=user token uniquely identifies the user token to be associated with the memory object. For a
single shared memory object, the given user token is allowed to be duplicated in distinct address
spaces, but not allowed to be duplicated within a single address space.

• RANGLIST=ranglistptr specifies an address pointing to a list of memory objects that the program wants
to access.

• NUMRANGE=numrange specifies the number of entries in the supplied range list pointed to by
RANGLIST. You can specify up to 16 memory objects.

• ALETVALUE=aletvalue indicates the ALET of the address space that will access the memory object.
• SVCDUMPRGN=YES/NO specifies whether or not the shared memory object is included in an SVC dump.

The default is SVCDUMPRGN=YES.

For an example of this request, see “Example of accessing a shared memory object – SHAREMEMOBJ” on
page 83.

Chapter 4. Using the 64-bit address space 81

CHANGEACCESS request
To request that the type of access to the specified virtual storage be changed, use the CHANGEACCESS
request. The three types of access are:

• READONLY
• SHAREDWRITE
• HIDDEN

The scope of the change is determined by your choice of LOCAL or GLOBAL on the CHANGEACCESS
parameter of the GETSHARED service. When CHANGEACCESS=LOCAL is specified or defaulted on the
CHANGEACCESS parameter of the GETSHARED service, only the address space specified by the ALET
parameter on the CHANGEACCESS service is affected. If the shared memory object is not addressable by
this address space because the IARV64 SHAREMEMOBJ request was not issued, the request will fail.

When the CHANGEACCESS=GLOBAL is specified on the CHANGEACCESS parameter of the GETSHARED
service, all address spaces currently sharing the memory object are affected, so all address spaces will
get the same view. Subsequent IARV64 SHAREMEMOBJ requests for this memory object will also be
affected until the next CHANGEACCESS invocation. Memory objects with CHANGEACCESS=GLOBAL
support CHANGEACCESS requests without prior SHAREMEMOBJ requests.

CHANGEACCESS requests for memory objects specified as CHANGEACCESS=LOCAL require that the
target space have interest in the shared memory object, which means a SHAREMEMOBJ for the target
space must be done before the CHANGEACCESS request. Because CHANGEACCESS changes the view of
the specified address space you must have access to memory object before you can CHANGEACCESS.

Parameters for the IARV64 CHANGEACCESS service include:

• VIEW specifies the type of access you want to have to the virtual storage. The three types of access are
READONLY, SHAREDWRITE, or HIDDEN.

• RANGLIST specifies the virtual address which can be anywhere in the shared memory object. The
following rules apply:

– The starting address must be on a segment boundary.
– The starting address must be within a memory object returned by a GETSHARED request.
– A single range must be contained within a single memory object.

• ALETVALUE=aletvalue indicates the ALET of the address space that will access the memory object.
• NUMRANGE specifies the number of entries in the supplied range list.

For an example of this request, see “Example of changing the access of a shared memory object –
CHANGEACCESS” on page 83.

Examples using IARV64 requests for shared memory objects

Example of creating and using a shared memory object – GETSHARED
The following example creates a shared memory object one megabyte in size. It specifies a constant with
value of one as a user token.

IARV64 REQUEST=GETSHARED,
 SEGMENTS=ONE_SEG,
 USERTKN=USERTKNA,
 ORIGIN=VIRT64_ADDR,
 COND=YES,
 FPROT=NO,
 KEY=MYKEY,
 CHANGEACCESS=LOCAL
ONE_SEG DC FD'1'
USERTKNA DC 0D'0'
 DC F'15' High Half must be non-zero
 DC F'1' UserToken of 1
VIRT64_ADDR DS D

82 z/OS: z/OS MVS Extended Addressability Guide

Note: If you want the memory object to have key 9, the declaration for MYKEY is as follows:

MYKEY DC X'90'

Example of accessing a shared memory object – SHAREMEMOBJ
The following example allows access to a shared memory object:

IARV64 REQUEST=SHAREMEMOBJ,
 USERTKN=USERTKNS,
 RANGLIST=RLISTPTR,
 NUMRANGE=1,
 ALETVALUE=0,
 COND=YES,
 SVCDUMPRGN=YES
USERTKNS DC 0D'0'
 DC F'15' High Half Must Be Non-Zero
 DC F'2' User Token of 2
RLISTPTR DS AD Pointer to the IARV64 Parmlist

Example of changing the access of a shared memory object – CHANGEACCESS
The following example changes the type of access to virtual storage to HIDDEN for the primary address
space:

IARV64 REQUEST=CHANGEACCESS,
 VIEW=HIDDEN,
 RANGLIST=RLISTPTR,
 NUMRANGE=1,
 ALETVALUE=0
RLISTPTR DS AD Pointer to the IARV64 Parmlis

Freeing a shared memory object
To free a shared memory object, use the IARV64 DETACH request. All address spaces have to remove
interest from the memory object by issuing a DETACH AFFINITY=LOCAL request. The system interest is
removed from the memory object by issuing a DETACH AFFINITY=SYSTEM request.

AFFINITY=LOCAL
When you specify the AFFINITY=LOCAL parameter, the system uses the specified or defaulted ALET to
determine if the address space has access to the memory object identified by the USERTKN parameter.
Then one of the following can happen:

• If no other sharers of the memory object remain (either the current address space or other address
spaces) and a detach with AFFINITY=SYSTEM has been done for the memory object, the memory object
is freed and no longer available for use.

• If other sharers of the memory object remain, or detach with AFFINITY=SYSTEM has not been done for
the memory object, the memory object is not freed, but the interest identified by the USERTKN
parameter value is removed. If this is the last sharer of the object for the address space specified by the
ALET parameter value, the address space will no longer have access to the memory object.

The following example frees the address space interest for the memory object specified by the user
token:

IARV64 REQUEST=DETACH,
 AFFINITY=LOCAL,
 ALETVALUE=0,
 COND=YES,
 MATCH=SINGLE,
 MEMOBJSTART=VIRT64_ADDR,
 USERTKN=USERTOKEN
VIRT64_ADDR DS AD
USERTOKEN DC XL8'E2C8C1D9E3D6D2D5' Value is SHARTOKN

Chapter 4. Using the 64-bit address space 83

AFFINTY=SYSTEM
When you specify AFFINTY=SYSTEM, the system interest for the memory object identified by the
USERTKN parameter is removed. The shared memory object will be freed when there is no remaining
interest in the object.

The following example frees the system interest:

IARV64 REQUEST=DETACH,
 AFFINITY=SYSTEM,
 COND=YES,
 MATCH=SINGLE,
 MEMOBJSTART=VIRT64_ADDR,
 USERTKN=USERTOKEN
VIRT64_ADDR DS AD
USERTOKEN DC XL8'E2C8C1D9E3D6D2D5' Value is SHARTOKN

Proper serialization of shared memory objects
It is important to serialize access to shared memory objects so that the shared memory objects your
program creates and uses do not cause situations where z/OS finds reason to abnormally end the work
unit. Shared memory objects can be serialized with ENQs, Latches, or other cross-address space
serialization techniques.

The following example shows the behavior of memory objects when strict serialization is not maintained.

Example: Tasks A, B, and C are sharing storage through a GETSHARED request obtained by task A. Task B
and C are continually sharing the storage via SHAREMEMOBJ and DETACH AFFINITY=LOCAL. They
continue sharing until task A chooses to DETACH AFFINITY=SYSTEM to the shared storage while both of
the following conditions apply:

• Task B still holds an interest in the storage and
• Task C no longer has a local interest in the shared storage (issued DETACH AFFINITY=LOCAL).

If work unit C tries to share the memory object again (through SHAREMEMOBJ), the system will issue an
abend code DC2 with reason code xx0040xx because it was not serialized against the DETACH
AFFINITY=SYSTEM issued by work unit A.

Creating common memory objects
Memory objects created in 64-bit common virtual storage are visible at the same virtual address in every
address space in the system and are accessible by every address space in the system. They have a single
protection key (only keys 0 - 7 are allowed) and fetch protection attribute.

A 64-bit common memory object can be created via the IARV64 REQUEST=GETCOMMON request. When
no longer needed, 64-bit common memory objects must be explicitly freed via the
IARV64 REQUEST=DETACH request with AFFINITY=SYSTEM.

The following chart summarizes the attributes of 64-bit common memory objects, compared to 64-bit
shared memory objects and below-the-bar common storage.

Like common storage below 2 GB:

• Memory objects are visible at the same address in every
address space.

• Every address space has access to the memory object once it
is created.

• Storage tracker capabilities are provided for diagnostic
purposes.

• Memory objects can be pageable, fixed, or DREF.
• Memory objects must be explicitly freed.

Unlike common storage below 2 GB:

• Memory objects cannot be implicitly fixed at allocation.
• 64-bit common storage has no subpools.

84 z/OS: z/OS MVS Extended Addressability Guide

Like 64-bit shared memory objects:

• Memory objects are allocated in 1 MB multiples on a 1 MB
boundary.

• Memory objects can be grouped as a set of related objects by
specifying a memory object token.

• Memory objects must be explicitly freed.

Unlike 64-bit shared memory objects:

• Virtual storage is addressable by all address spaces at
allocation time.

• There is no need to explicitly request access to the virtual
storage.

• Memory objects can be explicitly fixed.
• Memory objects can be referenced while disabled (DREF).

GETCOMMON request
To create a 64-bit common memory object, use the IARV64 GETCOMMON request. Your program must be
running in supervisor state and key 0 - 7, and the memory object to be obtained can only be assigned
system keys 0 - 7.

The following parameters are of particular interest on a GETCOMMON request:

• MOTKNSOURCE is an optional parameter that indicates the source of the memory object token that is to
be associated with this memory object. A memory object token can be supplied on a later DETACH
request in order to free all of the memory objects that are associated with that token.

– MOTKNSOURCE=SYSTEM means that the system will provide the memory object token in the output
area identified by the OUTMOTKN parameter. This token can be used on subsequent GETCOMMON
requests as a user-supplied token in order to associate other memory objects with this token.

– MOTKNSOURCE=USER, which is the default, means that the user is providing the memory object
token, specified by the MOTKN parameter. This must be a token that was returned by the system in
the OUTMOTKN parameter of a previous GETCOMMON request. If you do not specify the MOTKN
parameter, no user token is supplied to associate this memory object with others.

• TYPE is an optional parameter that specifies the type of storage being requested. The TYPE parameter
is honored when PAGEFRAMESIZE=4K is specified, or when PAGEFRAMESIZE=MAX is specified and the
memory object is backed with 4 KB page frames. The TYPE parameter is ignored when
PAGEFRAMESIZE=1MEG is specified, or when PAGEFRAMESIZE=MAX is specified and the memory
object is backed with 1 MB page frames.

– TYPE=PAGEABLE, which is the default, indicates that pages backing this memory object will be
pageable. Pages will be backed upon first reference and can be paged out to auxiliary storage. Virtual
address ranges within the memory object can be explicitly fixed after allocation by using the IARV64
PAGEFIX request.

– TYPE=DREF indicates that the memory object will be referenced while running disabled. The DREF
attribute applies to the entire memory object. Pages will be backed upon first reference and will
remain in real storage; they will never be paged out to auxiliary storage.

• OWNERCOM is an optional parameter that specifies the entity to which the system will assign ownership
of the common memory object. The system uses this ownership information to track the use of 64-bit
common storage for diagnostic purposes.

– OWNERCOM=HOME, which is the default, indicates that the home address space will be assigned as
the owner of the common memory object.

– OWNERCOM=PRIMARY indicates that the primary address space will be assigned as the owner of the
common memory object.

– OWNERCOM=SYSTEM indicates that the system will be assigned as the owner of the common
memory object; the memory object is not associated with an address space.

– OWNERCOM=BYASID indicates that the address space specified by the OWNERASID parameter will
be assigned as the of the common memory object.

• DUMP is an optional parameter that specifies whether the 64-bit common memory object is to be
included in an SVC dump when CSA or SQA is specified on SDATA.

Chapter 4. Using the 64-bit address space 85

– DUMP=LIKECSA, which is the default when TYPE=PAGEABLE is specified on the GETCOMMON
request, indicates that the common memory object is to be included in an SVC dump when CSA is
specified on SDATA.

– DUMP=LIKESQA, which is the default when TYPE=DREF is specified on the GETCOMMON request,
indicates that the common memory object is to be included in an SVC dump when SQA is specified on
SDATA.

– DUMP=NO indicates that the common memory object is not to be included in an SVC dump when
either CSA or SQA is specified on SDATA.

– DUMP=BYOPTIONVALUE indicates that the common memory object is to be dumped according to the
option specified by the OPTIONVALUE parameter.

• DETACHFIXED is an optional parameter that specifies whether the common memory object can be
detached when it contains fixed pages at the time of the DETACH request.

– DETACHFIXED=NO, which is the default, indicates that the memory object will not be detached if it
contains any fixed pages at the time of the DETACH request.

– DETACHFIXED=YES indicates that the memory object will be detached even if some or all of its pages
are fixed.

• SADMP=YES specifies that the memory object is to be captured in a stand-alone dump.
• SADMP=NO Specifies that the memory object is not captured in a stand-alone dump unless explicitly

requested by the stand-alone dump program.
• EXECUTABLE=YES indicates that code is able to be executed from the obtained storage.
• EXECUTABLE=NO indicates that code will not be able to be executed from the obtained storage on a

system that has implemented Instruction_Execution_Protection.
• SENSITIVE is an optional parameter that specifies whether the memory object contains sensitive data

(for instance, personal or confidential data), as described in Tagging 64-bit memory objects for data
privacy.

For a complete description of the IARV64 GETCOMMON request, see z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG.

Freeing a common memory object
To free a 64-bit common memory object, use the IARV64 DETACH request. Your program must be running
in supervisor state and key 0 - 7.

The following parameters are of particular interest on a DETACH request for common memory objects:

• MATCH is an optional parameter that specifies which memory objects are to be freed.

– MATCH=SINGLE, which is the default, indicates that a single memory object, specified by the
MEMOBJSTART parameter, is to be freed. MEMOBJSTART contains the address of the first byte in the
memory object.

– MATCH=MOTOKEN indicates that memory objects associated with a memory object token are to be
freed. The memory object token is specified by the MOTKN or USERTKN parameter. Memory objects
that are not associated with a memory object token are not affected.

– MATCH=USERTOKEN is a synonym for MATCH=MOTOKEN.
• MOTKN is an optional parameter that specifies the memory object token that uniquely identifies the

memory objects. The MOTKN parameter is used along with the MOTKNCREATOR parameter, and is
mutually exclusive with the USERTKN parameter.

• MOTKNCREATOR is an optional parameter that indicates who created the memory object token
specified by the MOTKN parameter.

– MOTKNCREATOR=USER, which is the default, indicates that the memory object token specified by
MOTKN is user-created.

– MOTKNCREATOR=SYSTEM indicates that the memory object token specified by MOTKN is system-
created.

86 z/OS: z/OS MVS Extended Addressability Guide

• USERTKN is an optional parameter that specifies the user-created memory object token that uniquely
identifies the memory objects. The USERTKN parameter is mutually exclusive with the MOTKN
parameter, and is equivalent to MOTKN with MOTKNCREATOR=USER.

• AFFINITY is an optional parameter that specifies whether local or system affinity for the memory object
is to be affected.

– AFFINITY=LOCAL, which is the default, indicates that local affinity to the memory object is to be
affected. This does not apply to common memory objects.

– AFFINITY=SYSTEM indicates that system affinity to the memory object is to be affected, and is only
applicable to shared memory objects and common memory objects. You must specify
AFFINITY=SYSTEM on a DETACH request for common memory objects.

• V64COMMON is an optional keyword that specifies whether this DETACH request is for 64-bit common
memory objects.

– V64COMMON=NO, which is the default, indicates that this DETACH request is not for 64-bit common
memory objects.

– V64COMMON=YES indicates that this DETACH request is for 64-bit common memory objects. You
must specify V64COMMON=YES on a DETACH request for common memory objects.

For a complete description of the IARV64 DETACH request, see z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG.

Fixing the pages of a memory object
Authorized programs can use IARV64 PAGEFIX to fix specified 4K pages in a single memory object. Page
fixing prevents the system from stealing those pages. The ALETVALUE parameter tells the system where
the memory object resides: the primary or the home address space. The LONG parameter tells the system
the pagefix is expected to be of long duration (in seconds). On the RANGLIST parameter, the program
provides a list of the page ranges that are to be fixed. The format of the list is:

IARV64 PAGEUNFIX requests that the system unpagefix the pages that back memory objects. A page
remains fixed until the number of unpagefix operations for that page equals the number of pagefix
operations. As with the pagefix request, the ALETVALUE parameter to specify that the memory object is in
the primary or home address space and the program provides a list of page ranges.

Example of fixing pages of a memory object
Using the memory object created earlier, the following example in an AMODE 31 program, fixes 5 pages of
the memory object, then unfixes them:

 SYSSTATE ARCHLVL=2
 .
 .
 .
 XC R_LIST(100),R_LIST Clear the range list
 LG 12,VIRT64_ADDR Get starting address to pagefix
 STG 12,R_START Save it in range list
 LGHI 4,5 Load number of pages to fix
 STG 4,R_PAGES Save it in range list
 SLR 12,12 Generate primary-space alet
 ST 12,R_ALET Save it in range list
 LA 4,R_LIST Get address of rangelist
 LLGTR 4,4 Make it a 64-bit pointer
 STG 4,RLISTPTR Save it
* Now pagefix the 5 pages
 IARV64 REQUEST=PAGEFIX, +
 RANGLIST=RLISTPTR, +
 LONG=NO

Chapter 4. Using the 64-bit address space 87

* Using the same rangelist, unfix the pages
 LA 12,R_LIST Get address of range list
 LLGTR 12,12 Make it a 64-bit pointer
 STG 12,RLISTPTR Save it
 IARV64 REQUEST=PAGEUNFIX, +
 RANGLIST=RLISTPTR
*
* Declares for example
R_LIST DS CL100
 ORG R_LIST
R_START DS ADL8
R_PAGES DS ADL8
R_ALET DS AL4
RLISTPTR DS AD
VIRT64_ADDR DS AD

Discarding data in a memory object
Your program can use the IARV64 DISCARDDATA request to tell the system that your program no longer
needs the data in certain pages and that the system can free them. Optionally, you can use the CLEAR
parameter to clear the area to zeros. Also you can optionally use the KEEPREAL parameter to specify
whether the real frames backing the pages to be discarded are to be freed or not. The RANGLIST
parameter provides a list of page ranges, as shown earlier.

Authorized programs can use the ALETVALUE parameter to specify that the memory objects are in the
primary address space or the home address space.

Releasing the physical resources that back pages of memory objects
A program uses the IARV64 PAGEOUT request to tell the system that the data in certain pages will not be
used for some time (as measured in seconds) and that the pages are candidates for paging out of real
storage. A pageout does not affect pages that are fixed in real storage. On the RANGLIST parameter, the
program provides a list of page ranges. Authorized programs can use the ALETVALUE parameter to
designate memory objects in the address space identified by the ALET.

A program uses the IARV64 PAGEIN request to tell the system that it will soon reference the data in
certain pages and that the system should page them into real storage if the pages are not already backed
by real storage. Authorized programs can use the ALETVALUE parameter to target pages of memory
objects in the address space identified by the ALET.

Creating guard areas and changing their sizes
A program can create a memory object that consists of two areas:

• An area it can use immediately, called the usable area
• A second area, called a guard area

The system does not allow programs to use storage in the guard area. Additional guard areas within the
memory object can also be created.

To create a memory object with a guard area, use the IARV64 GETSTOR or GETCOMMON request with
either the SEGMENTS or UNITS parameter to specify the size of the memory object, and either the
GUARDSIZE or GUARDSIZE64 parameter to specify the size of the initial guard area. Use
GUARDLOC=LOW or GUARDLOC=HIGH to specify whether the initial guard area is to be at the low end or
the high end of the memory object.

Note: A request to create a guard area when the range contains fixed pages results in an abend.

Use a guard area to reserve the area for future use. For example, a program can manage the parceling out
of pages of the memory object. Another reason for using a guard area is so that the program requesting
the memory object can protect itself from accidentally referencing storage beyond the end of the memory
object, and possibly overlaying data in another adjacent memory object. For that, the program would use
GUARDLOC=HIGH. If the program wanted to protect itself from another program that might be using an
adjacent memory at a lower address, it would likely use GUARDLOC=LOW.

88 z/OS: z/OS MVS Extended Addressability Guide

Use COND=YES when invoking the IARV64 REQUEST=CHANGEGUARD request, conditionally requesting
the change, to avoid an abend if the request exceeds the MEMLIMIT established by the installation. If it
cannot grant a conditional request, the system rejects the request, but the program continues to run.

The following illustration shows a memory object, eight segments in size. GUARDLOC=HIGH creates the
guard area at the highest addresses of the memory object. The memory object has seven segments of
usable storage and one segment on reserve for later use.

Figure 21. A memory object eight megabytes in size

Use the IARV64 CHANGEGUARD request to increase or decrease the amount of usable space in a memory
object by adjusting the size of the initial guard area or creating and removing additional guard areas. Use
the MEMOBJSTART keyword to increase or decrease the initial guard area. For private area memory
objects, use the CONVERTSTART keyword to create, increase, or decrease guard areas at specific
addresses. If any storage of the request is already in the requested state, usable or guarded,
CHANGEGUARD processes the request and returns a code of four as a warning. Common area memory
objects can only have a low or high guard area.

The following illustration shows an additional guard area of two segments being created in the already
defined private area memory object. This guard area is being created at a specific address, three
segments within the memory object. Now the memory object has five segments of usable storage and
three segments of unusable (guarded) storage.

Chapter 4. Using the 64-bit address space 89

Figure 22. A memory object with an additional guard area

Your program cannot reference an address in the guard areas; if it does, the program receives a program
exception (0C4 abend). To avoid abend, code a recovery routine to get control upon receiving the program
exception; the recovery routine can retry and then increase the usable part of the memory object thus
decreasing the guard areas.

The guard areas do not count towards the MEMLIMIT set by the installation; the usable areas do count
toward the MEMLIMIT.

Examples of creating a memory object with a guard area
The following example creates a 3-megabyte memory object with a 2-megabyte guard area. The guard
area is at the high end of the memory object:

IARV64 REQUEST=GETSTOR,
 SEGMENTS=NUM_SEG,
 USERTKN=USER_TOKEN,
 GUARDSIZE=GUARDPAGES,
 GUARDLOC=HIGH,
 CONTROL=AUTH,
 ORIGIN=VIRT64_ADDR

The following example decreases the size of the guard area by the specified amount.

IARV64 REQUEST=CHANGEGUARD,
 CONVERT=FROMGUARD,
 MEMOBJSTART=VIRT64_ADDR,
 CONVERTSIZE=SEGMENT_SIZE,
 ALETVALUE=0

The following example creates a guard area at a specific address within the memory object:

IARV64 REQUEST=CHANGEGUARD,
 CONVERT=TOGUARD,
 CONVERTSTART=GUARD_START,
 CONVERTSIZE=SEGMENT_SIZE,
 ALETVALUE=0

90 z/OS: z/OS MVS Extended Addressability Guide

Listing information about the use of virtual storage above the bar
Authorized programs can use the IARV64 LIST request to obtain information about memory objects in the
caller's address space. The system returns the information in a work area you provide. The V64LISTPTR
parameter defines the first address of this work area; the V64LISTLENGTH identifies the length of the
area. The parameter list macro is mapped by IAXV64WA.

The system returns the following information about usable areas (not guard areas) of memory objects:

• Beginning address
• Ending address
• Storage key
• Shared or private indicator
• Multiple guard areas indicator

To request a list of shared memory objects defined for the system via GETSHARED specify
V64SHARED=YES.

Changing the attributes of storage within a memory object
A program uses the IARV64 CHANGEATTRIBUTE request to alter storage attributes of a subsection of one
or more memory objects. On the RANGLIST parameter, the program provides a list of page ranges.
Authorized programs can use the ALETVALUE parameter to designate memory objects in the address
space identified by the ALET.

Dumping 64-bit common memory objects
To include 64-bit common memory objects in an SVC dump:

• Specify a list of 64-bit address ranges to include in the dump using the LIST64 parameter on the
SDUMPX macro.

Any 64-bit common memory object can be dumped this way. This is also the only way to dump 64-bit
common memory objects that specified DUMP=NO on the IARV64 GETCOMMON request.

• Specify SDATA=(CSA,SQA).

– 64-bit common memory objects that were allocated with a dump attribute of DUMP=LIKECSA on the
IARV64 GETCOMMON request will be included in an SVC dump when CSA is specified on the SDATA
parameter.

– 64-bit common memory objects that were allocated with a dump attribute of DUMP=LIKESQA on the
IARV64 GETCOMMON request will be included in an SVC dump when SQA is specified on the SDATA
parameter.

The 64-bit common storage will be dumped after common storage below 2 GB and before private storage.

Chapter 4. Using the 64-bit address space 91

92 z/OS: z/OS MVS Extended Addressability Guide

Chapter 5. Using access registers

The term "extended addressability" refers to the ability of a program to use virtual storage that is outside
the address space the program is dispatched in. Chapter 3, “Synchronous cross memory communication,”
on page 19 describes how a caller uses the PC instruction to call a program in another address space and
run there under the caller's TCB. It describes the two cross memory instructions (MVCS and MVCP) that
move data from primary to secondary and from secondary to primary.

Access registers provide you with a different function from cross memory. You cannot use them to branch
into another address space. Through access registers, however, you can use assembler instructions to
manipulate data in other address spaces and in data spaces. You do not use access registers to reference
addresses in hiperspaces.

In addition to this section, other sources of information can help you understand how to use access
registers:

• Chapter 6, “Creating and using data spaces,” on page 127, contains examples of using access registers
to manipulate data in data spaces.

• Principles of Operation contains descriptions of how to use the instructions that manipulate the
contents of access registers.

Also, the following books contain the syntax and parameter descriptions for the macros that are
mentioned in this section:

• z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
• z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
• z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
• z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

Using access registers for data reference
Through access registers, your program, whether it is supervisor state or problem state, can use
assembler instructions to perform basic data manipulation, such as:

• Comparing data in one address space with data in another
• Moving data into and out of a data space, and within a data space
• Accessing data in an address space that is not the primary address space
• Moving data from one address space to another
• Performing arithmetic operations with values that are located in different address spaces or data

spaces.

The functions of cross memory and access registers are different and complementary. In a multiple
address space environment, you might use them both.

What is an access register (AR)? An AR is a hardware register that a program uses to identify an address
space or a data space. Each processor has 16 ARs, numbered 0 through 15, and they are paired one-to-
one with the 16 general purpose registers (GPRs).

© Copyright IBM Corp. 1988, 2020 93

Why would a program use ARs? Generally, instructions and data reside in a single address space — the
primary address space (PASN). However, you might want your program to have more virtual storage than a
single address space offers, or you might want to separate data from instructions for:

• Storage isolation and protection
• Data security
• Data sharing among multiple users

For these reasons and others, your program can have data in address spaces other than the primary or in
data spaces. The instructions still reside in the primary address space, but the data can reside in another
address space or in a data space.

To access data in other address spaces, your program uses ARs and executes in the address space control
mode called access register mode (AR mode).

What is address space control (ASC) mode? The ASC mode determines where the system looks for the
data that the address in the GPR indicates. The two ASC modes that are generally available for your
programs are primary and AR mode. The PSW determines the ASC mode. Both problem state and
supervisor state programs can use both modes, and a program can switch between the two modes.

• In primary mode, the data your program can access resides in the program's primary address space.
(An exception to this statement is that a program in primary mode can use the cross memory
instructions, MVCP and MVCS, to manipulate data in the secondary address space.) When it resolves the
addresses in data-referencing instructions, the system does not use the contents of the ARs.

• In AR mode, the data your program can access resides in the address/data space that the ARs indicate.
For data-referencing instructions, the system uses the AR and the GPR together to locate an address in
an address/data space. Specifically, the AR contains a value, called an ALET, that identifies the address
space or data space that contains the data, and the GPR contains a base address that points to the data
within the address/data space. (In this document, the term address/data space refers to "address
space or data space".)

The following chart summarizes where the system looks for the instructions and the data when the
program is in primary mode and AR mode.

ASC Mode Location of Instructions Location of Data

Primary mode Primary address space Primary address space

AR mode Primary address space Address/data space identified by an
AR

In this document, the AR and GPR pair that is used to resolve an address is called AR/GPR. Figure 23 on
page 94 illustrates AR/GPR 4.

Figure 23. Example of an AR/GPR

Do not confuse cross memory mode with ASC mode. A program can be in AR mode with the primary,
secondary, and home address spaces all the same. Likewise, a program can be in AR mode with the
primary, secondary, and home address spaces all different. Chapter 3, “Synchronous cross memory
communication,” on page 19 contains information about cross memory mode.

Do not confuse addressing mode (AMODE) with ASC mode. A program can be in AR mode and also be in
either 31-bit or 24-bit addressing mode. However, programs in 24-bit addressing mode are restricted in
their use of data spaces; for example, a program in 24-bit addressing mode cannot create a data space,
nor can the program access data above 16-megabytes in that space.

How does your program switch ASC mode? Use the SAC instruction to change ASC mode:

94 z/OS: z/OS MVS Extended Addressability Guide

• SAC 512 sets the ASC mode to AR mode
• SAC 0 sets the ASC mode to primary mode

What does the AR contain? The contents of an AR designate an address/data space. The AR contains a
token that specifies an entry in a table called an access list. Each entry in the access list identifies an
address/data space that programs can reference. The token that indexes into the access list is called an
access list entry token (ALET). When an ALET is in an AR and the program is in AR mode, the ALET
identifies the access list entry that points to an address/data space. The corresponding GPR contains the
address of the data within the address/data space. IBM recommends that you use ARs only for ALETs and
not for other kinds of data.

The following figure shows an ALET in the AR and the access list entry that points to the address/data
space. It also shows a GPR that points to the data within the address/data space.

Figure 24. Using an ALET to identify an address/data space

By placing an entry on an access list and obtaining an ALET for that entry, a program builds the connection
between the program and the target address/data space. (In describing the subject of authorization, the
terms "target address space" and "target data space" are used to mean an address space or data space in
which a program is trying to reference data.) The process of building this connection is called establishing
addressability to an address/data space.

For programs in AR mode, when the GPR is used as a base register, the corresponding AR must contain an
ALET. Conversely, when the GPR is not used as a base register, the corresponding AR is ignored. For
example, the system ignores an AR when the associated GPR is used as an index register.

A comparison of data reference in primary and AR mode
The best way to show how address resolution in primary mode compares with address resolution in AR
mode is through an example. Figure 25 on page 96 and Figure 26 on page 96 show two ways an MVC
instruction works to move data at location B to location A.

In Figure 25 on page 96, the move instruction, MVC, is in code that is running in primary mode. The MVC
instruction uses GPRs 1 and 2. GPR 1 is used as a base register to locate the destination of the MVC
instruction. GPR 2 is used as a base register to locate some data to be moved.

Chapter 5. Using access registers 95

Figure 25. The MVC instruction in primary mode

In Figure 26 on page 96, the MVC instruction, in code that is in AR mode, moves the data at location B in
Space Y to location A in Space X. GPR 1 is used as a base register to locate the destination of the data,
and AR 1 is used to identify space X. GPR 2 is used to locate the source of the data, and AR 2 identifies
Space Y. In AR mode, the MVC instruction is in code that is running in AR mode. The MVC instruction
moves data from one address/data space to another. Note that the address space that contains the MVC
instruction does not have to be either Space X or Space Y.

Figure 26. The MVC Instruction in AR Mode

Addresses that are qualified by an ALET are called ALET-qualified addresses.

Coding instructions in AR mode
As you write your AR mode programs, use the advice in this section.

• Always remember that for an instruction that uses a GPR as a base register, the system uses the
contents of the associated AR to identify the address/data space that contains the data that the GPR
points to.

• Use ARs only for data reference; do not use them with branching instructions.

96 z/OS: z/OS MVS Extended Addressability Guide

• Just as you do not use GPR 0 as a base register, do not use AR/GPR 0 for addressing.
• You cannot use the following instructions when your program is in AR mode:

– Move to primary — MVCP
– Move to secondary — MVCS
– Program transfer — PT
– Basic program call — basic PC

Because ARs that are associated with index registers are ignored, when you code assembler
instructions in AR mode, place the commas very carefully. In those instructions that use both a base
register and an index register, the comma that separates the two values is very important.

Table 10 on page 97 shows four examples of how a misplaced comma can change how the assembler
resolves addresses on the load instruction.

Table 10. Base and index register addressing in AR mode

Instruction Address Resolution

L 5,4(,3) or L 5,4(0,3) There is no index register. GPR 3 is the base register. AR 3 indicates
the address/data space.

L 5,4(3) or L 5,4(3,0) GPR 3 is the index register. Because there is no base register, data is
fetched from the primary address space.

L 5,4(6,8) GPR 6 is the index register. GPR 8 is the base register. AR 8 indicates
the address/data space.

L 5,4(8,6) GPR 8 is the index register. GPR 6 is the base register. AR 6 indicates
the address/data space.

For the first two entries in Table 10 on page 97:

In primary mode, the examples of the load instruction give the same result.
In AR mode, the data is fetched using different ARs. In the first entry, data is fetched from the address/
data space represented by the ALET in AR 3. In the second entry, data is fetched from the primary
address space (because AR/GPR 0 is not used as a base register).

For the last two entries in Table 10 on page 97:

In primary mode, the last two examples of the load instruction give the same result.
In AR mode, the first results in a fetch from the address/data space represented by AR 8, while the
second results in a fetch from the address/data space represented by AR 6.

Manipulating the contents of ARs
Whether the ASC mode of a program is primary or AR, the program can use assembler instructions to
save, restore, and modify the contents of the 16 ARs. Both problem state and supervisor state programs
can use these instructions.

The set of instructions that manipulate ARs includes:

• CPYA — Copy the contents of one AR into another AR.
• EAR — Copy the contents of an AR into a GPR.
• LAE — Load a specified ALET/address into an AR/GPR pair.
• SAR — Place the contents of a GPR into an AR.
• LAM — Load the contents of one or more ARs from a specified location.
• STAM — Store contents of one or more ARs at a specified location.

Chapter 5. Using access registers 97

For their syntax and help with how to use them, see the Principles of Operation documentation for your
CPC.

Example of loading an ALET into an AR
An action that is very important when a program is in AR mode, is the loading of an ALET into an AR. The
following example shows how you can use the LAM instruction to load an ALET into an AR.

The following instruction loads an ALET (located at DSALET) into AR 2:

 LAM 2,2,DSALET LOAD ALET OF DATA SPACE INTO AR2
 .
DSALET DS F DATA SPACE ALET

Access lists
When the system first dispatches any work unit (such as a TCB, SRB, or IRB), it gives that work unit an
access list (a DU-AL) that is empty. When the system creates an address space, it gives that address
space an access list (PASN-AL) that contains only entries for existing data spaces that are known as
common area (SCOPE=COMMON) data spaces. Programs add entries to the DU-AL and the PASN-AL. The
entries represent the address/data spaces that the programs want to access.

Before your program can use ARs to reference data in an address/data space, it must establish a
connection to the address/data space. The connection between the program that the work unit
represents and the address/data spaces is through an access list. The process of establishing this
connection is called establishing addressability.

Although you cannot use ARs to access data in hiperspaces, you can establish a connection between a
program and a hiperspace through ALETs and access lists. If you are using hiperspaces see “Accessing
hiperspaces” on page 169. The information in this section applies to data/address spaces.

Establishing addressability to an address/data space means your program must:

• Have authority to access data in the address/data space
• Have an access list entry that points to the address/data space
• Have the ALET that indexes to the entry

Before you can set up the access list entries and obtain ALETs, you need to know about:

• The two types of access lists, and the differences between them
• The two types of entries in access lists, and the differences between them
• The ALETs that are available to every program
• The ALESERV macro, which manages entries in access lists and gives information about ALETs and

STOKENs.

The term STOKEN (for "space token") identifies an address space, a data space, subspace, or a
hiperspace. It is similar to an address space identifier (ASID or ASN), with two important differences: the
system does not reuse the STOKEN value within an IPL, and data spaces, subspaces, and hiperspaces do
not have ASIDs. The STOKEN is an eight-byte variable that the system generates when you create an
address space, data space, subspace, or hiperspace. (Note that the system never generates a STOKEN
value of zero.)

Types of access lists
The access list can be one of two types:

• A primary address space access list (PASN-AL) — the access list that is associated with an address
space

• A dispatchable unit access list (DU-AL) — the access list that is associated with a work unit (a TCB or
SRB).

98 z/OS: z/OS MVS Extended Addressability Guide

A program uses the DU-AL associated with its work unit and the PASN-AL associated with its primary
address space.

The difference between a PASN-AL and a DU-AL is significant. If your program is a part of a subsystem
that provides services for many users and has its own address space, it might reference address/data
spaces through its PASN-AL. A program can create a data space, add an entry for the data space to the
PASN-AL, and obtain the ALET that indexes the entry. By passing the ALET to other programs in the
address space, the program can share the data space with other programs running in the address space.

If your program is not part of a subsystem, it will probably place entries for address/data spaces in its DU-
AL.

Each work unit has one DU-AL; programs that the work unit represents can use it. That DU-AL cannot be
shared with another work unit. A program can, however, use the ALCOPY parameter on the ATTACH(X)
macro at the time of the attach, to pass a copy of its DU-AL to the attached task. “Attaching a subtask and
sharing data spaces with it” on page 147 describes a program attaching a subtask and passing a copy of
its DU-AL. This action allows two programs, the issuer of the ATTACH macro and programs running under
the attached task, to have access to the address/data spaces that were represented by the entries on the
DU-AL at the time of the attach.

Each address space has one PASN-AL. All programs running in the primary address space can use the
PASN-AL for that address space. They cannot use the PASN-AL of any other address space.

The following lists summarize the characteristics of DU-ALs and PASN-ALs.

• The DU-AL has the following characteristics:

– Each work unit has its own unique DU-AL.
– All programs that the work unit represents can add and delete entries on the work unit's DU-AL.
– A program cannot pass its task's DU-AL to a program running under another task. Tasks can never

share a DU-AL. The one exception is that a program can pass a copy of its DU-AL to an attached task.

When the DU-AL contains address space, data space, or hiperspace entries, the new subtask starts
with an identical copy of the attaching task's DU-AL. The two DU-ALs do not necessarily stay
identical. After the attach, the attaching task and the subtask are free to add and delete entries on
their own DU-ALs.

If the attaching task deletes the data space and the DU-AL entry for that data space, the subtask will
still have an entry in its own DU-AL for that data space, but no program will be able to access this
data space from the subtask.

When the DU-AL contains subspace entries, the new subtask does not start with an identical copy of
the attaching task's DU-AL, because the system does not copy the subspace entries to the subtask's
DU-AL.

– A program can pass its work unit's DU-AL to an SRB routine that the program schedules by using one
of the following:

- MODE=FULLXM parameter on the SCHEDULE macro
- ENV=FULLXM parameter on the IEAMSCHD macro

Similarly, a program can pass its work unit's DU-AL to a task that the program attaches by using the
following:

- ALCOPY=YES parameter on the ATTACH(X) macro

The system dispatches the SRB with an identical copy of the scheduling/attaching work unit's DU-AL,
minus any subspace entries, which are not copied. The new work unit (once it is dispatched) may add
and delete entries on its DU-AL but must not delete the entries present on the DU-AL when it was
initially dispatched.

If the new work unit deletes initially-present access list entries, message IEF356I may be issued
during job termination:

- IEF356I ADDRESS SPACE UNAVAILABLE DUE TO CROSS MEMORY BIND

Chapter 5. Using access registers 99

– A DU-AL can have up to 509 entries.
– A program can add more than one entry to its DU-AL for the same data space.

• The PASN-AL has the following characteristics:

– Every address space has its own PASN-AL. The system initializes the PASN-AL to contain entries for
existing SCOPE=COMMON data spaces.

– Supervisor state programs and programs in PSW key 0 - 7 running with this address space as the
primary address space can add and delete entries on the PASN-AL.

– Problem state programs with PSW key 8 - F can add an entry to the PASN-AL for a SCOPE=SINGLE
data space.

– All programs running with this address space as the primary address space can access address/data
spaces through the PASN-AL.

– The PASN-AL is useful for cross memory service providers.
– A PASN-AL can have up to 510 entries, some of which are reserved for SCOPE=COMMON data

spaces.
– When the job step terminates, the PASN-AL is purged.

Adding and deleting DU-AL and PASN-AL entries for address spaces might require that the program have
special authorization. For more information on this authorization, see “EAX-authority to an address
space” on page 115.

Because access lists belong to work units, you must remember the relationship between the program and
the work unit that represents the program. For simplicity, this section describes access lists as if they
belong to programs. For example, "your program's DU-AL" means "the DU-AL that belongs to the TCB that
represents your program".

A Comparison of a PASN-AL and a DU-AL
Figure 27 on page 101 shows PGM1 that runs in AS1. The figure shows AS1's PASN-AL and PGM1's DU-
AL. PGM1 shares the PASN-AL with other programs that execute in AS1. It does not share its DU-AL with
any other programs. The PASN-AL contains entries to address/data spaces that program(s) placed there.
PGM1 (either problem or supervisor state) has an entry for Space X to its DU-AL and an ALET for Space X.
PGM1 received an ALET for Space Y from a program in supervisor state. Assuming PGM1 has authority to
Space X and Space Y, it has addressability to Space X through its DU-AL and Space Y through its PASN-AL;
it can access data in both Space X and Space Y. Therefore, with one MVC instruction, PGM1 can move data
from a location in Space X to a location in Space Y.

100 z/OS: z/OS MVS Extended Addressability Guide

Figure 27. Comparison of addressability through a PASN-AL and a DU-AL

What happens to a program's PASN-AL and DU-AL at an address space switching operation? When a
program issues a PC instruction that causes the primary address space to change, the system does not
dispatch a new TCB or SRB. The PC routine that gets control runs under the same TCB or SRB as the
program that issued the PC. Therefore, the PC routine keeps the DU-AL that is associated with the original
program. However, the PC routine has the PASN-AL of the new primary address space. This is a different
PASN-AL than the one used by the original program (except for the entries for SCOPE=COMMON data
spaces).

For example, consider PGM1 in Figure 27 on page 101. It has addressability to Space X through TCB A's
DU-AL and Space Y through its PASN-AL. Figure 28 on page 102 shows PGM1 issuing a PC to PGM2 in
another address space. The figure shows how addressability through PASN-ALs and DU-ALs changes over
a space-switching PC instruction. After the PC instruction, the PC routine PGM2 still has addressability to
Space X through TCB A's DU-AL. Because the primary address space has changed, PGM2, however, does
not have addressability to Space Y or Space Z. AS2 has its own PASN-AL, which is available for programs
that have AS2 as their primary address space. PGM1 and PGM2 can access Space W, a SCOPE=COMMON
data space, using the same access list entry token (ALET).

Chapter 5. Using access registers 101

Figure 28. PASN-ALs and DU-ALs at a space switch

Types of access list entries
There are two types of access lists entries for addressability to address spaces. The two types differ from
each other in the amount of authority-checking that the system does when a program in AR mode issues a
data-referencing instruction and the data is in another address space.

An access list entry for an address space is either a public entry or a private entry, and a combination of
both these types can be on the same DU-AL or PASN-AL.

• A program can access the target address space through a public entry if it has (1) the access list entry
that identifies the address space, and (2) the ALET for the entry.

• A program can access the target address space through a private entry if it has (1) an access list entry
that identifies the address space, (2) the ALET for the entry, and (3) the appropriate extended
authorization index (EAX) value.

To be authorized to access the target address space, a program might need a certain EAX value. When it
has that value, it is EAX-authorized to the address space. Establishing this authorization is a complex
programming effort. It is described fully in “EAX-authority to an address space” on page 115.

It is enough at this point to know that:

• Public entries allow any program that has the ALET to use the target address space.
• Private entries can prevent a program from accessing data in an address space.
• Data spaces are accessed only through public entries.

102 z/OS: z/OS MVS Extended Addressability Guide

Special ALET values
Each program is provided with three ALETs that allow the program to access its primary, secondary, and
home address spaces. You do not need to add an entry to an access list before you use these special
ALETs.

Figure 29 on page 103 describes the ALETs that have values of zero, one, and two, and the address
spaces they identify.

Figure 29. Special ALET values

The three ALETs and examples of their use are:

• An ALET of zero designates the primary address space.

Some MVS macros require that the issuers have control parameter lists in the primary address space.
Use the ALET with the value "0" in the AR that accompanies the GPR containing the address of the
parameter list. “Loading the Value of Zero into an AR” on page 104 shows several ways of loading an
ALET with the value "0" into an AR.

• An ALET of one designates the secondary address space.

Programs that are entered through a space-switching PC can reference their caller's parameters (those
that reside in the caller's address space) through an ALET of one. For example, instead of using the
MVCP and MVCS instructions to move data between primary and secondary, a program can use the MVC
instruction and load values of zero (for the primary) and one (for the secondary) in the ARs that are
associated with the base registers that the instruction uses. The MVC instruction moves data only
between storage areas with appropriate storage keys.

• An ALET of two designates the home address space.

An ALET of two provides easy access to the home address space while the program is running in AR
mode.

Note: Do not use an ALET of two in a disabled interrupt exit (DIE) routine.

Except for these three special ALET values, a program should never depend on the value of an ALET.

Special ALET Values at a Space Switch
The address space referenced by an ALET of zero changes as the primary address space changes. When a
space-switching PC instruction, defined with SASN=OLD, makes a different address space the primary
address space, an ALET of zero references the new primary address space. If the PC routine was defined
with SASN=NEW, then an ALET of zero and an ALET of one both reference the same address space after a
space switch.

The change in the meaning of an ALET of zero and one is important when your program issues a space-
switching PC instruction. If you pass an ALET of zero to the routine in the target address space, the zero
now refers to that address space. If the parameter is in the address space that the program switched from
and the PC was defined SASN=OLD (or used the default), your program must change the value of the ALET
from zero to one. An example of this change is in “Example of using TESTART” on page 121.

Chapter 5. Using access registers 103

The change in the meaning of an ALET of zero and one can also be important when your program issues a
space-switching PC instruction followed by a non-space-switching PC instruction. For example, if your
program issues a PC from address space A to address space B:

• The home address space is A.
• The primary address space is B.
• The secondary address space is A.

If your program then issues a non-space-switching PC instruction within address space B:

• The home address space is still A.
• The primary address space is still B.
• The secondary address space is now B.

When you use nested PC routines (one PC routine invokes another PC routine, and that PC routine invokes
yet another PC routine, and so on), using the special ALET values is not sufficient to maintain
addressability to any address space other than the current primary and secondary address spaces. If you
use nested PC routines, use the ALESERV macro to add entries to the DU-AL and pass ALET-qualified
addresses. You can use the ALESERV macro with the ADDPASN parameter to add the current primary
address space to the DU-AL.

After a program issues a SSAR instruction, an ALET of one references the new secondary address space.

The meaning of the ALET with the value of two (for the home address space) does not change at a space
switch.

Loading the Value of Zero into an AR
When the code you are writing is in AR mode, you must be very conscious of the contents of the ARs. For
instructions that reference data, the ARs must always contain the ALET that identifies the address/data
space that contains the data. Therefore, even when the data is in the primary address space, the AR that
accompanies the GPR that has the address of the data must contain the value "0".

The following examples show several ways of placing the value "0" in an AR.

Example 1 Set AR 5 to value of zero, when GPR 5 can be changed.

 SLR 5,5 SET GPR 5 TO ZERO
 SAR 5,5 LOAD GPR 5 INTO AR 5

Example 2 Set AR 5 to value of zero, without changing value in GPR 5.

 LAM 5,5,=F'0' LOAD AR 5 WITH A VALUE OF ZERO

Another way of doing this is the following:

 LAM 5,5,ZERO
 .
ZERO DC F'0'

Example 3 Set AR 5 to value of zero, when AR 12 is already 0.

 CPYA 5,12 COPY AR 12 INTO AR 5

Example 4 Set AR 12 to zero and set GPR 12 to the address contained in GPR 15. This code is useful to
establish a program's base register GPR and AR from an entry point address contained in register 15. The
example assumes that GPR 15 contains the entry point address of the program, PGMA.

 LAE 12,0(15,0) ESTABLISH PROGRAM'S BASE REGISTER
 USING PGMA,12

Another way to establish AR/GPR module addressability through register 12 is as follows:

104 z/OS: z/OS MVS Extended Addressability Guide

 SLR 12,12
 SAR 12,12
 BASR 12,0
 USING *,12

Example 5Set AR 5 and GPR 5 to zero.

 LAE 5,0(0,0) Set GPR and AR 5 to zero

The ALESERV macro
Use the ALESERV macro to set up addressability to address/data spaces. Table 11 on page 105 lists some
of the functions of the macro, the parameter that provides the function, and the section where the
function is described.

Table 11. Functions of the ALESERV Macro

To do the following: Use this
parameter:

Described in this section:

Add an entry to an access list ADD “Adding an entry to an access list” on
page 106

Delete an entry from an access list. DELETE “Deleting an entry from an access list”
on page 113

Add a public entry for the primary
address space to a DU-AL.

ADDPASN “Adding an Entry for the Primary
Address Space to the DU-AL” on page
112

Obtain the STOKEN of the current home
address space.

EXTRACTH “Procedures for establishing
addressability to an address space” on
page 118

Obtain the STOKEN of an address/data
space, given the ALET.

EXTRACT “Obtaining and passing ALETs and
STOKENs” on page 108

Find an ALET on an access list, given the
STOKEN.

SEARCH “Adding an entry to an access list” on
page 106

You can also find examples of the ALESERV macro in Chapter 6, “Creating and using data spaces,” on page
127.

Setting up addressability to an address/data space
Before your program can use ARs to reference data in an address/data space, it must establish a
connection to the address/data space. The important facts to remember about setting up an environment
in which your program can use ARs follows:

• Establishing addressability to an address/data space means your program must:

– Have authority to access data in the address/data space
– Have an access list entry that points to the address/data space
– Have the ALET that indexes to the entry

This section describes these actions and gives some examples. The first item in the list, having authority
to access data in the address/data space, depends on whether the entry is for a data space or an address
space.

• Authority to add an entry for a data space follows certain rules that are summarized in Table 13 on page
132. This table tells what problem state and supervisor state or PSW key 0-7 programs can do with data
spaces.

Chapter 5. Using access registers 105

• Authority to add an entry for an address space is determined by whether you require that the system
check the EAX value of the program when the program issues an ALESERV ADD macro. CHKEAX=YES
asks the system to make sure the program has the appropriate EAX value before executing the macro.
CHKEAX=NO tells the system not to check the EAX value of the program. EAX-authority is described in
“EAX-authority to an address space” on page 115. Only programs in supervisor state or PSW key 0 - 7
can use CHKEAX=NO. If they have EAX-authorization, problem state programs with PSW key 8 - F can
add entries for address spaces to their access lists.

Adding an entry to an access list
The ALESERV ADD macro adds an entry to the access list. Two parameters are required: STOKEN, an input
parameter, and ALET, an output parameter.

• STOKEN — the eight-byte STOKEN of the address/data space represented by the entry. You might have
received the STOKEN from another program, or from DSPSERV CREATE, ALESERV EXTRACTH, or ASCRE.

• ALET — index to the entry that ALESERV added to the access list. The system returns this value at the
address you specify on the ALET parameter.

Two optional parameters, AL and ACCESS, allow you to limit access to an address/data space:

• AL=WORKUNIT or PASN

AL specifies the access list, the DU-AL (WORKUNIT parameter) or the PASN-AL (PASN parameter), to
which the ALESERV service is to add the entry. The default is WORKUNIT.

Use AL=WORKUNIT if you want to limit the sharing of the address/data space to programs running
under the owning work unit. Use AL=PASN if you want other programs running in the primary address
space to have access to the address/data space, or if you are adding an entry for a SCOPE=COMMON
data space.

• ACCESS=PUBLIC or PRIVATE

ACCESS specifies the type of entry, public or private, that the system places on the access list. The
default is PUBLIC. Access list entries for data spaces are always PUBLIC.

Later in this section, you will learn about the EAX-authority that the ACCESS=PRIVATE parameter
imposes on the accessing of data in an address space.

The ALESERV ADD process described in this section applies to the data spaces called SCOPE=SINGLE and
SCOPE=ALL. For SCOPE=COMMON data spaces, ALESERV ADD adds an entry to all PASN-ALs. “Creating
and using SCOPE=COMMON data spaces” on page 145 describes the ALESERV ADD process for these
data spaces.

The ALESERV ADDPASN macro adds to the DU-AL an entry for the primary address space. An application
would use this macro if its programs run in many address spaces.

ALESERV ADD and ALESERV ADDPASN are the only ways to add an entry to an access list. For examples
of adding entries to the DU-AL and PASN-AL, see:

• “Example of Adding an Access List Entry for a Data Space” on page 107
• “Examples of establishing addressability to data spaces” on page 108
• “Example of adding an access list entry for an address space” on page 107
• “Adding an Entry for the Primary Address Space to the DU-AL” on page 112.

The example of adding an entry for an address space specifies that the system is not to check for EAX-
authority.

If you want to know whether an address/data space already has an entry on an access list, use ALESERV
SEARCH. As input to the macro, give the STOKEN of the space, which access list is to be searched, and the
location in the list where you want the system to begin to search. If the entry is on the list, the system
returns the ALET. If the entry is not on the list, the system returns a code in register 15.

106 z/OS: z/OS MVS Extended Addressability Guide

Example of Adding an Access List Entry for a Data Space
The following code uses DSPSERV to create a data space named TEMP. The system returns the STOKEN of
the data space in DSPCSTKN and the origin of the data space in DSPCORG. The ALESERV ADD macro adds
an entry to a DU-AL and returns the ALET in DSPCALET. The program then establishes addressability to
the data space by loading the ALET into AR 2 and the origin of the data space into GPR 2.

 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
 BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
 ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
 .
* ESTABLISH ADDRESSABILITY TO THE DATA SPACE
 .
 LAM 2,2,DSPCALET LOAD ALET OF SPACE INTO AR2
 L 2,DSPCORG LOAD ORIGIN OF SPACE INTO GR2
 USING DSPCMAP,2 INFORM ASSEMBLER
 .
 L 5,DSPWRD1 GET FIRST WORD FROM DATA SPACE
 USES AR/GPR 2 TO MAKE THE REFERENCE
 .
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCNAME DC CL8'TEMP ' DATA SPACE NAME
DSPBLCKS DC F'1000' DATA SPACE SIZE (IN 4K BLOCKS)
DSPCMAP DSECT DATA SPACE STORAGE MAPPING
DSPWRD1 DS F WORD 1
DSPWRD2 DS F WORD 2
DSPWRD3 DS F WORD 3

Using the DSECT that the program established, the program can easily manipulate data in the data space.

A more complete example of manipulating data within this data space appears in “Example of creating,
using, and deleting a data space” on page 144.

Example of adding an access list entry for an address space
One way of protecting access to an address space is to require that the system check that the EAX of a
program is a certain value. The two times that the system might check this EAX value are when your
program tries to

• Add an entry to an access list for the address space
• Access the address space through that access list entry.

If the address space does not need the protection that the EAX offers, a program in supervisor state or
PSW key 0 - 7 can use the CHKEAX and ACCESS parameters on ALESERV ADD when it adds the address
space entry to the access list:

• CHKEAX=NO tells the system not to check the EAX value of the program that is adding the entry to the
access list.

• ACCESS=PUBLIC tells the system not to check the EAX value of a program trying to access data in the
address space.

In the following example, a supervisor state or PSW key 0 - 7 program adds an entry to its DU-AL. It asks
the system not to check any EAX values, either when it adds the entry or when any instruction accesses
data in the address space. The program can have any EAX, including 0. The address space (represented
by the STOKEN at location ASTOKENN) is non-swappable. It could have been created by the ASCRE
service, which returns a STOKEN at the time of the address space creation.

 ALESERV ADD,ALET=ASALET,STOKEN=ASTOKENN,CHKEAX=NO, X
 AL=WORKUNIT,ACCESS=PUBLIC
 .
* PROGRAMS CAN NOW ACCESS THE ADDRESS SPACE USING THE ALET, ASALET
 .
ASALET DS F ALET FOR MVS ADDRESS SPACE
ASTOKENN DS CL8 STOKEN FOR MVS ADDRESS SPACE

Note that, by using the ALESERV defaults, the program could have issued the following:

Chapter 5. Using access registers 107

 ALESERV ADD,ALET=ASALET,STOKEN=ASTOKENN,CHKEAX=NO

Obtaining and passing ALETs and STOKENs
A program can obtain an ALET through the ALESERV macro with the ADD and ADDPASN parameters. Or, it
can receive an ALET from another program.

A program can obtain a STOKEN through DSPSERV CREATE, ALESERV EXTRACT, or ALESERV EXTRACTH.
Or, it can receive a STOKEN from another program.

A program can pass an ALET or a STOKEN to another program in the same way it passes other parameter
data. MVS has certain rules for passing ALETs, as described in “Rules for passing ALETs” on page 108. It
does not have rules for passing STOKENs. However, the ALESERV service determines whether the
receiving program can add an entry for the address/data space that a STOKEN represents.

Rules for passing ALETs
To provide addressability to an address/data space, a program might pass an ALET to another program.
MVS allows your program to pass the following ALETs:

• An ALET of zero.
• An ALET that indexes into a public entry on a DU-AL, if the program that passes the ALET and the

program that receives the ALET run under the same TCB or SRB (that is, they have the same DU-AL).
• An ALET that indexes into the PASN-AL, if the program that passes the ALET and the program that

receives the ALET run in the same address space (that is, they have the same PASN-AL).
• An ALET that indexes into the PASN-AL for a SCOPE=COMMON data space.

Do not pass the following ALETs:

• An ALET of one across a space-switching PC linkage. (A space-switching PC instruction changes the
program's secondary address space.)

• An ALET that indexes an entry on the PASN-AL, passed to a program in another address space, unless
the ALET is for a SCOPE=COMMON data space. Each address space has its own PASN-AL.

• An ALET that indexes an entry on another task's DU-AL. (Each task has its own DU-AL). However, your
program can pass such an ALET to a subtask if the subtask was created using the ALCOPY parameter on
the ATTACH or ATTACHX macro; the ALET must have been valid at the time of the attach.

• An ALET that indexes a private entry, passed across an interface (through a PC instruction) that changes
the EAX. (This rule is described in “EAX-authority to an address space” on page 115.)

“Examples of establishing addressability to data spaces” on page 108 has several examples of programs
passing ALETs.

Examples of establishing addressability to data spaces
The best way to describe how to add an access list entry is through examples. This section contains three
examples:

• Example 1 sets up addressability to a data space, using the DU-AL. The example continues with a
program passing a STOKEN to another program so that both programs can access the data space.

• Example 2 sets up addressability to a data space, using the PASN-AL. This example continues with a
program passing an ALET to another program so that both programs can access the data space.

• Example 3 shows how to set up addressability so that two programs in different address spaces can
access the same data space.

In these examples, programs share their data spaces with programs running under work units other than
their own.

The examples all involve adding entries for data spaces. The reason the examples are not of address
spaces is because of the additional decision that you have to make about EAX-authority when you add

108 z/OS: z/OS MVS Extended Addressability Guide

entries for address spaces to access lists. Getting EAX-authority is described in “EAX-authority to an
address space” on page 115. Turn to that section after you understand how to add entries for data
spaces.

Example 1: Getting Addressability Through a DU-AL:

Consider that a supervisor state program named PGM1 created a data space and received a STOKEN from
DSPSERV. To add the entry to the DU-AL, PGM1 issues:

 ALESERV ADD,STOKEN=STOKDS1,ALET=ALETDS1,AL=WORKUNIT
 .
ALETDS1 DS F
STOKDS1 DS CL8

ALESERV accepts the STOKEN, adds an entry to the DU-AL and returns an ALET at location ALETDS1.
Figure 30 on page 109 shows PGM1 with the entry for DS1 on its DU-AL. It shows the STOKEN and the
ALET.

Figure 30. Example 1: Adding an entry to a DU-AL

Consider that PGM2, also in supervisor state, and running under a TCB different from PGM1's TCB, would
also like to have access to DS1. PGM1 passes PGM2 the STOKEN for DS1. PGM2 then uses the ALESERV
ADD macro to obtain the ALET and add the entry. Figure 31 on page 109 shows PGM2 with addressability
to DS1.

Figure 31. Example 1: Sharing a data space through DU-ALs

Note: A problem state program with PSW key 8 - F can add entries to an access list only for a data space
that the program created or owns.

Example 2: Getting Addressability Through a PASN-AL:

Chapter 5. Using access registers 109

In Figure 32 on page 110, consider that PROG1, adds an entry for a data space to the PASN-AL. PROG1
issues the following macro:

 ALESERV ADD,STOKEN=STOKDS2,ALET=ALETDS2,AL=PASN
 .
ALETDS2 DS F
STOKDS2 DS CL8

ALESERV accepts the STOKEN, adds an entry to the PASN-AL, and returns an ALET at location ALETDS2.
Figure 32 on page 110 shows PROG1 with the PASN-AL entry for DS2.

Figure 32. Example 2: Adding an entry to a PASN-AL

Note: A problem state program with PSW key 8-F can add entries to the PASN-AL only for the type of data
space called SCOPE=SINGLE.

Consider that PROG2 (either in problem or supervisor state and running under a TCB different from
PROG1's) would like to have access to DS2. In this case, both PROG1 and PROG2, because they run in the
same address space, share the same PASN-AL. PROG2 does not have to add an entry to its PASN-AL; the
entry is already there. PROG1 passes the ALET to PROG2. Figure 33 on page 111 shows that PROG2 has
the ALET for DS2 and, therefore, has addressability to DS2 through its PASN-AL.

110 z/OS: z/OS MVS Extended Addressability Guide

Figure 33. Example 2: Sharing a data space through the PASN-AL

In a similar way, any supervisor state or problem state program that runs in AS1 and has the ALET for DS2
can access DS2.

The SCOPE parameter on DSPSERV determines how the creating program can share the data space. For
more information on the SCOPE parameter, see “Scope=single, scope=all, and scope=common data
spaces” on page 128.

Example 3: Passing ALETs Across Address Spaces:

Referring to Figure 33 on page 111, consider that PROG1 wants to allow a program in another address
space (whose home address space is different from PROG1's) to access data in DS2. Figure 34 on page
112 shows that PROG1 passes the STOKEN for DS2 to PROG2, a supervisor state program in AS2. PROG2
uses the ALESERV macro to add the entry to its DU-AL. PROG2 also could have added the entry to its
PASN-AL.

Chapter 5. Using access registers 111

Figure 34. Example 3: Sharing data spaces between two address spaces

Remember that getting addressability to an address space is similar to getting addressability to a data
space, with one difference: when you attempt to add an entry for an address space to an access list,
ALESERV allows you to require that programs that access the address space through the entry have EAX-
authority to the address space.

Adding an Entry for the Primary Address Space to the DU-AL
A program can use the ADDPASN parameter on ALESERV to add an entry for the primary address space to
the program's DU-AL. For example, consider the setup in Figure 35 on page 112. TCB A represents PGM1
(in the home address space), PGM2 (currently executing in AS2), PGM3, and PGM4. In other words, all the
PC routines shown run under the same TCB with the same DU-AL. PGM3 and PGM4 can use an ALET of 2
to reference the home address space. However, no special ALET exists for PGM3 and PGM4 to reference
AS2.

PGM2, without having EAX-authority to the address space, can issue ALESERV ADDPASN to place an entry
for AS2 on the DU-AL. This action gives PGM3 and PGM4 addressability to AS2, providing the ALETs are
passed to these programs.

Figure 35. Obtaining the ALET for the Primary Address Space

112 z/OS: z/OS MVS Extended Addressability Guide

In the following example, a program adds an entry for the primary address space to the DU-AL as a public
entry.

ADDPASN CSECT
ADDPASN AMODE 31
ADDPASN RMODE ANY
 BAKR 14,0 SAVE CALLER'S STATUS ON STACK
 SAC 512 SWITCH INTO AR MODE
 .
 LAE 12,0 SET BASE REGISTER AR
 BASR 12,0 SET BASE REGISTER GR
 USING *,12
 SYSSTATE ASCENV=AR
 .
* ADD PROGRAM'S PASN AS PUBLIC TO THE PROGRAM'S DU-AL
 ALESERV ADDPASN,ALET=PGMALET
 .
* BODY OF PROGRAM
 .
* REMOVE PROGRAM'S PASN FROM DU-AL
 ALESERV DELETE,ALET=PGMALET REMOVE PASN FROM DU-AL
 .
 PR RETURN TO CALLER
 .
PGMALET DC F ALET FOR PROGRAM'S PASN
 END

Using the ALET for the Home Address Space
If a program is part of a subsystem that offers services to many users, it might want to set up
addressability for programs executing in other address spaces to reference data in its address space.
Figure 36 on page 113 shows a subsystem's home address space as AS1. Setting up addressability to the
home address space requires no action. The PC routines that run in address spaces AS2, AS3, and AS4 all
run under the same TCB, that of PGM1. Addressability to AS1 is through the special ALET of two. PGM2,
PGM3, and PGM4 can place the value 2 in an AR of a AR/GPR pair to reference data in the home address
space.

Figure 36. Using the ALET for the Home Address Space

Deleting an entry from an access list
Use ALESERV DELETE to delete an entry on an access list. The ALET parameter identifies the specific
entry.

Access lists have a limited size; the DU-AL has 509 entries and the PASN-AL has 510 entries. Therefore, it
is a good programming practice to delete entries from an access list when the entries are no longer
needed. The specific rules are:

• If a program needs an entry for a short period of time, it should delete the entry when it no longer needs
the entry.

Chapter 5. Using access registers 113

• If a program adds an entry and uses that entry during execution, the program does not need to delete
the entry; the system deletes the entry when the task terminates.

• If a supervisor state or PSW key 0 - 7 program does not want the system to check the EAX-authority of
the program when it deletes an entry for an address space, it should use CHKEAX=NO on ALESERV
DELETE. CHKEAX=YES is the default.

• Once the entry is deleted, the system can immediately reuse the ALET.

Programs that share data spaces with other programs have another action to take when they delete an
entry from an access list. They should notify the other programs that the entry is no longer connecting the
ALET to the data space. Otherwise, those programs might continue to use an ALET for the deleted entry.
See “ALET reuse by the system” on page 114 for more information.

Example of deleting a data space entry from an access list
The following example deletes the entry for the ALET at location DSPCALET. The example also includes
the deletion of the data space with a STOKEN at location DSPCSTKN.

 ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
 DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
 .
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET

If the program does not delete an entry, the entry remains on the access list until the work unit
terminates. At that time, the system frees the access list entry.

Example of deleting an address space entry from an access list
The following example deletes the entry that was added in the example in “Example of adding an access
list entry for an address space” on page 107.

* .
 ALESERV DELETE,ALET=ASALET,CHKEAX=NO
 .
ASALET DS F ALET FOR MVS ADDRESS SPACE

When ALESERV ADD added the entry to the access list, the system did not check the EAX-authority of the
program; in this example, the system does not check the EAX-authority either.

ALET reuse by the system
ALETs are not unique; they index a specific entry on a PASN-AL or DU-AL, connecting a program to an
address/data space. When ALESERV DELETE removes an access list entry, the connection between the
ALET and the space no longer exists. The access list entry and its corresponding ALET are available for the
system to use again. The breaking of the connection and the reuse of the ALET mean that a program using
the old ALET:

• Does not gain access to the space
• Might gain access to another space

The system does not check and notify programs about the reuse of an ALET. Therefore, when a
program uses ALESERV DELETE to delete an access list entry, the program must ensure that other
programs do not use the old ALET.

Consider a program, PROGA, deleting the data space, DSA, and removing the entry from the PASN-AL. The
ALET for that entry, ALETA, ceases to have meaning in relationship to DSA. The system, free now to reuse
that ALET, assigns ALETA to a new data space, DSB. Suppose other programs in the address space were
also using ALETA to access DSA. If PROGA does not tell those programs about the removal of ALETA,
those programs will mistakenly access DSB, while intending to access DSA.

This response to the system's removal of the entry and reuse of an ALET is similar to the work a program
does after it frees address space storage that it obtained and shared with other programs. When that area

114 z/OS: z/OS MVS Extended Addressability Guide

of storage is freed, MVS reuses the area to satisfy a later request for storage. When an access list entry is
freed, MVS reuses that ALET to satisfy a later ALESERV ADD request.

EAX-authority to an address space
MVS uses EAXs to control access to address spaces through ARs in a way similar to the way it uses AXs to
check if a program has the authority to issue the SSAR instruction with an address space as the target of
the SSAR instruction. To be EAX-authorized to the target address space, a program's EAX, when used as
an index into the address space's authority table, must point to an entry that indicates SSAR authority. An
AX value is related to an address space; all programs running in an address space have the same AX value
at any given time. An EAX value is related to a PC routine. The caller has that EAX value only while the PC
routine runs. When the PC returns control, the EAX value returns to what it was before the call.

In general, programs start out with an EAX of zero. An EAX of zero is an unauthorized EAX value that can
prevent the program from adding or deleting entries for address spaces on its access lists and from
accessing data in address spaces other than the one it is running in.

Earlier in the section the two types of access list entries were defined. The definitions are repeated here.

An access list entry for an address space is either a public entry or a private entry, and a combination of
both these types can be on the same DU-AL or PASN-AL. The two types differ from each other by the kind
of checking the system does when a program tries to use the entry to access an address space.

• A program can access the target address space through a public entry if it has (1) the ALET for the entry
and (2) the access list entry that identifies the address space.

• A program can access the target address space through a private entry if it has (1) the ALET for the
entry, (2) an access list entry that identifies the address space and, (3) the appropriate EAX value.

The ACCESS and CHKEAX parameters on ALESERV determine when the system checks the EAX-authority
of the program.

• CHKEAX=YES tells the system to check the EAX of the program at the time the program uses the
ALESERV macro to add the entry for the address space or delete the entry from the access list.

• ACCESS=PRIVATE tells the system to check the EAX of the program that is attempting to access the
target address space through the entry.

It is important that you understand the relationship between the two parameters on ALESERV that
determine whether the system checks the EAX value against the SSAR authority in the target address
space's authority table. Table 12 on page 115 describes the relationship.

Table 12. Relationship between the CHKEAX and ACCESS parameters on ALESERV

CHKEAX= ACCESS= EAX-Checking That Results

YES PUBLIC The caller must have EAX-authority to add the entry, but no
program needs EAX-authority to access the address space
through the entry.

YES PRIVATE The caller must have EAX-authority to add the entry for the
address space, and all programs that access the address
space through that entry must also have EAX-authority.

NO PUBLIC The caller does not need EAX-authority to add the entry, and
programs that access the address space through the entry do
not need EAX-authority. See “Example of adding an access
list entry for an address space” on page 107 for an example.

NO PRIVATE The caller does not need EAX-authority to add the entry, but
programs that access the address space through the entry
need EAX-authority.

Chapter 5. Using access registers 115

Once a program places a private entry on the access list (placing the EAX restriction on the users of the
address space), a supervisor state or PKM 0 - 7 program running in the address space can use the ATSET
macro to turn SSAR authority off. This action means that an EAX, when used as an index into that entry in
the authority table, will find SSAR authority turned off. The program with that EAX no longer has EAX-
authority to the address space. It is not possible, however, for a program in the target address space to
prevent a program from using an entry that was added with the CHKEAX=NO and ACCESS=PUBLIC
parameters on ALESERV.

Figure 37 on page 116 gives an example of public and private entries. PGM1 has public entries and
private entries on its DU-AL and its PASN-AL. It has the ALETs that allow it to access AS1 and DS1 through
its PASN-AL and AS2 and AS3 through its DU-AL.

• To add the entries for the three address spaces to an access list, the program might have had to
establish EAX-authority to AS1, AS2, and AS3. A supervisor state or PSW key 0 - 7 program can use
CHKEAX=NO on ALESERV that allows the program to add the entry, requesting that the system not
check its EAX value. Problem programs with PSW key 8 - F must have EAX-authority.

• To add an entry for the data space to an access list, the program has to meet certain MVS criteria, as
described in Table 13 on page 132.

• To access data in AS1 and AS2, the program has to have EAX-authority to those address spaces. To
access data in address spaces that have private entries, the system checks the EAX-authority of the
program to the address space.

• To access data in AS3 or the data space, the program does not need EAX-authority. Entries for data
spaces are public entries. To access data in address spaces that have public entries, the system does
not check the program's EAX-authority.

Figure 37. Difference Between Public and Private Entries

116 z/OS: z/OS MVS Extended Addressability Guide

To delete the entries for the three address spaces, the program might need EAX-authority to the address
spaces. A supervisor state or PSW key 0 - 7 program can use the CHKEAX=YES parameter on the
ALESERV macros to require this system checking. Problem programs must have EAX-authority.

Setting the EAX value
The EAX is an index that is similar to the cross memory authorization index (AX), and is obtained in the
same manner, through the AXRES macro (see z/OS MVS Programming: Authorized Assembler Services
Reference ALE-DYN and “Establishing cross memory communication” on page 31 for more information
about AXRES). Unlike an AX, which is associated with an address space, an EAX is associated with a PC
routine and is available to the programs that call the PC routine.

Figure 38 on page 118 shows the AX value for an address space and the EAX value of a program in
supervisor state or PSW key 0 - 7. Assume that the ALESERV ADD macro included CHKEAX=YES, or the
default, and that the entry for address space AS2 is a private entry, ACCESS=PRIVATE.

• The AX value of AS1 indexes into the AT of AS2. The system checks this value on PT or SSAR
instructions to find out if a caller in AS1 has the authority to (1) PT to AS2 or (2) set AS2 as its secondary
address space. If the entry in AS2's authority table has the PT authority, PGM1 can PT to AS2; if SSAR
authority is on, PGM1 can set AS2 as its secondary address space.

• The EAX value of PCRTN also indexes into the AT of AS2. The system checks this value when PCRTN
uses the ALESERV ADD macro with the CHKEAX=YES option to add an access list entry for the address
space to either its DU-AL or its PASN-AL. The system also checks this value when the program tries to
reference AS2 through the entry (the entry is a private entry). Because the entry in AS2's authority table
indicates SSAR authority, the caller of PCRTN is considered to be EAX-authorized to AS2.

In Figure 38 on page 118, the value of the AX and EAX is 4. The value 4 is an arbitrary value chosen for
illustrative purposes. You obtain an AX or EAX value from the AXRES macro. The entry that the AX and
EAX indexes into indicates SSAR authority is on, which means that PGM1 is EAX-authorized to the address
space.

The example also shows the difference between cross memory data movement with a move to primary
(MVCP) and a data movement performed through ARs and the MVC instruction. PGM1 uses the SSAR
instruction to establish AS2 as the secondary address space, then it uses MVCP to move data from AS2 to
AS1. PCRTN issues the SAC instruction to change the ASC mode to AR mode. Having loaded the
addresses and ALETs into the AR/GPR correctly, PCRTN uses MVC to move data from AS2 to AS1.

Note:

1. If PCRTN had used CHKEAX=NO on ALESERV, the system would not have checked the EAX.
2. If PCRTN had used ACCESS=PUBLIC on ALESERV, the system would not have checked the EAX value

when programs referenced that address space through that access list entry.
3. Consider the storage key and data access and integrity issues when you add entries for address

spaces. Most problem state programs execute with a PSW key of 8, which allows them to use public
access list entries to modify data in storage that has storage key 8.

4. The EAX value can be the same as the AX value.

In some cases, supervisor state or PSW key 0 - 7 programs in the target address space can change the
EAX checking that the system does for programs accessing data in their address space. For example, in
Figure 38 on page 118, a program in AS2 could use the ATSET macro to change SSAR authority in the fifth
entry in the authority table. Because the entry was added as CHKEAX=YES and ACCESS=PRIVATE, if the
program turned SSAR authority off, PCRTN could no longer access the address space through that access
list entry. If the entry had been added CHKEAX=NO and ACCESS=PUBLIC, programs in the target address
space would be unable to prevent access through those access list entries.

Chapter 5. Using access registers 117

Figure 38. Comparison of an AX and an EAX

Procedures for establishing addressability to an address space
To establish the environment in which a program can add an access list entry for an address space and
access data through private entries, programs in the accessing address space and the target address
space must:

• Place the entry in an access list
• Obtain the ALET for the entry
• Issue a stacking PC; programs must define the stacking PC through the ETDEF macro, and use the EAX

parameter on ETDEF to specify the appropriate EAX value.

Issuing the stacking PC means that you must establish some of the same linkages that are described in
Chapter 3, “Synchronous cross memory communication,” on page 19 and have a program in the target
address space help in establishing those linkages.

118 z/OS: z/OS MVS Extended Addressability Guide

Remember that the EAX-authority to an address space is the same as the SSAR authority. In other words,
authority for an address space to issue the SSAR instruction for the target address space is the same as
the authority to add an entry for an address space to an access list or access data in that address space
through ARs. The same ATSET macro that sets the PT and SSAR authority in the target address space's
authority table also sets authority table bits that correspond to the EAX.

As you read the following procedures for a program in the accessing address space and a program in the
target address space, keep three facts in mind:

• A problem state program with PSW key 8 - F must be EAX-authorized to the target address space before
it can issue the ALESERV ADD or ALESERV DELETE macros for that address space. A supervisor state or
PSW key 0 - 7 program might require EAX-authorization.

• The target address space must give explicit permission to the accessing program.
• The only way for a program in the accessing address space to get a nonzero EAX is to issue a stacking

PC instruction, which establishes the appropriate EAX.

Procedures for the accessing address space
The procedures for the program in the accessing address space include writing a stacking PC routine
(Step 1), establishing the environment in which it can be called (Steps 2 through 6), and invoking the PC
routine (Step 7). The procedures are as follows:

1. Write a PC routine that will run in the accessing address space.

The PC routine contains the ALESERV ADD request for an address space and any code that
manipulates data in the target address space. (See Step 7.)

2. Issue the AXRES macro to reserve an AX to be placed in the entry table descriptor (ETD) as the EAX
value of the PC routine.

3. Place the AX in a common area so that a program in the target address space can obtain it and set its
AT accordingly.

4. Issue the ETDEF macro to build the PC routine's ETD.

On the EAX parameter, code the address of the AX value that is to be the EAX of the PC routine.
5. Establish the cross memory structures in the accessing address space so that the stacking PC routine

can be called.

• Issue the ETCRE macro to build the entry table.
• Issue the LXRES macro to reserve a linkage index (LX) in the linkage table.
• Issue the ETCON macro to connect the entry table to the linkage table entry.

6. Wait (using the WAIT macro) for the program in the target address space to set its authority table
entry.

The program in the target address space will accept the EAX value and set the authority table
accordingly. In this way, the target address space "gives permission" to the accessing program to
reference data in the address space.

7. Invoke the stacking PC routine to gain EAX-authorization.

While the PC routine is running, the caller has the EAX value that the EAX parameter on ETDEF defined.
The PC routine can perform the following actions:

• Issue the ALESERV ADD macro to add an entry for the target address space to the access list.
• Manipulate data in the target address space, if needed.

If the routine uses the ALET that ALESERV returns in accessing or manipulating data in the target
address space, the PC routine must be in AR mode (either through the SAC instruction or through the
AR parameter on the ETDEF macro that defined the PC routine).

• Use the PR instruction to return to the caller and restore the EAX value that existed before the PC
routine ran.

Chapter 5. Using access registers 119

Procedures for the target address space
The procedure for a program in the target address space is as follows:

1. Wait (using the WAIT macro) for the accessing address space to place the AX (to be used as the EAX)
into the common area.

2. Change to supervisor state to invoke the cross memory macros.
3. Retrieve the AX value that the accessing address space passed and issue the ATSET macro to set the

authority table.
4. Notify (using the POST macro) the accessing address space that the authority table is set.

This action tells the accessing address space that a program can successfully issue the ALESERV
macro.

Changing an EAX value
Two instructions can change a program's EAX value:

• The PC instruction, providing the value on the EAX parameter changes the EAX value for the caller
• The PR instruction, which restores the EAX value to the value that the caller had before it entered the PC

routine.

The program has that EAX value only while the PC routine is running.

Freeing an EAX value
When you no longer need an EAX value, you should use the AXFRE macro to return the EAX to the system.
Before you issue AXFRE, make sure that the EAXs being returned are no longer being used by any address
space, or your program is abnormally terminated.

Checking the authority of callers
A PC routine might want to check the validity of the ALETs that a calling program passed and also check
the EAX-authority of the calling program. Making such checks is a good programming practice for PC
routines that change the EAX value and space-switching PC routines.

The TESTART macro tests the validity of an ALET and the EAX-authority of the caller to access the
address/data space that the ALET represents. The macro returns a code that identifies whether the ALET
is:

• 0
• A valid ALET for the DU-AL
• A valid ALET for the PASN-AL
• 1
• Invalid

Input to TESTART is the ALET that it received and the EAX of the calling program. To get the EAX, a
program can issue the extract stacked state (ESTA) instruction to retrieve the EAX from the current
linkage stack entry. The first information field in the linkage stack entry contains the EAX of the caller. (If
the EAX is 0, the ALET is for a public entry.) See “Extract stacked state (ESTA) instruction” on page 15 for
a description of ESTA instruction, an example of its use, and the format of the information field. Figure 39
on page 121 shows an example of PGM1 (in problem state) requesting service from PCRTN (in supervisor
state).

120 z/OS: z/OS MVS Extended Addressability Guide

Figure 39. Checking the Validity of an ALET

Having received the ALET from another program, PGM1 passes the ALET to PCRTN for PCRTN's use.
Before it uses the ALET, PCRTN issues the TESTART macro to test its validity.

To get the EAX value of the caller, PCRTN issues the ESTA instruction. PCRTN determines which of the
return codes is acceptable for its purposes. For example, it might accept only ALETs that index public
entries on a DU-AL.

Example of using TESTART
In the following example, the stacking PC routine validates the caller's ALET to reduce the probability of
taking a program check referencing storage. Only ALETs of 0 or ALETs on the DU-AL are valid for a space-
switch PC routine. Because the primary and secondary address spaces have changed at the space-switch,
an ALET of 1 or an ALET on the PASN-AL are not valid.

The following code checks for ALETs of 0 and 1. It then changes the ALET of 0 to 1 to reflect the change in
primary and secondary address space at the space switch.

 SLR 5,5 SELECT ESTA CODE FOR DESIRED INFORMATION
* 0 - PKM / SASN / EAX / PASN
 ESTA 4,5 LOAD INFORMATION INTO GPRs 4 AND 5
* GPR5 NOW CONTAINS EAX AND PASN
 EREG 1,1 GET CALLER'S AR/GPR1 FROM LINKAGE STACK
 .
 TESTART ALET=(1),EAX=(5)
 .
* THESE ARE THE rc=0 - ALET IS 0
* TESTART RETURN rc=4 - ALET IS VALID DU-AL ALET
* CODES. 0 AND 4 rc=8 - ALET IS VALID PASN-AL ALET
* MEANS A GOOD rc=12 - ALET IS 1
* ALET. rc=16 - ALET IS NOT VALID
* rc=20 - UNEXPECTED ERROR
 .
 LA 0,4
 CR 15,0 If RC=4, VALID DU-AL ALET
 BE ALETOK
 LTR 15,15 If RC=0, ALET IS 0 (PRIMARY)
 BNZ BADALET OTHERWISE, ALET IS NOT USEABLE.
 .
 LA 0,1 BECAUSE ALET IS 0, MUST CHANGE IT TO 1
 SAR 1,0 DUE TO THE SPACE-SWITCH
ALETOK EQU *
 MVC PARM,8(1) COPY USER PARAMETERS INTO LOCAL STORAGE

Chapter 5. Using access registers 121

BADALET EQU *
 .
 .
PARM DS CL8 COPY OF USER PARAMETERS
 .

Obtaining storage outside the primary address space
The STORAGE macro allows you to obtain storage in an address space other than the primary address
space. The program must be in primary mode or AR mode and in PSW key 0 - 7 or supervisor state. The
ALET parameter on the STORAGE macro identifies the address space.

The following example shows how a program can obtain storage in another address space, provided it has
the proper authorization. The caller uses ALESERV ADD to obtain an ALET representing the address space
(or uses an ALET with the value 1 or 2) and then STORAGE OBTAIN to obtain storage. The example
assumes that the caller passes the STOKEN of the target address space by a pointer in AR/GPR 1 on entry.
It also assumes that this program has the proper authorization to the target address space.

The program requests one page (4096 bytes) of storage above 16 megabytes in subpool 0 in the target
address space.

STOR2 CSECT
STOR2 AMODE 31
STOR2 RMODE ANY
 .
* ENTRY LINKAGE
 .
 BAKR 14,0 SAVE CALLER'S STATUS ON LINKAGE STACK
 SAC 512 SWITCH INTO AR MODE
 SYSSTATE ASCENV=AR SET GLOBAL BIT INDICATING AR MODE
 LAE 12,0(15,0) ESTABLISH ADDRESSABILITY
 USING STOR2,12
 STORAGE OBTAIN,LENGTH=72 GET STANDARD SAVE AREA
 LAE 13,0(1,0) SET UP SAVE AREA POINTER
 MVC 4(4,13),=C'F1SA' INDICATE IN SAVE AREA THAT CALLER'S
* STATUS IS ON THE LINKAGE STACK
 .
 EREG R1,R1 RESTORE CALLER'S PARAMETER REGISTER
 USING PARMLIST,R1 ESTABLISH ADDRESSABILITY TO
* PARAMETER LIST
 MVC ASTOKEN,CSTOKEN COPY STOKEN INTO LOCAL STORAGE
 DROP R1 DROP BASING REGISTER
 .
* ADD THE ADDRESS SPACE REPRESENTED BY THE TARGET STOKEN TO
* THE DU-AL AS A PUBLIC ENTRY.
 .
 ALESERV ADD,STOKEN=ASTOKEN,AL=WORKUNIT,ACCESS=PUBLIC, X
 ALET=ASALET
 .

* NOW OBTAIN ONE PAGE (4096 BYTES) OF STORAGE IN SUBPOOL 0 IN THAT
* ADDRESS SPACE, ABOVE 16MB.
 .
 STORAGE OBTAIN,LENGTH=4096,SP=0,ALET=ASALET,LOC=ANY,ADDR=ASADDR
 .

* SET UP REGISTERS TO POINT AT THE STORAGE JUST OBTAINED.
 .
 L R4,ASADDR LOAD ADDRESS OF STORAGE INTO GPR4
 L R3,ASALET LOAD ALET OF STORAGE INTO GPR3
 SAR R4,R3 LOAD ALET INTO AR4
 .
* AR/GPR 4 CAN NOW BE USED TO REFERENCE THE STORAGE IN
* THE OTHER ADDRESS SPACE.
 .
 USING ARSTOR,R4
 MVC FIELD1,DATA1 MOVE DATA INTO THE ADDRESS SPACE
 MVC FIELD2,DATA2
 DROP R4
 .

* RELEASE THE STORAGE PREVIOUSLY OBTAINED.
 .

122 z/OS: z/OS MVS Extended Addressability Guide

 STORAGE RELEASE,LENGTH=4096,ALET=ASALET,ADDR=ASADDR,SP=0
 .
* REMOVE THE ENTRY FROM OUR ACCESS LIST
 .
 ALESERV DELETE,ALET=ASALET
 .

* EXIT LINKAGE
 .
 LAE 1,0(13,0) GET ADDRESS OF SAVE AREA
 STORAGE RELEASE,ADDR=(1),LENGTH=72 RELEASE THE SAVE AREA
 SLR 15,15 SET A RETURN CODE OF ZERO
 PR RETURN TO CALLER
 .

* VARIABLES AND REGISTERS
 .
ASTOKEN DS CL8 STOKEN OF ADDRESS SPACE
ASADDR DS F ADDRESS OF STORAGE IN ADDRESS SPACE
ASALET DS F ALET REPRESENTING ADDRESS SPACE
DATA1 DC CL4'BLUE'
DATA2 DC CL4'PINK'
 LTORG
 .
R1 EQU 1
R3 EQU 3
R4 EQU 4
 .

* PARAMETER LIST MAPPING
 .
PARMLIST DSECT
CSTOKEN DS CL8 USER'S STOKEN
 .
* MAPPING OF STORAGE IN TARGET ADDRESS SPACE
 .
ARSTOR DSECT
FIELD1 DS CL4 Area 1
FIELD2 DS CL4 Area 2
 END

What access lists can an asynchronous exit routine use?
If your program issues a macro that causes an asynchronous exit routine to run, that routine cannot use
the DU-AL associated with your program. The system gives the routine an empty DU-AL for its own use
and an EAX value of zero. The routine can use the PASN-AL associated with the primary address space.

Such asynchronous exit routines include those caused by the ATTACH macro with the ETXR parameter,
the STIMER macro with the EXIT parameter, the SCHEDXIT macro, and some attention and I/O exit
routines.

When control returns to your program from an asynchronous exit routine, the system deletes the DU-AL
associated with the asynchronous routine and restores your program's DU-AL and EAX value.

Issuing MVS macros in AR mode
Many MVS macro services support callers in both primary and AR modes. When the caller is in AR mode,
the macro service must generate larger parameter lists at assembly time. The increased size of the list
reflects the addition of ALET-qualified addresses. At assembly time, a macro service that needs to know
whether a caller is in AR mode checks the global bit that SYSSTATE ASCENV=AR sets. Therefore, it is good
programming practice to issue SYSSTATE ASCENV=AR when a program changes to AR mode and issues
macros while in that mode. Then, when the program returns to primary mode, issue SYSSTATE ASCENV=P
to reset the global bit.

When your program is in AR mode, keep in mind these two facts:

• Before you use a macro in AR mode, check the description of the macro in one of the following:

– z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

Chapter 5. Using access registers 123

– z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
– z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
– z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO
– z/OS MVS Programming: Assembler Services Reference ABE-HSP
– z/OS MVS Programming: Assembler Services Reference IAR-XCT.

If the description of the macro does not specifically state that the macro supports callers in AR mode,
use the SAC instruction to change the ASC mode and use the macro in primary mode.

• ARs 14 through 1 are volatile across all macro calls, whether the caller is in AR mode or primary mode.
Don't count on the contents of these ARs being the same after the call as they were before.

Example of using SYSSTATE
Consider that a program changes ASC mode from primary to AR mode and, while in AR mode, issues the
LINKX and STORAGE macros. When it changes ASC mode, it should issue the following:

SAC 512
SYSSTATE ASCENV=AR

The LINKX macro generates different code and addresses, depending on the ASC mode of the caller.
During the assembly of LINKX, the LINKX macro service checks the setting of the global bit. Because the
global bit indicates that the caller is in AR mode, LINKX generates code and addresses that are
appropriate for callers in AR mode.

The STORAGE macro generates the same code and addresses whether the caller is in AR mode or primary
mode. Therefore, the STORAGE macro service does not check the global bit.

When the program changes back to primary mode, it should issue the following:

SAC 0
SYSSTATE ASCENV=P

Using X-macros
Some macro services, such as LINK and LINKX, offer two macros, one for callers in primary mode and one
for callers in either primary or AR mode. The name of the macro for the AR mode caller is the same as the
name of the macro for primary mode callers, except the macro that supports the AR mode caller ends
with an "X". This document refers to these macros as "X-macros". The rules for using all X-macros, except
ESTAEX, are:

• Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary mode. Some
parameters on the non X-macros are not valid for callers in AR mode. For these exceptions, check the
macro descriptions in one of the following:

– z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
– z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
– z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
– z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO
– z/OS MVS Programming: Assembler Services Reference ABE-HSP
– z/OS MVS Programming: Assembler Services Reference IAR-XCT.

• Callers in AR mode should issue the X-macro after issuing the SYSSTATE ASCENV=AR macro.

If a caller in AR mode issues the non X-macro, the system substitutes the X-macro and issues a
message during assembly that informs you of the substitution.

IBM recommends that you always use ESTAEX unless your program and your recovery routine are in 24-
bit addressing mode, or your program requires a branch entry. In those cases you should use ESTAE.

124 z/OS: z/OS MVS Extended Addressability Guide

Note that an X-macro generates a larger parameter list than the corresponding non X-macro. A program
using the X-macros must provide a larger parameter list than if it used the non X-macro.

If your program must issue macros while it is in AR mode, make sure the macros support AR mode callers
and that SYSSTATE ASCENV=AR is coded. For information about macros that support AR mode callers and
how to issue the macros correctly, see "Address Space Control (ASC) Mode" in the appropriate macro
description in one of the following:

• z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
• z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
• z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
• z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

If you rewrite programs and use the X-macro instead of the non X-macro, you must change both the list
and execute forms of the macro. If you change only the execute form of the macro, the system will not
generate the longer parameter list that the X-macro requires.

Passing parameters to MVS macros in AR mode
The rules for passing ALETs to MVS macros are similar to the rules for passing ALETs to programs. For
programs in AR mode, the system allows you to pass the following ALETs:

• An ALET with the value of zero, signifying that the parameter data resides in the caller's primary address
space

• An ALET that indexes to a public entry on the caller's DU-AL.

Do not pass other ALETs; the system does not support them.

Some of the macros that support callers in AR mode require that parameter lists be in the primary
address space. To learn where the input parameter lists must reside, see the macro descriptions in one of
the following:

• z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
• z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
• z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
• z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO
• z/OS MVS Programming: Assembler Services Reference ABE-HSP.

Some macro services accept control parameters from a program. Do not pass a parameter that resides at
location zero in a data space to a macro service. Some macros use the value 0 to designate that a
parameter list was not specified.

Formatting and displaying AR information
The interactive problem control system (IPCS) can format and display AR data. Use the ARCHECK
subcommand to:

• Display the contents of an AR
• Display the contents of an access list entry.

See z/OS MVS IPCS Commands for more information about the ARCHECK subcommand.

Chapter 5. Using access registers 125

126 z/OS: z/OS MVS Extended Addressability Guide

Chapter 6. Creating and using data spaces

A data space is a range of up to two gigabytes of contiguous virtual storage addresses that a program can
directly manipulate through assembler instructions. Unlike an address space, a data space contains only
data; it does not contain common areas or system data or programs. Program code does not execute in a
data space, although a program can reside in a data space as nonexecutable code.

The DSPSERV macro with the TYPE=BASIC parameter (the default) manages data spaces. Use this macro
to:

• Create a data space
• Release an area in a data space
• Delete a data space
• Expand the amount of storage in a data space currently available to a program.
• Load an area of a data space into central storage
• Page an area of a data space from central storage

A program's ability to create, delete, and access data spaces depends on whether it is a problem state
program with PSW key 8 - F, a supervisor state program, or a PSW key 0-7 program. All programs can
create, access, and delete the data spaces they own or created, and can share their data spaces with
other programs running in the same address space. In addition, supervisor state or PSW key 0-7
programs can share their data spaces with programs in other address spaces. Unless otherwise stated,
this section describes what the supervisor state or PSW key 0-7 programs can do.

Use this section to help you create, use, and delete data spaces. In addition, four sources of information
can help you understand how to use data spaces:

• Chapter 1, “An introduction to extended addressability,” on page 1 can help you verify that a data space,
rather than a hiperspace would be the best choice for your program. See “Basic decision: data space or
hiperspace” on page 5.

• Chapter 5, “Using access registers,” on page 93, contains many examples of setting up addressability to
data spaces.

• One of the following contains the syntax and parameter descriptions for the macros that are mentioned
in this chapter:

– z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
– z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
– z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
– z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

• Principles of Operation contains descriptions of how to use the instructions that manipulate access
registers.

Referencing data in a data space
To reference the data in a data space, the program must be in access register (AR) mode. Assembler
instructions (such as load, store, add, and move character) move data in and out of a data space and
manipulate data within it. Assembler instructions can also perform arithmetic operations on the data.

When a program uses the DSPSERV macro to create a data space, the system returns a STOKEN that
uniquely identifies the data space. (Data spaces do not have ASIDs.) The program then gains access to the
data space: it uses the ALESERV macro to add an entry to an access list and obtain an access list entry
token (ALET). The entry on the access list identifies the newly created data space and the ALET indexes
the entry.

© Copyright IBM Corp. 1988, 2020 127

The process of giving the STOKEN to ALESERV, adding an entry to an access list, and receiving an ALET is
called establishing addressability to the data space. The access list can be one of two types:

• A dispatchable unit access list (DU-AL) — the access list that is associated with a TCB or SRB
• A primary address space access list (PASN-AL) — the access list that is associated with an address

space

Relationship between the data space and its owner
Your program can create a data space, but it cannot own the data space. If the unit of work that
represents the program is a TCB, that TCB is the owner of the data space, unless the program assigns
ownership to another TCB. If the unit of work is an SRB, the program must assign ownership to a TCB.
Because of this assignment of ownership, the owner of the data space and the creator of the data space
are not always the same TCB.

The data space virtual area is available to programs that run under the TCB that owns the data space and
is available, in some cases, to other programs.

When a TCB terminates, the system deletes any data spaces that the TCB owns. The system swaps a data
space in and out as it swaps in and out the address space that dispatched the owning TCB. Thus, data
spaces shared by programs that run in other address spaces must be owned by TCBs in non-swappable
address spaces.

A data space can remain active even after the creating TCB terminates. When the program creates a data
space, it can assign ownership of the data space to a TCB that will outlast the creating TCB. In this case,
the termination of the creating TCB does not affect the data space.

Because access lists and data spaces belong to units of work, keep in mind the relationship between the
program and the unit of work under which it runs. For simplicity, however, this chapter describes access
lists and data spaces as if they belong to programs. For example, "a program's DU-AL" means "the DU-AL
that belongs to the TCB under which a program is running".

Scope=single, scope=all, and scope=common data spaces
Data spaces are either SCOPE=SINGLE, SCOPE=ALL, or SCOPE=COMMON, named after the SCOPE
parameter on the DSPSERV CREATE macro.

• SCOPE=SINGLE data spaces

A SCOPE=SINGLE data space with an entry on a PASN-AL can be used by programs running in the
owner's address space. A SCOPE=SINGLE data space with an entry on a DU-AL can be used by
programs represented by TCBs or SRBs whose home address space is the same as the owning TCB. It
would typically be used in ways similar to private storage in an address space.

• SCOPE=ALL data spaces

A SCOPE=ALL data space can be used by programs running in the owner's primary address space and
other address spaces. SCOPE=ALL data spaces provide a way to share data selectively among programs
running in multiple address spaces.

• SCOPE=COMMON data spaces

A SCOPE=COMMON data space can be used by all programs in the system. It provides a commonly
addressable area similar to the common service area (CSA). A SCOPE=COMMON data space is
sometimes called a common area data space.

128 z/OS: z/OS MVS Extended Addressability Guide

The home address space of the owner of a SCOPE=ALL or SCOPE=COMMON data space must be non-
swappable during the time that other address spaces have access to the data space.

Rules for creating, deleting, and using data spaces
To protect data spaces from unauthorized use, the system uses certain rules to determine whether a
program can create or delete a data space or whether it can access data in a data space. The rules for
problem state programs with PSW key 8 through F differ from the rules for programs that are supervisor
state or PSW key 0 through 7. The table on page Table 13 on page 132 summarizes these rules and the
example in Figure 40 on page 131 illustrates them.

A program in supervisor state or PSW key 0-7 can:

• Create a data space if its home or primary address space is the same as the intended owner's home
address space.

• Delete a data space if its primary or home address space is the same as the owner's home address
space.

• Release an area of a SCOPE=SINGLE data space if its primary or home address space is the same as
the owner's home address space and its PSW key is the same as the storage key of the data space. It
can release an area of a SCOPE=ALL or SCOPE=COMMON data space if its PSW key is zero or matches
the storage key of the data space.

• Extend the current size of any data space.
• Page in and out of central storage the storage of any data space.
• Establish addressability to a data space through the ALESERV macro (if the program does not already

have an entry on its DU-AL or a PASN-AL) and obtain the ALET that indexes the entry. When it adds an
entry, the program can specify whether it wants the entry on its DU-AL or the PASN-AL. A program can
add entries:

– For a SCOPE=SINGLE data space to its DU-AL, if its home address space is the same as the owner's
home address space

– For a SCOPE=SINGLE data space to its PASN-AL, if the PASN-AL belongs to the same address space
as the owner

– For any SCOPE=ALL data space to its DU-AL and its PASN-AL
– For any SCOPE=COMMON data space to its PASN-AL

On the ALESERV macro, you can take the default for the ACCESS parameter. All access list entries for
data spaces are public (ACCESS=PUBLIC). A public entry allows a program to access data in a data
space, without having to establish EAX-authority. See “Types of access list entries” on page 102 for
more information about public entries.

Note that problem state programs with PSW key 8 - F can add entries to their PASN-ALs for the
SCOPE=SINGLE data spaces they own or created. Supervisor state or PSW key 0-7 programs can add
entries on behalf of problem state programs and pass ALETs to the problem state programs.

• Access data in a data space

Once an entry for the data space is on its DU-AL, a program having the ALET for the entry can access the
data space. Once an entry for the data space is on the PASN-AL, all programs running with that PASN-AL
and having the ALET can access the data space. Note that data space storage is also subject to storage
key and fetch protection.

A program can attach a subtask and pass a copy of its DU-AL to the subtask. This action allows the
program and the subtask to share the data spaces that have entries on the DU-AL at the time of the
attach.

Chapter 6. Creating and using data spaces 129

Example of the rules for accessing data spaces
Another way of describing the rules for accessing data spaces is through an example. Figure 40 on page
131 shows two address spaces and two data spaces. The entries in the PASN-AL and DU-AL are
identified.

Two programs run in address space AS1, both of which own data spaces:

• A problem state program, PGM1, running under TCB A that owns SCOPE=SINGLE data space DS1

PGM1 can access DS1 through the DU-AL, because it runs in problem state. PGM1 cannot add an entry
for DS1 to the PASN-AL.

• A supervisor state program, PGM2, running under TCB B that owns SCOPE=ALL data space DS2

PGM2 can access DS2 through its PASN-AL. (If PGM1 passes the STOKEN for DS1 to PGM2, PGM2 could
add an entry to the PASN-AL for DS1. If PGM2 passes the ALET for DS2 to PGM1, PGm1 could access
DS2 through the PASN-AL.)

Two programs run in address space AS2, neither of which own data spaces:

• A problem state program, PGM3, running under TCB C

PGM3 cannot access either DS1 or DS2.
• A supervisor state program, PGM4, running under TCB D

PGM4 can access DS2 through its DU-AL.

PGM2 has passed a STOKEN for the SCOPE=ALL data space DS2 to PGM4 in address space AS2. PGM4
used the STOKEN as input to ALESERV, which placed an entry for DS2 on the DU-AL and returned the
ALET. PGM4 could have added the entry for DS2 to its PASN-AL.

Earlier in this chapter, it was stated that storage within a data space is available to programs that run
under the TCB that owns the data space. The exception to this statement is when the owning TCB has the
data space entry on the PASN-AL and a program running under the TCB uses a space-switching PC
instruction. During the time that the primary address space is not the owning TCB's home address space,
the program cannot access the data space. For example, in Figure 40 on page 131, consider what
happens to PGM2 if it should PC to PGM3. Because the entry for DS2 is on AS1's PASN-AL, PGM2 cannot
access DS2 while it is running in AS2.

130 z/OS: z/OS MVS Extended Addressability Guide

Figure 40. Example of Rules for Accessing Data Spaces

Summary of rules for creating, deleting, and using data spaces
Table 13 on page 132 summarizes the rules for what programs can do with data spaces. The third column
describes what a problem state program can do if it is PSW key 8 through F. The fourth column describes
what a supervisor state program or any program having PSW key 0 through 7 can do.

Chapter 6. Creating and using data spaces 131

Table 13. Creating, Deleting, and Using Data Spaces

Function Type of data
space

A problem state, key 8 - F
program:

A supervisor state or key 0-7
program:

CREATE SCOPE=SINGLE Can create a SCOPE=SINGLE data
space.

Can create the data space if its
primary or home address space is
the same as the intended owner's
home address space

SCOPE=ALL
SCOPE=COMMON

Cannot create the data spaces. Can create the data space if its
primary or home address space is
the same as the intended owner's
home address space

DELETE SCOPE=SINGLE Can delete the SCOPE=SINGLE
data spaces it owns or created if
its PSW key matches the storage
key of the data space.

Can delete a SCOPE=SINGLE data
space if its primary or home address
space is the same as the owner's
home address space.

SCOPE=ALL
SCOPE=COMMON

Cannot delete the data space. Can delete the data space if its
primary or home address space is
the same as the owner's home
address space.

RELEASE SCOPE=SINGLE Can release storage in the data
spaces it owns or created if its
PSW key matches the storage key
of the data space.

Can release storage in a
SCOPE=SINGLE data space if its
primary or home address space is
the same as the owner's home
address space and its PSW key
matches the storage key of the data
space.

SCOPE=ALL
SCOPE=COMMON

Cannot release the storage. Can release storage in the data
space if its PSW key matches the
storage key of the data space.

EXTEND SCOPE=SINGLE
SCOPE=ALL
SCOPE=COMMON

Can extend the current size if it
owns the data space.

Can extend the current size.

LOAD or OUT SCOPE=SINGLE
SCOPE=ALL
SCOPE=COMMON

Can page areas into (and out of)
central storage from (or to) a data
space created by any task in its
address space.

Can page areas into and out of
central storage.

Add entries to
the DU-AL

SCOPE=SINGLE Can add entries for the
SCOPE=SINGLE data spaces it
owns or created.

Can add entries for a
SCOPE=SINGLE data space if the
caller's home and owner's home
address space are the same.

SCOPE=ALL
SCOPE=COMMON

Cannot add the entries. Can add entries for the SCOPE=ALL
(not the SCOPE=COMMON) data
space.

132 z/OS: z/OS MVS Extended Addressability Guide

Table 13. Creating, Deleting, and Using Data Spaces (continued)

Function Type of data
space

A problem state, key 8 - F
program:

A supervisor state or key 0-7
program:

Add entries to
the PASN-AL

SCOPE=SINGLE Can add entries if it owns or
created the data space, and the
data space is not already on the
PASN-AL as a result of an
ALESERV ADD issued by a
problem state program with PSW
key 8 - F.

Can add entries for a
SCOPE=SINGLE data space if its
PASN-AL is the same as the PASN-
AL of the owner's home address
space.

SCOPE=ALL
SCOPE=COMMON

Cannot add entries. Can add entries for a SCOPE=ALL
and a SCOPE=COMMON data space.

Access a data
space through a
DU-AL or PASN-
AL

SCOPE=SINGLE
SCOPE=ALL
SCOPE=COMMON

Can access a data space through
an access list if the entry for the
data space exists and the
program has the ALET. Data
space storage is subject to
storage key and fetch protection.

Can access a data space through an
access list if the entry for the data
space exists and the program has
the ALET. Data space storage is
subject to storage key and fetch
protection.

Creating a data space
To create a data space, issue the DSPSERV CREATE macro. MVS gives you contiguous 31-bit virtual
storage of the size you specify and initializes the storage to hexadecimal zeroes. The entire data space has
the storage key that you request, or, by default, the storage key that matches your own PSW key.

On the DSPSERV macro, you are required to specify:

• The name of the data space (NAME parameter)

To ask DSPSERV to generate a data space name unique to the address space, use the GENNAME
parameter. DSPSERV will return the name it generates at the location you specify on the OUTNAME
parameter. See “Choosing the name of the data space” on page 134.

• A location where DSPSERV can return the STOKEN of the data space (STOKEN parameter)

DSPSERV CREATE returns a STOKEN that you can use to identify the data space to other DSPSERV
services and to the ALESERV and DIV macros.

Other information you might specify on the DSPSERV macro is:

• A request for a SCOPE=ALL or SCOPE=COMMON data space. If you don't code SCOPE, the system
creates a SCOPE=SINGLE data space. See “Scope=single, scope=all, and scope=common data spaces”
on page 128.

• The maximum size of the data space and its initial size (BLOCKS parameter). If you do not code BLOCKS,
the data space size is determined by defaults set by your installation. In this case, use the NUMBLKS
parameter to tell the system where to return the size of the data space. See “Specifying the size of the
data space” on page 134.

• A location where DSPSERV can return the address (either 0 or 4096) of the first available block of the
data space (ORIGIN parameter). See “Identifying the origin of the data space” on page 136.

• A request that the system create a data space where disabled programs can access data (DREF
parameter). See “Creating a data space of DREF storage” on page 137.

• A request that the data space be fetch-protected (FPROT parameter). See “Protecting data space
storage” on page 137.

Chapter 6. Creating and using data spaces 133

• The storage key of the data space (KEY parameter). Use CALLERKEY to specify that the storage key of
the data space is to match your PSW key (or take the default for the KEY parameter). See “Protecting
data space storage” on page 137.

• The TTOKEN of the TCB to which you assign ownership of the data space (TTOKEN parameter). See
“How SRBs use data spaces” on page 151.

Choosing the name of the data space
The name you specify on the NAME parameter will identify the data space on some dump requests and
IPCS commands.

Names of data spaces and hiperspaces must be unique within an address space. You have a choice of
choosing the name yourself or asking the system to generate a unique name for your data space. To keep
you from choosing names that it uses, MVS has some specific rules for you to follow. These rules are
listed in the DSPSERV description under the NAME parameter in z/OS MVS Programming: Authorized
Assembler Services Reference ALE-DYN.

Use the GENNAME parameter to ask the system to generate a unique name for your data space.
GENNAME=YES generates a unique name that has as its last one to three characters the first one to three
characters of the name you specify on the NAME parameter.

Example 1:

If PAY␣␣␣␣␣ is the name you supply on the NAME parameter and you code GENNAME=YES, the
system generates the following name:

nccccPAY

where the system generates the digit n and the characters cccc, and appends the characters PAY that you
supplied.

Example 2:

If J␣␣␣␣␣␣␣ is the name you supply on the NAME parameter and you code GENNAME=YES, the
system generates the following name:

nccccJ

GENNAME=COND checks the name you supply on the NAME parameter. If it is already used for a data
space or a hiperspace, DSPSERV supplies a name with the format described for the GENNAME=YES
parameter. To learn the unique name that the system generates for the data space you are creating, use
the OUTNAME parameter.

Note: The maximum number of system-generated names is 99,999. If all system-generated names have
been used, DPSERV reuses generated names from previously deleted data spaces or hiperspaces. If all
system-generated names are in use for active data spaces or hiperspaces, DSPSERV fails with a return
code of "08" and a reason code of "0012". Before the maximum number of system-generated names is
reached, the counter will not be reset to zero until all data spaces and hiperspaces within the address
space are deleted. The generated names counter will be reset to zero when the job is recycled.

Therefore, if your program is a batch job and it is creating a data space, do not:

• Request that the system generate a name (through the GENNAME parameter), and
• Assign ownership to a TCB that remains for the life of the address space.

Specifying the size of the data space
When you create a data space, you tell the system on the BLOCKS parameter how large to make that
space, the largest size being 524,288 blocks. (The product of 524,288 times 4K bytes is 2 gigabytes.) The
addressing range for the data space depends on the processor. If your processor does not support an
origin of zero, the limit is actually 4096 bytes less than 2 gigabytes. Before you code BLOCKS, you should
know two facts about how an installation controls the use of virtual storage for data spaces and
hiperspaces.

134 z/OS: z/OS MVS Extended Addressability Guide

• An installation can set limits on the amount of storage available for each address space for all data
spaces and hiperspaces that have a storage key of 8 through F. If your request for a data space would
cause the installation limit to be exceeded, the system rejects the request with a nonzero return code
and a reason code.

• An installation sets a default size for data spaces and hiperspaces; you should know this size. If you do
not use the BLOCKS parameter, the system creates a data space with the default size.

If you create the data space with a storage key of 0 through 7, the system does not check the size against
the total storage already used for data spaces and hiperspaces. If you create the data space with a
storage key of 8 through F, the system adds the initial size of the space to the cumulative total of all data
spaces and hiperspaces for the address space and checks this total against the installation limit for an
address space.

For information on the IBM defaults and how to change them, see “Limiting data space use” on page 139.

The BLOCKS parameter allows you to specify a maximum size and initial size value.

• The maximum size identifies the largest amount of storage you will need in the data space.
• An initial size identifies the amount of the storage you will immediately use.

As you need more space in the data space, you can use the DSPSERV EXTEND macro to increase the size
of the available storage, thus increasing the storage in the data space that is available for the program.
The amount of available storage is called the current size. (At the creation of a data space, the initial size
is the same as the current size.) When it calculates the cumulative total of data space and hiperspace
storage, the system uses the current size of the data space.

If you know the default size and want a data space smaller than or equal to that size, use the
BLOCKS=maximum size or omit the BLOCKS parameter.

If you know what size data space you need and are not concerned about exceeding the installation limit,
set the maximum size and the initial size the same. BLOCKS=0, the default, establishes a data space with
the maximum size and the initial size both set to the default size.

If you do not know how large a data space (with storage key 8 - F) you will eventually need or you are
concerned with exceeding the installation limit, set the maximum size to the largest size you might
possibly use and the initial size to a smaller amount, the amount you currently need.

Use the NUMBLKS parameter to request that the system return the size of the data space it creates for
you. You would use NUMBLKS, for example, if you did not specify BLOCKS and do not know the default
size.

Figure 41 on page 136 shows an example of using the BLOCKS parameter to request a data space with a
maximum size of 100,000 bytes of space and a current size of 20,000 bytes.

Chapter 6. Creating and using data spaces 135

Figure 41. Example of Specifying the Size of a Data Space

As your program uses more of the data space storage, it can use DSPSERV EXTEND to extend the current
size. “Extending the current size of a data space” on page 143 describes extending the current size and
includes an example of how to extend the current size of the data space in Figure 41 on page 136.

Identifying the origin of the data space
Some processors do not allow the data space to start at zero; these data spaces start at address 4096
bytes. When you use DSPSERV CREATE, you can count on the origin of the data space staying the same
within the same IPL. To learn the starting address, either (1) create a data space of 1 block of storage
more than you need and then assume that the data space starts at 4096 or (2) use the ORIGIN
parameter. If you use ORIGIN, the system returns the beginning address of the data space at the location
you specify.

Unless you specify a size of 2 gigabytes and the processor does not support an origin of zero, the system
gives you the size you request, regardless of the location of the origin. An example of the problem you
want to avoid in addressing data space storage is described as follows:

Suppose a program creates a data space of 1 megabyte and assumes the data space starts at address
zero when it really begins at the address 4096. Then, if the program uses an address lower than 4096
in the data space, the system abends the program.

Example of creating a data space
In the following example, a program creates a data space named TEMP. The system returns the origin of
the data space (either 0 or 4096) at location DSPCORG.

 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
 BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
 .
DSPCNAME DC CL8'TEMP ' DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE

The data space that the system creates has the same storage protection key as the PSW key of the caller.

136 z/OS: z/OS MVS Extended Addressability Guide

Protecting data space storage
If the creating program wants the data space to have read-only access, it can use the FPROT and KEY
parameters on DSPSERV. KEY assigns the storage key for the data space and FPROT specifies whether the
storage in the data space is to be fetch-protected. Storage protection and fetch protection rules apply for
the entire data space. For example, a program cannot reference storage in a fetch-protected data space
without holding the PSW key that matches the storage key of the data space or PSW key 0.

Figure 42 on page 137 shows a SCOPE=ALL data space DSX with a storage key of 5, owned by a
subsystem. PGM1 and PGM2, with PSW keys of 8, have entries for the data space on their DU-ALs and
have the ALETs for these entries. However, their PSW keys do not match the storage key of the data space.
Their ability to access data in DSX depends on how the creating program coded the FPROT parameter on
the DSPSERV macro.

• If the creating program specified no fetch-protection (FPROT=NO), PGM1 and PGM2 can fetch from but
not store into the data space.

• If the creating program specified fetch-protection (FPROT=YES), PGM1 and PGM2 can neither fetch
from nor store into the data space.

Figure 42 on page 137 shows one way PGM1 and PGM2 can gain fetch and store capability to the data
space. The subsystem provides a PC routine with a PSW key of 5 in the common area. To access the data
space, the two users PC into the subsystem's address space and have access to its data space.

Figure 42. Protecting storage in a data space

Creating a data space of DREF storage
Through the DSPSERV macro, supervisor state and PSW key 0 - 7 programs can create a data space that
consists of disabled reference (DREF) storage. DREF storage is storage that can be referenced by callers
that are running disabled. DREF storage uses more system resources than non-DREF storage because the
system does not page DREF storage out to auxiliary storage. Instead, it uses central storage (and

Chapter 6. Creating and using data spaces 137

expanded storage, if your processor has it). IBM recommends that you not use DREF storage when
pageable storage is sufficient.

To request DREF storage, code DREF=YES on the DSPSERV CREATE macro. A data space with DREF
storage can be SCOPE=SINGLE, SCOPE=ALL, or SCOPE=COMMON.

Establishing addressability to a data space
Creating a data space does not give you addressability to that data space. Before you can use the data
space, you must issue the ALESERV macro, which adds an entry to an access list and returns the ALET
that indexes the entry. Examples of this process appear in this chapter; Chapter 5, “Using access
registers,” on page 93, contains additional examples.

When you use ALESERV, you can omit the ACCESS parameter, which specifies whether an access list entry
is public or private. Data space entries are always public, the default for ACCESS.

Example of establishing addressability to a data space
In the following example, a program establishes addressability to a data space named TEMP. Input to the
ALESERV macro is the STOKEN that the DSPSERV macro returned. ALESERV places an entry on the DU-AL
and returns the ALET for the data space.

 ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
 .
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET

Managing data space storage
Managing storage in data spaces differs from managing storage in address spaces. Keep the following
advisory notes in mind:

• When you create a data space, request a maximum size large enough to handle your application's needs
and, optionally, an initial size large enough to meet its immediate needs.

• You can use callable cell pool services to keep track of data space storage. (The STORAGE, GETMAIN,
FREEMAIN, or CPOOL macros do not manage data space storage.) For information about how to use
callable cell pool services and an example of its use with data spaces, see “Using callable cell pool
services to manage data space areas” on page 141.

• If you are not going to use an area of a data space again, release that area to free the resources that
back the area.

• When you are finished using a data space, remove its entry from the access list and delete the data
space.

Managing data space storage across a checkpoint/restart
operation

A program can use checkpoint/restart while it has one or more entries for a data space on its access list
(DU-AL or PASN-AL). If the program has specified on the ALESERV macro that the system is to ignore
entries made to the access list for the data space for checkpoint/restart processing (CHKPT=IGNORE),
the CHKPT macro processes successfully.

A program that specifies CHKPT=IGNORE assumes full responsibility for managing the data space
storage. Managing the data space storage includes the following:

• If any program depends on the contents of the data space and the data cannot be recreated or obtained
elsewhere, the responsible program must save the contents of the data space prior to the checkpoint
operation.

138 z/OS: z/OS MVS Extended Addressability Guide

• Once the checkpoint operation has completed, the responsible program must perform the following
during restart processing to successfully manage the data space storage.

1. Ensure that the data space exists. The original data space might or might not exist. If the original
data space does not exist, the responsible program must perform a DSPSERV CREATE to recreate the
data space.

2. Perform an ALESERV ADD of the data space, original or recreated, to the program's access list to
obtain a new ALET.

3. If, in addition to having a dependency on the data space, any program also depends on the contents
of the data space storage, the responsible program must refresh the contents of the data space
storage. The program must use the new ALET to reference the data space.

4. The responsible program must make the new ALET available to any program that has a dependency
on the data space. The STOKEN, changed or unchanged, must be made available to any program that
needs to perform an ALESERV ADD to access the data space.

See z/OS DFSMSdfp Checkpoint/Restart for more information about the CHKPT macro.

Limiting data space use
The use of data spaces consumes system resources such as virtual, processor, and auxiliary storage.
Programmers responsible for tuning and maintaining MVS can control the use of these resources. Through
the system management facility (SMF) installation exit IEFUSI, an installation can set limits on the
amount of virtual storage that programs in each address space can use for data spaces and hiperspaces.

For information on using IEFUSI, see z/OS MVS Installation Exits.

Serializing use of data space storage
At many installations, users must share access to data in a data space. Users who are updating data for
common use by other programs need exclusive access to that data during the updating operation. If
several users tried to update the same data at the same time, the result would be incorrect or damaged
data. To protect the integrity of the data, you might need to serialize access to the data in the data space.

Serializing the use of the storage in a data space requires methods like those you would use to serialize
the use of virtual storage in an address space. Use the ENQ and DEQ macros, compare and swap
operations, or establish your own protocol for serializing data space use.

Examples of moving data into and out of a data space
When using data spaces, you sometimes have large amounts of data to transfer between the address
space and the data space. This section contains examples of two subroutines, both named COPYDATA,
that show you how to use the Move (MVC) or Move Long (MVCL) instruction to move a variable number of
bytes into and out of a data space. (You can also use the examples to help you move data within an
address space or within a data space.) The two examples perform exactly the same function; both are
included here to show you the relative coding effort required to use each instruction.

The use of registers for the two examples is as follows:

Input: AR/GR 2 Target area location
 AR/GR 3 Source area location
 GR 4 Signed 32 bit length of area
 (Note: A negative length is treated as zero.)
 GR 14 Return address
Output: AR/GR 2-14 Restored
 GR 15 Return code of zero

The routines can be called in either primary or AR mode; however, during the time they manipulate data in
a data space, they must be in AR mode. The source and target locations are assumed to be the same
length (that is, the target location is not filled with a padding character).

Chapter 6. Creating and using data spaces 139

Example 1: Using the MVC instruction
The first COPYDATA example uses the MVC instruction to move the specified data in groups of 256 bytes:

COPYDATA DS 0D
 BAKR 14,0 SAVE CALLER'S STATUS
 LAE 12,0(0,0) BASE REG AR
 BALR 12,0 BASE REG GR
 USING *,12 ADDRESSABILITY
 .
 LTR 4,4 IS LENGTH NEGATIVE OR ZERO?
 BNP COPYDONE YES, RETURN TO CALLER
 .
 S 4,=F'256' SUBTRACT 256 FROM LENGTH
 BNP COPYLAST IF LENGTH NOW NEGATIVE OR ZERO
* THEN GO COPY LAST PART

 .
COPYLOOP DS 0H
 MVC 0(256,2),0(3) COPY 256 BYTES
 LA 2,256(,2) ADD 256 TO TARGET ADDRESS
 LA 3,256(,3) ADD 256 TO SOURCE ADDRESS
 S 4,=F'256' SUBTRACT 256 FROM LENGTH
 BP COPYLOOP IF LENGTH STILL GREATER THAN
* ZERO, THEN LOOP BACK

COPYLAST DS 0H
 LA 4,255(,4) ADD 255 TO LENGTH
 EX 4,COPYINST EXECUTE A MVC TO COPY THE
* LAST PART OF THE DATA
 B COPYDONE BRANCH TO EXIT CODE
COPYINST MVC 0(0,2),0(3) EXECUTED INSTRUCTION

COPYDONE DS 0H
 .
* EXIT CODE
 LA 15,0 SET RETURN CODE OF 0
 PR RETURN TO CALLER

Example 2: Using the MVCL instruction
The second COPYDATA example uses the MVCL instruction to move the specified data in groups of
1048576 bytes:

COPYDATA DS 0D
 BAKR 14,0 SAVE CALLER'S STATUS
 LAE 12,0(0,0) BASE REG AR
 BALR 12,0 BASE REG GR
 USING *,12 ADDRESSABILITY
 .
 LA 6,0(,2) COPY TARGET ADDRESS
 LA 7,0(,3) COPY SOURCE ADDRESS
 LTR 8,4 COPY AND TEST LENGTH
 BNP COPYDONE EXIT IF LENGTH NEGATIVE OR ZERO
 .
 LAE 4,0(0,3) COPY SOURCE AR/GR
 L 9,COPYLEN GET LENGTH FOR MVCL
 SR 8,9 SUBTRACT LENGTH OF COPY
 BNP COPYLAST IF LENGTH NOW NEGATIVE OR ZERO
* THEN GO COPY LAST PART
 .
COPYLOOP DS 0H
 LR 3,9 GET TARGET LENGTH FOR MVCL
 LR 5,9 GET SOURCE LENGTH FOR MVCL
 MVCL 2,4 COPY DATA
 ALR 6,9 ADD COPYLEN TO TARGET ADDRESS
 ALR 7,9 ADD COPYLEN TO SOURCE ADDRESS
 LR 2,6 COPY NEW TARGET ADDRESS
 LR 4,7 COPY NEW SOURCE ADDRESS
 SR 8,9 SUBTRACT COPYLEN FROM LENGTH
 BP COPYLOOP IF LENGTH STILL GREATER THAN
* ZERO, THEN LOOP BACK
 .
COPYLAST DS 0H
 AR 8,9 ADD COPYLEN

140 z/OS: z/OS MVS Extended Addressability Guide

 LR 3,8 COPY TARGET LENGTH FOR MVCL
 LR 5,8 COPY SOURCE LENGTH FOR MVCL
 MVCL 2,4 COPY LAST PART OF THE DATA
 B COPYDONE BRANCH TO EXIT CODE
COPYLEN DC F'1048576' AMOUNT TO MOVE ON EACH MVCL
COPYDONE DS 0H
 .
* EXIT CODE
 LA 15,0 SET RETURN CODE OF 0
 PR RETURN TO CALLER

Programming notes for Example 2:

• When you are in AR mode, do not use AR/GPR 0 in the MVCL instruction. In Example 2, the MVCL
instruction uses GPRs 2, 3, 4, and 5.

• The maximum amount of data that one execution of the MVCL instruction can move is 16,777,215
bytes.

Using callable cell pool services to manage data space areas
You can use the callable cell pool services to manage the virtual storage of a data space. Callable cell pool
services allow you to divide data space storage into areas (cells) of the size you choose. Specifically, you
can

• Create cell pools within a data space
• Expand a cell pool, or make it smaller
• Make the cells available for use by your program or by other programs

A cell pool consists of three different areas:

• One anchor
• Up to 65,000 extents
• Cells, all of which are the same size

The anchor and the extents allow callable cell pool services to keep track of the cell pool.

This section gives an example of one way a program would use the callable cell pool services. This
example has only one cell pool with one extent. In the example, you will see that the program has to
reserve storage for the anchor and the extent and get their addresses.

For more information on how to use the services and an example that includes assembler instructions,
see the section on callable cell pool services in z/OS MVS Programming: Assembler Services Guide.

Example of Using Callable Cell Pool Services with a Data Space

Assume that you have an application that requires up to 4,000 records that are each 512 bytes in length.
You have decided that a data space is the best place to hold this data. Callable cell pool services can help
you build a cell pool, each cell having a size of 512 bytes. The steps are as follows:

1. Create a data space (DSPSERV CREATE macro)

Specify a size large enough to hold 2,048,000 bytes of data (4000 times 512) plus the data structures
that callable cell pool services need.

2. Add the data space to an access list (ALESERV macro)

The choice of DU-AL or PASN-AL depends on how you plan to share the data space.
3. Reserve storage for the anchor and obtain its address

The anchor (of 64 bytes) can be in the address space or the data space. In this example, the anchor is
in the data space.

4. Initialize the anchor (CSRPBLD service) for the cell pool

Input to CSRPBLD includes the ALET of the data space, the address of the anchor, the name you assign
to the pool, and the size of each cell (in this case, 512 bytes). Because the anchor is in the data space,
the caller must be in AR mode.

Chapter 6. Creating and using data spaces 141

5. Reserve storage for the extent and obtain the address of the extent

The size of the extent is 128 bytes plus one byte for every eight cells. In this example, adding 128 to
500 (that is, 4000 divided by 8) equals 628 bytes. The system then rounds up to a doubleword making
the extent 632 bytes.

6. Obtain the address of the beginning of the cell storage

Add the size of the anchor (64 bytes) and the size of the extent (632) to get the location where the cell
storage can start. You might want to make this starting address on a given boundary, such as a
doubleword or page.

7. Add an extent for the cell pool and establish a connection between the extent and the cells (CSRPEXP
service)

Input to CSRPEXP includes the ALET for the data space, the address of the anchor, the address of the
extent, the size of the extent (in this case, 632 bytes), and the starting address of the cell storage.
Because the extent is in the data space, the caller must be in AR mode.

At this point, the cell pool structures are in place and users can begin to request cells. Figure 43 on page
142 describes the areas you have defined in the data space.

Figure 43. Example of Using Callable Cell Pool Services for Data Spaces

A program that has addressability to the data space can then obtain a cell (or cells) through the CSRPGET
service. Input to CSRPGET includes the ALET of the space and the address of the anchor. CSRPGET
returns the address of the cell (or cells) it allocates.

Programming Notes for the Example

• The origin of the data space might not be zero for the processor the program is running on. To allow the
program to run on more than one processor, use an origin of 4K bytes or use the ORIGIN parameter on
DSPSERV to obtain the address of the origin.

• If you need more than one extent, you might have a field that contains the ending address of the last
cell pool storage. A program then could use that address to set up another extent and more cells.

• To use callable cell pool services, the caller must be executing in a state or mode or key in which it can
write to the storage containing the anchor and the extent data areas.

• The anchor and the extents must be in the same address space or data space. The cells can be in
another space.

142 z/OS: z/OS MVS Extended Addressability Guide

Extending the current size of a data space
When you create a data space and specify an initial size smaller than the maximum size, you can use
DSPSERV EXTEND to increase the current size as your program uses more storage in the data space. The
BLOCKS parameter specifies the amount of storage you want to add to the current size of the data space.

The system increases the data space by the amount you specify, unless that amount would cause the
system to exceed one of the following:

• The data space maximum size, as specified by the BLOCKS parameter on DSPSERV CREATE when the
data space was created

• The installation limit for the combined total of data space and hiperspace storage with storage key 8 -F
per address space. These limits are either the system default or are set in the installation exit IEFUSI.

If one of those limits would be exceeded, the VAR parameter tells the system how to satisfy the EXTEND
request.

• VAR=YES (the variable request) tells the system to extend the data space as much as possible, without
exceeding the limits set by the data space maximum size or the installation limits. In other words, the
system extends the data space to one of the following sizes, depending on which is smaller:

– The maximum size specified on the BLOCKS parameter
– The largest size that would still keep the combined total of data space and hiperspace storage within

the installation limit.
• VAR=NO (the default) tells the system to:

– Abend the caller, if the extended size would exceed the maximum size
– Reject the request, if the data space has storage key 8 - F and the request would exceed the

installation limits

Consider the data space in Figure 41 on page 136, where the current (and initial) size is 20,000 bytes and
the maximum size is 100,000 bytes. To increase the current size to 50,000 bytes, adding 30,000 bytes to
the current size, the creating program would code the following:

 DSPSERV EXTEND,STOKEN=DSSTOK,BLOCKS=DSBLCKS
 .
DSDELTA EQU 30000 30000 BYTES OF SPACE
DSBLCKS DC A((DSDELTA+4095)/4096) NUMBER OF BLOCKS ADDED TO DATA SPACE
DSSTOK DS CL8 STOKEN RETURNED FROM DSPSERV CREATE

The storage the program can use would then be 50,000 bytes, as shown in Figure 44 on page 143.

Figure 44. Example of Extending the Current Size of a Data Space

If you use VAR=YES when you issue the EXTEND request, use NUMBLKS to find out the size by which the
system extended the data space.

Chapter 6. Creating and using data spaces 143

Deleting a data space
When a task doesn't need the data space any more, it can free the virtual storage and remove the entry
from the access list.

A problem program with PSW key 8 - F can delete only the data spaces it created or owns, provided it has
a PSW key that matches the storage key of the data space.

Example of deleting a data space

The following example shows you how to delete a data space entry from an access list and then delete
the data space.

 ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
 DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
 .
DSPCALET DS F DATA SPACE ALET
DSPCSTKN DS CL8 DATA SPACE STOKEN

IBM recommends that you explicitly remove the entry for a data space from the access list and delete the
space before the owning task terminates. This frees up resources when they are no longer needed, and
avoids excess processing at termination time. However, if you don't, MVS automatically does it for you at
termination time.

Example of creating, using, and deleting a data space
This section contains a complete example of a how a problem program creates, establishes addressability
to, uses, and deletes the data space named TEMP. The first lines of code create the data space and
establish addressability to the data space. To keep the example simple, the code does not include the
checking of the return code from the DSPSERV macro. However, you should always check the return
codes after issuing the macro.

The lines of code in the middle of the example (under the comment "MANIPULATE DATA IN THE DATA
SPACE") illustrate how, with the code in AR mode, the familiar assembler instructions store, load, and
move a simple character string into the data space and move it within the data space. The example ends
with the program deleting the data space entry from the access list, deleting the data space, and returning
control to the caller.

DSPEXMPL CSECT
DSPEXMPL AMODE 31
DSPEXMPL RMODE ANY
 BAKR 14,0 SAVE CALLER'S STATUS ON STACK
 SAC 512 SWITCH INTO AR MODE
 SYSSTATE ASCENV=AR SET GLOBAL BIT FOR AR MODE
 .
* ESTABLISH AR/GPR 12 AS BASE REGISTER
 .
 LAE 12,0 SET BASE REGISTER AR
 BASR 12,0 SET BASE REGISTER GPR
 USING *,12

* CREATE THE DATA SPACE AND ADD THE ENTRY TO THE ACCESS LIST
 .
 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
 BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
 ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
 .
 .
* ESTABLISH ADDRESSABILITY TO THE DATA SPACE
 .
 LAM 2,2,DSPCALET LOAD ALET OF SPACE INTO AR2
 L 2,DSPCORG LOAD ORIGIN OF SPACE INTO GR2
 USING DSPCMAP,2 INFORM ASSEMBLER

 .
* MANIPULATE DATA IN THE DATA SPACE

144 z/OS: z/OS MVS Extended Addressability Guide

 .
 L 3,DATAIN
 ST 3,DSPWRD1 STORE INTO DATA SPACE WRD1
 .
 MVC DSPWRD2,DATAIN COPY DATA FROM PRIMARY SPACE
* INTO THE DATA SPACE
 MVC DSPWRD3,DSPWRD2 COPY DATA FROM ONE LOCATION
* IN THE DATA SPACE TO ANOTHER
 MVC DATAOUT,DSPWRD3 COPY DATA FROM DATA SPACE
* INTO THE PRIMARY SPACE
 .

* DELETE THE ACCESS LIST ENTRY AND THE DATA SPACE
 .
 ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
 DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
 .
 PR RETURN TO CALLER
 .

DSPCNAME DC CL8'TEMP ' DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE
DATAIN DC CL4'ABCD'
DATAOUT DS CL4
*
DSPCMAP DSECT DATA SPACE STORAGE MAPPING
DSPWRD1 DS F WORD 1
DSPWRD2 DS F WORD 2
DSPWRD3 DS F WORD 3
 END

Note that you cannot code ACCESS=PRIVATE on the ALESERV macro when you request an ALET for a data
space; all data space entries are public.

Creating and using SCOPE=COMMON data spaces
The SCOPE=COMMON data space provides your programs with virtual storage that is addressable from all
address spaces and all programs. In many ways, it is the same as the common service area (CSA) of an
address space. You might use a SCOPE=COMMON data space instead of CSA because:

• A SCOPE=COMMON data space offers up to two gigabytes of commonly addressable virtual storage for
data (but not executable code). The CSA offers a much smaller amount of storage.

• The CSA is a limited resource; because it is a part of all address spaces, the use of this virtual storage
area reduces the amount of common area available for all programs.

To create this space, use the SCOPE=COMMON parameter on DSPSERV CREATE. You can use any of the
parameters on that macro to establish the characteristics of that space.

To gain addressability to the space, issue the ALESERV ADD macro with the AL=PASN parameter.
ALESERV ADD then adds an entry for the data space to the caller's PASN-AL and returns the ALET for that
entry. Additionally, ALESERV ADD adds the same entry to every PASN-AL in the system. As new address
spaces come into the system, their PASN-ALs have this entry on them. All programs use the same ALET
to access the data space. In other words, with the entry on all PASN-ALs, programs in other address
spaces do not have to issue the ALESERV ADD macro. However, the creating program must pass the ALET
for the data space to the other programs.

The use of the virtual storage in the SCOPE=COMMON data space is similar to the use of the CSA. A
program wanting to share CSA storage with another program has to pass the address of that area to the
other program; the creator of the SCOPE=COMMON data space has to pass the ALET value to the other
program. (It might also have to tell the other program the origin of the data space.)

Figure 45 on page 146 shows an example of a SCOPE=COMMON data space named COMDS that PROG1
created. PROG1 uses ALESERV ADD to add an entry to its PASN-AL. Because COMDS is

Chapter 6. Creating and using data spaces 145

SCOPE=COMMON,that same entry appears on all PASN-ALs in the system, plus all PASN-ALs that will
exist from the time the entry for the SCOPE=COMMON data space is added to the access list until the data
space terminates. PROG1 has the ALET for the entry. To give access to COMDS to programs in the other
address spaces, PROG1 passes the ALET to the other programs.

Figure 45. Example of Using a SCOPE=COMMON Data Space

Programming Considerations: When you use SCOPE=COMMON data spaces, keep in mind the following
advice:

• Use the SCOPE=COMMON data space when your program has large amounts of data that it wants to
share across multiple address spaces. For example, to share more than 10 megabytes of commonly
addressable data, consider using a SCOPE=COMMON data space. To use less than 10 megabytes,
consider using CSA.

• To make sure problem state programs cannot access the SCOPE=COMMON data space, use the FPROT
and KEY parameters to assign fetch protection and a specific storage key.

For example, consider that PROG1 in Figure 45 on page 146 used the following parameters on DSPSERV
when it created COMDS:

FPROT=YES,KEY=5

In this case, only programs with PSW key 5 or PSW key 0 can access the data in COMDS. A TSO/E user
(with PSW key 8) would then be unable to either store into or fetch from the data space.

• SCOPE=COMMON data spaces can only be assigned a system storage key (0-7).
• The system can reuse the ALET associated with a SCOPE=COMMON data space after the space

terminates. Therefore, manage the termination and reuse of ALETs for the SCOPE=COMMON data
space. This action is described in “ALET reuse by the system” on page 114.

146 z/OS: z/OS MVS Extended Addressability Guide

• To help solve system problems and error conditions, use the data space dumping services to dump
appropriate areas of the SCOPE=COMMON data space. See “Dumping storage in a data space” on page
156 for information about dumping data space areas.

Your installation can use the IEASYSxx member of SYS1.PARMLIB to set limits on the total number of
SCOPE=COMMON data spaces available to programs. For information about how to set up this member,
see z/OS MVS Initialization and Tuning Reference.

Attaching a subtask and sharing data spaces with it
A program, whether in supervisor state or problem state, can use the ALCOPY=YES parameter on the
ATTACH or ATTACHX macro to attach a subtask and pass a copy of its DU-AL to this subtask. In this way,
the program can share data spaces or hiperspaces with a program running under the subtask. The two
programs both have access to the address/data spaces and hiperspaces that have DU-AL entries at the
time of the ATTACH or ATTACHX macro invocation. Note that it is not possible to pass only a part of the
DU-AL.

A program can use the ETXR option on ATTACH or ATTACHX to specify the address of an end-of-task
routine to be given control after the new task is normally or abnormally terminated. The exit routine
receives control when the originating task becomes active after the subtask is terminated. The routine
runs asynchronously under the originating task. Upon entry, the routine has an empty dispatchable unit
access list (DU-AL). To establish addressability to a data space created by the originating task and shared
with the terminating subtask, the routine can use the ALESERV macro with the ADD parameter, and
specify the STOKEN of the data space.

The following example, represented by Figure 46 on page 147, assumes that program PGM1 (running
under TCBA) has created a SCOPE=SINGLE data space DS1 and established addressability to it. Its DU-AL
has several entries on it, including one for DS1. PGM1 uses the ATTACHX macro to attach subtask TCBB.
PGM1 uses the ALCOPY=YES parameter to pass a copy of its DU-AL to TCBB. It can also pass ALETs in a
parameter to PGM2. Upon return from ATTACHX, PGM1 and PGM2 have access to the same data/address
spaces.

The figure shows the two programs, PGM1 and PGM2, sharing the same data space.

Figure 46. Two programs sharing a SCOPE=SINGLE data space

Example of attaching a task and passing a DU-AL
The following example shows you how TCBA attaches TCBB and passes its DU-AL:

 DSPSERV CREATE,NAME=DSNAME,BLOCKS=DSSIZE,STOKEN=DSSTOK,ORIGIN=DSORG
 ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET
 ATTACHX EP=PGM2,ALCOPY=YES
 .
DSNAME DC CL8'MYDSPACE' DATA SPACE NAME
DSSTOK DS CL8 DATA SPACE STOKEN
DSALET DS F DATA SPACE ALET

Chapter 6. Creating and using data spaces 147

DSORG DS F ORIGIN RETURNED
DSSIZE DC F'2560' DATA SPACE 10 MEGABYTES IN SIZE

The two DU-ALs do not necessarily stay identical; after the attach, PGM1 and PGM2 are free to add and
delete entries on their own DU-ALs.

If TCBA terminates, the system deletes the data space that belonged to TCBA and terminates PGM2.

Sharing data spaces among problem state programs with PSW key 8 through
F

One way many problem state programs with PSW key 8 - F can share the data in a data space is by placing
the entry for the data space on the PASN-AL and obtaining the ALET. In this way, the programs can pass
the ALET to other problem state programs in the address space, allowing them to share the data in the
data space.

The following example describes a problem state program with PSW key 8 - F creating a data space and
sharing the data in that space with other programs in the address space. Additionally, the program assigns
ownership of the data space to its job step task. This assignment allows the data space to be used by
other programs even after the creating program's task terminates. In the example, PGM1 creates a 10-
megabyte data space named SPACE1. It uses the TTOKEN parameter on DSPSERV to assign ownership to
its job step task. Before it issued the DSPSERV CREATE, however, it had to find out the TTOKEN of its job
step task. To do this, it issued the TCBTOKEN macro.

 TCBTOKEN TTOKEN=JSTTTOK,TYPE=JOBSTEP
 .
 DSPSERV CREATE,NAME=DSNAME,BLOCKS=DSSIZE,STOKEN=DSSTOK,ORIGIN=DSORG,
 TTOKEN=JSTTTOK
 ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET,AL=PASN
 .
 .
DSNAME DC CL8'SPACE1 ' DATA SPACE NAME
DSSTOK DS CL8 DATA SPACE STOKEN
DSALET DS F DATA SPACE ALET
DSORG DS F ORIGIN RETURNED
DSSIZE DC F'2560' DATA SPACE 10 MEGABYTES IN 4K UNITS
JSTTTOK DS CL8 TTOKEN OF JOB STEP TASK

Unless PGM1 or the job step TCB explicitly deletes the data space, the system deletes the data space
when the job step task terminates.

Note that when PGM1 issues the ALESERV ADD to add the entry for DS1 to the PASN-AL, the system
checks to see if an entry for DS1 already exists on the PASN-AL. If an entry already exists, and a problem
state program with PSW key 8 - F added the entry, the system rejects the ALESERV ADD request.
However, PGM1 can still access the data space. The system will simply not create a duplicate entry.

Mapping a data-in-virtual object to a data space
Through data-in-virtual, your program can map a data-in-virtual object to a data space. The data-in-virtual
object must be a VSAM linear data set. Use DIV macros to set up the relationship between the object and
the data space. Setting up the relationship between the object and the data space is called "mapping". In
this case, the virtual storage area through which you view the object (called the "window") is in the data
space. The STOKEN parameter on the DIV MAP macro identifies the data space.

The task that issues the DIV IDENTIFY owns the pointers and structures associated with the ID that DIV
returns. Any program can use DIV IDENTIFY; however, the system checks the authority of programs that
try to use subsequent DIV services for the same ID.

For problem state programs with PSW key 8 - F, data-in-virtual allows only the issuer of the DIV
IDENTIFY to use other DIV services for the ID. That means, for example, that if a problem state program
with PSW key 8 issues the DIV IDENTIFY, another problem state program with PSW key 8 cannot issue
DIV MAP for the same ID. The issuer of DIV IDENTIFY can use DIV MAP to map a VSAM linear data set to
a data space window, providing the program owns the data space.

148 z/OS: z/OS MVS Extended Addressability Guide

Supervisor state programs or problem state programs with PSW key 0 - 7 (called "authorized
programs" in this section) can issue DIV IDENTIFY and then have subtasks of that task use the DIV
services (except the ACCESS service) for the same ID. The subtasks must also be authorized. This means
that an authorized program can issue a DIV IDENTIFY and an authorized subtask can issue the DIV MAP
for that ID.

Table 14 on page 149 shows what data-in-virtual requires of the tasks that represent the authorized
programs that issue the DIV macros. The table does not show the IDENTIFY service because data-in-
virtual does not have restrictions on this service.

Table 14. Requirements for authorized programs using the DIV services with data spaces

ACCESS MAP SAVE UNIDENTIFY,
UNACCESS, UNMAP,
RESET

Object is a linear
data set, window
is in a data space

Task that issued the
DIV IDENTIFY.

Task (or authorized
subtask of the task)
that issued the DIV
IDENTIFY. (See
Notes.)

Task (or authorized
subtask of the task)
that issued the DIV
IDENTIFY. The task
does not have to own
the data space.

Task (or authorized
subtask of the task)
that issued the DIV
IDENTIFY. The task
does not have to own
the data space.

• If the program is in supervisor state or PSW key 0 - 7, any task within the caller's primary address space
can own the data space.

• If the program is APF-authorized, but not supervisor state or PSW key 0 - 7, the caller must own or be
the creator of the data space.

Your program can map one data-in-virtual object into more than one data space. Or, it can map several
data-in-virtual objects within a single data space. In this way, data spaces can provide large reference
areas available to your program.

Example of mapping a data-in-virtual object to a data space
Figure 47 on page 149 shows a data-in-virtual object mapped into a data space. The "window" is the
entire data space.

Figure 47. Example of Mapping a Data-in-Virtual Object to a Data Space

The following example maps a data-in-virtual object into the data space illustrated in Figure 47 on page
149. The size of the data space is 10 megabytes, or 2560 blocks. (A block is 4K bytes.)

* CREATE A DATA SPACE, ADD AN ACCESS LIST ENTRY FOR IT
* AND MAP A DATA-IN-VIRTUAL OBJECT INTO DATA SPACE STORAGE

Chapter 6. Creating and using data spaces 149

 .
 DSPSERV CREATE,NAME=DSNAME,STOKEN=DSSTOK,BLOCKS=DSSIZE,ORIGIN=DSORG
 ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET,AL=WORKUNIT,ACCESS=PUBLIC
 .
* EQUATE DATA SPACE STORAGE TO OBJAREA
 .
 L 4,DSORG
 LAM 4,4,DSALET
 USING OBJAREA,4
 .
* MAP THE OBJECT
 .
 DIV IDENTIFY,ID=OBJID,TYPE=DA,DDNAME=OBJDD
 DIV ACCESS,ID=OBJID,MODE=UPDATE
 DIV MAP,ID=OBJID,AREA=DSORG,STOKEN=DSSTOK
 .
* USE THE ALET IN DSALET TO REFERENCE THE
* DATA SPACE STORAGE MAPPING THE OBJECT.
 .
 MVC OBJWORD1,DATAIN
 MVC OBJWORD2,DATA2
 .

* SAVE ANY CHANGES TO THE OBJECT WITH DIV SAVE
 .
 DIV SAVE,ID=OBJID
 DIV UNMAP,ID=OBJID,AREA=DSORG
 DIV UNACCESS,ID=OBJID
 DIV UNIDENTIFY,ID=OBJID
* DELETE THE ACCESS LIST ENTRY AND THE DATA SPACE
 .
 ALESERV DELETE,ALET=DSALET
 DSPSERV DELETE,STOKEN=DSSTOK
 .
DSNAME DC CL8'MYSPACE ' DATA SPACE NAME
DSSTOK DS CL8 DATA SPACE STOKEN
DSALET DS F DATA SPACE ALET
DSORG DS F DATA SPACE ORIGIN
DSSIZE DC F'2560' DATA SPACE 10 MEGABYTES IN SIZE
OBJID DS CL8 DIV OBJECT ID
OBJDD DC AL1(7),CL7'MYDD ' DIV OBJECT DDNAME
DATAIN DC CL4'JOBS'
DATA2 DC CL4'PAYR'
OBJAREA DSECT WINDOW IN DATA SPACE
OBJWORD1 DS F
OBJWORD2 DS F

See the section on data-in-virtual in z/OS MVS Programming: Assembler Services Guide for more help in
using data spaces with data-in-virtual.

Paging data space storage areas into and out of central storage
If you expect to be processing through one or more 4K blocks of data space storage, you can use
DSPSERV LOAD to load these pages into central storage. By loading an area of a data space into central
storage, you reduce the number of page faults that occur while you sequentially process through that
area. DSPSERV LOAD requires that you specify the STOKEN of the data space (on the STOKEN parameter),
the beginning address of the area (on the START parameter), and the size of the area (on the BLOCKS
parameter). The beginning address does not have to be on a 4K-byte boundary, nor does the size have to
be an increment of 4K blocks. (Note that DSPSERV LOAD performs the same action for a data space as the
PGSER macro with the LOAD parameter does for an address space.)

Issuing DSPSERV LOAD does not guarantee that the pages will be in central storage; the system honors
your request according to the availability of central storage. Also, after the pages are loaded, page faults
might occur elsewhere in the system and cause the system to move those pages out of central storage.

If you finish processing through one or more 4K block of data space storage, you can use DSPSERV OUT to
page the area out of central storage. The system will make these real storage frames available for reuse.
DSPSERV OUT requires that you specify the STOKEN, the beginning address of the area, and the size of
the area. (Note that DSPSERV OUT corresponds to the PGSER macro with the OUT parameter.)

When your program has no further need for the data in a certain area of a data space, it can use DSPSERV
RELEASE to free that storage.

150 z/OS: z/OS MVS Extended Addressability Guide

Releasing data space storage
Your program can release storage when it used a data space for one purpose and wants to reuse it for
another purpose, or when your program is finished using the area. To release (that is, initialize to
hexadecimal zeroes and return the resources to the system) the virtual storage of a data space, use the
DSPSERV RELEASE macro. Specify the STOKEN to identify the data space and the START and BLOCKS
parameters to identify the beginning and the length of the area you need to release.

To release storage in a data space, the caller must have a PSW key that is either zero or equal to the key of
the data space storage the system is to release. If the caller is in supervisor state with PSW key 0 - 7 and
is releasing a SCOPE=SINGLE data space, the caller's home or primary address space must be the same
as the owner's home address space. If the caller is in problem state with PSW key 8 - F and is releasing a
SCOPE=SINGLE data space, the caller must own or have created the data space. Otherwise, the system
abnormally ends the caller.

Use DSPSERV RELEASE instead of the MVCL instruction to clear 4K byte blocks of storage to zeroes
because:

• DSPSERV RELEASE is faster than MVCL for very large areas.
• Pages released through DSPSERV RELEASE do not occupy space in processor or auxiliary storage.

If your program is running disabled for I/O or external interrupts, use the DISABLED=YES parameter on
DSPSERV RELEASE. If your program is running disabled and issues DSPSERV RELEASE without
DISABLED=YES, the system abends the program.

How SRBs use data spaces
An SRB cannot own a data space. Through the DSPSERV CREATE macro, a supervisor state or PSW key
0-7 program running under an SRB must assign ownership of a data space to a TCB. The owning TCB must
reside in the SRB's home or primary address space.

Like a TCB, an SRB routine has a DU-AL and can use the PASN-AL of its address space. The DU-AL that the
system gives the SRB routine can be either empty or a copy of the scheduling program's DU-AL. When you
issue the SCHEDULE macro to schedule an SRB, you can obtain:

• An empty DU-AL for the SRB routine by specifying MODE=NONXM. With a mode of NONXM, the SRB
routine runs with its primary, secondary, and home address spaces equal to SRBASCB.

• A copy of the scheduling routine's DU-AL by specifying MODE=FULLXM. If the scheduling program
creates entries in the DU-AL after scheduling the SRB, the SRB routine will not have access to those
data spaces. With a mode of FULLXM, the SRB runs with the same primary, secondary, and home
addressability as the scheduling program.

Figure 48 on page 152 and Figure 49 on page 153 illustrate the attributes of an SRB that is scheduled
with MODE=FULLXM and MODE=NONXM. Table 15 on page 153 identifies the home, primary, and
secondary addressability for each type of invocation of the SCHEDULE macro.

Chapter 6. Creating and using data spaces 151

Figure 48. Scheduling an SRB with an empty DU-AL and in a non-cross memory environment

152 z/OS: z/OS MVS Extended Addressability Guide

Figure 49. Scheduling an SRB with a copy of the scheduling program's DU-AL and in the same cross
memory environment

Table 15. Addressability for each type of invocation of the SCHEDULE macro

 NONXM FULLXM

TCB SRB TCB SRB

HOME AS1 AS3 AS1 AS1

Primary AS1 AS3 AS1 AS1

Secondary AS2 AS3 AS2 AS2

When you use the DSPSERV CREATE macro to create the data space and assign ownership, you must
identify the TCB through the TTOKEN parameter. A TTOKEN identifies a TCB. Unlike TCB addresses,
TTOKENs are unique within the IPL; the system does not assign this same identifier to any other TCB until
the next IPL. If you know the TCB address of the task that is to receive ownership, but not the TTOKEN,
use the TCBTOKEN macro. The TCBTOKEN macro accepts the TCB address and returns a TTOKEN. You
then use this TTOKEN in the DSPSERV CREATE macro.

For more information about TTOKENs, see “Obtaining the TCB identifier for a task (ttoken)” on page 154.

Chapter 6. Creating and using data spaces 153

When an SRB routine terminates, it can delete any data spaces it created. Use the STOKEN parameter on
the DSPSERV DELETE macro to specify the data space.

Obtaining the TCB identifier for a task (ttoken)
Each task in the system is identified in two ways:

• By the TCB address.
• By the TTOKEN of the task. A TTOKEN is an identifier that the system assigns to a TCB. Unlike a TCB

address, a TTOKEN is unique within the IPL; the system does not assign the same identifier to any other
TCB until the next IPL.

Some MVS macros require that you identify the task using the TCB address, some require the TTOKEN,
and some allow you to use either the TCB address or the TTOKEN. If you know a task's TCB address and
need the TTOKEN value or if you need the TTOKEN for the current task, the task that attached the current
task, or the job step task, you can use the TCBTOKEN macro to obtain the value. You can also use the
TCBTOKEN macro if you know the TTOKEN for a task and want the TCB address. Use the TYPE parameter
on the TCBTOKEN macro to specify the value you are looking for:
TOTTOKEN

The system returns the TTOKEN of the task whose TCB address you specify.
CURRENT

The system returns the TTOKEN of the currently active task.
PARENT

The system returns the TTOKEN of the task that attached the currently active task.
JOBSTEP

The system returns the TTOKEN of the job step task for the primary address space.
TOTCB

The system returns the TCB address for the task whose TTOKEN you specify.

Example of an srb routine using a data space
In the following example, an SRB routine creates a data space, assigning ownership to the scheduling TCB
(that is, the TCB that represents the program that schedules the SRB). The example includes the deletion
of the data space. To assign the ownership, the routine must know the TTOKEN of the TCB. For this
example, assume that the scheduling program has passed the address of the scheduling TCB through the
user field in the SRB, SRBPARM. (The system loads the address of this field into GPR 1 when the system
dispatches the SRB.) Before it creates the data space, the routine uses the scheduling TCB address as
input to the TCBTOKEN macro to obtain the TTOKEN of the TCB.

* EXAMPLE ASSUMES CALLER RUNNING WITH PASN=HASN AND THE
* DATA SPACE WILL BE OWNED BY THE TCB THAT SCHEDULED THE SRB
 .
 BAKR 14,0 SAVE CALLER'S STATUS ON STACK
 LAE 10,0 SET BASE REGISTER AR
 BASR 10,0 SET BASE REGISTER GR
 USING *,10
 SAC 0 ENSURE IN PRIMARY MODE
 SYSSTATE ASCENV=P SET THE GLOBAL BIT
 .
* GET HOME ADDRESS SPACE LOCAL LOCK FOR THE TCBTOKEN SERVICE
 .
 SETLOCK OBTAIN,TYPE=LOCAL,MODE=UNCOND,REGS=USE
 .
 USING PSA,0
 L 2,PSAAOLD GET HOME ASCB ADDRESS
 .
* GET ADDRESS OF SCHEDULING TCB (CONTENTS OF SRBPARM) FROM REGISTER 1
 .
 LR 3,1 GET ADDRESS OF SCHEDULING TCB
 .
 TCBTOKEN TYPE=TOTTOKEN,TTOKEN=TCBTTOKN,ASCB=(2),TCB=(3)
 .

154 z/OS: z/OS MVS Extended Addressability Guide

* RELEASE LOCAL LOCK
 SETLOCK RELEASE,TYPE=LOCAL,REGS=USE
 .
 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN,BLOCKS=DSPBLCKS, X
 ORIGIN=DSPCORG,SCOPE=ALL,TTOKEN=TCBTTOKN
 .
 ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
 .
* ESTABLISH ADDRESSABILITY TO THE DATA SPACE
 .
 SAC 512 SWITCH INTO AR ADDRESSING MODE
 SYSSTATE ASCENV=AR SET GLOBAL BIT FOR AR MODE
 .
* USE DATA SPACE
 .
* DELETE DATA SPACE
 .
 ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
 DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
 .
 PR RETURN TO CALLER
 .
DSPCNAME DC CL8'TEMP ' DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE
TCBTTOKN DS CL16 16 BYTE FIELD FOR TCBTOKEN

In the following example, a TCB routine creates a data space and then schedules an SRB which can
immediately address the data space.

* THE SCHEDULING ROUTINE
 .
 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN,BLOCKS=DSPBLCKS, X
 ORIGIN=DSPCORG,SCOPE=ALL,TTOKEN=TCBTTOKN
 .
 ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
 .
* ESTABLISH ADDRESSABILITY TO THE DATA SPACE
 .
 SAC 512 SWITCH INTO AR ADDRESSING MODE
 SYSSTATE ASCENV=AR SET GLOBAL BIT FOR AR MODE
 .
* INITIALIZE DATA SPACE
 .
* USE DATA SPACE
 .
* GET INTO PRIMARY ADDRESSING MODE TO ISSUE GETMAIN AND SCHEDULE
 .
 SAC 0 SWITCH INTO PRIMARY ADDRESSING
* MODE
 SYSSTATE ASCENV=PRIMARY SET GLOBAL BIT FOR PRIMARY MODE
 .
* OBTAIN AND INITIALIZE AN SRB AND AN SRB PARAMETER AREA
 .
 GETMAIN RU,SP=213,LV=PSRBSIZE GET THE STORAGE
 .
 USING SRB,1
 XC SRB,SRB CLEAR THE SRB
 MVC SRBPTCB,PSATOLD SET PURGE TCB ADDRESS TO CURRENT
* TCB ADDRESS
 L 8,PSAAOLD LOCATE CURRENT ASCB
 USING ASCB,8
 MVC SRBPASID,ASCBASID SET PURGE ASID TO CURRENT ASID
 MVC SRBRMTR,RMTRADDR SET RMTR ADDRESS
 OI SRBRMTR,X'80000000' SET ADDRESS TO 31-BIT MODE
 LA 7,ENTSRB GET ENTRY POINT ADDRESS
 ST 7,SRBEP SET ENTRY POINT ADDRESS
 OI SRBEP,X'80000000' SET ADDRESS TO 31-BIT MODE
 LA 2,SRBEND PARAMETERS FOLLOW SRB
 ST 2,SRBPARM SET PARAMETER ADDRESS
 USING PARMS,2
 MVC DALET,DSPCALET SAVE DATASPACE ALET IN PARAMETERS
 XC ECB1,ECB1 CLEAR THE ECB
 DROP 2

Chapter 6. Creating and using data spaces 155

 .
* SCHEDULE SRB WHICH USES THE DATASPACE
 .
 SCHEDULE SRB=(1),MODE=FULLXM
 .
* FREE ONLY THE SRB STORAGE
 .
 FREEMAIN RU,LV=SRBSIZE,SP=213
 .
* WAIT FOR SRB TO COMPLETE
 .
 WAIT ECB=ECB1
 .
* FREE THE PARAMETER STORAGE
 .
 FREEMAIN RU,LV=8,SP=213
 .
* DELETE DATA SPACE
 .
 ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
 DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
 .
 .
DSPCNAME DC CL8'TEMP ' DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE
PSRBSIZE DC A(SRBSIZE+8) SIZE OF AN SRB PLUS AN 8 BYTE
* PARAMETER AREA
RMTRADDR DC A(RMTRXX)
*
PARMS DSECT SRB PARAMETER AREA
DALET DS F DATASPACE ALET FOR SRB
ECB1 DS F ECB FOR SRB TO POST
 .
* THE SRB ROUTINE
 .
 SRBENT DS 0H
 .
 LR 4,14 SAVE RETURN ADDRESS
 .
* ESTABLISH ADDRESSABILITY TO THE DATA SPACE
 .
 USING PARMS,1
 LAM 5,5,DALET USE REGISTER 5 TO ADDRESS DATA
 SPACE
 .
 SAC 512 SWITCH INTO AR ADDRESSING MODE
 SYSSTATE ASCENV=AR SET GLOBAL BIT FOR AR MODE
 .
* USE DATA SPACE
 .
* POST THE WAITING TASK
 .
 SAC 0 SWITCH INTO PRIMARY ADDRESSING
* MODE
SYSSTATE ASCENV=PRIMARY SET GLOBAL BIT FOR PRIMARY MODE
 .
 POST ECB1,LINKAGE=SYSTEM
 .
* EXIT
 .
 BR 4

Dumping storage in a data space
Use the following macros to dump data space storage.

• Use the DSPSTOR parameter on the SNAPX macro to dump storage from any data space that the caller
has addressability to, providing the program also has a TCB key (for SCOPE=SINGLE and SCOPE=ALL
data spaces) or a PSW key (for a SCOPE=COMMON data space) that matches the storage key of the data
space.

156 z/OS: z/OS MVS Extended Addressability Guide

• Use the DUMPOPX parameters on the ABEND macro and the SETRP macro with the list form of the
SNAPX macro to dump data space storage.

• Use the LISTD and SUMLSTL parameters on the SDUMPX macro to dump certain ranges of data space
storage:

– LISTD identifies (by STOKEN) the data space that contains storage to be added to the main part of the
dump.

– SUMLSTL identifies (by ALET) the data space that contains the storage to be added to the summary
part of the dump.

For the syntax of SNAPX, see z/OS MVS Programming: Assembler Services Reference IAR-XCT. For the
syntax of SDUMPX, see z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU.

Using data spaces efficiently
Although a TCB can own many data spaces, it is important that it reference these data spaces carefully. It
is more efficient for the system to reference the same data space ten times, than it is to reference each of
ten data spaces one time. For example, an application might have a master application region that has
many users, each one having a data space. System performance is best if each program completes its
work with one data space before it starts work with another data space.

MVS limits the number of access list entries and the number of data spaces available to each TCB.
Therefore, given a choice, you must use one large data space rather than a number of small data spaces
that add up to the size of the one large data space.

Chapter 6. Creating and using data spaces 157

158 z/OS: z/OS MVS Extended Addressability Guide

Chapter 7. Creating and using hiperspaces

A hiperspace is a range of up to two gigabytes of contiguous virtual storage addresses that a program can
use as a buffer. Like a data space, a hiperspace holds only data, not common areas or system data; code
does not execute in a hiperspace. Unlike a data space, data is not directly addressable.

The DSPSERV macro manages hiperspaces. The TYPE=HIPERSPACE parameter tells the system that it is
to manage a hiperspace rather than a data space. Use DSPSERV to:

• Create a hiperspace
• Release an area in a hiperspace
• Delete a hiperspace
• Expand the amount of storage in a hiperspace currently available to a program.

To manipulate data in a hiperspace, your program brings the data, in blocks of 4K bytes, into a buffer area
in its address space. The program can use the data only while it is in the address space. You can think of
this buffer area as a "view" into the hiperspace. The HSPSERV macro write service performs the transfer
of the data to the hiperspace. The HSPSERV read service transfers the hiperspace data back to the
address space buffer area.

The data in the hiperspace and the buffer area in the address space must both start on a 4K byte
boundary.

A program would use a hiperspace rather than a data space if the program needs an area outside the
address space primarily for storage purposes, and not for data manipulation. If you are uncertain whether
a hiperspace or a data space is the best choice for your program, see “Basic decision: data space or
hiperspace” on page 5.

Use this section to help you create, use, and delete hiperspaces. It describes some of the characteristics
of hiperspaces, how to move data in and out of a hiperspace, and how data-in-virtual can help you control
data in hiperspaces. In addition, the following books contain the syntax and parameter descriptions for
the macros that are mentioned in this section:

• z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
• z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
• z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
• z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

© Copyright IBM Corp. 1988, 2020 159

Managing hiperspace storage
Managing storage in hiperspaces differs from managing storage in address spaces. Keep the following
advisory notes in mind:

• When you create a hiperspace, request a maximum size large enough to handle your application's needs
and, optionally, an initial size large enough to meet its immediate needs.

• You are responsible for keeping track of hiperspace storage. You cannot use the system services, such
as the STORAGE, GETMAIN, FREEMAIN, or CPOOL macros, or the callable cell pool services to manage
this area.

• If you are not going to use an area of a hiperspace again, release that area to free the resources that
back the area.

• When you are finished using a hiperspace, delete it.

Limiting hiperspace use
The use of hiperspace consumes system resources such as expanded and auxiliary storage. Programmers
responsible for tuning and maintaining MVS can control the use of these resources. Through the system
management facility (SMF) installation exit IEFUSI, an installation can set limits on the amount of virtual
storage that programs in each address space can use for data space and hiperspace.

See z/OS MVS Installation Exits for information on using IEFUSI.

Managing hiperspace storage across a checkpoint/restart
operation

A program can use checkpoint/restart while it has one or more entries for a hiperspace on its access list
(DU-AL or PASN-AL). If the program has specified on the ALESERV macro that the system is to ignore
entries made to the access list for the hiperspace for checkpoint/restart processing (CHKPT=IGNORE),
the CHKPT macro processes successfully.

A program that specifies CHKPT=IGNORE assumes full responsibility for managing the hiperspace
storage. Managing the hiperspace storage includes the following:

• If any program depends on the contents of the hiperspace and the data cannot be recreated or obtained
elsewhere, the responsible program must save the contents of the hiperspace prior to the checkpoint
operation.

• Once the checkpoint operation has completed, the responsible program must perform the following
during restart processing to successfully manage the hiperspace storage.

1. Ensure that the hiperspace exists. The original hiperspace might or might not exist. If the original
hiperspace does not exist, the responsible program must perform a DSPSERV CREATE
TYPE=HIPERSPACE to recreate the hiperspace.

2. Perform an ALESERV ADD of the hiperspace, original or recreated, to the program's access list to
obtain a new ALET.

3. If, in addition to having a dependency on the hiperspace, any program also depends on the contents
of the hiperspace storage, the responsible program must refresh the contents of the hiperspace
storage. The program must use the new ALET to reference the hiperspace.

4. The responsible program must make the new ALET available to any program that has a dependency
on the hiperspace. The STOKEN, changed or unchanged, must be made available to any program that
needs to perform an ALESERV ADD to access the hiperspace.

See z/OS DFSMSdfp Checkpoint/Restart for more information about the CHKPT macro.

160 z/OS: z/OS MVS Extended Addressability Guide

Relationship between the hiperspace and its owner
Your program creates a hiperspace, but it cannot own the hiperspace. If the unit of work that represents
the program is a TCB, that TCB is the owner of the hiperspace unless the program assigns ownership to
another TCB. If the unit of work is an SRB, the program must assign ownership to a TCB. Because of this
transfer of ownership, the owner of the hiperspace and the creator of the hiperspace are not always the
same TCB.

The virtual area of a hiperspace is available to programs that run under the TCB that owns the hiperspace
and is available, in some cases, to other programs. When a TCB terminates, the system deletes any
hiperspaces the TCB owns. The system swaps a hiperspace in and out as it swaps in and out the address
space that dispatched the owning TCB. Thus, hiperspaces that are shared by programs that run in other
address spaces must be owned by TCBs in non-swappable address spaces.

A hiperspace can remain active even after the creating TCB terminates. When a program creates a
hiperspace, it can assign ownership of the hiperspace to a TCB that will outlive the creating TCB. In this
case, the termination of the creating TCB does not affect the hiperspace.

Because hiperspaces belong to TCBs, keep in mind the relationship between the program and the TCB
under which the program runs. For simplicity, however, this section describes hiperspaces as if they
belong to programs. For example, "a program's hiperspace" means "the hiperspace that belongs to the
TCB that represents the program."

Serializing use of hiperspace storage
At many installations, users must share access to data in a hiperspace. Users who are updating data for
common use by other programs need exclusive access to that data for the period of time between the
transfer of data from the hiperspace to the return of data to the hiperspace. If several users tried to
update the same data at the same time, the result would be incorrect or damaged data. To protect the
data integrity, you might need to serialize access to the data in the hiperspace.

Serializing the use of the storage in a hiperspace requires similar methods to those you would use to
serialize the use of virtual storage in an address space. Use the ENQ and DEQ macros or establish your
own protocol for serializing the use of the hiperspace.

Standard and expanded storage only hiperspaces
You have a choice of creating a standard hiperspace or an ESO hiperspace. The standard hiperspace is
backed with expanded storage and auxiliary storage, if necessary. Through the buffer area in the address
space, your program can view or "scroll" through the hiperspace.

• HSTYPE=SCROLL on DSPSERV creates a standard hiperspace.
• HSPSERV SWRITE and HSPSERV SREAD transfer data to and from a standard hiperspace.

The ESO hiperspace is backed with expanded storage only. It is a high-speed buffer area, or "cache" for
data that your program needs.

• HSTYPE=CACHE on DSPSERV creates an ESO hiperspace.
• HSPSERV CWRITE and HSPSERV CREAD transfer data to and from an ESO hiperspace.

Standard hiperspace
Standard hiperspace is available to all programs. The data in a standard hiperspace is predictable; that is,
your program can write data out to a standard hiperspace and count on retrieving it.

The best way to describe how your program can scroll through a standard hiperspace is through an
example. Figure 50 on page 162 shows a hiperspace that has four scroll areas, A, B, C, and D. After the
program issues an HSPSERV SREAD for hiperspace area A, it can make changes to the data in the buffer
area in its address space. HSPSERV SWRITE then saves those changes. In a similar manner, the program

Chapter 7. Creating and using hiperspaces 161

can read, make changes, and save the data in areas B, C, and D. When the program reads area A again, it
finds the same data that it wrote to the area in the previous HSPSERV SWRITE to that area.

Figure 50. Example of scrolling through a standard hiperspace

A standard hiperspace gives your program an area where it can:

• Store data, either generated by your program or moved (through address space buffers) from DASD
• Scroll through large amounts of data.

After you finish using the hiperspace, you can:

• Move the changed data (through address space buffers) to DASD, making the hiperspace data
permanent

• Delete the hiperspace data with the deletion of the hiperspace or the termination of the owner of the
hiperspace, treating the hiperspace data as temporary.

Standard hiperspaces can be non-shared and shared, depending on how you code the SHARE parameter
on DSPSERV.

• Generally, a program can access a non-shared standard hiperspace only if it is dispatched in the
owner's home address space. However, a program not dispatched in the owner's home address space
and using an access list entry token (ALET) can access a non-shared standard hiperspace through the
owner's home primary address space access list (PASN-AL).

• A program can share a shared standard hiperspace with programs that are dispatched in any address
space.

You can extend the use of hiperspaces by supplying an ALET on the HSPSERV macro. To learn the
differences between non-shared and shared standard hiperspaces and how you can extend their use, see
“Accessing hiperspaces” on page 169.

If your application wants to save a permanent copy of the data from a standard hiperspace, consider
using the services of data-in-virtual. See “Using data-in-virtual with standard hiperspaces” on page 192.

Expanded storage only hiperspaces
An ESO hiperspace is available to supervisor state programs or problem state programs with PSW keys 0
through 7. To use the hiperspace, a program must have the STOKEN for the hiperspace. An ESO
hiperspace is backed by expanded storage only. To back this storage, the system does not use auxiliary
storage slots; data movement does not include paging I/O operations. However, in a peak-use situation:

• The system might not be able to back the data you are writing to the hiperspace.
• The system might take away the expanded storage that backs the hiperspace.

162 z/OS: z/OS MVS Extended Addressability Guide

These actions cause the data in an ESO hiperspace to be volatile. Therefore, use an ESO hiperspace only if
you are prepared to handle unsuccessful read operations. You can use this hiperspace to get quick access
to the data there. But, in a peak-use condition, when the system takes the expanded storage away from
the hiperspace, the program must be prepared to read data from a permanent backup copy on DASD or
recreate the data that was in the hiperspace.

When the system swaps the address space out, it discards the data in any hiperspace that is owned by
TCBs that are running in the address space. For this reason, you might consider making such an address
space non-swappable.

Summary of the differences
Table 16 on page 163 shows some important differences between standard (both non-shared and
shared) hiperspaces and ESO hiperspaces:

Table 16. Comparison of standard and ESO hiperspaces

Question Standard hiperspace ESO hiperspace

What authorization do you need to create
the hiperspace?

Any, for non-shared;
supervisor state or PSW key
0-7 for shared.

Supervisor state or PSW key
0-7

What authorization do you need to use
the hiperspace?

Any, for non-shared;
depends on use of an ALET
for shared.

Supervisor state or PSW key
0-7

How do you write data to the hiperspace? By using HSPSERV SWRITE By using HSPSERV CWRITE

How do you read data from the
hiperspace?

By using HSPSERV SREAD By using HSPSERV CREAD

Does the system save the data in the
address space buffer after a write
operation?

No Yes, unless you use
KEEP=NO on HSPSERV

Does the system save the data in the
hiperspace after a read operation?

Yes, unless you use
RELEASE=YES on HSPSERV

Yes (although hiperspace
data is always volatile)

What happens to the data in the
hiperspace when the system swaps the
owning address space out?

The system preserves the
data.

The system discards the
data.

Rules for creating, deleting, and using hiperspace
To protect data spaces from unauthorized use, the system uses certain rules to determine whether a
program can create, delete, or extend a hiperspace or whether it can access data in a hiperspace. The
rules for problem state programs with PSW key 8 through F differ from the rules for programs that are
supervisor state or PSW key 0 through 7. Table 17 on page 164 summarizes these rules:

Chapter 7. Creating and using hiperspaces 163

Table 17. Creating, deleting, and using hiperspace

Function Type of
hiperspace

A problem state, key 8 - F
program:

A supervisor state or key 0-7
program:

CREATE Non-shared
standard

Can create a non-shared standard
hiperspace.

Can create the hiperspace if its
primary or home address space is
the same as the intended owner's
home address space.

Shared standard
and ESO

Cannot create shared or ESO
hiperspaces.

Can create the hiperspace if its
primary or home address space is
the same as the intended owner's
home address space.

DELETE Non-shared
standard

Can delete the non-shared
standard hiperspaces it owns if
its PSW key matches the storage
key of the hiperspace.

Can delete a non-shared standard
hiperspace if its primary or home
address space is the same as the
owner's home address space.

Shared standard
and ESO

Cannot delete a shared standard
or ESO hiperspace.

Can delete the hiperspace if its
primary or home address space is
the same as the owner's home
address space.

RELEASE Non-shared
standard

Can release storage in its non-
shared standard hiperspaces if its
PSW key matches the storage key
of the hiperspace.

Can release storage in a non-shared
standard hiperspace if its primary or
home address space is the same as
the owner's home address space
and its PSW key matches the storage
key of the hiperspace.

Shared standard
and ESO

Cannot release storage in a
shared standard or ESO
hiperspace.

Can release storage in the
hiperspace if its PSW key matches
the storage key of the hiperspace.

EXTEND Non-shared
standard shared
standard and ESO

Can extend the current size only if
it owns the hiperspace.

Can extend the current size.

Creating a hiperspace
To create a hiperspace, issue the DSPSERV CREATE macro with the TYPE=HIPERSPACE parameter. MVS
gives you contiguous 31-bit virtual storage of the size you specify and initializes the storage to
hexadecimal zeroes. The entire hiperspace has the storage key that you request, or, by default, the key
that matches your own PSW key. Use the HSTYPE parameter to specify whether the hiperspace is to be
standard or ESO. If standard, you can use the SHARE parameter to request either a non-shared standard
(SHARE=NO, the default) or a shared standard (SHARE=YES) hiperspace. If you omit both HSTYPE and
SHARE, you create a non-shared standard hiperspace.

On the DSPSERV macro, you are required to specify:

• The name of the hiperspace (NAME parameter). To ask DSPSERV to generate a hiperspace name unique
to the address space, use the GENNAME parameter. DSPSERV will return the name it generates at the
location you specify on the OUTNAME parameter. See “Choosing the name of the hiperspace” on page
165.

• A location where DSPSERV is to return the STOKEN of the hiperspace (STOKEN parameter). DSPSERV
CREATE returns a STOKEN that you can use to identify the hiperspace to other DSPSERV services and to
the HSPSERV and DIV macros.

Other information you might specify on the DSPSERV macro is:

164 z/OS: z/OS MVS Extended Addressability Guide

• The maximum size of the hiperspace and its initial size (BLOCKS parameter). If you do not code
BLOCKS, the hiperspace size is determined by defaults set by your installation. In this case, use the
NUMBLKS parameter to tell the system where to return the size of the hiperspace. See “Specifying the
size of the hiperspace” on page 166.

• A location where DSPSERV can return the address (either 0 or 4096) of the first available block of the
hiperspace (ORIGIN parameter). See “Identifying the origin of the hiperspace” on page 168.

• A request that the hiperspace not be fetch-protected (FPROT parameter). See “Protecting hiperspace
storage” on page 167.

• A request that the hiperspace be shared standard (SHARE parameter). See “Creating a non-shared or
shared standard Hiperspace” on page 168.

• The storage key of the hiperspace (KEY parameter). Use CALLERKEY to specify that the storage key of
the hiperspace is to match your PSW key (or take the default for the KEY parameter). See “Protecting
hiperspace storage” on page 167.

• The TTOKEN of the TCB to which you assign ownership of the hiperspace (TTOKEN parameter). See
“How SRBs use hiperspaces” on page 196.

• A request that the system persist in trying to keep the data in an ESO hiperspace (CASTOUT=NO). See
“Creating an expanded storage only Hiperspace” on page 168.

Choosing the name of the hiperspace
The names of hiperspaces and data spaces must be unique within an address space. You can choose the
name yourself or you can ask the system to generate a unique name for the hiperspace. To keep you from
choosing names that it uses, MVS has some specific rules for you to follow. These rules are listed in the
DSPSERV description under the NAME parameter in z/OS MVS Programming: Authorized Assembler
Services Reference ALE-DYN.

Use the GENNAME parameter on DSPSERV to ask the system to generate a unique name for your
hiperspace. GENNAME=YES generates a unique name that has as its last one to three characters the first
one to three characters of the name you specify on the NAME parameter.

Example 1:

If PAY␣␣␣␣␣ is the name you supply on the NAME parameter and you code GENNAME=YES, the
system generates the following name:

nccccPAY

where the system generates the digit n and the characters cccc, and appends the characters PAY that you
supplied.

Example 2:

If J␣␣␣␣␣␣␣ is the name you supply on the NAME parameter and you code GENNAME=YES, the
system generates the following name:

nccccJ

GENNAME=COND checks the name you supply on the NAME parameter. If it is already used for a data
space or a hiperspace, DSPSERV supplies a name with the format described for the GENNAME=YES
parameter. To learn the unique name that the system generates for the hiperspace you are creating, use
the OUTNAME parameter.

Note that the system has a supply of 99,999 names it can generate for data spaces and hiperspaces for a
single address space. If the system tries to generate a name and finds that it has used up the supply of
names, it rejects the program with a return code of "08" and a reason code of "0012". The system
restores the supply of names whenever the number of such data spaces and hiperspaces owned by the
address space goes to zero. Therefore, if your program is a batch job and it is creating a hiperspace, do
not:

• Request that the system generate a name (through the GENNAME parameter), and

Chapter 7. Creating and using hiperspaces 165

• Assign ownership to an initiator task or a task higher than the initiator task in the TCB chain

Specifying the size of the hiperspace
When you create a hiperspace, you tell the system on the BLOCKS parameter how large to make that
space, the largest size being 524,288 blocks. (The product of 524288 times 4K bytes is 2 gigabytes.) If
your processor does not support an origin of zero, the limit is actually 4096 bytes less than 2 gigabytes.

Before you code BLOCKS, you should know two facts about the control an installation has on the size of
data spaces and hiperspaces.

• An installation can set limits on the amount of storage available for each address space for all data
spaces and hiperspaces with a storage key of 8 through F. If your request for this kind of space would
cause the installation limit to be exceeded, the system rejects the request with a nonzero return code
and a reason code.

• An installation sets a default size for data spaces and hiperspaces; you should know this size. If you do
not use the BLOCKS parameter, the system creates a hiperspace with the default size. (The IBM default
size is 239 blocks.)

If you create the hiperspace with a storage key of 0 through 7, the system does not check the size against
the total storage already used for data spaces and hiperspaces. If you create the hiperspace with a
storage key of 8 through F, the system adds the initial size of the space to the cumulative total of all data
spaces and hiperspaces for the address space and checks this total against the installation limit for an
address space.

For information on the IBM defaults and how to change them, see “Limiting hiperspace use” on page 160.

The BLOCKS parameter allows you to specify a maximum size and initial size value.

• The maximum size identifies the largest amount of storage you will need in the hiperspace.
• An initial size identifies the amount of the storage you will immediately use.

As you need more space in the hiperspace, you can use the DSPSERV EXTEND macro to increase the size
of the available storage, thus increasing the storage in the hiperspace that is available for the program.
The amount of available storage is called the current size. (At the creation of a hiperspace, the initial size
is the same as the current size.) When it calculates the cumulative total of data space and hiperspace
storage, the system uses the current size of the hiperspace.

If you know the default size and want a hiperspace smaller than or equal to that size, use
BLOCKS=maximum size or omit the BLOCKS parameter.

If you know what size hiperspace you need and are not concerned about exceeding the installation limit,
set the maximum size and the initial size the same. BLOCKS=0, the default, establishes a hiperspace with
the maximum size and the initial size both set to the default size.

If you do not know how large a hiperspace (with storage key 8 - F) you will eventually need or you are
concerned with exceeding the installation limit, set the maximum size to the largest size you might
possibly use and the initial size to a smaller amount, the amount you currently need.

Use the NUMBLKS parameter to request that the system return the size of the hiperspace it creates for
you. You would use NUMBLKS, for example, if you did not specify BLOCKS and do not know the default
size.

Figure 51 on page 167 shows an example of using the BLOCKS parameter to request a hiperspace with a
maximum size of 100,000 bytes of space and a current size of 20,000 bytes.

 DSPSERV CREATE,. . .,BLOCKS=(HSMAX,HSINIT)
 .
HSMAX DC A((1000000+4095)/4096) HIPERSPACE MAXIMUM SIZE
HSINIT DC A((20000+4095)/4096) HIPERSPACE INITIAL SIZE

166 z/OS: z/OS MVS Extended Addressability Guide

Figure 51. Example of specifying the size of a hiperspace

Figure 61 on page 191 shows how you can extend the available storage of the hiperspace in Figure 51 on
page 167.

Protecting hiperspace storage
If a supervisor state or PSW key 0 - 7 program wants the user of the hiperspace to have read-only access,
it can use the FPROT and KEY parameters on DSPSERV. KEY assigns the storage key for the hiperspace,
and FPROT specifies whether the storage in the hiperspace is to be fetch-protected. Storage protection
and fetch protection rules apply for the entire hiperspace. For example, a program cannot reference
storage in a fetch-protected hiperspace without holding the PSW key that matches the storage key of the
hiperspace or PSW key 0.

Figure 52 on page 168 shows an ESO hiperspace, HSX, with a storage key of 5, owned by a subsystem.
PGM1 with PSW key of 8 has access to the hiperspace; however, its PSW key does not match the storage
key of the hiperspace. Its ability to access the hiperspace depends on how the creating program coded
the FPROT parameter on the DSPSERV macro.

• If the creating program specified no fetch-protection (FPROT=NO), PGM1 can fetch from (using
HSPSERV CREAD) but not store into the hiperspace (using HSPSERV CWRITE).

• If the creating program specified fetch-protection (FPROT=YES), PGM1 can neither fetch from nor store
into the hiperspace.

In Figure 52 on page 168, PGM1 has fetch and store capability to the hiperspace; the subsystem provides
a PC routine with a PSW key 5 in the common area. To access the hiperspace, PGM1 can PC to the PC
routine and have access to the hiperspace through the HSPSERV read and write operations. In the same
way, other programs can PC to the PC routine and use the data in the hiperspace.

Chapter 7. Creating and using hiperspaces 167

Figure 52. Protecting storage in a hiperspace

Identifying the origin of the hiperspace
Some processors do not allow the hiperspace to start at address zero; these hiperspaces start at the
address 4096. When you use DSPSERV CREATE, you can count on the origin of the data space staying the
same within the same IPL. To learn the starting address, either (1) create a hiperspace of 1 block of
storage more than you need and then assume that the hiperspace starts at 4096 or (2) use the ORIGIN
parameter. If you use ORIGIN, the system returns the beginning address of the hiperspace to the location
you specify.

An example of the problem you want to avoid in addressing hiperspace storage is described as follows:

Suppose a program creates a hiperspace of 1 megabyte and assumes the data starts at zero when it
really begins at 4096. Then, if the program used the address zero in the hiperspace, the system
abends the program.

Creating a non-shared or shared standard Hiperspace
The HSTYPE parameter tells the system which kind of hiperspace you want to create. HSTYPE=SCROLL
identifies the standard hiperspace, the kind of hiperspace that your program can scroll through.
HSTYPE=SCROLL is the default.

SHARE=YES specifies a shared standard hiperspace; SHARE=NO, the default, specifies a non-shared
standard hiperspace.

Example of creating a standard Hiperspace

The following example creates a non-shared standard hiperspace:

*
 DSPSERV CREATE,NAME=HSNAME,TYPE=HIPERSPACE,HSTYPE=SCROLL, X
 BLOCKS=20,STOKEN=HSSTOKEN,ORIGIN=HSORG
*
HSNAME DC CL8'SCROLLHS' * NAME FOR THE HIPERSPACE
HSSTOKEN DS CL8 * STOKEN OF THE HIPERSPACE
HSORG DS F * HIPERSPACE ORIGIN

Creating an expanded storage only Hiperspace
HSTYPE=CACHE tells the system that your program (in supervisor state or PSW key 0 - 7) wants an ESO
hiperspace, the kind of hiperspace that offers your program a high-speed cache area.

168 z/OS: z/OS MVS Extended Addressability Guide

The CASTOUT parameter on DSPSERV is available only for ESO hiperspaces. This parameter gives the
system some indication of the priority of the data in the hiperspace. CASTOUT tells the system how hard it
should try to keep the data in the hiperspace. The system looks at this parameter when it makes the
decision to take the expanded storage backing from the hiperspace. If you use CASTOUT=NO, the system
persists in trying to keep the hiperspace data. It tells the system to give the hiperspace higher priority
when it searches for pages to remove from expanded storage when a shortage arises.

Note that specifying CASTOUT=NO can place a heavy demand on expanded storage and does not always
protect the data. Use it only when you are willing to sacrifice overall system performance to have better
availability of the data. Certain factors might cause the pages to be discarded regardless of CASTOUT=NO.
For example, if the system swaps out the address space that owns the hiperspace, it discards pages
without regard to CASTOUT. To prevent loss of data due to a swapped-out address space, make the
address space that owns the hiperspace non-swappable.

Example of creating an ESO Hiperspace

The following example creates an ESO hiperspace:

* CREATE AN ESO HIPERSPACE
 .
DSPSERV1 DSPSERV CREATE,NAME=NAME,STOKEN=STOKEN,ORIGIN=ORIGIN X
 BLOCKS=BLOCKS,TYPE=HIPERSPACE,HSTYPE=CACHE,CASTOUT=NO
 .
* CONSTANTS AND VARIABLES
 .
NAME DC CL8'HSDS01 ' NAME OF THE HIPERSPACE
BLOCKS DC F'100' SIZE OF THE HIPERSPACE IN BLOCKS
ORIGIN DS AL4 START ADDRESS OF THE HIPERSPACE
STOKEN DS CL8 STOKEN RETURNED FROM DSPSERV CREATE

Accessing hiperspaces
The HSPSERV macro service controls the use of a hiperspace. HSPSERV requires that the program that is
accessing the hiperspace specify the STOKEN of the hiperspace. The program could have received the
STOKEN from DSPSERV or received it from another program. HSPSERV considers the following factors
before it allows a program to access a hiperspace:

• The authority of the caller
• The type of hiperspace: non-shared standard, shared standard, or ESO
• Whether the caller is in cross memory mode
• Whether the caller gives an access list entry token (ALET) for the hiperspace to HSPSERV
• On a write operation, whether the PSW key of the accessing program matches the storage key of the

hiperspace, or is zero.

When you access hiperspaces, you are not required to use an ALET. However, there are benefits to using
ALETs with hiperspaces. By obtaining an ALET, a program builds a connection between the program and a
hiperspace. When the program supplies the ALET on HSPSERV, the program can:

• Access some hiperspaces that it could not otherwise access. See “How problem state programs with
PSW key 8 through F use a hiperspace” on page 170 and “How supervisor state or PSW key 0 through 7
programs use hiperspaces” on page 172.

• Take advantage of faster or more efficient data transfer. See “Obtaining improved data transfer to and
from a hiperspace” on page 180.

A program has two ways to obtain an ALET:

• From another program, as a passed parameter
• From the ALESERV ADD macro, if the program has the STOKEN for the hiperspace.

The decisions of whether to create a non-shared standard or shared standard hiperspace and whether to
obtain an ALET depend on how you plan to share the data in the space. The sections that follow help you

Chapter 7. Creating and using hiperspaces 169

understand which hiperspaces HSPSERV allows problem state and supervisor state programs to access,
and also the benefits of having an ALET. “Obtaining an ALET for a hiperspace” on page 174 describes how
to obtain an ALET.

How an ALET connects a program to a hiperspace
An ALET is an index to an access list. An access list is a table where each entry represents an address
space, data space, or hiperspace that programs can access. Each program has two access lists: a primary
address space access list (PASN-AL) and a dispatchable unit access list (DU-AL).

Each address space has one PASN-AL. It is available to any program that has that address space as its
primary address space.
Each TCB and SRB has one DU-AL. It is available to any program that the TCB or SRB represents.

To use one of these access lists, the program needs the ALET that indexes the access list. It uses the ALET
as input on the HSPALET parameter on HSPSERV.

Chapter 5, “Using access registers,” on page 93 describes ALETs for data spaces and address spaces; for
an illustration of a DU-AL and PASN-AL, see Figure 27 on page 101. Chapter 8, “Creating address spaces,”
on page 197 6 limits its discussion to ALETs for hiperspaces.

How problem state programs with PSW key 8 through F use a hiperspace
A problem state program with PSW key 8 - F can use the non-shared hiperspace it created. Figure 53 on
page 170 illustrates this use.

Figure 53. A problem state program using a non-shared standard hiperspace

By obtaining an ALET, a problem state program with PSW key 8 - F obtains the benefit of the move-page
facility and also shares a hiperspace with a subtask. For example, suppose a problem state program
obtains an ALET, attaches a subtask using the ALCOPY parameter on the ATTACH macro, and passes the
ALET and STOKEN to the subtask. These actions allow the task and its subtask to share the same non-
shared hiperspace. Two problem state programs can share a SCOPE=SINGLE data space in the same way.
Turn to “How problem state programs with PSW key 8 through F use a hiperspace” on page 170 for an
such an example.

Can an authorized program set up an environment in which an unauthorized program can share
hiperspaces? An authorized program (supervisor state with PSW key 0 - 7) can set up addressability for an
unauthorized program (problem state with PSW key 8 - F) and increase the use of hiperspaces by those
unauthorized programs. This section contains two examples of this increased capability.

• Example 1 shows an unauthorized program using a shared or non-shared standard hiperspace through
an entry on the PASN-AL. Figure 54 on page 171 illustrates the first example.

• Example 2 shows an unauthorized program using a hiperspace while the program is in cross memory
mode. Figure 55 on page 172 illustrates the second example.

170 z/OS: z/OS MVS Extended Addressability Guide

Example 1 shows how an entry on the PASN-AL allows all programs in the address space, including
unauthorized programs, to use either non-shared or shared standard hiperspaces. An authorized program
obtains the hiperspace, places an entry on the PASN-AL, and obtains the ALET. The program then passes
the ALET and STOKEN to other programs in the address space. Even programs that space-switch into the
address space can use the hiperspace, providing they receive the ALET and STOKEN. Figure 54 on page
171 illustrates this case.

Figure 54. Example 1: An unauthorized program using a standard hiperspace

Example 2 shows how an authorized program can set up a cross memory environment that allows an
unauthorized program to space-switch and still have access to a non-shared hiperspace. Having created
the non-shared standard hiperspace HS1, PGM1 can obtain an ALET on the DU-AL, space-switch, and use
the ALET and STOKEN to access HS1. Figure 55 on page 172 illustrates this use of a non-shared
hiperspace.

Chapter 7. Creating and using hiperspaces 171

Figure 55. Example 2: An unauthorized program using a standard hiperspace

Summary of unauthorized programs' use of hiperspaces
Table 18 on page 172 describes the rules for accessing hiperspaces for problem state programs with PSW
key 8 - F.

Table 18. Hiperspaces that problem state programs with PSW 8 - F can access

If the program does not have an ALET: If the program has an ALET:

It can access a non-shared standard hiperspace
that it owns. It cannot be in cross memory mode.

It can access a non-shared standard hiperspace.
It can be in cross memory mode.

It cannot access a shared standard hiperspace. It can access a shared standard hiperspace. It can
be in cross memory mode.

It cannot access an ESO hiperspace.

How supervisor state or PSW key 0 through 7 programs use hiperspaces
Supervisor state or programs with PSW key 0 - 7 can create and control all three types of hiperspaces.
Table 19 on page 173 identifies the three types of hiperspaces that these programs can use and some
restrictions on this use.

172 z/OS: z/OS MVS Extended Addressability Guide

Table 19. Hiperspaces that supervisor state or PSW key 0 - 7 programs can use

If the program does not have an ALET: If the program has an ALET:

• It can access a non-shared standard hiperspace
if the owner's home address space is the same
as the program's home address space. The
program must not be in cross memory mode.

• It can use a shared standard or ESO hiperspace.
It can be in cross memory mode.

• Access to a non-shared standard is the same as
if the program did not have an ALET, except it can
be in cross memory mode.

• Access to a shared standard or ESO hiperspace
is the same as if the program did not have an
ALET.

The use of an ALET allows supervisor state or PSW key 0 - 7 programs to use non-shared standard
hiperspaces. The following section describes how this program can:

• Use a non-shared standard hiperspace.
• Use a shared standard and ESO hiperspace.
•

The supervisor state program using a non-shared hiperspace
Like the problem state program with PSW key 8 - F, the supervisor state program in cross memory mode
can use HSPSERV with an ALET to access a non-shared standard hiperspace. For example, in Figure 56 on
page 173, PGM1 in AS1 can place an entry for HS1 on the DU-AL and receive the ALET. PGM1 can then PC
to AS2, passing the STOKEN and ALET to PCRTN. PCRTN can access HS1.

Figure 56. A supervisor state program using a non-shared standard Hiperspace

Note that PCRTN could not access HS1 unless it used HSPALET on HSPSERV.

Chapter 7. Creating and using hiperspaces 173

The supervisor state program using shared standard and ESO hiperspaces
Supervisor state or PSW 0 - 7 programs can access any shared standard or ESO hiperspace, providing
they have the STOKEN of the hiperspace. They are not required to have an ALET.

Figure 57 on page 174 illustrates two programs in two address spaces. Both of these programs can
access data in HS1 without using the HSPALET parameter. PGM1, the creator of HS1, passes the STOKEN
of HS1 to PGM2.

Figure 57. A supervisor state program using a shared standard hiperspaces

With a little more effort, PGM1 and PGM2 in Figure 60 on page 181 could get faster transfer of data to and
from expanded storage; “Obtaining improved data transfer to and from a hiperspace” on page 180
describes how to gain the added performance. An example of PGM1 and PGM2 using ALETs on HSPSERV
is in that section.

Obtaining an ALET for a hiperspace
Use ALESERV ADD to obtain an ALET and place an entry on a DU-AL or PASN-AL. Whether a program can
use ALESERV ADD depends on the authority of the program, the type of hiperspace, and whether the
program is in cross memory mode. The rules that apply to the programs that use ALESERV ADD are
described in Table 20 on page 175.

174 z/OS: z/OS MVS Extended Addressability Guide

Table 20. Rules for adding access list entries for hiperspaces

Function Type of
hiperspace

A problem state, key 8 - F program: A supervisor state or key 0-7
program:

Add entries to
the DU-AL

Non-shared
standard

Can add entries for a hiperspace it
owns.

Can add entries if the caller's and
owner's home address space is
the same.

Shared standard
and ESO

Cannot add entries for the
hiperspace to its DU-AL.

Can add entries. For ESO
hiperspace, see Programming
note 1.

Add entries to
the PASN-AL

Non-shared
standard

Cannot add entries. Can add entries if caller's primary
address space is the same as the
owner's home address space.

Shared standard
and ESO

Cannot add entries. Can add entries. For ESO
hiperspace, see Programming
note 1.

Programming notes:

1. Do not add an entry for an ESO hiperspace to any access list that is available to a problem state
program with PSW 8 - F. In other words, do not add an entry to a PASN-AL if unauthorized programs
will be executing in the address space. Do not add an entry to a DU-AL if its TCB will be representing an
unauthorized program.

2. Use ALESERV ADD with hiperspace.
3. The system rejects an ALESERV ADD request if the hiperspace is currently defined as a data-in-virtual

object.

Example of adding an access list entry for a hiperspaces
The following code uses DSPSERV to create a non-shared standard hiperspace named TEMP. The system
returns the STOKEN of the hiperspace in HSPCSTKN and the origin of the hiperspace in HSPCORG. The
ALESERV ADD macro returns the ALET in HSPCALET. The program uses the ALET on the HSPALET
parameter on HSPSERV to access the hiperspace.

 DSPSERV CREATE,TYPE=HIPERSPACE,NAME=HSPCNAME,
 STOKEN=HSPCSTKN,BLOCKS=HSPBLCKS,ORIGIN=HSPCORG
 ALESERV ADD,STOKEN=HSPCSTKN,ALET=HSPCALET,AL=PASN
 .
HSPCSTKN DS CL8 HIPERSPACE STOKEN
HSPCALET DS F HIPERSPACE ALET
HSPCORG DS F HIPERSPACE ORIGIN RETURNED
HSPCNAME DC CL8'TEMP ' HIPERSPACE NAME
HSPBLCKS DC F'1000' HIPERSPACE SIZE (IN 4K BLOCKS)

Obtaining and passing ALETs for hiperspaces
To allow other programs to share hiperspaces, a program passes the ALET of the hiperspace to other
programs. Because ALETs index into specific access lists, a program can pass:

• An ALET that indexes into an entry on a DU-AL if the passing program and the receiving code are
represented by the same TCB

• An ALET that indexes into an entry on a DU-AL if the passing program attached the receiving program
(using the ALCOPY parameter on ATTACH or ATTACHX) and passed the entry for the hiperspace on the
DU-AL

• An ALET that indexes into the PASN-AL if the ALET indexes into the PASN-AL of the receiving program.

Generally, when two programs in two address spaces share the data in the same hiperspace, the
programs must both use ALESERV to add entries to their access lists.

Chapter 7. Creating and using hiperspaces 175

Deleting an access list entry for a hiperspace
Access lists have a limited size; the DU-AL has up to 509 entries and the PASN-AL has up to 510 entries.
Therefore, it is a good programming practice to delete entries from an access list when the entries are no
longer needed. The specific rules are:

• If a program needs an entry for a short period of time, it should delete the entry when it no longer needs
the entry.

• If a program adds an entry and uses that entry during execution, the program does not need to delete
the entry; the system deletes the entry when the task terminates.

• Once the entry is deleted, the system can immediately reuse the ALET.

Use ALESERV DELETE to delete an entry on an access list. The ALET parameter identifies the specific
entry.

Programs that share hiperspaces with other programs have another action to take when they delete an
entry from an access list. They should notify the other programs that the entry is no longer connecting the
ALET to the hiperspace. Otherwise, those programs might continue to use an ALET for the deleted entry.
See “ALET reuse by the system” on page 114 for more information.

Example of deleting a hiperspace entry from an access list
The following example deletes the entry for the ALET at location HSPCALET. The example also includes
the deletion of the hiperspace with a STOKEN at location HSPCSTKN.

 ALESERV DELETE,ALET=HSPCALET REMOVE HS FROM AL
 DSPSERV DELETE,STOKEN=HSPCSTKN DELETE THE HS
 .
HSPCSTKN DS CL8 HIPERSPACE STOKEN
HSPCALET DS F HIPERSPACE ALET

If the program does not delete an entry, the entry remains on the access list until the work unit
terminates. At that time, the system frees the access list entry.

Transferring data to and from a hiperspace
Before it can reference data or manipulate data in a hiperspace, the program must bring the data into the
address space. The HSPSERV macro performs the transfer of data between the address space and the
hiperspace.

On the HSPSERV macro, the write operation transfers data from the address space to the hiperspace.
The read operation transfers the data from the hiperspace to the address space. HSPSERV allows
multiple reads and writes to occur at one time. This means that one HSPSERV request can transfer the
data in more than one data area in a hiperspace to an equal number of data areas in an address space.
Likewise, one HSPSERV request can write data from more than one buffer area in an address space to an
equal number of areas in a hiperspace.

Figure 58 on page 177 shows three virtual storage areas that you need to identify when you request a
data transfer:

• The hiperspace
• The buffer area in the address space that is the source of the write operation and the target of the read

operation
• The data area in the hiperspace that is the target of the write operation and the source of the read

operation.

On the HSPSERV macro, you identify the hiperspace and the areas in the address space and the
hiperspace:

• STOKEN specifies the STOKEN of the hiperspace.

176 z/OS: z/OS MVS Extended Addressability Guide

• RANGLIST specifies a list of ranges that indicate the boundaries of the buffer areas in the address space
and the data area in the hiperspace.

• NUMRANGE optionally specifies the number of data areas the system is to read or write. The default is
one data area.

Figure 58. Illustration of the HSPSERV write and read operations

HSPSERV has certain restrictions on these areas. Two restrictions are that the data areas must start on a
4K byte boundary and their size must be in multiples of 4K bytes. Other requirements are listed in the
description of HSPSERV in z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG.
Read the requirements carefully before you issue the macro.

The system does not always preserve the data in the areas that are the source for the read and write
operations. Figure 58 on page 177 tells you what the system does with the areas after it completes the
transfer. The sections “Read and write operations for standard hiperspaces” on page 177 and “Read and
write operations for expanded storage only hiperspaces” on page 179 describe how you use the HSPSERV
macro.

Read and write operations for standard hiperspaces
After the write operation for standard hiperspaces, the system does not preserve the data in the address
space. It assumes that you have another use for that buffer area, such as using it as the target of another
HSPSERV SREAD operation.

After the read operation for standard hiperspaces, the system gives you a choice of saving the source data
in the hiperspace. If you will use the data in the hiperspace again, ask the system to preserve the data;
specify RELEASE=NO on HSPSERV SREAD. Unless a subsequent SWRITE request changes the data in the
source area, that same data will be available for subsequent SREAD requests. RELEASE=NO provides your
program with a backup copy of the data in the hiperspace.

If you specify RELEASE=YES on HSPSERV SREAD, the system releases the hiperspace pages after the
read operation and returns the expanded storage (or auxiliary storage) that backs the source area in the
hiperspace. RELEASE=YES tells the system that your program does not plan to use the source area in the
hiperspace as a copy of the data after the read operation. Note that when a hiperspace is not fetch-
protected, HSPSERV SREAD,RELEASE=NO works even when the program's PSW key does not match the
storage key of the hiperspace.

Chapter 7. Creating and using hiperspaces 177

To use the HSPSERV macro without an ALET for a non-shared standard hiperspace, the buffer area in the
address space must be in the program's home address space. That is, the program cannot be in cross
memory mode (where PASN is not equal to HASN).

A program cannot issue a HSPSERV SWRITE to an area of a hiperspace that has a DIV SAVE in progress.

See “Example of creating a standard hiperspace and using It” on page 178 for an example of the
HSPSERV SREAD and HSPSERV SWRITE macros.

Example of creating a standard hiperspace and using It
The following example creates a non-shared standard hiperspace named SCROLLHS. The size of the
hiperspace is 20 blocks. The program:

• Creates a non-shared standard hiperspace 20 blocks in size
• Obtains four pages of address space storage aligned on a 4K-byte address
• Sets up the SWRITE range list parameter area to identify the first two pages of the address space

storage
• Initializes the first two pages of address space storage that will be written to the hiperspace
• Issues the HSPSERV SWRITE macro to write the first two pages to locations 4096 through 12287 in the

hiperspace.

Later on, the program:

• Sets up the SREAD range list parameter area to identify the last two pages of the four-page address
space storage

• Issues the HSPSERV SREAD macro to read the blocks at locations 4096 through 12287 in the
hiperspace to the last two pages in the address space storage.

Figure 59 on page 178 shows the four-page area in the address space and the two block area in the
hiperspace. Note that the first two pages of the address space virtual storage are unpredictable after the
SWRITE operation.

Figure 59. Example of creating a standard hiperspace and transferring data

* DSPSERV CREATES A STANDARD TYPE HIPERSPACE OF 20 4096-BYTE BLOCKS
*
 DSPSERV CREATE,NAME=HSNAME,TYPE=HIPERSPACE,HSTYPE=SCROLL, X
 BLOCKS=20,STOKEN=HSSTOKEN
*
* THE STORAGE MACRO OBTAINS FOUR PAGES OF ADDRESS SPACE STORAGE.
* THE BNDRY=PAGE PARAMETER ALIGNS PAGES ON A 4K BOUNDARY
* - THE FIRST AND SECOND PAGES ARE THE SWRITE SOURCE
* - THE THIRD AND FOURTH PAGES ARE THE SREAD TARGET
*
 STORAGE OBTAIN,LENGTH=4096*4,BNDRY=PAGE

178 z/OS: z/OS MVS Extended Addressability Guide

 ST 1,ASPTR1 * SAVES THE SWRITE SOURCE ADDRESS
 MVC 0(20,1),SRCTEXT1 * INITIALIZES SOURCE PAGE ONE
 A 1,ONEBLOCK * COMPUTES SOURCE PAGE TWO ADDRESS
 MVC 0(20,1),SRCTEXT2 * INITIALIZES SOURCE PAGE TWO
*

* HSPSERV WRITES TWO PAGES FROM THE ADDRESS SPACE TO THE HIPERSPACE
*
 HSPSERV SWRITE,STOKEN=HSSTOKEN,RANGLIST=RANGPTR1,NUMRANGE=ONE
*
* THE SYSTEM REUSES THE FIRST TWO ADDRESS SPACE PAGES AFTER THE SWRITE
 .

* SET UP THE SREAD RANGE LIST TO READ INTO THE THIRD AND FOURTH
* ADDRESS SPACE PAGES
*
 L 2,ASPTR1 * OBTAINS THE ADDRESS OF PAGE 1
 A 2,ONEBLOCK * COMPUTES THE SREAD TARGET ADDRESS
 A 2,ONEBLOCK * COMPUTES THE SREAD TARGET ADDRESS
 ST 2,ASPTR2 * SAVES IN SREAD RANGE LIST
*
* HSPSERV READS TWO BLOCKS OF DATA FROM THE HIPERSPACE TO THE
 THIRD AND FOURTH PAGES IN THE ADDRESS SPACE STORAGE
*
 HSPSERV SREAD,STOKEN=HSSTOKEN,RANGLIST=RANGPTR2,NUMRANGE=ONE
*
* DATA AREAS AND CONSTANTS
*
HSNAME DC CL8'SCROLLHS' * NAME FOR THE HIPERSPACE
HSSTOKEN DS CL8 * STOKEN FOR THE HIPERSPACE
ONEBLOCK DC F'4096' * LENGTH OF ONE BLOCK OF STORAGE
SRCTEXT1 DC CL20' INVENTORY ITEMS '
SRCTEXT2 DC CL20' INVENTORY SURPLUSES'
ONE DC F'1' * NUMBER OF RANGES
 DS 0F
RANGPTR1 DC A(SWRITLST) * ADDRESS OF THE SWRITE RANGE LIST
RANGPTR2 DC A(SREADLST) * ADDRESS OF THE SREAD RANGE LIST
 DS 0F
SWRITLST DS 0CL12 * SWRITE RANGE LIST
ASPTR1 DS F * START OF ADDRESS SPACE SOURCE
HSPTR1 DC F'4096' * TARGET LOCATION IN HIPERSPACE
NUMBLKS1 DC F'2' * NUMBER OF 4K BLOCKS IN SWRITE
 DS 0F
SREADLST DS 0CL12 * SREAD RANGE LIST
ASPTR2 DS F * TARGET LOCATION IN ADDRESS SPACE
HSPTR2 DC F'4096' * START OF HIPERSPACE SOURCE
NUMBLKS2 DC F'2' * NUMBER OF 4K PAGES IN SREAD

Read and write operations for expanded storage only hiperspaces
The system backs ESO hiperspaces with expanded storage, a finite resource that many programs compete
for. Because an ESO hiperspace is backed with expanded storage, it can be accessed very quickly.
However, because of the contention for expanded storage, the data in the hiperspace might not be there
when you need it. Because of this uncertainty, your program must have an alternate way to retrieve or
recreate the data.

HSPSERV CREAD transfers data from a source location in an ESO hiperspace to an address space. If all
blocks requested are available in the hiperspace (that is, are backed by expanded storage) then the
system performs the read operation. However, if one or more blocks to be read are no longer available in
the hiperspace, then the system rejects the request and returns a failing return code. If the HSPSERV
CREAD is successful, the system moves the data to the buffer area in your address space and preserves
the data in the source area of the hiperspace, when possible.

HSPSERV CWRITE transfers data from a source location in an address space to a hiperspace. If the
system is unable to write all the requested blocks to the hiperspace (because of a shortage of expanded
storage), then it rejects the request. In this case, the data in the target area of the hiperspace is volatile.
After the system rejects a HSPSERV CWRITE request, do not issue HSPSERV CREAD using that target
area as the source for the CREAD until you have successfully completed a HSPSERV CWRITE to the
same area.

Chapter 7. Creating and using hiperspaces 179

You can request that the system preserve the source data in the address space after it successfully
completes the HSPSERV CWRITE operation. If your program will use this same source data again, specify
KEEP=YES on HSPSERV (or use the default). KEEP=NO tells the system that you will not be using the
source data again. In this case, the system can reuse the pages that back the address space buffer area.
In most cases, KEEP=NO gives your program better performance than KEEP=YES.

To use the HSPSERV macro for an ESO hiperspace, the buffer area that is the source of the CWRITE and
the target of the CREAD can be in the caller's home address space as well as the caller's primary address
space or the common storage area (CSA). This flexibility means that the caller can use the HSPSERV
macro while in cross memory mode (that is, where PASN is not equal to HASN).

The following example shows a program transferring data to and from an ESO hiperspace. The address
space has one buffer area to receive the hiperspace data. For an example of storing information into the
range list, see “Example of creating a standard hiperspace and using It” on page 178.

* GENERATE DATA AND WRITE IT TO THE HIPERSPACE
 .
* BUILD RANGE LIST AND PLACE POINTER TO ADDRESS OF LIST IN RANGPTR
 .
 HSPSERV CWRITE,ADDRSP=HOME,STOKEN=HSSTOK,RANGLIST=RANGPTR, X
 RETCODE=SRVRCODE,RSNCODE=SRSNCODE
 .

* READ FROM THE HIPERSPACE, IF EVERYTHING HAS BEEN SUCCESSFUL
 .
 HSPSERV CREAD,STOKEN=HSSTOK,RANGLIST=RANGPTR, X
 RETCODE=SRVRCODE,RSNCODE=SRSNCODE
 .

HSSTOK DS CL8 STOKEN RETURNED FROM DSPSERV CREATE
RANGPTR DC A(RANGLIST) ADDRESS OF RANGLIST PARM AREA
RANGLIST DS 0CL12
ASLOC DS AL4 ADDRESS OF START OF ADDRESS SPACE AREA
HSLOC DS AL4 ADDRESS OF HIPERSPACE AREA TO WRITE TO/FROM
NUMBLKS DS F NUMBER OF BLOCKS TO READ/WRITE
SRVRCODE DS F RETURN CODE
SRSNCODE DS F REASON CODE

Obtaining improved data transfer to and from a hiperspace
By specifying the HSPALET parameter on the HSPSERV macro, a program can get faster data movement
between central storage and expanded storage. If the data identified on HSPSERV is in expanded storage,
HSPSERV uses the move-page facility. If the data is in auxiliary storage, the data transfer still occurs, but
without using the move-page facility.

Through the IOSADMF macro, a program can use ADMF to get more efficient data movement between
central and expanded storage. Data transfer with the ADMF might be more efficient depending on the
number of pages of data you want to transfer.

The IOSADMF macro provides a programming interface to the ADMF. IOSADMF can be used with standard
and ESO hiperspaces. With IOSADMF, programs that buffer large amounts of storage in hiperspaces
become more efficient because of reduced overall processor use. Processor cycles previously used to
move data now become available for the system or other programs to use.

Programs that want to reduce processor time for buffer management, but that find the response time
associated with I/O buffering unacceptable, will find the IOSADMF service particularly useful. However,
IBM recommends that you design programs that move data to use either the ADMF (IOSADMF macro) or
the move-page facility (HSPSERV macro) for the following reasons:

• You cannot use IOSADMF to transfer data unless data already is stored in the hiperspace. Therefore,
under certain circumstances, you must use HSPSERV before using IOSADMF to transfer data.

• If the ADMF is not available, your program can attempt the data transfer again by issuing HSPSERV.
• If your program moves variable amounts of data, you might want to design your program to determine

which facility best matches each data transfer request.

180 z/OS: z/OS MVS Extended Addressability Guide

Which facility best matches your request depends on the number of pages you want to transfer. When the
ADMF is available and the program issues IOSADMF to move data, the system determines which facility is
appropriate by comparing the number of pages with a system-specific value. If you want to know what
that value is so your program can determine which facility to use, issue IOSADMF with the CROSSOVER
parameter, and the system returns the value to you.

z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG describes the HSPSERV macro
and the IOSADMF macro.

The move-page facility
Note: The move-page facility is standard in all releases of z/OS.

As an example of using the HSPSERV macro with the HSPALET parameter, suppose PGM1 and PGM2 that
are illustrated in Figure 57 on page 174 want to gain fast transfer of data to and from expanded storage.
Both programs use ALESERV ADD to add entries to access lists; PGM1 adds to its PASN-AL and PGM2
adds to its DU-AL. They use HSPALET on HSPSERV. The HSPALET parameter is available to both problem
state programs and supervisor state programs. Figure 60 on page 181 describes this scenario.

Figure 60. Gaining fast data transfer to and from expanded storage

Before you issue the HSPSERV macro with the HSPALET parameter, place the address of a 144-byte work
area in GPR 13 and zero in AR 13.

Restrictions on the combined use of hiperspaces and data-in-virtual are listed in “Using data-in-virtual
with standard hiperspaces” on page 192.

Example of an HSPSERV with additional performance: The following example shows a program
creating a non-shared standard hiperspace. To get additional performance from HSPSERV, the program
obtains the ALET from the ALESERV macro and uses the ALET as input to HSPSERV. The example
assumes the ASC mode is primary.

⋮
* DSPSERV CREATES A NON-SHARED STANDARD HIPERSPACE OF 20 4096 BYTE-BLOCKS
*
 DSPSERV CREATE,NAME=HSNAME,TYPE=HIPERSPACE,HSTYPE=SCROLL, X
 SHARE=NO,BLOCKS=20,STOKEN=HSSTOKEN,ORIGIN=HSORIG1
*

Chapter 7. Creating and using hiperspaces 181

* ALESERV RETURNS AN ALET ON THE DU-AL FOR THE HIPERSPACE
*
 ALESERV ADD,STOKEN=HSSTOKEN,ALET=HSALET,AL=WORKUNIT
*

* THE STORAGE MACRO OBTAINS FOUR PAGES OF ADDRESS SPACE STORAGE,
* THE BNDRY=PAGE PARAMETER ALIGNS PAGES ON A 4K BOUNDARY
* - THE FIRST AND SECOND PAGES ARE THE SWRITE SOURCE
* - THE THIRD AND FOURTH PAGES ARE THE SREAD TARGET
* COPY INTO FIRST AND SECOND PAGES THE DATA TO BE WRITTEN TO HIPERSPACE
 .
 STORAGE OBTAIN,LENGTH=4096*4,BNDRY=PAGE
 ST 1,ASPTR * SAVE ADDR SPACE STORAGE ADDRESS
 MVC 0(20,1),SRCTEXT1 * INIT FIRST ADDR SPACE PAGE
 A 1,ONEBLK * COMPUTE PAGE TWO ADDRESS
 MVC 0(20,1),SRCTEXT2 * INIT SECOND ADDR SPACE PAGE
 .

* SET UP THE SWRITE RANGE LIST TO WRITE FROM THE FIRST AND SECOND
* ADDRESS SPACE PAGES INTO THE HIPERSPACE
 .
 L 1,ASPTR * GET FIRST ADDR PAGE ADDRESS
 ST 1,ASPTR1 * PUT ADDRESS INTO RANGE LIST
 .

* SAVE CONTENTS OF AR/GPR 13 BEFORE RESETTING THEM FOR HSPSERV
 .
 ST 13,SAVER13 * SAVE THE CONTENTS OF GPR 13
 EAR 13,13 * LOAD GPR 13 FROM AR 13
 ST 13,SAVEAR13 * SAVE THE CONTENTS OF AR 13
 .
* ESTABLISH ADDRESS OF 144-BYTE SAVE AREA, AS HSPALET ON HSPSERV REQUIRES
* AND WRITE TWO PAGES FROM THE ADDRESS SPACE TO THE HIPERSPACE
 .
 SLR 13,13 * SET GPR 13 TO 0
 SAR 13,13 * SET AR 13 TO 0
 LA 13,WORKAREA * SET UP AR/GPR 13 TO WORKAREA ADDR
 HSPSERV SWRITE,STOKEN=HSSTOKEN,RANGLIST=RANGPTR1,HSPALET=HSALET
* AFTER THE SWRITE, THE FIRST TWO ADDRESS SPACE PAGES MIGHT BE OVERLAID
 .
* RESTORE ORIGINAL CONTENTS OF AR/GPR 13
 .
 L 13,SAVEAR13 * SET GPR 13 TO SAVED AR 13
 SAR 13,13 * RESET AR 13
 L 13,SAVER13 * RESET GPR 13
 .

 .
* SET UP THE SREAD RANGE LIST TO READ INTO THE THIRD AND FOURTH
* ADDRESS SPACE PAGES WHAT WAS PREVIOUSLY WRITTEN TO THE HIPERSPACE
 .
 MVC HSORIG2,HSORIG1 * COPY ORIGIN OF HIPERSPACE TO HSORIG2
 L 1,ASPTR * GET FIRST ADDR PAGE ADDRESS
 A 1,TWOBLKS * COMPUTE THIRD PAGE ADDRESS
 ST 1,ASPTR2 * PUT ADDRESS INTO RANGE LIST
 .

* SAVE CONTENTS OF AR/GPR 13
 .
 ST 13,SAVER13 * SAVE THE CONTENTS OF GPR 13
 EAR 13,13 * LOAD GPR 13 FROM AR 13
 ST 13,SAVEAR13 * SAVE THE CONTENTS OF AR 13
 .
* ESTABLISH ADDRESS OF 144-BYTE SAVE AREA, AS HSPALET ON HSPSERV REQUIRES,
* AND READ TWO BLOCKS OF DATA FROM THE HIPERSPACE INTO THE
* THIRD AND FOURTH PAGES IN THE ADDRESS SPACE STORAGE USING HSPALET
 .
 SLR 13,13 * SET GPR 13 TO 0
 SAR 13,13 * SET AR 13 TO 0
 LA 13,WORKAREA * SET UP AR/GPR 13 TO WORKAREA ADDR
 HSPSERV SREAD,STOKEN=HSSTOKEN,RANGLIST=RANGPTR2,HSPALET=HSALET
 .
* RESTORE ORIGINAL CONTENTS OF AR/GPR 13
 .
 L 13,SAVEAR13 * SET GPR 13 TO SAVED AR 13
 SAR 13,13 * RESET AR 13

182 z/OS: z/OS MVS Extended Addressability Guide

 L 13,SAVER13 * RESET GPR 13
 .

* FREE THE ALET, FREE THE ADDRESS SPACE STORAGE, AND DELETE THE HIPERSPACE
 .

* DATA AREAS AND CONSTANTS
 .
HSNAME DC CL8'SCROLLHS' * NAME FOR THE HIPERSPACE
HSSTOKEN DS CL8 * STOKEN FOR THE HIPERSPACE
HSALET DS CL4 * ALET FOR THE HIPERSPACE
ASPTR DS 1F * LOCATION OF ADDR SPACE STORAGE
SAVER13 DS 1F * LOCATION TO SAVE GPR 13
SAVEAR13 DS 1F * LOCATION TO SAVE AR 13
WORKAREA DS CL144 * WORK AREA FOR HSPSERV
ONEBLK DC F'4096' * LENGTH OF ONE BLOCK OF STORAGE
TWOBLKS DC F'8092' * LENGTH OF TWO BLOCKS OF STORAGE
SRCTEXT1 DC CL20' INVENTORY ITEMS '
SRCTEXT2 DC CL20' INVENTORY SURPLUSES'
 DS 0F
RANGPTR1 DC A(SWRITLST) * ADDRESS OF SWRITE RANGE LIST
RANGPTR2 DC A(SREADLST) * ADDRESS OF SREAD RANGE LIST
 DS 0F
SWRITLST DS 0CL12 * SWRITE RANGE LIST
ASPTR1 DS F * START OF ADDRESS SPACE SOURCE
HSORIG1 DS F * TARGET LOCATION IN HIPERSPACE
NUMBLKS1 DC F'2' * NUMBER OF 4K BLOCKS IN SWRITE
 DS 0F

SREADLST DS 0CL12 * SREAD RANGE LIST
ASPTR2 DS F * TARGET LOCATION IN ADDR SPACE
HSORIG2 DS F * START OF HIPERSPACE SOURCE
NUMBLKS2 DC F'2' * NUMBER OF 4K BLOCKS IN SREAD
 DS 0F

Using the ADMF
To use ADMF support for hiperspaces, design your program to do the following:

1. Determine if the ADMF is available by issuing the IOSADMF macro with the QUERY parameter.
2. Create a hiperspace by issuing the DSPSERV macro with the CREATE parameter.

Use caution if you specify CASTOUT=NO when creating a hiperspace. Because CASTOUT=NO
discourages the system from reclaiming expanded storage areas, the amount of expanded storage
available for system use is decreased.

3. Obtain an ALET associated with the hiperspace by issuing the ALESERV macro with the STOKEN
received from issuing the DSPSERV CREATE.

4. Put data in the hiperspace by issuing the HSPSERV macro.

You cannot use IOSADMF to transfer data until the hiperspace already contains data. If the hiperspace
storage gets reclaimed, you must add data to the hiperspace again with HSPSERV. (If the hiperspace is
a standard hiperspace, HSPSERV will retrieve data from auxiliary storage to refresh the hiperspace
data.)

5. Use the IOSADMF macro with the hiperspace's ALET to transfer data to and from the hiperspace.

The IOSADMF macro AREAD request transfers data from the hiperspace to the program's primary
address space. The IOSADMF macro AWRITE request transfers data from the user's primary address
space to the hiperspace. If the IOSADMF macro is issued before data is added to the hiperspace, the
IOSADMF request will fail. A program cannot issue an IOSADMF macro AWRITE request to an area of a
hiperspace that has a DIV SAVE in progress.

6. If your program receives a return code 4, you can try the same operation using the HSPSERV macro.
When designing your program to use IOSADMF, check the specific actions for the IOSADMF return and
reason code in z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG to determine
when you can attempt the same operation using HSPSERV instead of IOSADMF.

Chapter 7. Creating and using hiperspaces 183

More than one IOSADMF request can be active for a hiperspace. When you have more than one active
IOSADMF request, keep track of the requests and ensure that all data transfer is complete before deleting
the hiperspace. If there are outstanding active requests and you issue DSPSERV DELETE for a hiperspace,
your program will abnormally end and the hiperspace will not be deleted. If you cannot determine
whether all outstanding IOSADMF requests have completed, you can issue IOSADMF APURGE to stop any
outstanding requests.

IOSADMF APURGE should be used only as a last resort because of data integrity concerns. IOSADMF
APURGE immediately stops data transfer for every outstanding IOSADMF request for the specified
hiperspace, regardless of the state of those data transfers, and abnormally ends any active operation to
the hiperspace. If a new request is subsequently started for the specified hiperspace, the request will
process.

If you have a single unit of work that creates the hiperspace, issues the IOSADMF requests, and deletes
the hiperspace, you do not have to be concerned about outstanding requests; the system completes the
data transfer before processing the delete request. The following is an example of data transfer using the
ADMF.

02 Description = Sample program to illustrate how to use the *
* IOSADMF services. *
* *
* *
02 Function = *
* *
* ADMFSAMP does not perform any useful work; *
* however it does illustrate how the IOSADMF *
* services are used. ADMFEXMP will create a *
* hiperspace, create an address space buffer, *
* initialize the address space buffer, use *
* HSPSERV to write data to the hiperspace *
* from the address space buffer, and then *
* use IOSADMF to read data from the hiperspace *
* back into the address space buffer. *
* In more detail, here is what ADMFEXMP does: *
* - Changes mode to supervisor state key 0. *
* IOSADMF requires the caller to be authorized. *
* - Obtains a dynamic area. ADMFSAMP is *
* reentrant and therefore requires a *
* dynamic area. ADMFSAMP was written *
* as a reentrant routine for illustration *
* and independence of caller's mode or *
* key. *
* - Determines if ADMF is available on the *
* current machines by issuing IOSADMF with *
* the AQUERY service. *
* - Creates a hiperspace *
* - Obtains an address space buffer area and *
* clears it. *
* - Initializes the address space buffer area *
* - Writes the address space buffer pages to *
* the hiperspace *
* - Clears the address space buffer area *
* - Fixes the page address space storage *
* - Uses IOSADMF to read the hiperspace pages *
* back into the address space storage areas *
* - Cleans up resources and returns to caller *
* *
* Again, this routine is only for illustration *
* purposes. *
* *
* *

* SECURITY NOTICE = This sample should be used ONLY on a test *
* system. It does not contain authorization *
* checking required for running on a *
* production system. *
* *
* ENVIRONMENT: AMODE = 31 *
* RMODE = 31 *
* STATE = SUPERVISOR *
* KEY = 0 *
* RENT = YES *
* *
* *

184 z/OS: z/OS MVS Extended Addressability Guide

* INPUT: NONE *
* *
* REGISTER USAGE: *
* R9 BASE REGISTER FOR LOAD MODULE *
* R6 POINTS TO DYNAMIC AREA *
* ALL OTHERS STANDARD USAGE *
...
 EJECT
ADMFEXMP CSECT
ADMFEXMP AMODE 31 31-BIT ADDRESSING MODE
ADMFEXMP RMODE ANY Rmode any
 SPACE 1
...
* REGISTER ASSIGNMENTS *
...
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6 Dynamic area register
R7 EQU 7
R8 EQU 8
R9 EQU 9 Module base register
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 SPACE 3
 TITLE 'ADMFEXMP - ADM Sample for AQUERY'
...
* *
* Standard Entry Linkage *
* *
...
 PRINT GEN
 USING *,R9 Sets up base reg
 LR R9,R15 Establish module base
ENTRY STM R14,R12,12(R13) Save caller's regs
 MODESET KEY=ZERO,MODE=SUP
 LA R0,DYNSIZE Load length of dynamic area
 STORAGE OBTAIN,LENGTH=((R0)),SP=233 Gets dynamic area
 LR R6,R1 Gets dynamic area address

 USING DYNAREA,R6 Sets up dynamic area
 ST R13,SAVEBK Save caller's save area addr
 ST R6,SAVEFW Save ADMFEXMP save area address
 B MAINLINE
 DC CL8'ADMFEXMP'
 DC CL8'&SYSDATE'
 DC CL8'&SYSTIME'
 TITLE 'ADMFEXMP - ADMF mainline '
...
* *
* MAINLINE *
* *
...
MAINLINE DS 0H
 L 10,X'10' Load CVT pointer
 USING CVT,10
 TM CVTDCB,CVTOSEXT Is the OSLEVEL extension present
 BNO NO_ADMF No, pre-MVS/SP Version 3 system
*
 TM CVTOSLV1,CVTH4430 Running on version HBB4430?
 BNO NO_ADMF No, pre-HBB4430 system. ADMF
* supported on HBB4430 and above
*
* Running on HBB4430 system. Must determine if ADMF
* software and hardware have been installed on this
* processor
*
...
* *
* Issues the IOSADMF macro with the AQUERY parameter *
* to determine if the ADMF hardware and software are *
* available. *
* *
* Note - the IOSADMF macro may be issued on an HBB4430 *

Chapter 7. Creating and using hiperspaces 185

* system, however, the full support for ADMF requires *
* the ADMF PTF as well as hardware support. *
* *
...
 IOSADMF AQUERY, X
 CROSSOVER=CROSSOVER_#, X
 RETCODE=ADMF_INSTALLED_RC, X
 RSNCODE=REASONCODE, X
 MF=(E,ADMFLIST)
 L R15,ADMF_INSTALLED_RC Obtains return code from
* parameter list
 LTR R15,R15 Test for 0 return code
 BNZ NO_ADMF
ADMF_INSTALLED DS 0H ADM support is available
*...
*
* ADMF is installed and available. Begin function processing to
* illustrate how ADMF is used
*
*...
*
 BAL R14,CREATE_HS Build Hiperspace
 LTR R15,R15 Test for 0 return code
 BNZ EXIT Exit if bad RC

 BAL R14,AS_STORAGE Get address space storage
 BAL R14,INIT_AS Initialize addr space storage
 BAL R14,ISSUE_HSPSERV Initialize HS space storage
 LTR R15,R15 Test for 0 return code
 BNZ EXIT Exit if bad RC
 BAL R14,ISSUE_IOSADMF Use ADMF to read data from HS
*...
* Begins clean up operations
*...
 DSPSERV DELETE,STOKEN=HSSTOKEN
 LR R3,R1 Loads area addr in R3
 A R3,LENGTH_AS_AREA Adds length of area to addr
 BCTR R3,0 Subtracts 1 to get end addr
 PGSER R,FREE,A=(R1),EA=(R3),ECB=0
 L R3,LENGTH_AS_AREA
 STORAGE RELEASE,SP=229,ADDR=ASPTR,LENGTH=(R3)
 B EXIT
NO_ADMF DS 0H
*...
*
* ADM support is either not installed or not
* available on this release
*
*...
 WTO 'ADMFEXMP - ADMF not installed. Sample ends', X
 ROUTCDE=(11),DESC=(2)
 LA R3,12 Loads failing return code
 ST R3,RETURNCODE Stores return code for X
 future use
EXIT DS 0H
 L R13,SAVEBK Reloads caller's save
* area addr into 11
 L R12,RETURNCODE Saves return code
* in reg 12
 LA R0,DYNSIZE Loads dynamic area size
* FREEMAIN R,LV=(0),A=(6),SP=233 Frees dynamic area
 STORAGE RELEASE,SP=233,ADDR=(R6),LENGTH=(R0)
 MODESET KEY=NZERO,MODE=PROB
 LM R14,R11,12(R13) Loads return regs
 LR R15,R12 Loads return code
 BR R14 Returns to caller
*
*
 SPACE 2

*...
*
* Subroutine to create Hiperspace
*
* DSPSERV creates a non-shared standard hiperspace
*
* Since this sample is for illustration only, the hiperspace size
* will be one block, or one page, larger than the CROSSOVER value.
*
*...

186 z/OS: z/OS MVS Extended Addressability Guide

CREATE_HS DS 0H Create Hiperspace routine
 STM R14,R12,12+LCL_SAVEAREA Save registers
 L R1,CROSSOVER_# Obtains the CROSSOVER #
 AL R1,=F'1' Adds one to the CROSSOVER
 ST R1,NUM_BLOCKS Stores the number of blocks
 DSPSERV CREATE, X
 NAME=HSNAME, X
 TYPE=HIPERSPACE, X
 HSTYPE=SCROLL, X
 SHARE=NO, X
 BLOCKS=NUM_BLOCKS, X
 STOKEN=HSSTOKEN, X
 ORIGIN=HSORIG, X
 MF=(E,DSPSLIST)
 ST R15,RETURNCODE Saves return code
 LTR R15,R15 Test for 0 return code
 BNZ SKIP_ALESERV Skip ALESERV if bad RC
*...
*
* The IOSADMF service requires an ALET as input. The following
* ALESERV service will place the hiperspace ALET on the program's
* access list.
*
*...
 ALESERV ADD, X
 STOKEN=HSSTOKEN, X
 ALET=HSALET, X
 AL=WORKUNIT, X
 MF=(E,ALESLIST)
SKIP_ALESERV DS 0H
 LM R14,R12,12+LCL_SAVEAREA Load Register
 L R15,RETURNCODE Loads return code
 BR R14 Returns to caller
*...
*
* Subroutine to obtain and initialize address space storage areas
*
*...
AS_STORAGE DS 0H Obtains address space storage
 STM R14,R12,12+LCL_SAVEAREA Save registers
 L R5,ONE_PAGE
 L R3,NUM_BLOCKS Loads the size of hiperspace
* NOTE: For this sample, the
* hiperspace and address
* space areas are made to
* be the same size for
* simplicity.

 MR R2,R5 Calculates length of storage
* to obtain
 ST R3,LENGTH_AS_AREA
 STORAGE OBTAIN,LENGTH=((R3)),BNDRY=PAGE,SP=229
*
 ST R1,ASPTR Saves the addr of data area
 L R2,ASPTR Loads R2 with address of
* the obtained area in
* preparation for clearing
* using the MVCL.
 L R3,LENGTH_AS_AREA Loads length of area into R3
 SR R4,R4 Setting R4/R5 pair to zero
 SR R5,R5 tells MVCL to clear area
 MVCL R2,R4 Clear obtained area
*
 LM R14,R12,12+LCL_SAVEAREA Load Register
 BR R14 Returns to caller
*...
*
* Subroutine to initialize the address space area with data to be
* stored in the hiperspace.
*
* This subroutine loops through all of the address space buffer
* pages and initializes each page with some text data.
* The data placed in the address space buffer area is dummy data
* for illustration. It places some text at the top of each
* page and places the page number in hex after the text.
*
*...
INIT_AS DS 0H Initialize addr space area
 STM R14,R12,12+LCL_SAVEAREA Save registers
BLOCK_INDEX EQU R2 Make loop control easier to X
 read by using equate for index

Chapter 7. Creating and using hiperspaces 187

AS_POINTER EQU R3 Make address space area easierX
 to follow by using equate
 LA BLOCK_INDEX,1 Initializes block index
 L AS_POINTER,ASPTR Gets addr space pointer
 USING PAGE_MAP,AS_POINTER Use the PAGE_MAP dummy X
 section
INIT_LOOP DS 0H Beginning of WHILE loop
 CL BLOCK_INDEX,NUM_BLOCKS IF block_index greater X
 num_blocks THEN
 BH INIT_COMPLETE Exits loop if complete
 MVC PAGE_TEXT_TAG,BLOCK_CONST Place text tag
 ST BLOCK_INDEX,PAGE_INDEX_TAG Place hex tag
 AL BLOCK_INDEX,=F'1' Index to next page
 AL AS_POINTER,ONE_PAGE Point to next page
 B INIT_LOOP
INIT_COMPLETE DS 0H
 LM R14,R12,12+LCL_SAVEAREA Load Register
 BR R14 Returns to caller

*...
*
* Subroutine to Initialize the Hiperspace
* ---------------------------------------
*
* HSPSERV initializes hiperspace blocks. Before the hiperspace
* can be used by IOSADMF, it must be initialized using the HSPSERV
* service. The HSPSERV service causes hiperspace pages to be
* backed with actual expanded storage pages. Even though ADMFEXMP
* created the hiperspace earlier, the system does not actually
* allocate expanded storage pages until data is placed into them.
* The following HSPSERV service will cause expanded storage pages
* to be backed.
*...
ISSUE_HSPSERV DS 0H Initialize hiperspace routine
 STM R14,R12,12+LCL_SAVEAREA Save registers
 L R2,ASPTR Loads address space pointer
 ST R2,ASPTR1 Saves address space pointer X
 in range list
 L R2,HSORIG Loads hiperspace block pointer
 ST R2,HSORIG1 Saves hiperspace pointer in X
 range list
 L R2,NUM_BLOCKS Loads number of blocks to move
 ST R2,NUMBLKS1 Saves number of blocks to X
 move in range list
 LA R2,SWRITLST Loads address of ranglist
 ST R2,SWRITADDR Saves address of ranglist
 LA R13,HSP_SAVEAREA
 HSPSERV SWRITE, X
 STOKEN=HSSTOKEN, X
 HSPALET=HSALET, X
 RANGLIST=SWRITADDR, X
 MF=(E,HSPSLIST)
 ST R15,RETURNCODE Saves return code
 LM R14,R12,12+LCL_SAVEAREA Load Register
 L R15,RETURNCODE Loads return code
 BR R14 Returns to caller
*...
*
* Subroutine to use the IOSADMF service to read data from hiperspace
* --
*
* IOSADMF
*
*...
ISSUE_IOSADMF DS 0H Uses the IOSADMF service
 STM R14,R12,12+LCL_SAVEAREA Save registers
 LR R3,R1 Loads area addr in R3
 A R3,LENGTH_AS_AREA Adds length of area to addr
 BCTR R3,0 Subtracts 1 to get end addr
 PGSER R,FIX,A=(R1),EA=(R3),ECB=0
 L R2,ASPTR Loads R2 with address of X
 the address space area in X
 preparation for clearing X
 using the MVCL. R3 will X
 contain the area's length
 L R3,LENGTH_AS_AREA Loads length to clear

 SR R4,R4 Setting R4/R5 pair to zero
 SR R5,R5 tells MVCL to clear area
 MVCL R2,R4 Clear target area for the X

188 z/OS: z/OS MVS Extended Addressability Guide

 AREAD operation. For X
 illustration purposes, the X
 address space area is X
 reused for the ADMF AREAD
 L R2,ASPTR Loads address space pointer
 ST R2,ASPTR2 Saves address space pointer X
 in range list
 L R2,HSORIG Loads hiperspace block pointer
 ST R2,HSORIG2 Saves hiperspace pointer in X
 range list
 L R2,NUM_BLOCKS Loads number of blocks to move
 ST R2,NUMBLKS2 Saves number of blocks to X
 move in range list
 LA R2,AREADLST Loads address of ranglist
 ST R2,AREADADDR Saves address of ranglist
 IOSADMF AREAD, X
 ALET=HSALET, X
 RANGLIST=AREADADDR, X
 MF=(E,ADMFLIST)
 ST R15,RETURNCODE Saves return code
 LM R14,R12,12+LCL_SAVEAREA Load Register
 L R15,RETURNCODE Loads return code
 BR R14 Returns to caller
*..
* .
* Constants .
* .
*..
HSNAME DC CL8'ADMFHSPS' Name for the hiperspace
ONE_PAGE DC F'4096' Length of one page of
* storage
BLOCK_CONST DC CL7'Block #:'
*..
* .
* DSECTs to map save areas and dynamic areas .
* .
*..
DYNSTART DS 0H
DYNAREA DSECT
* Save area
SAVEXX DS F
SAVEBK DS F
SAVEFW DS F
SAVER14 DS F
SAVER15 DS F
SAVER0 DS F
SAVER1 DS F
 DS 11F
 DS 0D Force doubleword alignment
* Save area for internal subroutines
 SPACE 2
LCL_SAVEAREA DS 18F Local save area
HSP_SAVEAREA DS 32F HSPSERV save area
 DS 0D Force doubleword alignment

*..
* .
* List forms of macros. The list and execute forms of these macros .
* are used because this module is reentrant. .
* .
*..
LIST_DSPSERV DSPSERV MF=(L,DSPSLIST)
DSP_END DS 0D
LIST_HSPSERV HSPSERV MF=(L,HSPSLIST)
HSP_END DS 0D
LIST_IOSADMF IOSADMF MF=(L,ADMFLIST)
ADMF_END DS 0D
ALESLIST ALESERV MF=L
ALES_END DS 0D
*..
* .
* Work variables and data structures local to this module .
* .
*..
HSSTOKEN DS CL8 STOKEN for the hiperspace
HSALET DS CL4 ALET for the hiperspace
ASPTR DS 1F Location of addr space
* storage
NUM_BLOCKS DS F Number of blocks in
* hiperspace
HSORIG DS F Hiperspace origin

Chapter 7. Creating and using hiperspaces 189

CROSSOVER_# DS F Crossover number
SWRITADDR DS F Address of SWRITE ranglist
AREADADDR DS F Address of AREAD ranglist
ADMF_INSTALLED_RC DS F ADMF installed return code
LENGTH_AS_AREA DS F Length of addr space area
WORKAREA DS CL144 Work area for HSPSERV
 DS 0F
SWRITLST DS 0CL12 SWRITE range list
ASPTR1 DS F Start of address space
HSORIG1 DS F Target location in hiperspace
NUMBLKS1 DS F Number of 4k blks in swrite
 DS 0F
AREADLST DS 0CL12 AREAD and SREAD range list
ASPTR2 DS F Target location in AS
HSORIG2 DS F Start of hiperspace source
NUMBLKS2 DS F Number of 4k blocks in read
*
RETURNCODE DS F
REASONCODE DS F
END_DYN DS 0D
DYNSIZE EQU *-DYNAREA Calculates Dynamic area
*

PAGE_DSECT DSECT Mapping of a page
PAGE_MAP DS 0CL4096
PAGE_TEXT_TAG DS CL8 Top of page tag
PAGE_INDEX_TAG DS F Page index in hex
 SPACE 2
ADMFEXMP CSECT
 TITLE 'ADMFEXMP - DSECT MAPPINGS'
 EJECT
 CVT LIST=YES,DSECT=YES
 END ADMFEXMP

Extending the current size of a hiperspace
When you create a hiperspace and specify an initial size smaller than the maximum size, you can use
DSPSERV EXTEND to increase the current size as your program uses more storage in the hiperspace. The
BLOCKS parameter specifies the amount of storage you want to add to the current size of the hiperspace.

The system increases the hiperspace by the amount you specify, unless that amount would cause the
system to exceed one of the following:

• The hiperspace maximum size, as specified by the BLOCKS parameter on DSPSERV CREATE when the
hiperspace was created

• The installation limit for the combined total of data space and hiperspace storage with storage key 8 -F
per address space. These limits are the system default or are set in the installation exit IEFUSI.

If one of those limits would be exceeded, the VAR parameter tells the system how to satisfy the EXTEND
request.

• VAR=YES (the variable request) tells the system to extend the hiperspace as much as possible without
exceeding the limits set by the hiperspace maximum size or the installation limits. In other words, the
system extends the hiperspace to one of the following sizes, depending on which is smaller:

– The maximum size specified on the BLOCKS parameter
– The largest size that would still keep the combined total of data space and hiperspace storage within

the installation limit.
• VAR=NO (the default) tells the system to:

– Abend the caller, if the extended size would exceed the maximum size
– Reject the request, if the hiperspace has storage key 8 - F and the request would exceed the

installation limits.

190 z/OS: z/OS MVS Extended Addressability Guide

For example, consider the hiperspace in Figure 51 on page 167, where the current (and initial) size is
20,000 bytes and the maximum size is 100,000 bytes. If the creating program wanted to increase the
current size to 50,000 bytes by adding a 30,000 bytes to the current size, it would code the following:

 DSPSERV EXTEND,STOKEN=HSSTOK,BLOCKS=HSBLCKS
 .
HSDELTA EQU 30000 30000 BYTES OF SPACE
HSBLCKS DC A((HSDELTA+4095)/4096) NUMBER OF BLOCKS ADDED TO THE
* HIPERSPACE
HSSTOK DS CL8 STOKEN RETURNED FROM DSPSERV CREATE

The storage the program can use in the 100,000 byte hiperspace would then be the first 50,000 bytes, as
shown in Figure 61 on page 191:

Figure 61. Example of extending the current size of a hiperspace

If you use VAR=YES when you issue the EXTEND request, use NUMBLKS to find out the size by which the
system extended the hiperspace.

Deleting a hiperspace
When a program doesn't need the hiperspace any more, it can delete it. A problem state program with
PSW key 8 - F can delete only the hiperspaces it owns, and must have the PSW key that matches the
storage key of the hiperspace. A supervisor state program or a program with PSW 0 - 7 can delete a
hiperspace if its home or primary address space is the same as the owner's home address space.

If you are not the owner of a hiperspace you are using, the hiperspace might disappear if the owner
terminates or deletes it. For example, a problem state program can delete a hiperspace that a supervisor
state program is using.

Example of deleting a Hiperspace
The following example shows you how to delete a hiperspace:

 DSPSERV DELETE,STOKEN=HSSTKN DELETE THE HS
 .
HSSTKN DS CL8 HIPERSPACE STOKEN

IBM recommends that you explicitly delete a hiperspace before the owning task terminates. This frees up
resources as soon as they are no longer needed, and avoids excess processing at termination time.
However, if you don't, MVS automatically does it for you at termination time.

Releasing hiperspace storage
Your program needs to release storage when it used a hiperspace for one purpose and wants to reuse it
for another purpose, or when your program is finished using the area. To release (that is, initialize to
hexadecimal zeroes and return the resources to the system) the virtual storage of a hiperspace, use the

Chapter 7. Creating and using hiperspaces 191

DSPSERV RELEASE macro. Specify the STOKEN to identify the hiperspace and the START and BLOCKS
parameters to identify the beginning and the length of the area you need to release.

Releasing storage in a hiperspace is subject to the following conditions. If these conditions are not met,
the system abnormally ends the caller.

• If the hiperspace is a shared standard type or an ESO type

– The owner must be authorized (supervisor state or PSW key 0-7).
– The caller's PSW key must be zero or equal to the key of the hiperspace storage the system is to

release.
• If the hiperspace is a non-shared standard type and the caller is not authorized

– The owner's home address space must be the same as the caller's home address space.
– The caller's PSW key must be equal to the key of the hiperspace storage the system is to release.

• If the hiperspace is a non-shared standard type and the caller is authorized, the caller's PSW key must
be zero or equal to the key of the hiperspace storage the system is to release.

After the release, the released pages do not use expanded (or auxiliary) storage until your program
references them again. When such a page is referenced again, these pages contain hexadecimal zeroes.

Pages released through DSPSERV RELEASE do not occupy space in expanded or auxiliary storage. The
pages are available for you to use, and they contain hexadecimal zeroes.

If your program is running disabled for I/O or external interrupts, use the DISABLED=YES parameter on
DSPSERV RELEASE. If your program is running disabled and issues DSPSERV RELEASE without
DISABLED=YES, the system abends the program.

Using data-in-virtual with standard hiperspaces
Data-in-virtual allows you to map a large amount of data into a virtual storage area and then deal with the
portion of the data that you need. The virtual storage provides a "window" through which you can "view"
the object and make changes, if you want. The DIV macro manages the data object, the window, and the
movement of data between the window and the object.

You can use standard hiperspaces with data-in-virtual as Table 21 on page 192 describes:

Table 21. Uses of hiperspaces and data-in-virtual

Question about behavior Non-shared
standard hiperspace

Shared standard
hiperspace

ESO hiperspace

Can the hiperspace map a
VSAM linear data set?

Yes Yes No

Can the hiperspace be a data-
in-virtual object?

Yes, providing the
hiperspace has not
been the target of an
ALESERV ADD

No No

The task that represents the program that issues the DIV IDENTIFY owns the pointers and structures
associated with the ID that DIV returns. Any program can use DIV IDENTIFY. However, the system checks
the authority of programs that try to use the other DIV services for the same ID. For problem state
programs with PSW key 8 - F, data-in-virtual allows only the issuer of the DIV IDENTIFY to use
subsequent DIV services for the same ID. That means, for example, that a problem state program with
PSW key 8 cannot issue the DIV IDENTIFY and another problem state program with PSW key 8 issue DIV
MAP for the same ID.

Problem state programs with PSW key 8 - F can use DIV MAP to:

• Map a VSAM linear data set to a window in a non-shared or shared standard hiperspace, providing the
program owns the hiperspace.

192 z/OS: z/OS MVS Extended Addressability Guide

• Map an object in a non-shared hiperspace to an address space window, providing:

– The program owns the hiperspace, and
– The program or its attaching task obtained the storage for the window (through the STORAGE or

GETMAIN macro), and
– The hiperspace has never been the target of an ALESERV ADD macro.

Data-in-virtual allows supervisor state programs or programs with PSW key 0 - 7 (called "authorized
programs" in this section) to issue DIV IDENTIFY and then have subtasks of that task use the structures.
The subtasks must also be authorized. This means that an authorized program can issue a DIV IDENTIFY
and an authorized subtask can issue the DIV MAP for that ID.

Table 22 on page 193 shows what data-in-virtual requires of the tasks that represent the programs that
issue the DIV macros. The table does not show the IDENTIFY service because data-in-virtual does not
have restrictions on this service.

Table 22. Requirements for authorized programs using the DIV services with hiperspaces

Question about
behavior

ACCESS MAP SAVE UNIDENTIFY,
UNACCESS, UNMAP,
RESET

Object is a linear
data set, window
is in a non-
shared or shared
standard
hiperspace

Task that issued the
DIV IDENTIFY.

Task (or authorized
subtask of the task)
that issued the DIV
IDENTIFY. (See Note
1.)

Task (or authorized
subtask of the task)
that issued the DIV
IDENTIFY. The task
does not have to own
the hiperspace.

Task (or authorized
subtask of the task)
that issued the DIV
IDENTIFY. The task
does not have to own
the hiperspace.

Object is a non-
shared standard
hiperspace,
window is in an
address space

Task that issued the
DIV IDENTIFY. The
task must own the
hiperspace.

Task that issued the
DIV IDENTIFY. The
task (or a supertask
of the task) that
issued the DIV
IDENTIFY must have
obtained storage for
the window. (See
Note 2.)

Task that issued the
DIV IDENTIFY.

Task (or authorized
subtask of the task)
that issued the DIV
IDENTIFY. The task
does not have to own
the hiperspace.

Note:

1. If the program is in supervisor state or PSW key 0 - 7, any task within the caller's primary address space can
own the hiperspace.

2. If the program is APF-authorized, but not supervisor state or PSW key 0 - 7, the caller must own the
hiperspace.

3. A task cannot map to virtual storage that a subtask obtained. However, a super task (that is, a task higher in
the TCB chain) can obtain the storage.

Whether the hiperspace contains the window or is the object, the data-in-virtual service will not create a
local copy of the object (that is, you cannot use the LOCVIEW=MAP parameter on DIV ACCESS).

The following two sections describe how your program can use data-in-virtual with hiperspaces.

Mapping a data-in-virtual object to a hiperspace
Through data-in-virtual, a program can map a VSAM linear data set residing on DASD to a hiperspace. The
program uses the read and write operations of the HSPSERV macro to transfer data between the address
space buffer area and the hiperspace window. It is recommended that you obtain the ALET for the
hiperspace and use the HSPALET parameter on HSPSERV to get faster data transfer to and from expanded
storage.

Chapter 7. Creating and using hiperspaces 193

When a program maps a data-in-virtual object to a non-shared or shared standard hiperspace, the system
does not bring the data physically into the hiperspace; it reads the data into the address space buffer
when the program uses HSPSERV SREAD for the area that contains the data.

Your program can map a single data-in-virtual object to several hiperspaces. Or, it can map several data-
in-virtual objects to one hiperspace.

An example of mapping a data-in-virtual object to a hiperspace
The following example shows how you would create a non-shared standard hiperspace with a maximum
size of one gigabyte and an initial size of 4K bytes. Figure 62 on page 194 shows the hiperspace with a
window that begins at the origin of the hiperspace.

Figure 62. Example of mapping a data-in-virtual object to a hiperspace

Initially, the window in the hiperspace and the buffer area in the address space are both 4K bytes. (That
is, the window takes up the entire initial size of the hiperspace.) The data-in-virtual object is a VSAM linear
data set on DASD.

* CREATE A STANDARD HIPERSPACE
 .
 DSPSERV CREATE,TYPE=HIPERSPACE,HSTYPE=SCROLL,NAME=HS1NAME, X
 STOKEN=HS1STOK,BLOCKS=(ONEGIG,FOURK),ORIGIN=HS1ORG
 .

* MAP THE HIPERSPACE TO THE OBJECT
 .
 DIV IDENTIFY,ID=OBJID,TYPE=DA,DDNAME=OBJDD
 DIV ACCESS,ID=OBJID,MODE=UPDATE
 DIV MAP,ID=OBJID,AREA=HS1ORG,STOKEN=HS1STOK
 .
* OBTAIN A 4K BUFFER AREA IN ADDRESS SPACE TO BE
* USED TO UPDATE THE DATA IN THE HIPERSPACE WINDOW
 .
* DECLARATION STATEMENTS
 .
HS1NAME DC CL8'MYHSNAME' HIPERSPACE NAME
HS1STOK DS CL8 HIPERSPACE STOKEN
HS1ORG DS F HIPERSPACE ORIGIN
ONEGIG DC F'262144' MAXIMUM SIZE OF 1G IN BLOCKS
FOURK DC F'1' INITIAL SIZE OF 4K IN BLOCKS
OBJID DS CL8 DIV OBJECT ID
OBJDD DC AL1(7),CL7'MYDD ' DIV OBJECT DDNAME

The program can read the data in the hiperspace window to a buffer area in the address space through
the HSPSERV SREAD macro. It can use the HSPALET parameter to gain faster access to and from
expanded storage. The HSPSERV SWRITE macro can update the data and write changes back to the
hiperspace. For an example of these operations, see “Example of creating a standard hiperspace and
using It” on page 178.

194 z/OS: z/OS MVS Extended Addressability Guide

Continuing the example, the following code saves the data in the hiperspace window on DASD and
terminates the mapping.

* SAVE THE DATA IN THE HIPERSPACE WINDOW ON DASD AND END THE MAPPING
 .
 DIV SAVE,ID=OBJID
 DIV UNMAP,ID=OBJID,AREA=HS1ORG
 DIV UNACCESS,ID=OBJID
 DIV UNIDENTIFY,ID=OBJID
 .
* PROGRAM FINISHES USING THE DATA IN THE HIPERSPACE
 .
* DELETE THE HIPERSPACE
 .
 DSPSERV DELETE,STOKEN=HS1STOK

Using a hiperspace as a data-in-virtual object
Your program can identify a non-shared standard hiperspace as a temporary data-in-virtual object,
providing no program has ever issued an ALESERV ADD for the hiperspace. With the hiperspace as the
object, the window must be in an address space. Use the hiperspace for temporary storage of data, such
as intermediate results of a computation. The movement of data between the window in the address
space and the hiperspace object is through the DIV MAP and DIV SAVE macros. The data in the
hiperspace is temporary.

Figure 63 on page 195 shows an example of a hiperspace as a data-in-virtual object.

Figure 63. A Standard hiperspace as a data-in-virtual object

When the hiperspace is a data-in-virtual object, data-in-virtual services transfer data between the
hiperspace object and the address space window. In this case, your program cannot use the HSPSERV
read and write operation.

An example of a hiperspace as a data-in-virtual object
The program in this section creates a non-shared standard hiperspace for temporary storage of a table of
4K bytes that the program generates and uses. The program cannot save this table permanently.

The following code creates a non-shared standard hiperspace and identifies it as a data-in-virtual object.

* CREATE A HIPERSPACE
 .
 DSPSERV CREATE,TYPE=HIPERSPACE,HSTYPE=SCROLL, X
 NAME=HS2NAME,STOKEN=HS2STOK,BLOCKS=ONEBLOCK
 .
* IDENTIFY THE HIPERSPACE AS A DATA-IN-VIRTUAL OBJECT
 .
 DIV IDENTIFY,ID=OBJID,TYPE=HS,STOKEN=HS2STOK
 DIV ACCESS,ID=OBJID,MODE=UPDATE

Chapter 7. Creating and using hiperspaces 195

 DIV MAP,ID=OBJID,AREA=OBJAREA
 .

HS2NAME DC CL8'MHSNAME ' HIPERSPACE NAME
HS2STOK DS CL8 HIPERSPACE STOKEN
ONEBLOCK DS F'1' HIPERSPACE SIZE OF 1 BLOCK
OBJID DS CL8 DIV OBJECT ID
OBJAREA DC CL8 WINDOW IN ADDRESS SPACE

When the hiperspace is a data-in-virtual object, your program does not need to know the origin of the
hiperspace. All addresses refer to offsets within the hiperspace. Note that the example does not have the
ORIGIN parameter on DSPSERV.

After you finish making changes to the data in the address space window, you can save the changes back
to the hiperspace as follows:

* SAVE CHANGES TO THE OBJECT
 .
 DIV SAVE,ID=OBJID

The following macro refreshes the address space window. This means that if you make changes in the
window and want a fresh copy of the object (that is, the copy that was saved last with the DIV SAVE
macro), you would issue the following:

 DIV RESET,ID=OBJID

When you finish using the hiperspace, use the DSPSERV macro to delete the hiperspace.

* DELETE THE HIPERSPACE
 .
 DSPSERV DELETE,STOKEN=HS2STOK

How SRBs use hiperspaces
An SRB cannot own a hiperspace. Through the DSPSERV CREATE macro, a program in supervisor state or
PSW key 0 - 7 can assign ownership of a hiperspace to a TCB. The owning TCB must reside in the SRB's
home or primary address space.

When you use the DSPSERV CREATE macro to create the hiperspace and assign ownership, you must
identify the TCB through the TTOKEN parameter. A TTOKEN identifies a TCB. Unlike TCB addresses,
TTOKENs are unique within the IPL; the system does not assign this same TTOKEN to any other TCB until
the next IPL. If you know the TCB address, but not the TTOKEN for the task that is to receive ownership,
use the TCBTOKEN macro. The TCBTOKEN macro accepts the TCB address and returns a TTOKEN. You
then use this TTOKEN in the DSPSERV CREATE macro. For more information about TTOKENs, see
“Obtaining the TCB identifier for a task (ttoken)” on page 154.

When an SRB terminates, it can delete any hiperspaces it created. Use the TTOKEN parameter on the
DSPSERV DELETE macro to specify the address of the TTOKEN of the hiperspace owner.

196 z/OS: z/OS MVS Extended Addressability Guide

Chapter 8. Creating address spaces

This section is for the programmer who wants to create an address space. Perhaps the address space is
for a subsystem that has "outgrown" the address space it shared with other programs; perhaps it will be
for a set of programs that provide a service for programs in other address spaces. Perhaps the subsystem
or the programs need to have more control over their environment.

One way for a program to create an address space, without involving an MVS operator, is by issuing a
START command through the MGCR macro. The program must have a procedure in SYS1.PROCLIB,
representing the first program that will execute in the created address space. The program can assign the
dispatching priority for the programs that will run in the created address space. The initialization can
include cross memory macros that establish a cross memory environment for the created address space.

An easier way to accomplish the same objectives is to issue the ASCRE macro. The ASCRE macro creates
a address space that can start after the system is initialized and receive the services of all MVS
components. It can set up cross memory linkages so that programs in the created address space can call
programs in the creating program's address space. It can set a dispatching priority for the programs that
run in the created address space and can specify that the address space exist after the task that
represents the creating program terminates. (For simplicity, in this section the term "creating program"
refers to the address space of the program that is issuing the ASCRE macro. The term "new address
space" refers to the address space that the ASCRE macro creates.)

The system considers the new address space to be a system address space, and it will show up as such
when the operator issues a DISPLAY A command, unless ATTR=JOBSPACE is specified on the ASCRES
macro. Program properties table (PPT) values determine the attributes of the programs that execute in
the new address space.

This section describes how to use the ASCRE macro and two other macros that assist in managing
address spaces:

• The ASDES macro terminates an address space that was created through the ASCRE macro.
• The ASEXT macro retrieves parameters that the creating program passes to a program in the new

address space.

For the syntax of the macros mentioned in this section, see one of the following:

• z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
• z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
• z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
• z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

Using the ASCRE macro to create an address space
The ASCRE macro creates an address space. Parameters on the macro allow you to:

• Name the address space and specify the first program that is to run in the address space (ASNAME or
STPARM parameter).

• Specify an address space initialization routine that ASCRE processing calls (INIT parameter).
• Provide a routine to control the termination of the address space (TRMEXIT parameter).

– Provide the termination routine with user data (UTOKEN parameter).
• Pass a parameter list from the creating program to a program in the new address space (ASPARM or

STPARM parameter).
• Assign various attribute to the new address space (ATTR parameter).
• Set up cross memory linkages between the creating address space and the new address space (AXLIST,

TKLIST, and LXLIST parameters).

© Copyright IBM Corp. 1988, 2020 197

• Provide an address where ASCRE will return output data (ODA parameter).

The required parameters on the ASCRE macro are ASNAME or STPARM, INIT, and ODA. Some comments
about these parameters are:

• Specify either ASNAME or STPARM.

– ASNAME specifies the address space name, which is also the name of the procedure that identifies
the first program to run in the new address space.

– STPARM specifies a parameter string. Although the system does not actually issue a START
command, the parameter string consists of START command parameters. This parameter string must
begin with the name of the address space.

An operator can use the name of the address space on the DISPLAY A command to display information
about the address space. For the syntax of the DISPLAY command, see z/OS MVS System Commands.

• Output data from the macro appears at the location specified on the ODA parameter. This data includes
two identifiers of the new address space: the ASCB and the STOKEN. The STOKEN is an identifier that is
unique within the lifetime of an IPL. The format of the output data area is a 24-byte area that the macro
IHAASEO maps as follows:

Offset Length Description

X‘00’ 8 bytes The STOKEN of the new address space

X‘08’ 4 bytes The ASCB of the new address space

X‘0C’ 4 bytes Basing for IEZEAECB, the mapping macro for the
two ECBs, EAERIMWT and EAEASWT

X‘10’ 8 bytes Reserved

For the format of IHAASEO, see the ASEO data area in z/OS MVS Data Areas in the z/OS Internet library
(www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

• Although INIT is a required parameter, you might not need to write an initialization routine. “The
address space initialization routine” on page 200 can help you decide whether you need an initialization
routine.

Issue the ASCRE macro in a supervisor state program that is executing in primary or AR address space
control (ASC) mode. The caller must be in enabled and unlocked TCB mode and must not have an enabled
unlocked task (EUT) functional recovery routine (FRR) established. Issue the ASCRE macro only after
system initialization is complete.

Planning the characteristics of the address space
Before you issue the ASCRE macro, you have some planning to do and some actions to take. For a list of
the questions you have to consider before you issue the macro, look at Table 23 on page 198. This figure
lists the questions, describes the actions that you might take, and points you to the section in this section
where you can find information about the action.

Table 23. Planning considerations for the new address space

Considerations Actions that Might Follow Reference

Which parameter identifies the
procedure in SYS1.PROCLIB that
identifies the first program to run in the
new address space?

Specify either ASNAME or STPARM on
the ASCRE macro.

“Identifying a procedure
in SYS1.PROCLIB” on
page 199

Do any data sets need special DD
statements?

Supply the DD statements in the
SYS1.PROCLIB member.

“Identifying a procedure
in SYS1.PROCLIB” on
page 199

198 z/OS: z/OS MVS Extended Addressability Guide

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Table 23. Planning considerations for the new address space (continued)

Considerations Actions that Might Follow Reference

Does the address space need an
initialization routine?

Write an initialization routine and
specify it on the INIT parameter.

“The address space
initialization routine” on
page 200

Will the new address space be able to
provide cross memory services for
programs in other address spaces?

Code the cross memory macros in the
initialization routine.

“The new address space
as service provider” on
page 202

Will programs in the new address space
be able to call programs in the creating
program's address space?

Code the TKLIST, LXLIST, and AXLIST
parameters on the ASCRE macro.

“The new address space
as cross memory user” on
page 202

Does the address space need a
termination routine?

Write a termination routine and code the
TRMEXIT and UTOKEN parameters.

“Providing an address
space termination
routine” on page 205

How will the system dispatch programs
in the new address space?

Code NONURG or HIPRI on the ATTR
parameter on the ASCRE macro.

“Establishing attributes
for address spaces” on
page 206

Will the address space exist after the
creating task terminates?

Code PERM on the ATTR parameter on
the ASCRE macro.

“Establishing attributes
for address spaces” on
page 206

Identifying a procedure in SYS1.PROCLIB
The procedure in SYS1.PROCLIB specifies the first program to run in the new address space after the
optional initialization routine. You can specify the name of this procedure either on the ASNAME or
STPARM parameter.

• On the ASNAME parameter, you specify the name of the new address space, which must be the same as
the name of the procedure in SYS1.PROCLIB. (This parameter assumes that you have the procedure in
SYS1.PROCLIB.) You cannot pass parameters to JCL through ASNAME.

• On the STPARM parameter, you specify the address of a parameter string that consists of a two-byte
length field followed by up to 124 bytes of parameter data. The length field identifies the length of the
parameter data (not including the length field itself). The parameter data begins with the name of the
new address space, which must be the same as the name of the procedure in SYS1.PROCLIB. The name
is followed by parameters. You can pass parameters to JCL through STPARM.

If you do not need special DD statements for data sets, you can use the common system address space
procedure IEESYSAS. In the parameter data specified by the STPARM parameter, specify IEESYSAS and
the name of the first program to run in the address space. The format of the parameter data is as follows:

IEESYSAS.x,PROG=y

where:
x

The name of the address space
y

The name of the first program that executes in the new address space

Through IEESYSAS, you name the address space "x" and generate an EXEC statement with PGM="y".

Example of a parameter string
To request that the system create the RMA address space and identify FIRSTPGM as the first program to
execute in the new address space, code the following:

Chapter 8. Creating address spaces 199

ASCRE STPARM=STRMA,...

where STRMA is the address of the parameter string.

The parameter string is coded as follows:

STRMA DS 0H
 DC H'26'
 DC CL26'IEESYSAS.RMA,PROG=FIRSTPGM'

where:
H'26'

Indicates that the parameter string is 26 characters long
IEESYSAS

Identifies the procedure to be used
RMA

The name of the new address space
FIRSTPGM

The name of the first program in the new address space

If you have data sets that need DD statements, you will have to write your own procedure in
SYS1.PROCLIB. Identify the procedure through the parameter string that the STPARM parameter points
to. The parameter string starts with a halfword field that tells the length of the parameter string. It is
followed by parameter data.

The address space initialization routine
The initialization routine is a program that you can write to set up certain services or data areas for the
new address space. It executes in the new address space before the procedure identified by
SYS1.PROCLIB. Each initialization routine initializes an address space according to unique requirements
of the address space. For example, the initialization routine might:

• Create and initialize control blocks
• Load executable code
• Build the cross memory linkages to allow programs in other address spaces to call PC routines in the

new address space.

The AXLIST, TKLIST, and LXLIST parameters on ASCRE set up cross memory linkages that allow programs
in the new address space to be cross memory users, but not cross memory service providers. The
initialization routine is a good place to use the cross memory macros that allow PC routines in the new
address space to be invoked from other address spaces.

The address space that ASCRE is to create might not need initializing beyond what the macro provides. In
this case, specify the dummy routine IEFBR14 on the INIT parameter and ignore the following description
of the initialization routine.

Writing an Initialization Routine
The system program invokes the initialization routine in supervisor state. The routine must reside in the
link pack area (PLPA, MLPA, or fixed LPA) or in a library in the LNKLST concatenation.

On entry to the initialization routine:

• Register 1 contains the address of the parameter list, which contains the following:

– Address of the newly created address space's ASCB (mapped by IHAASCB)
– Address of ECBs (mapped by IEZEAECB)

• Register 13 contains the address of a standard 18-word save area.
• Register 14 contains the return address.

200 z/OS: z/OS MVS Extended Addressability Guide

• Register 15 contains the address of the initialization routine.

Synchronizing the Initialization Process
The caller of ASCRE might want to wait until the new address space is initialized (the point at which the
initialization routine has finished processing and has returned to the system program) before starting to
run the first program in the new address space. The system provides the caller with two ECBs —
EAERIMWT and EAEASWT — that it can use for communication and synchronization between the creating
program and the initialization routine. The address of these two ECBs is contained in the data area that
the ODA parameter specifies. The format of the 24-byte output area appears earlier in this section, and
the macro IEZEAECB maps the two ECBs within that data area. For the format of the ECBs, see the EAECB
data area in z/OS MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosInternetLibrary).

Use the ECBs as follows:

• When the initialization routine gets control and completes all or part of its processing, it posts
EAERIMWT (a "cross memory" POST) to notify the caller of ASCRE. If the initialization routine needs
further communication with the creating program, it can wait on EAEASWT. The initialization routine can
pass up to three bytes of information in the post code of the ECB.

Note: To post EAERIMWT with a cross memory post, the initialization routine must supply the creating
address space's ASCB address on the POST macro. The routine obtains the ASCB address from the
creating program in the following manner:

– The creating program obtains the ASCB address from PSAAOLD
– The creating program places the ASCB address in a parameter string, and specifies the parameter

string on the ASPARM parameter on the ASCRE macro
– The initialization routine invokes the ASEXT macro to obtain the address of a copy of the parameter

string.
• If the caller needs to communicate back to the initialization routine, it posts EAEASWT, which the

initialization routine is waiting on.

Figure 64 on page 201 shows an example of a program creating a new address space that has PC
services. The caller of ASCRE does not want PC routines in the new address space to be called from other
address spaces before the cross memory environment is initialized and able to handle those requests.

IBM recommends that your initialization routine post EAERIMWT and wait on EAEASWT. If the
initialization routine posts EAERIMWT, but does not wait on EAEASWT, the system frees the ECBs
prematurely. This action causes the system to abend the caller of ASCRE.

Figure 64. Synchronization of the address space creation process

Chapter 8. Creating address spaces 201

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

The initialization routine should use one of the following reason codes when it returns to the system
program:

• 0 — Continue with address space initialization
• 4 — Terminate the address space.

If the initialization routine is going to return to the system program with the return code that requests that
the new address space terminate, the routine should first notify the caller of ASCRE to allow the system to
continue processing. To notify the caller:

• The initialization routine can post EAERIMWT and wait on EAEASWT.
• When the caller is posted, it can post EAEASWT to notify the initialization routine. Control returns to the

system program.

Establishing cross memory linkages
There are two types of cross memory environments that you can set up between the creating address
space and the new address space. In one, programs in the new address space provide services for other
address spaces. In the second, programs in the new address space use services provided by other
address spaces. Use this section along with Chapter 3, “Synchronous cross memory communication,” on
page 19 to set up either environment.

The new address space as service provider
Figure 65 on page 202 illustrates the environment in which the new address space will be a service
provider.

Figure 65. An example of a cross memory environment

In this figure, programs PROG1 and PROG2 in the creating address space can use the PC services PCRT1
and PCRT2 provided by the new address space.

To set up the cross memory linkages for this environment in Figure 65 on page 202, cross memory macros
must be issued in the new address space. The initialization routine, which runs in the new address space,
is a good place to set up this environment. For help in writing this initialization routine, see “Writing an
Initialization Routine” on page 200. Figure 64 on page 201 shows how you synchronize the initialization
process so that PC routines in the new address space are not called before the cross memory linkages are
in place.

The new address space as cross memory user
Parameters on the ASCRE macro enable the creating program to establish the second type of cross
memory environment — one in which cross memory linkages enable the new address space to use the PC
services provided by the creating program's address space. The environment is in place as soon as ASCRE
processing is complete.

202 z/OS: z/OS MVS Extended Addressability Guide

The cross memory environment that ASCRE can set up is described in Figure 66 on page 203. Programs in
the new address space (PGM1 and PGM2) can call PC routines (PCRTN1 and PCRTN2) in the creating
program's address space. (ASCRE cannot set up the environment where programs in the creating
program's address space can call PC routines in the new address space.)

Figure 66. An example of cross memory environment set by the ASCRE macro

There are three cross memory parameters on ASCRE. TKLIST and LXLIST can be used to connect an entry
table (or tables) of the creating program's address space to the linkage table of the new address space.
AXLIST can be used to set the values in the authority table of the new address space so that programs in
the creating program's address space have PT and SSAR authority to the new address space. The effect of
the cross memory parameters is the same as if the new address space issued the ATSET and ETCON
macros, macros that require a program to be in supervisor state or key 0 - 7.

The three cross memory parameters require that you provide the addresses of three lists. The lists are:

• The AX value (or values) of the creating program's address space
• The linkage index (LX) value (or values) of the new address space's linkage table
• The token (or tokens) that represents the entry table (or tables) in the creating program's address

space.

The output of the AXRES and LXRES macros provides the input to the AXLIST and LXLIST parameters. You
must build the list that is input to the TKLIST parameter. The following description of the parameters
includes the format of the list you provide the TKLIST parameter.

• The AXLIST parameter identifies the address of a list of authorization index (AX) values that represent
the address spaces that have access to the new address space. The AXRES macro returned these
values.

The effect of using this parameter is the same as if a program in the new address space were to issue
the ATSET macro once for every AX value in the list.

• The LXLIST parameter identifies the address of a list of linkage index (LX) values that represent entries
in the new address space's linkage table. The LXRES macro returned these values. The number of
linkage indexes for LXLIST must be the same as the number of tokens for TKLIST.

The effect of using this parameter is the same as if a program in the new address space issued the
ETCON macro with the LXLIST parameter.

• The TKLIST parameter identifies the address of a list of fullword tokens — each token represents an
entry table to which the system will connect the new address space's linkage table. You build this list
with tokens that the ETCRE macro returned, one token for each occurrence of the ETCRE macro. Format
the list as follows:

– The first fullword contains the number of tokens in the list
– Up to 32 fullwords follow, each containing one entry table token.

Chapter 8. Creating address spaces 203

The effect of using this parameter is the same as if a program in the new address space issued the
ETCON macro with the TKLIST parameter.

If the creating address space is to be a service provider for the new address space, the creating program
(or another program in the same address space) must have issued the following cross memory macros
before it issues the ASCRE macro:

• AXRES macro, which reserves an AX value (or values)
• AXSET macro, which sets an AX
• LXRES macro, which reserves an LX value (or values)
• ETCRE macro, which creates an entry table and returns a token that identifies the table.

On the ASCRE macro, the creating program can:

• Use the AXLIST, LXLIST, and TKLIST parameters to set up a cross memory linkage with the new address
space.

• Use the ASPARM parameter to pass the PC number of a PC routine in the creating program's address
space.

A program in the new address space can later use the ASPARM parameter on the ASEXT macro to
obtain a PC number or numbers. See “Passing a parameter list to the new address space” on page 205
for more information about passing parameters to the new address space.

Figure 67 on page 205 shows the same cross memory environment that Figure 66 on page 203 showed.
The creating address space would give the following input to ASCRE:

• As input on AXLIST, the address of a list containing the AX value of the creating address space. The
AXRES macro returned the address.

• As input on TKLIST, the address of a list that you created. The first entry in the list is X‘0001’, the second
entry is the entry table token that the ETCRE macro returned.

• As input on LXLIST, the address of a list containing the LX value of the new address space's linkage
table. The LXRES macro returned the address.

The AXLIST parameter sets the authority table in the new address space so that PC routines in the
creating address space can have address space authorization to the new address space. TKLIST and
LXLIST connect the entry table in the creating address space to the new address space's linkage table.

204 z/OS: z/OS MVS Extended Addressability Guide

Figure 67. The cross memory linkages set by the ASCRE macro

The AXLIST parameter is not always needed to set up the cross memory linkages. If the address space to
which the creating program needs access has only one AX value and that value is 1, the system does not
need to initialize entries in the new address space's authority table. (An AX of 1 is a fully-authorized AX
value that permits the address space to issue PT and SSAR instructions to any active address space.) If all
AX values are 1, you can omit the AXLIST parameter.

Passing a parameter list to the new address space
Through the ASCRE macro, you can pass up to 254 bytes of data in a parameter string to a program in the
new address space. The ASPARM parameter identifies the address of the parameter string. A program in
the new address space can use the ASEXT macro to obtain a copy of that parameter string. The ASEXT
macro returns the address of the copy in register 1. “Example of creating and deleting an address space”
on page 207 contains an example of a program in the new address space retrieving a copy of the
parameter string.

Providing an address space termination routine
You can provide a routine that receives control when the address space terminates for reasons other than
the ASDES macro. Specify the address of the routine on the TRMEXIT parameter. The termination routine
receives control in 31-bit addressing mode, supervisor state, and in the current TCB key of the task that
issued the ASCRE macro. The routine is an asynchronous exit (IRB) that resides in the address space of
the creating program and runs under its TCB.

To identify the terminating address space to the termination routine and pass data, use the 64-bit area
provided on the UTOKEN parameter. Specify the address of this data area on the UTOKEN parameter.

The UTOKEN parameter provides a 64-bit area in which the creating program can pass data to the
termination routine. Use UTOKEN to:

• Give the address space a unique name that the termination routine can use. If your program has created
more than one address space, the UTOKEN parameter area can identify which address space is
terminating.

Chapter 8. Creating address spaces 205

• Pass other data to the termination routine. Data might consist of the address and ALET of a workarea
containing the name of the address space.

On entry to the routine:

• Register 1 contains the address of a copy of the 64-bit data that the UTOKEN parameter supplies.
• Register 13 conditionally contains the address of a standard 18-word save area.

A save area is provided only in the following cases:

– The TCB key of the caller of the ASCRE macro is 0 - 7.
– The job step of the caller is APF-authorized and is not running the TSO TMP.

The save area is obtained in virtual storage that is normally assigned the storage key of the TCB. Note
that the system does not require the exit routine to save and restore registers. For exiting purposes, the
exit routine can return using the address in input register 14 or by branching to CVTEXIT.

• Register 13 conditionally contains the address of a standard 18-word save area, providing either of the
following conditions are met:

– The TCB key of the caller of the ASCRE macro is 0 - 7.
– The job step of the caller is APF-authorized and is not running the TSO/E TMP.

The save area is obtained in virtual storage that is normally assigned the storage key of the TCB. Note
that the system does not require the exit routine to save and restore registers. For exiting purposes, the
exit routine can return using the address in input register 14 or by branching to CVTEXIT.

• Register 14 contains the return address.
• Register 15 contains the entry point address.

The termination routine will not get control for either of the following two reasons:

• The ASDES macro terminates the new address space.
• The creating address space terminates before the new address space terminates.

Establishing attributes for address spaces
Through the ATTR parameter, you can define some of the attributes for programs that run in the new
address space. Table 24 on page 206 describes the options for ATTR and identifies what definitions
override those options.

Table 24. ATTR options for address spaces

Option Description Override

NONURG The address space is to be used by nonurgent
services. The defaults for dispatch priority as well
as service class or performance group depend on
whether the address space is privileged or not. The
dispatching priority of programs that run in the new
address space is to be low.

The service definitions of the
workload management (WLM)
policy

HIPRI The address space is to be used by services with a
high priority. The defaults for dispatch priority as
well as service class or performance group depend
on whether the address space is privileged or not.
The dispatching priority of programs that run in the
new address space is high.

The service definitions of the
WLM policy

PERM The address space does not terminate when the
task that created the address space terminates.

No override

206 z/OS: z/OS MVS Extended Addressability Guide

Table 24. ATTR options for address spaces (continued)

Option Description Override

JOBSPACE The address space should be marked as a job
(started task) space, rather than as a system
address space.

No override

The NONURG and HIPRI parameters set the dispatching priority for programs that execute in the new
address space. Your installation can also set the dispatching priority through service definitions in the
WLM policy. See z/OS MVS Planning: Workload Management.

Do not set the dispatching priority in more than one way.

If you want the new address space to exist after the TCB of the creating program terminates, use
ATTR=(PERM).

When the address space is marked as a job, the resource name used for the started class profile will be
procname JOBNAME. Display it with the DISPLAY A,L command.

Deleting an address space
Use the ASDES macro to delete an address space that was created through the ASCRE macro. The
STOKEN parameter is required on the ASDES macro. You can obtain this value from the data output field
located at the address specified on the ODA parameter. The macro IHAASEO maps the 24-byte data area
specified by ODA. For the format of IHAASEO, see the ASEO data area in z/OS MVS Data Areas in the z/OS
Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

Note that the termination routine that was optionally specified on the TRMEXIT parameter on the ASCRE
macro does not get control in this case.

The ASDES process is similar to what CALLRTM TYPE=MEMTERM provides. Be aware that tasks in the
abending address space cannot perform recovery and task-level resource managers cannot get control;
address space recovery routines and resource managers can get control. Instead of using ASDES, you
might use CALLRTM TYPE=ABTERM,RETRY=NO to abend each job step task in the address space. When
all tasks in the address space have terminated, the system deletes the address space.

Example of creating and deleting an address space
The following supervisor state, key 0 program (CREATOR) creates an address space and a cross memory
environment in which programs in the new address space (NEWADS) can PC to the creating address
space. In this example, CREATOR builds a linkage table (LT) and a corresponding entry table (ET) that
allows programs in NEWADS to PC to the routine PCTARGET, which is loaded in the creating address
space. CREATOR passes the PC number needed to get to PCTARGET through the ASPARM field on the
ASCRE macro. A program in NEWADS can then use the ASEXT macro to extract ASPARM. CREATOR also
builds NEWADS's authority table (AT) so that it can PT and SSAR to NEWADS. Note that NEWADS is the
name of a procedure (PROC) that resides in SYS1.PROCLIB. This PROC contains the JCL that identifies the
first program to run in NEWADS.

CREEXMPL CSECT
CREEXMPL AMODE 31
CREEXMPL RMODE ANY
 BAKR 14,0 SAVE CALLER'S STATUS ON STACK
 BASR 12,0 SET BASE REGISTER GR
 USING *,12
 .

 .
*RESERVE AN LX
 LA R4,1
 ST R4,LXCOUNT NEED ONLY ONE LX
 LXRES LXLIST=LX_LIST RESERVE AN LX
 .

Chapter 8. Creating address spaces 207

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

*RESERVE AN AX AND SET THE CURRENT ADDRESS SPACE'S AX TO IT
 LA R4,1
 STH R4,AXENTRIES NEED ONLY ONE AX
 AXRES AXLIST=AX_LIST RESERVE AN AX
 AXSET AX=AXENTRY SET HOME'S AX TO THE RESERVED AX
 .

*DEFINE AN ENTRY TABLE ENTRY FOR THE ROUTINE PCTARGET
ETELIST ETDEF TYPE=INITIAL START AN ET ENTRY LIST
 ETDEF TYPE=ENTRY,ROUTINE=PCTARGET,AKM=0,EK=0,EKM=0,PKM=OR, X
 PC=STACKING,SASN=OLD,SSWITCH=YES,STATE=SUPERVISOR
 ETDEF TYPE=FINAL COMPLETED THE ET ENTRY LIST
 .
*CREATE AN ENTRY TABLE PUTTING IN THE ENTRY FOR PCTARGET
 ETCRE ENTRIES=ETELIST CREATE AN ENTRY TABLE
 ST R0,TKVALUE GET THE ET TOKEN FROM REG 0
 LA R4,1
 ST R4,TKCOUNT SET THE NUMBER OF ETS TO 1
*COMPUTE THE PC NUMBER (LX|EX) EX=0
 L R4,LXVALUE
 N R4,PCMASK CLEAR NON-LX VALUES
 ST R4,PC_NUMBER
 .
 .
*NEWADS CAN USE PC_NUMBER TO GET TO PCTARGET IN CREATOR FROM NEWADS
 ASCRE INIT='IEFBR14 ',ASNAME='NEWADS',TRMEXIT=TERMEXIT, X
 AXLIST=AX_LIST,TKLIST=TOKENLIST,LXLIST=LX_LIST, X
 ASPARM=PC_NUMBER,ODA=ODA_AREA
 .
*TERMINATION ROUTINE
TERMEXIT DS 0H
 USING *,15 REGISTER 15 CONTAINS ENTRY ADDRESS
 SAVE (14,12),,* SAVE REGISTERS
 .
*PERFORM ADDRESS SPACE TERMINATION PROCESSING
 .
RETURN (14,12) RESTORE REGISTERS; RETURN TO SYSTEM
 .
*DECLARATIONS
PCMASK DC '000FFF00' MASK TO CLEAR EX VALUE
PC_NUMBER DS F PC NUM USED TO GET TO PCTARGET
ODA_AREA DS CL24 OUTPUT DATA AREA
TOKENLIST DS CL8 LIST OF ET TOKENS
LX_LIST DS CL8 LIST OF LXS
AX_LIST DS CL4 LIST OF AXS
 ORG LX_LIST
LXCOUNT DS FL4 NUMBER OF LX REQUESTED
LXVALUE DS FL4 ONE LX ENTRY
 ORG AX_LIST
AXENTRIES DS FL2 NUMBER OF AX REQUESTED
AXENTRY DS FL2 ONE AX ENTRY
 ORG TOKENLIST
TKCOUNT DS FL4 NUMBER OF ET TOKENS
TKVALUE DS FL4 ET TOKEN

In the following example, a supervisor state key zero program deletes an address space that was created
through the ASCRE macro. The address of the ASEO (ASE output area), passed back from ASCRE after
creating the address space, is passed to this routine in general purpose register 1.

DESEXMPL CSECT
DESEXMPL AMODE 31
DESEXMPL RMODE ANY
 BAKR 14,0 SAVE CALLER'S STATUS ON STACK
 BASR 12,0 SET BASE REGISTER
 USING *,12
 USING ASEO,1 ESTABLISH ADDRESSABILITY TO ASEO
 .
 .
* DELETE THE ADDRESS SPACE
 ASDES STOKEN=ASEOSTKN
 .
* DECLARES THE DSECT FOR THE ASE OUTPUT AREA PASSED BACK FROM ASCRE.
* THE IHAASEO MACRO CONTAINS THIS MAPPING
 .
ASEO DSECT
ASEOSTKN DS XL8 64-BIT STOKEN OF THE NEW ASCB
ASEOASCB DS A ASCB OF NEW ADDRESS SPACE

208 z/OS: z/OS MVS Extended Addressability Guide

ASEOECB DS A ECBs, BASING FOR IEZEAECB
ASEORSV1 DS XL8 RESERVED

Chapter 8. Creating address spaces 209

210 z/OS: z/OS MVS Extended Addressability Guide

Chapter 9. Creating and using subspaces

Within an application server address space, many application programs run under a single server
program. An error in one of these application programs can cause it to overwrite the code or data of the
other application programs or of the server program itself. Subspaces provide a means of limiting the
application server address space storage that an application program can reference, thus limiting the
damage an application program error can do within the application server address space.

This section describes the concept of subspaces, when to use them, how to create them, how to manage
them, and how to delete them. It also describes considerations for providing recovery for and diagnosing
errors in programs that run in subspaces.

What is a subspace?
A subspace is a specific range of storage in the private area of an address space, designed to limit the
storage a program can reference.

A program that is associated with a subspace cannot reference some of the private area storage outside
of the subspace storage range; the storage is protected from the program. Whether a given range of
private area storage is protected from a program associated with a subspace depends on whether the
storage is:

• Eligible to be assigned to a subspace (or “subspace-eligible”)
• Assigned to a subspace
• Not eligible to be assigned to a subspace.

You control these storage “states” through the IARSUBSP macro. Storage outside of the private area is
not affected by subspaces.

A program running in an address space can reference all of the storage associated with that address
space. In this section, a program's ability to reference all of the storage associated with an address space
is called full address space addressability. A program running with full address space addressability can
reference storage in any of the three states: eligible to be assigned to a subspace, assigned to a subspace,
or not eligible to be assigned to a subspace.

A program that runs in an address space that owns subspaces also has full address space addressability.
While running in a subspace, a program now has access to 64-bit private and shared storage. It can
reference the 64-bit storage while in subspace mode and no longer needs to issue the BSG (Branch in
Subspace Group) instruction to switch to the base mode to reference the 64-bit storage.

A program running in a subspace can reference storage that is assigned to its own subspace and storage
that is not eligible to be assigned to a subspace. It cannot reference storage that is eligible to be assigned
to a subspace or storage that is assigned to a subspace other than the one in which the program is
running. In other words, a subspace allows a program running in it to reference all of the storage
associated with the address space except the private area storage that is eligible to be assigned to a
subspace or assigned to another subspace.

When storage is not eligible to be assigned to a subspace and not assigned to a subspace, it can be
referenced by a program running in a subspace or a program running with full address space
addressability. This storage can be referenced by all subspaces as well as by programs running with full
address space addressability.

An address space that owns subspaces is also called a “base space”. Figure 68 on page 212 illustrates
the concept of creating a subspace in base space ASID 23.

© Copyright IBM Corp. 1988, 2020 211

Figure 68. Illustration of address space that owns one subspace

1. PGM1 is a program running with full address space addressability in address space ASID 23. ASID 23
owns no subspaces, and no storage eligible to be assigned to a subspace. PGM1 can reference all
storage in the address space.

2. PGM1 makes the shaded area of storage eligible to be assigned to a subspace. The eligible storage has
not been assigned to a subspace. PGM1 can reference the subspace-eligible storage because PGM1 is
not running in a subspace.

3. PGM1 assigns part of the subspace-eligible storage to Subspace A. PGM1 can reference the subspace
storage as well as the subspace-eligible storage because PGM1 is not running in a subspace.

4. PGM1 issues the BSG instruction, which passes control to PGM2 to run in Subspace A. PGM2 can
reference the storage that is assigned to Subspace A, and storage in the address space that has not
been made subspace-eligible. PGM2 cannot reference the subspace-eligible storage while PGM2 is
running in the subspace.

An address space can have many subspaces. Each application program running simultaneously in an
address space can run in its own subspace. The subspace restricts a program running in it from
referencing the storage assigned to other subspaces. Figure 69 on page 213 illustrates the concept of
multiple subspaces by adding another subspace to address space ASID 23.

212 z/OS: z/OS MVS Extended Addressability Guide

Figure 69. Illustration of address space that owns two subspaces

1. Running with full address space addressability, PGM1 creates and assigns storage to Subspace B.
PGM1 can reference the entire address space, including storage assigned to Subspaces A and B, and
subspace-eligible storage (shaded).

2. PGM2, running in Subspace A, can reference storage that is assigned to Subspace A and storage that
has not been made subspace-eligible. PGM2 cannot reference storage in Subspace B or storage that is
subspace-eligible.

3. PGM3 is a program running in Subspace B. PGM3 can reference storage that is assigned to Subspace B
and storage in the address space that has not been made subspace-eligible. PGM3 cannot reference
storage that is assigned to Subspace A, or storage that is subspace-eligible.

The number of subspaces per address space is limited by the amount of unallocated private storage
available in the address space, and by the amount of storage assigned to each subspace.

A subspace is associated with only one address space and is owned by the task that creates it. A task
cannot pass addressability to its subspaces to its subtasks or SRBs. An attached subtask or an SRB gets
control with full address space addressability.

A subspace has an access list entry (called an “entry” in this section) associated with it. After a program
creates a subspace, it adds the entry to the dispatchable unit access list (DU-AL) associated with the task
the program runs under. A program does not have to be in AR mode to use a subspace, although it can be.

A program can toggle between running in a subspace and running with full address space addressability
by issuing the BSG instruction.

Chapter 9. Creating and using subspaces 213

Deciding whether your program should run in a subspace
Subspaces are beneficial in an application server address space in which numerous applications run
under a single task within the address space.

Using subspaces as described in this section requires few or no changes to the application programs. See
“Running a program in a subspace” on page 225 for some considerations for a program running in a
subspace.

Using subspaces does require additional code in the server program. This requirement is explained in
detail in “Steps to manage subspaces” on page 215.

Benefits of subspaces
The use of subspaces can protect the server and application programs in an address space. In addition,
subspaces can help you to identify where in the address space an error has occurred.

Protecting the server program
Using subspaces in an application server address space protects the server program and its data.
Subspaces reduce the number of failures in the server program by protecting it from the errors of other
programs in the address space.

Protecting the application program
Using subspaces in an application server address space also protects the applications, similar to the way
programs are protected by running in separate address spaces. By preventing applications from
overwriting each other's code and data, subspaces increase the reliability of these applications.

Providing diagnosis
An IPCS diagnostic report and trace functions can help you to identify where in the address space an error
has occurred.

An ABEND dump can help you to identify that an error resulted from a prohibited storage reference. When
requested by a program running in a subspace, an ABEND dump contains only the storage that the
program is allowed to reference.

Limitations of subspaces
Subspaces have the following limitations:

• They do not provide protection against deliberate attempts to overwrite code.
• To ensure that subspace storage is protected, the system abnormally ends a program that:

– Attempts to reference storage to which it does not have addressability
– Provides incorrect information on the IARSUBSP macro.

Therefore, you might need to code additional recovery routines for your programs.
• An unauthorized application program running in a subspace cannot add more storage to the subspace.

If an application program requires more subspace storage, the server program must obtain subspace-
eligible storage for the application. This is explained in detail in “Requesting additional storage while
running in a subspace” on page 226.

• Programs executing in an authorized state (for example, supervisor state, authorized key, or APF-
authorized), might not always have subspace isolation and might have access to storage that is
subspace-eligible but not assigned to the current subspace.

214 z/OS: z/OS MVS Extended Addressability Guide

System storage requirements
One factor that might influence your decision to use subspaces is the amount of virtual and central
storage that the system requires to manage them. This storage overhead can affect system performance.

The system allocates storage for its own use from subpool 255 when a program:

• Makes storage eligible to be assigned to a subspace
• Creates a subspace
• Assigns more than 2 segments of storage below 16 megabytes to a subspace.

The system deallocates its storage when the program deletes the subspace or makes the storage
ineligible to be assigned to a subspace.

The amount of storage that the system requires for its own use depends on whether the subspace storage
is above or below 16 megabytes. The system requires more storage to manage subspaces below 16
megabytes.

Use the following guidelines to plan for the system's storage requirements:

Table 25. System storage requirements when managing subspaces

The System Uses: For Each:

8192 bytes Address space in which a program issues IARSUBSP IDENTIFY

1024 bytes Segment below 16 megabytes specified on IARSUBSP IDENTIFY

10376 bytes Subspace created

1024 bytes Segment below 16 megabytes specified on IARSUBSP ASSIGN, after the first two
such segments

Steps to manage subspaces
The steps to create, branch to, and delete subspaces, and the macros and instructions associated with
each step, are outlined in Table 26 on page 215. The table also includes the program authorization
requirements. Each step is explained in detail on the topic indicated.

Table 26. Steps for creating, using, and deleting subspaces

Step Minimum
Authorization

Performed by: See

Determine if the subspace is available on your
system

Problem state and any
PSW key

Testing a bit in the
CVT

“Determining
whether
subspaces are
available on
your system”
on page 218

Obtain storage for subspaces Using the GETMAIN or
STORAGE macro

“Obtaining
storage for
subspaces”
on page 219

Chapter 9. Creating and using subspaces 215

Table 26. Steps for creating, using, and deleting subspaces (continued)

Step Minimum
Authorization

Performed by: See

Make the storage eligible to be assigned to
subspaces

Supervisor state or
PSW key 0 - 7

Using the IARSUBSP
macro with IDENTIFY

“Making a
range of
storage
eligible to be
assigned to a
subspace” on
page 220

Create the subspaces Using the IARSUBSP
macro with CREATE

“Creating the
subspaces”
on page 222

Add the subspace entries to the DU-AL Problem state and any
PSW key

Using the ALESERV
macro with ADD

“Establishing
addressability
to a
subspace” on
page 223

Assign the identified storage to the subspace Using the IARSUBSP
macro with ASSIGN

“Assigning
storage to the
subspaces”
on page 223

Branch and run an application program in a
subspace

Using the BSG
instruction

“Branching to
a subspace”
on page 224

Disassociate the storage from the subspace Using the IARSUBSP
macro with
UNASSIGN

“Disassociatin
g storage from
the
subspaces”
on page 227

Remove the entry from the DU-AL Using the ALESERV
macro with DELETE

“Removing
the subspace
entry from the
DU-AL” on
page 227

Delete the subspace Supervisor state or
PSW key 0 - 7

Using the IARSUBSP
macro with DELETE

“Deleting the
subspace” on
page 228

Make the storage ineligible to be assigned to a
subspace.

Using the IARSUBSP
macro with
UNIDENTIFY

“Making
storage
ineligible to
be assigned to
a subspace”
on page 228

Release the storage Problem state and any
PSW key

Using the FREEMAIN
or STORAGE macros

“Releasing
storage” on
page 228

216 z/OS: z/OS MVS Extended Addressability Guide

Updating the application server to use subspaces
Most application servers consist of at least two types of programs:

• Application programs, which perform the work
• Server programs, which manage the application programs and the address space.

You can choose to manage subspaces in either of the following ways, or with a combination of the two:

• Create a number of subspaces prior to receiving requests for application program services
• Create one subspace at a time, in response to receiving a request for application program services.

The method that you choose depends on whether your installation is more concerned with storage
constraints or performance of the application server.

Managing subspaces when performance is a priority
It is most efficient to obtain storage for and create the number of subspaces needed for all application
programs as part of application server initialization. Then, as a request for an application program's
services is received, the server program assigns eligible storage to a subspace, runs the application
program in the subspace, and disassociates the eligible storage from the subspace. As part of application
server termination, the application server deletes the subspaces and makes the storage ineligible to be
assigned to a subspace.

Managing subspaces in this way is less costly than other designs in terms of performance. The IDENTIFY
and CREATE functions use more instructions than the ASSIGN and UNASSIGN functions. By reserving a
quantity of subspace-eligible storage and creating subspaces that are reused for multiple invocations of
the application programs, the server program manages subspaces efficiently.

This design could cause storage constraints. When storage is subspace-eligible but not assigned to a
subspace, a program running in a subspace cannot reference it. Subspace-eligible storage cannot be
released until the server program makes it ineligible to be assigned to a subspace. Furthermore, a
program cannot pass ownership of subspace-eligible storage to a subtask.

If storage constraints in the application server address space are a concern at your installation, you might
want to consider the alternate design described in “Managing subspaces when storage is a priority” on
page 217.

Managing subspaces when storage is a priority
A server program with storage constraints can manage the subspaces by performing all steps to create
and delete subspaces each time an application program runs. (See Table 26 on page 215 for an overview
of the steps.) Managing subspaces in this way can reduce storage contention in the system, but is much
more costly in terms of server performance.

Creating a single subspace
The following is a simple illustration of how a server program can manage a single subspace.

Table 27. How a server program manages single subspaces.

Server program Functions

STORAGE OBTAIN Obtain storage in application server address space
Receive storage to be used for subspaces

IARSUBSP IDENTIFY Make storage ranges eligible for subspaces
Specify storage that was previously obtained

Chapter 9. Creating and using subspaces 217

Table 27. How a server program manages single subspaces. (continued)

Server program Functions

IARSUBSP CREATE Create the subspace
Receive STOKEN

ALESERV ADD Add the subspace to the DU-AL, specifying
STOKEN
Receive ALET

IARSUBSP ASSIGN Assign the range of storage that a program
running in the subspace can reference
Specify STOKEN, storage portion

BSG Branch to subspace
Specify ALET

Run application program in subspace

BSG Branch back to full address space addressability
Specify ALET 0

IARSUBSP UNASSIGN Disassociate the range of storage from the subspace
Specify STOKEN, storage range

ALESERV DELETE Remove entry from the access list
Specify ALET

IARSUBSP DELETE Delete the subspace
Specify STOKEN

IARSUBSP UNIDENTIFY Make storage ranges ineligible for subspace usage
Specify storage that was previously specified on
IARSUBSP IDENTIFY

STORAGE RELEASE Release storage in application server address space
Specify storage

Determining whether subspaces are available on your system
Before attempting to use subspaces, your program should ensure that the subspace is installed on your
system. To test for the subspace, include the CVT in your program and check the CVTSUBSP bit. When this
bit is on, the subspace is available on your system.

218 z/OS: z/OS MVS Extended Addressability Guide

Obtaining storage for subspaces
After determining that the subspace is available, the server program must obtain storage for the
subspaces. As explained in “Steps to manage subspaces” on page 215, it is most efficient to obtain in one
request enough storage for all subspaces that the application programs will require. You will need the
following information about the application programs running in the address space to estimate the size of
your storage request:

• The average number of application programs in the application server address space during peak
processing periods

• The average amount of storage required for an application program and its data
• The amount of “surplus” storage you want available to be used by application programs during

unusually heavy workloads or for large application programs.

This information might be available from a performance monitoring program. If not, you might want to
estimate the storage required and fine-tune the storage request later, after testing your estimate.

In addition, be sure that you request enough storage to allow you to align the storage on a megabyte
boundary. To align the storage correctly, you might have to request a good deal more storage than you
plan to use.

Storage attributes
Obtain your subspace storage by selecting a storage subpool with the storage attributes that subspaces
require. The section on virtual storage in z/OS MVS Programming: Authorized Assembler Services Guide
contains a table listing all subpools and the storage attributes associated with them. Table 28 on page
219 shows the required storage attributes for subspaces.

Table 28. Storage attributes required for subspaces

Storage Attribute Requirement Comments

Location Private Subspace storage must be in high private or low private
storage.

Fetch Protection None Subspace storage can be fetch-protected, but fetch-
protection is not required.

Type Pageable Subspace storage must be pageable.

Owner Task or job step Subspace storage must be owned by the task creating the
subspace, or a task higher in the task hierarchy.

Storage key None Subspace storage has no storage key requirements.

Backing virtual storage for a subspace
Subspaces can be backed by real storage either above or below 16 megabytes. Backing the subspace
below 16 megabytes is more costly in the event of a page fault. Back a subspace with storage above 16
megabytes unless an old application, which must run below 16 megabytes, will run in the subspace.

Requesting subspace storage
Use the STORAGE macro to request storage for your subspaces. You can also use the GETMAIN macro,
but STORAGE is easier to use and has fewer restrictions and requirements than GETMAIN.

When the STORAGE macro successfully obtains storage, it returns the length and address of the storage.
You supply the length and address of the obtained storage in a range list when you invoke the IARSUBSP
macro to make the storage eligible to be assigned to a subspace. (Making storage eligible is described in
detail in “Making a range of storage eligible to be assigned to a subspace” on page 220.)

Chapter 9. Creating and using subspaces 219

Aligning virtual storage for a subspace
After you obtain the storage for the subspaces, you must align the storage on a megabyte boundary
before specifying it on an IDENTIFY request. See “Example of managing subspaces” on page 228, which
illustrates how to align the storage you've obtained.

Creating the range list
The range list is a storage area containing up to 16 entries. Each entry consists of 2 words as follows:
First word

The starting virtual address of the storage range that the system is to make eligible to be assigned to a
subspace. The starting address must be on a megabyte boundary. A megabyte is 1,048,576 bytes
long.

Second word
The number of pages (4096 bytes), beginning at the address in the first word, that are to be made
eligible to be assigned to a subspace. The number must be a multiple of 256.

The range list must be addressable in the caller's primary address space. Each range must reside in a
single subpool.

You might not be able to obtain all of the subspace storage required by your application programs in a
single STORAGE macro request. If you cannot, add an entry to the range list for each storage request. The
STORAGE macro returns the number of bytes of storage obtained in GPR 0. The second word of the range
list entry requires the number of pages obtained. To convert the number of bytes into the number pages,
divide the number of bytes returned in GPR 0 by 4096. Store the quotient into the second word of the
range list entry. Store the contents of GPR 1 into the first word of the range list entry.

Making a range of storage eligible to be assigned to a subspace
After the server program has obtained storage, it must make the storage eligible to be assigned to a
subspace. To do this, invoke the IARSUBSP macro with the IDENTIFY parameter, specifying the storage
range.

A program that is running in a subspace cannot reference a range of storage once the storage range is
eligible to be assigned to a subspace. If it attempts to do so, it will abnormally end with system
completion code X'0C4'. In addition, the server program cannot pass ownership of this subspace-eligible
storage to a subtask. If the server program attempts to do so by invoking the ATTACH macro with either
the GSPL or GSPV parameter, the system will abnormally end the server program with system completion
code X'12A'.

A server program that attempts to release the storage before the storage has been made ineligible to be
assigned to a subspace will abnormally end with system completion code X'A05', X'A0A', or X'A78'. To
make the storage ineligible to be assigned to a subspace, specify the storage range on the IARSUBSP
macro with the UNIDENTIFY parameter.

Considerations when making storage eligible to be assigned to a subspace
When updating the server to make storage eligible to be assigned to a subspace, consider the task under
which the server is running, and the restrictions of programs running in subspaces.

Task hierarchy restrictions
Your server program should run under the lowest task in the task hierarchy that will need to make storage
eligible to be assigned to a subspace.

The first time a server program successfully issues the IARSUBSP IDENTIFY request in an address space,
the system identifies the task under which that program runs as the lowest task in the task hierarchy that
can make subsequent IARSUBSP IDENTIFY requests. Additionally, that task or a higher task must own
the storage that is being made eligible to be assigned to a subspace.

220 z/OS: z/OS MVS Extended Addressability Guide

Effect on existing subspaces
A program running in a subspace cannot reference storage once it has been made eligible to be assigned
to a subspace. If an address space already owns subspaces and makes additional storage eligible to be
assigned to a subspace, the programs running in the existing subspaces lose the ability to reference the
storage that has been made subspace-eligible. The effect is that a program running in a subspace
becomes unable to reference storage that it could reference prior to the IDENTIFY request.

Coding the RANGLIST parameter
Together with the NUMRANGE parameter, the RANGLIST parameter allows you to make multiple storage
ranges eligible to be assigned to subspaces. The RANGLIST parameter specifies a fullword that contains
an address of a list of ranges, or specifies a register that contains the address of the fullword pointer to
the range list that you created when you allocated the storage. The number of entries in the range list is
specified on the NUMRANGE parameter.

The following examples illustrate the range list and how to use a register or a fullword field as pointers to
it.

Figure 70. Illustration of the range list

Requirements of the range list for an IDENTIFY or UNIDENTIFY request
Each range list entry representing storage for an IDENTIFY or UNIDENTIFY request must:

• Specify a number of pages that is a multiple of 256
• Specify an address that begins on a segment boundary
• Specify storage that previously has been obtained

Chapter 9. Creating and using subspaces 221

• Specify storage that is pageable and private
• Specify storage that is owned by the task that previously invoked IARSUBSP IDENTIFY, or by a task that

is higher in the task hierarchy.

For the requirements of the range list for an ASSIGN or UNASSIGN request, see “Requirements of the
range list for an ASSIGN or UNASSIGN request” on page 224.

System processing of range list errors in IARSUBSP IDENTIFY request
If an entry in the range list does not conform to one or more of these requirements, the system processes
the range list entries up to the entry in error. The system does not process the incorrect range list entry or
any range list entries that follow it. The system abnormally ends the IARSUBSP IDENTIFY request with
system completion code X'3C6', and puts the address of the incorrect range list entry in GPR 2. It puts the
address of the storage that incurred the error into GPR 3.

Figure 71. Illustration of GPR Contents in Event of Range List Error

Creating the subspaces
The server program can create subspaces by issuing the IARSUBSP macro with the CREATE parameter.
IARSUBSP CREATE allows you to name the subspaces yourself, have the system generate the subspace
names, or have the system generate subspace names only when the name you provide is not unique
within the address space. See the IARSUBSP macro description in z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG for more information about naming subspaces.

Be aware that, if you choose to let the system generate the subspace names for you, you must still supply
three characters for the system to use.

Saving subspace STOKENs
When it creates a subspace, the system returns an STOKEN for the subspace. Save the subspace STOKEN
returned to your program. You must provide the STOKEN when adding an access list entry for the
subspace. A program cannot run in a subspace until the server program uses the STOKEN to add an
access list entry to its task's DU-AL.

You also must supply the subspace STOKEN to associate and disassociate storage with a subspace, and to
delete the subspace after your application program has run.

222 z/OS: z/OS MVS Extended Addressability Guide

Establishing addressability to a subspace
Before a program can run in a subspace, the server program must add a subspace entry to the DU-AL of
the task that the program is running under. To do this, code the ALESERV macro with the ADD parameter,
supplying the STOKEN that the system returned from the IARSUBSP CREATE request.

The requirements for the ALESERV request are:

• The subspace entry must be added as a public entry. If you attempt to add it as a private entry, you will
receive a return code indicating an error from the ALESERV macro.

• The subspace entry must be added to the DU-AL. If you attempt to add a subspace entry to the PASN-
AL, you'll receive a return code indicating an error from the ALESERV macro.

The ALESERV macro returns an ALET. Do not modify this ALET. Use the ALET as an operand on the BSG
instruction to switch to a subspace.

Copying the DU-AL to a subtask or SRB
Although a program can request that the system provide a subtask or SRB with a copy of its DU-AL, the
system cannot copy subspace entries to the new DU-AL. The copy of the DU-AL will contain all of the
access list entries except those representing subspaces.

Searching for and extracting a subspace entry
Once a subspace entry has been added to a DU-AL, a program can use the SEARCH parameter of
ALESERV to obtain the subspace ALET, and the EXTRACT parameter of ALESERV to obtain the subspace
STOKEN.

A program cannot invoke ALESERV EXTRACT and supply ALET 1.

Using special alets
The meaning of special ALETs 0 and 1 differs depending on whether the ALET is supplied for access
register translation or specified on the BSG instruction.

A program running in AR ASC mode in a subspace or with full address space addressability can use
special ALETs 0, 1, and 2 to access its primary, secondary, and home address spaces. This concept is
described in detail in “Special ALET values” on page 103.

Likewise, a program running in a subspace or with full address space addressability can supply these
ALETs on an ALESERV EXTRACT request to obtain the STOKEN for the address space they require. To
obtain the STOKEN for the full address space, invoke ALESERV with the EXTRACTH parameter.

However, when specified on a BSG instruction, ALETs 0 and 1 have different meanings. Specifying BSG
with ALET 0 causes a program to run with full address space addressability. Specifying BSG with ALET 1
causes a program to run in the subspace that most recently had control. If a program is running in a
subspace when it issues BSG with ALET 1, the program will continue to run in that subspace.

If a program has never run in a subspace and it attempts to return to a subspace by issuing the BSG
instruction with ALET 1, the program will abnormally end with system completion code X'0D3'.

Assigning storage to the subspaces
Before a program can reference subspace storage, the program must associate an eligible range of
storage with the subspace. Storage is eligible to be assigned to a subspace once it has been specified on
an IARSUBSP IDENTIFY request. Storage that has been assigned to a subspace can be referenced only by
a program running in that subspace, or by a program running with full address space addressability.

Use the IARSUBSP macro with the ASSIGN parameter to associate a subspace with its storage. Either an
authorized or unauthorized program can perform this step. Specify a storage range from the storage you
obtained, and the STOKEN returned when you created the subspace.

Chapter 9. Creating and using subspaces 223

One way to design your server program is to create a loop in the server program. For each request to the
server program for application program services, the program loop:

1. Assigns a storage range to a subspace
2. Issues the BSG instruction to switch to subspace addressability
3. Passes control to the application program
4. Receives control after the application program finishes its processing
5. Issues the BSG instruction to switch to full address space addressability
6. Disassociates the storage from the subspace (described in more detail in “Disassociating storage from

the subspaces” on page 227).

This design ensures that there is a subspace available for the application program to run in. It also allows
eligible storage to be reassigned to different subspaces as needed, while preventing application programs
from referencing the storage as it is being reassigned.

Requirements of the range list for an ASSIGN or UNASSIGN request
The requirements for a range list entry for an ASSIGN or UNASSIGN request differ depending on whether
the storage the entry represents is above or below 16 megabytes.

For storage above 16 megabytes, a range list entry must:

• Specify a number of pages that is a multiple of 256
• Specify an address that begins on a segment boundary
• Specify storage that previously has been obtained
• Specify storage that has been made eligible to be assigned to a subspace by a previous IARSUBSP

IDENTIFY request.

A range list entry representing storage below 16 megabytes for an ASSIGN or UNASSIGN request must:

• Specify a number of pages
• Specify an address that begins on a page boundary
• Specify storage that has previously been obtained
• Specify storage that has been made eligible to be assigned to a subspace by a previous IARSUBSP

IDENTIFY request.

System processing of range list errors in IARSUBSP ASSIGN request
If the storage range you specify is already assigned to a subspace, the system does not process that
request but will continue to process the subsequent valid range list entries. The system places return
code 4 in GPR 0.

If an entry in the range list does not conform to one or more of the range list requirements, the system
processes the range list entries up to the entry in error. The system does not process the incorrect range
list entry or any range list entries that follow it. The system abnormally ends the IARSUBSP ASSIGN
request with system completion code X'3C6', and puts the address of the incorrect range list entry in GPR
2. It puts the address of the storage range into GPR 3.

Branching to a subspace
A server program branches to a subspace when it issues the BSG instruction with the ALET that
corresponds to the desired subspace, and its primary and home address spaces are the same. The BSG
instruction uses an ALET-qualified branch address to switch to the subspace. Use the ALET returned by
ALESERV ADD.

The server program can use the BSG instruction to pass control to an application program which will run
in the subspace. Alternately, the server program itself can begin running in the subspace. See Principles of
Operation for details about coding the BSG instruction.

224 z/OS: z/OS MVS Extended Addressability Guide

After issuing the BSG instruction, a program can reference the subspace while running in primary,
secondary, or AR modes. The program runs in a subspace until it switches to:

• Another subspace or full address space addressability, by issuing another BSG instruction
• Another address space, by issuing a space-switching instruction.

Using cross memory mode with subspaces
If the program changes its primary or secondary address space to be other than the home address space,
it loses the ability to address the subspace. It can regain addressability to the subspace by setting the
changed address space back to the home address space.

Example of changing primary and secondary address spaces with subspaces
An application program is running with PASN=SASN=HASN in address space X'23', and has not issued the
BSG instruction.

Here are some hypothetical actions and the results of those actions:

Program Action Result

The program issues a BSG to subspace TP1 The program is running with
PASN=SASN=HASN=X'23', and has addressability
to subspace TP1 through its primary and secondary
address spaces.

The program issues a PC (Program Call) instruction
that changes the PASN to X'14'

The program is running with PASN=X'14',
SASN=HASN=X'23', and has addressability to
subspace TP1 through its secondary address
space.

The program issues a SSAR (Set Secondary ASN)
instruction that changes SASN to ASID X'18'

The program is running with PASN=X'14',
SASN=X'18', HASN=X'23', and does not have
addressability to TP1 through either its primary or
secondary address spaces.

The program issues a SSAR instruction that
changes SASN back to ASID X'23'

The program is running with PASN=X'14',
SASN=HASN=X'23', and has addressability to
subspace TP1 through its secondary address
space.

The program issues a PT (Program Transfer)
instruction that changes PASN back to ASID X'23'

The program is now running with
PASN=SASN=HASN=X'23' and has addressability
to subspace TP1 through its primary and secondary
address spaces.

The program issues a BSG instruction using ALET 0 The program is running with
PASN=SASN=HASN=X'23' and has full address
space addressability.

Running a program in a subspace
A program running in a subspace will abnormally end if it attempts to reference:

• Storage that is assigned to another subspace
• Storage that is eligible to be assigned to another subspace, but is not assigned.

Aside from these restrictions, a program running in a subspace can reference the same storage that a
program running with full address space addressability can reference.

The following topics describe additional considerations for a program running in a subspace.

Chapter 9. Creating and using subspaces 225

Authorized programs and subspaces
Subspaces are intended to give storage isolation for unauthorized programs; however, programs that are
authorized (for example, supervisor state, authorized key, or APF-authorized) might not always have the
same isolation. When running as authorized in a subspace, a program might have access to storage that is
subspace-eligible but not assigned to the current subspace. As with any authorized program, those
running in a subspace should ensure that storage boundaries are properly validated when parameters are
passed from an unauthorized source.

Returning to full address space addressability
At any time during processing, a program can return to full address space addressability. If the primary
address space is other than the home address space, the program must first change its primary address
space to its home address space. Then, the program can issue the BSG instruction using ALET 0 to return
to full address space addressability. Running with full address space addressability allows the program to
reference the address space private storage without regard to subspaces.

Preserving the path across subspaces
The BSG instruction allows you to return to the subspace in which the program last ran by issuing BSG
with ALET 1. However, BSG cannot reconstruct a program's path across multiple subspaces. It can return
the program only to the last subspace it was in. The program is responsible for preserving the subspace
trail, if it needs that information.

Using checkpoint/restart with subspaces
A program cannot request a checkpoint while running in a subspace. A program running with full address
space addressability can request a checkpoint if it has no subspace entries on its DU-AL, or if it ensures
that the system will ignore the subspace entries by either:

• Deleting all DU-AL entries that were not created specifying CHKPT=IGNORE on the ALESERV request,
including subspace entries.

• Ensuring that the access list entries were added by specifying CHKPT=IGNORE on the ALESERV
request.

A task that either deletes the entries or adds them specifying CHKPT=IGNORE is responsible for
rebuilding the subspaces and reestablishing the connections to them. If a restart occurs after a successful
checkpoint, the system does not rebuild the subspaces or establish addressability to them.

Requesting additional storage while running in a subspace
If a program running in a subspace needs additional storage, you must determine whether that storage
must be protected by the subspace. If the storage does not need subspace protection, the program can
obtain it by using the STORAGE macro and requesting storage that is not eligible to be assigned to a
subspace.

A program running in the subspace might use storage that is not protected by a subspace to share data
with a program running in another subspace, or to provide access to parameter lists, data areas, or exits
needed by an MVS service.

If the additional storage must be protected by the subspace, the application program must have the
server program obtain storage on its behalf. The server program can use the surplus storage that it
obtained (described in “Obtaining storage for subspaces” on page 219). If none is available, the server
program:

1. Makes a request for more storage meeting the requirements described in “Storage attributes” on page
219

2. Makes the storage range eligible to be assigned to a subspace by specifying the range on IARSUBSP
IDENTIFY

226 z/OS: z/OS MVS Extended Addressability Guide

3. Assigns the storage to the subspace by specifying the storage range and the subspace STOKEN on the
IARSUBSP ASSIGN request.

After doing so, the server program can pass control back to the application program, which can then use
the additional storage.

Keep in mind that the server program should preserve the starting address and number of pages of any
additional storage that it obtains, to disassociate the storage and make it ineligible to be assigned to a
subspace when the application program has finished processing, and to release the storage.

Using MVS services in a subspace
A program that uses MVS services while running in a subspace must have storage access to the service.
For example, if a program loads a copy of an MVS service, it must ensure that the load module is loaded
into either:

• Storage that is assigned to the subspace
• Storage that can be referenced by all subspaces (storage that has not been specified on an IARSUBSP

IDENTIFY request).

Additionally, the program must ensure that the MVS service has access to all required parameter lists,
data areas, and program exits, by keeping them in storage that is assigned to the subspace or storage that
can be referenced by all subspaces. If the program cannot provide access to both of these storage areas,
it might have to switch to full address space addressability to use the MVS service.

Finally, the program must ensure that all necessary storage is available to an MVS service across
asynchronous operations.

Disassociating storage from the subspaces
After the application program has run, the server program can disassociate the subspace-eligible storage
from the subspace to which it is assigned. This allows the server program to assign eligible storage to
another subspace when it receives a new request for application program services. Disassociating the
storage also prevents an application program from referencing the storage before it is reassigned.

Use the IARSUBSP macro with the UNASSIGN parameter to disassociate subspace-eligible storage from
the subspace to which it is assigned.

System processing of range list errors in IARSUBSP UNASSIGN request
The storage ranges supplied in the range list for an IARSUBSP UNASSIGN request must meet the
requirements described in “Requirements of the range list for an ASSIGN or UNASSIGN request” on page
224.

If the storage range you specify is not assigned to the subspace you specify, the system does not process
that request but will continue to process the subsequent valid range list entries. The system places return
code 4 in GPR 0.

If an entry in the range list does not conform to one or more of the range list requirements, the system
processes the range list entries up to the entry in error. The system does not process the incorrect range
list entry or any range list entries that follow it. The system abnormally ends the IARSUBSP UNASSIGN
request with system completion code X'3C6', and puts the address of the incorrect range list entry in GPR
2. It puts the address of the storage range into GPR 3. See Figure 71 on page 222 for an illustration of a
range list error.

Removing the subspace entry from the DU-AL
Prior to deleting the subspace, the server program should remove the subspace's associated entry from
the DU-AL. Do this by invoking the ALESERV macro with the DELETE parameter and the subspace
STOKEN.

Chapter 9. Creating and using subspaces 227

If the task that created the subspace ends before the subspace entry has been deleted, the system will
remove the entry from the DU-AL.

Deleting the subspace
An authorized program can delete a subspace by invoking the IARSUBSP macro with the DELETE
parameter and supplying the subspace STOKEN that the system returned when the program created the
subspace. It is most efficient to delete all subspaces at once.

The program that deletes a subspace must be running under the same task as the program that created
the subspace. The program will abnormally end if it attempts to delete a subspace that it, or any other
program, is running in.

The system disassociates the storage from the subspace before deleting the subspace, if the program has
not already done so.

Deleting a subspace does not remove its associated entry from the DU-AL. See “Removing the subspace
entry from the DU-AL” on page 227 for information about deleting the entry.

Making storage ineligible to be assigned to a subspace
All storage that has been made eligible to be assigned to a subspace must be specified on an IARSUBSP
UNIDENTIFY request before it can be released. The server program must invoke the IARSUBSP macro
with the UNIDENTIFY parameter, and specify the storage range in the range list.

The system disassociates the storage from the subspace before making the storage ineligible to be
assigned to a subspace, if the server program has not already done so.

System processing of range list errors in IARSUBSP UNIDENTIFY request
The storage ranges supplied in the range list for an IARSUBSP UNIDENTIFY request must meet the
requirements described in “Requirements of the range list for an IDENTIFY or UNIDENTIFY request” on
page 221. In addition, the storage range must be eligible to be assigned to a subspace.

If an entry in the range list does not conform to one or more of these requirements, the system processes
the range list entries up to the entry in error. The system does not process the incorrect range list entry or
any range list entries that follow it. The system abnormally ends the IARSUBSP UNIDENTIFY request,
with system completion code X'3C6', and puts the address of the incorrect range list entry in GPR 2. It
puts the address of the storage range into GPR 3.

Releasing storage
A program cannot release the storage that was obtained for subspaces until it issues the IARSUBSP
macro with the UNIDENTIFY parameter. If it attempts to free the storage before issuing IARSUBSP
UNIDENTIFY, the program will abnormally end with system completion code A05, A0A, or A78. See z/OS
MVS System Codes for information about those codes.

Use the STORAGE macro with the RELEASE parameter to release the storage that you obtained for the
subspaces. You can also use the FREEMAIN macro, but STORAGE has fewer requirements and restrictions
and is easier to use.

Free the storage by specifying on the SP parameter the subpools you obtained for your subspace storage.

Example of managing subspaces
* OBTAIN THE STORAGE FROM A PAGEABLE SUBPOOL
 STORAGE OBTAIN,LENGTH=4096*(256+256),BNDRY=PAGE,SP=0,COND=YES
 ST 1,STORSTRT
 LTR 15,15 IF NOT SUCCESSFUL (0)
 BNZ NOSTOR GO TO ERROR PROCESSING
*
* MAKE IT SEGMENT ALIGNED
*
 L 9,ROUNDIT

228 z/OS: z/OS MVS Extended Addressability Guide

 L 2,ONEMEG
 L 10,STORSTRT
 ALR 10,2
 NR 10,9
 ST 10,STORSEGA NEW SEGMENT-ALIGNED BOUNDARY
 L 1,STORSEGA
 ST 1,RPTR1 PUT IT IN THE RANGE LIST
* ***
* CREATE 5 SUBSPACES
* ***
 LA 5,1 INIT LOOP COUNTER
 LA 9,STOKEN1 START WITH FIRST STOKEN
* IN ARRAY
LOOP1 DS 0H
 IARSUBSP CREATE,NAME=SSNAME,STOKEN=(9), *
 GENNAME=COND,OUTNAME=ONAME
 LTR 15,15 IF NOT SUCCESSFUL (0)
 BNZ NOCREATE GO TO ERROR PROCESSING
 LA 4,1 LOOP INCREMENT IS 1
 ALR 5,4 BUMP UP LOOP COUNTER
 LA 10,8 ARRAY INCREMENT IS 8
 ALR 9,10 BUMP UP ARRAY INDEX
 LA 4,5
 CR 5,4 CHECK HOW MANY SO FAR
 BNH LOOP1 IF NOT 5 YET, REPEAT
 * **
* ADD THE SUBSPACE ENTRY TO THE WORKUNIT ACCESS LIST
* ***
 ALESERV ADD,STOKEN=STOKEN1,ALET=SSALET,AL=WORKUNIT
* ***
* MAKE THE STORAGE SUBSPACE-ELIGIBLE
* ***
 IARSUBSP IDENTIFY,RANGLIST=RANGPTR,NUMRANGE=NUMRANG
* ***
* ASSIGN THE STORAGE TO THE SUBSPACE
* ***
 IARSUBSP ASSIGN,STOKEN=STOKEN1,RANGLIST=RANGPTR
* ***
* BRANCH TO THE SUBSPACE
* ***
 L 2,=A(X'80000000'+NEXT1)
 BSG 0,2

* ***
* RUN PROGRAM IN THE SUBSPACE
* ***
* RETURN TO THE BASE SPACE (FULL ADDRESS SPACE ADDRESSABILITY)
* ***
NEXT1 DS 0H
 L 0,=A(X'80000000'+NEXT2)
 BSG 0,0
* ***
* DISASSOCIATE THE STORAGE (NUMRANGE DEFAULTS TO 1 WHICH IS WHAT
* WE HAVE)
* ***
NEXT2 DS 0H
 IARSUBSP UNASSIGN,STOKEN=STOKEN1,RANGLIST=RANGPTR
* ***
* MAKE THE STORAGE INELIGIBLE TO BE ASSIGNED TO A SUBSPACE
* ***
 IARSUBSP UNIDENTIFY,RANGLIST=RANGPTR
* ***
* DELETE THE SUBSPACE
* ***
*
 IARSUBSP DELETE,STOKEN=STOKEN1
*
* ***
* SUBSPACE CREATE FAILED - RELEASE THE STORAGE
* ***
NOCREATE DS 0H ERROR EXIT POINT
* ***
* RELEASE THE STORAGE - USE THE ORIGINAL ADDRESS STORSTRT
* ***
 STORAGE RELEASE,ADDR=STORSTRT,LENGTH=4096*(256+256)
* ***
* STORAGE OBTAIN FAILED - UNDO WHATEVER STEPS HAD BEEN SUCCESSFUL
* PRIOR TO THE STORAGE OBTAIN
* ***
NOSTOR DS 0H Error exit point
 .

Chapter 9. Creating and using subspaces 229

 .
 .
 .
 .
 .

* ***
* DECLARES
* ***
ONEMEG DC F'1048576' ONE MEGABYTE
ROUNDIT DC X'FFF00000' ROUND IT TO A SEGMENT ADDRESS
SSNAME DC CL8'SSPACE1 ' SUBSPACE NAME
ONAME DS CL8 GENERATED NAME IF NEEDED
SSSTOKEN DS 0CL40
STOKEN1 DS CL8
STOKEN2 DS CL8
STOKEN3 DS CL8
STOKEN4 DS CL8
STOKEN5 DS CL8
SSALET DS 5CL4
STORSTRT DS 1F ADDRESS FOR OBTAIN/RELEASE
STORSEGA DS 1F SEGMENT-ALIGNED ADDRESS
*
* RANGE LIST MAPPING
*
RLIST DS 0CL8
RPTR1 DS F
NUMBLKS DC F'256'
*
RANGPTR DC A(RLIST)
NUMRANG DC F'1'

Planning for recovery in a subspace environment
As described in “Limitations of subspaces” on page 214, the system abnormally ends programs that
specify incorrect parameters on the IARSUBSP macro. While this helps to preserve the integrity of
subspaces, the chances that your server program will abnormally end are increased.

You can plan for this by designing recovery routines that intercede when the system abnormally ends your
server program. System code X'3C6' in z/OS MVS System Codes describes the IARSUBSP macro errors
that cause your program to abnormally end.

To set up a recovery routine for any program, you must understand the topics presented in the recovery
section in z/OS MVS Programming: Authorized Assembler Services Guide. To design recovery for programs
running in subspaces, you need additional information about the recovery routine's subspace
environment. The subspace environment is simply whether the routine is running with full address space
addressability or in a subspace, and, if it is running in a subspace, which one? Like a mainline program, a
recovery or retry routine can use the BSG instruction to:

• Change subspaces, by specifying the ALET of the desired subspace
• Run with full address space addressability, by specifying ALET 0
• Return to the last subspace to have control, by specifying ALET 1.

(See “Using special alets” on page 223 for a more information on using ALETs 0 and 1 with the BSG
instruction.) Given that, consider these questions:

• In what environment does the recovery routine receive control?
• Does a recovery routine that changes its environment need to ensure that the environment is reset if the

recovery routine abnormally ends?
• In what environment does a retry routine receive control?

These questions are answered in the following topics.

230 z/OS: z/OS MVS Extended Addressability Guide

Planning for SPIE and ESPIE routines
SPIE and ESPIE exit routines and data areas should reside in storage that can be referenced by all
subspaces. This ensures that a SPIE or ESPIE routine has addressability to all required data areas,
regardless of the subspace environment in which the program interruption occurs.

Because SPIE and ESPIE routines cannot percolate, they always receive control in the subspace
environment that was in effect when the error occurred in the mainline program. SPIE and ESPIE routines
are explained in z/OS MVS Programming: Authorized Assembler Services Guide.

Planning for ESTAE-type recovery routines and FRRs
The remaining information on planning for recovery applies to both ESTAE-type recovery routines and
FRRs, unless otherwise noted.

Subspace environment at entry to recovery routines
A recovery routine runs in the subspace environment that the previous routine was running in when it
encountered an error or percolated.

After an error in the mainline program, the first recovery routine to receive control runs in the subspace
that the mainline was running in at the time of error. If the mainline routine was running in Subspace A,
the recovery routine gets control in Subspace A. If the mainline routine was running with full address
space addressability, the recovery routine gets control with full address space addressability.

If the recovery routine percolates, the next recovery routine receives control in the environment in effect
when the previous recovery routine percolated. For example, if the first recovery routine received control
in Subspace A, issued the BSG instruction to change to full address space addressability, then percolated,
the next recovery routine will receive control with full address space addressability.

Resetting a changed subspace environment after a recovery routine error
A recovery routine that abnormally ends might cause the next recovery routine to get control in the wrong
subspace. The SETRP macro with SSRESET=YES requests that the system reset the environment when an
ESTAE-type recovery routine abnormally ends. SSRESET cannot be used by FRRs. and has no effect when
a recovery routine percolates.

When the current recovery routine temporarily changes subspaces, specify SSRESET=YES to protect the
next recovery routine. SSRESET=YES ensures that, if the current recovery routine abnormally ends before
it returns to the correct subspace, the next recovery routine will get control in the subspace in which the
current routine received control. This allows you to ensure that the next recovery routine receives control
in the correct subspace, regardless of the subspace the current routine runs in when it abnormally ends.

When the current recovery routine processes successfully and returns to the correct subspace,
SSRESET=YES protection is no longer necessary. The next recovery routine is no longer in danger of
receiving control in the wrong subspace if the current recovery routine abnormally ends. At this point, you
can specify SSRESET=NO in the current recovery routine. SSRESET=NO negates the earlier specification
of SSRESET=YES. If the current recovery routine abnormally ends after specifying SSRESET=NO, the next
recovery routine gets control as described in “Subspace environment at entry to recovery routines” on
page 231. See z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO for a
description of the SETRP macro and the SSRESET parameter.

Passing information to a recovery routine in a subspace
When the system supplies an SDWA, the system provides it in storage that can be referenced by all
subspaces. A recovery routine running in a subspace does not have to do anything extra to reference the
SDWA.

If the mainline program passes a user parameter area to the recovery routine, the mainline routine should
create the user parameter area in storage that can be referenced by all subspaces. This ensures that, if

Chapter 9. Creating and using subspaces 231

the recovery routine changes the environment in which it is running, it will still be able to reference the
user parameter area.

Subspace environment on entry to retry routine
A retry routine gets control in the subspace environment in which the last recovery routine returned to
RTM. If the last recovery routine was running in a different subspace environment from the mainline
program, the recovery routine should issue the BSG instruction to ensure that the mainline resumes
processing in the correct subspace environment.

Diagnosing errors in a subspace environment
The following diagnostic information is available for programs that use subspaces.

Diagnosing 0C4 abends
A program running in a subspace cannot reference storage that is subspace-eligible but not assigned to
the program's subspace. If a program attempts to reference this storage, the program will incur either a
page translation exception or a segment translation exception, and the program will abnormally end with
an X'0C4' system completion code. This abend occurs when the subspace-eligible storage is not assigned
to the program's subspace at the time of error.

Using IPCS to diagnose program errors in a subspace
The following IPCS subcommands can help you diagnose errors in an address space that owns
subspaces:

• The RSMDATA subcommand allows you to produce a subspace report.
• The STATUS subcommand with the FAILDATA option includes the subspace environment at the time of

error.
• The NAME subcommand displays the subspace name and address space identifier when the STOKEN
specified is a subspace STOKEN.

• The SUMMARY subcommand with the FORMAT keyword generates a report that indicates whether a
program was running in a subspace when the error occurred.

• The VERBEXIT subcommand with the LOGDATA verb name formats LOGREC buffer records that indicate
whether a program was running in a subspace when the error occurred and, if so, include the subspace
name and STOKEN.

See z/OS MVS IPCS Commands for details.

RSM component trace
RSM component trace provides options that allow you to trace subspace services. See z/OS MVS
Diagnosis: Tools and Service Aids for details.

Requesting a dump
If a program requests an SVC dump while running in a subspace, the system dumps the entire address
space.

If a program requests an ABEND dump while running in a subspace (by specifying a SYSABEND,
SYSMDUMP, or SYSUDUMP DD statement in the job step), the system dumps only the storage that the
program can reference while running in a subspace.

232 z/OS: z/OS MVS Extended Addressability Guide

Appendix A. Accessibility

Accessible publications for this product are offered through IBM Documentation (www.ibm.com/docs/en/
zos).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the
Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision
use software products successfully. The accessibility features in z/OS can help users do the following
tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Documentation with a
screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more
syntax elements are always present together (or always absent together), they can appear on the same
line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)

© Copyright IBM Corp. 1988, 2020 233

https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax
element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax
element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if
you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax element can be used zero
or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data
area, you know that you can include one data area, more than one data area, or no data area. If you
hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

234 z/OS: z/OS MVS Extended Addressability Guide

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix A. Accessibility 235

236 z/OS: z/OS MVS Extended Addressability Guide

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for IBM Documentation. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1988, 2020 237

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or

238 z/OS: z/OS MVS Extended Addressability Guide

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details in
the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease if
a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those

Notices 239

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Programming Interface Information
This book is intended to help the customer to code programs with needs that extend beyond the
boundaries of the address space in which the programs are dispatched. This book documents intended
Programming Interfaces that allow the customer to write programs to obtain the services of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

240 z/OS: z/OS MVS Extended Addressability Guide

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Glossary

This glossary includes definitions of terms used in this book.

Access list
A table in which each entry specifies an address space, data space, or hiperspace that a program can
reference.

Address space
A range of two gigabytes of contiguous virtual storage addresses that the system creates for a user. It
contains user data and programs, as well as system data and programs, some of which are common to
all address spaces. Instructions execute in an address space.

Address/data space
Address space or data space

ALET (access list entry token)
A token that indexes into an access list. When a program is in AR mode and the ALET is in an AR with
the corresponding GPR being used as a base register, the ALET indicates the address space or data
space that the system is to reference. An ALET can also identify a hiperspace.

ALET-qualified address
An 8-byte address that consists of an ALET (identifying a space) and an address (identifying an offset
within the space). The ALET-qualified address might be contained in storage with the ALET in the first
4 bytes and the address in the last 4 bytes. Or, it might be contained in an AR/GPR pair.

AR (access register) mode
The ASC mode in which the system uses both the GPR (used as the base register) and the
corresponding AR to resolve an address in an address/data space.

AR/GPR
Access register and general purpose register pair.

ASC (address space control) mode
The mode (determined by the PSW) that tells the system where to find the data it is to reference.
Three ASC modes are AR, secondary, and primary.

Authority table
Consists of entries that define the PT and SSAR authority that other address spaces have with respect
to the cross memory user's address space. Entries also define the EAX authority that a PC routine has
with respect to an address space. Each entry in the table corresponds to a particular authorization
index.

Authorization index (AX)
Indicates the authority of a program that's running in one address space to issue the PT or SSAR
instruction with another address space as the target of those instructions. A program runs with the AX
of the current primary address space.

Auxiliary storage
Data storage that is not central or expanded storage, typically, storage on direct access devices
(DASDs).

BAKR (branch and stack) instruction
Branches to a location and adds an entry to the linkage stack.

bar
A virtual line that marks the 2-gigabyte address in a 64-bit address space. It separates virtual storage
below the 2-gigabyte address (called “below the bar”) from virtual storage above the 2-gigabyte line
(called “above the bar”).

Basic PC instruction
Transfers control to another program, the PC routine. The basic PC requires the service provider to
save and restore the user's environment. The PC routine can be in the same address space as the
program that issues the PC instruction, or in a different address space.

© Copyright IBM Corp. 1988, 2020 241

Central storage
Program-addressable storage from which instructions and other data can be loaded directly into
registers for subsequent execution or processing.

Control parameters
Parameters that a macro service routine uses.

CPYA (copy access) instruction
Copies the contents of one AR into another AR.

Cross memory mode
Cross memory mode exists when at least one of the following conditions are true:

• The current primary address space (PASN) and the current home address space (HASN) are
different address spaces.

• The current secondary address space (SASN) and the current home address space (HASN) are
different address spaces.

• The ASC mode is secondary.

Data space
A range of up to two gigabytes of contiguous virtual storage addresses that a program can directly
manipulate through assembler instructions. Unlike an address space, a data space can hold only data;
it does not contain common areas or system data or programs. Instructions do not execute in a data
space.

Dispatchable unit
A TCB or SRB, sometimes called work unit.

DU-AL (dispatchable unit access list)
Access list associated with the dispatchable unit (or work unit).

EAR (extract access) instruction
Copies the contents of an AR into a GPR.

EAX (extended authorization index)
An identifier that the system uses to determine the authority of a program to add entries to or delete
entries from its access lists and use ARs to access data in address spaces.

Entry table
A table in which each entry defines the attributes of a PC routine.

EPAR (extract primary ASN) instruction
Place the primary ASID into a GPR.

EREG (extract stacked registers) instruction
Loads ARs and GPRs from the current linkage stack entry.

ESAR (extract secondary ASN) instruction
Place the secondary ASID into a GPR.

ESO (expanded storage only) hiperspace
A hiperspace that is backed by expanded storage only. It is a high-speed buffer area or "cache" for
storing data.

ESTA (extract stacked state) instruction
Obtains non-register information from the current linkage stack entry.

Expanded storage
High-speed high-volume electronic storage. The operating system transfers this storage to and from
central storage in 4K byte blocks.

GPR
General purpose register

Guard area
An area of a memory object that a program cannot access. The guard area is optionally established
when the IARV64 macro creates a memory object; a guard area can be changed into an accessible
area through the IARV64 macro.

242 z/OS: z/OS MVS Extended Addressability Guide

Hiperspace
A range of up to two gigabytes of contiguous virtual storage addresses that a program can use as a
buffer. Like a data space, a hiperspace can hold user data; it does not contain common areas or
system data. Instructions do not execute in a hiperspace. Unlike an address space or a data space,
data is not directly addressable. To manipulate data in a hiperspace, you bring the data into the
address space in 4K byte blocks.

Home address space
The address space in which the TCB or the SRB is initially dispatched. A TCB or SRB represents a
dispatchable work unit. When MVS initially dispatches a work unit the primary, secondary, and home
address spaces are the same address space.

IAC (insert address space control) instruction
Indicates in a GPR which ASC mode is in effect.

LAE (load address extended) instruction
Load a specified ALET and address into an AR/GPR pair.

LAM (load access multiple) instruction
Load the contents of one or more ARs from a specified location.

Linkage index (LX)
Provides an index into the cross memory user's linkage table.

Linkage stack
An area that the system provides for a BAKR or a stacking PC to save status information. It can be
either a normal linkage stack or a recovery linkage stack.

Linkage table
A table in which each entry points to an entry table. It provides the connection between a PC number
and an entry table.

MEMLIMIT
The limit on the use of virtual storage above the bar. You can set this limit through JCL EXEC
statements, JCL JOB statements, SMF commands, the SMFPRMxx parmlib member, and the IEFUSI
installation exit. The system default is 2G.

Memory object
An area of virtual storage that a program creates using the IARV64 macro; it resides above the 2-
gigabyte address in a 64-bit address space.

MSTA (modify stacked state) instruction
Copies the contents of an even/odd GPR pair to the modifiable area of the current linkage stack entry.

MVCK (move with key) instruction
Moves data between storage areas that have different protection keys.

MVCP (move to primary) instruction
Moves data from the secondary address space to the primary address space.

MVCS (move to secondary) instruction
Moves data from the primary address space to the secondary address space.

Non-shared standard hiperspace
A standard hiperspace that can generally be shared only with programs that are dispatched in the
owner's home address space. However, a program not dispatched in the owner's home address space
and using an ALET, can access this non-shared standard hiperspace through the owner's home PASN-
AL.

Normal linkage stack
Saves program status information. The system uses this linkage stack until entries are no longer
available. It then presents a "stack-full" program interruption.

PR (program return) instruction
Returns control to a program that issued a stacking PC or BAKR instruction.

Primary address space
The address space whose segment table is used to fetch instructions in primary, secondary, and AR
ASC modes. A program in primary mode fetches data from the primary address space.

Glossary 243

Primary ASC mode
The ASC mode in which the system uses the GPRs, but not the ARs, to resolve an address in an
address space. In primary ASC mode, the system fetches instructions and data from the primary
address space.

Processor storage
The combination of central and expanded storage.

Program call (PC) instruction
Transfers control to another program, the PC routine. The PC instruction is either a stacking or a basic
PC instruction. The PC routine can be in the same address space as the program that issues the PC
instruction, or, in the case of a space-switching PC instruction, a different address space.

Program call (PC) routine
A program that receives control as the result of a PC instruction's executing and performs a service for
the caller.

PT (program transfer) instruction
Returns control to a program that issued a basic PC instruction.

Recovery linkage stack
The linkage stack that is available to the program's recovery routines after the "stack full" interruption
occurs on a normal linkage stack.

SAC (set address space control) instruction
Explicitly sets either the primary ASC mode, secondary ASC mode, AR ASC mode, or home ASC mode.

SAR (set access register) instruction
Place the contents of a GPR into an AR.

Secondary address space
The address space whose segment table the system uses to access data in secondary ASC mode.

Secondary ASC mode
The ASC mode in which the system fetches instructions from the primary address space and data
from the secondary address space.

Shared standard hiperspace
A standard hiperspace that can be shared with programs that are dispatched in any address space.

Space-switching PC instruction
A PC instruction that transfers control to a PC routine that is not in the same address space as the
program that issues the PC instruction.

SSAR (set secondary ASN)
Sets the secondary address space to a specified address space.

Stacking PC instruction
Transfers control to another program, the PC routine. The stacking PC uses the linkage stack for
storing the caller's status. It provides more options and more automatic function than the basic PC
instruction. The PC routine can be in the same address space as the program that issues the PC
instruction, or a different address space.

Stack-full program interruption
A program interruption that occurs when a program tries to add an entry to a linkage stack and no
more entries are available.

STAM (store access register multiple) instruction
Store the contents of one or more ARs beginning at a specified location.

Standard hiperspace
A hiperspace that is backed by expanded storage, and auxiliary storage, if necessary. Through a buffer
area in an address space, your program can "scroll" through a standard hiperspace.

STOKEN (space token)
An eight-byte identifier of an address space, data space, or hiperspace. It is similar to an address
space identifier (ASID or ASN), with two important differences: the system does not reuse the
STOKEN value within an IPL, and data spaces do not have ASIDs. Macros that support AR mode
callers often use STOKENs instead of ASIDs to identify address/data spaces.

244 z/OS: z/OS MVS Extended Addressability Guide

TTOKEN
A 16-byte identifier of a TCB. Unlike a TCB address, a TTOKEN is unique within an IPL.

User parameters
Parameters that a macro service routine passes from the user of the macro to another routine.

Work unit
A TCB or SRB, sometimes called a dispatchable unit.

X-macro
Some macro services offer two macros, one for callers in primary mode and one for callers in AR
mode. The name of the macro for the AR mode caller is the same as the name of the macro for
primary mode callers, except the macro that supports the AR mode caller ends with an "X". The "X"
version of the macro is called an "X-macro".

64-bit address space
The address space that is supported by an architecture that provides 64-bit addresses.

Glossary 245

246 z/OS: z/OS MVS Extended Addressability Guide

Index

Numerics
0C4 system completion code

with subspaces 232
0D3 system completion code

with subspaces 223
12A system completion code

with subspaces 220
3C6 system completion code

IARSUBSP ASSIGN request 224
IARSUBSP IDENTIFY request 222
IARSUBSP UNASSIGN request 227
IARSUBSP UNIDENTIFY request 228
recovering from 230

64-bit address space
using assembler instructions

binary operations 68
what is 59

64-bit addressing mode (AMODE)
modal instructions

AMODE 24 70
AMODE 31 70
AMODE 64 70

non-modal instructions 69
64-bit instructions

pitfalls to avoid 71

A
A05 system completion code

with subspaces 228
A0A system completion code

with subspaces 228
A78 system completion code

with subspaces 228
ABEND macro used to dump data space storage 156
access data in a data space

rules for 129, 131
access list

adding entry for address space 107
adding entry for data space 107
adding entry for hiperspace 175
definition 95
deleting hiperspace entry 176
description 98
illustration 127
private entries 102
public entries 102
relationship with work unit 100
size 100
type 98, 102, 128

access list entry
adding 98, 106
deleting 113, 114, 176
example 107
limit 157
type 102

access list entry token 223
ACCESS parameter on ALESERV macro 106, 115
accessibility

contact IBM 233
features 233

add an entry for primary address space to DU-AL 112
add an entry to an access list

description 106
example 107, 108, 175

add an entry to the DU-AL
rules for data spaces 131

add entry to an access list
rules for data spaces 131

add entry to the DU-AL
example 109, 144
illustration 109

add entry to the PASN-AL
example 110
illustration 110
rules for data spaces 131

ADD parameter on ALESERV macro 105
ADDPASN parameter on ALESERV macro 105
address space

comparison with data space and hiperspace 1
creating through ASCRE 197
creating through ASCRE macro

example 207
deleting through ASDES macro 207
establishing access through ARs 98
establishing attributes for 206
getting EAX-authority 115
naming 197
procedures for obtaining EAX-authority 118
terminating with ASDES macro 197

address space authorization for PC routines
purpose 27

address space creation
initialization routine 200
synchronization of process 201
through ASCRE 197

address/data space
definition 94

addressability
changing

with subspaces 225
establishing

to subspace 223
full address space 211

addressability through DU-AL
example 109
illustration 109

addressability through PASN-AL
example 110
illustration 110

addressing mode
compared to ASC mode 94

AKM (authorized key mask)

Index 247

AKM (authorized key mask) (continued)
purpose 27
relationship to PKM 27

AL parameter on ALESERV macro 106
ALCOPY parameter on ATTACHX macro 147
ALESERV macro

ADD request
example 107, 109, 110, 122, 144, 147, 149, 154,
155, 175
process for SCOPE=COMMON data space 145
use 105, 106, 108

ADDPASN request
use 105, 108, 112

DELETE request
example 114, 122, 145, 150, 155, 156, 176
use 105

EXTRACT request
use 105, 108

EXTRACTH request
use 105, 108

SEARCH request
use 105, 106

summary of functions 105
ALET (access list entry token)

checking validity 120
definition 95
definition of special 103
example of loading a zero into an AR 104
example of loading into AR 98
for a hiperspace 174
for home address space 103, 113
for primary address space 103
for secondary address space 103
illustration 95, 127
illustration of special 103
obtaining 108
obtaining for hiperspace 175
passing 108, 175
passing across address spaces 111
reuse 114, 146
rules for passing 108
special 98, 103, 223
with a value of 0 103
with a value of 1 103
with a value of 2 103

ALET parameter on ALESERV macro 106
ALET-qualified address

definition 96
used in macro parameter list 123

AR (access register)
advantage 93
compared with cross memory 93
contents 95
description 93
example of loading ALET 98
example of loading an ALET of zero 104
rules for coding 96
used for EAX-authority 115
using for data reference 93
why a program would use 93, 94

AR information
formatting and displaying 125

AR instruction
summary 97

AR mode
coding instructions 96
compared to primary mode 94, 95
definition 94
description 3, 4, 94
importance of comma 97
importance of the contents of ARs 104
issuing macros 123
passing parameters 125
rules for coding 96
switching 94

AR mode data movement
compared to cross memory data movement 117

ARCHECK subcommand
format and display AR information 125

ARR (associated recovery routine)
identifying 48

ASC (address space control) mode
description 94

ASC mode
compared to addressing mode 94
compared to cross memory mode 94
description 3
switching 94

ASCRE macro
cross memory environment 204
establishing attributes 206
establishing cross memory environment 202
establishing termination routine 205
use 197

ASDES macro
description 197
example 208
use 207

ASEXT macro
description 197
use 204

ASID (address space identifier)
compared with an STOKEN 98
illustration of reuse 54
reuse of 53

assembler instructions
changing modifiable area of linkage stack entry 14
manipulating entries on linkage stack 12
modify ARs 97
used for cross memory 22

assign
ownership of data space 128

assistive technologies 233
associated recovery routine 48
asynchronous communication

definition 3
asynchronous exit routine

associated DU-AL 123
associated EAX 123
associated PASN-AL 123

AT (authority table)
illustration 201
PT authority 27
purpose 27
relationship to AX 27
SSAR authority 27

ATSET macro
example 40, 42

248 z/OS: z/OS MVS Extended Addressability Guide

ATSET macro (continued)
purpose 21
used for obtaining EAX 119
used to obtain EAX-authority 120

attach a subtask and pass a DU-AL 147
ATTACH macro

used to pass DU-AL to subtask 147
ATTACHX macro

example of passing DU-AL to subtask 147
used to pass DU-AL to subtask 147

ATTR parameter on ASCRE 206
authority

to set up addressability to address spaces 106
to set up addressability to data spaces 105

authorization index 19
authorization key mask 19
AX (authorization index)

compared with an EAX 117
illustration 117, 201
reuse of 57
value 27

AXEXT macro
purpose 21

AXFRE macro
example 42
purpose 21

AXLIST parameter on ASCRE macro 203
AXRES macro

example 36
purpose 21
used to get EAX-authority 119

AXSET macro
example

resetting an AX 42, 44
setting an AX 36, 43

purpose 21

B
BAKR instruction

adding entry to linkage stack 12
description 12
example 13, 154, 155

base space 211
basic decision

data space or hiperspace 5
basic PC

available to all address spaces 32
available to selected address spaces 33
overview 23
PC routine execution 23

BLOCKS parameter on DSPSERV macro 133, 151, 165, 166,
192
BSG instruction

with special ALETs 223

C
callable cell pool service

for data space 141
CALLERKEY parameter on DSPSERV macro 133, 165
CALLRTM macro

terminating address space created by ASCRE macro 207

CASTOUT parameter on DSPSERV macro 168
change

EAX value 120
characteristics of access lists 99
check

ALET of caller 120
EAX-authority of caller 120
global bit for AR mode 122

check validity of ALET
example 120

checkpoint/restart
managing data space storage 138
managing hiperspace storage 160

checkpointing
with subspaces 226

CHKEAX parameter on ALESERV macro 105, 115
choose the name of a data space 134
comma

careful use of in AR mode 97
common area data space 128
comparison of a PASN-AL and a DU-AL 100
comparison of EAX and AX 117
contact

z/OS 233
contents of an AR 95
contents of linkage stack 14
CPYA instruction

description 97
create

address space 197
data space 127
ESO hiperspace 169
hiperspace 159
standard hiperspace 168

cross memory
example of setting up 197
setting up environment through ASCRE macro 197

cross memory communication
accessing data from a PC routine 24
accounting considerations 31
advantage 19
assembler instructions used for 22
basic PC linkage, overview 23
considerations before using 30
entry table 26
environment 26
environmental considerations 31
establishing communication 31
EX (entry table index) 27
example 35, 45
execution time consideration 31
introduction 19
linkage conventions 49
linkage table 26
macros used for 21
overview of cross memory communication 22
PC linkage 23, 45
PC number 26
PC routine

characteristics 45
execution 23
invocation 23
overview 22
requirements 48

Index 249

cross memory communication (continued)
PKM (PSW– key mask) 27
recovery considerations 57
requirements 31
requirements for PC routines 48
resource management considerations 31
restrictions 31
services for all address spaces 32
services for selected address spaces 33
stacking PC linkage, overview 23
summary 25
terminology 19
when to use 19

cross memory data movement
compared to AR mode data movement 117

cross memory environment
example 203
illustration 202

cross memory mode
compared to AR mode 93
compared to ASC mode 94

cross memory recommendations
general register 13 initialization 51
loading PC routines 57
macro sequence 32
obtaining and releasing resources 52
type of PC to use 26
use of ETDEF macro 37
use of IHAETD mapping macro 37
use of PCLINK macro 49

current entry in linkage stack
definition 12

current size of data space 135
current size of hiperspace 166
CVT (communications vector table)

testing
for subspace 218

D
data movement

in AR mode 117
data privacy 75
data reference

using ARs 93
data space

choosing the name 134
compared to address space 1
compared with hiperspace 6
containing DREF storage 137
creating 127, 133
data manipulation 6
data manipulation illustration 6
decision to use 5
definition 127
deleting 129, 144
description 4
dumps of storage 156
efficient use 157
establishing access through ARs 98
example 5, 8
example of creating 107
example of moving data in and out 139
extending current size 129, 143

data space (continued)
identifying the origin 136
managing storage 138
mapping data-in-virtual object into 5, 148
physical backing 7
protecting storage 137
PSW key 137
referencing data 127
releasing storage 151
restoring after a checkpoint/restart operation 138
saving before a checkpoint/restart operation 138
shared between two address spaces 111
storage available for 139
summary of rules 131
unmapping data-in-virtual object into 150
use 5
use by SRB 153
use of physical storage 7

data space and hiperspace
comparing 163

data space or hiperspace
which one should you use 8

data space storage
dumping 156
extending 131
managing 138
physical backing 7
protecting 137
releasing 131, 151
rules for releasing 151
serializing use 139

data-in-virtual
mapping a hiperspace object to an address space
window 195
mapping into a data space 4, 5, 148
mapping into a hiperspace 5, 192, 193

data-only space
definition 1
illustration 1

delete
access list entry

example 114, 145, 176
address space through ASDES macro 207
data space

description 144
example 114, 144, 145
rules 129, 131

hiperspace
description 191
example 176, 196

DELETE parameter on ALESERV macro 105
deletion

of subspace 228
of subspace entry 227

diagnosis
of subspace errors 232

difference
between data spaces and hiperspaces 6

dispatchable unit access list 223
displaying AR information 125
DIV macro

example 149, 195
mapping a data-in-virtual object to a hiperspace

example 194

250 z/OS: z/OS MVS Extended Addressability Guide

DIV macro (continued)
mapping a hiperspace as a data-in-virtual object

example 195
use 4, 5, 148, 192

DREF parameter on DSPSERV macro 133
DREF storage in data space

defining 137
definition 137

DSPSERV macro
CREATE request

example 107, 122, 136, 137, 144, 147, 149, 154,
155, 166, 168, 169, 175, 178, 194, 195
example of use by SRB 154, 155
use 147

creating DREF storage 137
DELETE request

example 114, 144, 145, 150, 155, 156, 176, 191,
195, 196

EXTEND request
example 143, 191

LOAD option
use 150

OUT option
use 150

RELEASE request
use 151, 191

DSPSTOR parameter on SNAPX macro 156
DU-AL

adding subspace entry 223
associated with asynchronous exit routine 123
characteristic 99
compared to PASN-AL 99, 100
containing subspaces

copying 223
definition 98, 128
description 99
illustration of a space switch 101
illustration of accessing data space 130
illustration of PASN-AL and DU-AL 100

DUMPOPX parameter on ABEND macro 156

E
EAEASWT ECB 201, 202
EAERIMWT ECB 201, 202
EAR instruction

description 97
EAX (extended authorization index)

associated with asynchronous exit routine 123
changing 120
compared with an AX 117
definition 102, 115, 117
description 117
freeing 120
illustration 117
reserving 119
reuse of 57
unauthorized 115
with the value 0 115

EAX-authority
checked by system 106
checking 120
compared with SSAR authority 119
definition 102, 115

EAX-authority (continued)
description 115
illustration 116
obtaining 115
procedures for obtaining 119
system checking for 116

EAX-checking
how to prevent it 115
how to request it 115

ECBs for initialization routine 201, 202
EKM (entry key mask)

purpose 27
relationship to PKM 27

entry table
connecting, example 40, 44
example 44
example of how to define 37
illustration 201
ownership 37
purpose 26
purpose of EX 26
structure 26

entry table index 19
EREG instruction

description 14
example 14

ESO hiperspace
backing 168
compared with standard hiperspace 163
creating 168
definition 161
description 162
example of creating 169
read and write operation 179
use 162

ESTA instruction
description 14, 15
example 15, 16

establish
access for ARs 98
cross memory environment

through ASCRE macro 197, 202
establish addressability

example 108
to a data space

definition 95, 127
example 138, 144
procedures 138
rules 129, 131

to an address space
definition 95

establish attributes for address spaces 206
ESTAE-type recovery routine

use of linkage stack 16
ET (entry table)

illustration 201
ETCON macro

example 40, 44
purpose 21
used to obtain EAX-authority 119

ETCRE macro
example 37, 44
purpose 21
used for obtaining EAX 119

Index 251

ETDEF macro
example 37
purpose 21
used to change EAX 119

ETDES macro
example 42, 44
purpose 21

ETDIS macro
example 42
purpose 21

EX (entry table index)
purpose 27
responsibility for maintaining 27

example of moving data in and out of data space 139
examples of cross memory usage

provide services to all address spaces
address space authorization 43
cleaning up 44
establishing access 44
granting PT authority 43
granting SSAR authority 43
providing service 44
removing access 44
setting up 43
system LX, obtaining 43

providing non-space switch service 45
providing services to selected address spaces

constructing a PC number 39
entry table create 37
establishing access 40
granting PT authority 40
granting SSAR authority 40
PC routine definition 37
removing access to PC routine 42
reserving an AX 36
reserving an EAX 36
reserving an LX 36

execution key mask 19
extend current size of data space

example 143
procedure 143
rules 129, 131

extend current size of hiperspace
example 191
procedure 190

EXTEND parameter on DSPSERV macro 143, 190
extended addressability

basic concepts 3
introduction 1

EXTRACT parameter on ALESERV macro 105

F
FAILDATA subcommand 232
feedback xvii
formatting AR information 125
FPROT parameter on DSPSERV macro 133, 137, 165, 167
free

EAX value 120
full address space addressability 211

G
GENNAME parameter on DSPSERV macro 133, 134, 164,
165
glossary of terms 241
GPR/AR

definition 94
illustration 94

guard area
changing its size 88

H
hiperspace

as data-in-virtual object 195
choosing the name 165
compared to address space 1
compared with data space 6
creating 159, 164
data manipulation 7
decision to use 5
definition 1, 159
deleting 191
deleting hiperspace from access list 176
description 4
efficient data transfer 180
example 8
example of creating 175
extending current size 190
identifying the origin 168
illustration 1
managing storage 160
manipulating data

illustration 159
mapping data-in-virtual object into 5, 192, 193
obtaining an ALET 174
physical backing 7
problem state program using 170
protecting storage 167
PSW key 167
referencing data 176
releasing storage 191
requesting amount of storage 166
restoring after a checkpoint/restart operation 160
rules for problem state programs 170, 172
rules for supervisor state programs 172
saving before a checkpoint/restart operation 160
storage available 160
summary of rules 163
transferring data to and from address space 176
type 161
use by SRB 196
use of physical storage 7

hiperspace or data space
which one should you use 8

hiperspace storage
managing 160
physical backing 8
protecting 167
releasing 191
rules for releasing 192
serializing use 161

home address space
ALET for 103, 113

252 z/OS: z/OS MVS Extended Addressability Guide

HSPALET parameter on HSPSERV macro 180
HSPSERV macro

compared to IOSADMF macro 180
CREAD and CWRITE operation

example 180
faster data transfer 180
read operation 176, 177, 179
SREAD and SWRITE operation

example 178
illustration 176

write operation 176
HSTYPE parameter on DSPSERV macro 164

I
IARSUBSP macro

ASSIGN parameter 223
CREATE parameter 222
DELETE parameter 228
IDENTIFY parameter 220
RANGLIST parameter 221
UNASSIGN parameter 227
UNIDENTIFY parameter 228

IARV64 services
use 75

identify the origin of the data space 136
IEANTCR callable service

example of using 40
IEANTRT callable service

example of using 41
IEFUSI installation exit 139, 160
IEZEAECB mapping macro 198, 201
IHAASEO mapping macro 198
IHAETD mapping macro 37
information field in linkage stack entry

definition 15
illustration 15

initial size of data space 135
initial size of hiperspace 166
initialization routine for new address space

description 200
how to write 200
requirement 198
specifying 197

installation limit
amount of storage for data space and hiperspace 134
on amount of storage for data space and hiperspace
139, 160, 166
on size of data space 139
on size of hiperspace 166
on size of hiperspaces 160
size of data space 134

instructions used for cross memory 22
instructions used to manipulate linkage stack entry 14
IOSADMF macro

APURGE request 184
AREAD and AWRITE request 183
compared to HSPSERV macro 180
efficient data transfer 183
example of 184

IPCS (interactive problem control system)
format and display AR information 125

K
KEEP parameter on HSPSERV macro 180
KEY parameter on DSPSERV macro 133, 165, 167
keyboard

navigation 233
PF keys 233
shortcut keys 233

L
LAE instruction

description 97
example 154, 155

LAM instruction
description 97
example 98, 107, 144, 175

large pages 67
limit use of data space 139
limit use of hiperspace 160
linkage conventions 71
linkage index 19
linkage stack

adding entry 12
advantages of using 3, 11
assembler instructions that manipulate entries 12
default number of entries 16
description 11
dumping the contents 17
example 13
expanding 16
format of information field 15
illustration 11
removing entry 12
use by ESTAE-type recovery routine 16
use by reentrant programs 11

linkage stack entry
assembler instructions that manipulate 12
contents 14

linkage stack instructions
using 14

linkage table
illustration 201
purpose 26
relationship to LX 26

LISTD parameter on SDUMPX macro 156
load instruction in AR mode

example 97
LSEXPAND macro

example 16
use 16

LX
extended non-system example 37
reusable extended non-system example 37
reuse of 56

LX (linkage index)
owner 36

LX reuse facility 20
LXFRE macro

example 42
purpose 21

LXLIST parameter on ASCRE macro 203
LXRES macro

example 36, 43

Index 253

LXRES macro (continued)
purpose 21
used for obtaining EAX 119

M
macros

cross memory
requirements for issuing 32
summary 21

issuing in AR mode 123
passing parameters to in AR mode 125

manage data space storage 138
manipulate data in a data space 144
manipulate data in hiperspace 159
map data-in-virtual object into data space

rules for problem state programs 148
rules for supervisor state programs 149

map data-in-virtual object into hiperspace
example 194
rules for problem state programs 192
rules for supervisor state programs 193

map hiperspace as data-in-virtual object
example 195

mapping macros
IEZEAECB mapping macro 198, 201

maximum size of data space 135
maximum size of hiperspace 166
MEMLIMIT

definition 59
determining 63

memory management
above the bar 61

memory object
attributes 61
common 61
discard data 88
example of creating with a guard area 90
IARV64 list request 91
large pages 67
limiting use 62
ownership 80
pagefix 62
protecting storage 75
releasing physical resources that back pages of 88
using 71

memory objects
data privacy 75

mode
AR 94
ASC mode 94
primary 94

modifiable area in linkage stack
changing 14

MSTA instruction
description 14, 16
example 16
use 16

MVC instruction
example in AR mode 95
example in primary mode 95

MVCP instruction
compared to MVC in AR mode 117

MVCS instruction

MVCS instruction (continued)
compared to MVC in AR mode 117

MVS macros
issuing in AR mode 123
passing parameters to in AR mode 125

N
name a data space 134
name a hiperspace 165
NAME parameter on DSPSERV macro 133, 134, 164, 165
name/token callable services

example of using 35
navigation

keyboard 233
non-shared standard hiperspace

definition 162
non-space switch PC routine

definition 23
normal linkage stack

definition 11
NUMRANGE parameter on HSPSERV macro 177

O
obtain

ALET for the primary address space
illustration 113

EAX-authority
procedures for 118

storage in another address space 122
origin of data space 136
origin of hiperspace 168
ORIGIN parameter on DSPSERV macro 136, 168
OUTNAME parameter on DSPSERV 165
OUTNAME parameter on DSPSERV macro 133, 134
ownership of data space

assigning to another TCB 128
definition 128

ownership of hiperspace
assigning to a TCB 196
definition 161

P
page data space pages into central storage

rules 129
using DSPSERV LOAD and OUT 150

pages, large 67
parameter

passing in AR mode 125
parameters

passing through ASCRE macro 205
passing to new address space 197
receiving through ASEXT macro 205

PASN-AL
associated with asynchronous exit routine 123
characteristic 99
compared to DU-AL 99, 100
definition 98, 128
description 99
illustration of a space switch 101
illustration of accessing data space 130

254 z/OS: z/OS MVS Extended Addressability Guide

PASN-AL (continued)
illustration of PASN-AL and DU-AL 100

pass ALET
to MVS macros

rules for 125
pass ALETs

across address spaces
illustration 110, 111
rules for 108

pass DU-AL to subtask 147
pass STOKENs to another program

illustration 111
passing ALETs

to other programs
rules for 108

PC linkage
overview 23
type 23

PC number
construction example 39
example of how to provide 35
how to construct 26
purpose 26

PC routine
accessing data 24
authorization for problem state routines 27
available to all address spaces

address space authorization 32
AX value used 32
basic PC routine linkage 33
entry table connect 33
entry table create 33
linkage index 33
macros used 32
PC routine 33
PT authority 32
SSAR authority 32

available to selected address spaces
address space authorization 34
authorization index 34
AX value 34
entry table 34
linkage 34
linkage index 34
macros used 33
PC number 35
PC routine 34, 35
PT authority 34
SSAR authority 34
stacking AX value 34
stacking PC,address space authorization 35

basic
addressing mode 47
authorization for problem state programs 46
defined 23
defining 45
linkage capability 45
linkage conventions 49
non-space switch 46
PKM (PSW-key mask) 47
problem state 46
requirements 48
space switch 46
supervisor state 46

PC routine (continued)
comparison of linkage conventions 52
defining 45
definitions, common to basic and stacking 46
execution 23
IBM recommendation 45
invocation overview 23
invocation, example 41
linkage capability 45
linkage conventions

basic PC 49
stacking PC 50

loading recommendations 57
MVCP instruction, using 24
MVCS instruction, using 24
non-space switch, defined 23
overview 22
requirements 48
space switch, defined 23
stacking

addressing mode 47
ARR (associated recovery routine) 48
ASC mode 47
authorization for problem state programs 46
defined 23
defining 45
EAX (extended authorization index) 47
linkage capability 45
non-space switch 46
PKM (PSW-key mask) 47
problem state 46
PSW key 48
requirements 48
SASN value 48
space switch 46
supervisor state 46

use of access registers (ARs) 24
used in obtaining EAX-authority 119

PCLINK macro
compared with linkage stack function 11
purpose 21

physical storage
comparison of data space and hiperspace use 7

PKM (PSW key mask)
purpose with PC routine 27
relationship to AKM 27
relationship to EKM 27

PPT values of new address space 197
PR instruction

description 12
example 13
removing entry from linkage stack 12

primary address space
adding an entry to DU-AL 112
ALET for 103

primary mode
compared to AR mode 95
compared with AR mode 94
definition 94
description 3, 94
switching 94

privacy, memory object data 75
private entry in access list

compared to public entry 116

Index 255

private entry in access list (continued)
definition 102, 115
illustration 116

private memory object
creating

example 77
creating, using and freeing a

example 78
fixing pages

example 87
fixing the pages of 87
freeing

example 78
problem state program

use of data spaces and hiperspaces 6
program note

for using SCOPE=COMMON data space 146
protect data space storage 137
protect hiperspace storage

illustration 167
protection

of data
in a subspace 211

PSW key
protecting data space storage 137
protecting hiperspace storage 167

PSW key mask 19
PT authority

definition 23
public entry in access list

compared to private entry 116
definition 102, 115
illustration 116

R
range list

description 221
error 222, 224, 227, 228
illustration 221
requirements

ASSIGN request 224
IDENTIFY request 221
UNASSIGN request 224
UNIDENTIFY request 221

RANGLIST parameter on HSPSERV macro 177, 179
read from an ESO hiperspace 179
read operation

for ESO hiperspace 179
for standard hiperspace 176, 177

recovery
in subspace

ESPIE routine 231
ESTAE-type routine 231
FRR 231
SPIE routine 231

recovery considerations for cross memory 57
recovery linkage stack

definition 12
reentrant programs use of linkage stack 11
relationship between data space and owner 128
relationship between linkage stack and ESTAE-type recovery
routine 16
release

release (continued)
data space storage

rules for 151
hiperspace storage

rules for 192
RELEASE parameter on HSPSERV macro 177
remove

entry from access list 114, 176
requirements

cross memory 31
reserve

EAX 119
resetting

subspace environment 231
resource management in a cross memory environment

accounting considerations 57
PC routines 57

restarting
with subspaces 226

restrictions
cross memory 31

RSMDATA subcommand 232
rules for

passing ALET
to MVS macros 125

passing ALETs
to other programs 108

running in subspace 211

S
SAC instruction

example 107, 122, 154, 155, 175
SAR instruction

description 97
example 122

SCOPE parameter on DSPSERV macro 128, 133
SCOPE=ALL data space

definition 128
illustration of accessing 130
use 128

SCOPE=COMMON data space
compared with CSA 145
creating and using 145
definition 128
illustration of using 146
use 128, 145

SCOPE=SINGLE data space
definition 128
illustration of accessing 130
use 128

SDUMPX macro used to dump data space storage 156
SEARCH parameter on ALESERV macro 105
secondary address space

ALET for 103
sending to IBM

reader comments xvii
serialize use

data space storage 139
hiperspace storage 161

set
ASC mode through SAC instruction 94

set up
addressability to a data space

256 z/OS: z/OS MVS Extended Addressability Guide

set up (continued)
addressability to a data space (continued)

example 107
addressability to a hiperspace

example 175
addressability to a subspace 223
addressability to an address space 98, 105
cross memory environment in new address space 204

set up EAX-authority to an address space 115
SETLOCK macro

example 154, 155
use 154, 155

SETRP macro
SSRESET parameter 231

share data spaces
between two address spaces 111

shared data space
between two problem state programs 147

shared memory object
accessing

example 83
changing

example 83
creating

example 82
freeing

example 83
shared standard hiperspace

definition 162
shortcut keys 233
size of data space

specifying 134
size of hiperspace

specifying 166
SMF installation exit IEFUSI 139, 160
SNAPX macro used to dump data space storage 156
space switch PC routine

definition 23
space-switching PC instruction

affect on addressability through access lists 101
special ALETs

adding entry to the DU-AL 98
definition 103
illustration 103
passing to other programs 108

SRB (service request block)
example of using data space 155
use 3
use of data space 151
use of hiperspace 196

SSAR authority
compared with EAX-authority 119

SSRESET parameter
of SETRP macro 231

stacking PC
adding entry to linkage stack 12
available to all address spaces 32
available to selected address spaces 33
overview 23
PC routine execution 23

STAM instruction
description 97

standard hiperspace
compared with ESO hiperspace 163

standard hiperspace (continued)
creating 168
definition 161
description 161
example of creating 168
example of scrolling 161
examples of use by problem state programs 170
illustration of scrolling 161
read and write operation 177
use 162

START parameter on DSPSERV macro 151, 192
STOKEN

definition 127
returned by DSPSERV macro 127

STOKEN (space taken)
obtaining from DSPSERV 108
obtaining from other programs 108
passing to another program 108

STOKEN (space token)
compared with an ASID 98
definition 98
illustration of passing to another program 109
passing to another program 111

STOKEN parameter on ALESERV macro 106
STOKEN parameter on ASCRE macro 106
STOKEN parameter on DIV macro 148
STOKEN parameter on DSPSERV macro 106, 133, 164
STOKEN parameter on HSPSERV macro 177
storage

alignment
for subspace 220

assigning to subspace 223
attributes

for subspace 219
backing

for subspace 219
eligible to be assigned to subspace 211
isolation

within address space 211
making eligible for subspace 220
managing data space 138, 141
managing hiperspace 160
obtaining

for subspace 219
obtaining storage in another address space 122
referenced by all subspaces 211
releasing after subspace 228
required by system

with subspaces 215
storage available for data space 139
storage available for hiperspace 160
STORAGE macro

OBTAIN request
example 122, 179

RELEASE request
example 122

use 122
subspace

assigning storage 223
benefits 214
creation 222
deletion 228
description 211
establishing addressability 223

Index 257

subspace (continued)
identifying storage 220
limitations 214
making storage ineligible 228
obtaining storage 219
resetting 231
running 225
storage

attributes 219
system storage overhead 215
testing CVT 218
using MVS services 227

subspace-eligible storage 211
SUMLSTL parameter on SDUMPX macro 156
summary of cross memory communication 25
synchronous communication

definition 3
synchronous cross memory communication 19
SYSSTATE macro

example 122, 124
use 123

system linkage index
purpose 43
saving 43

T
TCBTOKEN macro

TYPE parameter 154
use 154, 155
using to find TTOKEN 154

terminating address space with ASDES macro 197
termination routine for new address space 205, 207
terminology 241
TESTART macro

use 120
testing

for subspace 218
TKLIST parameter on ASCRE macro 203
trademarks 240
TRMEXIT parameter on ASCRE macro 205
TTOKEN parameter on DSPSERV 155
TTOKEN parameter on DSPSERV macro

example 154, 155
example of using data space 154

U
unmap a data-in-virtual object 150
use of the ALET for home address space

illustration 113
use the ALET for home address space

example 113
user interface

ISPF 233
TSO/E 233

UTOKEN parameter on ASCRE macro 205

V
VIO (virtual input/output)

comparison with data space and hiperspace 9
virtual storage

virtual storage (continued)
why use above the bar

use, example 61
VLF (virtual lookaside facility)

use 4

W
work unit

definition 98
relationship to access list 100

write operation
for ESO hiperspace 179
for standard hiperspace 176

write to a standard hiperspace 177
write to an ESO hiperspace 179

X
X-macro

definition 124
rules for using 124

Z
z/Architecture

setting and checking the addressing mode 70
z/Architecture instructions

using the 64-bit GPR 69
z/Architecture processes S/390 instructions, how

examples 68

258 z/OS: z/OS MVS Extended Addressability Guide

IBM®

Product Number: 5650-ZOS

SA23-1394-40

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	How this document is organized
	How to use this document
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 4
	Summary of changes for z/OS Version 2 Release 3
	Summary of changes for z/OS Version 2 Release 2

	Chapter 1. An introduction to extended addressability
	Basic concepts
	Asynchronous cross memory communication
	Synchronous cross memory communication
	Access register ASC mode
	Data-in-Virtual
	Virtual lookaside facility
	Data spaces and hiperspaces

	Basic decision: data space or hiperspace
	What can a program do with a data space or a hiperspace?
	What are the differences?
	Comparing data space and hiperspace use of physical storage

	Which one should your program use?
	An example of using a data space
	An example of using a hiperspace

	Choosing VIO instead of a data space or a hiperspace

	Chapter 2. Linkage stack
	Linkage stack considerations for asynchronous exit routines
	Instructions that add and remove a linkage stack entry
	Branch and stack (BAKR) instruction
	Program return (PR) instruction
	Example of using the linkage stack

	Contents of the linkage stack entry
	Instructions that manipulate the contents of a linkage stack entry
	Extract stacked registers (EREG) instruction
	Extract stacked state (ESTA) instruction
	Modify stacked state (MSTA) instruction

	Expanding a linkage stack to a specified size
	Relationship between the linkage stack and ESTAE-type recovery routines
	Dumping the contents of the linkage stack

	Chapter 3. Synchronous cross memory communication
	When should you use synchronous cross memory communication?
	Terminology, macros, and assembler instructions
	Cross memory terminology
	Macros used for synchronous cross memory communication
	Instructions used for cross memory communication

	An overview of cross memory communication
	PC routines
	PC routine invocation
	PC linkages
	PC routine execution
	Stacking pc routines
	Basic pc routines

	Accessing data from a pc routine

	Summary of cross memory communication

	The cross memory environment
	Entry tables
	Linkage tables
	The PC number
	Program authorization — the PSW-key mask (PKM)
	Address space authorization

	Considerations before using cross memory
	Environmental considerations
	Restrictions
	Requirements

	Establishing cross memory communication
	Making a PC routine available to all address spaces
	Address space authorization
	Linkage Index
	PC routines and the entry table
	Basic PC routine linkage

	Making a PC routine available to selected address spaces
	Basic PC Routine
	Authorization Index
	Address space authorization
	PC routines and the entry table
	Basic PC routine linkage

	Stacking PC routine
	Authorization index
	Address space authorization
	PC routines and the entry table

	PC number

	Examples of how to establish a cross memory environment
	Example 1 - Making services available to selected address spaces
	Setting Up
	Establishing access
	Invoking a PC routine
	Removing Access
	Cleaning Up

	Example 2 - Making services available to all address spaces
	Setting up
	Establishing access
	Providing Service
	Removing Access
	Cleaning Up

	Example 3 - Providing non-space switch services

	PC linkages and PC routine characteristics
	PC linkage capabilities
	Defining a PC routine
	Definitions common to both stacking and basic PC routines
	Supervisor state or problem state
	Space switch or non-space switch
	Problem state program authorization
	Addressing mode
	PSW-key mask (PKM)

	Definitions for stacking PC routines only
	ASC mode
	Extended authorization index (EAX)
	SASN value
	Associated recovery routine (ARR)
	PSW key

	PC routine requirements
	Stacking PC routines
	Basic PC routines

	Linkage conventions
	Basic PC
	User program
	PC routine that receives control in supervisor state
	PC Routine That Receives Control In Problem State

	Stacking PC
	User in Primary Mode
	User In AR Mode
	PC routine that receives control in primary mode
	PC routine that receives control in AR mode

	Resource Management
	Reusing ASIDs
	Coding cross memory services to avoid the loss of ASIDs from reuse
	Coding to allow use of reusable ASIDs
	When to use a reusable ASID
	Using IEASYSxx to Avoid Running Out of ASIDs

	Reassigning LXs when the LX reuse facility is enabled
	Reassigning LXs when the LX Reuse Facility is not enabled:
	Example of Reassigning LXs

	Reusing AXs and EAXs
	PC Routine Loading Recommendations
	Accounting Considerations
	Recovery Considerations

	Chapter 4. Using the 64-bit address space
	What is the 64-bit address space?
	Why would you use virtual storage above the bar?
	Memory management above the bar
	Memory objects
	Limiting the use of private memory objects
	Using large pages

	Using assembler instructions in the 64-bit address space
	64-bit binary operations
	How z/Architecture processes S/390 instructions
	z/Architecture instructions that use the 64-bit GPR

	64-bit addressing mode (AMODE)
	Non-modal instructions
	Modal instructions
	Setting and checking the addressing mode
	Linkage conventions
	Pitfalls to avoid

	Using a memory object
	IARV64 macro services
	Protecting storage above the bar
	Tagging 64-bit memory objects for data privacy
	Creating private memory objects
	GETSTOR request
	Example of creating a private memory object

	Freeing a private memory object
	Example of freeing a private memory object

	An example of creating, using, and freeing a private memory object
	Creating shared memory objects
	GETSHARED request
	Relationship between the shared memory object and its owner
	SHAREMEMOBJ request
	CHANGEACCESS request
	Examples using IARV64 requests for shared memory objects
	Example of creating and using a shared memory object – GETSHARED
	Example of accessing a shared memory object – SHAREMEMOBJ
	Example of changing the access of a shared memory object – CHANGEACCESS

	Freeing a shared memory object
	AFFINITY=LOCAL
	AFFINTY=SYSTEM
	Proper serialization of shared memory objects

	Creating common memory objects
	GETCOMMON request

	Freeing a common memory object
	Fixing the pages of a memory object
	Example of fixing pages of a memory object

	Discarding data in a memory object
	Releasing the physical resources that back pages of memory objects
	Creating guard areas and changing their sizes
	Examples of creating a memory object with a guard area

	Listing information about the use of virtual storage above the bar
	Changing the attributes of storage within a memory object

	Dumping 64-bit common memory objects

	Chapter 5. Using access registers
	Using access registers for data reference
	A comparison of data reference in primary and AR mode
	Coding instructions in AR mode

	Manipulating the contents of ARs
	Access lists
	Types of access lists
	A Comparison of a PASN-AL and a DU-AL

	Types of access list entries

	Special ALET values
	Special ALET Values at a Space Switch
	Loading the Value of Zero into an AR

	The ALESERV macro
	Setting up addressability to an address/data space
	Adding an entry to an access list
	Example of Adding an Access List Entry for a Data Space
	Example of adding an access list entry for an address space
	Obtaining and passing ALETs and STOKENs
	Rules for passing ALETs

	Examples of establishing addressability to data spaces
	Adding an Entry for the Primary Address Space to the DU-AL
	Using the ALET for the Home Address Space

	Deleting an entry from an access list
	Example of deleting a data space entry from an access list
	Example of deleting an address space entry from an access list
	ALET reuse by the system

	EAX-authority to an address space
	Setting the EAX value
	Procedures for establishing addressability to an address space
	Procedures for the accessing address space
	Procedures for the target address space

	Changing an EAX value
	Freeing an EAX value
	Checking the authority of callers
	Example of using TESTART

	Obtaining storage outside the primary address space
	What access lists can an asynchronous exit routine use?
	Issuing MVS macros in AR mode
	Passing parameters to MVS macros in AR mode

	Formatting and displaying AR information

	Chapter 6. Creating and using data spaces
	Referencing data in a data space
	Relationship between the data space and its owner
	Scope=single, scope=all, and scope=common data spaces

	Rules for creating, deleting, and using data spaces
	Example of the rules for accessing data spaces
	Summary of rules for creating, deleting, and using data spaces

	Creating a data space
	Choosing the name of the data space
	Specifying the size of the data space
	Identifying the origin of the data space
	Example of creating a data space
	Protecting data space storage
	Creating a data space of DREF storage

	Establishing addressability to a data space
	Example of establishing addressability to a data space

	Managing data space storage
	Managing data space storage across a checkpoint/restart operation
	Limiting data space use
	Serializing use of data space storage
	Examples of moving data into and out of a data space
	Using callable cell pool services to manage data space areas

	Extending the current size of a data space
	Deleting a data space
	Example of creating, using, and deleting a data space
	Creating and using SCOPE=COMMON data spaces
	Attaching a subtask and sharing data spaces with it
	Sharing data spaces among problem state programs with PSW key 8 through F

	Mapping a data-in-virtual object to a data space
	Paging data space storage areas into and out of central storage

	Releasing data space storage
	How SRBs use data spaces
	Obtaining the TCB identifier for a task (ttoken)
	Example of an srb routine using a data space

	Dumping storage in a data space
	Using data spaces efficiently

	Chapter 7. Creating and using hiperspaces
	Managing hiperspace storage
	Limiting hiperspace use

	Managing hiperspace storage across a checkpoint/restart operation
	Relationship between the hiperspace and its owner
	Serializing use of hiperspace storage
	Standard and expanded storage only hiperspaces
	Standard hiperspace
	Expanded storage only hiperspaces
	Summary of the differences

	Rules for creating, deleting, and using hiperspace
	Creating a hiperspace
	Choosing the name of the hiperspace
	Specifying the size of the hiperspace
	Protecting hiperspace storage
	Identifying the origin of the hiperspace
	Creating a non-shared or shared standard Hiperspace
	Creating an expanded storage only Hiperspace

	Accessing hiperspaces
	How an ALET connects a program to a hiperspace
	How problem state programs with PSW key 8 through F use a hiperspace
	Summary of unauthorized programs' use of hiperspaces

	How supervisor state or PSW key 0 through 7 programs use hiperspaces
	Obtaining an ALET for a hiperspace
	Example of adding an access list entry for a hiperspaces
	Obtaining and passing ALETs for hiperspaces
	Deleting an access list entry for a hiperspace
	Example of deleting a hiperspace entry from an access list

	Transferring data to and from a hiperspace
	Read and write operations for standard hiperspaces
	Example of creating a standard hiperspace and using It

	Read and write operations for expanded storage only hiperspaces
	Obtaining improved data transfer to and from a hiperspace
	The move-page facility
	Using the ADMF

	Extending the current size of a hiperspace
	Deleting a hiperspace
	Releasing hiperspace storage
	Using data-in-virtual with standard hiperspaces
	Mapping a data-in-virtual object to a hiperspace
	An example of mapping a data-in-virtual object to a hiperspace

	Using a hiperspace as a data-in-virtual object
	An example of a hiperspace as a data-in-virtual object

	How SRBs use hiperspaces

	Chapter 8. Creating address spaces
	Using the ASCRE macro to create an address space
	Planning the characteristics of the address space
	Identifying a procedure in SYS1.PROCLIB
	The address space initialization routine
	Writing an Initialization Routine
	Synchronizing the Initialization Process

	Establishing cross memory linkages
	The new address space as service provider
	The new address space as cross memory user

	Passing a parameter list to the new address space
	Providing an address space termination routine
	Establishing attributes for address spaces

	Deleting an address space
	Example of creating and deleting an address space

	Chapter 9. Creating and using subspaces
	What is a subspace?
	Deciding whether your program should run in a subspace
	Benefits of subspaces
	Protecting the server program
	Protecting the application program
	Providing diagnosis

	Limitations of subspaces
	System storage requirements

	Steps to manage subspaces
	Updating the application server to use subspaces
	Managing subspaces when performance is a priority
	Managing subspaces when storage is a priority
	Creating a single subspace
	Determining whether subspaces are available on your system
	Obtaining storage for subspaces
	Storage attributes
	Backing virtual storage for a subspace

	Requesting subspace storage
	Aligning virtual storage for a subspace
	Creating the range list

	Making a range of storage eligible to be assigned to a subspace
	Considerations when making storage eligible to be assigned to a subspace
	Task hierarchy restrictions
	Effect on existing subspaces

	Coding the RANGLIST parameter
	Requirements of the range list for an IDENTIFY or UNIDENTIFY request
	System processing of range list errors in IARSUBSP IDENTIFY request

	Creating the subspaces
	Saving subspace STOKENs

	Establishing addressability to a subspace
	Copying the DU-AL to a subtask or SRB
	Searching for and extracting a subspace entry
	Using special alets

	Assigning storage to the subspaces
	Requirements of the range list for an ASSIGN or UNASSIGN request
	System processing of range list errors in IARSUBSP ASSIGN request

	Branching to a subspace
	Using cross memory mode with subspaces
	Example of changing primary and secondary address spaces with subspaces

	Running a program in a subspace
	Authorized programs and subspaces
	Returning to full address space addressability
	Preserving the path across subspaces
	Using checkpoint/restart with subspaces
	Requesting additional storage while running in a subspace
	Using MVS services in a subspace

	Disassociating storage from the subspaces
	System processing of range list errors in IARSUBSP UNASSIGN request

	Removing the subspace entry from the DU-AL
	Deleting the subspace
	Making storage ineligible to be assigned to a subspace
	System processing of range list errors in IARSUBSP UNIDENTIFY request

	Releasing storage

	Example of managing subspaces
	Planning for recovery in a subspace environment
	Planning for SPIE and ESPIE routines
	Planning for ESTAE-type recovery routines and FRRs
	Subspace environment at entry to recovery routines
	Resetting a changed subspace environment after a recovery routine error
	Passing information to a recovery routine in a subspace
	Subspace environment on entry to retry routine

	Diagnosing errors in a subspace environment
	Diagnosing 0C4 abends
	Using IPCS to diagnose program errors in a subspace
	RSM component trace
	Requesting a dump

	Appendix A. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

