
z/OS
Version 2 Release 4

MVS Programming: Authorized
Assembler Services Reference, Volume 3
(LLA-SDU)

IBM

SA23-1374-40

Note

Before using this information and the product it supports, read the information in “Notices” on page
365.

This edition applies to Version 2 Release 4 of z/OS (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2020-08-24
© Copyright International Business Machines Corporation 1988, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. xvii

Tables.. xix

About this information.. xxiii
Who should use this information...xxiii
How to use this information.. xxiii
z/OS information.. xxiii

How to send your comments to IBM.. xxv
If you have a technical problem... xxv

Summary of changes.. xxvii
Summary of changes for z/OS Version 2 Release 4...xxvii
Summary of changes for z/OS Version 2 Release 3...xxvii
Summary of changes for z/OS Version 2 Release 2 (V2R2).. xxvii

Chapter 1. Using the services...1
Compatibility of MVS macros...1
Addressing mode (AMODE)... 2
Address space control (ASC) mode...3

ALET qualification...3
User parameters...4

Telling the system about the execution environment ..5
Specifying a macro version number.. 6

How to request a macro version using PLISTVER... 6
Register use..7
Handling return codes and reason codes..8

Handling program errors.. 8
Handling environmental and system errors.. 9

Using X-macros.. 9
Macro forms... 10

Conventional list form macros... 11
Alternative list form macros...11

Coding the macros... 11
Continuation lines...13

Coding the callable services.. 14
Including equate (EQU) statements.. 14
Link-editing linkage-assist routines...15

Service summary... 15

Chapter 2. LLACOPY - Library lookaside refresh..27
Description... 27

Environment... 27
Programming requirements... 27
Restrictions...27
Input register information..27
Output register information... 27
Performance implications.. 28

 iii

Syntax... 28
Parameters... 29
ABEND codes..29
Return and reason codes... 30
Example.. 30

LLACOPY - List form...31
Syntax... 31
Parameters... 31

LLACOPY - Execute form... 31
Syntax... 31
Parameters... 32

Chapter 3. LOAD - Bring a load module into virtual storage................................... 33
LOAD description... 33

Environment... 33
Programming requirements... 33
Restrictions...33
Register information...34
Performance implications.. 35
Syntax... 35
Parameters... 36
Return and reason codes... 39
Example 1...39
Example 2...40

LOAD - List form...40
Syntax... 40
Parameters... 41

LOAD - Execute form... 42
Syntax... 42
Parameters... 43

Chapter 4. LOADWAIT — Build a wait state parameter list for use with WTO..........45
Description... 45

Environment... 45
Programming requirements... 45
Restrictions...45
Register information...45
Performance implications.. 46

LOADWAIT - List form..46
Syntax... 46
Parameters... 47
Return and reason codes... 47
Example 1...47
Example 2...48
Example 3...48

LOADWAIT - Modify form.. 48
Syntax... 48
Parameters... 49
Example 1...49
Example 2...50

Chapter 5. LOCASCB — Locate address space control block (ASCB) address.......... 51
Description... 51

Environment... 51
Programming requirements... 51
Restrictions...51
Input register information..51

iv

Output register information... 51
Performance implications.. 52
Syntax... 52
Parameters... 53
ABEND codes..53
Return codes.. 53
Example 1...53
Example 2...54

Chapter 6. LXFRE - Free a linkage index... 55
Description... 55

Related macro.. 55
Environment... 55
Programming requirements... 55
Restrictions...55
Input register information..55
Output register information... 56
Performance implications.. 56
Syntax... 56
Parameters... 57
ABEND codes..57
Return codes.. 57
Examples.. 57

LXFRE - List form... 58
Syntax... 58
Parameters... 58

LXFRE - Execute form.. 58
Syntax... 58
Parameters... 59

Chapter 7. LXRES — Reserve a linkage index.. 61
Description... 61

Related macro.. 61
Environment... 61
Programming requirements... 61
Restrictions...62
Input register information..62
Output register information... 62
Performance implications.. 62
Syntax... 62
Parameters... 63
ABEND codes..64
Return codes.. 64
Examples.. 65

LXRES - List form... 65
Syntax... 65
Parameters... 66

LXRES - Execute form.. 66
Syntax... 66
Parameters... 67

Chapter 8. MCSOPER - Manage extended MCS operations.....................................69
Description... 69

Environment... 69
Programming requirements... 69
Restrictions...69
Input register information..69

 v

Output register information... 70
Performance implications.. 70
Syntax... 70
Parameters... 72
ABEND codes..75
Return and reason codes... 75
Example 1...77
Example 2...78
Example 3...78

MCSOPER - List form... 80
Syntax... 80
Parameters... 80

MCSOPER - Modify form.. 80
Syntax... 80
Parameters... 82

MCSOPER - Execute form.. 82
Syntax... 82
Parameters... 84

Chapter 9. MCSOPMSG - Retrieve MCS operator messages....................................85
Description... 85

Environment... 85
Programming requirements... 85
Restrictions...86
Input register information..86
Output register information... 86
Performance implications.. 86
Syntax... 86
Parameters... 88
ABEND codes..88
Return and reason codes... 88
Example.. 90

MCSOPMSG - List form.. 90
Syntax... 90
Parameters... 90

MCSOPMSG - Execute form...91
Syntax... 91
Parameters... 92

MCSOPMSG - Modify form...92
Syntax... 93
Parameters... 94

Chapter 10. MGCR — Issue an internal START or REPLY command........................ 95
Description... 95

Environment... 95
Programming requirements... 95
Restrictions...95
Input register information..95
Output register information... 95
Performance implications.. 96
Syntax... 96
Parameters... 96
ABEND codes..97
Return and reason codes... 97
Example.. 97

Chapter 11. MGCRE — Issue internal commands...99

vi

Description... 99
Environment... 99
Programming requirements... 99
Restrictions...99
Input register information... 100
Output register information... 100
Performance implications..100

MGCRE - List form..100
Syntax... 100
Parameters... 101

MGCRE - Execute form.. 101
Syntax... 101
Parameters... 102
ABEND codes... 104
Return and reason codes... 104
Example..105

Chapter 12. MIHQUERY — Retrieve MIH time interval... 107
Description...107

Environment... 107
Programming requirements...107
Restrictions.. 107
Input register information... 107
Output register information... 107
Performance implications..108
Syntax... 108
Parameters... 109
ABEND codes... 109
Return and reason codes... 109
Example..110

MIHQUERY - List form... 111
Syntax... 111
Parameters... 112

MIHQUERY - Execute form..112
Syntax... 112
Parameters... 113

Chapter 13. MODESET — Change system status.. 115
Description...115

Inline code generation... 115
Environment... 115
Programming requirements...115
Restrictions.. 115
Input register information... 115
Output register information... 115
Performance implications..116
Syntax... 116
Parameters... 118
ABEND codes... 118
Return and reason codes... 118
Example 1...118
Example 2...119
SVC generation...119
Environment for SVC generation..119
Programming requirements for SVC generation... 119
Restrictions for SVC generation...119
Input register information for SVC generation.. 119

 vii

Output register information for SVC generation..119
Performance implications for SVC generation.. 120
Syntax for SVC generation... 120
Parameters for SVC generation... 121
ABEND codes for SVC generation..121
Return and reason codes for SVC generation... 121
Example for SVC generation.. 121

MODESET - List form... 122
Syntax... 122
Parameters... 122

MODESET - Execute form.. 122
Syntax... 122
Parameters... 123

Chapter 14. NIL — Provide a lock via an AND IMMEDIATE (NI) instruction........... 125
Description...125

Environment... 125
Programming requirements...125
Restrictions.. 125
Input register information... 125
Output register information... 125
Performance implications..126
Syntax... 126
Parameters... 126
ABEND codes... 127
Return and reason codes... 127
Example..127

Chapter 15. NMLDEF — Customizing the nucleus...129
Description...129

Environment... 129
Programming requirements...129
Restrictions.. 130
Register information.. 130
Performance implications..130
Syntax... 130
Parameters... 130
ABEND codes... 130
Return and reason codes... 130
Example 1...130
Example 2...131
Example 3...131

Chapter 16. NUCLKUP — Nucleus map lookup service... 133
Description...133

Environment... 133
Programming requirements...133
Restrictions.. 133
Input register information... 133
Output register information... 133
Performance implications..134
Syntax... 134
Parameters... 135
ABEND codes... 135
Return codes.. 135
Example 1...136
Example 2...136

viii

Example 3...136

Chapter 17. OIL — Provide a lock via an OR IMMEDIATE (OI) instruction..............137
Description...137

Environment... 137
Programming requirements...137
Restrictions.. 137
Input register information... 137
Output register information... 137
Performance implications..138
Syntax... 138
Parameters... 138
ABEND codes... 139
Return and reason codes... 139
Example..139

Chapter 18. OUTADD — Create an output descriptor..141
Description...141

Environment... 141
Programming requirements...141
Restrictions.. 141
Input register information... 141
Output register information... 142
Performance implications..142

OUTADD - List form... 142
Syntax... 142
Example..143

OUTADD - Execute form.. 143
Syntax... 143
Parameters... 144
ABEND codes... 144
Return and reason codes... 145
Reason codes for return code 04.. 145
Reason codes for return code 08.. 146
Reason codes for return code 0C.. 150
Reason codes for return code 10.. 155
Example..155

Chapter 19. OUTDEL — Delete an output descriptor...157
Description...157

Environment... 157
Programming requirements...157
Restrictions.. 157
Input register information... 157
Output register information... 157
Performance implications..158

OUTDEL - List form.. 158
Syntax... 158
Parameters... 158
Example..159

OUTDEL - Execute form...159
Syntax... 159
Parameters... 159
ABEND codes... 160
Return and reason codes... 160
Reason codes for return code 04.. 160
Reason codes for return code 08.. 161

 ix

Reason codes for return code 0C.. 164
Reason codes for return code 10.. 168
Example..168

Chapter 20. PCLINK — Stack, unstack, or extract program call linkage
information..169
Description...169
STACK option of PCLINK... 169

Environment... 169
Programming requirements...169
Restrictions.. 169
Input register information... 170
Output register information... 170
Performance implications..170
Syntax... 170
Parameters... 171
ABEND codes... 171
Return and reason codes... 171

UNSTACK option of PCLINK.. 172
Environment... 172
Programming requirements...172
Restrictions.. 172
Input register information... 172
Performance implications..172
Syntax... 172
Parameters... 173
ABEND codes... 176
Return and reason codes... 176

EXTRACT option of PCLINK...176
Environment... 176
Programming requirements...176
Restrictions.. 176
Input register information... 176
Performance implications..177
Syntax... 177
Parameters... 178
ABEND codes... 178
Return and reason codes... 178

Chapter 21. PGANY — Page anywhere.. 179
Description...179

Input register information... 179
Output register information... 179
Syntax... 179
Parameters... 180
Return and reason codes... 180

Chapter 22. PGFIX — Fix virtual storage contents... 183
Description...183

Syntax... 183
Parameters... 184
Return and reason codes... 185
Example 1...185
Example 2...185
Example 3...185

Chapter 23. PGFIXA — Fix virtual storage contents... 187

x

Description...187
Output...187
Restrictions.. 187
Syntax... 187
Parameters... 188
Example 1...188
Example 2...188

Chapter 24. PGFREE — Free virtual storage contents...189
Description...189

Syntax... 189
Parameters... 190
Return and reason codes... 190
Example 1...191
Example 2...191
Example 3...191

Chapter 25. PGFREEA — Free virtual storage contents.. 193
Description...193

Syntax... 193
Restrictions.. 193
Output...193

Chapter 26. PGSER — Page services... 195
Description...195

Environment... 195
Programming requirements...196
Restrictions.. 196
Input register information... 196
Output register information... 196
Performance implications..197
Syntax... 197
Parameters... 199
ABEND codes... 202
Return and reason codes... 202
Example 1...203
Example 2...203
Example 3...203
Example 4...204
Example 5...204
Example 6...204

Chapter 27. PGSER — Fast path page services.. 205
Description...205

Environment... 205
Programming requirements...205
Restrictions.. 205
Input register information... 205
Output register information... 205
Performance implications..206
Syntax... 206
Parameters... 207
ABEND codes... 208
Return and reason codes... 208
Example 1...208
Example 2...208

 xi

Chapter 28. POST — Signal event completion..209
Description...209

Environment... 209
Programming requirements...210
Restrictions.. 210
Input register information... 211
Output register information... 211
Performance implications..212
Syntax... 212
Parameters... 214
ABEND codes... 215
Return codes.. 215
Example 1...216
Example 2...216
Example 3...216

POST - List form...216
Syntax... 216
Parameters... 217

POST - Execute form... 217
Syntax... 217
Parameters... 218

Chapter 29. PTRACE — Processor trace.. 219
Description...219

Environment... 219
Programming requirements...219
Restrictions.. 219
Output register information... 219
Performance implications..220
Syntax... 220
Parameters... 221
Return and reason codes... 221
Example 1...221
Example 2...221

Chapter 30. PURGEDQ — Purge SRB activity... 223
Description...223

Environment... 223
Programming requirements...223
Restrictions.. 224
Input register information... 224
Output register information... 224
Performance implications..224
Syntax... 224
Parameters... 225
ABEND codes... 226
Return and reason codes... 226
Example 1...226
Example 2...226
Example 3...226
Example 4...227

PURGEDQ - List form... 227
Syntax... 227
Parameters... 227
Example..228

PURGEDQ - Execute form..228

xii

Syntax... 228
Parameters... 228
Example..229

Chapter 31. QEDIT — Command input buffer manipulation..................................231
Description...231

Environment... 231
Syntax... 231
Parameters... 232
Return and reason codes... 232
Example 1...232
Example 2...232

Chapter 32. RACF macros.. 233

Chapter 33. RESERVE — Reserve a device (shared DASD)....................................235
Description...235

Environment... 235
Programming requirements...236
Restrictions.. 236
Input register information... 236
Output register information... 236
Syntax... 237
Parameters... 238
ABEND codes... 240
Return and reason codes... 240
Example..244

RESERVE—List form...245
Parameters... 246

RESERVE - Execute form... 246
Parameters... 248

Chapter 34. RESMGR — Add or delete a resource manager.................................. 249
Description...249

Environment... 249
Programming requirements...249
Restrictions.. 250
Input register information... 250
Output register information... 250
Performance implications..250
Syntax... 250
Parameters... 252
ABEND codes... 254
Return codes from the ADD function...254
Return codes from the DELETE function... 255
Example 1...257
Example 2...257

RESMGR - List form... 257
Syntax... 257
Parameters... 259

RESMGR - Execute form.. 259
Syntax... 259
Parameters... 260

Chapter 35. RESUME — Resume execution of a suspended RB.............................261
Description...261

Environment... 261

 xiii

Programming requirements...261
Restrictions.. 261
Input register information... 261
Output register information... 261
Performance implications..262
Syntax... 262
Parameters... 263
ABEND codes... 264
Return codes.. 264
Example..264

Chapter 36. RESUME — Resume or purge a suspended SRB.................................265
Description...265

Environment... 265
Programming requirements...265
Restrictions.. 265
Input register information... 265
Output register information... 265
Syntax... 266
Parameters... 267
ABEND codes... 267
Return codes.. 267
Example..267

RESUME - Resume or purge an SRB (List form)... 268
Syntax... 268
Parameters... 268

RESUME - Resume or purge an SRB (Execute form).. 268
Syntax... 268
Parameters... 269

Chapter 37. RISGNL — Issue remote immediate signal..271
Description...271

Environment... 271
Programming requirements...271
Restrictions.. 271
Input register information... 271
Output register information... 271
Performance implications..272
Syntax... 272
Parameters... 273
ABEND codes... 273
Return codes.. 273
Example 1...273
Example 2...273

Chapter 38. SCHEDIRB — Schedule IRB..275
Description...275

Environment... 275
Programming requirements...275
Restrictions.. 275
Input register information... 275
Output register information... 275
Performance implications..276
Syntax... 276
Parameters... 277
ABEND codes... 278
Return and reason codes... 278

xiv

SCHEDIRB - List form.. 279
Syntax... 279
Parameters... 279

SCHEDIRB - Execute form...279
Syntax... 280
Parameters... 281

Chapter 39. SCHEDULE — Schedule a service request block (SRB).......................283
Description...283

Environment... 283
Programming requirements...284
Restrictions.. 284
Input register information... 284
Output register information... 284
Performance implications..284
Syntax... 284
Parameters... 285
ABEND codes... 287
Return and reason codes... 287
Example 1...287
Example 2...287
Example 3...287
Example 4...287
Example 5...287
Example 6...288

Chapter 40. SCHEDXIT — Schedule an exit routine for execution.........................289
Description...289

Environment... 289
Programming requirements...289
Restrictions.. 289
Input register information... 289
Output register information... 289
Performance implications..290
Syntax... 290
Parameters... 290
ABEND codes... 290
Return and reason codes... 290

Chapter 41. SDUMP — Dump virtual storage... 291
Description...291

Environment... 292
Programming requirements...293
Restrictions.. 293
Input register information... 293
Output register information... 293
Performance implications..294
Syntax... 294
Parameters... 296
Return and reason codes... 308
Register 15 return codes... 308
ECB and SRB return codes...308
Reason codes for return code 08.. 309
Example 1...312
Example 2...312

SDUMP - List form..313
Syntax... 313

 xv

Parameters... 315
SDUMP - Execute form.. 315

Syntax... 315
Parameters... 317
Example 1...318
Example 2...318

Chapter 42. SDUMPX — Dump virtual storage... 319
Description...319

Wildcards..320
Environment... 320
Programming requirements...321
Restrictions.. 321
Input register information... 322
Output register information... 322
Performance implications..322
Syntax... 322
Parameters... 326
Return and reason codes... 348
Register 15 return codes... 348
ECB and SRB return codes...348
Reason codes for return code 08.. 349

SDUMPX - List form... 353
Syntax... 353
Parameters... 356

SDUMPX - Execute form.. 356
Syntax... 357
Parameters... 360

Appendix A. Accessibility...361
Accessibility features.. 361
Consult assistive technologies..361
Keyboard navigation of the user interface..361
Dotted decimal syntax diagrams...361

Notices..365
Terms and conditions for product documentation...366
IBM Online Privacy Statement.. 367
Policy for unsupported hardware..367
Minimum supported hardware..368
Programming interface information..368
Trademarks..368

Index.. 369

xvi

Figures

1. Sample User Parameter List for Callers in AR Mode.. 5

2. Sample tabular syntax diagram for the TEST macro..12

3. Continuation Coding..14

4. Return Code Area Used by RESERVE... 241

 xvii

xviii

Tables

1. Passing User Parameters in AR Mode...4

2. Execution environment characteristics and corresponding SYSSTATE parameters and global
symbols...6

3. Service Summary...16

4. Return and Reason Codes for the LLACOPY Macro..30

5. Return Codes for the LOCASCB Macro... 53

6. Return Codes for the LXFRE Macro...57

7. Return Code for the LXRES Macro.. 64

8. Parameters available with REQUEST= services... 72

9. Parameters available with MSGDLVRY= services.. 72

10. Return and Reason Codes for the MCSOPER Macro.. 75

11. Parameters valid with REQUEST=services...87

12. Return and Reason Codes for the MCSOPMSG Macro... 88

13. Parameters valid with REQUEST=services for the execute form of the macro.......................................92

14. Parameters valid with REQUEST= services for the modify form of the macro..93

15. Return Codes for the START Command... 97

16. MGCRE Return Codes... 104

17. Return and Reason Codes for the MIHQUERY Macro..109

18. Return and Reason Codes for the MODESET Macro.. 121

19. Return Codes for the NUCLKUP Macro...135

20. Return and Reason Codes for the OUTADD Macro.. 145

21. Reason Codes for Return Code 04... 145

22. Reason Codes for Return Code 08... 147

 xix

23. Reason Codes for Return Code 0C... 150

24. Reason Codes for Return Code 10... 155

25. Return and Reason Codes for the OUTDEL Macro... 160

26. Reason Codes for Return Code 04... 160

27. Reason Codes for Return Code 08... 161

28. Reason Codes for Return Code 0C... 165

29. Reason Codes for Return Code 10... 168

30. Return Codes for the PGANY Macro... 180

31. Return Codes for the PGFIX Macro.. 185

32. Return Codes for the PGFREE Macro... 191

33. Return Codes for the POST Macro..216

34. Return Code for the PTRACE Macro... 221

35. Return Codes for the QEDIT Macro.. 232

36. Return Codes for the RESERVE Macro with the RET=TEST Parameter...241

37. Return Codes for the RESERVE Macro with the RET=USE Parameter.. 242

38. Return Codes for the RESERVE Macro with the RET=HAVE Parameter..242

39. Return Codes for the RESERVE Macro with the ECB Parameter... 243

40. Return Codes from the ADD Function.. 254

41. Return Codes from the DELETE Function...256

42. Return Codes for the RESUME Macro for RBs..264

43. Return Codes for the RESUME Macro for SRBs..267

44. Return Codes for the RISGNL Macro..273

45. Return Codes for the SCHEDIRB Macro... 278

46. PSWREGS parameter list.. 300

47. Return Codes for the SDUMP Macro when BRANCH=NO..308

xx

48. Return Codes for the SDUMP Macro when BRANCH=YES...308

49. Return Codes for the ECB Parameter and SRB Parameter..308

50. Return Codes for the ECB or SRB Parameter with the DCB Parameter.. 309

51. Reason codes for return code 08... 309

52. PSWREGS parameter list.. 335

53. Affects on the CSA storage captured in an SVC dump...338

54. Return Codes for the SDUMPX Macro when BRANCH=NO..348

55. Return Codes for the SDUMPX Macro when BRANCH=YES.. 348

56. Return Codes for the ECB Parameter and SRB Parameter..349

57. Return codes for the ECB or SRB parameter with the DCB parameter...349

58. Reason codes for return code 08... 349

 xxi

xxii

About this information

This information describes the authorized services that the MVS™ operating system provides; that is,
services available only to authorized programs. An authorized program must meet one or more of the
following requirements:

• Running in supervisor state
• Running under PSW key 0-7
• Running with APF-authorization

Some of the services included in this information are not authorized, but are included because they are of
greater interest to the system programmer than to the general applications programmer. The functions of
these services are of such a nature that their use should be limited to programmers who write authorized
programs. Services are also included if they have one or more authorized parameters — parameters
available only to authorized programs.

Programmers using assembler language can use the macros described in this information to invoke the
system services that they need. This document includes the detailed information — such as the function,
syntax, and parameters — needed to code the macros.

This document is divided into four volumes. Volumes 1 through 4 present the macro descriptions in
alphabetical order.

Who should use this information
This information is for the programmer who is using assembler language to code a system program. A
system program is usually one that runs in supervisor state or runs with PSW key 0-7 or runs with APF
authorization.

The information assumes a knowledge of the computer, as described in Principles of Operation, as well as
an in-depth knowledge of assembler language programming.

System macros require High Level Assembler. For more information about assembler language
programming, see High Level Assembler and Toolkit Feature in IBM Knowledge Center (www.ibm.com/
support/knowledgecenter/SSENW6).

Using this information also requires you to be familiar with the operating system and the services that
programs running under it can invoke.

How to use this information
This information is one of the set of programming documents for MVS. This set describes how to write
programs in assembler language or high-level languages, such as C, FORTRAN, and COBOL. For more
information about the content of this set of documents, see z/OS Information Roadmap.

z/OS information
This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS® library, go to IBM Knowledge Center (www.ibm.com/support/
knowledgecenter/SSLTBW/welcome).

© Copyright IBM Corp. 1988, 2020 xxiii

http://www.ibm.com/support/knowledgecenter/SSENW6
http://www.ibm.com/support/knowledgecenter/SSENW6
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

xxiv z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xxv.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM® Knowledge Center function
If your comment or question is about the IBM Knowledge Center functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Knowledge Center
Support at ibmkc@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS MVS Authorized Assembler Services

Reference LLA-SDU, SA23-1374-40
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 1988, 2020 xxv

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmkc@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xxvi z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

Summary of changes for z/OS Version 2 Release 4
This topic summarizes the changes made to this document in z/OS Version 2 Release 4 (V2R4).

New

The following new information is added in this publication:
August 2020 refresh

• For APAR OA57631, the optional DEBLOCKEXCLOK parameter is added to the LLACOPY service in
“Description” on page 27.

Changed

The following information is changed in this publication:
June 2020 refresh

• For APAR OA55640, the ,CMDFLAG=NOHCPY parameter of the MGCRE - Execute form macro is
updated. For more information, see “,CMDFLAG=NOHCPY” on page 103.

Prior to June 2020 refresh

• For APAR OA53780, the options for the ECB parameter have been updated in Chapter 42, “SDUMPX
— Dump virtual storage,” on page 319.

• Changes have been made in Chapter 26, “PGSER — Page services,” on page 195 to add that for
PGSER, the start address of the requested range is always rounded down to a page boundary, while
the end address of the requested range is always rounded up to a page boundary.

Summary of changes for z/OS Version 2 Release 3
This topic summarizes the changes made to this document in z/OS Version 2 Release 3 (V2R3).

This information contains no technical changes for this release.

Summary of changes for z/OS Version 2 Release 2 (V2R2)
This topic summarizes the changes made to this document in z/OS Version 2 Release 2 (V2R2).

New

• The TYPE=JSPGMTASK parameter has been added in Chapter 34, “RESMGR — Add or delete a resource
manager,” on page 249.

Changed

• The description of the information returned in register 1 has been updated in Chapter 3, “LOAD - Bring a
load module into virtual storage,” on page 33.

© Copyright IBM Corp. 1988, 2020 xxvii

• The description of the SVAREA parameter has been updated in Chapter 38, “SCHEDIRB — Schedule
IRB,” on page 275.

xxviii z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 1. Using the services

Macros and callable services are programming interfaces that application programs can use to access
MVS system services. This chapter provides general information and guidelines about how to use the
macros and callable services accurately and efficiently. For more specific and detailed information about
coding a particular macro or callable service, see the individual service description in this information.

Some of the topics covered in this chapter apply only to macros, some apply only to callable services, and
some apply to both. This chapter uses the word "services" when referring to information that applies to
both service types. When information applies only to one type or the other, the particular service type is
specified.

Note: z/OS macros do not code to restrictions that are imposed by the COMPAT(CASE) HLASM option or
its abbreviation CPAT(CASE). Therefore, you cannot rely on using COMPAT(CASE) if you use z/OS macros.

The following table lists the topics covered in this chapter and whether the topic applies to macros,
callable services, or both:

Topic Service Type

“Compatibility of MVS macros” on page 1 Macros

“Addressing mode (AMODE)” on page 2 Both

“Address space control (ASC) mode” on page 3 Both

 “ALET qualification” on page 3 Both

 “User parameters” on page 4 Macros

“Telling the system about the execution environment ” on page 5 Macros

“Specifying a macro version number” on page 6 Macros

“Register use” on page 7 Both

“Handling return codes and reason codes” on page 8 Both

 “Handling program errors” on page 8 Both

 “Handling environmental and system errors” on page 9 Both

“Using X-macros” on page 9 Macros

“Macro forms” on page 10 Macros

“Coding the macros” on page 11 Macros

“Coding the callable services” on page 14 Callable Services

 “Including equate (EQU) statements” on page 14 Callable Services

 “Link-editing linkage-assist routines” on page 15 Callable Services

“Service summary” on page 15 Both

Compatibility of MVS macros
When IBM introduces a new version or a new release of an existing version, the new version or release
supports all MVS macros from previous versions and releases. Programs assembled on an earlier level of
MVS that issue macros will run on later levels of MVS.

In most cases, the reverse is also true. When you assemble programs that issue macros on a particular
version and release of MVS, those programs can run on earlier versions and releases of MVS, provided you
request only those functions that are supported by the earlier version and release. This is useful for

© Copyright IBM Corp. 1988, 2020 1

installations that write applications that might be assembled on one level of MVS, but run on a different
level.

As MVS supports new architectures, addressability changes. To take best advantage of the new
architectures, some macros have more than one possible expansion. You are required to have the macro
expand according to the environment in which the program runs. This topic is described in this
introductory information.

The problem of compatibility is not the same as selecting a macro version through the PLISTVER
parameter to ensure the correct parameter list size for a macro. For selecting a parameter list version
number, see “Specifying a macro version number” on page 6.

Addressing mode (AMODE)
A program can run in addressing mode (AMODE) 24, 31, or 64. A program that executes in AMODE 24 or
31can invoke most of the services described in this information. A program that executes in AMODE 64
has a smaller group of services that it can invoke.

In general:

• A program running in AMODE 24 cannot pass parameters or parameter addresses that are higher than
16 megabytes. However, there are exceptions. For example, a program running in AMODE 24 can:

– Free storage above 16 megabytes using the FREEMAIN macro
– Allocate storage above 16 megabytes using the GETMAIN macro
– Use cell pool services for cell pools located in storage above 16 megabytes using the CPOOL macro
– Use page services for storage locations above 16 megabytes using the PGSER macro

• A program is allowed to call a service from AMODE 64 only if the documentation for the service
indicates that it supports AMODE 64.

• A program is allowed to call a service from RMODE 64 only if the documentation for the service
indicates that it supports RMODE 64.

• A program running in AMODE 64 should not call a service with data, parameters, or parameter
addresses that are higher than 2 gigabytes, unless the individual service description indicates that it is
allowed.

• If a program running in AMODE 31 or 64 issues a service, parameters and parameter addresses can be
above or below 16 megabytes, unless otherwise stated in the individual service description.

Some macros can generate code that is appropriate for programs in either AMODE 64 or 24 or 31. These
macros check a global symbol set by the SYSSTATE macro. See “Telling the system about the execution
environment ” on page 5 for more information.

When you call a callable service in AMODE 24 or 31, you must pass 31-bit addresses to the system
service regardless of what addressing mode your program is running in. If your program is running in
AMODE 24 and you use a callable service, you must set the high-order byte of parameter addresses to
zeros.

You can invoke the following services in 64-bit addressing mode, subject to the “SVC or PC” restrictions
mentioned later in this topic, but you cannot pass parameters and parameter addresses above 2
gigabytes: ABEND, ATTACHX, CALLDISP, CHAP, CSVQUERY, DELETE, DEQ, DETACH, DOM, DSPSERV,
DYNALLOC, ENQ, ESPIE, ESTAEX, EXCP, FREEMAIN, GETMAIN, GTRACE, IARVSERV, IDENTIFY, IEAARR,
LINKX, LOAD, MODESET, PGSER, POST, RESERVE, SDUMPX, SETRP, STAX, STIMER, STIMERM, STORAGE,
SYNCHX, TIME, TIMEUSED, TTIMER, VRADATA, WAIT, WTO, WTOR, and XCTL.

There are many services that support AMODE 64 and parameter addresses above 2 gigabytes. Examples
are IRAV64, IARST64, and ISGENQ. For details on the supported addressing mode and parameter
address ranges for any specific service, see the following books:

• z/OS MVS Programming: Assembler Services Reference ABE-HSP
• z/OS MVS Programming: Assembler Services Reference IAR-XCT

2 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

• z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
• z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
• z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
• z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO
• z/OS MVS Programming: Sysplex Services Reference

Before invoking a service in AMODE 64, you must inform system macros, by specifying SYSSTATE
AMODE64=YES. You can invoke only those options that result in calling the system by an SVC or PC in
AMODE 64. You cannot invoke any option that results in calling the system by a branch-entry in AMODE
64.

Unless explicitly stated otherwise, assume that a given service cannot be invoked in AMODE 64 and
cannot accept data, parameters, or parameter addresses above 2 gigabytes. Such an explicit statement
would include a specific reference to AMODE 64 in a macro’s environment section and additional
information would mention that data, parameters, and parameter addresses could be above 2 gigabytes.
By contrast, an AMODE specification of "Any" means that the macro can be invoked in either AMODE 24
or 31; it does not mean that the macro can be invoked in AMODE 64.

For information about AMODE 64 and the 64-bit GPR, see z/OS MVS Programming: Extended
Addressability Guide.

Address space control (ASC) mode
A program can run in either primary ASC mode or access register (AR) ASC mode. In primary mode, the
processor uses the contents of general purpose registers (GPRs) to resolve an address to a specific
location. In AR mode, the processor uses the contents of ARs as well as the contents of GPRs to resolve
an address to a specific location. See z/OS MVS Programming: Assembler Services Guide for more detailed
information about AR mode.

Some macros can generate code that is appropriate for programs in either primary mode or AR mode.
These macros check a global symbol set by the SYSSTATE macro. See “Telling the system about the
execution environment ” on page 5 for more information. Table 3 on page 16 lists the macros that
check the global symbol.

Some services can generate code that is appropriate for programs in primary mode only. If you write a
program in AR mode that invokes one or more services, check the description in this information for each
service your program issues. Unless the description indicates that a service supports callers in AR mode,
the service does not support callers in AR mode. In this case, use the SAC instruction to change the ASC
mode of your program and issue the service in primary mode.

Whether the caller is in primary or AR ASC mode, the system uses ARs 0-1 and 14-15 as work registers
across any service call.

ALET qualification
The address space where you can place parameters varies with the individual service:

• You can place parameters in the primary address space in all service.
• You must place parameters in the primary address space in some services.
• You can place parameters in any address space in some services.

To identify where you can locate parameters in a service, read the individual service description.

Programs in AR mode that pass parameters must use an access register and the corresponding general
purpose register together (for example, access register 1 and general purpose register 1) to identify
where the parameters are located. The access register must contain an access list entry token (ALET) that
identifies the address space where the parameters reside. The general purpose register must identify the
location of the parameters within the address space.

The only ALETs that MVS services typically accept are:

Chapter 1. Using the services 3

• Zero (0), which specifies that the parameters are in the caller's primary address space
• An ALET for a public entry on the caller's dispatchable unit access list (DU-AL)
• An ALET for a common area data space (CADS)

MVS services do not accept the following ALETs, and you cannot attempt to pass them to a service:

• One (1), which signifies that the parameters are in the caller's secondary address space
• An ALET that is on the caller's primary address space access list (PASN-AL) that does not represent a

CADS
• An ALET for a private entry on the PASN-AL or the DU-AL

Throughout, this information uses the term AR/GPR n to mean an access register and its corresponding
general purpose register. For example, to identify access register 1 and general purpose register 1, this
information uses AR/GPR 1.

User parameters
Some macros that you can issue in AR mode include control parameters, user parameters, or both.
Control parameters refer to the macro parameter list, and the parameters whose addresses are in the
parameter list. Control parameters control the operation of the macro itself. User parameters are
parameters that a user provides to be passed through to a user routine. For example, the PARAM
parameter on the ATTACHX macro defines user parameters. The ATTACHX macro passes these
parameters to the routine that it attaches. All other parameters on the ATTACHX macro are control
parameters that control the operation of the ATTACHX macro.

Note:

1. User parameters are sometimes referred to as problem program parameters.
2. Control parameters are sometimes referred to as system parameters or control program parameters.

The macros shown in Table 1 on page 4 allow a caller in AR mode to pass information in the form of a
parameter list (or parameter lists) to another routine. This table identifies the parameter that receives the
ALET-qualified address of the parameter list and tells you where the target routine finds the ALET-
qualified address.

Table 1. Passing User Parameters in AR Mode

Macro Parameter Location of User Parameter List Address

ATTACH/ATTACHX PARAM,VL=1 AR/GPR 1 contains the address of a list of addresses.
When either

• a 4-bytes-per-entry parameter list or
• an 8-bytes-per-entry parameter list with

PLIST8ARALETS=YES

is being used, this list also contains the ALETs
associated with those addresses. (See Figure 1 on
page 5 for the format of the 4-bytes-per-entry
parameter list when it contains ALETs.)

ESTAEX PARAM SDWAPARM contains the address of an 8-byte area,
which contains the address and ALET of the
parameter list.

When an AR mode caller who is using a 4-bytes-per-entry parameter list passes ALET-qualified addresses
to the called program through PARAM,VL=1 on the ATTACH/ATTACHX macro, the system builds a list
formatted as shown in Figure 1 on page 5. The addresses passed to the called program are at the
beginning of the list, and their associated ALETs follow the addresses. The last address in the list has the
high-order bit on to indicate the end of the list. For example, Figure 1 on page 5 shows the format of a

4 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

list where an AR mode issuer of ATTACHX who is using a 4-bytes-per-entry parameter list has coded the
PARAM parameter as follows:

 PARAM=(A,B,C),VL=1

When an AR mode caller who is using an 8-bytes-per-entry parameter list specifies PLIST8ARALETS=YES,
the system builds a parameter list with the 8-byte addresses at the beginning of the list and their
associated 4-byte ALETs following the addresses.

Figure 1. Sample User Parameter List for Callers in AR Mode

For information about linkage conventions, see the chapter in z/OS MVS Programming: Assembler Services
Guide.

Telling the system about the execution environment
To generate code that is correct for the environment in which the program runs, some macros need to
know one or more of the following characteristics about that environment:

• The addressing mode (AMODE) at the time the macro is issued
• The ASC mode of the program at the time the macro is issued
• The architectural level in which the program runs

For macros that are sensitive to their environment, use the SYSSTATE macro to define the environment.
During the assembly stage, SYSSTATE sets one or more global symbols. Later, in your source code, the
macro checks the global symbols and generates the correct code, which might mean avoiding using a z/
Architecture® instruction or an access register. Table 3 on page 16 lists MVS macros and identifies
macros that need to know the environmental characteristics.

IBM recommends you issue the SYSSTATE macro before you issue other macros. Once a program has
issued SYSSTATE, there is no need to reissue it, unless the program switches from one AMODE to another
or one ASC mode to another or has code paths that are isolated according to architecture level or
operating system release. If you switch AMODE or ASC mode to a different architecture code path, issue
SYSSTATE immediately after the switch to indicate the new state. In general, specify SYSSTATE
ARCHLVL=2, and switch to SYSSTATE ARCHLVL=3 before issuing macros in sections of code that only run
when z/OS 2.1 capabilities are available. If you do not issue the SYSSTATE macro, the system assumes
the macro is issued as follows:

• In AMODE other than 64-bit
• In primary ASC mode
• Usually, in ESA/390 architectural level (but may assume z/Architecture level since all supported z/OS

releases require z/Architecture level)

Table 2 on page 6 describes the relevant characteristics, the corresponding parameters on the
SYSSTATE macro, and the global symbols the macro checks.

Chapter 1. Using the services 5

Table 2. Execution environment characteristics and corresponding SYSSTATE parameters and global symbols

Characteristic Parameter on SYSSTATE Global symbol

AMODE of 64-bit, or either 24-bit or 31-bit AMODE64=YES or NO &SYSAM64

Primary or AR ASC mode ASCENV=P or AR &SYSASCE

Architectural level of z/Architecture ARCHLVL=0, 1, 2, 3 or OSREL &SYSALVL

Operating system release ZOSVvRr &SYSOSREL

You can issue the SYSSTATE macro with the TEST parameter in your own user-written macro to allow
your macros to generate code appropriate for their execution environment.

Callable services do not check the global symbols described in this topic. To determine whether a callable
service is sensitive to the AMODE, ASC mode, or the Architecture level, see the description of the
individual callable service.

In early releases of MVS, the SPLEVEL macro performs a function similar to SYSSTATE. The SPLEVEL
macro identifies the level of the operating system, so that you can tune a macro expansion based on that
level. You can use this where macro expansions change incompatibly. Because SPLEVEL applies to levels
that the system no longer supports, it is not described in this topic.

Specifying a macro version number
Often there is more than one version of a macro, differentiated by additional parameters or new or
expanded function. For example, version 1 of the IXGCONN macro provides a connection to a log stream,
while version 2 adds new parameters in support of resource manager programs. This is different than
using the SPLEVEL macro to select a macro version level to solve problems of downward compatibility.

You can request a specific version of a macro based on the parameters you need to use in your
application, but you should also be attuned to the storage constraints of the program. The version of a
macro might affect the length of the parameter list generated when the macro is assembled, because
when you add new parameters to a macro, the parameter list must be large enough to fit them. The size
of the parameter list might grow from release to release of z/OS, perhaps affecting the amount of storage
your program needs.

How to request a macro version using PLISTVER
Many macros that have one or more versions supply the PLISTVER parameter. For those that do, use the
PLISTVER parameter to request a version of the macro. PLISTVER is the only parameter allowed on the
list form of a macro (MF), and it determines which parameter list the system generates. PLISTVER is
optional. If you omit it, the system generates a parameter list for the lowest version that will
accommodate the parameters specified. This is the IMPLIED_VERSION default. Note that on the list form,
the default will cause the smallest parameter list to be created.

You can also code a specific version number using plistver, or specify MAX:

• You can use plistver to code a decimal value corresponding to the version of the macro you require. The
decimal value you provide determines the amount of storage allotted for the parameter list.

• You can use MAX to request that the system generate a parameter list for the highest version number
currently available. The amount of storage allotted for the parameter list will depend on the level of the
system on which the macro is assembled.

IBM recommends, if your program can tolerate additional growth, that you always specify
PLISTVER=MAX on the list form of the macro. MAX ensures that the list form parameter list is always
long enough to hold whatever parameters might be specified on the execute form when both forms are
assembled using the save level of the system.

6 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Hints for using PLISTVER

There are some general considerations that you should keep in mind when specifying the version of a
macro with PLISTVER:

• If PLISTVER is omitted, the macro generates a parameter list of the lowest version that allows all the
parameters specified to be processed.

• If you code PLISTVER=n and then specify any version ‘n+1’ parameter, the macro will not assemble.
• If you code PLISTVER=n and do not specify any version ‘n’ parameter, the macro will generate a version

‘n’ parameter list.
• If you are using the standard form of the macro (MF=S), there is no reason you need to code the

PLISTVER parameter.
• Not all macros have the same version numbers. The version numbers need not be contiguous.

The PLISTVER parameter appears in the syntax diagram and in the parameter descriptions. Within each
macro description, the PLISTVER parameter description specifies the range of values and lists the
parameters applicable for each version of the macro.

Register use
Some services require that the caller place information in specific general purpose registers (GPRs) or
access registers (ARs) prior to issuing the service. If a service has such a requirement, the “Input Register
Information” topic for the service provides that information. The topic lists only those registers that have
a requirement. If a register is not specified as having a requirement, then the caller does not have to place
any information in that register unless using it in register notation for a particular parameter, or using it as
a base register.

Once the caller issues the service, the system can change the contents of one or more registers, and leave
the contents of other registers unchanged. When control returns to the caller, each register contains one
of the following values or has the following status:

• The register content is preserved and is the same as it was before the service was issued.
• The register contains a value placed there by the system for the caller's use. Examples of such values

are return codes and tokens.
• The system used the register as a work register. Do not assume that the register content is the same as

it was before the service was issued.

Unless otherwise defined by the individual interface, the calling program expects upon return:

• The low halves (Bits 32-63) of GPRs 0, 1, 14, 15 are not preserved; the low halves of GPRs 2-13 are
preserved.

• The high halves (Bits 0-31) of GPRs 0, 1, and 15 are not preserved; the high halves of GPRs 2-14 are
preserved.

• When GPR 0, 1, 14, and/or 15 is defined as unchanged, unless otherwise stated by the individual
interface, that definition applies only to the low halves of those registers.

• ARs 0,1, 14, 15 are not preserved; ARs 2-13 are preserved.

For more information about linkage conventions for a calling program’s registers, see the "Saving the
calling program’s registers" topic in the "Linkage conventions" chapter in z/OS MVS Programming:
Assembler Services Guide.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Many macros require that the caller have a program base register and assembler USING instruction in
effect when issuing the macro; that is, the caller must have program addressability. AR mode programs
also require that the AR associated with the caller's base GPR be set to zero. IBM recommends the
following:

Chapter 1. Using the services 7

• When issuing a macro, the caller should always have program addressability in effect.
• When establishing addressability, the caller should use only registers 2 through 12.

Many macros can take advantage of relative branching when they are used with the IEABRC macro or with
SYSSTATE ARCHLVL=1 or SYSSTATE ARCHLVL=2, if they are running on z/OS. If relative branching is
used, the caller might then need addressability only to the static data portion of the program, and not to
the executable code.

Handling return codes and reason codes
Most of the services described in this information provide return codes and reason codes. Return and
reason codes indicate the outcome of the service in one of the following ways:

• Successful completion: you do not need to take any action.
• Successful or partially successful completion, with additional information supplied: you should evaluate

the additional information in light of your particular program and determine if you need to take any
action.

• Unsuccessful completion: some type of error has occurred, and you must take some action to correct
the error.

The errors that cause unsuccessful completion fall into three broad categories:
Program errors

Errors that your program causes: you can correct these.
Environmental errors

Errors not caused directly by your program; rather, your program's request caused a limit to be
exceeded, such as a storage limit, or the limit on the size of a particular data set. You might or might
not be able to correct these.

System errors
Errors caused by the system: your program did nothing to cause the error, and you probably cannot
correct these.

In some cases, a return or reason code can result from some combination of these errors.

The return and reason code descriptions for the services in this information indicate whether the error is a
program error, an environmental error, a system error, or some combination. Whenever possible, the
return and reason code descriptions give you a specific action that you can take to fix the error.

IBM recommends that you read all the return and reason codes for each service that your program
issues. You can then design your program to handle as many errors as possible. When designing your
program, you should allow for the possibility that future releases of MVS might add new return and reason
codes to a service that your program issues.

Handling program errors
The actions to take in the case of program errors are usually straightforward. Typical examples of
program errors are:

1. Breaking one of the rules of the service. For example:

• Passing parameters that are either in the wrong format or not valid
• Violating one of the environment requirements (addressing mode, locking requirements,

dispatchable unit mode, and so on)
• Providing insufficient storage for information to be returned by the system.

2. Causing errors related to the parameter list. For example:

• Coding an incorrect combination of parameters
• Coding one or more parameters on the service incorrectly
• Inadvertently overlaying an area of the parameter list storage

8 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

• Inadvertently destroying the pointer to the parameter list.
3. Requesting a service or function for which the calling program is not authorized, or which is not

available on the system on which the program is running.

In each of the first two cases, you can correct your program. For completeness, the return and reason
code descriptions give you specific actions to perform, even when it might seem obvious what the action
should be.

In the third case, you might have to contact your system administrator or system programmer to obtain
the necessary authorization, or to request that the service or function be made available on your system,
and the return or reason code description asks you to take that step.

Note: Generally, the system does not take dumps for errors that your program causes when issuing a
system service. If you require such a dump, then it is your responsibility to request one in your recovery
routine. See the topic on providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide for information about writing recovery routines.

Handling environmental and system errors
With environmental errors, often your first action should be to rerun your program or retry the request one
or more times. The following are examples of environmental errors where rerunning your program or
retrying the request is appropriate:

• The request being made through the service exceeds some internal system limit. Sometimes, rerunning
your program or retrying the request results in successful completion. If the problem persists, it might
be an indication of a larger problem requiring you to consult your system programmer, or possibly IBM
support personnel. Your system programmer might be able to tune the system or cancel users so that
the limit is no longer exceeded.

• The request exceeds an installation-defined limit. If the problem persists, the action might be to
contact your system programmer and request that a specification in an installation exit or parmlib
member be modified.

• The system cannot obtain storage, or some other resource, for your request. If the problem persists, the
action might be to check with the operator to see if another user in the installation is causing the
problem, or to see if the entire installation is experiencing storage constraint problems.

You might be able to design your program to anticipate certain environmental errors and handle them
dynamically.

With system errors, as with environmental errors, often your first action should be to rerun your program
or retry the request one or more times. If the problem persists, you might have to contact IBM support
personnel.

Whenever possible for environmental and system errors, the return or reason code description gives you
either a specific action you can take, or a list of recommended actions you can try.

For some errors, providing a specific action is not possible, because the action you should take depends
on your particular application, and on what is happening in your installation. In those cases, the return or
reason code description gives you one or more possible causes of the error to help you to determine what
action to take.

Some system errors result in return and reason codes that are provided for IBM diagnostic purposes only.
In these cases, the return or reason code description asks you to record the information and provide it to
the appropriate IBM support personnel.

Using X-macros
Some MVS services support callers in both primary and AR ASC mode. When the caller is in AR mode,
macros must generate larger parameter lists; the increased size of the list reflects the addition of ALETs
to qualify addresses, as described under “ALET qualification” on page 3. For some MVS macros, two
versions of a particular macro are available: one for callers in primary mode and one for callers in AR

Chapter 1. Using the services 9

mode. The name of the macro for the AR mode caller is the same as the name of the macro for primary
mode callers, except the AR mode macro name ends with an “X”. This information refers to these macros
as X-macros.

The authorized X-macros are:

• ATTACHX
• ESTAEX
• SDUMPX
• SYNCHX

The only way these macros know that a caller is in AR mode is by checking the global symbol that the
SYSSTATE macro sets. Each of these macros (and corresponding non-X-macro) checks the symbol. If
SYSSTATE ASCENV=AR has been issued, the macro issues code that is valid for callers in AR mode. If it
has not been issued, the macro generates code that is not valid for callers in AR mode. When your
program returns to primary mode, use the SYSSTATE ASCENV=P macro to reset the global symbol.

IBM recommends that you use the X-macro regardless of whether your program is running in primary or
AR mode. However, you should consider the following before deciding which macro to use:

The rules for using all X-macros, except ESTAEX, are:

• Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary mode. Some
parameters on the non-X-macros are not valid for callers in AR mode. Check the macro descriptions for
these exceptions.

• Callers in AR mode should issue the X-macros.

If a caller in AR mode issues the non-X-macro, the system substitutes the X-macro and sends a
message describing the substitution.

IBM recommends you always use ESTAEX unless your program and your recovery routine are in 24-bit
addressing mode, or your program requires a branch entry. In these cases, you should use ESTAE.

Macro forms
You can code most macros in three forms: standard, list, and execute. Some macros also have a modify
form. When you code a macro, you use the MF parameter to select one of the forms. The list, execute and
modify forms are for reenterable programs that need to change values in the parameter list of the macro.
The standard form is for programs that are not reenterable, or for programs that do not change values in
the parameter list.

When a program wants to change values in the parameter list of a macro, it can make the change
dynamically.

However, using the standard form and changing the parameter list dynamically might cause errors. For
example, after storing a new value into the inline, standard form of the parameter list, a reenterable
program operating under a given task might be interrupted by the system before the program can invoke
the macro. In a multiprogramming environment, another task can use the same reenterable program, and
that task might change the inline parameter list again before the first task regains control. When the first
task regains control, it invokes the macro. However, the inline parameter list now has the wrong values.

Through the use of the different macro forms, a program that runs in a multiprogramming environment
can avoid errors related to reenterable programs. The techniques required for using the macro forms,
however, are different for some macros, called alternative list form macros, than for most other macros.
For the alternative list form macros, the list form description notes that different techniques are required
and refers you to the information under “Alternative list form macros” on page 11.

10 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Conventional list form macros
With conventional list form macros, you can use the macro forms as follows:

1. Use the list form of the macro, which expands to the parameter list. Place the list form in the section of
your program where you keep non-executable data, such as program constants. Do not code it in the
instruction stream of your program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain some virtual storage.
3. Code a move character instruction that moves the parameter list from its non-executable position in

your program into the virtual storage area that you obtained.
4. For macros that have a modify form, you can code the modify form of the macro to change the

parameter list. Use the address parameter of the modify form to reference the parameter list in the
virtual storage area that you obtained. Thus, the parameter list that you change is the one in the virtual
storage area obtained by the GETMAIN or STORAGE macro.

5. Invoke the macro by issuing the execute form of the macro. Use the address parameter of the execute
form to reference the parameter list in the virtual storage area that you obtained.

With this technique, the parameter list is safe even if the first task is interrupted and a second task
intervenes. When the program runs under the second task, it cannot access the parameter list in the
virtual storage of the first task.

Alternative list form macros
Certain macros, called alternative list form macros, require a somewhat different technique for using the
list form. With these macros, you do not move the area defined by the list form into virtual storage that
you have obtained; instead, you place the area defined by the list form into a DSECT. Also, it is the list
form, not the execute form, that you use to specify the address parameter that identifies the address of
the storage for the parameter list. Note that no modify form is available for these macros.

You can use the macro forms for the alternative list form macros as follows:

1. Use the list form of the macro to define an area of storage that the execute form can use to store the
parameters. As with other macros, do not code the list form in the instruction stream of your program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain virtual storage for the list
form expansion.

3. Place the area defined by the list form into a DSECT that maps a portion of the virtual storage you
obtained.

4. Invoke the macro by issuing the execute form of the macro. The address parameter specified on the
list form references the parameter list in the virtual storage area that you obtained.

Coding the macros
In this information, each macro description includes a syntax diagram near the beginning of the macro
description. The diagram shows how to code the macro. The syntax diagram does not explain the
meanings of the parameters; the meanings are explained in the parameter descriptions that follow the
syntax diagram. For most macros, the syntax diagrams are in a tabular format; however, some newer
macros might have syntax diagrams in the railroad track format.

The syntax tables assume that the standard begin, end, and continue columns are used. Thus, column 1 is
assumed as the begin column. To change the begin, end, and continue columns, use the ICTL instruction
to establish the coding format you want to use. If you do not use ICTL, the assembler recognizes the
standard columns. For more information about coding the ICTL instruction, see High Level Assembler and
Toolkit Feature in IBM Knowledge Center (www.ibm.com/support/knowledgecenter/SSENW6).

Figure 2 on page 12 shows a sample macro called TEST and summarizes all the coding information that
is available for it. The table is divided into three zones, A, B, and C.

Chapter 1. Using the services 11

http://www.ibm.com/support/knowledgecenter/SSENW6
http://www.ibm.com/support/knowledgecenter/SSENW6

Figure 2. Sample tabular syntax diagram for the TEST macro

• Column one of the table contains zones A and B. Zone A begins at the left margin; zone B is indented
from the left margin by one or more blank spaces. Column two of the table contains zone C.

• Zone A and zone B contain those parameters that are allowed for the macro. Zone A contains those
parameters that are required; zone B contains those parameters that are optional.

• If a parameter appears on a single line in the diagram (that is, a line whose preceding line and following
line are both blank), as shown in A1 and B1, then that is the only available choice for the particular
parameter.

• If two or more parameters appear on adjacent lines (that is, with no intervening blank lines), as shown
in A2 and B2, the parameters on those lines are mutually exclusive, that is, you can code any one of
those parameters.

• A further distinction is made between mandatory and optional parameters. The parameter descriptions
that follow the syntax table clearly identify those parameters which are optional.

• Zone C (which is the second column in the syntax table), provides additional information about coding
the macro.

When substitution of a variable is indicated in zone C, the following classifications are used:
Variable

Classification
symbol

Any symbol valid in the assembler language. The symbol can be as long as the supported maximum
length of a name entry in the assembler you are using.

Decimal digit
Any decimal digit up to and including the value indicated in the parameter description. If both symbol
and decimal digit are indicated, an absolute expression is also allowed.

12 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Register (2) - (12)
One of general purpose registers 2 through 12, specified within parentheses, previously loaded with
the right-adjusted value or address indicated in the parameter description. You must set the unused
high-order bits to zero. You can designate the register symbolically or with an absolute expression.

Register (0)
General purpose register 0, previously loaded with the right-adjusted value or address indicated in the
parameter description. You must set the unused high-order bits to zero. Designate the register as (0)
only.

Register (1)
General purpose register 1, previously loaded with the right-adjusted value or address indicated in the
parameter description. You must set the unused high-order bits to zero. Designate the register as (1)
only.

Register (15)
General purpose register 15, previously loaded with the right-adjusted value or address indicated in
the parameter description. You must set the unused high-order bits to zero. Designate the register as
(15) only.

RX-type address
Any address that is valid in an RX-type instruction (for example, LA).

RS-type address
Any address that is valid in an RS-type instruction (for example, STM).

RS-type name
Any name that is valid in an RS-type instruction (for example, STM).

A-type address
Any address that can be written in an A-type address constant.

Default
A value that is used in default of a specified value; that is, the value the system assumes if the
parameter is not coded.

Rules for parameters: Use the parameters to specify the services and options to be performed, and write
them according to the following rules:

• If the selected parameter is written in all capital letters (for example, MATH, HIST, or FMT=HEX), code
the parameter exactly as shown.

• If the selected parameter is written in italics (for example, grade), substitute the indicated value,
address, or name.

• If the selected parameter is a combination of capital letters and italics separated by an equal sign (for
example, DATA=data addr), code the capital letters and equal sign as shown, and then make the
indicated substitution for the italicized portion.

• Read the table from top to bottom.
• Code commas and parentheses exactly as shown.
• Positional parameters (parameters without equal signs) appear first; you must code them in the order

shown. You may code keyword parameters (parameters with equal signs) in any order.
• If you select a parameter, read the second column (zone C) before proceeding to the next parameter.

The second column often contains coding restrictions for the parameter.

Continuation lines
You can continue the parameter field of a macro on one or more additional lines according to the
following rules:

• Enter a continuation character (not blank, and not part of the parameter coding) in column 72 of the
line.

• Continue the parameter field on the next line, starting in column 16. All columns to the left of column 16
must be blank.

Chapter 1. Using the services 13

You can code the parameter field being continued in one of two ways. Code the parameter field through
column 71, with no blanks, and continue in column 16 of the next line; or truncate the parameter field by
a comma, where a comma normally falls, with at least one blank before column 71, and then continue in
column 16 of the next line. Figure 3 on page 14 shows an example of each method.

Figure 3. Continuation Coding

Coding the callable services
A callable service is a programming interface that uses the CALL macro to access system services. To
code a callable service, code the CALL macro followed by the name of the callable service, and a
parameter list; for example:

 CALL service,(parameter list)

The syntax diagram for the sample callable service SCORE:

Syntax Description

CALL SCORE

,(test_type
,level
,data
,format_option
,return_code)

Considerations for coding callable services are:

• You must code all the parameters in the parameter list because parameters are positional in a callable
service interface. That is, the function of each parameter is determined by its position with respect to
the other parameters in the list. Omitting a parameter, therefore, assigns the omitted parameter's
function to the next parameter in the list.

• You must place values explicitly into all input parameters, because callable services do not set default
values.

• You can use the list and execute forms of the CALL macro to preserve your program's reentrancy.

Including equate (EQU) statements
IBM supplies sets of equate (EQU) statements for use with some callable services. These statements,
which you may optionally include in your source code, provide constants for use in your program. IBM
provides the statements as a programming convenience to save you the trouble of coding the definitions
yourself.

14 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Note: Check the “Programming Requirements” section of the individual service description to determine
if the equate statements are available for the callable service you are using. If the equate statements are
available, that section will also provide a list of the statements that are provided, along with a description
of how to include them in your program.

Link-editing linkage-assist routines
Linkage-assist routines provide the connection between your program and the system services that your
program requests. When using callable services, link-edit the appropriate linkage-assist routines into
your program module so that, during execution, the linkage-assist routines can resolve the address of,
and pass control to, the requested system services. You can also dynamically link to linkage-assist
routines as an alternative to link-editing. For example, issue the LOAD macro for the linkage-assist
routine, then issue a CALL to the loaded addresses.

To invoke the linkage-editor or binder, code JCL as in the following example:

//userid JOB 'accounting-info','name',CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4096K
//LINKSTEP EXEC PGM=HEWL,
// PARM='LIST,LET,XREF,REFR,RENT'
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSN=userid.LOADLIB,DISP=OLD
//SYSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
//OBJLIB DD DSN=userid.OBJLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD *
 INCLUDE OBJLIB(userpgm)
 ENTRY userpgm
 NAME userpgm(R)
/*

Note: Omitting NCAL from the linkedit parameters (as the example shows) and specifying SYS1.CSSLIB in
the //SYSLIB statement, as shown, causes the addresses of all required linkage-assist routines to be
automatically resolved. This statement saves you the trouble of having to specify individual linkage-assist
routines in INCLUDE statements.

Service summary
Table 3 on page 16 lists services described in the following:

• z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
• z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
• z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
• z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

For each service, the table indicates:

• Whether a program in AR ASC mode can issue the service
• Whether a program in cross memory mode can issue the service
• Whether the macro checks the SYSSTATE global macro variables
• Whether the macro can be issued in 64-bit addressing mode

Note:

1. A program running in primary ASC mode when PASN=HASN=SASN can issue any of the services listed
in the table.

2. Cross memory mode means that at least one of the following conditions is true:
PASN¬=SASN

The primary address space (PASN) and the secondary address space (SASN) are different.
PASN¬=HASN

The primary address space (PASN) and the home address space (HASN) are different.

Chapter 1. Using the services 15

SASN¬=HASN
The secondary address space (SASN) and the home address space (HASN) are different.

For more information about functions that are available to programs in cross memory mode, see z/OS
MVS Programming: Extended Addressability Guide.

3. Callable services do not check the SYSSTATE or SPLEVEL global variables.

Table 3. Service Summary

Service Can be issued in
AR ASC mode

Can be issued in
cross memory
mode

Checks SYSSTATE Can be issued in
64-bit AMODE

ALESERV Yes Yes No No

ASCRE Yes Yes Yes No

ASDES Yes Yes Yes No

ASEXT Yes Yes No No

ATSET No Yes Yes No

ATTACH Yes (See note “1”
on page 24)

No Yes No

ATTACHX Yes No Yes Yes

AXEXT No Yes Yes No

AXFRE No Yes Yes No

AXRES No Yes Yes No

AXREXX No Yes Yes Yes

AXSET No Yes Yes No

BPXEKDA Yes No Yes No

BPXESMF Yes No Yes No

CALLDISP No Yes No Yes

CALLRTM No Yes (See note “2”
on page 24)

No No

CHANGKEY No Yes No No

CIRB No No No No

CMDAUTH No No No No

CNZMXURF No Yes No No

CNZTRKR No Yes No No

COFCREAT Yes Yes Yes No

COFDEFIN Yes Yes Yes No

COFIDENT Yes Yes Yes No

COFNOTIF Yes Yes Yes No

COFPURGE Yes Yes Yes No

COFREMOV Yes Yes Yes No

COFRETRI Yes Yes Yes No

16 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 3. Service Summary (continued)

Service Can be issued in
AR ASC mode

Can be issued in
cross memory
mode

Checks SYSSTATE Can be issued in
64-bit AMODE

COFSDONO No No Yes No

CONFCHG No No Yes No

CPF No No No No

CPOOL No Yes Yes No

CPUTIMER No Yes Yes No

CSRSI No Yes No No

CSRUNIC Yes Yes No No

CSVAPF Yes (See note “11”
on page 25)

Yes (See note “12”
on page 25)

Yes No

CSVDYNEX Yes (See note “13”
on page 25)

Yes (See note “14”
on page 25)

Yes No

CTRACE No No Yes No

CTRACECS Yes No Yes No

CTRACEWR Yes Yes Yes No

DATOFF Yes No No No

DEQ No Yes Yes Yes

DIV Yes No Yes No

DOM No No No Yes

DSPSERV Yes Yes Yes Yes

DYNALLOC No No No Yes

EDTINFO No Yes Yes Yes

ENFREQ No No No No

ENQ No Yes Yes Yes

ESPIE No No No Yes

ESTAE (See note
“3” on page 24)

No No Yes No

ESTAEX Yes Yes Yes Yes

ETCON No Yes Yes No

ETCRE No Yes Yes No

ETDEF Yes Yes No No

ETDES No Yes Yes No

ETDIS No Yes Yes No

EVENTS No No No No

EXTRACT No No No No

Chapter 1. Using the services 17

Table 3. Service Summary (continued)

Service Can be issued in
AR ASC mode

Can be issued in
cross memory
mode

Checks SYSSTATE Can be issued in
64-bit AMODE

FESTAE No No No No

FREEMAIN Yes (See note “4”
on page 25)

Yes Yes Yes

GETDSAB No No Yes No

GETMAIN Yes (See note “4”
on page 25)

Yes Yes Yes

GQSCAN No Yes No No

GTRACE No Yes No Yes

HSPSERV Yes Yes (See note “5”
on page 25)

(See note “6” on
page 25)

No

IARCP64 Yes Yes Yes Yes

IARR2V Yes Yes No No

IARSUBSP Yes Yes Yes No

IARST64 Yes Yes Yes Yes

IARVSERV Yes Yes Yes No

IARV64 Yes Yes Yes Yes

IAZXCTKN Yes Yes Yes No

IAZXJSAB Yes Yes (See note “15”
on page 25)

Yes No

IEAARR Yes Yes Yes Yes

IEAFP Yes Yes Yes No

IEALSQRY Yes Yes Yes No

IEAMETR Yes Yes Yes No

IEAMRMF3 No Yes No No

IEAMSCHD Yes Yes Yes No

IEANTCR Yes Yes N/A No

IEANTDL Yes Yes N/A No

IEANTRT Yes Yes N/A No

IEARBUP Yes Yes Yes No

IEATDUMP Yes No Yes No

IEATEDS Yes Yes Yes No

IEATXDC Yes Yes Yes Yes

IEAVAPE No Yes No No

IEAVAPE2 No Yes No No

18 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 3. Service Summary (continued)

Service Can be issued in
AR ASC mode

Can be issued in
cross memory
mode

Checks SYSSTATE Can be issued in
64-bit AMODE

IEAVDPE No Yes No No

IEAVDPE2 No Yes No No

IEAVPSE No Yes No No

IEAVPSE2 No Yes No No

IEAVRLS No Yes No No

IEAVRLS2 No Yes No No

IEAVRPI No Yes No No

IEAVRPI2 No Yes No No

IEAVTPE No Yes No No

IEAVXFR No Yes No No

IEAVXFR2 No Yes No No

IEA4APE No Yes No Yes

IEA4APE2 No Yes No Yes

IEA4DPE No Yes No Yes

IEA4DPE2 No Yes No Yes

IEA4PSE No Yes No Yes

IEA4PSE2 No Yes No Yes

IEA4RLS No Yes No Yes

IEA4RLS2 No Yes No Yes

IEA4RPI No Yes No Yes

IEA4RPI2 No Yes No Yes

IEA4TPE No Yes No Yes

IEA4XFR No Yes No Yes

IEA4XFR2 No Yes No Yes

IEECMDS Yes Yes Yes No

IEEQEMCS Yes Yes Yes No

IEEVARYD No No Yes No

IEFPPSCN No No Yes No

IEFQMREQ No No No No

IEFSSI Yes No No No

IEFSSVT Yes No No No

IEFSSVTI Yes Yes No No

IFAQUERY Yes Yes No No

Chapter 1. Using the services 19

Table 3. Service Summary (continued)

Service Can be issued in
AR ASC mode

Can be issued in
cross memory
mode

Checks SYSSTATE Can be issued in
64-bit AMODE

IOCINFO Yes Yes No No

IOSADMF No No Yes No

IOSCAPF No Yes (See note “7”
on page 25)

Yes No

IOSCAPU Yes Yes (See note “7”
on page 25)

Yes No

IOSCDR No No Yes No

IOSCHPD Yes Yes Yes No

IOSCMXA No Yes (See note “7”
on page 25)

Yes No

IOSCMXR No Yes (See note “7”
on page 25)

Yes No

IOSDCXR No Yes (See note “7”
on page 25)

Yes No

IOSENQ Yes Yes Yes No

IOSINFO No No No No

IOSLOOK No No No No

IOSPTHV No No Yes No

IOSSPOF No Yes Yes Yes

IOSUPFA No Yes Yes No

IOSUPFR No Yes Yes No

IOSVRYSW Yes Yes Yes No

IOSWITCH Yes Yes Yes No

IOSZHPF Yes Yes Yes No

IRDFSD Yes Yes Yes No

IRDFSDU Yes Yes Yes No

ISGADMIN Yes Yes Yes Yes

ISGECA Yes Yes Yes Yes

ISGENQ Yes Yes Yes Yes

ISGLCRT (See note
“16” on page 25)

No Yes N/A No

ISGLID (See note
“16” on page 25)

No Yes N/A Yes

ISGLOBT No Yes N/A No

ISGLREL No Yes N/A No

20 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 3. Service Summary (continued)

Service Can be issued in
AR ASC mode

Can be issued in
cross memory
mode

Checks SYSSTATE Can be issued in
64-bit AMODE

ISGLPRG No Yes N/A No

ISGQUERY Yes Yes Yes Yes

ITTFMTB No No No No

ITZXFILT No Yes Yes No

IWMCLSFY No Yes Yes No

IWMCONN No Yes Yes No

IWMDISC No Yes Yes No

IWMECQRY No Yes Yes No

IWMECREA No Yes Yes No

IWMEDELE No Yes Yes No

IWMMABNL No Yes No No

IWMMCHST No Yes No No

IWMMCREA No Yes Yes No

IWMMDELE No Yes Yes No

IWMMEXTR No Yes Yes No

IWMMINIT No Yes No No

IWMMNTFY No Yes Yes No

IWMMRELA No Yes Yes No

IWMMSWCH No Yes Yes No

IWMMXFER No Yes No No

IWMPQRY Yes Yes Yes No

IWMRCOLL Yes Yes Yes No

IWMRPT No Yes Yes No

IWMRQRY Yes Yes Yes No

IWMSRDRS No Yes Yes No

IWMSRSRG No Yes Yes No

IWMSRSRS No Yes Yes No

IWMWMCON No Yes Yes No

IWMWQRY Yes Yes Yes No

IWMWQWRK No Yes Yes No

IXCCREAT Yes Yes Yes No

IXCDELET Yes Yes Yes No

IXCJOIN Yes No Yes No

Chapter 1. Using the services 21

Table 3. Service Summary (continued)

Service Can be issued in
AR ASC mode

Can be issued in
cross memory
mode

Checks SYSSTATE Can be issued in
64-bit AMODE

IXCLEAVE Yes No Yes No

IXCMG Yes Yes Yes No

IXCMOD Yes Yes Yes No

IXCMSGI Yes No Yes No

IXCMSGO Yes Yes Yes No

IXCQUERY Yes Yes Yes No

IXCQUIES Yes No Yes No

IXCSETUS Yes Yes Yes No

IXCTERM Yes Yes Yes No

IXGBRWSE Yes Yes Yes Yes

IXGCONN Yes Yes Yes Yes

IXGDELET Yes Yes Yes Yes

IXGWRITE Yes Yes Yes Yes

LLACOPY No No Yes No

LOAD Yes No No Yes

LOADWAIT No Yes Yes No

LOCASCB Yes Yes Yes No

LXFRE No Yes Yes No

LXRES No Yes Yes No

MCSOPER Yes No Yes No

MCSOPMSG Yes No Yes No

MGCR No No No No

MGCRE No No No No

MIHQUERY Yes No Yes No

MODESET No Yes No Yes

NIL Yes Yes Yes No

NMLDEF No No No No

NUCLKUP No No No No

OIL Yes Yes Yes No

OUTADD No No No No

OUTDEL No No No No

PCLINK No Yes No No

PGANY No No No No

22 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 3. Service Summary (continued)

Service Can be issued in
AR ASC mode

Can be issued in
cross memory
mode

Checks SYSSTATE Can be issued in
64-bit AMODE

PGFIX No Yes No No

PGFIXA No No No No

PGFREE No Yes No No

PGFREEA No No No No

PGSER Yes (See note “8”
on page 25)

Yes (See note “8”
on page 25)

No Yes

POST No Yes No Yes

PTRACE No Yes No No

PURGEDQ No No No No

QEDIT No No No No

RESERVE No No No Yes

RESMGR Yes Yes No No

RESUME No Yes No No

RISGNL No Yes No No

SCHEDIRB Yes No Yes No

SCHEDULE Yes Yes Yes No

SCHEDXIT No Yes No No

SDUMP Yes (See note “1”
on page 24)

Yes (See note “9”
on page 25)

Yes No

SDUMPX Yes Yes (See note “9”
on page 25)

Yes Yes

SETFRR Yes Yes Yes No

SETLOCK Yes Yes Yes No

SETRP Yes Yes Yes Yes

SJFREQ No Yes No No

SPIE No No No No

SPOST No No No No

SRBSTAT No Yes No No

SRBTIMER No No No No

STATUS Yes Yes No No

STORAGE Yes Yes No Yes

SUSPEND No Yes No No

SVCUPDTE No No No No

SWAREQ No No No No

Chapter 1. Using the services 23

Table 3. Service Summary (continued)

Service Can be issued in
AR ASC mode

Can be issued in
cross memory
mode

Checks SYSSTATE Can be issued in
64-bit AMODE

SWBTUREQ No No No No

SYMREC No Yes Yes No

SYNCH Yes (See note “1”
on page 24)

No Yes No

SYNCHX Yes No Yes Yes

SYSEVENT No No No No

TCBTOKEN Yes Yes No No

TCTL No No No No

TESTAUTH No No No No

TIMEUSED Yes (See note “10”
on page 25)

Yes No Yes

T6EXIT No No No No

UCBINFO Yes Yes Yes No

UCBLOOK Yes Yes Yes No

UCBPIN Yes Yes Yes No

UCBSCAN Yes Yes Yes No

VSMLIST No Yes Yes No

VSMLOC No Yes Yes No

VSMREGN No Yes No No

WAIT No Yes No Yes

WTL No No No No

WTO No No No Yes

WTOR No No No Yes

Notes:

1. Primary mode callers can use either macro in the following macro pairs:

• ATTACH or ATTACHX
• SDUMP or SDUMPX
• SYNCH or SYNCHX

IBM recommends that programs in AR ASC mode use the X-macros (ATTACHX, SDUMPX, and
SYNCHX). If, however, a program in AR mode issues ATTACH, SDUMP, or SYNCH after issuing
SYSSTATE ASCENV=AR, the system substitutes the corresponding X-macro and issues a message
telling you that it made the substitution.

2. CALLRTM TYPE=MEMTERM can be issued in cross memory mode. For CALLRTM TYPE=ABTERM, see
the CALLRTM macro description.

3. The only programs that can use ESTAE are programs that are in primary mode with
(PASN=HASN=SASN).

24 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

IBM recommends you always use ESTAEX unless your program and your recovery routine are in 24-
bit addressing mode, or your program requires a branch entry. In these cases, you should use ESTAE.

4. IBM recommends that AR mode callers use the STORAGE macro instead of using GETMAIN or
FREEMAIN.

5. For HSPSERV SREAD and HSPSERV SWRITE, PASN=HASN=SASN for a non-shared standard
hiperspace for which an ALET is not used (that is, the HSPALET parameter is omitted).

6. If you use the HSPALET parameter, the HSPSERV macro checks SYSSTATE.
7. If the input UCB is captured, the IOSCAPF, IOSCMXA, IOSCMXR, and IOSDCXR macros can be issued

in cross memory mode only if the UCB is captured in the primary address space. IOSCAPU
CAPTOACT without the ASID parameter also can be issued in cross memory mode if the UCB was
captured in the primary address space. IOSCAPU CAPTUCB and IOSCAPU UCAPTUCB cannot be
issued in cross memory mode.

8. PGSER can be issued in AR ASC mode only if you specify BRANCH=Y. PGSER can be issued in cross
memory mode only if you specify BRANCH=Y or BRANCH=SPECIAL.

9. Both SDUMP and SDUMPX can be issued in cross memory mode only if you specify BRANCH=YES.
10. Only TIMEUSED LINKAGE=SYSTEM can be issued in AR ASC mode. TIMEUSED LINKAGE=BRANCH

cannot be issued in AR ASC mode.
11. For a QUERY request, CSVAPF can be issued only in primary mode. For all other requests, CSVAPF

can be issued in primary or AR mode.
12. For CSVAPF with the ADD, DELETE, and DYNFORMAT requests, PASN = HASN = SASN. For CSVAPF

with the QUERY, QUERYFORMAT, and LIST requests, any PASN, any HASN, any SASN.
13. For a QUERY or a CALL request with FASTPATH=YES, CSVDYNEX can be issued only in primary mode.

For all other requests, CSVDYNEX can be issued in primary or AR mode.
14. For CSVDYNEX CALL, RECOVER, and QUERY requests, any PASN, any HASN, any SASN. For all other

requests, PASN=HASN=SASN.
15. When the caller of the IAZXJSAB macro specifies the ASCB parameter, any PASN, any HASN, any

SASN; otherwise, PASN=HASN is required.
16. The 64 bit entry names are as follows:

• ISGLCR64
• ISGLID64
• ISGLOB64
• ISGLRE64
• ISGLPB64
• ISGLPR64

Chapter 1. Using the services 25

26 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 2. LLACOPY - Library lookaside refresh

Description
The LLACOPY macro obtains new directory entries from DASD and uses them to synchronously refresh
the LLA directory. LLACOPY uses the BLDL macro to obtain the directory entries, and returns them to the
caller even if LLA is not active. LLACOPY requires the same input parameters as BLDL: an open DCB and a
BLDL list of member names. If the directory entry for any of the member names is not found, that member
will be removed from LLA's directory as part of the refresh.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state with any key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: None

Programming requirements
None.

Restrictions
The storage key of the parameter list and the storage key of the BLDL list must be the same as the PSW
key in which the caller runs.

The caller must have UPDATE access to the data set in either the FACILITY class or the DATASET class.
LLACOPY first checks to see if the caller is authorized in the FACILITY class. The resource name used in
this check is in the form CSVLLA.data_set_name. If the caller is authorized (or if there is no profile
protecting the resource name), LLACOPY completes successfully. If the caller is not authorized, LLACOPY
then checks to see if the caller is authorized in the DATASET class. If the caller is authorized, LLACOPY
completes successfully. Otherwise, LLACOPY fails, and an SMF record may be created by the external
security product.

Input register information
Before issuing the LLACOPY macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents

LLACOPY macro

© Copyright IBM Corp. 1988, 2020 27

0-1
If GPR 15 contains a return code of X'8', GPR 0 contains a reason code; otherwise, used as a work
register by the system

2-14
Unchanged

15
Return code

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
LLACOPY eliminates the reduced fetch I/O benefit of LLA's module caching until the module is again
staged to LLA's VLF data space.

An additional cost of using LLACOPY for LLA-managed data sets is that LLA serializes the use of the LLA
directory. So, for the duration of the LLACOPY, the LLA directory cannot be changed by another LLACOPY
or LLA command.

Syntax
The standard form of the LLACOPY macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede LLACOPY.

LLACOPY

␢ One or more blanks must follow LLACOPY.

DCB=dcb addr dcb addr: RX-type address or register (2) - (12).

,BLDLLIST=list addr list addr: RX-type address or register (2) - (12).

LLACOPY macro

28 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ,DEBLOCKEXCLOK=NO Default: DEBLOCKEXCLOK=NO

 ,DEBLOCKEXCLOK=YES

 ,RETCODE=ret code ret code: RX-type address or register (2) - (12).

 ,RSNCODE=rsn code rsn code: RX-type address or register (2) - (12).

 ,MF=S

Parameters
The parameters are explained as follows:

DCB=dcb addr
Specifies the address of an open DCB that LLACOPY uses to issue the BLDL macro to obtain new
directory entries.

,BLDLLIST=list addr
Specifies the address of a list of member names in the format required by the BLDL macro.

,DEBLOCKEXCLOK=NO
,DEBLOCKEXCLOK=YES

An optional keyword input that indicates if it is acceptable for the DEB lock to be held exclusive by the
caller. This function is available when the CVT_LLACOPY_DEBLOCKEXCLOK bit in the CVTFLAG9 byte
of the CVT data area is on.

The default is DEBLOCKEXCLOK=NO

,DEBLOCKEXCLOK=NO
Indicates that it is not acceptable for the DEB lock to be held exclusive by the caller. The LLACOPY
invocation is rejected.

,DEBLOCKEXCLOK=YES
Indicates that it is acceptable for the DEB lock to be held exclusive by the caller. The LLACOPY
invocation is accepted. The DEB lock will still be held exclusive upon completion of the invocation.

,RETCODE=ret code
Specifies the location where the system is to store the return code. The return code is also in general
purpose register (GPR) 15.

,RSNCODE=rsn code
Specifies the location where the system is to store the reason code. If the return code is X'8', the
reason code is also in GPR 0.

,MF=S
Specifies the standard form of LLACOPY. The standard form places the parameters into an in-line
parameter list.

ABEND codes
LLACOPY might abnormally terminate with abend code X'023'. See z/OS MVS System Codes for an
explanation of the reason codes and programmer responses for X'023'.

LLACOPY macro

Chapter 2. LLACOPY - Library lookaside refresh 29

Return and reason codes
The return and reason codes for LLACOPY are the same as those for the BLDL macro. When control
returns from LLACOPY, GPR 15 (and ret code, if you coded RETCODE) contains one of the following
hexadecimal return codes. If you receive a return code of 8, GPR 0 (and rsn code, if you coded RSNCODE)
contains one of the following hexadecimal reason codes.

Table 4. Return and Reason Codes for the LLACOPY Macro

Return Code Reason Code Meaning and Action

00 None Meaning: LLACOPY found all requested directory entries and
copied the new entries into the caller's BLDL list. If LLA was
available, LLACOPY refreshed the LLA directory for the given
members in the data set concatenation that the open DCB
defined.

Action: None.

04 None Meaning: LLACOPY did not find all the requested directory
entries, and might not have found any entries. It copies into
the caller's BLDL list entries that it did find. If LLA was
available, LLACOPY refreshed the LLA directory for the entries
that it found, and removed from the LLA directory any
members whose directory entries it did not find.

Action: Ensure that each member name in the caller's BLDL
list is in one of the data sets described by the caller's DCB.

08 00 Meaning: Environmental error. LLACOPY detected a
permanent I/O error when trying to search the directory.
LLACOPY did not update the BLDL list or refresh the LLA
directory.

Action: Contact your system programmer. The error could be
caused by a software or hardware problem.

08 04 Meaning: Environmental error. LLACOPY did not have
sufficient virtual storage in the primary address space to
complete. LLACOPY did not update the BLDL list or refresh
the LLA directory.

Action: Contact your system programmer, who can ensure
that sufficient virtual storage is available.

Example
Request LLACOPY to retrieve and update module ABC from library USERLIB. USERLIB is opened by the
application program. The DCB that was used to OPEN the library is also used in the LLACOPY.

 LLACOPY BLDLLIST=B_LIST,DCB=USERDCB,
 RETCODE=RETNCODE,RSNCODE=RSONCODE

USERDCB DCB DDNAME=USERLIB,MACRF=R,DSORG=PO
B_LIST DS 0F BLDL LIST
 DC H'01' NUMBER OF ENTRIES
 DC H'76' LENGTH OF ENTRY
MODNAME DC CL8'ABC ' MODULE NAME
 DS CL68 DIRECTORY INFO FILLED IN BY LLACOPY
RETNCODE DS F
RSONCODE DS F

LLACOPY macro

30 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

LLACOPY - List form
Use the list form of the LLACOPY macro together with the execute form of the macro for applications that
require reentrant code. The list form of the macro defines an area of storage, which the execute form of
the macro uses to store the parameters.

Syntax
The list form of the LLACOPY macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede LLACOPY.

LLACOPY

␢ One or more blanks must follow LLACOPY.

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

Default: 0D.

Parameters
The parameters are explained under the standard form of the LLACOPY macro with the following
exception:

MF=(L,list addr)
MF=(L,list addr,attr)

Specifies the list form of the LLACOPY macro.

list addr is the address of the storage area for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value that is valid on an
assembler DS pseudo-op. You can use this parameter to force boundary alignment of the parameter
list. If you do not code attr, the system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

LLACOPY - Execute form
Use the execute form of the LLACOPY macro together with the list form of the macro for applications that
require reentrant code. The execute form of the macro stores the parameters into the storage area
defined by the list form.

Syntax
The execute form of the LLACOPY macro is written as follows:

LLACOPY macro

Chapter 2. LLACOPY - Library lookaside refresh 31

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede LLACOPY.

LLACOPY

␢ One or more blanks must follow LLACOPY.

DCB=dcb addr dcb addr: RX-type address or register (2) - (12).

,BLDLLIST=list addr list addr: RX-type address or register (2) - (12).

 ,RETCODE=ret code ret code: RX-type address or register (2) - (12).

 ,RSNCODE=rsn code rsn code: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained under the standard form of the LLACOPY macro with the following
exception:

,MF=(E,list addr)
Specifies the execute form of LLACOPY.

list addr specifies the area that the system uses to store the parameters.

LLACOPY macro

32 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 3. LOAD - Bring a load module into virtual
storage

LOAD description
The LOAD macro brings the load module containing the specified entry name into virtual storage, if a
usable copy is not available in virtual storage. Control is not passed to the load module; instead, the load
module's entry point address is returned in GPR 0.

LOAD services place the load module in storage above or below 16 megabytes or above 2 gigabytes,
depending on the module's RMODE.

The responsibility count for the load module is increased by one.

The load module remains in virtual storage until the responsibility count is reduced to 0 through task
terminations or until the effects of all outstanding LOAD requests for the module have been canceled
(using the DELETE macro described in z/OS MVS Programming: Assembler Services Reference ABE-HSP),
and there is no other requirement for the module.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Problem state or supervisor state, and any PSW key. The GLOBAL,
EOM, ADDR, ADDR64, ADRNAPF and ADRNAPF64 parameters are
restricted to authorized users (APF authorized, PSW key 0-7, or
supervisor state).

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31- or 64-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Must be in the primary address space

Programming requirements
If you code any of the parameters LSEARCH, ADDR, ADRNAPF, GLOBAL, EOM, LOADPT, or LOADPT64, you
will obtain a macro-generated parameter list. Therefore, except for the error routine address, all
addresses must be specified as A-type addresses or registers (2) - (12).

Restrictions
• Any module loaded by a task will not be removed from virtual storage unless the task that loaded the

module invokes the DELETE macro or terminates.
• The load module entry name must be listed as a member name or alias in a partitioned data set

directory or it must have been specified previously in an IDENTIFY macro invocation. If the LOAD macro
cannot find the specified entry name, the caller's task is ended abnormally unless the caller provides an
ERRET exit.

LOAD macro

© Copyright IBM Corp. 1988, 2020 33

• The caller cannot have an EUT FRR established.

Register information
After the caller issues the macro, the system might use some registers as work registers or might change
the contents of some registers. When the system returns control to the caller, the contents of these
registers are not the same as they were before the macro was issued. Therefore, if the caller depends on
these registers containing the same value before and after issuing the macro, the caller must save these
registers before issuing the macro and restore them after the system returns control.

If the LOAD is successful, the GPRs contain the following when control returns to the caller:
Register

Contents
0

Entry point address of the requested load module. The Load service sets bits within the entry point
address to indicate the load module's AMODE:

• AMODE 24: Within the 32-bit GPR, the high-order and low-order bits are both 0.
• AMODE 31: Within the 32-bit GPR, the high-order bit is 1, low-order bit is 0.
• AMODE 64: The 64-bit GPR contains the entry point address. Bit 63 is 1.

If the module's AMODE is ANY, it indicates AMODE 24 if the caller is AMODE 24 (the high order bit is
0), or AMODE 31 if the caller is AMODE 31 or AMODE 64 (the high order bit is 1).

1
The high-order byte contains the load module's APF authorization code.

The low-order three bytes contain one of the following values (in priority order):

• If the module is a program object with more than one segment (extent), zeros.

To obtain the length and load point information for each segment, use the information returned via
the EXTINFO parameter or issue the CSVQUERY macro with the OUTXTLST parameter. Note that
there are several reasons why a program object might have more than one segment. One example is
the use of the binder RMODE(SPLIT) attribute.

• If the module’s length, in doublewords, is greater than or equal to 16 M (224) bytes, zeros.

To obtain the module length, use the information returned via the EXTINFO parameter or issue the
CSVQUERY macro with the OUTLENGTH or OUTXTLST parameters.

• Otherwise, the module length, in doublewords.

If the module is a program object bound with the FETCHOPT=NOPACK option, the returned length
value has been rounded to the fullpage-multiple area obtained with GETMAIN to hold the program
object. If the program object is bound with the FETCHOPT=PACK option, the returned length value is
the size indicated in the directory entry. See z/OS MVS Program Management: User's Guide and
Reference and z/OS MVS Program Management: Advanced Facilities for further information.

2-13
Unchanged

14
Used as a work register by the system

15
Zero, indicating successful completion.

If the LOAD is not successful and the caller provided an ERRET exit to receive control, the GPRs contain:
Register

Contents
0

Used as a work register by the system

LOAD macro

34 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

1
System completion code for the abend that would have been issued had the caller not provided an
ERRET exit.

2-13
Unchanged

14
Used as a work register by the system

15
Reason code (never zero) associated with the system completion code contained in GPR 1.

When control returns to the caller or the ERRET exit receives control, the access registers (ARs) are
unchanged.

Performance implications
None.

Syntax
The LOAD macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede LOAD.

LOAD

␣ One or more blanks must follow LOAD.

EP=entry name entry name: Symbol.

EPLOC=entry name addr entry name addr: RX-type address or register (0), (2) - (12); A-type

DE=list entry addr list entry address: If ADDR, ADRNAPF, EOM,EXTINFO, GLOBAL, LOADPT,
or LSEARCH is specified, A-type address or register (2) - (12); otherwise,
RX-type address, or register (2) - (12).

 ,DCB=dcb addr dcb address: If ADDR, ADRNAPF, EOM,EXTINFO, GLOBAL, LOADPT, or
LSEARCH is specified, A-type address or register (2) - (12); otherwise,
RX-type address, or register (1) or (2) - (12).

 ,ERRET=err rtn addr err rtn addr: RX-type address, or register (2) - (12).

 ,LSEARCH=NO Default: LSEARCH=NO

 ,LSEARCH=YES

LOAD macro

Chapter 3. LOAD - Bring a load module into virtual storage 35

Syntax Description

 ,ADDR=load addr load addr: A-type address or register (2) - (12).

 ,ADRNAPF=load addr

 ,ADDR64=load addr64 load addr64: AD-type address or 64-bit register (2) - (12).

 ,ADRNAPF64=load addr64

 ,GLOBAL=YES Default: GLOBAL=NO

 ,GLOBAL=(YES,P) If GLOBAL=YES is specified, the default is GLOBAL=(YES,P).

 ,GLOBAL=(YES,F)

 ,GLOBAL=NO

 ,EOM=NO Default: EOM=NO

 ,EOM=YES Note: GLOBAL must be specified with EOM=YES.

 ,LOADPT=addr addr: A-type address or register (2) - (12).

 Note: ADDR(or ADDR64) and ADRNAPF(or ADRNAPF64) cannot be
specified with LOADPT or GLOBAL or EXTINFO.

 ,LOADPT64=addr addr: A-type address or register (2) - (12).

 ,EXTINFO=addr addr: A-type address or register (2) - (12).

 ,RELATED=value

 ,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

 ,PLISTVER=MAX

 ,PLISTVER=1

 ,PLISTVER=0

Parameters
The parameters are explained below:

EP=entry name
EPLOC=entry name addr
DE=list entry addr

Specifies the following:

• When EP, specifies the entry name
• When EPLOC, specifies the address of the name which must be padded to eight bytes if necessary

LOAD macro

36 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

• When DE, specifies the address of the name field in a 62-byte list entry for the entry name that was
constructed using the BLDL macro

Note: When you use the DE parameter with the LOAD macro, BLDL and LOAD must be issued from the
same task; otherwise, the system might terminate the program with an abend code of 106 and a
return code of 15.

,DCB=dcb addr
Specifies the address of the data control block for the partitioned data set containing the entry name
described above. This parameter must indicate the same DCB used in the BLDL mentioned above.

If the DCB parameter is omitted or if DCB=0 is specified when the LOAD macro is issued by the job
step task, the data sets referred to by either the STEPLIB or JOBLIB DD statement are first searched
for the entry name. If the entry name is not found, the link library is searched.

If the DCB parameter is omitted or if DCB=0 is specified when the LOAD macro is issued by a subtask,
the data sets associated with one or more data control blocks referred to by the TASKLIB operand of
previous ATTACH macros in the subtask chain are first searched for the entry name. If the entry name
is not found, the search is continued as if the LOAD had been issued by the job step task.

Note: DCB must reside in 24-bit addressable storage.

,ERRET=err rtn addr
Specifies the address of a routine to receive control when an error condition that would cause an
abnormal termination of the task is detected. GPR 1 contains the abend code that would have
resulted had the task abended, and GPR 15 contains the reason code that is associated with the
abend. The routine does not receive control when input parameter errors are detected.

,LSEARCH=NO
,LSEARCH=YES

Specifies whether (YES) or not (NO) you want the library search limited to the job pack area and to the
first library in the normal search sequence.

,ADDR=load addr
,ADRNAPF=load addr

Specifies that the module is to be loaded at the designated address. The address must begin on a
doubleword boundary. Storage for the module must have been previously allocated in the key of the
eventual user. The system does not search for the module and does not maintain a record of the
module when it is loaded. If you code ADDR or ADRNAPF, you must also code the DCB parameter (not
DCB=0) and you must not code GLOBAL or LOADPT. ADDR and ADRNAPF are only allowed with
PLISTVER=0.

Note: The system assumes that the RMODE of the module is consistent with this address, but the
system does not check.

To code: Specify the RS-type address, or address in register (2)-(12), of a 4–byte field.

If your program requires that the module be in an APF-authorized library, use ADDR; otherwise, use
ADRNAPF.

• For the ADDR parameter, the system checks that the module being loaded is in an APF-authorized
library.

• For the ADRNAPF parameter, the system does not check that the module resides in an APF-
authorized library. Therefore, if the module is not in an APF-authorized library, the program must
make sure that the loaded programs receive control only in problem state.

,ADDR64=load addr64
,ADRNAPF64=load addr64

Specifies that the module is to be loaded beginning at the designated address. The address must
begin on a doubleword boundary. Storage for the module must have been previously allocated in the
key of the eventual user. The system does not search for the module and does not maintain a record
of the module when it is loaded. If you code ADDR64 or ADRNAPF64, you must also code the DCB
parameter (not DCB=0), and you must not code GLOBAL or LOADPT. ADDR64 and ADRNAPF64 are

LOAD macro

Chapter 3. LOAD - Bring a load module into virtual storage 37

only allowed with PLISTVER=1 or PLISTVER=MAX. The SYSSTATE ARCHLVL value (by specifying
SYSSTATE ARCHLVL=n) must be greater than 1.

Note: The system assumes that the RMODE of the module is consistent with this address, but the
system does not check. The data set from which an ADDR64 or ADRNAPF64 request is met must not
be a VIO data set.

Note: The ADDR64 and ADRNAPF64 parameters conflict with an entry name whose load module is in
Overlay (OVLY) format. ABEND206-04 and message CSV010I will be issued.

To code: Specify the AD-type address, or address in 64-bit register (2)-(12), of an 8-byte field.

If your program requires that the module is in an APF-authorized library, use ADDR64; otherwise, use
ADRNAPF64.

• For the ADDR64 parameter, the system checks that the module being loaded is in an APF-
authorized library.

• For the ADRNAPF64 parameter, the system does not check whether the module resides in an APF-
authorized library. Therefore, if the module is not in an APF-authorized library, the program must
make sure that the loaded programs receive control only in problem state.

,GLOBAL=YES
,GLOBAL=(YES,P)
,GLOBAL=(YES,F)
,GLOBAL=NO

Specifies whether the module is to be loaded into the pageable common service area (CSA)
(GLOBAL=(YES,P) or GLOBAL=YES), or loaded into fixed CSA (GLOBAL=(YES,F)), or not loaded into
CSA (GLOBAL=NO). (When the module is to be loaded into CSA, the module must not have been
previously loaded with different attributes by the same job step. The module must also be reentrant
and must reside in an APF-authorized library.)

For GLOBAL=(YES,F), the module must not be marked as requiring alignment on a page boundary. If
you code the GLOBAL parameter, you cannot code the ADDR or ADRNAPF parameter.

If the requested module resides in the link pack area, the LOAD request performs as though the
GLOBAL parameter was omitted. The LOAD request locates the module in the link pack area and
allows access to it, but the request does not load a copy of the desired module into the common
service area.

Note: A load request with the GLOBAL=YES, (YES,P), or (YES,F) option does not cause the loaded
module to be implicitly known to other address spaces. The loaded module can be accessed by other
address spaces, however, only the task that loaded the module may delete it.

,EOM=YES
,EOM=NO

Indicates whether a module in global storage is to be deleted when the address space terminates
(EOM=YES) or when the task terminates (EOM=NO). If you code EOM, you must also code GLOBAL.

Note:

Modules loaded with EOM=YES are only deleted at address space termination. A DELETE command
will not free the global storage (CSA) associated with this module.

,LOADPT=addr
Specifies that the starting address at which the module was loaded is to be returned to the caller at
the indicated address. If you code LOADPT, you cannot code ADDR or ADRNAPF.

,LOADPT64=addr
Specifies an 8-byte area at which the starting address at which the module was loaded is to be
returned to the caller.

,EXTINFO=addr
Specifies a 304-byte area which upon return is to contain extended information. This area is mapped
by dsect EXTI within macro CSVEXTI. Included in this area are :

• the extent list (each entry is mapped by dsect EXTIXE within macro CSVEXTI)

LOAD macro

38 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

• the authorization code
• the entry point address

By using the EXTINFO keyword you can avoid the need to call CSVQUERY after doing the LOAD to
obtain information that would not otherwise be returned by LOAD. For example, if a program object
length were greater than 128 megabytes or had been bound with RMODE=SPLIT, LOAD would not
otherwise return the length information.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information specified are at the
discretion of the user, and may be any valid coding values.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which
parameter list the system generates. PLISTVER is an optional input parameter on all forms of the
macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request
and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow
from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on
the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long
enough to hold all the parameters you might specify on the execute form, when both forms are
assembled with the same level of the system. In this way, MAX ensures that the parameter list does
not overwrite nearby storage.

• 1, may be used with any currently available parameters.
• 0, if you use any currently available parameters other than ADDR64 or ADRNAPF64; may not be

used with ADDR64 and ADRNAPF64.

To code: Specify one of the following versions:

• IMPLIED_VERSION
• MAX
• A decimal value of 0 or 1

Return and reason codes
When the LOAD macro returns control to the caller, GPR 15 is set to zero if the load request was
successful.

If the load request was not successful and a caller-provided error routine (specified using the ERRET
keyword) receives control, GPR 1 contains the system completion code for the ABEND that would have
been issued had the caller not provided an ERRET exit. GPR 15 contains the reason code associated with
the system completion code in GPR 1.

Example 1
Bring a load module with entry name PGMLKRUS into virtual storage. Let the system find the module from
available libraries.

LOAD EP=PGMLKRUS

LOAD macro

Chapter 3. LOAD - Bring a load module into virtual storage 39

Example 2
Bring a load module with entry name PGMEOM into pageable CSA storage and return the load address at
location PGMLPT.

LDPGM LOAD EP=PGMEOM,EOM=YES,LOADPT=PGMLPT,GLOBAL=(YES,P)
 .
 .
 .
PGMLPT DS A LOAD ADDRESS RETURNED HERE

LOAD - List form
The list form of the LOAD macro builds a nonexecutable parameter list that can be referred to by the
execute form of the LOAD macro.

Syntax
The list form of the LOAD macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede LOAD.

LOAD

␢ One or more blanks must follow LOAD.

EP=entry name entry name: Symbol.

EPLOC=entry name addr entry name addr: A-type address.

DE=list entry addr list entry addr: A-type address.

 ,DCB=dcb addr dcb addr: A-type address.

 ,LSEARCH=NO Default: LSEARCH=NO

 ,LSEARCH=YES

 ,ADDR=load addr load addr: A-type address.

 ,ADRNAPF=load addr

Note: ADDR and ADRNAPF are only allowed with PLISTVER=0.

 ,ADDR64=load addr64 load addr64: AD-type address.

LOAD macro

40 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ,ADRNAPF64=load addr64

Note: ADDR64 and ADRNAPF64 are only allowed with PLISTVER=1 or
PLISTVER=MAX.

 ,GLOBAL=YES Default: GLOBAL=NO

 ,GLOBAL=(YES,P) If GLOBAL=YES is specified, the default GLOBAL=(YES,P).

 ,GLOBAL=(YES,F)

 ,GLOBAL=NO

 ,EOM=NO Default: EOM=NO

 ,EOM=YES Note: GLOBAL must be specified with EOM=YES.

 ,LOADPT=addr addr: A-type address.

Note: ADDR(or ADDR64) and ADRNAPF(or ADRNAPF64) cannot be
specified with LOADPT or GLOBAL or EXTINFO.

 ,LOADPT64=addr addr: A-type address or register (2) - (12).

 ,EXTINFO=addr addr: A-type address or register (2) - (12).

 ,RELATED=value

 ,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

 ,PLISTVER=MAX

 ,PLISTVER=1

 ,PLISTVER=0

,SF=L

Parameters
The parameters are explained under the standard form of LOAD macro with the following exception:

,SF=L
Specifies the list form of the LOAD macro.

LOAD macro

Chapter 3. LOAD - Bring a load module into virtual storage 41

LOAD - Execute form
The execute form of the LOAD macro can refer to and modify the parameter list constructed by the list
form of the macro.

Syntax
The execute form of the LOAD macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede LOAD.

LOAD

␢ One or more blanks must follow LOAD.

EP=entry name entry name: Symbol.

EPLOC=entry name addr entry name addr: RX-type address or register (2) - (12).

DE=list entry addr list entry addr: RX-type address, or register (2) - (12).

 ,DCB=dcb addr dcb addr: RX-type address, or register (2) - (12).

 ,ERRET=err rtn addr err rtn addr: RX-type address, or register (2) - (12).

 ,LSEARCH=NO Default: LSEARCH=NO

 ,LSEARCH=YES

 ,ADDR=load addr load addr: RX-type address or register (2) - (12).

 ,ADRNAPF=load addr Note: For an RX-type address, the operand is treated as the address of a
field that contains the actual load address.

 ,ADDR64=load addr64 load addr64: RX-type address or 64–bit register (2) - (12).

 ,ADRNAPF64=load addr64

 ,GLOBAL=YES Default: GLOBAL=NO

 ,GLOBAL=(YES,P) Note: If GLOBAL=YES is specified, the default is GLOBAL=(YES,P).

 ,GLOBAL=(YES,F)

LOAD macro

42 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ,GLOBAL=NO

 ,EOM=NO Default: EOM=NO

 ,EOM=YES Note: GLOBAL must also be specified with EOM=YES.

 ,LOADPT=addr addr: RX-type address or register (2) - (12).

 Note: ADDR(or ADDR64) and ADRNAPF(or ADRNAPF64) cannot be
specified with LOADPT or GLOBAL or EXTINFO.

 ,LOADPT64=addr addr: A-type address or register (2) - (12).

 ,EXTINFO=addr addr: A-type address or register (2) - (12).

 ,RELATED=value

 ,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

 ,PLISTVER=MAX

 ,PLISTVER=1

 ,PLISTVER=0

,SF=(E,list addr) list addr: RX-type address or register (2) - (12) or (15).

Parameters
The parameters are explained under the standard form of LOAD macro with the following exception:

,SF=(E,list addr)
Specifies the execute form of the LOAD macro.

LOAD macro

Chapter 3. LOAD - Bring a load module into virtual storage 43

LOAD macro

44 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 4. LOADWAIT — Build a wait state parameter
list for use with WTO

Description
The LOADWAIT macro can:

• Define storage for a parameter list
• Define and initialize storage for a parameter list
• Modify storage of an existing parameter list

z/OS MVS Programming: Authorized Assembler Services Guide describes how to use the LOADWAIT
macro.

The WSPARM parameter of the WTO macro contains the name of the parameter list that you build using
the LOADWAIT macro. WTO uses the parameter list from LOADWAIT to put the system into the wait state
and issues one message to the operator. The wait state code and operator message explain what action
the operator is to take. For more information about wait state codes, see z/OS MVS System Codes.

There is a list and modify form of the macro, but no standard form.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state and PSW key 0, or APF-authorized

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt Status: Enabled or disabled for I/O and external interrupts

Locks: No requirement

Control parameters: No requirement

Programming requirements
None.

Restrictions
The LOADWAIT parameter list and action code receiving byte, if specified, must be in fixed storage of the
WTO issuer’s address space.

Register information
After the caller issues the macro, the system might use some registers as work registers or might change
the contents of some registers. When the system returns control to the caller, the contents of these
registers are not the same as they were before the macro was issued. Therefore, if the caller depends on
these registers containing the same value before and after issuing the macro, the caller must save these
registers before issuing the macro and restore them after the system returns control.

LOADWAIT macro

© Copyright IBM Corp. 1988, 2020 45

When control returns to the caller after the caller has issued the modify form of the macro, the general
purpose registers contain:
Register

Contents
0

Address of the action code variable if specified.
1

Address of parameter list.
2-15

Unchanged

Performance implications
None.

LOADWAIT - List form
Use the list form of the LOADWAIT macro together with the modify form of the macro for applications that
require reentrant code. The list form of the macro defines an area of storage or initializes that storage.
The modify form of the macro updates the parameters in the area previously defined by the list form.

Syntax
The list form of the LOADWAIT macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede LOADWAIT.

LOADWAIT

␢ One or more blanks must follow LOADWAIT.

 Valid parameters (Required parameters are underlined)

WAITTYPE=RESTARTABLE CODE, REASON, PSAPARM, MF

WAITTYPE=NONREST CODE, REASON, MF

,CODE=wait state code wait state code: Constant

 ,REASON=reason code reason code: Constant

 ,REASON=0 Default: REASON=0

 ,PSAPARM=PSA parm PSA parm: Constant

LOADWAIT macro

46 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ,PSAPARM=0 Default: PSAPARM=0

,MF=(L,list addr,attr) list addr: RX-type address.

 attr: 1- to 60-character input string. Default: 0F

Parameters
The parameters are explained as follows:

WAITTYPE=RESTARTABLE
WAITTYPE=NONREST

Identifies the type of wait state to be loaded. WAITTYPE=RESTARTABLE indicates a restartable wait
state. WAITTYPE=NONREST indicates a nonrestartable wait state.

,CODE=wait state code
Specifies a 2-byte wait state code. The contents of the leftmost 4 bits are irrelevant; the remaining 12
bits contain the wait state code. For more information about wait state codes, see z/OS MVS System
Codes.

,REASON=reason code
,REASON=0

Specifies a 2-byte wait state reason code. For more information about wait states and their reason
codes, see z/OS MVS System Codes.

,PSAPARM=PSA parm
,PSAPARM=0

Specifies a fullword field that you can use for additional information, such as a pointer to a data area,
or a system ID at the time you issue the LOADWAIT macro. This information is used for diagnostic
purposes when the system enters a wait state. The PSAPARM parameter is valid only if you specify
WAITTYPE=RESTARTABLE.

If you do not specify PSAPARM, the system initializes the field to zeroes.

,MF=(L,list addr,attr)
Specifies the list form of the LOADWAIT macro. list addr names the area that the system is to use for
the parameter list. Use standard assembler variable naming conventions to name this area, and refer
to the parameter list by the same name. Use this area name as input on the WSPARM parameter of
the WTO macro.

attr is an optional 1- to 60-character string, which can contain any value that is valid on an assembler
DS pseudo-op. You can use this parameter to force boundary alignment of the parameter list. If you
do not code attr, the system provides a value of 0F, which forces the parameter list to a fullword
boundary.

Return and reason codes
None.

Example 1
Generate a parameter list to load a restartable wait state.

 LOADWAIT WAITTYPE=RESTARTABLE,CODE=WAIT062,MF=(L,WAITPRM)
.
.
.
 DS 0D
WAIT062 EQU X'62' * WAIT STATE CODE IS KNOWN
.

LOADWAIT macro

Chapter 4. LOADWAIT — Build a wait state parameter list for use with WTO 47

.

.

Example 2
Generate a parameter list to load a restartable wait state and specify a reason code and PSAPARM.

 LOADWAIT WAITTYPE=RESTARTABLE,CODE=WAIT114,REASON=REASON02,
 PSAPARM=OPERINFO,MF=(L,WAITPRM2)
.
.
.
 DS 0D
WAIT114 EQU X'114' * WAIT STATE CODE IS KNOWN
REASON02 EQU X'2' * REASON CODE IS KNOWN
OPERINFO EQU X'C5E2C1E3' * PSAPARM = 'ESAT'
.
.
.

Example 3
Generate a parameter list to load a nonrestartable wait state.

 LOADWAIT WAITTYPE=NONREST,CODE=WAIT093,MF=(L,WAITPRM3)
.
.
.
 DS 0D
WAIT093 EQU X'093' * WAIT STATE CODE
.
.
.

LOADWAIT - Modify form
The modify form of the macro updates an existing parameter list.

Note: When you use the modify form of the macro, the parameter list is reset to all zeroes. You must
specify all of the required information each time you use the modify form.

Syntax
The modify form of the LOADWAIT macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede LOADWAIT.

LOADWAIT

␢ One or more blanks must follow LOADWAIT.

 Valid parameters (Required parameters are underlined)

WAITTYPE=RESTARTABLE CODE, REASON, ACTCODE, PSAPARM, MF

LOADWAIT macro

48 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

WAITTYPE=NONREST CODE, REASON, MF

,CODE=wait state code wait state code: Value

 ,REASON=reason code reason code: Value

 ,REASON=0 Default: REASON=0

 ,ACTCODE=action code action code: 1-byte field

 ,ACTCODE=0 Default: ACTCODE=0

 ,PSAPARM=PSA parmr PSA parm: Value

 ,PSAPARM=0 Default: PSAPARM=0

,MF=(M,list addr) list addr: RX-type address.

Parameters
The parameters are explained under the list form of the macro with the following exceptions:

,ACTCODE=action code
,ACTCODE=0

Specifies a 1-byte field that the system updates with the contents of storage location X'30E' after the
system is restarted. The operator is not required to supply any information but can store 1 byte of
information into location X'30E' before initiating a restart. ACTCODE is valid only if you specify
WAITTYPE=RESTARTABLE on the modify form of the macro.

,MF=(M,list addr)
Specifies the modify form of the LOADWAIT macro.

list addr specifies the area that the system uses to store the parameter list.

Example 1
Reserve storage for a parameter list named ‘WAITPRM’, then modify the existing list to load a wait state
code and reason code. Assume that you will not know all the wait state information at program assembly
time, so you must invoke LOADWAIT twice.

 LOADWAIT MF=(L,WAITPRM)
 .
 .
 .
 LOADWAIT WAITTYPE=NONREST,CODE=WAIT032,REASON=STOPCPU,
 MF=(M,WAITPRM)
 .
 .
 .
WAIT032 DC XL2'0032' * WAIT STATE CODE IS KNOWN
STOPCPU DS XL2 * STOPPED PROCESSOR IS NOT KNOWN
 .
 .
 .

LOADWAIT macro

Chapter 4. LOADWAIT — Build a wait state parameter list for use with WTO 49

Example 2
Reserve storage for a parameter list named ‘WAITPRM’, then modify the existing list to load a wait state
code and reason code. Also specify ‘OPRESP’ as the action code and ‘MOREINFO’ for the PSAPARM.
Assume that you will not know all the wait state information at program assembly time, so you must
invoke LOADWAIT twice.

 LOADWAIT MF=(L,WAITPRM)
 .
 .
 .
 LOADWAIT WAITTYPE=RESTARTABLE,CODE=WAIT045,ACTCODE=OPRESP,
 PSAPARM=MOREINFO,REASON=REASON01,MF=(M,WAITPRM)
 .
 .
 .
WAIT045 DC XL2'45' * WAIT STATE CODE IS KNOWN
REASON01 DC XL2'7A' * REASON CODE IS KNOWN
MOREINFO DC XL4'8007A045' * PSAPARM IS KNOWN
OPRESP DS XL1 * ACTION CODE ADDRESS IS NOT KNOWN
 .
 .
 .

LOADWAIT macro

50 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 5. LOCASCB — Locate address space control
block (ASCB) address

Description
The system identifies an address space through an address space identifier (ASID), an address space
control block (ASCB), or a space token (STOKEN). Depending on the MVS service you want to use, you
might be required to supply an identifier you do not have. For example, you might have the ASID of an
address space but need to supply the ASCB. If you have the ASID or STOKEN but need to supply the
ASCB, use the LOCASCB macro to return the ASCB address.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Problem state or supervisor state, and any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN

AMODE: 24- or 31-bit

ASC mode: Primary or secondary when you specify the ASID parameter; primary
or access register (AR) when you specify STOKEN.

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: CMS lock, if you want to be sure that the address space doesn't
terminate while the system is referencing the ASCB; otherwise, no
requirement.

Control parameters: If you specify the ASID parameter, control parameters must be in the
primary address space; if you specify the STOKEN parameter, control
parameters must be in the primary address space or be in an
address/data space that is addressable through a public entry on the
caller's dispatchable unit access list (DU-AL).

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the LOCASCB macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
After the caller issues the macro, the system might use some registers as work registers or might change
the contents of some registers. When the system returns control to the caller, the contents of these
registers are not the same as they were before the caller issued the macro. Therefore, if the caller

LOCASCB macro

© Copyright IBM Corp. 1988, 2020 51

depends on these registers containing the same value before and after issuing the macro, the caller must
save these registers before issuing the macro and restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0

If you specify STOKEN and the return code is 0, a reason code; otherwise, used as a work register by
the system
Reason
code

Explanation
0

At the time of checking, the address space was not terminating. As long as the caller remains
legally disabled or holds the general CMS lock, if the address space is targeted for termination, the
address space may be quiesced (ASCBFAIL) and may be set invalid for cross memory access
(ASTEICMA), but memory termination will not proceed to give control to any address space
termination resource managers.

4
The address space is terminating, but termination is not complete. As long as the caller remains
legally disabled or continues to hold the general CMS lock, the ASCB/ASSB will not be
FREEMAINed. All other address space related resources may or may not be cleaned up.

1
ASCB address or 0

2-13
Unchanged

14
Used as a work register by the system

15
Return code

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0

If you specify STOKEN and the return code is 0, the ASID of the address space; otherwise, used as a
work register by the system

1
0 if you specify STOKEN; otherwise, used as a work register by the system

2-13
Unchanged

14-15
Used as work registers by the system

Performance implications
None.

Syntax
The standard form of the LOCASCB macro is written as follows:

LOCASCB macro

52 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede LOCASCB.

LOCASCB

␢ One or more blanks must follow LOCASCB.

ASID=asid addr asid addr: RX-type address or register (0) - (15).

STOKEN=stoken addr stoken addr: RX-type address

Parameters
The parameters are explained as follows:

ASID=asid addr
Specifies the RX-type address of a halfword that contains the ASID for which the ASCB is to be
returned or the register that contains the ASID in bits 16-31. (Bits 0-15 of the register are ignored.)

STOKEN=stoken addr
Specifies the RX-type address of the STOKEN that identifies the address space for which the ASCB is
to be returned.

ABEND codes
None.

Return codes
When the LOCASCB macro returns control to your program, GPR 15 contains a hexadecimal return code.

Table 5. Return Codes for the LOCASCB Macro

Return Code Meaning and Action

00 Meaning: LOCASCB successfully located and returned the ASCB address.

Action: None.

04 Meaning: Program error. The ASID or STOKEN did not map to a valid, active ASCB. This may occur
because the input ASID of STOKEN never was valid, or because the address space it represents is no
longer active.

Action: Verify that the input ASID or STOKEN is valid.

08 Meaning: Program error. The STOKEN was not valid.

Action: Supply a valid input STOKEN.

Example 1
Get the ASCB address for the address space whose ASID is specified by the constant at location ASN.

 LH 4,ASN
 LOCASCB ASID=(4)

LOCASCB macro

Chapter 5. LOCASCB — Locate address space control block (ASCB) address 53

ASN DC H'34'

Example 2
Get the ASCB address for the address space whose STOKEN is stored at the location STOKADDR.

 LOCASCB STOKEN=STOKADDR

STOKADDR DS 2F

LOCASCB macro

54 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 6. LXFRE - Free a linkage index

Description
The LXFRE macro frees one or more linkage indexes. You cannot free a linkage index that was reserved
with the SYSTEM option. (See the LXRES macro). Before issuing the LXFRE macro, disconnect all entry
tables associated with the linkage index, unless you specify FORCE=YES. If you do not disconnect the
entry tables and do not specify FORCE=YES, linkage indexes are not freed and the routine is abnormally
terminated.

Related macro
LXRES

Environment
These are the requirements for the caller:

Environmental factor Requirement

Minimum authorization: Supervisor state or PKM 0-7

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Must be in primary address space

Programming requirements
None.

Restrictions
None.

Input register information
The LXFRE macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6 parameter

• If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6 parameter (Version 1 Release 6
of z/OS or later) before issuing the LXFRE macro, the caller does not have to place any information into
any general purpose register (GPR) unless using it in register notation for a particular parameter, or
using it as a base register.

• Otherwise, the caller must ensure that the following general purpose register contains the specified
information:
Register

Contents
13

The address of an 18-word save area

LXFRE macro

© Copyright IBM Corp. 1988, 2020 55

Output register information
After the caller issues the macro, the macro might use some registers as work registers or might change
the contents of some registers. When the macro returns control to the caller, the contents of these
registers are not the same as they were before the macro was issued. Therefore, if the caller depends on
these registers containing the same value before and after issuing the macro, the caller must save these
registers before issuing the macro and restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the macro
2-13

Unchanged
14

Used as a work register by the macro
15

Return code

Performance implications
None.

Syntax
The standard form of the LXFRE macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede LXFRE.

LXFRE

␢ One or more blanks must follow LXFRE.

LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

ELXLIST=elx list addr elx list addr: RX-type address or register (2) - (12).

 ,FORCE=NO Default: FORCE=NO

 ,FORCE=YES

 ,RELATED=value value: Any valid macro keyword specification.

LXFRE macro

56 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Parameters
The parameters are explained as follows:

LXLIST=lx list addr
ELXLIST=elx list addr

lx list addr specifies the address of a variable length list of fullword entries. The first word in the list
must contain the number (1 to 32) of LXs to be freed. Each entry following the first must contain a
linkage index value specified in the form returned by the LXRES macro.

elx list addr specifies the address of an area that contains extended linkage index (LX) values. The
first word in the list must contain the number (1 to 32) of LXs values to be freed. Each subsequent
eight bytes contains an extended linkage index value in the form returned by the LXRES macro: a 4-
byte sequence number followed by an LX value. If the sequence number in one of the eight-byte
sections is incorrect, the system issues abend X'052' with reason code X'0216'.

,FORCE=NO
,FORCE=YES

Specifies whether (YES) or not (NO) the linkage index is to be freed even if entry tables are currently
connected to it. Any connected entry tables are disconnected before the linkage index is freed.
FORCE=NO is the default.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information specified can be any
valid coding values.

ABEND codes
052
053

See z/OS MVS System Codes for an explanation and programmer responses for this code.

Return codes
When LXFRE macro returns control to your program, GPR 15 contains a hexadecimal return code and GPR
0 contains a hexadecimal reason code.

Table 6. Return Codes for the LXFRE Macro

Return Code Meaning and Action

00 Meaning: The specified linkage indexes were freed. No entry tables were connected.

Action: None.

04 Meaning: The specified linkage indexes were freed. Entry tables were connected, but FORCE was
specified and was successfully executed.

Action: None.

08 Meaning: Some of the specified linkage indexes were freed. Entry tables were connected. FORCE was
specified but one or more of the necessary disconnects failed.

Action: None required.

Examples
For examples of the use of this and other cross memory macros, see the chapter on cross memory
communication in z/OS MVS Programming: Extended Addressability Guide.

LXFRE macro

Chapter 6. LXFRE - Free a linkage index 57

LXFRE - List form
The list form of the LXFRE macro is used to construct a nonexecutable parameter list. The execute form of
the LXFRE macro can refer to or modify the parameter list.

Syntax
The list form of the LXFRE macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede LXFRE.

LXFRE

␢ One or more blanks must follow LXFRE.

LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

ELXLIST=elx list addr elx list addr: RX-type address or register (2) - (12).

 ,FORCE=NO Default: FORCE=NO

 ,FORCE=YES

 ,RELATED=value value: Any valid macro keyword specification.

,MF=L

Parameters
The parameters are explained under the standard form of the LXFRE macro with the following exception:

,MF=L
Specifies the list form of the LXFRE macro.

LXFRE - Execute form
The execute form of the LXFRE macro can refer to and modify a remote parameter list created by the list
form of the macro.

Syntax
The execute form of the LXFRE macro is written as follows:

LXFRE macro

58 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede LXFRE.

LXFRE

␢ One or more blanks must follow LXFRE.

LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

ELXLIST=elx list addr elx list addr: RX-type address or register (2) - (12).

 ,FORCE=NO Default: FORCE=NO

 ,FORCE=YES

 ,RELATED=value value: Any valid macro keyword specification.

,MF=(E,cntl addr) cntl addr: RX-type address or register (0) - (12).

Parameters
The parameters are explained under the standard form of the LXFRE macro with the following exception:

,MF=(E,cntl addr)
Specifies the execute form of the LXFRE macro. This form uses a remote parameter list.

LXFRE macro

Chapter 6. LXFRE - Free a linkage index 59

LXFRE macro

60 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 7. LXRES — Reserve a linkage index

Description
The LXRES macro reserves one or more linkage indexes for the caller's use. The reserved linkage indexes
are owned by the cross memory resource ownership task of the current home address space. The linkage
index reservation applies across all linkage tables in the system and remains in effect until the LX is
eligible to be reassigned, as described below:
Non-reusable system LX

The system does not reassign the LX. The original requestor of the LX should reconnect to the LX if the
address space terminates and then restarts.

Reusable system LX
The system reassigns the LX after the owning address space has terminated or after the owner has
used LXFRE to free the LX.

Non-reusable non-system LX
The system reassigns the LX after all entry tables are disconnected from the LX. This is the case when
the owning address space terminates or when the owner uses ETDIS to disconnect the entry table
from the LX and uses LXFRE to free the LX; and all address spaces that have used ETCON to connect
the LX to that entry table have either terminated or used ETDIS to disconnect the entry table from the
LX.

Reusable non-system LX
The system reassigns the LX after the owning address space has terminated or after the owner has
used LXFRE to free the LX.

Related macro
LXFRE

Environment
These are the requirements for the caller:

Environmental factor Requirement

Minimum authorization: Supervisor state or PKM 0-7

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Must be in primary address space

Programming requirements
Register 13 must point to a standard register savearea that must be addressable in primary mode.

LXRES macro

© Copyright IBM Corp. 1988, 2020 61

Restrictions
None.

Input register information
The LXRES macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6 parameter

• If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6 parameter (Version 1 Release 6
of z/OS or later) before issuing the LXRES macro, the caller does not have to place any information into
any general purpose register (GPR) unless using it in register notation for a particular parameter, or
using it as a base register.

• Otherwise, the caller must ensure that the following general purpose register contains the specified
information:
Register

Contents
13

The address of an 18-word save area

Output register information
After the caller issues the macro, the macro might use some registers as work registers or might change
the contents of some registers. When the macro returns control to the caller, the contents of these
registers are not the same as they were before the macro was issued. Therefore, if the caller depends on
these registers containing the same value before and after issuing the macro, the caller must save these
registers before issuing the macro and restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the macro
2-13

Unchanged
14

Used as a work register by the macro
15

Return code

Performance implications
None.

Syntax
The standard form of the LXRES macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede LXRES.

LXRES

LXRES macro

62 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

␢ One or more blanks must follow LXRES.

LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

ELXLIST=elx list addr elx list addr: RX-type address or register (2) - (12).

 ,LXSIZE=12 Default: LXSIZE=12 when you do not specify EXLIST or REUSABLE=YES;
LXSIZE=16 when you specify ELXLIST or REUSABLE=YES.

 ,LXSIZE=16

 ,LXSIZE=23

 ,LXSIZE=24

 ,REUSABLE=NO Default: REUSABLE=NO

 ,REUSABLE=YES

 ,SYSTEM=NO Default: SYSTEM=NO

 ,SYSTEM=YES

 ,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

LXLIST=list addr
ELXLIST=list addr

lx list addr specifies the address of a variable-length list of fullword entries. The first fullword in the
list must contain the number (1 to 32) of linkage index (LX) values to be returned. The list must be
long enough to contain the requested number of values. The LX values are returned in the list entries
in the proper position for ORing with the entry index to form a PC number.

elx list addr specifies the address of an area that contains extended linkage index (LX) values. The
first fullword in the list must contain the number (1 to 32) of extended linkage index (LX) values to be
returned. Each extended LX value is an eight-byte area that contains a 4-byte sequence number
followed by a 4-byte LX value. The area must be long enough to contain the requested number of
values. The LX value within the extended LX value is in the proper position for ORing with the entry
index to form a PC number. The sequence number in each extended LX value is relevant only when
you have specified REUSABLE=YES. You can specify ELXLIST even if the LX Reuse Facility is not
enabled.

LXSIZE=12
LXSIZE=16
LXSIZE=23
LXSIZE=24

LXSIZE allows you to specify the maximum size of the LX, which is either 12, 16, 23, or 24 bits. The
system is allowed to return any LX that is no larger than the size that you specify. On a system that
supports only 2048 LXs (running on a processor prior to a z890 or z990 at driver level 55 and running

LXRES macro

Chapter 7. LXRES — Reserve a linkage index 63

at level z/OS V1R6 or with the LX reuse facility, the returned LX will fit within 12 bits. The LX reuse
facility is available with z/OS V1R6 to provide additional LXs and improve reusability of LXs. It is
enabled when running on a z890 or z990 processor at driver level 55 or above, with APAR OA07708
installed. When the facility is enabled bit CVTALR in byte CVTFLAG2 of the CVT data area is 1.

LXSIZE=12 is the default when you do not specify REUSABLE=YES and you do not specify ELXLIST. If
you specify LXSIZE=12 along with EXLIST or REUSABLE=YES, the system ignores LXSIZE=12 and
uses LXSIZE=16 instead. You can use the LXLIST parameter for the returned data regardless of the
LXSIZE value, unless you also specify REUSABLE=YES.

LXSIZE=16 is the default when you have specified either the ELXLIST or REUSABLE parameter.

Because the LX forms part of the PC number (bits 0–23), and because the PC instruction generates
the PC number as an 'effective address', the value you specify for LXSIZE depends on the addressing
mode of the calling programs that will execute the PC:

• Specify LXSIZE=16 if any callers might execute the PC instruction in AMODE 24.
• Specify LXSIZE=23 if callers will execute the PC instruction only in AMODE 31 or 64. Do not specify

LXSIZE=23 if the PC can ever be executed in AMODE 24.
• Specify LXSIZE=24 if callers will execute the PC instruction only in AMODE 64.

REUSABLE=NO
REUSABLE=YES

By specifying the REUSABLE keyword, you can decide that whether or not the LX being returned is
reusable. When you specify REUSABLE=YES, you must also:

• Specify the ELXLIST parameter.
• Make sure that the PC issued using the reusable LX is done by placing the sequence number for that

LX in bits 0-31 of 64-bit GPR 15 prior to issuing the PC.

The sequence number for the LX is returned within the ELXLIST entry for the LX.

If the LX Reuse Facility is not enabled, a non-reusable LX will be returned.

,SYSTEM=NO
,SYSTEM=YES

Specifies whether (YES) or not (NO) the linkage indexes are being reserved for system connections. If
YES is specified, a subsequent ETCON macro specifying the linkage index causes all address spaces
to be connected to the entry table.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding services performed elsewhere. The format and contents of the information specified
can be any valid coding values.

ABEND codes
052
053

See z/OS MVS System Codes for an explanation and programmer responses for this code.

Return codes
When the LXRES macro returns control to your program, GPR 15 contains a hexadecimal return code.

Table 7. Return Code for the LXRES Macro

Return Code Meaning

00 Meaning: The specified linkage indexes were successfully reserved.

LXRES macro

64 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Examples
For examples of the use of this and other cross memory macros, refer to the chapter on cross memory
communication in z/OS MVS Programming: Extended Addressability Guide.

LXRES - List form
The list form of the LXRES macro is used to construct a nonexecutable parameter list. The execute form of
the macro can then refer to this list or a copy of it for reentrant programs.

Syntax
The list form of the LXRES macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede LXRES.

LXRES

␢ One or more blanks must follow LXRES.

LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

ELXLIST=elx list addr elx list addr: RX-type address or register (2) - (12).

 ,LXSIZE=12 Default: LXSIZE=12 when you do not specify EXLIST or REUSABLE=YES;
LXSIZE=16 when you specify ELXLIST or REUSABLE=YES.

 ,LXSIZE=16

 ,LXSIZE=23

 ,LXSIZE=24

 ,SYSTEM=NO Default: SYSTEM=NO

 ,SYSTEM=YES

 ,RELATED=value value: Any valid macro keyword specification.

,MF=L

LXRES macro

Chapter 7. LXRES — Reserve a linkage index 65

Parameters
The parameters are explained under the standard form of the LXRES macro with the following exception:

,MF=L
Specifies the list form of the LXRES macro.

LXRES - Execute form
The execute form of the LXRES macro can refer to and modify a remote parameter list constructed by the
list form of the macro.

Syntax
The execute form of the LXRES macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede LXRES.

LXRES

␢ One or more blanks must follow LXRES.

LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

ELXLIST=elx list addr elx list addr: RX-type address or register (2) - (12).

 ,LXSIZE=12 Default: LXSIZE=12 when you do not specify EXLIST or REUSABLE=YES;
LXSIZE=16 when you specify ELXLIST or REUSABLE=YES.

 ,LXSIZE=16

 ,LXSIZE=23

 ,LXSIZE=24

 ,SYSTEM=NO Default: SYSTEM=NO

 ,SYSTEM=YES

 ,RELATED=value value: Any valid macro keyword specification.

,MF=(E,cntl addr) cntl addr: RX-type address or register (0) - (12).

LXRES macro

66 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Parameters
The parameters are explained as under the standard form of the LXRES macro with the following
exception:

,MF=(E,cntl addr)
Specifies the execute form of the LXRES macro, and cntl addr is the name or address of the list form
of the macro.

LXRES macro

Chapter 7. LXRES — Reserve a linkage index 67

LXRES macro

68 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 8. MCSOPER - Manage extended MCS
operations

Description
MCSOPER enables you to activate and manage extended MCS consoles. An extended MCS console is a
program that acts as a console. It can issue MVS commands, and receive command responses and
unsolicited message traffic. MCSOPER defines and activates an extended MCS console to the system and
provides a means of storing operator messages and command responses. MCSOPER also deactivates the
extended console or console class and allows the extended console to receive the hardcopy message set.

You can remove extended MCS consoles from your configuration using the IEARELEC sample program
that is shipped in the V1R7 samplib. See z/OS MVS Planning: Operations for a description of how to use
this program.

Use the MCSOPMSG macro to retrieve messages delivered to the EMCS console that has been activated
using the MCSOPER macro. For more information on MCSOPER and MCSOPMSG, see z/OS MVS
Programming: Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state and any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
If MSGDLVRY=NONE is specified on the MCSOPER ACTIVATE request, the OPERPARM console attribute
for DOM will be forced to DOM=NONE. See z/OS MVS Programming: Authorized Assembler Services Guide
for a description of console attributes.

Input register information
Before issuing the MCSOPER macro, the caller must ensure that the following general purpose register
(GPR) contains the specified information:
Register

Contents

MCSOPER macro

© Copyright IBM Corp. 1988, 2020 69

13
The address of an 18-word save area

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

If GPR 15 contains a hexadecimal return code of 00, 10, or 14, GPR 0 contains a reason code;
otherwise, GPR 0 contains zero.

1
Used as a work register by the system

2-13
Unchanged

14
Used as a work register by the system

15
Return code

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0-1

Used as work registers by the system
2-14

Unchanged
15

Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
• MSGDLVRY=FIFO delivers better performance than MSGDLVRY=SEARCH. Use MSGDLVRY=SEARCH

when you are looking only for certain types of messages such as command responses.
• If you request that an extended console receive the hardcopy message set from all the systems in a

sysplex by specifying the MSCOPE=*ALL console attribute with the HARDCOPY OPERPARM option, you
might experience performance problems.

Syntax
The standard form of the MCSOPER macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede MCSOPER.

MCSOPER macro

70 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

MCSOPER

␣ One or more blanks must follow MCSOPER.

REQUEST=ACTIVATE See Table 8 on page 72 for parameters available with REQUEST=
services.

REQUEST=DEACTIVATE

 ,NAME=opername addr opername addr: RX-type address or register (2) - (12).

 ,CONSID=console id addr console id addr: RX-type address or register (2) - (12).

 ,ABTERM=NO Default: ABTERM=NO

 ,ABTERM=YES

 ,TERMNAME=terminal name addr terminal name addr: RX-type address or register (2) - (12).

 ,OPERPARM=parm area addr parm area addr: RX-type address or register (2) - (12).

 ,MCSCSA=csa addr csa addr: RX-type address or register (2) - (12).

 ,MCSCSAA=alet addr alet addr: RX-type address or register (2) - (12).

 ,MSGDLVRY=FIFO See Table 9 on page 72 for parameters valid with MSGDLVRY services.

 ,MSGDLVRY=SEARCH

 ,MSGDLVRY=NONE

,MSGECB=ecb addr ecb addr: RX-type address or register (2) - (12).

 ,QLIMIT=qlimit addr qlimit addr: RX-type address or register (2) - (12).

 Default: QLIMIT=2147483647

 ,ALERTECB=alert addr alert addr: Rx-type address or register (2) - (12).

 ,ALERTECB=0 Default: ALERTECB=0

 ,ALERTPCT=percent addr percent addr: Rx-type address or register (2) - (12).

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 71

Syntax Description

 ,ALERTPCT=percent num percent num: number from 0 to 100. Default: ALERTPCT=100

 ,QRESUME=qresume addr qresume addr: RX-type address or register (2) - (12).

 ,QRESUME=qresume num qresume num: number from 0 to 99. Default: QRESUME=0

 ,RTNCODE=ret code ret code: RX-type address or register (2) - (12).

 ,RSNCODE=reason code reason code: Rx-type address or register (2) - (12).

The following table lists the parameters available with REQUEST=ACTIVATE and REQUEST=DEACTIVATE.
REQUEST=RELEASE can be used only to release a migration ID. Migration IDs are not supported at
release V1R7; therefore, the REQUEST=RELEASE service is ignored.

Table 8. Parameters available with REQUEST= services

Parameters REQUEST= ACTIVATE REQUEST= DEACTIVATE

NAME required Either NAME or CONSID (not
both)

CONSID required Either NAME or CONSID (not
both)

ABTERM not valid optional

TERMNAME required not valid

OPERPARM optional not valid

MCSCSA required not valid

MCSCSAA required not valid

MSGDLVRY optional not valid

RTNCODE optional optional

RSNCODE optional optional

Table 9. Parameters available with MSGDLVRY= services

Parameters MSGDLVRY= FIFO MSGDLVRY= SEARCH MSGDLVRY= NONE

MSGECB required required not valid

QLIMIT optional optional not valid

ALERTECB optional optional not valid

ALERTPCT optional optional not valid

QRESUME optional optional not valid

Parameters
The parameters are explained as follows:

MCSOPER macro

72 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

REQUEST=ACTIVATE
REQUEST=DEACTIVATE

Specifies the MCSOPER function you want to perform. This is a required parameter. The functions are
as follows:

• ACTIVATE identifies an extended console to MCS. It initializes a specific session. The application
activating the extended console must have READ access to the MVS.MCSOPER.consname resource.
See z/OS MVS Planning: Operations for more details. MCSOPER processing will perform the check
unless the authorized application has already verified the authority and turned on bit MCSOBYPY in
the MCSOP data area (IEZVG111).

• DEACTIVATE identifies the console as inactive and terminates the session.

Important: End-of-task and end-of-memory resource managers (such as those defined with
RESMGR) must not attempt to deactivate EMCS consoles. During the termination of a task or
address space, the system automatically deactivates any associated EMCS consoles for you.

You can specify only one of these functions each time you invoke MCSOPER.

,NAME=opername addr
Specifies the address of an 8-byte field that contains the name of the console to be activated or
deactivated.. NAME is required when you specify REQUEST=ACTIVATE. Do not use a name that might
match the name of a device number (for example, BAD). If the name of a console matches a device
number, a VARY command might not work as expected. If you specify REQUEST=DEACTIVATE, then
either NAME or CONSID must be specified, but not both.

,CONSID=console id addr
Specifies the address of the 4-byte console ID. If you specified REQUEST=ACTIVATE, CONSID is an
output area that will receive the console ID. CONSID is required if you specify REQUEST=ACTIVATE. If
you specified REQUEST=DEACTIVATE, then either CONSID or NAME must be specified, but not both.

,ABTERM=NO
,ABTERM=YES

Indicates an abnormal termination of an extended MCS console. If you request to deactivate a
console ID by abnormally terminating the console, the system fails the extended MCS console.

If ABTERM is not specified, ABTERM=NO is the default.

,TERMNAME=terminal name addr
Specifies the terminal name, VTAM® LU name, or other identification of the source for the activate
request. The name is logged when the activate occurs and has no other use.

,OPERPARM=parm area addr
Specifies the address of the MCSOP data area, mapped by IEZVG111. That area contains information
on operator parameters such as routing codes, command authority, message format, message level,
and whether the console will receive the hardcopy message set. OPERPARM is optional. The system
looks for information on operator parameters first in the user profile of a security product, such as
RACF®. If the system does not find operator parameters in the user profile, it uses the operator
parameters passed in the MCSOP data area, mapped by IEZVG111. If you did not specify the
OPERPARM parameter, the system takes the default values of the operator parameters, also defined
in the MCSOP data area. You can override the console attributes specified in the user profile of the
security product by turning on bit MCSOVRDY in the MCSOP data area.

Note: When the RACF OPERCMDS class is not active, the OPERPARM segment on the RACF user
profile is ignored.

For more information about OPERPARM, see z/OS MVS Programming: Authorized Assembler Services
Guide.

,MCSCSA=csa addr
Specifies the address of a 4-byte output area that will contain the address of the MCS console status
area. When MCSOPER posts the ECB and if the return and reason codes indicate that queueing has
been disabled, you need to check the MCS console status area, which is defined in the MCSCSA data
area, mapped by IEAVG131, to determine which problem has disabled queuing. The MCSCSA
parameter is required if you specified REQUEST=ACTIVATE.

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 73

,MCSCSAA=alet addr
Specifies the address of a 4-byte output area on a fullword boundary that will contain the ALET that
identifies the address or data space that contains the MCS console status area. MCSCSAA is required
if you specified REQUEST=ACTIVATE.

,MSGDLVRY=FIFO
,MSGDLVRY=SEARCH
,MSGDLVRY=NONE

Specifies how MCSOPER queues messages to extended MCS consoles. Specifying FIFO will cause
MCSOPER to deliver messages on a first-in, first-out basis. This is the default option. Specifying
SEARCH allows you to request messages based on search arguments specified in the MCSOPMSG
macro. Specifying NONE will keep messages from being delivered to this console. In addition, if NONE
is specified, the OPERPARM console attribute for DOM will be forced to DOM=NONE. See z/OS MVS
Programming: Authorized Assembler Services Guide for a description of console attributes.

,MSGECB=ecb addr
Specifies the address of the ECB that the system posts when it queues a message to the console.
Note that the system posts this ECB for every message it delivers to the message dataspace.
However, since it is not possible to tell how many times an ECB has been posted since it was last
waited on, once an ECB is posted, users should issue MCSOPMSG to retrieve messages until they
receive a return and reason code indicating that no more messages remain to be retrieved. This
keyword is optional and is not valid if you specified MSGDLVRY=NONE.

Note: For system performance reasons, IBM recommends that the message ECB be in common
storage.

,QLIMIT=qlimit addr
Specifies either the maximum number or the address of the maximum number of messages which the
system can queue to the console issuing the request. You can specify the maximum number as any
number from 1 to 2147483647 (2 gigabytes). QLIMIT=2147483647 is the default.

,ALERTECB=alert addr
,ALERTECB=0

Specifies the address of the ECB that the system will post when one of the following is true:

• The number of messages in storage has reached the number specified in QLIMIT.
• The number of messages in storage matches the percentage of the QLIMIT number specified in

ALERTPCT.
• You ran out of space for messages in storage.
• There is a queuing error.

If you specify ALERTECB=0, MCSOPER will not post an ECB.

,ALERTPCT=percent addr
,ALERTPCT=percent num

Specifies the address of the percentage of the maximum number of messages specified in QLIMIT or
the number representing the percent. When the queue reaches this percentage, the MCSOPER posts
the ALERTECB. If you do not specify percent addr, or percent num is outside the range of 1 through 99,
MCSOPER will operate on the default, 100.

,QRESUME=qresume
,QRESUME=qresume num

Specifies the address that contains the depth percent at which the queue must be to resume queuing.
If the system disabled queuing because the number of messages in the data space reached the
percentage of the QLIMIT (ALERTPCT) and you retrieve enough messages to meet the percentage you
specify in QRESUME, queuing will resume automatically for the console issuing the request. If you do
not specify QRESUME, or QRESUME is outside the range of 0 through 99, queuing will only resume
after explicit action by the application using the MCSOPMSG REQUEST=RESUME macro. The default is
QRESUME=0.

MCSOPER macro

74 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

,RTNCODE=ret code
Specifies the location where the system is to store the return code. The return code is also in general
purpose register (GPR) 15.

,RSNCODE=reason code
Specifies the location where the system is to store the reason code. The reason code is also in GPR 0.

ABEND codes
None.

Return and reason codes
When control returns from MCSOPER, GPR 15 (and ret code, if you specified RTNCODE) contains one of
the following hexadecimal return codes. GPR 0 (and reason code, if you specified RSNCODE) contains one
of the following hexadecimal reason codes.

Table 10. Return and Reason Codes for the MCSOPER Macro

Return Code Reason Code Meaning and Action

00 00 Meaning: Processing was successful.

Action: None.

00 04 Meaning: An EMCS console was successfully activated; however, a migration
ID was not obtained if one was requested. Migration IDs are not supported as
of z/OS V1R8.

Action: Remove the request for a migration ID.

04 None Meaning: Environmental error. For REQUEST=ACTIVATE, an EMCS console
with this name is already active on this system or on a system within the
same GRS NONE or RING environments. For REQUEST=DEACTIVATE, the
console was already inactive.

Action: If you specified the wrong console, correct the error and retry the
request.

08 None Meaning: Program or environmental error. For REQUEST=DEACTIVATE, the
console has not been defined.

Action: If you specified the wrong console, correct the error and retry the
request. If the console should have been active, find out why it was not,
correct the problem, and rerun the program.

0C None Meaning: For an ACTIVATE request, the issuer does not have READ access to
the OPERCMDS resource name MVS.MCSOPER.console_name, where
console_name is the name of the console the user tried to activate.

Action: Correct the problem and rerun the program.

10 00 Meaning: System error. The input parameter list contains an error. This
reason code is for IBM diagnostic purposes only.

Action: Record the return and reason code and supply them to the
appropriate IBM support personnel.

10 08 Meaning: Program error. The specified console name is not valid. The reason
could be one of the following:

• The syntax of the console name is incorrect.
• You specified the console name of a system console.
• You specified a restricted console name.

Action: Correct any errors and rerun the program.

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 75

Table 10. Return and Reason Codes for the MCSOPER Macro (continued)

Return Code Reason Code Meaning and Action

10 0C Meaning: Program error. The specified console ID is not valid. The reason
could be one of the following:

• The syntax of the console ID is incorrect.
• You specified the console ID of a system console.
• You did not specify the console ID of an EMCS console.

Action: Correct any errors and rerun the program.

10 18 Meaning: Program error. The authority level specified in the OPERPARM
segment is not valid.

Action: Correct the problem and rerun the program.

10 1C Meaning: Program error. The message format specified in the OPERPARM
segment is not valid.

Action: Correct the problem and rerun the program.

10 20 Meaning: Program error. The message level specified in the OPERPARM
segment is not valid.

Action: Correct the problem and rerun the program.

10 24 Meaning: Program error. The message type specified in the OPERPARM
segment is not valid.

Action: Correct the problem and rerun the program.

10 28 Meaning: Program error. The log command response specified in the
OPERPARM segment is not valid.

Action: Correct the problem and rerun the program.

10 2C Meaning: System error. This reason code is used for IBM diagnostic purposes
only.

Action: Record the return and reason code and supply them to the
appropriate IBM support personnel.

10 30 Meaning: Program error. The key specified in the OPERPARM segment is not
valid.

Action: Correct the problem and rerun the program.

10 38 Meaning: Program error. The command association specified in the
OPERPARM segment is not valid.

Action: Correct the problem and rerun the program.

10 3C Meaning: Program error. The message scope specified in the OPERPARM
segment is not valid. One of the following errors exists:

• The calling program specified ALL with some other value
• A system name contains a syntax error
• A duplicate system name exists in the list of systems
• The specified number of systems is not valid.

Action: Correct the problem and rerun the program.

10 44 Meaning: You issued MCSOPER while in cross-memory mode. You cannot
issue MCSOPER if your program is in cross-memory mode.

Action: Correct the problem and rerun the program.

10 48 Meaning: Program error. The maximum dataspace size value in the
OPERPARM segment is not valid.

Action: Correct the problem and rerun the program.

14 00 Meaning: The limit for the number of EMCS consoles has been reached.

Action: Delete some EMCS consoles via the IEARELEC utility.

MCSOPER macro

76 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 10. Return and Reason Codes for the MCSOPER Macro (continued)

Return Code Reason Code Meaning and Action

14 08 Meaning: System error. This reason code is for IBM diagnostic purposes only.

Action: Record the return and reason code and supply them to the
appropriate IBM support personnel.

14 0C Meaning: Program or environmental error. There was an SAF routine error.

Action: Check your OPERPARM statement for incorrect entries. If you do not
find an error, record the return and reason code and supply them to the
appropriate IBM support personnel.

14 10 Meaning: System error. This reason code is for IBM diagnostic purposes only.

Action: Record the return and reason code and supply them to the
appropriate IBM support personnel.

14 14 Meaning: System error. This reason code is for IBM diagnostic purposes only.

Action: Record the return and reason code and supply them to the
appropriate IBM support personnel.

14 18 Meaning: Program error. The console ID you specified is not defined to the
sysplex at this time.

Action: Check to see that you specified the correct console ID. Determine
whether the console is active by issuing a DISPLAY EMCS command from a
console. Correct the problem and rerun the program.

14 1C Meaning: System error. This reason code is for IBM diagnostic purposes only.

Action: Record the return and reason code and supply them to the
appropriate IBM support personnel.

14 20 Meaning: System error. There was a data space initialization error. The
system could not create a data space because it could not obtain a data
space or ALET.

Action: This might be a performance or tuning problem. Contact your system
programmer.

14 24 Meaning: This reason code is for IBM diagnostic purposes only.

Action: Record the return and reason code and supply them to the
appropriate IBM support personnel.

14 28 Meaning: System error. Necessary storage could not be obtained for the
console.

Action: Attempt to rerun the program. If the error persists, record the return
and reason code and supply them to the appropriate IBM support personnel.

14 2C Meaning: System error. The task terminated because abends cannot be
performed any more.

Action: Try to run the program again. If the error persists, keep a record of
the return and reason code and contact the IBM Support Center for help.

18 None Meaning: Program error. The caller is not in supervisor state.

Action: Correct your program and resubmit it.

1C nnnnnnnn Meaning: For REQUEST=ACTIVATE, an ALESERV ADD request failed.
nnnnnnnn is the failed ALESERV ADD return code.

Action: See the ALESERV ADD return code information and correct the
problem.

Example 1
This example activates a console named TAPE1 with operator parameter information contained in an area
called PARMAREA, and values for MCSCSA and return and reason codes.

MDR CSECT
 STM 14,12,12(13)

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 77

 BALR 12,0
 USING *,12
 MCSOPER REQUEST=ACTIVATE,NAME=TAPE1,CONSID=IDAREA, X
 MSGECB=ALERT_ECB,TERMNAME=TERMINAL, X
 OPERPARM=PARMAREA, X
 MCSCSA=STATUS_AREA,MCSCSAA=MY_ALET, X
 RTNCODE=RETCODE,RSNCODE=REASON
 LM 14,12,12(13)
 BR 14
*
PARMAREA DS CL40
IDAREA DS CL4
ASCBPTR DS A
CLASSNAME DS CL8
TERMINAL DC CL8'CN3E0'
TAPE1 DC CL8'TAPE1'
RETCODE DS F
REASON DS F
ALERT_ECB DS A
 DS 0D
STATUS_AREA DS CL4
MY_ALET DS F
 IEZVG111
 END MDR

Example 2
This example deactivates a console named TAPE1 by failing the console.

MDR CSECT
 STM 14,12,12(13)
 BALR 12,0
 USING *,12
 MCSOPER REQUEST=DEACTIVATE,NAME=TAPE1,ABTERM=YES, X
 RTNCODE=RETCODE,RSNCODE=REASON
 LM 14,12,12(13)
 BR 14
*
TAPE1 DC CL8'TAPE1'
IDAREA DS CL4
RETCODE DS F
REASON DS F
 END MDR

Example 3
Activate an extended MCS console and specify that it is to receive the hardcopy message set.

TESTHC CSECT
TESTHC AMODE 31
TESTHC RMODE ANY
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
 STM R14,R12,12(R13)
 BALR R12,0
 USING *,R12
 MODID BRANCH=YES
*
 GETMAIN RU,LV=DATAEND Obtain storage for data areas
 LR R11,R1
 USING DATAAREA,R11

MCSOPER macro

78 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

 ST R13,SAVEAREA+4
 LA R15,SAVEAREA
 ST R15,8(R13)
 LR R13,R15
*
 LA R8,OPERDATA Address of operparm area
 USING MCSOPPRM,R8 IEZVG111 addressability
 XC MCSOPPRM(MCSOPLEN),MCSOPPRM Clear the operparm area

* Override the console attributes specified in the user profile
* of the security product by turning on bit MCSOVRDY in the MCSOP data
* area. Request the hardcopy attribute (to receive hardcopy message set).

 OI MCSOFLAG,MCSOVRDY Override console attributes
 OI MCSOMISC,MCSOHDCY Request the hardcopy attribute
*
 MODESET MF=(E,SUP) Change to supervisor state
* to issue MCSOPER ACTIVATE request

* Activate an extended MCS console whose name is contained in a field
* called HCCONSNM. The attributes of the extended MCS console are
* contained in a field called OPERDATA, mapped by IEZVG111. The
* console will have its messages delivered on a first-in-first-out
* basis. The system will post a message ECB called HCMECB.
* The address of the output area that contains the
* address of the MCS console status area is contained in a field
* called HCSTATUS. The address of the ALET that identifies the address
* or data space that contains the MCS console status area is
* contained in a field called HCSTATAL.
* The system returns the console ID in the field called HCCONSID.
* The system returns a return code and a reason code in fields
* called HCRETC and HCRNC, respectively.

 MCSOPER REQUEST=ACTIVATE, Activate the console X
 NAME=HCCONSNM, X
 TERMNAME=HCCONSNM, X
 OPERPARM=OPERDATA, X
 MSGDLVRY=FIFO, X
 MSGECB=HCMECB, X
 MCSCSA=HCSTATUS, X
 MCSCSAA=HCSTATAL, X
 CONSID=HCCONSID, X
 RTNCODE=HCRETC, X
 RSNCODE=HCRSNC, X
 MF=(E,MCSOPPL)
*
 MODESET MF=(E,PROB) Return to problem state
*
 L R13,4(R13)
 FREEMAIN RU,LV=DATAEND,A=(R11),SP=230
 LM R14,R12,12(R13)
 BR R14
*
HCCONSNM DC CL8'HCMCSOP '
SUP MODESET MODE=SUP,MF=L Parmlist for supervisor state
PROB MODESET MODE=PROB,MF=L Parmlist for problem state
*
DATAAREA DSECT
 DS 0F
SAVEAREA DS 18F
 DS 0F
OPERDATA DS CL(MCSOPLEN)
HCCONSID DS CL4
HCSTATUS DS A
HCSTATAL DS F
HCMECB DS F
HCRETC DS F
HCRSNC DS F
 MCSOPER MF=(L,MCSOPPL)
DATAEND EQU *-DATAAREA
 IEZVG111
 END TESTHC

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 79

MCSOPER - List form
Use the list form of the MCSOPER macro together with the execute form of the macro for applications that
require reentrant code. The list form of the macro defines an area of storage, which the execute form of
the macro uses to store the parameters.

Syntax
The list form of the MCSOPER macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

blank; One or more blanks must precede MCSOPER.

MCSOPER

␢ One or more blanks must follow MCSOPER.

,MF=(L,list addr) list addr: Symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string.

,MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the macro with the following exception:

,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)

Specifies the list form of the MCSOPER macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value that is valid on an
assembler DS pseudo-op. You can use this parameter to force boundary alignment of the parameter
list. If you do not code attr, the system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

MCSOPER - Modify form
The modify form of the MCSOPER macro changes parameters in the control parameter list that the system
created through the list form of the macro.

Syntax
The modify form of the MCSOPER macro is written as follows:

MCSOPER macro

80 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede MCSOPER.

MCSOPER

␢ One or more blanks must follow MCSOPER.

REQUEST=ACTIVATE See Table 8 on page 72 for parameters available with REQUEST services.

REQUEST=DEACTIVATE

 ,NAME=opername addr opername addr: RX-type address or register (2) - (12).

 ,CONSID=console id addr console id addr: RX-type address or register (2) - (12).

 ,ABTERM=NO Default: ABTERM=NO

 ,ABTERM=YES

 ,TERMNAME=terminal name addr terminal name addr: RX-type address or register (2) - (12).

 ,OPERPARM=parm area addr parm area addr: RX-type address or register (2) - (12).

 ,MCSCSA=csa addr csa addr: RX-type address or register (2) - (12).

 ,MCSCSAA=alet addr alet addr: RX-type address or register (2) - (12).

 ,MSGDLVRY=FIFO See Table 9 on page 72 for parameters valid with MSGDLVRY services.

 ,MSGDLVRY=SEARCH

 ,MSGDLVRY=NONE

,MSGECB=ecb addr ecb addr: RX-type address or register (2) - (12).

 ,QLIMIT=qlimit addr qlimit addr: RX-type address or register (2) - (12).

 Default: QLIMIT=2147483647

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 81

Syntax Description

 ,ALERTECB=alert addr alert addr: Rx-type address or register (2) - (12).

 ,ALERTECB=0 Default: ALERTECB=0

 ,ALERTPCT=percent addr percent addr: Rx-type address or register (2) - (12).

 ,ALERTPCT=percent num percent num: Number from 0 to 100. Default: ALERTPCT=100

 ,QRESUME=qresume addr qresume addr: RX-type address or register (2) - (12).

 ,QRESUME=qresume num qresume num: Number from 0 to 99. Default: QRESUME=0

 ,RTNCODE=ret code ret code: RX-type address or register (2) - (12).

 ,RSNCODE=reason code reason code: Rx-type address or register (2) - (12).

,MF=(M,list addr,COMPLETE) list addr: RX-type address or register (2) - (12).

,MF=(M,list addr,NOCHECK) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the macro with the following exception:

,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Specifies the modify form of the MCSOPER macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for required parameters and
supply optional parameters that are not specified. NOCHECK specifies that the system does not check
for required parameters and does not supply the optional parameters that you did not specify.

MCSOPER - Execute form
Use the execute form of the MCSOPER macro together with the list form of the macro for applications that
require reentrant code. The execute form of the macro stores the parameters into the storage area
defined by the list form.

Syntax
The execute form of the MCSOPER macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

MCSOPER macro

82 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

␢ One or more blanks must precede MCSOPER.

MCSOPER

␢ One or more blanks must follow MCSOPER.

REQUEST=ACTIVATE See Table 8 on page 72 for parameters available with REQUEST services.

REQUEST=DEACTIVATE

 ,NAME=opername addr opername addr: RX-type address or register (2) - (12).

 ,CONSID=console id addr console id addr: RX-type address or register (2) - (12).

 ,ABTERM=NO Default: ABTERM=NO

 ,ABTERM=YES

 ,TERMNAME=terminal name addr terminal name addr: RX-type address or register (2) - (12).

 ,OPERPARM=parm area addr parm area addr: RX-type address or register (2) - (12).

 ,MCSCSA=csa addr csa addr: RX-type address or register (2) - (12).

 ,MCSCSAA=alet addr alet addr: RX-type address or register (2) - (12).

 ,MSGDLVRY=FIFO See Table 9 on page 72 for parameters valid with MSGDLVRY services.

 ,MSGDLVRY=SEARCH

 ,MSGDLVRY=NONE

,MSGECB=ecb addr ecb addr: RX-type address or register (2) - (12).

 ,QLIMIT=qlimit addr qlimit addr: RX-type address or register (2) - (12).

 Default: QLIMIT=2147483647

 ,ALERTECB=alert addr alert addr: Rx-type address or register (2) - (12).

MCSOPER macro

Chapter 8. MCSOPER - Manage extended MCS operations 83

Syntax Description

 ,ALERTECB=0 Default: ALERTECB=0

 ,ALERTPCT=percent addr percent addr: Rx-type address or register (2) - (12).

 ,ALERTPCT=percent num percent num: Number from 0 to 100. Default: ALERTPCT=100

 ,QRESUME=qresume addr qresume addr: RX-type address or register (2) - (12).

 ,QRESUME=qresume num qresume num: Number from 0 to 99. Default: QRESUME=0

 ,RTNCODE=ret code ret code: RX-type address or register (2) - (12).

 ,RSNCODE=reason code reason code: Rx-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE) list addr: RX-type address or register (2) - (12).

,MF=(E,list addr,NOCHECK) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the MCSOPER macro with the following
exception:

,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the MCSOPER macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for required parameters and
supply optional parameters that are not specified. NOCHECK specifies that the system does not check
for required parameters and does not supply the optional parameters that you did not specify.

MCSOPER macro

84 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 9. MCSOPMSG - Retrieve MCS operator
messages

Description
MCSOPMSG retrieves messages queued to an extended MCS console, and returns message information in
a message data block (MDB). “Retrieving” a message more specifically means that MCSOPMSG returns
the address of the MDB that contains the message and information pertaining to that message.
MCSOPMSG also resumes queuing to a message storage area if queuing was previously suspended.

Use MCSOPMSG to retrieve messages delivered to the EMCS console that has been activated using the
MCSOPER macro. For more information on MCSOPMSG, see z/OS MVS Programming: Authorized
Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state and any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Must be in the primary address space

Programming requirements
• The console for which you are issuing this macro must already be activated.
• If you specified MSGDLVRY=NONE on the MCSOPER macro for a particular console, do not issue

MCSOPMSG for that console.
• Only the address space that activated the extended console can issue MCSOPMSG for that console.
• If you specified MSGDLVRY=FIFO for MCSOPER and you are running in a multi-task environment,

ensure that only one task is currently performing MCSOPMSG for the console at any time.
• You can use the CMDRESP, CART, and MASK parameters only if you activate the console with MCSOPER

MSGDLVRY=SEARCH.
• You must include mapping macro IEAVM105. You can use mapping macro IEAVM105 to access fields in

the message data block (MDB), which is returned by MCSOPMSG. Refer to z/OS MVS Data Areas in the
z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary) for
the format and content of this information.

• IBM suggests that you code a loop around the MCSOPMSG invocation, so that the MCSOPMSG macro
can retrieve messages that are currently queued to this EMCS console. Exit the loop when there are no
more messages (MCSOPMSG RC=8,RSN=0).

MCSOPMSG macro

© Copyright IBM Corp. 1988, 2020 85

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Restrictions
None.

Input register information
Before issuing the MCSOPMSG macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

If GPR 15 contains a return code of 08, 10, or 14, GPR 0 contains a reason code; otherwise, GPR 0
contains zero.

1
Address of the MDB if REQUEST=GETMSG was specified and the return code is zero or four.
Otherwise, GPR 1 is used as a work register by the system.

2-14
Unchanged

15
Return code

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0

Used as a work register by the system
1

If your program is in AR mode and GPR 1 contains the address of an MDB, AR 1 contains the ALET for
the MDB; otherwise, AR 1 is used as work register by the system

2-14
Unchanged

15
Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
The standard form of the MCSOPMSG macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

MCSOPMSG macro

86 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

␢ One or more blanks must precede MCSOPMSG.

MCSOPMSG

␢ One or more blanks must follow MCSOPMSG.

REQUEST=GETMSG See Table 11 on page 87 for parameters valid with REQUEST services.

REQUEST=RESUME

 ,CMDRESP=NO Default: CMDRESP=NO

 ,CMDRESP=YES

 ,CART=cart addr cart addr: RX-type address or register (2) - (12).

 ,MASK=mask addr mask addr: RX-type address or register (2) - (12).

 ,CONSID=console id addr console id addr: RX-type address or register (2) - (12).

 ,NAME=console name addr console name addr: RX-type address or register (2) - (12).

 ,RTNCODE=return code addr return code addr: RX-type address or register (2) - (12).

 ,RSNCODE=reason code addr reason code addr: RX-type address or register (2) - (12).

Table 11. Parameters valid with REQUEST=services

Parameters REQUEST=GETMSG REQUEST=RESUME

CMDRESP optional not valid

CART optional not valid

MASK optional not valid

NAME either NAME or CONSID (not
both)

either NAME or CONSID (not
both)

CONSID either NAME or CONSID (not
both)

either NAME or CONSID (not
both)

RTNCODE optional optional

RSNCODE optional optional

MCSOPMSG macro

Chapter 9. MCSOPMSG - Retrieve MCS operator messages 87

Parameters
The parameters are explained as follows:

REQUEST=GETMSG
REQUEST=RESUME

Specifies the MCSOPMSG function you want to perform.

GETMSG retrieves a queued message from storage, and RESUME resumes message queuing.

,CMDRESP=NO
,CMDRESP=YES

Specifies the type of message search. NO indicates that MCSOPMSG will obtain the next message.
YES indicates that MCSOPMSG will return the next command response message. CMDRESP is valid
only with REQUEST=GETMSG, and is meaningful only if you specified MSGDLVRY=SEARCH on the
MCSOPER macro.

,CART=cart addr
Specifies the address of an 8-character field that contains the name of the CART (command and
response token) to use to search for the next message. A CART associates a command with a
response. You can specify CART only if you specify CMDRESP=YES and you specified
MSGDLVRY=SEARCH on MCSOPER.

,MASK=mask addr
Specifies the address of an 8-character field that contains the mask that MCSOPMSG will compare
with the CART using the logical AND instruction. Specify MASK only if you specified CART.

,CONSID=console id addr
Specifies the address of the 4-byte console ID. CONSID or NAME is required, but both may not be
specified.CONSID is mutually exclusive with NAME.

,NAME
Specifies the address of the 8-byte field containing the console name. NAME or CONSID is required,
but both may not be specified. NAME is mutually exclusive with CONSID.

,RTNCODE=return code addr
Specifies the location where the system is to store the return code. The return code is also in GPR 15.

,RSNCODE=reason code addr
Specifies the location where the system is to store the reason code. The reason code is also in GPR 0.

ABEND codes
None.

Return and reason codes
When control returns from MCSOPMSG, GPR 15 (and return code addr, if you coded RTNCODE) contains
one of the following hexadecimal return codes and GPR 0 (and reason code addr, if you coded RSNCODE)
contains one of the following hexadecimal reason codes.

Table 12. Return and Reason Codes for the MCSOPMSG Macro

Return Code Reason Code Meaning and Action

00 None Meaning: MCSOPMSG completed successfully. If REQUEST=GETMSG was
specified, MCSOPMSG retrieved a message; if REQUEST=RESUME was
specified, message queuing resumed.

Action: None

04 None Meaning: Program error. MCSOPMSG retrieved a message, but either
message queuing is disabled (if you specified REQUEST=GETMSG) or
message queuing was already enabled (if you specified REQUEST=RESUME).

Action: For REQUEST=GETMSG, continue until all messages have been
retrieved. Then, attempt a REQUEST=RESUME to allow the system to send
messages to that console again.

MCSOPMSG macro

88 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 12. Return and Reason Codes for the MCSOPMSG Macro (continued)

Return Code Reason Code Meaning and Action

08 00 Meaning: Program error. For REQUEST=GETMSG, MCSOPMSG attempted to
retrieve a message, but there are no messages available for the specified
search criteria. Note that this is the normal, expected, return and reason
code issued when MCSOPMSG retrieved all messages currently queued to
this EMCS console.

Action: None if all messages have been retrieved or change the search
criteria and reissue MCSOPMSG.

08 01 Meaning: Environmental error. For REQUEST=RESUME, queueing is not
resumed because the message queue is being rebuilt.

Action: If you specified ALERTECB=alert address on the MCSOPER request to
define this extended MCS console, the calling program will receive control
when the queue has been rebuilt. Either add this parameter to the MCSOPER
specification and provide an ECB to be posted, or retry the request at a later
time.

0C None Meaning: Program error or environmental error. MCSOPMSG did not retrieve
a message. Message queuing is disabled, because either the queue limit or
the memory limit has been reached. Either the dataspace has simply filled up
with messages, or you specified search criteria on the CMDRESP, CART, or
MASK parameters and the dataspace is filled with messages which do not
match your search criteria.

Action: If you specified search criteria on REQUEST=GETMSG, specify
different search criteria, or specify only the CONSID parameter (in order to
clear out the messages which do not match your search criteria). If you
specified only the CONSID parameter, the dataspace is full; issue
REQUEST=RESUME on the MCSOPMSG macro to start reading again.

10 01 Meaning: Program error. The specified console is not active.

Action: Verify that you specified the correct console. If so, take steps to
activate the console and retry the request. If not, correct the error and retry
the request.

10 02 Meaning: Program or environmental error. The specified console was not
activated by this address space.

Action: Ensure that you specified the correct console and that you issued
MCSOPMSG from the correct address space. Correct the problem and retry
the request.

14 01 Meaning: Program error. The parameter list contains an incorrect acronym or
an incorrect version indicator.

Action: Correct the problem and retry the request.

14 02 Meaning: Program error. The caller is not in AR mode.

Action: Correct the problem and retry the request.

14 03 Meaning: Environmental error. Another MCSOPMSG request is in progress for
this console.

Action: This duplication can happen only if you specified MSGDLVRY=FIFO
on the initial MCSOPER request. Either wait for the current request to
complete and then retry, or do not specify MSGDLVRY=FIFO when you issue
the MCSOPER macro.

14 04 Meaning: Program error. The extended console was activated with
MSGDLVRY=FIFO, but MCSOPMSG was issued with the CMDRESP parameter.

Action: Issue MCSOPMSG without the CMDRESP parameter.

14 05 Meaning: Program error. The caller is not in supervisor state.

Action: Reissue MCSOPMSG in supervisor state.

18 None Meaning: System error. The service ended abnormally.

Action: Record the return code and supply it to the appropriate IBM support
personnel.

MCSOPMSG macro

Chapter 9. MCSOPMSG - Retrieve MCS operator messages 89

Example
Obtain a message for a console. Request message queuing to resume using a parameter list named
DATA. The parameter list was created using the list form of the macro.

MDR CSECT
R12 EQU 12
R13 EQU 13
R14 EQU 14
 STM R14,R12,12(R13) 0000600
 BALR R12,0
 USING *,R12
 MCSOPMSG REQUEST=RESUME,NAME=CONSNM, X
 MF=(E,DATA,COMPLETE)
 LM R14,R12,12(R13)
 BR R14
 DROP R12

* CONSTANTS AND DATA *

 CONSNM DS CL8
 MCSOPMSG MF=(L,DATA)
 IEAVM105
 END MDR

MCSOPMSG - List form
Use the list form of the MCSOPMSG macro together with the execute form of the macro for applications
that require reentrant code. The list form of the macro defines an area of storage, which the execute form
of the macro uses to store the parameters.

Syntax
The list form of the MCSOPMSG macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede MCSOPMSG.

MCSOPMSG

␢ One or more blanks must follow MCSOPMSG.

,MF=(L,list addr) list addr: Symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string.

,MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the macro with the following exception:

MCSOPMSG macro

90 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)

Specifies the list form of the MCSOPMSG macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value that is valid on an
assembler DS pseudo-op. You can use this parameter to force boundary alignment of the parameter
list. If you do not code attr, the system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

MCSOPMSG - Execute form
Use the execute form of the MCSOPMSG macro together with the list form of the macro for applications
that require reentrant code. The execute form of the macro stores the parameters into the storage area
defined by the list form.

Syntax
The execute form of the MCSOPMSG macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede MCSOPMSG.

MCSOPMSG

␢ One or more blanks must follow MCSOPMSG.

REQUEST=RESUME See Table 13 on page 92 for parameters valid with REQUEST services.

REQUEST=GETMSG

 ,CMDRESP=NO Default: CMDRESP=NO

 ,CMDRESP=YES

 ,CART=cart addr cart addr: RX-type address or register (2) - (12).

 ,MASK=mask addr mask addr: RX-type address or register (2) - (12).

,CONSID=console id addr console id addr: RX-type address or register (2) - (12).

MCSOPMSG macro

Chapter 9. MCSOPMSG - Retrieve MCS operator messages 91

Syntax Description

,NAME=console name addr console name addr: RX-type address or register (2) - (12).

 ,RTNCODE=return code addr return code addr: RX-type address or register (2) - (12).

 ,RSNCODE=reason code addr reason code addr: RX-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE) list addr: RX-type address or register (2) - (12).

,MF=(E,list addr,NOCHECK) Default: COMPLETE

Table 13. Parameters valid with REQUEST=services for the execute form of the macro

Parameters REQUEST=GETMSG REQUEST=RESUME

CMDRESP optional not valid

CART optional not valid

MASK optional not valid

NAME either NAME or CONSID (not
both)

either NAME or CONSID (not
both)

CONSID either NAME or CONSID (not
both)

either NAME or CONSID (not
both)

RTNCODE optional optional

RSNCODE optional optional

MF required required

Parameters
The parameters are explained under the standard form of the MCSOPMSG macro with the following
exception:

,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the MCSOPMSG macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for required parameters and
supply optional parameters that you did not specify.

NOCHECK specifies that the system does not check for required parameters and does not supply the
optional parameters that you did not specify.

MCSOPMSG - Modify form
Use the modify form of the MCSOPMSG macro together with the list and execute forms of the macro for
service routines that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use the execute form to
call the service.

MCSOPMSG macro

92 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax
The modify form of the MCSOPMSG macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede MCSOPMSG.

MCSOPMSG

␢ One or more blanks must follow MCSOPMSG.

REQUEST=GETMSG See Table 14 on page 93 for parameters valid with REQUEST services.

REQUEST=RESUME

 ,CMDRESP=NO Default: CMDRESP=NO

 ,CMDRESP=YES

 ,CART=cart addr cart addr: RX-type address or register (2) - (12).

 ,MASK=mask addr mask addr: RX-type address or register (2) - (12).

,NAME=console name addr console name addr: RX-type address or register (2) - (12).

,CONSID=console id addr console id addr: RX-type address or register (2) - (12).

 ,RTNCODE=return code addr return code addr: RX-type address or register (2) - (12).

 ,RSNCODE=reason code addr reason code addr: RX-type address or register (2) - (12).

,MF=(M,list addr,COMPLETE) list addr: RX-type address or register (2) - (12).

,MF=(M,list addr,NOCHECK) Default: COMPLETE

Table 14. Parameters valid with REQUEST= services for the modify form of the macro

Parameters REQUEST=GETMSG REQUEST=RESUME

CMDRESP optional not valid

CART optional not valid

MCSOPMSG macro

Chapter 9. MCSOPMSG - Retrieve MCS operator messages 93

Table 14. Parameters valid with REQUEST= services for the modify form of the macro (continued)

Parameters REQUEST=GETMSG REQUEST=RESUME

MASK optional not valid

NAME either NAME or CONSID (not
both)

either NAME or CONSID (not
both)

CONSID either NAME or CONSID (not
both)

either NAME or CONSID (not
both)

RTNCODE optional optional

RSNCODE optional optional

MF required required

Parameters
The parameters are explained under the standard form of the macro with the following exception:

,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Specifies the modify form of the MCSOPMSG macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for required parameters and
supply optional parameters that you did not specify.

NOCHECK specifies that the system does not check for required parameters and does not supply the
optional parameters that you did not specify.

MCSOPMSG macro

94 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 10. MGCR — Issue an internal START or
REPLY command

Description
Note: IBM recommends that you use the MGCRE macro rather than MGCR.

The MGCR macro starts a program or subsystem from within your program and passes 31 bits of
information, in the form of a token, to the started program. The MGCR macro can also issue a reply to a
WTOR macro. In other words, use MGCR to issue an internal START or REPLY command.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state and PSW key 0-7

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Must be in the primary address space

Programming requirements
• The command buffer can be located in 24-bit or 31-bit addressable storage.
• A program token is meaningful only with the START command.

Restrictions
You can use MGCR to issue only START or REPLY commands. You must use MGCRE for any other
commands.

Input register information
Before calling the MGCR macro, the caller must ensure that the following general purpose registers
(GPRs) contain the specified information:
Register

Contents
0

Zero
1

A pointer to a parameter list mapped by IEZMGCR.

Output register information
When control returns to the caller, the GPRs contain:

MGCR macro

© Copyright IBM Corp. 1988, 2020 95

Register
Contents

0
Unchanged

1
Used as a work register by the system

2-14
Unchanged

15
For the START command, GPR 15 contains a return code; otherwise, GPR 15 is used as a work
register by the system.

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
The MGCR macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede MGCR.

MGCR

␢ One or more blanks must follow MGCR.

command-buffer-address command-buffer-address: RX-type address or register (1) or (2) - (12).

Parameters
The parameters are explained as follows:

command-buffer-address
Specifies the address of a command buffer mapped by the IEZMGCR macro. The command buffer
must contain the following information:

Name Length Contents

flags1 1 byte If bit 0 is one, then flags2 must contain meaningful information.
Bits 1-7 must be zero.

length 1 byte Length of the buffer up to but not including the program token
field.

MGCR macro

96 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Name Length Contents

flags2 2 bytes X‘0000’ - neither a program token nor a user
security token are present.
X‘0800’ - a program token is present.
X‘0008’ - a user security token is present.
X‘0808’ - both a program token and a user
security token are present.

text up to 126 bytes Command, operands, and optional comments as follows:
command operands comments

ptoken 31 bits right-justified An optional field containing any desired information, such as an
identifier that indicates the issuing program.

utoken 80 bytes Indicates which user security token the system takes to use for
a command issued from an MCS console. The possibilities are
console, CTAS, *FAIL, or “undefined-user” ACEE.

ABEND codes
MGCR might abnormally terminate with abend code X'D22'. See z/OS MVS System Codes for an
explanation and programmer response for this code.

Return and reason codes
Register 15 contains one of the following hexadecimal return codes as the result of a START command.
No return codes result from the REPLY command.

Table 15. Return Codes for the START Command

Return Code Meaning and Action

00 Meaning: The START command processed successfully. Register 0 contains the right-justified ASID of
the started address space.

Action: None.

04 Meaning: A START command was suppressed by the SSI or a command exit. Register zero does not
contain a valid ASID; instead it contains all zeros.

Action: None.

08 Meaning: Environmental error. The START command failed for one of the following reasons:

• The START command specified a console that is not authorized for entering the command
• The system did not allow the address space to be created at this time due to a heavy system

workload
• There is not enough storage available to schedule the command
• The system tried to obtain more address spaces than the maximum number supported.

Action: Check to see if the START command specified a console that is not authorized for entering the
command, and correct the situation if necessary. Next, retry the request. If the problem persists, record
the return code and supply it to the appropriate IBM support personnel.

Example
Issue an internal REPLY command in response to an action message. Security tokens are not in use.

ISSUMGCR EQU *
 XC MGCRPL(MGCRLTH),MGCRPL Clear the parameter list
 MVC MGCRTEXT(L'TXTINSRT),TXTINSRT Move in the reply buffer
 MVC REPLY,CTXTRPID Insert the reply ID
 LA REG1,(MGCRTEXT-MGCRPL)+L'TXTINSRT Get MGCRPL length
 STC REG1,MGCRLGTH Save length in the MGCRPL
 SR REG0,REG0 Clear register zero
 MGCR MGCRPL Issue the command

MGCR macro

Chapter 10. MGCR — Issue an internal START or REPLY command 97

 .
 .
 .
 IEZMGCR DSECT=NO Mapping of MGCR parameter list
 ORG MGCRTEXT
COMMAND DS CL6 Storage for REPLY verb
REPLY DS CL2 Reply ID
REPLYMSG DS CL3 WTOR response
 ORG

MGCR macro

98 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 11. MGCRE — Issue internal commands

Description
MGCRE allows a program to issue commands without operator intervention. For example, an application
could issue a VARY or CONTROL command by using MGCRE, which might satisfy an outstanding action
message.

The authority of the issuer to issue the command is validated based on the information provided on the
macro invocation. Priority is given to the UTOKEN or ENVRIN data structures, either the data provided on
the macro invocation, or lacking that, the security data associated with the issuer.

If OPERCMDS is not active, or a decision cannot be made based on the established definitions, then the
authority is determined based on the authority of the console as provided on the AUTHCMDX keyword, or
lacking that, the required CONSID or CONSNAME keywords.

Note: You can still use the MGCR macro to issue internal START or REPLY commands. However, IBM
recommends using MGCRE.

See z/OS MVS Programming: Authorized Assembler Services Guide for more information about using the
MGCRE macro. See MVS Commands Installation Exit in z/OS MVS Installation Exits for more information
about the MVS commands installation exit. The MVS commands installation exit and subsystems can
review submitted commands.

MGCRE has a list and an execute form, but no standard form.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state and PSW key 0-7

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: Any

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
• It is possible that a console associated with a command has a CMDSYS parameter on a control

command in effect. This condition may cause the command to be sent to another system in a sysplex.
• If you issue MGCRE from a program or an address space controlling a console, CMDSYS takes effect.
• The caller cannot have an EUT FRR established.

MGCRE macro

© Copyright IBM Corp. 1988, 2020 99

Input register information
Before issuing the MGCRE macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the system. If register 15 contains a return code of 0, register 0 contains
the ASID of the started address space.

2-13
Unchanged

14
Used as a work register by the system

15
Used as a work register by the system, unless a START, MOUNT, or LOGON command was suppressed
by the SSI or an MVS commands installation exit. In that case, register 15 contains a return code.

Performance implications
None.

MGCRE - List form
Use the list form of the MGCRE macro together with the execute form of the macro. The list form of the
macro defines an area of storage, which the execute form of the macro uses to store the parameters.

Syntax
The list form of the MGCRE macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢
 One or more blanks must precede MGCRE.

MGCRE

␢ One or more blanks must follow MGCRE.

,PLISTVER=MAX

,PLISTVER=plistver plistver: 1-3 Default: 1

MGCRE macro

100 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

,MF=L

Parameters
The parameters are explained as follows:

,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list that the system
generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and with the same value on all
of the macro forms. The values are:
MAX

Use PLISTVER=MAX if you want the parameter list to be the largest size currently possible. The
size might grow from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, it is recommended that you always specify PLISTVER=MAX on
the list form of the macro. Specifying PLISTVER=MAX ensures that the list form parameter list is
always long enough to hold all the parameters you might specify on the execute form and ensures
that the parameter list does not overwrite nearby storage.

1 - 2
Use PLISTVER=1 or PLISTVER=2 if you use the base set of parameters. If you omit PLISTVER, the
value of 1 is used.

3
Use PLISTVER=3 if you use ENVRIN.

,MF=L
Specifies the list form of MGCRE.

MGCRE - Execute form
Use the execute form of the MGCRE macro together with the list form of the macro. The execute form of
the macro stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the MGCRE macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␣
 One or more blanks must precede MGCRE.

MGCRE

MGCRE macro

Chapter 11. MGCRE — Issue internal commands 101

Syntax Description

␣ One or more blanks must follow MGCRE.

TEXT=text addr text addr: RX-type address or address in register (2) - (12).

,CONSID=console id console id: RX-type address or register (2) - (12).

,CONSNAME=console name console name: RX-type address or address in register (2) - (12).

 ,CMDFLAG=NOHCPY

 ,CMDFLAG=TSO (NOT a programming interface)

 ,TOKEN=token token: RX-type address or register (2) - (12).

 ,UTOKEN=utoken addr utoken addr: RX-type address or address in register (2) - (12).

 ,CART=cart cart: RX-type address or address in register (2) - (12).

 ,ENVRIN=envrin addr envrin addr: RX-type address or address in register (2) - (12).

 ,AUTHCMDX=authcmdx addr authcmdx addr: RX-type address or address in register (2) - (12).

 ,PLISTVER=plistver plistver: 1 - 3.

,MF=(E, list addr) list addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

TEXT=text addr
Specifies the required input field that contains the address of a command area. If a register is used, it
should contain the address of the command area. The first 2 bytes of this command area contain the
length of the command. The command text immediately follows this 2-byte area, and can be up to
126 characters. The command must be in storage addressable by the caller at the time the caller
issues MGCRE.

Operator commands may contain the following characters:

• A to Z
• 0 to 9
• ' # $ & () * + , - . / ¢ < | ! ; ¬ % _ > ? : @ " =

MGCRE macro

102 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

The system translates characters that are not valid into null characters (X'00').

To code: Specify the RX-type address of a pointer field that contains the address, or the register (2) -
(12), of a particular field.

,CONSID=console id
,CONSNAME=console name

CONSID specifies the required input field that contains the 4-byte ID of the console that issued the
command specified in the TEXT parameter. If a register is used, it should contain the 4-byte console
ID. If you specify CONSID, do not specify CONSNAME.

CONSNAME specifies the required input field that contains the console name. The console name is a
2- to 8-byte character string. If a register is used, it should contain the address of an 8-byte field
containing the console name. This name identifies the console that issued the command specified in
the TEXT parameter. The console name is left-justified and padded with blanks. If you specify
CONSNAME, do not specify CONSID.

You must specify either CONSID or CONSNAME. Use the DISPLAY CONSOLES command to obtain
these values.

Note: When you specify a console ID of X'00000000' on the CONSID parameter, the issuer receives
MASTER command authority. Entries in the hardcopy log for the command have the name INTERNAL
associated with them.

,CMDFLAG=NOHCPY
Requests that no copy of the command appear in the hardcopy log.

Note:

• If you do not specify this option, the system logs the command in the hardcopy log.

– If a ROUTE command is being issued, the command to be routed is also logged.
• If this option is specified, the system does not log the command in the hardcopy log.

– If a ROUTE command is being issued, the command to be routed is also not logged in the
hardcopy log.

,CMDFLAG=TSO
NOT a programming interface. Causes the CONSID value to be treated as a TSO identifier instead of a
console ID.

Note: This option allows TSO to use MGCRE instead of MGCR.

,TOKEN=token
Specifies the optional input field that contains a 31-bit right-justified program token for the command
specified in the TEXT parameter. If a register is used, it should contain a 31-bit right justified token.
Any 4-byte value is valid as input. TOKEN is optional.

,UTOKEN=utoken addr
Specifies the optional input field that contains the address of a security token for the command
identified in the TEXT parameter. If a register is used, it should contain the address of a data area for
the UTOKEN. You can obtain the UTOKEN value by using the RACROUTE REQUEST=TOKENXTR,
RACROUTE REQUEST=VERIFYX, or RACROUTE REQUEST=TOKENBLD macros. See z/OS Security
Server RACROUTE Macro Reference for more information on the RACROUTE macros. Command
processing passes the UTOKEN to SAF (System Authorization Facility) to validate the authority of the
issuer. The UTOKEN should be that of the user on whose behalf the command is issued. UTOKEN is an
optional parameter; if it is omitted, the address space's UTOKEN is used.

,CART=cart
Specifies the optional input field that contains the address of the 8-byte field that contains a
command and response token. If a register is used, it should contain the address of a data area
containing the command and response token. Your installation can use any value as a CART. The
program that issues the command can tag each command with this token, which associates the
command with its response. CART is an optional parameter.

MGCRE macro

Chapter 11. MGCRE — Issue internal commands 103

,ENVRIN=envrin addr
Specifies the optional field that contains the address of the ENVR data structure for the command
identified in the TEXT parameter. The ENVR object should be one that was obtained on the same
system where the MGCRE macro is issued or unpredictable results may occur. If ENVRIN is specified,
then UTOKEN must also be specified.

,AUTHCMDX=authcmdx addr
Specifies the optional input field that contains the address of a data structure depicting the issuer's
authority. The data is formatted like the CMDXAUTH 16 bit structure.

1000000000000000 - Master Authority
0100000000000000 - Sys Authority
0010000000000000 - IO Authority
0001000000000000 - Cons Authority
0000000000000000 - Info Authority

,PLISTVER=plistver
Specifies the version of the macro. PLISTVER determines which parameter list that the system
generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and with the same value on all
of the macro forms. The values are:
1 - 2

Use PLISTVER=1 or PLISTVER=2 if you use the base set of parameters. If you omit PLISTVER, the
value of 1 is used.

3
Use PLISTVER=3 if you use ENVRIN.

,MF=(E,list addr)
Specifies the execute form of MGCRE. This form generates the code to store the parameters into the
parameter list and execute the MGCRE macro.

list addr specifies the area that the system uses to store the parameters.

ABEND codes
MGCRE might abnormally terminate with abend code X'D22'. See z/OS MVS System Codes for an
explanation and programmer response for this code.

Return and reason codes
Register 15 contains one of the following hexadecimal return codes as the result of a START, MOUNT, or
LOGON command. No return codes result from any other commands.

Table 16. MGCRE Return Codes

Return Code Meaning and Action

00 Meaning: The START command processed successfully. Register 0 contains the right-justified ASID of
the started address space.

Action: None.

04 Meaning: A START, MOUNT, or LOGON command was suppressed by the SSI or an MVS commands
installation exit. Register 0 does ot contain a valid ASID; instead it contains all zeros.

Action: None.

MGCRE macro

104 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 16. MGCRE Return Codes (continued)

Return Code Meaning and Action

08 Meaning: Environmental error. The START command failed for one of the following reasons:

• The START command specified a console that is not authorized for entering the command
• The system did not allow the address space to be created at this time due to a heavy system

workload
• There is not enough storage available to schedule the command
• The system tried to obtain more address spaces than the maximum number supported.

Action: Check to see if the START command specified a console that is not authorized for entering the
command, and correct the situation if necessary. Next, retry the request. If the problem persists, record
the return code and supply it to the appropriate IBM support personnel.

Example
Create the list form of MGCRE, modify it using the execute form of MGCRE, and issue a display consoles
command associated with a console named CON4.

DOMTST CSECT
R2 EQU 2
 USING *,R12
 LA R2,CMD R2 POINTS TO THE COMMAND AREA
 MGCRE MF=(E,LAREA),TEXT=(R2),CMDFLAG=(NOHCPY),CONSNAME=MYCON
CMD DS 0CL6 THE COMMAND AREA
CMDLEN DC XL2'4' LENGTH OF COMMAND
CMDCOMM DC CL4'D C ' THE ACTUAL COMMAND
MYCON DC CL8'CON4 ' NAME OF ISSUING CONSOLE
LAREA MGCRE MF=L LIST FORM OF MGCRE
 END

MGCRE macro

Chapter 11. MGCRE — Issue internal commands 105

MGCRE macro

106 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 12. MIHQUERY — Retrieve MIH time interval

Description
Use the MIHQUERY macro to retrieve the current MIH time interval setting for a device.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state and PSW key 0-7

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary or access register

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: The caller may hold locks, but is not required to hold any.

Control parameters: Must reside in the primary address space

Programming requirements
Before issuing the MIHQUERY macro, you must pin the UCB you specify in the macro. The UCB identifies
the device. Pinning the UCB ensures that a reconfiguration request does not delete or reuse the UCB
between the time you determine the UCB address and the time the MIHQUERY service uses the address.

For more information about pinning, see z/OS MVS Programming: Authorized Assembler Services Guide.

Restrictions
None.

Input register information
Before issuing the MIHQUERY macro, the caller must ensure that the following general purpose register
(GPR) contains the specified information:
Register

Contents
13

Address of an 18-word save area that must reside in the primary address space.

Output register information
When control returns to the caller of the MIHQUERY macro, the GPRs contain:
Register

Contents
0

Reason code

MIHQUERY macro

© Copyright IBM Corp. 1988, 2020 107

1
Address of the MIHQUERY control parameters

2-13
Unchanged

14
Return address

15
Return code

When control returns to the caller of the MIHQUERY macro, the access registers (ARs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
To ensure that the system can detect missing interrupts, do not issue this macro more than once per
second. Issuing the macro more than once per second might also interfere with DISPLAY, SET IOS, and
SETIOS commands.

Syntax
The standard form of the MIHQUERY macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede MIHQUERY

MIHQUERY

␢ One or more blanks must follow MIHQUERY

UCBPTR=ucb addr ucb addr: RS-type address, or address in register (2) - (12).

,TIMEINT=time interval time interval: RS-type address, or address in register (2) - (12).

 ,RETCODE=return code return code: RS-type address, or address in register (2) - (12).

MIHQUERY macro

108 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ,RSNCODE=reason code reason code: RS-type address, or address in register (2) - (12).

Parameters
The parameters are explained as follows:

UCBPTR=ucb addr
A required parameter that specifies the fullword containing the address of the UCB or a copy of the
UCB for the device whose MIH time interval you are requesting. To determine the UCB address, use
the UCBSCAN or UCBLOOK macro, described in z/OS MVS Programming: Authorized Assembler
Services Guide.

,TIMEINT=time interval
A required parameter that specifies the fullword output field where the MIHQUERY service is to place
the hexadecimal value of the MIH time interval, reported in seconds.

,RETCODE=return code
An optional parameter that specifies the location where the system is to place the return code. The
return code is also in register 15.

,RSNCODE=reason code
An optional parameter that specifies the location where the system is to place the reason code. The
reason code is also in register 0.

ABEND codes
Any errors related to state, key, and addressing requirements cause an abend X'2C6'. See z/OS MVS
System Codes for complete information about this abend and its associated reason codes. To help debug
the problem, provide a recovery routine that records and/or dumps the needed data, including the
address and contents of the parameter list.

Return and reason codes
When the MIHQUERY macro returns control to your program, GPR 15 contains a hexadecimal return code
and GPR 0 contains a hexadecimal reason code.

Table 17. Return and Reason Codes for the MIHQUERY Macro

Return Code Reason Code Meaning and Action

00 None Meaning: MIHQUERY processing completed successfully.

Action: None.

04 None Meaning: The MIH interval for this device is zero. The system does not
monitor missing interrupts for the device.

Action: None.

08 01 Meaning: Environmental error. NIP processing is still in progress.

Action: Retry.

0C None Meaning: System error. This return code is for IBM diagnostic purposes only.

Action: Supply the following information to the appropriate IBM support
personnel:

• Return codes
• Dump data
• LOGREC data

MIHQUERY macro

Chapter 12. MIHQUERY — Retrieve MIH time interval 109

Example
Obtain an address of a UCB from the DASD class and pass that address to the MIHQUERY service.
MIHQUERY determines the MIH time interval for the device.

** USE THE LIST AND EXECUTE FORM OF THE MIHQUERY SERVICE. OBTAIN **
** AN ADDRESS OF A UCB FROM THE DASD CLASS AND PASS THAT ADDRESS TO **
** THE MIHQUERY SERVICE. **
** **
** ASSUMPTIONS: **
** ENTRY STATE: SUPERVISOR **
** ENTRY KEY : 7 **
** ENTRY MODE : PRIMARY **
** **
** REGISTER USAGE: **
** **
** BASEREG: 9 **
** DYNAMIC AREA: 6 (SUBPOOL 2) **
** **

IOTMW111 CSECT ,
IOTMW111 AMODE 31
IOTMW111 RMODE ANY

** ENTRY LINKAGE **

 BAKR 14,0
 LR 9,15
 USING IOTMW111,9

** OBTAIN STORAGE FOR THE SERVICE PARAMETER LISTS AND WORKAREAS. **
** ESTABLISH ADDRESSABILITY TO ALL. **

 L 0,SIZDATD GETS THE DYNAMIC AREA SIZE INTO
* REGISTER ZERO FOR GETMAIN
 GETMAIN RU,LV=(0),SP=2 GETS THE DYNAMIC AREA FROM SUBPOOL 2
 LR 6,1 GETS ADDRESS OF DYNAMIC AREA FROM
* THE RETURNED ADDRESS OF THE GETMAIN
 USING MYDYNMIC,6 GETS ADDRESSABILITY TO THE DYNAMIC
* AREA.

** SCANS FOR THE FIRST DEVICE IN THE DASD DEVICE CLASS. **
** NOTE THAT THERE IS NO NEED TO PIN A COPY OF THE UCB FOR THE SCAN **
** BUT A PIN IS REQUIRED FOR THE MIHQUERY SO IT IS DONE IN THE SCAN **
** TO SAVE A SERVICE CALL. **

 UCBSCAN ADDRESS,WORKAREA=UCBWORK,UCBPTR=MYUCBPTR, X
 PIN,TEXT=MYPINTXT,PTOKEN=MYPTOKEN, X
 DYNAMIC=YES,RANGE=ALL,DEVCLASS=DASD,LINKAGE=SYSTEM, X
 MF=(E,UCBAREA,COMPLETE) GETS THE FIRST DASD DEVICE

********* RETURN AND REASON CODES SHOULD BE CHECKED HERE ************

** OBTAIN THE MIH TIME INTERVAL **

 MIHQUERY UCBPTR=MYUCBPTR,TIMEINT=TIMEINTERVAL, X
 MF=(E,MIHAREA,COMPLETE) QUERIES THE MIH INTERVAL FOR
* THE DASD DEVICE.

********* DO SOMETHING WITH THE RETURNED VALUE. *******************

** UNPINS THE UCB. **

 UCBPIN UNPIN,PTOKEN=MYPTOKEN,LINKAGE=SYSTEM, X
 MF=(E,PINAREA,COMPLETE)

** RETURNS TO THE CALLER. **

 PR RETURN TO CALLER
MYPINTXT DC CL58'THIS SHOULD BE MEANINGFUL INFORMATION'
 LTORG
MYDYNMIC DSECT MY DYNAMIC AREA

* **
* MIHQUERY LIST FORM **
* **

MIHQUERY macro

110 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

 MIHQUERY MF=(L,MIHAREA)

* **
* UCBSCAN LIST FORM **
* **

 UCBSCAN MF=(L,UCBAREA)
UCBWORK DS CL100 100 BYTE WORK AREA FOR UCBSCAN.

* **
* UCBPIN LIST FORM **
* **

 UCBPIN MF=(L,PINAREA)
MYPTOKEN DS CL8 PIN TOKEN RETURNED BY THE UCBSCAN
* SERVICE.
TIMEINTERVAL DS CL4 MIH TIME INTERVAL RETURNED BY THE
* MIHQUERY SERVICE.
MYUCBPTR DS CL4 CONTAINS THE ADDRESS OF THE UCB
* RETURNED BY THE SCAN SERVICE AND
* FOR WHICH THE MIHQUERY IS DONE.
ENDDATD DS 0D GETS ON AN 8 BYTE BOUNDARY FOR
* GETMAIN
DYNSIZE EQU (ENDDATD-MYDYNMIC) TOTAL SIZE OF THE DYNAMIC AREA
IOTMW111 CSECT ,
 DS 0F
SIZDATD DS 0A SETS THE SIZE IN THE MODULE
 DC AL1(0)
 DC AL3(DYNSIZE)
 END IOTMW111

MIHQUERY - List form
Use the list form of the MIHQUERY macro together with the execute form of the macro for applications
that require reentrant code. The list form of the macro defines an area of storage, which the execute form
of the macro uses to store the parameters.

Syntax
The list form of the MIHQUERY macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede MIHQUERY.

MIHQUERY

␢ One or more blanks must follow MIHQUERY.

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

MIHQUERY macro

Chapter 12. MIHQUERY — Retrieve MIH time interval 111

Parameters
The parameter is explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the MIHQUERY macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value that is valid on an
assembler DS pseudo-op. You can use this parameter to force boundary alignment of the parameter
list. If you do not code attr, the system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

MIHQUERY - Execute form
Use the execute form of the MIHQUERY macro together with the list form of the macro for applications
that require reentrant code. The execute form of the macro stores the parameters into the storage area
defined by the list form.

Syntax
The execute form of the MIHQUERY macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede MIHQUERY

MIHQUERY

␢ One or more blanks must follow MIHQUERY

UCBPTR=ucb addr ucb addr: RS-type address, or address in register (2) - (12).

,TIMEINT=time interval time interval: RS-type address, or address in register (2) - (12).

 ,RETCODE=rc rc: RS-type address, or address in register (2) - (12).

 ,RSNCODE=reason code reason code: RS-type address, or address in register (2) - (12).

,MF=(E,list addr) list addr: RS-type address, or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

MIHQUERY macro

112 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Parameters
The parameters are explained under the standard form of the MIHQUERY macro with the following
exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the MIHQUERY macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for required parameters and
supply optional parameters that are not specified.

MIHQUERY macro

Chapter 12. MIHQUERY — Retrieve MIH time interval 113

MIHQUERY macro

114 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 13. MODESET — Change system status

Description
The MODESET macro is used to change system status such as the PSW key, the PSW key mask (PKM), and
the PSW problem state indicator. The MODESET macro has two forms: the form that generates inline code
and the form that generates an SVC.

Inline code generation

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: • Problem state, with a PSW key mask that allows the program to
switch to the requested PSW key, or

• Supervisor state

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31- or 64-bit

ASC mode: Primary or secondary

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: The caller can hold locks, but is not required to hold any.

Control parameters: None.

Programming requirements
The caller must include the IKJTCB and IHARB mapping macros. If EXTKEY= TCB, RBT1, or RBT234 is
specified, the home address space must be the currently addressable address space.

Restrictions
None.

Input register information
If any of the following parameters are specified: EXTKEY=TCB, EXTKEY=RBT1, or EXTKEY=RBT234,
before issuing the MODESET macro, the caller must load the address of the active TCB into a register and
establish addressability to that TCB. If none of the above is specified, the caller does not have to place
any information into any register before issuing the MODESET macro unless using it in register notation
for a particular parameter, or using it as a base register.

Output register information
All GPRs are unchanged except GPR 1 and 15, and those specified on the KEYADDR, KEYREG, SAVEKEY,
and WORKREG keywords.
Register

Contents

MODESET macro

© Copyright IBM Corp. 1988, 2020 115

0
Used as a work register by the system when specified on the WORKREG parameter; otherwise,
unchanged.

1
Used as a work register by the system, even if you specify register 1 on the WORKREG or KEYREG
parameter.

2
Used as a work register by the system when specified on the WORKREG, KEYREG, or KEYADDR
parameters; otherwise, unchanged.

3-14
Used as work registers by the system when specified on the WORKREG, KEYREG, or KEYADDR
parameters; otherwise, unchanged.

15
Used as a work register by the system.

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
The standard form of the MODESET macro that generates inline code is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede MODESET.

MODESET

␢ One or more blanks must follow MODESET.

MODESET macro

116 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

EXTKEY=key key: One of the following:

1. ZERO
2. TCB
3. RBT1
4. RBT234
5. KEY2
6. KEY3
7. KEY4
8. KEY7

KEYADDR=new key addr

KEYREG=new key reg

 new key addr: RX-type address or register (2).

 new key reg: Register 1-15 without parentheses; can be symbolic.

 ,SAVEKEY=old key addr old key addr: RX-type address or register (2).

 Note:

1. If KEYADDR=(2) is specified above, then SAVEKEY=(2) cannot be
specified.

2. If WORKREG and SAVEKEY are specified with KEYREG, the KEYREG
register should be different from the WORKREG register. Also, if
SAVEKEY is specified with KEYREG, the KEYREG register should not
be register 2.

 ,WORKREG=work reg work reg: Decimal digits 0-15 without parentheses.

 Note:

1. WORKREG is required if the following are specified:

• EXTKEY=TCB
• EXTKEY=RBT234
• EXTKEY=RBT1
• KEYADDR=new key addr, unless KEYADDR=(2) is specified.

2. The WORKREG parameter should be register 1-15 if one of these four
parameters is specified because WORKREG is used as a base register
on the SPKA instruction. WORKREG=0 sets the PSW key to zero.

 ,RELATED=value value: Any valid macro keyword specification.

MODESET macro

Chapter 13. MODESET — Change system status 117

Parameters
Note: The inline expansion of the MODESET macro does not result in a change to the caller’s PSW key
mask.

The parameters are explained as follows:

EXTKEY=key
Specifies the key, or the address of the key, to be set in the current PSW.
ZERO

Set a key of zero.
TCB

Set the key of the active TCB.
RBT1

Set the key of the active RB of type 1 SVC routine issuing MODESET.
RBT234

Set the key of the active RB preceding SVRB of type 2, 3, or 4 SVC routine issuing MODESET.
KEY2

Set a key of 2.
KEY3

Set a key of 3.
KEY4

Set a key of 4.
KEY7

Set a key of 7.
KEYADDR=new key addr

Specifies a location 1 byte in length which contains the key in bit positions 0-3. If register (2) is
specified, the key is contained in bit positions 24-27 (bits 28-31 are ignored). This parameter permits
a previously saved key to be restored.

KEYREG=new key reg
Specifies a register that contains a key value in bit positions 24-27.

,SAVEKEY=old key addr
Specifies a location 1 byte in length where the current PSW key is to be saved, in bit positions 0-3. If
register (2) is specified, the key is left in register 2.

,WORKREG=work reg
Specifies the register into which the contents of register 2 are to be saved while performing the
SAVEKEY function, or the working register to be used by the EXTKEY or KEYADDR function. See Note
1 above. If WORKREG=2 is specified, no register saving takes place.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information specified are at the
discretion of the user, and can be any valid coding values.

ABEND codes
The MODESET macro might abnormally terminate with abend code X'0C2'. See z/OS MVS System Codes
for an explanation and programmer response.

Return and reason codes
None.

Example 1
Save the current PSW key, and change the key to that of the active TCB.

MODESET macro

118 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

MODESET EXTKEY=TCB,SAVEKEY=KEYSAVE,WORKREG=1

Example 2
Save the current key at location KEY and set the key to the value contained in bits 24-27 of register 3.

MODESET KEYREG=REG3,SAVEKEY=KEY,WORKREG=4

SVC generation

Environment for SVC generation
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: One of the following:

• - Supervisor state
• - PSW key 0 - 7
• - APF authorization

The program must reside in an APF–authorized library and be link–
edited with authorization code AC=1.

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: No locks held

Control Parameters: Must be in primary address space

Programming requirements for SVC generation
None.

Restrictions for SVC generation
None.

Input register information for SVC generation
Before issuing the MODESET macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information for SVC generation
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code
1

Used as a work register by the system

MODESET macro

Chapter 13. MODESET — Change system status 119

2-13
Unchanged

14
Used as a work register by the system

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications for SVC generation
None.

Syntax for SVC generation
The standard form of the MODESET macro that generates an SVC is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede MODESET.

MODESET

␢ One or more blanks must follow MODESET.

KEY=ZERO Note: KEY is required if MODE is not specified.

KEY=NZERO

,MODE=PROB Note: MODE is required if KEY is not specified.

,MODE=SUP

 ,RELATED=value value: Any valid macro keyword specification.

MODESET macro

120 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

Parameters for SVC generation
The parameters are explained as follows:

Note: Whether you specify the KEY, MODE, or both parameters, if the MODESET operation completes with
a problem state PSW, the caller’s PSW key mask (PKM) is set according to the following rules:

• The bit matching the resulting PSW key is set on.
• The bit matching key 9 is set on.
• For a task attached with ATTACHX using the KEY=NINE parameter, the bits that were on in the PKM of

the ATTACHX issuer are set on.
• All other bits are set off.

KEY=ZERO
KEY=NZERO

Specifies that the PSW key (bits 8-11) is to be either set to zero (KEY=ZERO) or set to the value in the
caller's TCB (KEY=NZERO).

,MODE=PROB
,MODE=SUP

Specifies that the PSW problem state indicator (bit 15) is to be either turned on using problem state
(MODE=PROB) or turned off using supervisor state (MODE=SUP). Once the PSW is in problem state, the
caller cannot switch to supervisor state without control programming assistance, for example,
MODESET.

,RELATED=value
Specifies information used to self-document macros by "relating" functions or services to
corresponding functions or services. The format and contents of the information specified are at the
discretion of the user, and can be any valid coding values.

ABEND codes for SVC generation
The MODESET macro might abnormally terminate with abend code X'16B'. See z/OS MVS System Codes
for an explanation and programmer response.

Return and reason codes for SVC generation
When the MODESET macro returns control to your program, GPR 15 contains a hexadecimal return code
and GPR 0 contains a hexadecimal reason code.

Table 18. Return and Reason Codes for the MODESET Macro

Return Code Reason Code Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

Example for SVC generation
Change to supervisor mode and key zero.

 MODESET KEY=ZERO,MODE=SUP

MODESET macro

Chapter 13. MODESET — Change system status 121

MODESET - List form

Syntax
The list form of the MODESET macro that generates an SVC is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede MODESET.

MODESET

␢ One or more blanks must follow MODESET.

KEY=ZERO Note: KEY is required if MODE is not specified.

KEY=NZERO

,MODE=PROB Note: MODE is required if KEY is not specified.

,MODE=SUP

 ,RELATED=value value: Any valid macro keyword specification.

,MF=L

Parameters
The parameters are explained under the standard form of the MODESET macro that generates an SVC,
with the following exception:

,MF=L
Specifies the list form of the MODESET macro.

MODESET - Execute form

Syntax
The execute form of the MODESET macro that generates an SVC is written as follows:

Syntax Description

MODESET macro

122 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede MODESET.

MODESET

␢ One or more blanks must follow MODESET.

 RELATED=value, value: Any valid macro keyword specification.

,MF=(E,list addr) list addr: RX-type address, or register (1).

Parameters
The parameters are explained under the standard form of the MODESET macro that generates an SVC,
with the following exception:

,MF=(E,list addr)
Specifies the execute form of the MODESET macro.

list addr specifies the area that the system used to store the parameters.

MODESET macro

Chapter 13. MODESET — Change system status 123

MODESET macro

124 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 14. NIL — Provide a lock via an AND
IMMEDIATE (NI) instruction

Description
The NIL macro is used to provide a lock on a byte of storage on which an AND immediate (NI) instruction
is to be executed. Because the byte of storage exists in a multiprocessing environment, the possibility
exists that the byte might be changed by another processor at the same time. Storage modification during
NIL processing is accomplished by using the compare and swap (CS) instruction. If your code runs on a
z196/z112 or newer machine, the interlocked access facility 2 is available and you do not need to use this
macro - you can use the NI instruction.

For details on the AND immediate and compare and swap instructions, see Principles of Operation.

Environment
These are the requirements for the caller:

Environmental factor Requirement

Minimum authorization: Problem or supervisor state, any key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: None

Locks: The caller may hold locks, but is not required to hold any.

Control parameters: None

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the NIL macro, the caller does not have to place any information into any register unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs are unchanged except for the three work registers that are
used by the system. If WREGS is not specified, these will be registers 0-2.

When control returns to the caller, the ARs contain:
Register

Contents

NIL macro

© Copyright IBM Corp. 1988, 2020 125

0-1
Used as work registers by the system

2-13
Unchanged

14-15
Used as work registers by the system

Performance implications
None.

Syntax
The NIL macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede NIL.

NIL

␣ One or more blanks must follow NIL.

byte addr byte addr: RX-type address.

,mask mask: Symbol or self-defining term.

,REF=stor addr stor addr: RX-type address.

 ,WREGS=(reg1,reg2,reg3[,reg4]) reg1: Symbol or decimal digits 0-15.

 ,WREGS=(reg1,reg2[,,reg4]) reg2: Symbol or decimal digits 1-15.

 ,WREGS=(reg1,,reg3[,reg4]) reg3: Symbol or decimal digits 0-15.

 ,WREGS=(,reg2,reg3[,reg4]) reg4: Symbol or decimal digits 1-15.

 ,WREGS=(reg1[,,,reg4]) Default for reg1: 0

 ,WREGS=(,reg2[,,reg4]) Default for reg2: 1

 ,WREGS=(,,reg3[,reg4]) Default for reg3: 2

 Default for reg4: none

Parameters
The parameters are explained as follows:

NIL macro

126 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

byte addr
Specifies the address of the byte to which the AND function is to be applied.

,mask
Specifies the value to be ANDed to the byte at the address specified above.

,REF=stor addr
Specifies the address of a storage location on a fullword boundary. This address provides the means
by which the compare and swap instruction may be executed. The address must be less than or equal
to the byte address specified above, and the difference between the addresses must be less than
4095. The two addresses must be addressable via the same base register.

,WREGS=(reg1,reg2,reg3[,reg4])
,WREGS=(reg1,reg2[,,reg4])
,WREGS=(reg1,,reg3[,reg4])
,WREGS=(,reg2,reg3[,reg4])
,WREGS=(reg1[,,,reg4])
,WREGS=(,reg2[,,reg4])
,WREGS=(,,reg3[,reg4])

Specifies the work registers to be used to perform the compare and swap instruction. reg1 is used to
contain the “old” byte; reg2 is used to contain the “updated” byte; and reg3 is used to contain the
mask. When reg4 is specified, it is used as a base register; use this if there is no base register
addressability where the invocation of the macro is.

ABEND codes
None.

Return and reason codes
None.

Example
Turn off bit TNVLXMET in byte TNVLCS1. The reference field, TNVLFW3, specifies the word being
updated.

NIL TNVLCS1,X'FF'-TNVLXMET,REF=TNVLFW3

NIL macro

Chapter 14. NIL — Provide a lock via an AND IMMEDIATE (NI) instruction 127

NIL macro

128 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 15. NMLDEF — Customizing the nucleus

Description
A set of tables, called nucleus module lists (NMLs), are used to identify the members in SYS1.NUCLEUS
that are to be loaded into the DAT-on nucleus region. NMLs can be installed as part of an IBM product, a
vendor product, or a customer user modification. Each NML contains a list of the SYS1.NUCLEUS
members that are part of the same product or user modification. The NMLs themselves are load modules
that also reside in SYS1.NUCLEUS.

The NML must have a module name (CEST name) in the form of IEANYnnn:
Y

Y can be either of S or C.

• S stands for IBM provided NML.
• C stands for customer provided NML.

nnn
nnn is a 3-digit decimal number from 001 through 256.

Use the NMLDEF macro to generate an NML statement (at the end of the macro expansion). See z/OS MVS
Programming: Authorized Assembler Services Guide for more information on using the NMLDEF macro.

Existing nucleus-resident entry points cannot be replaced or overridden using an NML. To find out how to
perform these functions, refer to information about customizing the nucleus in the z/OS MVS
Programming: Authorized Assembler Services Guide.

You can use a NUCLSTxx member of SYS1.PARMLIB instead of NMLDEF to specify modules to be loaded
into the nucleus. For more information on NUCLSTxx, especially its possible advantages over NMLDEF,
see z/OS MVS Initialization and Tuning Reference.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Problem state or supervisor state, and any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: No requirement

AMODE: 24- or 31-bit

ASC mode: No requirement

Interrupt status: No requirement

Locks: No requirement

Control parameters: None.

Note: This macro does not generate any executable code.

Programming requirements
None.

NMLDEF macro

© Copyright IBM Corp. 1988, 2020 129

Restrictions
None.

Register information
None.

Performance implications
None.

Syntax
The standard form of the NMLDEF macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede NMLDEF.

NMLDEF

␢ One or more blanks must follow NMLDEF.

NUCL=nucid nucid: One to eight characters in length.

Parameters
The parameter is explained as follows:

NUCL=nucid
Identifies the name of one or more SYS1.NUCLEUS members that are to be loaded into the nucleus
region. At least one nucleus identifier must be specified on the NMLDEF macro. If you specify more
than one nucleus identifier, enclose the list in parentheses and use commas to separate the
identifiers.

ABEND codes
None.

Return and reason codes
None.

Example 1
Specify the macro as follows to name an NML as IEANC002 and identify the members named ABC00122
and ABC00123 in SYS1.NUCLEUS that are to be loaded into the nucleus region.

IEANC002 NMLDEF NUCL=(ABC00122,ABC00123)

NMLDEF macro

130 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Example 2
To install a user nucleus-resident routine or a release of a product, you can use SMP/E, or code your own
JCL.

The following example JCL creates an NML with the CSECT name of IEANC001 containing the module
name of DXXTEST.

//FORDON JOB MSGLEVEL=(1,1)
//NMLDEF EXEC ASMHCL
//ASM.SYSIN DD *
IEANC001 NMLDEF NUCL=DXXTEST
//LKED.SYSLMOD DD DSN=SYS1.NUCLEUS,VOL=SER=DCH352,UNIT=3380,DISP=OLD
//LKED.SYSIN DD *
 NAME IEANC001
/*

Example 3
To install a user nucleus-resident routine or a release of a product, you can use SMP/E, or code your own
JCL.

The following example JCL creates NMLs with the CSECT name of IEANC002 containing module names of
ABC00001-ABC00010.

//FORDON JOB MSGLEVEL=(1,1)
//NMLDEF EXEC ASMHCL
//ASM.SYSIN DD *
IEANC002 NMLDEF NUCL=(ABC00001,ABC00002,ABC00003,ABC00004,ABC00005, X
 ABC00006,ABC00007,ABC00008,ABC00009,ABC00010)
//LKED.SYSLMOD DD DSN=SYS1.NUCLEUS,VOL=SER=DCH352,UNIT=3380,DISP=OLD
//LKED.SYSIN DD *
 NAME IEANC002
/*

NMLDEF macro

Chapter 15. NMLDEF — Customizing the nucleus 131

NMLDEF macro

132 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 16. NUCLKUP — Nucleus map lookup service

Description
The NUCLKUP macro provides lookup functions by name and by address. Use the macro to get:

• The name and address of a nucleus CSECT if you have an address within the CSECT
• The address and AMODE of a nucleus CSECT or ENTRY if you have its name

You would use the NUCLKUP macro to:

• Check an installation program once your installation has put it into the nucleus
• Diagnose a problem of a program residing in the nucleus

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Problem state or supervisor state, and any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: No requirement

Control parameters: Must be in the primary address space

Programming requirements
The caller must include the CVT mapping macro in the program that issues the NUCLKUP macro.

Restrictions
None.

Input register information
Before issuing the NUCLKUP macro, the caller must ensure that the following general purpose register
(GPR) contains the specified information:
Register

Contents
13

The address of a standard 18-word save area

Output register information
After the caller issues the macro, the system might use some registers as work registers or might change
the contents of some registers. When the system returns control to the caller, the contents of these
registers are not the same as they were before the caller issued the macro. Therefore, if the caller

NUCLKUP macro

© Copyright IBM Corp. 1988, 2020 133

depends on these registers containing the same value before and after issuing the macro, the caller must
save these registers before issuing the macro and restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0

• For a BYNAME request, the address and AMODE of the CSECT or ENTRY
• For a BYADDR request, the 31-bit address of the CSECT

The AMODE is returned as part of the 31-bit address for a BYNAME request:

• AMODE 24: high-order and low-order bits are both 0
• AMODE 31: high-order bit is 1, low-order bit is 0
• AMODE 64: high-order bit is 0, low-order bit is 1
• If the AMODE of the module is ANY, it indicates AMODE 24 if the caller is AMODE 24 (the high order

bit is 0), or AMODE 31, if the caller is AMODE 31 or AMODE 64 (the high order bit is 1).

1
For a BYNAME request, the high-order byte is zero and the low-order three bytes contain the length
from the entry point to the end of the CSECT; for a BYADDR request, register 1 contains the address of
the 8-byte area in which the CSECT name is returned.

2-13
Unchanged.

14
Used as a work register by the system.

15
Return code.

Performance implications
None.

Syntax
The standard form of the NUCLKUP macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede NUCLKUP.

NUCLKUP

␢ One or more blanks must follow NUCLKUP.

BYNAME,NAME=name id name id: 8-byte literal (enclosed in apostrophes), or the address of the 8-
byte literal which can be either an RX-type address, or register (1) - (12).

BYADDR,NAME=name loc

NUCLKUP macro

134 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 name loc: RX-type address or register (1) - (12).

,ADDR=addr addr: RX-type address, or register (0) or (2) - (12).

Parameters
The parameters are explained as follows:

BYNAME
BYADDR

Specifies the function to be performed. If BYNAME is specified, the user supplies on NAME=name id
the name of a CSECT or ENTRY and receives on ADDR the address and AMODE of that CSECT or
ENTRY. If BYADDR is specified, the user supplies on ADDR an address within a CSECT and receives on
NAME=name id the name and address of the CSECT.

,NAME=name id
,NAME=name loc

Specifies the name or the location of the name of the CSECT depending on the option requested. If
the user specifies BYNAME, name id contains the 8-character name to be searched for or the address
of that name. If the user specifies BYADDR, name loc will contain the address of the 8-byte area in
which the CSECT name is to be returned.

,ADDR=addr
Contains the address to be searched for if BYADDR is specified; contains the address of the CSECT or
ENTRY that is returned if BYNAME is specified.

The AMODE is returned as part of the 31-bit address for a BYNAME request:

• AMODE 24: high-order and low-order bits are both 0
• AMODE 31: high-order bit is 1, low-order bit is 0
• AMODE 64: high-order bit is 0, low-order bit is 1
• If the AMODE of the module is ANY, it indicates AMODE 24 if the caller is AMODE 24 (the high order

bit is 0), or AMODE 31, if the caller is AMODE 31 or AMODE 64 (the high order bit is 1).

ABEND codes
None.

Return codes
When NUCLKUP macro returns control to your program, GPR 15 contains a hexadecimal return code.

Table 19. Return Codes for the NUCLKUP Macro

Return Code Meaning and Action

00 Meaning: The request was satisfied.

Action: None.

04 Meaning: The request was not satisfied.

For a BYNAME request, the name was not found, and the location containing the address was set to
zero.

For a BYADDR request, the address was not found in the nucleus, and the location containing the name
was set to zero.

Action: None required. However, you might take some action based upon your application.

NUCLKUP macro

Chapter 16. NUCLKUP — Nucleus map lookup service 135

Table 19. Return Codes for the NUCLKUP Macro (continued)

Return Code Meaning and Action

08 Meaning: Program error. The request was not satisfied because the type of request was not specified
correctly. The locations containing the name and address were set to zero.

Action: Ensure that the name id value is supplied for BYNAME requests, and the addr value is provided
on BYADDR requests.

Example 1
Place the address and AMODE of entry point IEAVESTU in register 0.

NUCLKUP BYNAME,NAME='IEAVESTU',ADDR=(0)

Example 2
Look up the address and amode of the entry point name in location STRING and return it at location
RETLOC.

 NOCLKUP BYNAME,NAME=STRING,ADDR=RETLOC
 .
 .
STRING DS CL8
RETLOC DS F

Example 3
Return the CSECT name and address of the nucleus routine in which the address at location INADDR falls.
Return the name at location EPLOC1 and the address at INADDR.

 NUCLKUP BYADDR,NAME=EPLOC,ADDR=INADDR
 .
 .
EPLOC DS CL8
INADDR DS F

NUCLKUP macro

136 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 17. OIL — Provide a lock via an OR
IMMEDIATE (OI) instruction

Description
The OIL macro is used to provide a lock on a byte of storage on which an or immediate (OI) instruction is
to be executed. Because the byte of storage exists in a multiprocessing environment, the possibility exists
that the byte might be changed by another processor at the same time. Storage modification during OIL
processing is accomplished by using the compare and swap (CS) instruction.

For details on the or immediate and compare and swap instructions, see Principles of Operation.

Environment
These are the requirements for the caller:

Environmental factor Requirement

Minimum authorization: Problem or supervisor state, any key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: None

Locks: The caller may hold locks, but is not required to hold any.

Control parameters: None

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the OIL macro, the caller does not have to place any information into any register unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs are unchanged except for the three work registers that are
used by the system. If WREGS is not specified, these will be registers 0-2.

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system

OIL macro

© Copyright IBM Corp. 1988, 2020 137

2-13
Unchanged

14-15
Used as work registers by the system

Performance implications
None.

Syntax
The OIL macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede OIL.

OIL

␢ One or more blanks must follow OIL.

byte addr byte addr: RX-type address.

,mask mask: Symbol or self-defining term.

,REF=stor addr stor addr: RX-type address.

 ,WREGS=(reg1,reg2,reg3) reg1: Symbol or decimal digits 0-15.

 ,WREGS=(reg1,reg2) reg2: Symbol or decimal digits 0-15.

 ,WREGS=(reg1,,reg3) reg3: Symbol or decimal digits 0-15.

 ,WREGS=(,reg2,reg3) Default: for reg1: 0

 ,WREGS=(reg1) Default: for reg2: 1

 ,WREGS=(,reg2) Default: for reg3: 2

 ,WREGS=(,,reg3)

Parameters
The parameters are explained as follows:

byte addr
Specifies the address of the byte to which the OR function is to be applied.

OIL macro

138 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

,mask
Specifies the value to be ORed to the byte at the address specified above.

,REF=stor addr
Specifies the address of a storage location on a fullword boundary. This address provides the means
by which the compare and swap instruction may be executed. The address must be less than or equal
to the byte address specified above, and the difference between the addresses must be less than
4095. The two addresses must be addressable via the same base register.

,WREGS=(reg1,reg2,reg3)
,WREGS=(reg1,reg2)
,WREGS=(reg1,,reg3)
,WREGS=(,reg2,reg3)
,WREGS=(reg1)
,WREGS=(,reg2)
,WREGS=(,,reg3)

Specifies the work registers to be used to perform the compare and swap instruction. reg1 is used to
contain the “old” byte; reg2 is used to contain the “updated” byte; and reg3 is used to contain the
mask.

ABEND codes
None.

Return and reason codes
None.

Example
Turn on bit TVNLXMET in byte TVNLCS1. The reference field TVNL specifies the area containing the word
being updated.

OIL TVNLCS1,TVNLXMET,REF=TVNL

OIL macro

Chapter 17. OIL — Provide a lock via an OR IMMEDIATE (OI) instruction 139

OIL macro

140 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 18. OUTADD — Create an output descriptor

Description
Use the OUTADD macro to create an output descriptor for a system output (sysout) data set. For
information about using the OUTADD macro, see "Dynamic Output" in z/OS MVS Programming: Authorized
Assembler Services Guide.

The OUTADD macro has no standard form. Use the list form to generate a storage declaration for the
input parameter list to dynamic output. Use the execute form to modify the parameter list and invoke
dynamic output.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Problem state and any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Must be in the primary address space

Programming requirements
When you code the input data to dynamic output, all character data must be left-justified in a field of
blanks. Any noncharacter input data must be right-justified in a field of binary zeroes. All input addresses
or pointers must be coded as 31-bit addresses, even when you invoke dynamic output in a 24-bit
addressing environment. If you use a 24-bit address, you must right-justify the address in a 4-byte field,
and set the left-most byte to binary zeroes.

Restrictions
• You can use dynamic output in a JES2 environment or a JES3 4.2.1 or later environment.
• Output descriptors are deleted with the OUTDEL macro. On some systems, the system does not free the

output descriptor's storage when you delete the output descriptor. Whether or not this storage is freed
depends on the version of JES that is being used on your system. For more information, see "Dynamic
Output" in z/OS MVS Programming: Authorized Assembler Services Guide.

• When you use OUTADD to create output descriptors in a program that also uses checkpoint/restart, you
must observe the restrictions that are described in z/OS DFSMSdfp Checkpoint/Restart.

Input register information
Before issuing the OUTADD macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

OUTADD macro

© Copyright IBM Corp. 1988, 2020 141

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0

Reason code
1

Key of the failing text unit, if available; otherwise, zero
2-14

Unchanged
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

OUTADD - List form

Syntax
The list form of the OUTADD macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede OUTADD.

OUTADD

␢ One or more blanks must follow OUTADD.

MF=L

OUTADD macro

142 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

The parameters of the list form, which are both required, are explained as follows:

name
The list form defines the storage area to be used as the input parameter list to the OUTADD macro.
name specifies the symbolic address of this storage.

MF=L
Specifies the list form of the OUTADD macro.

Example
Use the list form of the OUTADD macro to generate the input parameter list that is to be used by the
execute form of the OUTADD macro. Locate the parameter list at symbolic location, PARML.

PARML OUTADD MF=L

OUTADD - Execute form
The execute form of the OUTADD macro modifies and executes the parameter list that was built with the
list form of the OUTADD macro.

Syntax
The execute form of the OUTADD macro is written as follows:

Syntax Description

 name name: symbol. Begin name in column 1.

␢ One or more blanks must precede OUTADD.

OUTADD

␢ One or more blanks must follow OUTADD.

NAME=descriptor name addr descriptor name addr: Rx-type address or register (2)-(12).

SYSNAME=descriptor name addr

,TEXTPTR=tu pointer addr tu pointer addr: Rx-type address or register (2)-(12).

 ,ENQ=CONDITIONAL Default: ,ENQ=UNCONDITIONAL

 ,ENQ=UNCONDITIONAL

,MF=(E,list addr) list addr: Rx-type address or register (2)-(12).

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 143

Syntax Description

Parameters
The parameters are explained as follows:

NAME=descriptor name addr
Specifies the address of the location where you place the name of the output descriptor. The name,
which must be unique in the current job step, must be one to eight characters long. If less than eight
characters, the name must be left justified in an eight byte field of blanks. The first character must be
alphabetic or national (@, $, #), and the remaining characters can be alphanumeric or national.

NAME is mutually exclusive with SYSNAME. You must specify either NAME or SYSNAME.

Note: If you pass a name field of all binary zeros, the system generates a name and uses that name.
In this case, however, the system does not return the name.

SYSNAME=descriptor name addr
Specifies the address of an 8-character field into which the system is to return an output descriptor
name. SYSNAME requests the system to generate the output descriptor name. SYSNAME is mutually
exclusive with NAME. You must code either SYSNAME or NAME.

,TEXTPTR=tu pointer addr
Specifies the address of the text unit pointer list that you create. It is a required parameter. The text
unit pointer list references your text units; to invoke OUTADD, at least one text unit must exist.

Place the pointer to each of your text units into the text unit pointer list. The pointers in the text unit
pointer list must be in contiguous storage. Each pointer must be four bytes long, be aligned on a
fullword boundary, and point to a single text unit. Alternatively, if bits 1 - 31 of the text unit pointer
are zero, dynamic output assumes no text unit is associated with the text unit pointer. You can use a
text unit pointer with zeros in bits 1 - 31 to avoid having to rearrange a predefined text unit pointer list
when you do not want to point to a particular text unit.

To enable the system to find the end of the pointer list, set the leftmost bit of the last pointer to 1. The
system limits the number of text unit pointers to 1000. For a coded example of a text unit pointer list,
see z/OS MVS Programming: Authorized Assembler Services Guide.

,ENQ=CONDITIONAL
,ENQ=UNCONDITIONAL

Specifies whether the OUTADD create request is to wait on a system queue. When you invoke
dynamic output to create an output descriptor, the system serializes the create request. Because the
system processes the requests one at a time, each must wait on a system queue for all the previous
requests to be processed. If you do not want your request to wait, code ENQ=CONDITIONAL. This
causes the system to ignore your create request unless the queue is empty. You get return code 04
with reason code of X'405' when the system ignores your create request. To allow your request to go
on the queue, code ENQ=UNCONDITIONAL. If you omit the ENQ parameter, your request always goes
on the queue.

,MF=(E,list addr)
Specifies the execute form of the OUTADD macro.

list addr specifies the area that the system uses to store the parameters.

ABEND codes
OUTADD might abnormally terminate with abend codes X'76D' or X'054'. See z/OS MVS System Codes for
explanations and programmer responses.

OUTADD macro

144 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Return and reason codes
When control returns to the caller, GPR 15 contains a hexadecimal return code and GPR 0 contains a
hexadecimal reason code. Note that when you invoke dynamic output to create an output descriptor, the
system creates the descriptor only if the return code is zero.

If the dynamic output request fails, you get a nonzero return code in GPR 15 and a reason code in GPR 0.
If any text unit can be associated with the failure, the key of the failing text unit is in the rightmost two
bytes of GPR 1. GPR 1 contains zero if the failure does not implicate a particular text unit, or if a text unit
caused the failure but the system cannot determine what text unit is responsible.

When you are using a reason code to debug your program, it is sometimes advisable to look beyond the
immediate explanation of the reason code. For example, even if the reason code indicates a bad text unit,
the text units you coded might be perfectly correct. The pointers to the text units, however, might be
incorrectly coded, or one of the pointers in the pointer list might be bad.

For programmers who want them, symbolic names for reason codes are available in the IEFDORC
mapping macro. (See z/OS MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosInternetLibrary).) Reason codes are four bytes long.

Table 20. Return and Reason Codes for the OUTADD Macro

Return Code Reason Code Meaning and Action

00 000 Meaning: The dynamic output request is successful.

Action: None.

04 400-408 Meaning: The dynamic output request failed because of an error in dynamic
output or elsewhere in the system.

08 380-391
500-504

Meaning: The dynamic output request failed. There is an error in an operating
system program.

Action: Contact the system programmer.

08 000
6000-7FFF

Meaning: The dynamic output request failed. The request was denied by your
installation. These reason codes are defined by your installation.

0C 300-314 Meaning: The dynamic output request failed. The program that invoked
dynamic output has built the text units incorrectly or, less likely, the
installation exit routine has built the text units incorrectly.

0C 380-394 Meaning: The dynamic output request failed because the parameter list is
incorrectly initialized.

0C 409 Meaning: The dynamic output request failed. The caller's text unit pointer list
was altered by another task during dynamic output processing.

10 700-702 Action: An abend occurred in the system.

Action: Consult the system programmer.

Reason codes for return code 04
The table below documents the reason codes that can occur when the OUTADD macro returns with a
return code of 04 (in GPR15). The symbol for return code 04 is DOENVERR in macro IEFDORC. The
“symbol” field in the following table gives the symbolic name for the different reason code values. These
symbols can be found in macro IEFDORC.

Table 21. Reason Codes for Return Code 04

Reason Code
Hexadecimal (Decimal)

Meaning and Action

400
(1024)

Symbol: DORCGET1

Meaning: Environmental error. A GETMAIN request failed during processing of the dynamic output
request.

Action: Attempt to allow a larger region for the application and retry the dynamic output request.

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 145

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Table 21. Reason Codes for Return Code 04 (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

401
(1025)

Symbol: DORCEXST

Meaning: Environmental error or program error. The dynamic output request specified an output
descriptor that already exists.

Action: Select an alternate name for the output descriptor and retry the dynamic output request.

404
(1028)

Symbol: DORCESTA

Meaning: Program or system error. During dynamic output processing, the system was unable to
establish a recovery environment.

Action: Determine if your program is doing something that prevents a recovery environment from being
established. The most likely reason for this error is that your program is causing all available storage to
be used. If the problem cannot be attributed to your program, record the return and reason code, and
optionally make a copy of your application. Give this information to your system programmer to supply
to the appropriate IBM support personnel.

405
(1029)

Symbol: DORCNENQ

Meaning: Environmental error. The ENQ resource is not available at this time. This reason code can be
issued only for conditional ENQ requests.

Action: Run your application at another time, when the system queue is empty. Alternatively, you can
specify ENQ=UNCONDITIONAL (the default), and the request will always go onto the queue.

406
(1030)

Symbol: DORCNONM

Meaning: Environmental error. No more system-generated names can be created; the maximum
number allowed are in use.

Action: If your application can delay processing the dynamic output request, it is possible that an
OUTDEL request will be issued. This OUTDEL request might allow additional system-generated names
to be created. You can also consider segmenting the work of the application so that a smaller number of
system-generated names are in use at any point in time.

407
(1031)

Symbol: DORCGET2

Meaning: Environmental or system error. A GETMAIN request failed during processing of the dynamic
output request.

Possible causes include:

• You created a large number of output descriptors and have not deleted them
• Another program in the region is using up a lot of storage.

Action: Delete any output descriptors that should have been deleted. Attempt to allow a larger region
for the application and retry the dynamic output request.

408
(1032)

Symbol: DORCALTT

Meaning: Environmental or program error. A text unit was found to have been altered by another task
running in the system.

Action: Review the design of the application and determine if additional tasks running concurrently with
this dynamic output request could be altering shared storage (the text unit). If a change can be made to
eliminate the storage alteration by another task, retry the dynamic output request.

Reason codes for return code 08
The table below documents the reason codes that can occur when the OUTADD macro returns with a
return code of 08 (in GPR15). The symbol for return code 08 is DOREQDNY in macro IEFDORC. The
“symbol” field in the following table gives the symbolic name for the different reason code values. These
symbols can be found in macro IEFDORC.

OUTADD macro

146 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 22. Reason Codes for Return Code 08

Reason Code
Hexadecimal (Decimal)

Meaning and Action

0
(0)

Symbol: (none defined)

Meaning: Program error. The dynamic output request was denied by your installation.

Action: The meaning of this reason code is defined by your installation. Your installation should be able
to make recommendations for altering the dynamic output request to conform to installation standards.

380
(896)

Symbol: DORCLNIV

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. Dynamic output
processing detected an incorrect parameter list length. The installation exit maps the dynamic output
parameter list (macro IEFDOCNP). Determine why the DOCNLEN field was incorrectly set and correct the
problem.

381
(897)

Symbol: DORCNZF1

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. Unused bits passed
back from the dynamic output installation exit were not set to zero. The installation exit maps the
dynamic output parameter list (macro IEFDOCNP). Determine why the unused bits in the DOCNFNC1
field are not zero and correct the problem.

382
(898)

Symbol: DORCNZF2

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. Unused bits passed
back from the dynamic output installation exit were not set to zero. The installation exit maps the
dynamic output parameter list (macro IEFDOCNP). Determine why the unused bits in the DOCNFNC2
field are not zero and correct the problem.

383
(899)

Symbol: DORCNZR1

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. Unused bits passed
back from the dynamic output installation exit were not set to zero. The installation exit maps the
dynamic output parameter list (macro IEFDOCNP). Determine why the DOCNRSV1 reserved field is not
zero and correct the problem.

384
(900)

Symbol: DORCNZR2

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. Unused bits passed
back from the dynamic output installation exit were not set to zero. The installation exit maps the
dynamic output parameter list (macro IEFDOCNP). Determine why the DOCNRSV2 reserved field is not
zero and correct the problem.

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 147

Table 22. Reason Codes for Return Code 08 (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

385
(901)

Symbol: DORCIVID

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. A portion of the
dynamic output parameter list was improperly set. The installation exit maps the dynamic output
parameter list (macro IEFDOCNP). Determine why the DOCNID field was not properly initialized and
correct the problem.

386
(902)

Symbol: DORCIVVR

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. The DOCNVERS field
contains an incorrect parameter list length. The installation exit maps the dynamic output parameter
list (macro IEFDOCNP). Determine why the DOCNVERS field was not properly initialized and correct the
problem.

387
(903)

Symbol: DORCNOFN

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. A portion of the
dynamic output parameter list was improperly set. The installation exit maps the dynamic output
parameter list (macro IEFDOCNP). Either the DOCNNEW or the DOCNDEL bit must be set in the DOCNFNC1
field. Determine why no function bit (create or delete) was set and correct the problem.

388
(904)

Symbol: DORCIVFN

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. A portion of the
dynamic output parameter list was improperly set. The installation exit maps the dynamic output
parameter list (macro IEFDOCNP). Only one function bit (either DOCNNEW or DOCNDEL) should be set in
the DOCNFNC1 field. Determine why more than one function bit (create or delete) was set and correct
the problem.

38B
(907)

Symbol: DORCIVNM

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. Dynamic output
processing received an incorrect output descriptor name from the installation exit. The installation exit
maps the dynamic output parameter list (macro IEFDOCNP). The output descriptor name is in the
DOCNNAME field. Check the output descriptor name returned to the dynamic output service. The first
character must be an alphabetic (capitalized) character or a national character (#, @, or $). The
remaining characters must be alphabetic (capitalized) characters, national characters (#, @, or $), or
numbers. There can be no intervening blanks. Alternatively, the name can be all (binary) zeros,
indicating that the system should generate a name for this request.

38F
(911)

Symbol: DORCIVTU

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. A portion of the
dynamic output parameter list was improperly set. The installation exit maps the dynamic output
parameter list (IEFDOCNP). DOCNTXTP must point to a text unit pointer list. Determine why DOCNTXTP
was set to zero and correct the problem.

OUTADD macro

148 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 22. Reason Codes for Return Code 08 (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

391
(913)

Symbol: DORCNZR0

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. Unused bits passed
back from the dynamic output installation exit were not set to zero. The installation exit maps the
dynamic output parameter list (macro IEFDOCNP). Determine why the DOCNRSV0 reserved field is not
zero and correct the problem.

500
(1280)

Symbol: DORCINST

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer with the return and reason
code. Once the operating system program has been corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output installation exit. The return
code from the dynamic output installation exit is 8, but the reason code is not within the allowable
range defined for the dynamic output installation exit. Determine why the installation exit is returning a
reason code that is outside the allowable range and correct the error.

501
(1281)

Symbol: DORCINRC

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer with the return and reason
code. Once the operating system program has been corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output installation exit. The return
code from the dynamic output installation exit is zero, but the reason code is not zero. Determine why
the installation exit is returning a nonzero reason code but a zero return code for the dynamic output
request and correct the problem.

502
(1282)

Symbol: DORCINRT

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer with the return and reason
code. Once the operating system program has been corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output installation exit. The return
code from the dynamic output installation exit is not within the allowable range defined for the dynamic
output installation exit. Determine why the installation exit is returning a return code that is outside the
allowable range and correct the error.

503
(1283)

Symbol: DORCINKE

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer with the return and reason
code. Once the operating system program has been corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output installation exit. The return
code from the dynamic output installation exit is zero, but the installation exit has returned a nonzero
value in register 1. When control is returned from the installation exit, register 1 contains the value of
the key that is in error. Determine why the installation exit is returning a nonzero value in register 1 and
a zero return code for the dynamic output request.

504
(1284)

Symbol: DORCZKEY

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer with the return and reason
code. Once the operating system program has been corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output installation exit. The
installation exit has modified the input from the user. It now has a zero text unit key which is rejected by
later processing within dynamic output.

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 149

Table 22. Reason Codes for Return Code 08 (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

6000-7FFF
(24576-32767)

Symbol: (none defined)

Meaning: Program error. The dynamic output request was denied by your installation.

Action: The meaning of this reason code is defined by your installation, and indicates the reason the
dynamic output request was denied. Your installation should be able to make recommendations for
altering the dynamic output request to conform to installation standards.

Reason codes for return code 0C
OUTADD returns a return code of 0C for errors detected in the caller's parameters. The list form of the
OUTADD macro generates a parameter list. When the caller invokes the execute form of the OUTADD
macro, this parameter list is filled in with the parameters coded on the execute form of the OUTADD
macro. The OUTADD service verifies this parameter list and text units pointed to from this parameter list.

The table below documents the reason codes that can occur when the OUTADD macro returns with a
return code of 0C (in GPR15). The symbol for return code 0C is DOINVPRM in macro IEFDORC. The
“symbol” field in the following table gives the symbolic name for the different reason code values. These
symbols can be found in macro IEFDORC.

Note: Reason codes less than 380 (hexadecimal) can be returned if the dynamic output installation exit
modifies the text units associated with the request, producing an error that is detected later by dynamic
output processing.

Table 23. Reason Codes for Return Code 0C

Reason Code
Hexadecimal (Decimal)

Meaning and Action

300
(768)

Symbol: DORCIVCH

Meaning: Program error. A selection specified for a value field in a text unit was not valid.

Action: This is probably a logic error in the application program, or perhaps incorrect data was
propagated by the application program to the dynamic output request. Correct the problem and retry
the dynamic output invocation.

301
(769)

Symbol: DORCGMAX

Meaning: Program error. A numeric parameter exceeds the maximum allowable value.

Action: This is probably a logic error in the application program, or perhaps incorrect data was
propagated by the application program to the dynamic output request. Correct the problem and retry
the dynamic output invocation.

302
(770)

Symbol: DORCLMIN

Meaning: Program error. A numeric parameter is less than the minimum allowable value.

Action: This is probably a logic error in the application program, or perhaps incorrect data was
propagated by the application program to the dynamic output request. Correct the problem and retry
the dynamic output invocation.

303
(771)

Symbol: DORCNNUM

Meaning: Program error. No parameter was specified for the text unit key.

Action: This is probably a logic error in the application program. Correct the problem and retry the
dynamic output invocation.

306
(774)

Symbol: DORCNLLN

Meaning: Program error. A level name in the value field of a text unit is too long. The maximum is 8
characters. For example, ACMESYSTEM.USNA is not valid because ACMESYSTEM contains more than 8
characters.

Action: This is probably a logic error in the application program, or perhaps incorrect data was
propagated by the application program to the dynamic output request. Correct the problem and retry
the dynamic output invocation.

OUTADD macro

150 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 23. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

307
(775)

Symbol: DORCNLNM

Meaning: Program error. There are too many level names in the value field of a text unit. For example,
DAVE.ACME.SYSR is wrong if only two levels are allowed.

Action: This is probably a logic error in the application program, or perhaps incorrect data was
propagated by the application program to the dynamic output request. Correct the problem and retry
the dynamic output invocation.

308
(776)

Symbol: DORCNFCH

Meaning: Program error. The first character in the name of a level in the value field of a text unit is
incorrect. For example, 4DAVE.ACME or DAVE.4ACME is incorrect if numeric characters are not allowed
as the first character of a level name.

Action: This is probably a logic error in the application program, or perhaps incorrect data was
propagated by the application program to the dynamic output request. Correct the problem and retry
the dynamic output invocation.

309
(777)

Symbol: DORCNOCH

Meaning: Program error. In the value field of a text unit, a character (other than the first) in a level name
is incorrect. For example, GARY3.SINKHOLE and GARY.SI8NK are incorrect if only the first character in
a level name can be a numeric character.

Action: This is probably a logic error in the application program, or perhaps incorrect data was
propagated by the application program to the dynamic output request. Correct the problem and retry
the dynamic output invocation.

30A
(778)

Symbol: DORCNLIV

Meaning: Program error. In the value field of a text unit, the levels are incorrectly specified. The value
field has two consecutive periods, or the first or last character of the value field is a period.

Action: This is probably a logic error in the application program, or perhaps incorrect data was
propagated by the application program to the dynamic output request. Correct the problem and retry
the dynamic output invocation.

30B
(779)

Symbol: DORCIVNP

Meaning: Program error. The number of parameters in the text unit is not valid.

Action: The number of parameters in the text unit was indicated as being less than zero or greater than
1000. Modify the text unit so that the number of parameters is within the allowable range. Retry the
dynamic output invocation.

30C
(780)

Symbol: DORCIVLN

Meaning: Program error. The length field in the text unit is not valid.

Action: The length field in the text unit was indicated as being less than zero or greater than 254.
Modify the text unit length so that it is within the allowable range. Retry the dynamic output invocation.

30D
(781)

Symbol: DORCNKEY

Meaning: Program error. The key in the text unit was not valid.

Action: This is probably a logic error in the application program. Correct the problem and retry the
dynamic output invocation.

30E
(782)

Symbol: DORCDUPK

Meaning: Program error. Two or more text units were specified with identical keys.

Action: This is probably a logic error in the application program. Correct the problem and retry the
dynamic output invocation.

30F
(783)

Symbol: DORCIVKY

Meaning: Program error. A key that was not valid was found in a text unit.

Action: Determine why a key that was not valid was found in the text unit, correct the problem, and
retry the dynamic output request.

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 151

Table 23. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

310
(784)

Symbol: DORCNSLE

Meaning: Program error. An incorrect subparameter has been specified for a text unit. The specified
subparameter is not defined for this text unit.

Action: This is probably a logic error in the application program. Correct the problem and retry the
dynamic output invocation.

311
(785)

Symbol: DORCMTUP

Meaning: Program error. The number of text unit pointers was found to be too large.

Action: The number of text unit pointers must be less than 1000. Modify the text unit pointer list so that
there are less than 1000 text unit pointers. Retry the dynamic output invocation.

312
(786)

Symbol: DORCIVTX

Meaning: Program error. An incorrect text character was detected in the value field of the text unit.

Action: This is probably a logic error in the application program, or perhaps incorrect data was
propagated by the application program to the dynamic output request. Correct the problem and retry
the dynamic output invocation.

313
(787)

Symbol: DORCISEQ

Meaning: Program error. A character sequence that was not valid was specified in the value field of the
text unit.

Action: This is probably a logic error in the application program, or perhaps incorrect data was
propagated by the application program to the dynamic output request. Correct the problem and retry
the dynamic output invocation.

314
(788)

Symbol: DORCIBIT

Meaning: Program error. During the specification of a text unit that defines a bitstring-type parameter, a
bit was specified that is not allowed.

Action: This is probably a logic error in the application program, or perhaps incorrect data was
propagated by the application program to the dynamic output request. Correct the problem and retry
the dynamic output invocation.

380
(896)

Symbol: DORCLNIV

Meaning: Program error. There is an error in the use of the OUTADD macro. The execute form of the
OUTADD macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

381
(897)

Symbol: DORCNZF1

Meaning: Program error. There is an error in the use of the OUTADD macro. The execute form of the
OUTADD macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

382
(898)

Symbol: DORCNZF2

Meaning: Program error. There is an error in the use of the OUTADD macro. The execute form of the
OUTADD macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

OUTADD macro

152 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 23. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

383
(899)

Symbol: DORCNZR1

Meaning: Program error. There is an error in the use of the OUTADD macro. The execute form of the
OUTADD macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

384
(900)

Symbol: DORCNZR2

Meaning: Program error. There is an error in the use of the OUTADD macro. The execute form of the
OUTADD macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

385
(901)

Symbol: DORCIVID

Meaning: Program error. There is an error in the use of the OUTADD macro. The execute form of the
OUTADD macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

386
(902)

Symbol: DORCIVVR

Meaning: Program error. There is an error in the use of the OUTADD macro. The execute form of the
OUTADD macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

387
(903)

Symbol: DORCNOFN

Meaning: Program error. There is an error in the use of the OUTADD macro. The execute form of the
OUTADD macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

388
(904)

Symbol: DORCIVFN

Meaning: Program error. There is an error in the use of the OUTADD macro. The execute form of the
OUTADD macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

38B
(907)

Symbol: DORCIVNM

Meaning: Program error. An incorrect output descriptor name was supplied to the dynamic output
service.

Action: Check the output descriptor name supplied to the dynamic output service. The first character
must be an alphabetic (capitalized) character or a national character (#, @, or $). The remaining
characters must be alphabetic (capitalized) characters, national characters (#, @, or $), or a number.
There can be no intervening blanks. Alternatively, the name can be all (binary) zeros, indicating that the
system should generate a name for this request. Correct the problem and retry the dynamic output
invocation.

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 153

Table 23. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

38C
(908)

Symbol: DORCIVRZ

Meaning: Program error. There is an error in the use of the OUTADD macro. The execute form of the
OUTADD macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

38D
(909)

Symbol: DORCIVDZ

Meaning: Program error. There is an error in the use of the OUTADD macro. The execute form of the
OUTADD macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

38E
(910)

Symbol: DORCIVHB

Meaning: Program error. There is an error in the use of the OUTADD macro. The execute form of the
OUTADD macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

38F
(911)

Symbol: DORCIVTU

Meaning: Program error. No text units were specified. Either the pointer to the text unit pointer list was
zero, or all the text unit pointers were zero.

Action: Determine why no text units were specified. Correct the problem and retry the dynamic output
invocation.

390
(912)

Symbol: DORCP0C4

Meaning: Program error. An 0C4 ABEND occurred when the system referenced the parameter list. The
parameter list is generated by the list form of the OUTADD macro.

Action: Check to see if the parameter list has the same storage key as the program that uses the
execute form of the macro to invoke dynamic output. Also check to see if your program passed a bad
pointer or address, or if your program failed to set the leftmost bit in the last pointer of the text unit
pointer list.

391
(913)

Symbol: DORCNZR0

Meaning: Program error. There is an error in the use of the OUTADD macro. The execute form of the
OUTADD macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

394
(916)

Symbol: DORCREON

Meaning: Program error. There is an error in the use of the OUTADD macro. The execute form of the
OUTADD macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTADD invocation.

OUTADD macro

154 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 23. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

409
(1033)

Symbol: DORCALTP

Meaning: Program error. Dynamic output processing has determined that the length of the text unit
pointer list has changed during the processing of this dynamic output request. A possible reason for this
is that the application is running in a multitasking environment, where the text unit pointers may be in
shared storage between multiple tasks. Another task could be altering this shared storage concurrently.

Action: Review the design of the application and determine if additional tasks running concurrently with
this dynamic output request could be altering shared storage (the text unit pointer list). If a change can
be made to eliminate the storage alteration by another task, retry the dynamic output request.

Reason codes for return code 10
OUTADD returns a return code of 10 for system ABENDs that occurred during dynamic output OUTADD
processing.

The table below documents the reason codes that can occur when the OUTADD macro returns with a
return code of 10 (in GPR15). The symbol for return code 10 is DOSYSERR in macro IEFDORC. The
“symbol” field in the following table gives the symbolic name for the different reason code values. These
symbols can be found in macro IEFDORC.

Table 24. Reason Codes for Return Code 10

Reason Code
Hexadecimal (Decimal)

Meaning and Action

700
(1792)

Symbol: DORCABND

Meaning: System error. An ABEND occurred in the dynamic output control routine.

Action: Record the return and reason code, and optionally make a copy of your application. Give this
information to your system programmer to supply to the appropriate IBM support personnel.

701
(1793)

Symbol: DORCSJAB

Meaning: System error. An ABEND occurred during this dynamic output request.

Action: Record the return and reason code, and optionally make a copy of your application. Give this
information to your system programmer to supply to the appropriate IBM support personnel.

702
(1794)

Symbol: DORCXABD

Meaning: System error. An ABEND occurred in the dynamic output installation exit.

Action: Notify your system programmer. The dynamic output installation exit might have a logic error. If
a change is made to the installation exit, you can retry the dynamic output invocation.

Example
Use the execute form of the OUTADD macro to modify and execute a parameter list at symbolic location
PLIST. The output descriptor is at symbolic location, DESCR2. The text unit pointer list is at symbolic
location, TEXTL.

OUTADD NAME=DESCR2,TEXTPTR=TEXTL,MF=(E,PLIST)

OUTADD macro

Chapter 18. OUTADD — Create an output descriptor 155

OUTADD macro

156 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 19. OUTDEL — Delete an output descriptor

Description
Use the OUTDEL macro to delete an output descriptor for a system output (sysout) data set. For
information about using the OUTDEL macro, see "Dynamic Output" in z/OS MVS Programming: Authorized
Assembler Services Guide.

The OUTDEL macro has no standard form. Use the list form to generate a storage declaration for the input
parameter list to dynamic output. Use the execute form to modify the parameter list and invoke dynamic
output.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Problem state and any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Must be in the primary address space

Programming requirements
• Use OUTDEL only when the output descriptor being deleted was added by the OUTADD macro.
• When you code the input data to dynamic output, all character data must be left-justified in a field of

blanks. Any noncharacter input data must be right-justified in a field of binary zeroes.

Restrictions
• You can use dynamic output in a JES2 environment or a JES3 4.2.1 or later environment.
• On some systems, the system does not free the output descriptor's storage when you delete the output

descriptor. Whether or not this storage is freed depends on the version of JES being used on your
system. For more information, see "Dynamic Output" in z/OS MVS Programming: Authorized Assembler
Services Guide.

Input register information
Before issuing the OUTDEL macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control is returned to the calling program the GPRs contain:
Register

Contents

OUTDEL macro

© Copyright IBM Corp. 1988, 2020 157

0
Reason code

1
Zero

2-14
Unchanged

15
Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

OUTDEL - List form

Syntax
The list form of the OUTDEL macro is written as follows:

Syntax Description

 name name: symbol. Begin name in column 1.

␢ One or more blanks must precede OUTDEL.

OUTDEL

␢ One or more blanks must follow OUTDEL.

,MF=L

Parameters
The parameters of the list form, which are both required, are explained as follows:

OUTDEL macro

158 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

name
The list form defines the storage area to be used as the input parameter list to the OUTDEL macro.
name specifies the symbolic address of this storage.

MF=L
Specifies the list form of the OUTDEL macro.

Example
Use the list form of the OUTDEL macro to generate the input parameter list that is to be used by the
execute form of the OUTDEL macro. Locate the parameter list at symbolic location, PARML.

PARML OUTDEL MF=L

OUTDEL - Execute form
The execute form of the OUTDEL macro modifies and executes the parameter list that was built with the
list form of the OUTDEL macro.

Syntax
The execute form of the OUTDEL macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede OUTDEL.

OUTDEL

␢ One or more blanks must follow OUTDEL.

NAME=descriptor name addr descriptor name addr: RX-type address or register (2)-(12).

,MF=(E,list addr) list addr: RX-type address or register (2)-(12).

Parameters
The parameters are explained as follows:

NAME=descriptor name addr
Specifies the address of an 8-character field. This field contains the name of the output descriptor
that is to be deleted.

,MF=(E,list addr)
Specifies the execute form of the OUTDEL macro.

list addr specifies the area that the system uses to store the parameters.

OUTDEL macro

Chapter 19. OUTDEL — Delete an output descriptor 159

ABEND codes
OUTDEL might abnormally terminate with abend codes X'76D' or X'054'. See z/OS MVS System Codes for
explanations and programmer responses.

Return and reason codes
When control returns to the caller, GPR 15 contains a hexadecimal return code and GPR 0 contains a
hexadecimal reason code. Note that when you invoke dynamic output to delete an output descriptor, the
system has deleted the descriptor only if the return code is zero.

For programmers who want them, symbolic names for reason codes are available in the IEFDORC
mapping macro. (See z/OS MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosInternetLibrary).) Reason codes are four bytes long.

Table 25. Return and Reason Codes for the OUTDEL Macro

Return Code Reason Code Meaning and Action

00 00 Meaning: The dynamic output request is successful.

Action: None.

04 400-407 Meaning: The dynamic output request failed because of an error in dynamic
output or elsewhere in the system.

Action: None.

08 380-38B
391
500-503

Meaning: The dynamic output request failed. There is an error in an operating
system program.

Action: Contact the system programmer.

08 00
6000-7FFF

Meaning: The dynamic output request failed. The request was denied by your
installation. These reason codes are defined by your installation.

Action: None.

0C 30B-394 Meaning: The dynamic output request failed because the parameter list is
incorrectly initialized.

Action: None.

10 700-702 Meaning: An abend occurred in the system.

Action: Consult the system programmer.

For programmers who want them, symbolic names for reason codes are available in the IEFDORC
mapping macro. (See z/OS MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosInternetLibrary).) Reason codes are four bytes long.

Reason codes for return code 04
The table below documents the reason codes that can occur when the OUTDEL macro returns with a
return code of 04 (in GPR15). The symbol for return code 04 is DOENVERR in macro IEFDORC. The
“symbol” field in the following table gives the symbolic name for the different reason code values. These
symbols can be found in macro IEFDORC.

Table 26. Reason Codes for Return Code 04

Reason Code
Hexadecimal (Decimal)

Meaning and Action

400
(1024)

Symbol: DORCGET1

Meaning: Environmental error. A GETMAIN failed during processing of the dynamic output request.

Action: Attempt to allow a larger region for the application and retry the dynamic output request.

OUTDEL macro

160 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Table 26. Reason Codes for Return Code 04 (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

402
(1026)

Symbol: DORCNDES

Meaning: Program error. For a delete request, the output descriptor does not exist or it has already
been deleted.

Action: This can be a logic error in the application. Check the program logic for conditions that could
lead to an incorrect (nonexistent) output descriptor name being specified on the delete request.

403
(1027)

Symbol: DORCBTCH

Meaning: Program error. The delete request attempted to delete a JCL-specified output descriptor. A
JCL-specified output descriptor cannot be deleted with a dynamic output delete request.

Action: This can be a logic error in the application. Check the program logic for conditions that could
lead to an incorrect output descriptor name being specified on the delete request.

404
(1028)

Symbol: DORCESTA

Meaning: System error. During dynamic output processing, the system was unable to establish a
recovery environment.

Action: Determine if your program is doing something that prevents a recovery environment from being
established. The most likely reason for this error is that your program is causing all available storage to
be used. If the problem cannot be attributed to your program, record the return and reason code, and
optionally make a copy of your application. Give this information to your system programmer to supply
to the appropriate IBM support personnel.

407
(1031)

Symbol: DORCGET2

Meaning: Environmental or system error. A GETMAIN request failed during processing of the dynamic
output request.

Action: Attempt to allow a larger region for the application and retry the dynamic output request.

Reason codes for return code 08
The table below documents the reason codes that can occur when the OUTDEL macro returns with a
return code of 08 (returned in GPR15). The symbol for return code 08 is DOREQDNY in macro IEFDORC.
The “symbol” field in the following table gives the symbolic name for the different reason code values.
These symbols can be found in macro IEFDORC.

Table 27. Reason Codes for Return Code 08

Reason Code
Hexadecimal (Decimal)

Meaning and Action

0
(0)

Symbol: (none defined)

Meaning: Program error. The dynamic output request was denied by your installation.

Action: The meaning of this reason code is defined by your installation. Your installation should be able
to make recommendations for altering the dynamic output request to conform to installation standards.

380
(896)

Symbol: DORCLNIV

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. Dynamic output
processing detected an incorrect parameter list length. The installation exit maps the dynamic output
parameter list (macro IEFDOCNP). Determine why the DOCNLEN field was incorrectly set and correct the
problem.

OUTDEL macro

Chapter 19. OUTDEL — Delete an output descriptor 161

Table 27. Reason Codes for Return Code 08 (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

381
(897)

Symbol: DORCNZF1

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. Unused bits passed
back from the dynamic output installation exit were not set to zero. The installation exit maps the
dynamic output parameter list (macro IEFDOCNP). Determine why the unused bits in the DOCNFNC1
field are not zero and correct the problem.

382
(898)

Symbol: DORCNZF2

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. Unused bits passed
back from the dynamic output installation exit were not set to zero. The installation exit maps the
dynamic output parameter list (macro IEFDOCNP). Determine why the unused bits in the DOCNFNC2
field are not zero and correct the problem.

383
(899)

Symbol: DORCNZR1

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. Unused bits passed
back from the dynamic output installation exit were not set to zero. The installation exit maps the
dynamic output parameter list (macro IEFDOCNP). Determine why the DOCNRSV1 reserved field is not
zero and correct the problem.

384
(900)

Symbol: DORCNZR2

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. Unused bits passed
back from the dynamic output installation exit were not set to zero. The installation exit maps the
dynamic output parameter list (macro IEFDOCNP). Determine why the DOCNRSV2 reserved field is not
zero and correct the problem.

385
(901)

Symbol: DORCIVID

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. A portion of the
dynamic output parameter list was improperly set. The installation exit maps the dynamic output
parameter list (macro IEFDOCNP). Determine why the DOCNID field was not properly initialized and
correct the problem.

386
(902)

Symbol: DORCIVVR

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. The DOCNVERS field
contains an incorrect parameter list version. The installation exit maps the dynamic output parameter
list (macro IEFDOCNP). Determine why the DOCNVERS field was not properly initialized and correct the
problem.

OUTDEL macro

162 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 27. Reason Codes for Return Code 08 (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

387
(903)

Symbol: DORCNOFN

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. A portion of the
dynamic output parameter list was improperly set. The installation exit maps the dynamic output
parameter list (macro IEFDOCNP). Either the DOCNNEW or the DOCNDEL bit must be set in the DOCNFNC1
field. Determine why no function bit (create or delete) was set and correct the problem.

308
(904)

Symbol: DORCIVFN

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. A portion of the
dynamic output parameter list was improperly set. The installation exit maps the dynamic output
parameter list (macro IEFDOCNP). Only one function bit (either DOCNNEW or DOCNDEL) should be set in
the DOCNFNC1 field. Determine why more than one function bit (create or delete) was set and correct
the problem.

389
(905)

Symbol: DORCIVTP

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. A text unit pointer
was specified for a delete request. The installation exit maps the dynamic output parameter list (macro
IEFDOCNP); the text unit pointer was specified in field DOCNTXTP.

38A
(906)

Symbol: DORCIVEQ

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. A conditional ENQ
indicator was specified for a delete request. The installation exit maps the dynamic output parameter
list (macro IEFDOCNP); the conditional ENQ bit was specified using DOCNCENQ in field DOCNFNC2.
Determine why a conditional ENQ indicator was specified and correct the problem.

38B
(907)

Symbol: DORCIVNM

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. Dynamic output
processing received an incorrect output descriptor name from the installation exit. Check the output
descriptor name returned to the dynamic output service. The first character must be an alphabetic
(capitalized) character or a national character (#, @, or $). The remaining characters must be alphabetic
(capitalized) characters, national characters (#, @, or $), or numbers. There can be no intervening
blanks. The installation exit maps the dynamic output parameter list (macro IEFDOCNP); the output
descriptor name is in the DOCNNAME field.

391
(913)

Symbol: DORCNZR0

Meaning: System error.

Action: Contact your system programmer. Provide the system programmer with the return and reason
code. Once the problem has been corrected, retry the dynamic output invocation.

For the system programmer: The dynamic output installation exit has a logic error. Unused bits passed
back from the dynamic output installation exit were not set to zero. The installation exit maps the
dynamic output parameter list (macro IEFDOCNP). Determine why the DOCNRSV0 reserved field is not
zero and correct the problem.

OUTDEL macro

Chapter 19. OUTDEL — Delete an output descriptor 163

Table 27. Reason Codes for Return Code 08 (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

500
(1280)

Symbol: DORCINST

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer with the return and reason
code. Once the operating system program has been corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output installation exit. The return
code from the dynamic output installation exit is 8, but the reason code is not within the allowable
range defined for the dynamic output installation exit. Determine why the installation exit is returning a
reason code that is outside the allowable range and correct the error.

501
(1281)

Symbol: DORCINRC

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer with the return and reason
code. Once the operating system program has been corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output installation exit. The return
code from the dynamic output installation exit is zero but the reason code is not zero. Determine why
the installation exit is returning a nonzero reason code but a zero return code for the dynamic output
request and correct the error.

502
(1282)

Symbol: DORCINRT

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer with the return and reason
code. Once the operating system program has been corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output installation exit. The return
code from the dynamic output installation exit is not within the allowable range defined for the dynamic
output installation exit. Determine why the installation exit is returning a return code that is outside the
allowable range and correct the error.

503
(1283)

Symbol: DORCINKE

Meaning: System error.

Action: Contact your system programmer. Provide your system programmer with the return and reason
code. Once the operating system program has been corrected, retry the dynamic output invocation.

For the system programmer: There is a program error in the dynamic output installation exit. The return
code from the dynamic output installation exit is zero, but the installation exit has returned a nonzero
value in register 1. Although this is an OUTDEL request, when control is returned from the installation
exit for an OUTADD request, register 1 contains the value of the key that is in error. Determine why the
installation exit is returning a nonzero value in register 1 and a zero return code for the dynamic output
request and correct the error.

6000-7FFF
(24576-32767)

Symbol: (none defined)

Meaning: Program error. The dynamic output request was denied by your installation.

Action: The meaning of this reason code is defined by your installation, and indicates the reason the
dynamic output request was denied. Your installation should be able to make recommendations for
altering the dynamic output request to conform to installation standards.

Reason codes for return code 0C
OUTDEL returns a return code of 0C for errors detected in the caller's parameters. The list form of the
OUTDEL macro generates a parameter list. When the caller invokes the execute form of the OUTDEL
macro, this parameter list is filled in with the parameters coded on the execute form of the OUTDEL
macro. The OUTDEL service verifies this parameter list.

The table below documents the reason codes that can occur when the OUTDEL macro returns with a
return code of 0C (in GPR15). The symbol for return code 0C is DOINVPRM in macro IEFDORC. The
“symbol” field in the following table gives the symbolic name for the different reason code values. These
symbols can be found in macro IEFDORC.

OUTDEL macro

164 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 28. Reason Codes for Return Code 0C

Reason Code
Hexadecimal (Decimal)

Meaning and Action

30B
(779)

Symbol: DORCIVNP

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

30C
(780)

Symbol: DORCIVLN

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

311
(785)

Symbol: DORCMTUP

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

380
(896)

Symbol: DORCLNIV

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

381
(897)

Symbol: DORCNZF1

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

382
(898)

Symbol: DORCNZF2

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

383
(899)

Symbol: DORCNZR1

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

OUTDEL macro

Chapter 19. OUTDEL — Delete an output descriptor 165

Table 28. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

384
(900)

Symbol: DORCNZR2

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

385
(901)

Symbol: DORCIVID

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

386
(902)

Symbol: DORCIVVR

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

387
(903)

Symbol: DORCNOFN

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

388
(904)

Symbol: DORCIVFN

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

389
(905)

Symbol: DORCIVTP

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

38A
(906)

Symbol: DORCIVEQ

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

OUTDEL macro

166 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 28. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

38B
(907)

Symbol: DORCIVNM

Meaning: Program error. Dynamic output processing received an invalid output descriptor name.

Action: Check the output descriptor name supplied to the dynamic output service. The first character
must be an alphabetic (capitalized) character or a national character (#, @, or $). The remaining
characters must be alphabetic (capitalized) characters, national characters (#, @, or $), or numbers.
There can be no intervening blanks. Correct the problem and retry the dynamic output invocation.

38C
(908)

Symbol: DORCIVRZ

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

38D
(909)

Symbol: DORCIVDZ

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

38E
(910)

Symbol: DORCIVHB

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

390
(912)

Symbol: DORCP0C4

Meaning: Program error. An 0C4 ABEND occurred when the system referenced the parameter list The
parameter list is generated by the list form of the OUTDEL macro.

Action: Check to see if the parameter list has the same storage key as the program that uses the
execute form of the macro to invoke dynamic output. Also check to see if your program passed a bad
pointer or address.

391
(913)

Symbol: DORCNZR0

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

392
(914)

Symbol: DORCONEU

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

OUTDEL macro

Chapter 19. OUTDEL — Delete an output descriptor 167

Table 28. Reason Codes for Return Code 0C (continued)

Reason Code
Hexadecimal (Decimal)

Meaning and Action

393
(915)

Symbol: DORCREUS

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

394
(916)

Symbol: DORCREON

Meaning: Program error. There is an error in the use of the OUTDEL macro. The execute form of the
OUTDEL macro creates assembler instructions in your program. The list form of the macro reserves
storage for the input parameter list that is used by the execute form of the macro. An error has been
detected in the assembler instructions or in the parameter list storage. Another task might have altered
the assembler instructions' storage or the parameter list's storage.

Action: Correct the problem and retry the OUTDEL invocation.

Reason codes for return code 10
OUTDEL returns a return code of 10 for system ABENDS that occurred during dynamic output OUTDEL
processing.

The table below documents the reason codes that can occur when the OUTDEL macro returns with a
return code of 10 (in GPR15). The symbol for return code 10 is DOSYSERR in macro IEFDORC. The
“symbol” field in the following table gives the symbolic name for the different reason code values. These
symbols can be found in macro IEFDORC.

Table 29. Reason Codes for Return Code 10

Reason Code
Hexadecimal (Decimal)

Meaning and Actions

700
(1792)

Symbol: DORCABND

Meaning: System error. An ABEND occurred in the dynamic output control routine.

Action: Record the return and reason code, and optionally make a copy of your application. Give this
information to your system programmer to supply to the appropriate IBM support personnel.

701
(1793)

Symbol: DORCSJAB

Meaning: System error. An ABEND occurred during this dynamic output request.

Action: Record the return and reason code, and optionally make a copy of your application. Give this
information to your system programmer to supply to the appropriate IBM support personnel.

702
(1794)

Symbol: DORCXABD

Meaning: System error. An ABEND occurred in the dynamic output installation exit.

Action: Notify your system programmer. The dynamic output installation exit might have a logic error. If
a change is made to the installation exit, it might be possible to retry the dynamic output invocation.

Example
Use the execute form of the OUTDEL macro to modify and execute a parameter list at symbolic location
PLIST. The output descriptor is at symbolic location, DESCR2.

OUTDEL NAME=DESCR2,MF=(E,PLIST)

OUTDEL macro

168 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 20. PCLINK — Stack, unstack, or extract
program call linkage information

Description
Note: IBM recommends the use of stacking PC routines instead of basic PC routines; stacking PC routines
use system-provided linkage rather than issuing PCLINK to save and restore the caller's environment.

Routines that receive control as a result of a basic PC instruction use the PCLINK macro to provide a
standardized method of maintaining basic PC linkage information. PCLINK has three forms:

• PCLINK STACK saves some of the environment when a routine gets control as a result of a basic PC
instruction.

• PCLINK UNSTACK restores that environment before the routine issues a PT instruction to return control
to the calling routine.

• PCLINK EXTRACT retrieves information from the environment that PCLINK STACK saved.

See z/OS MVS Programming: Extended Addressability Guide for information about basic and stacking PC
routines, the instructions they can use, and the environmental information that PCLINK saves and
restores.

STACK option of PCLINK

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state, any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: The caller may hold locks, but is not required to hold any.

Control parameters: None

Programming requirements
None.

Restrictions
Your program must not change registers 13-4 between receiving control and the time of issuing PCLINK.

PCLINK macro

© Copyright IBM Corp. 1988, 2020 169

Input register information
Before issuing the STACK option of the PCLINK macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter or using it as a base register.

Output register information
On completion of PCLINK STACK, the registers are as follows:
Register

Contents
0-1

Unchanged
2

Bits 0-23 contain bits 8-31 from register 2 at the time the PCLINK macro was issued. Bits 24-31
contain the PCLINK caller's PSW key.

3-4
Unchanged

5
Used as a work register by the system

6-7
Unchanged

8-12
Unchanged if SAVE=YES, used as work registers by the system if SAVE=NO

13
Zero, to ensure that the first save area created after the basic PC does not point to a previous save
area.

14
Stack token to uniquely identify the stack entry created. This token is required for the UNSTACK and
EXTRACT forms of PCLINK.

15
Unchanged

Performance implications
Processing is more efficient if SAVE=NO is specified.

Syntax
The STACK option of the PCLINK macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede PCLINK.

PCLINK

␢ One or more blanks must follow PCLINK.

PCLINK macro

170 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

STACK

 ,INKEY=ZERO

 ,OUTKEY=CALLER Default: OUTKEY=CALLER

 ,OUTKEY=ZERO

 ,OUTKEY=KEYn n: Any valid PSW key value from 0-F.

 ,SAVE=YES Default: SAVE=YES

 ,SAVE=NO

 ,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

STACK
Saves some of the environment when a routine gets control as a result of a basic PC instruction.

,INKEY=ZERO
Specifies that the PSW key is zero upon entry to PCLINK. If this parameter is not specified, the PSW
key is temporarily changed to zero.

,OUTKEY=CALLER
,OUTKEY=ZERO
,OUTKEY=KEYn

Specifies the setting of the PSW key after the PCLINK macro has completed. Specifying CALLER
causes the PSW key to be restored to the value it had on entry. Specifying ZERO sets the PSW key to
zero. Specifying a key value indicates a specific value for the key. You may specify any key value from
zero to F.

,SAVE=YES
,SAVE=NO

Specifies whether (YES) or not (NO) to preserve registers 8 - 12. The save area used is different from
the area addressed by register 13. SAVE=YES is the default.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding services performed elsewhere. The format and contents of the information specified
can be any valid coding values.

ABEND codes
052
053

See z/OS MVS System Codes for an explanation and programmer responses for this code.

Return and reason codes
None.

PCLINK macro

Chapter 20. PCLINK — Stack, unstack, or extract program call linkage information 171

UNSTACK option of PCLINK

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state, any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks The caller may hold locks, but is not required to hold any.

Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the UNSTACK option of the PCLINK macro, the caller does not have to place any
information into any register unless using it in register notation for a particular parameter or using it as a
base register.

Performance implications
Processing is more efficient if UNSTACK,SAVE=NO,THRU is specified separately for each stack element to
be dequeued rather than one request for several elements.

Syntax
The UNSTACK option of the PCLINK macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede PCLINK.

PCLINK

␢ One or more blanks must follow PCLINK.

PCLINK macro

172 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

UNSTACK

,THRU=(reg) reg: Register (0) - (15).

,TO=(reg)

,PURGE=YES

 ,INKEY=ZERO

 ,OUTKEY=STACK Default: OUTKEY=STACK

 ,OUTKEY=ZERO

 ,SAVE=YES Default: SAVE=YES

 ,SAVE=NO

 ,ERRET=addr addr: RX-type address or register (0) - (13) or (15).

 ,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

UNSTACK
Restores the environment before the routine issues a PT instruction to return control to the calling
routine.

,THRU=(reg)
Specifies that the stack element identified by the token contained in the specified register, as well as
all more recently stacked elements, are to be removed from the requestor's stack. The stack element
specified by the token is used to restore registers. If the system cannot process the request, the
routine specified by the ERRET parameter gets control; if the ERRET parameter is not specified, the
requestor is abnormally terminated.

When a PCLINK UNSTACK,THRU is completed, the PSW program mask is restored from the stack
element identified by the token and the registers are as follows:
Register

Contents
0-1

Unchanged
2

Bits 24-27 contain the PSW key from the stack element identified by the token
3

As saved by PCLINK STACK

PCLINK macro

Chapter 20. PCLINK — Stack, unstack, or extract program call linkage information 173

4-7
Unchanged

8-12
Unchanged if SAVE=YES is specified, used as work registers by the system if SAVE=NO is specified

13-14
As saved by PCLINK STACK

15
Unchanged

,TO=(reg)
Specifies that all stack elements stacked more recently than the element identified by the token
contained in the specified register are to be removed from the stack. The element identified by the
token remains on the stack. If the system cannot process the request, the routine specified by the
ERRET parameter gets control; if the ERRET parameter is not specified, the requestor is abnormally
terminated.

Use the TO parameter for stack cleanup in an FRR or ESTAE retry routine or in an FRR that is going to
retry.

When a PCLINK UNSTACK,TO is completed, the registers are as follows:
Register

Contents
0-1

Used as work registers by the system
2

Unchanged if INKEY=ZERO is specified and ERRET is not specified; otherwise, PSW key of PCLINK
caller

3-7
Unchanged

8-12
Unchanged if SAVE=YES is specified, used as work registers by the system if SAVE=NO is specified

13
Unchanged

14-15
Used as work registers by the system

,PURGE=YES
Specifies that each stack element is to be freed until no more exist on the requestor's stack. Any
element that resides in a terminated address space as well as elements stacked prior to it are not
freed, but the stack pointer indicates an empty stack and the PCLINK request returns normally to the
caller.

The ERRET parameter cannot be used with PURGE.

When the PCLINK UNSTACK,PURGE is completed, the registers are as follows:
Register

Contents
0-1

Used as work registers by the system
2

Unchanged if INKEY=ZERO is specified; otherwise, PSW key of PCLINK caller
3-7

Unchanged
8-12

Unchanged if SAVE=YES is specified, used as work registers by the system if SAVE=NO is specified

PCLINK macro

174 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

13
Unchanged

14-15
Used as work registers by the system

,INKEY=ZERO
Specifies that the PSW key is zero on entry to PCLINK. If this parameter is not specified, the key is
temporarily changed to zero.

,OUTKEY=STACK
,OUTKEY=ZERO

Specifies the setting of the PSW key after the PCLINK request is completed. Specifying
OUTKEY=ZERO returns to the caller in key zero. Specifying OUTKEY=STACK restores the key to the
value contained in the stack element identified by token. OUTKEY=STACK is the default.

This parameter is valid only with PCLINK UNSTACK,THRU.

,SAVE=YES
,SAVE=NO

Specifies whether (YES) or not (NO) registers 8 - 12 are to be preserved. The save area used for these
registers is not the area pointed to by register 13.

,ERRET=addr
Specifies the address of an exit routine to be given control if PCLINK UNSTACK encounters an error.
ERRET is valid only with the TO and THRU parameters.

The ERRET exit routine receives control in the addressing mode of the caller of PCLINK. When an
ERRET exit routine gets control, the cross memory state is the same as when the PCLINK macro was
issued. The registers are as follows:
Register

Contents
0-1

Used as work registers by the system
2

PSW key of PCLINK caller
3

Used as a work register by the system
4-7

Unchanged
8-12

Unchanged if SAVE=YES is specified, used as work registers by the system if SAVE=NO is specified
13

Used as a work register by the system
14

The token passed as input
15

4

- stack was empty
8

- input token is invalid
12

- an address on the queue is invalid
16

- An ASID on the queue is invalid

PCLINK macro

Chapter 20. PCLINK — Stack, unstack, or extract program call linkage information 175

20
- Unknown error

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding services performed elsewhere. The format and contents of the information specified
can be any valid coding values.

ABEND codes
052
053

See z/OS MVS System Codes for an explanation and programmer responses for this code.

Return and reason codes
None.

EXTRACT option of PCLINK
PCLINK EXTRACT modifies registers 0, 1, 14, and 15. If ALL=YES is specified, registers 13-4 are also
modified.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state or PSW key 0 or PKM key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: The caller may hold locks, but is not required to hold any.

Control parameters: Must be in primary address space

Programming requirements
Your program must have addressability to the address space from which PCLINK STACK was issued for
the current stack element.

Restrictions
None.

Input register information
Before issuing the EXTRACT option of the PCLINK macro, the caller does not have to place any
information into any register unless using it in register notation for a particular parameter or using it as a
base register.

PCLINK macro

176 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Performance implications
None.

Syntax
The EXTRACT option of the PCLINK macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede PCLINK.

PCLINK

␢ One or more blanks must follow PCLINK.

EXTRACT

,TOKEN=(reg) reg: Register (0) - (15).

,ALL=YES

,SVAREA=(reg)

,RETADR=(reg)

,PARM15=(reg)
,PARM0=(reg)
,PARM1=(reg)

,KEY=(reg)

,ASID=(reg)

,LP=(reg)

,ENTRY=(reg)

PCLINK macro

Chapter 20. PCLINK — Stack, unstack, or extract program call linkage information 177

Syntax Description

 ,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

EXTRACT
Retrieves information from the saved environment.

,TOKEN=(reg)
Specifies a register that contains a 32-bit stack token identifying the most recently stacked element.

,ALL=YES
Specifies that all information stored in the stack element identified by the token is to be extracted.
The stored information is placed into the same registers (registers 13, 15, and 0-4) it was in when
PCLINK STACK was issued. Registers 5 and 14 are not restored.

,SVAREA=(reg)
Specifies a register into which the address of the program call issuer's save area is to be placed.

,RETADR=(reg)
Specifies a register into which the AMODE (in which control is to be returned), the return address, and
PSW problem state bit are to be placed. These occupy bits 0,1-30, and 31, respectively.

,PARM15=(reg)
,PARM1=(reg)
,PARM0=(reg)

Specifies a register into which the contents of register 15 (PARM15), register 1 (PARM1), or register 0
(PARM0) at the time PCLINK STACK was issued are to be placed.

,KEY=(reg)
Specifies a register into which the basic PC issuer's PSW key is to be placed. The key occupies bit
positions 24-27.

,ASID=(reg)
Specifies a register into which the basic PC issuer's PSW key mask (bits 0-15) and ASID (bits 16-32)
are to be placed.

,LP=(reg)
Specifies a register into which the latent parameter list address is to be placed.

,ENTRY=(reg)
Specifies a register into which the contents of register 5 as established by the PCLINK STACK macro
are to be placed. Bit 0 of the register used by the ENTRY parameter specifies the addressing mode of
the program call routine that issued the PCLINK macro.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding services performed elsewhere. The format and contents of the information specified
can be any valid coding values.

ABEND codes
052
053

See z/OS MVS System Codes for an explanation and programmer responses for this code.

Return and reason codes
None.

PCLINK macro

178 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 21. PGANY — Page anywhere

Description
Note: IBM recommends that you use the PGSER macro rather than PGANY.

Some fixed pages are assigned within the first 16 megabytes of storage. The system assumes that once a
page has been fixed, it is likely to be fixed again. The next time that page is loaded, the system tries to put
it in the first 16 megabytes in anticipation of a fix. Use the PGANY macro to indicate to the system that no
further page fixes are planned for a particular page and that the next time the page is loaded, the system
can put it anywhere.

Input register information
Entry is by means of an SVC. The caller can be in either problem or supervisor state and must not hold any
locks.

Output register information
After the caller issues the macro, the macro might use some registers as work registers or might change
the contents of some registers. When the macro returns control to the caller, the contents of these
registers are not the same as they were before the macro was issued. Therefore, if the caller depends on
these registers containing the same value before and after issuing the macro, the caller must save these
registers before issuing the macro and restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the macro
2-13

Unchanged
14

Used as a work register by the macro
15

Return code

Syntax
The PGANY macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede PGANY.

PGANY

PGANY macro

© Copyright IBM Corp. 1988, 2020 179

Syntax Description

␢ One or more blanks must follow PGANY.

L,LA=list addr list addr: RX-type address or register (1) or (2) - (12).

R,A=start addr start addr: RX-type address or register (1), (2) - (12).

 ,EA=end addr end addr: RX-type address or register (15), (2) - (12).

Note: Cannot be specified unless R is specified.

Default: EA=start addr + 1.

Parameters
The parameters are explained as follows:

L
Specifies that the virtual subarea list (VSL) is being supplied with this request. (See “Input to Page
Services” in z/OS MVS Programming: Authorized Assembler Services Guide for a description of the
virtual subarea list.)
,LA=list addr

Specifies the address of the virtual subarea list.
R

Specifies that the necessary parameters will be passed in registers. A virtual subarea list is not being
supplied.
,A=start addr

Specifies the address of the start of the virtual area.
,EA=end addr

Specifies the end + 1 byte of the virtual area. If this parameter is not coded, the default is the start
address + 1.

Note: start addr and end addr must be located in 24-bit addressable storage.

Return and reason codes
When PGANY macro returns control to your program, GPR 15 contains a hexadecimal return code.

Table 30. Return Codes for the PGANY Macro

Return Code Meaning

00 Meaning: Operation completed normally.

04 Meaning: Parameter error, X‘171’ abend, operation terminated because of invalid address in VSL entry.

10 Meaning: Parameter error, X‘171’ abend, operation terminated abnormally because the VSL list was
invalid.

14 Meaning: Environmental error, X‘028’ abend.

For return codes 04 and 10, registers are loaded before the abend as follows:
R0

Used as a work register by the macro

PGANY macro

180 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

R1
Abend code

R2-R10
Used as a work register by the macro

R11
Address of input VSL list or 0 for R-form

R12
0 (ECB address =0)

R13-R14
Current VSL entry being processed

R15
Return code

PGANY macro

Chapter 21. PGANY — Page anywhere 181

PGANY macro

182 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 22. PGFIX — Fix virtual storage contents

Description
Note: IBM recommends that you use the PGSER macro rather than PGFIX.

The PGFIX macro makes virtual storage areas, below 16 megabytes, resident in central (also called real)
storage and ineligible for page-out while the requesting task's address space is swapped into central
storage. PGFIX ignores requests to fix storage in a system area that has the fixed attribute (for example,
the LSQA and SQA). A FIX request for a page in the LSQA or SQA will not cause the page to be backed by
central storage below 16 megabytes. A subsequent PGFREE is effective only if issued by the same task.
The PGFIX function is available only to authorized users.

PGFIX does not prevent pages from being paged out when an entire address space is swapped out of
central storage. Consequently, when using the PGFIX macro, you cannot assume a constant real address
mapping for fixed pages that are susceptible to swapping.

Syntax
The standard form of the PGFIX macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede PGFIX.

PGFIX

␢ One or more blanks must follow PGFIX.

R

L

,LA=list addr list addr: A-type address, or register (1) or (2) - (12).

,A=start addr start addr: A-type address, or register (1) or (2) - (12).

,ECB=ecb addr ecb addr: A-type address, or register (0) or (2) - (12).

 ,EA=end addr end addr: A-type address, or register (2) - (12) or (15).

 Default: start addr + 1

PGFIX macro

© Copyright IBM Corp. 1988, 2020 183

Syntax Description

 ,LONG=Y Default: LONG=Y

 ,LONG=N

 ,RELEASE=N Default: RELEASE=N

 ,RELEASE=Y Note: RELEASE=Y may only be specified with EA above.

 ,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

R
Specifies that no parameter list is being supplied with this request.

L
Specifies that a parameter list is being supplied with this request.

,LA=list addr
Specifies the address of the first entry of a virtual subarea list (VSL). See “Input to Page Services” in
z/OS MVS Programming: Authorized Assembler Services Guide for a description of the VSL.

,A=start addr
Specifies the start address of the virtual area to be fixed.

Note: start addr must be located in 24-bit addressable storage.

,ECB=ecb addr
Specifies the address of the ECB that is used to signal event completion. If the ECB address specified
is zero, (ECB=0 or ECB=(register) where the contents of the register specified is 0), the fix request is
completely satisfied before control is returned.

Note: If the user intends to wait on the ECB as part of an ECB list, he must ensure that the list and
associated ECBs are fixed in central storage before issuing the WAIT. The PGFIX service routine
ensures that the specified ECB is fixed.

,EA=end addr
Specifies the end address + 1 of the virtual area to be fixed.

Note: end addr must be located in 24-bit addressable storage.

,LONG=Y
,LONG=N

Specifies that the relative real time duration anticipated for the fix is long (Y) or short (N).
,RELEASE=N
,RELEASE=Y

Specifies that the contents of the virtual area is to remain intact (N) or be released (Y) before the fix is
done.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information specified are at the
discretion of the user, and may be any valid coding values.

PGFIX macro

184 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Return and reason codes
When PGFIX macro returns control to your program, GPR 15 contains a hexadecimal return code.

Table 31. Return Codes for the PGFIX Macro

Return Code Meaning

00 Meaning: Operation completed normally; ECB posted complete.

04 Meaning: Operation abnormally terminated with a X‘171’ abend. Operation incomplete because of
invalid address virtual subarea list entry; ECB posted complete. See z/OS MVS System Codes for a
complete description of the register contents after a X‘171’ abend.

08 Meaning: Operation proceeding; ECB will be posted when all requested pages are fixed in central
storage.

10 Meaning: Operation abnormally terminated with a X‘171’ abend. Virtual subarea list entry or ECB
address invalid; no ECB is posted. See z/OS MVS System Codes for a complete description of the register
contents after a X‘171’ abend.

The ECB is unchanged if the request was initiated but not complete (return code 8), or if an ABEND was
issued with return code 10. Otherwise, the ECB is posted complete with code:
0

- operation completed successfully.
4

- operation incomplete because of invalid address in VSL entry.

If the return code issued is 8, the ECB is posted asynchronously when paging I/O has completed, with
code:
0

- operation completed successfully.
4

- operation incomplete because of paging error; requesting TCB will be abnormally terminated.

The ECB code is posted in the low-order 3 bytes of the ECB, and is right-justified.

Example 1
Fix a single byte of virtual storage addressed by register 3. Note that the full 4096-byte page containing
the specified byte is actually fixed. The storage is long fixed.

PGFIX R,A=(R3),ECB=(R5)

Example 2
Fix virtual storage without using a virtual subarea list. Storage is long fixed.

PGFIX R,A=(R3),EA=(R4),ECB=ECB1

Example 3
Fix, but not long-fix, virtual storage, and ensure that the pages fully included in the address range are
forfeited before fixing the area specified by registers 3 and 4.

PGFIX R,A=(R3),EA=(R4),ECB=(R5),LONG=N,RELEASE=Y

PGFIX macro

Chapter 22. PGFIX — Fix virtual storage contents 185

PGFIX macro

186 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 23. PGFIXA — Fix virtual storage contents

Description
Note: IBM recommends that you use the PGSER macro rather than PGFIXA.

The PGFIXA macro makes virtual storage areas, below 16 megabytes, resident in central (also called real)
storage and ineligible for page-out while the requesting task's address space is swapped into central
storage. The PGFIXA function is available only to key zero and supervisor state users. The PGFIXA macro
executes short-term, synchronous page fixes. The preferred area(s) of storage are intended for long term
page fixes. A long term page fix in the V=R or nonpreferred areas may delay V=R functions or CONFIG
STORAGE commands. All fix processing is assumed to be short-term and is complete when control is
returned to the issuer of the macro.

PGFIXA does not prevent pages from being paged out when an entire address space is swapped out of
central storage. Consequently, when using the PGFIXA macro, you cannot assume a constant real
address mapping for fixed pages that are susceptible to swapping.

Output
If the PGFIXA is successful, control is returned enabled to the user, all pages are fixed, and register 15
contains a return code of zero.

If the PGFIXA is unsuccessful, the user will be abended with a system completion code of X‘171’ or a
system complete code of X‘028’. For X‘171’ abends, all pages processed up to, but not including the page
causing the error, will be fixed. Register 10 will contain the address of the pages in error when the abend
is issued. No pages will be fixed in the event of a X‘028’ abend.

Restrictions
Use of the PGFIXA macro is subject to the following restrictions:

• Can be used only for short term synchronous fixes.
• The user must be in supervisor state with a protection key of zero.
• The user must not hold any spin locks.
• The program mask byte in the PSW is zero and interrupts are enabled upon return from the PGFIXA.
• The user is responsible for freeing any pages fixed via the PGFIXA. A corresponding PGFREEA macro

should be issued. In addition, an FRR should be established during the period where fixes are
outstanding. The FRR should free the frames in case there is an unexpected error.

• DSECTs for the IHAPSA, CVT, and IHAPVT must be provided.
• The user must ensure that the end address is greater than or equal to the start address.
• The SAVE keyword can only be used with TYPE=R.

Syntax
The standard form of the PGFIXA macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

PGFIXA macro

© Copyright IBM Corp. 1988, 2020 187

Syntax Description

␢ One or more blanks must precede PGFIXA.

PGFIXA

␢ One or more blanks must follow PGFIXA.

 ,TYPE=L

 ,TYPE=R Default: TYPE=R

 ,SAVE=YES Default: SAVE=YES

 ,SAVE=NO

Parameters
The parameters are explained as follows:

TYPE=L
TYPE=R

Specifies the type of input. When L is specified, register 1 is to contain the address of a virtual subarea
list (VSL) fixed in storage. (See the topic “Input to Page Services” in z/OS MVS Programming:
Authorized Assembler Services Guide for a description of the VSL.) By specifying TYPE=L, registers 1
through 13 are saved. If TYPE=R is specified, then register 1 contains the address of the first byte to
be fixed in a contiguous range and register 2 contains the address of the last byte to be fixed (actual
end address). When TYPE=R is specified, the registers saved depend upon what is specified on the
SAVE parameter.

Note: All other users of the PGFIX, PGFIXA (TYPE=L), and PGFREEA macros must specify the actual
end address plus one.

,SAVE=YES
,SAVE=NO

Specifies the registers to be saved for TYPE=R. Registers 1 through 13 are saved if SAVE=YES is
specified or if the default is taken. Registers 2 through 10 are saved if SAVE=NO is specified.

Example 1
Use PGFIXA to fix virtual storage without using a virtual subarea list. Registers 2 through 10 will be saved.

FIX1 PGFIXA TYPE=R,SAVE=NO

Example 2
Use PGFIXA to fix virtual storage using a virtual subarea list. Registers 1 through 13 will be saved.

FIX2 PGFIXA TYPE=L

PGFIXA macro

188 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 24. PGFREE — Free virtual storage contents

Description
Note: IBM recommends that you use the PGSER macro rather than PGFREE.

The PGFREE macro makes virtual storage pages, below 16 megabytes, that were fixed via the PGFIX
macro eligible for page-out. The PGFREE function is available only to authorized users. PGFREE must be
issued by the same task that issued the PGFIX, otherwise PGFREE has no effect.

Note: A fixed page is not considered pageable until the number of PGFREEs issued for the page is equal
to the number of PGFIXes previously issued for that page. That is, a page is not automatically made
pageable as the result of issuing a PGFREE macro.

Syntax
The standard form of the PGFREE macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede PGFREE.

PGFREE

␢ One or more blanks must follow PGFREE.

L

,LA=list addr list addr: A-type address, or register (1) or (2) - (12).

R

,A=start addr start addr: A-type address, or register (1) or (2) - (12).

 ,ECB=ecb addr ecb addr: A-type address, or register (0) or (2) - (12).

 ,EA=end addr end addr: A-type address, or register (2) - (12) or (15).

 Default: start addr + 1

PGFREE macro

© Copyright IBM Corp. 1988, 2020 189

Syntax Description

 ,ANYWHER=N Default: ANYWHER=N

 ,ANYWHER=Y

 ,RELEASE=N Default: RELEASE=N

 ,RELEASE=Y Note: RELEASE=Y may only be specified with EA above.

 ,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

L
Specifies that a parameter list is being supplied with this request.

,LA=list addr
Specifies the address of the first entry of a virtual subarea list (VSL). See “Input to Page Services” in
z/OS MVS Programming: Authorized Assembler Services Guide for a description of the VSL.

R
Specifies that no parameter list is being supplied with this request.

,A=start addr
Specifies the start address of the virtual area to be freed.

Note: start addr must be located in 24-bit addressable storage.

,ECB=ecb addr
Specifies the address of the ECB that was used in a prior PGFIX request. This parameter is used if
there is any possibility that the ECB for the previously issued PGFIX was not posted complete.

,EA=end addr
Specifies the end address + 1 of the virtual area to be freed.

Note: end addr must be located in 24-bit addressable storage.

,ANYWHER=N
,ANYWHER=Y

On subsequent page-ins, assign real frames below 16 megabytes in anticipation of a page fix (N) or on
subsequent page-ins, assign real frames anywhere (Y). The ANYWHER option takes effect only when
the page fix count goes to zero. The default is ANYWHER=N.

,RELEASE=N
,RELEASE=Y

Specifies that the contents of the virtual area is to remain intact (N) or be released (Y).
,RELATED=value

Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information specified are at the
discretion of the user, and may be any valid coding values.

Return and reason codes
When PGFREE macro returns control to your program, GPR 15 contains one of the following hexadecimal
return codes.

PGFREE macro

190 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 32. Return Codes for the PGFREE Macro

Return Code Meaning

00 Meaning: Operation completed normally.

04 Meaning: Operation abnormally terminated. Operation incomplete because of invalid address in virtual
subarea list entry.

10 Meaning: Operation abnormally terminated. Virtual subarea list entry or ECB address invalid.

Example 1
Free the storage in Example 1 of standard-form PGFIX.

PGFREE R,A=(R3)

Example 2
Free the storage in Example 2 of standard-form PGFIX.

PGFREE R,A=(R3),EA=(R4)

Example 3
Free the storage in Example 3 of standard-form PGFIX, and forfeit the pages fully included in the address
range.

PGFREE R,A=(R3),EA=(R4),ECB=(R5),RELEASE=Y

PGFREE macro

Chapter 24. PGFREE — Free virtual storage contents 191

PGFREE macro

192 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 25. PGFREEA — Free virtual storage contents

Description
Note: IBM recommends that you use the PGSER macro rather than PGFREEA.

The PGFREEA macro makes virtual storage areas, below 16 megabytes, that were fixed by the PGFIXA
macro eligible for page-out.

Syntax
The standard form of the PGFREEA macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede PGFREEA.

PGFREEA

␢ One or more blanks must follow PGFREEA.

No additional parameters are specified.

Restrictions
Use of the PGFREEA macro is subject to the following restrictions:

• The issuer of the PGFREEA must provide a fixed virtual subarea list (VSL) or chain of them, pointed to by
register 1. For a description of the VSL, see z/OS MVS Programming: Authorized Assembler Services
Guide.

• The user must be in supervisor state, protection key 0.
• The user must provide DSECTs for IHAPSA, CVT, and IHAPVT.

Output
If the PGFREEA is successful, all pages will be freed and register 15 will contain a return code of zero. If
unsuccessful, all pages up to, but not including the one that caused the abend will be freed. The user will
be abended with a system completion code of X‘171’.

PGFREEA macro

© Copyright IBM Corp. 1988, 2020 193

PGFREEA macro

194 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 26. PGSER — Page services

Description
The PGSER macro and its fast path version (see Chapter 27, “PGSER — Fast path page services,” on page
205) perform the same paging services that the PGANY, PGFIX, PGFIXA, PGFREE, PGFREEA, PGLOAD,
PGOUT, and PGRLSE macros perform for addresses below 16 megabytes. The PGSER macro performs
these services for addresses either above or below 16 megabytes.

The syntax of the fast path version of PGSER is presented separately following the standard description.

Note: IBM recommends the use of PGSER for paging services.

The services are:

• Page fix equivalent to the PGFIX macro
• Fast path to fix virtual storage
• Page free equivalent to the PGFREE macro
• Fast path to free virtual storage
• Page load equivalent to the PGLOAD macro
• Page out equivalent to the PGOUT macro
• Page release equivalent to the PGRLSE macro
• Page anywhere equivalent to the PGANY macro
• The PGSER macro with the PROTECT parameter makes a range of virtual storage pages read-only
• The PGSER macro with the UNPROTECT parameter makes a range of virtual storage pages modifiable

Environment
The requirements for the caller invoking PGSER with BRANCH=N are:

Environmental factor Requirement

Minimum authorization: • Problem state, and any key except as noted under “Restrictions”
on page 196.

• To use the PROTECT and UNPROTECT options, the caller must
have either PSW key 0 or a PSW key that matches the key of the
storage.

• The parameters FIX and FREE are restricted to APF-authorized,
key 0, or supervisor state callers. (See “Branch Entry to the PGSER
Routine” in z/OS MVS Programming: Authorized Assembler Services
Guide for more information about branch entry.)

• The RELEASE option of the macro is restricted to supervisor state
with key 0 callers if pages in the common area are being released.

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31- or 64-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

PGSER macro

© Copyright IBM Corp. 1988, 2020 195

Environmental factor Requirement

Locks: No locks held

Control parameters: Must be in the primary address space

The requirements for the caller invoking PGSER with BRANCH=Y are:

Environmental factor Requirement

Minimum authorization: Supervisor state and key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No spin locks held

Control parameters: Must be in the primary address space or be in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL)

Programming requirements
• The caller must include the IHAPVT mapping macro.
• Except for the TCB, all input parameters to this macro can reside in storage above 16 megabytes if the

caller is executing in 31-bit addressing mode.
• Regardless of the addressing mode, all addresses passed in registers are used as 31-bit addresses.
• All RX-type addresses are assumed to be in the addressing mode of the caller.

Restrictions
IBM recommends that page fixes of more than 100 pages be divided into several smaller fix requests.
Large page fix requests can cause an excessive spin loop to occur.

Input register information
Before issuing PGSER with BRANCH=Y, the caller must ensure that GPR 13 points to a standard 18-word
save area. Before issuing PGSER with BRANCH=N, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0-4

Used as work registers by the system
5–13

Unchanged
14

Used as a work register by the system
15

Return code

PGSER macro

196 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0-4

Used as work registers by the system
5-13

Unchanged
14

Used as work registers by the system
15

Return Code

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
The standard form of the PGSER macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede PGSER.

PGSER

␢ One or more blanks must follow PGSER.

R

L

,FIX

,FREE

,LOAD

,OUT

,PROTECT

,UNPROTECT

,RELEASE

,ANYWHER

PGSER macro

Chapter 26. PGSER — Page services 197

Syntax Description

,LA=list addr list addr: RX-type address or register (1), (5) - (12) for branch entry; or
register (1), (2) - (12) for SVC entry.

 Note: This parameter is valid only with L.

,A=start addr start addr: RX-type address or register (1), (5) - (12) for branch entry; or
register (1), (2) - (12) for SVC entry.

 Note: This parameter is valid only with R.

 ,EA=end addr Default: EA=start addr

 end addr: RX-type address or register (2), (5) - (12) for branch entry; or
register (15), (2) - (12) for SVC entry.

 Note: This parameter is valid only with R.

 ,TCB=tcb addr Default: TCB=0

 tcb addr: RX-type address or register (4), (5) - (12).

 Note: This parameter can be specified only if FIX, FREE, LOAD, or OUT
and BRANCH=Y are specified.

 ,ECB=ecb addr Default: If FREE or LOAD is specified, ECB=0.

 ecb addr: RX-type address or register (0), (5) - (12) for branch entry; or
register (0), (2) - (12) for SVC entry.

 Note: This parameter is required if FIX is specified; is optional if FREE or
LOAD is specified; and is not valid for OUT, RELEASE, or ANYWHER. For
synchronous page fix the ECB address must be 0.

 ,RELEASE=Y Default: RELEASE=N

 ,RELEASE=N Note: This parameter may be specified only if FIX, FREE, or LOAD is
specified.

 ,LONG=Y Default: LONG=Y

 ,LONG=N Note: This parameter may be specified only if FIX is specified.

 ,BACKOUT=Y Default: BACKOUT=Y

 ,BACKOUT=N Note: This parameter may be specified only if FIX is specified.

 ,KEEPREL=Y Default: KEEPREL=N

 ,KEEPREL=N Note: This parameter may be specified only if OUT is specified.

PGSER macro

198 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ,ANYWHER=Y Default: ANYWHER=N

 ,ANYWHER=N Note: This parameter may be specified only if FREE is specified.

 ,BRANCH=Y Default: BRANCH=N

 ,BRANCH=N

 ,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

R
L

Specifies the manner in which the input is supplied. If R is specified, the user supplies the starting and
ending addresses of the virtual area for which the service needs to be performed. If L is specified, the
user supplies the address of the page services list, which specifies the virtual area for which the
service is to be performed. See “Input to Page Services” in z/OS MVS Programming: Authorized
Assembler Services Guide for a description of the PSL.

,FIX
,FREE
,LOAD
,OUT
,PROTECT
,UNPROTECT
,RELEASE
,ANYWHER

Indicates the function to be performed.

FIX specifies that the virtual storage areas are to reside in central (also called real) storage and are
ineligible for page-out while the address space is swapped in. This parameter does not prevent pages
from being paged out when the entire address space is swapped out of central storage. FIX will ignore
a request to fix storage in a system area that has the fixed attribute (for example, the LSQA and SQA).
A FIX request for a page in the LSQA or SQA will not cause the page to be backed by central storage
below 16 megabytes. Requests for disabled reference (DREF) storage are not valid for the FIX
parameter.

FREE specifies that the virtual storage areas that were previously fixed via the FIX option are eligible
for page-out. A fixed page is not considered pageable until the number of FREE and FIX requests for
the page are equal. Requests for disabled reference (DREF) storage are not valid for the FREE
parameter.

LOAD specifies that a page-in operation is to be initiated for the virtual storage area specified, in
anticipation of future needs. Requests for disabled reference (DREF) storage are not valid for the
LOAD parameter.

OUT specifies that a page-out operation is to be initiated for the virtual storage area specified.
Requests for disabled reference (DREF) storage are not valid for the OUT parameter.

PROTECT specifies that a range of virtual storage be made read-only. R, L, LA, A, BRANCH, EA, and
RELATED are valid keywords with the PROTECT option.

PGSER macro

Chapter 26. PGSER — Page services 199

The start address of the requested range is always rounded down to a page boundary, while the end
address of the requested range is always rounded up to a page boundary.

UNPROTECT specifies that a range of virtual storage be made modifiable. R, L, LA, A, BRANCH, EA,
and RELATED are valid keywords with the UNPROTECT option. The caller must have either key 0 or a
PSW key that matches the key of the storage.

RELEASE specifies the release of all physical paging resources, including both processor storage and
auxiliary storage. Functionally, RELEASE is equivalent to a FREEMAIN macro followed by a GETMAIN
macro. That is, the virtual space is maintained, but the data is discarded. When a released page is
next referred to, its contents are binary zeros. RELEASE is the only PGSER function that is valid for
disabled reference (DREF) storage.

Note: PGRLSE, PGSER RELEASE, PGSER FREE with RELEASE=Y, and PGFREE RELEASE=Y may ignore
some or all of the pages in the input range and will not notify the caller if this was done.

Any pages in the input range that match any of the following conditions will be skipped, and
processing continues with the next page in the range:

• Storage is not allocated or all pages in a segment have not yet been referenced.
• Page is in PSA, SQA or LSQA.
• Page is V=R. Effectively, it's fixed.
• Page is in BLDL, (E)PLPA, or (E)MLPA.
• Page has a page fix in progress or a nonzero FIX count.
• Pages with COMMIT in progress or with DISASSOCIATE in progress.

Use PGSER RELEASE instead of the MVCL instruction for these reasons:

• PGSER RELEASE is faster than MVCL for very large areas.
• Pages that are released through PGSER RELEASE do not occupy space in central, expanded, or

auxiliary storage.

ANYWHER applies to virtual storage areas that did not specify LOC=(BELOW,ANY) or LOC=(ANY,ANY)
or LOC=ANY on a GETMAIN request, that have been previously fixed, and probably will not need to be
fixed again. ANYWHER specifies that the virtual storage area specified can be placed either above or
below 16 megabytes central on future page-ins.

,LA=list addr
Specifies the address of the page services list (PSL) for L requests.

,A=start addr
Specifies the address of the start of the virtual area for R requests.

,EA=end addr
Specifies the last byte of the virtual area to be fixed for R requests.

,TCB=tcb addr
Specifies either zero or the address of the TCB to be assigned ownership of fixes for a FIX request or
fixes for a FREE request. If zero is specified, no TCB is assigned ownership of the request. Cross
memory callers must specify zero.

The owner identified by the TCB keyword on PGSER FREE invocation with BRANCH=Y must equal the
owner identified on the corresponding PGSER FIX invocation. For an SVC invocation, the invoking task
is assigned as the owner. Thus if the PGSER FIX invocation uses BRANCH=N and the PGSER FREE
invocation uses BRANCH=Y, the TCB address of the PGSER FIX invoker must be explicitly specified on
the PGSER FREE invocation.

For OUT and LOAD requests, the PGSER routine associates the request with a particular TCB so that
the request can be purged if the task terminates before the request is complete. For SVC entry
(BRANCH=N), the PGSER routine uses the current TCB.

Note: The TCB resides in storage below 16 megabytes.

PGSER macro

200 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

,ECB=ecb addr
Specifies the address of the ECB that is used to signal event completion for an asynchronous FIX or
LOAD request. If the caller is in cross memory mode or if the caller requests a synchronous page fix (a
FIX for which the caller is suspended until the entire FIX request is complete), the ECB must be zero
(ECB=0 or ECB=(r), where (r) represents a register that contains zero).

For a FREE request, ECB specifies the address of the ECB that was used in a previous FIX request. If
this parameter is specified, any pages in the previous FIX request that are not yet fixed, will not be
fixed. If L is specified, the PSL chain must contain the addresses of the virtual pages in the same order
in both the FREE and the previous FIX request. Also, the ECB for the FIX request will not be posted if
it was not yet posted at the time of the FREE request.

If the ECB parameter is not specified on a FREE request, only the fix counts for the valid pages in
storage at the time of the FREE request are decreased. This will not affect the paging activity and the
posting of the ECB associated with the original FIX request.

If an ECB is supplied on a FIX or LOAD request, the caller must check the return code because the
ECB will not be posted if the return code is zero. If an ECB is not supplied, it is not necessary to check
the return code because control returns to the caller only if the request was successfully completed; if
unsuccessful, page services abnormally terminates the caller.

For all callers that supply an ECB, page services verifies that the ECB address is in an area allocated
through the GETMAIN macro and if the caller is not in key 0, page services also verifies that the ECB is
in the caller's protect key. You must ensure that the page containing the ECB is not freed and that the
key is not altered; otherwise, page services does not post the ECB.

,RELEASE=Y
,RELEASE=N

Specifies that all the central and auxiliary storage associated with the virtual storage areas is to be
released to the system (Y) or that all the central and auxiliary storage associated with the virtual
storage areas is not to be released to the system (N).

Note: PGRLSE, PGSER RELEASE, PGSER FREE with RELEASE=Y, and PGFREE RELEASE=Y may ignore
some or all of the pages in the input range and will not notify the caller if this was done.

Any pages in the input range that match any of the following conditions will be skipped, and
processing continues with the next page in the range:

• Storage is not allocated or all pages in a segment have not yet been referenced.
• Page is in PSA, SQA or LSQA.
• Page is V=R. Effectively, it's fixed.
• Page is in BLDL, (E)PLPA, or (E)MLPA.
• Page has a page fix in progress or a nonzero FIX count.
• Pages with COMMIT in progress or with DISASSOCIATE in progress.

,KEEPREL=Y
,KEEPREL=N

Specifies that the virtual pages should be validated again after the page-out completes (Y); or that the
virtual pages will be marked not valid and the real frames freed for reuse (N).

,LONG=Y
,LONG=N

Specifies that the relative real time anticipated for the FIX is long (Y); or that the relative real time
anticipated for the FIX is short (N). (In general, the duration of a fix is long if it can be measured in
seconds.)

,BACKOUT=Y
,BACKOUT=N

Specifies the procedure to follow when a nonallocated page is encountered during the processing of a
FIX request. If BACKOUT=Y, all pages fixed as part of the request are freed before returning to the
caller. If BACKOUT=N, the pages previously fixed as part of the request are not freed and no further
processing is done before returning to the caller.

PGSER macro

Chapter 26. PGSER — Page services 201

,ANYWHER=N
,ANYWHER=Y

Specifies that on subsequent page-ins, page services is to assign real frames below 16 megabytes in
anticipation of a page-fix (N); or on subsequent page-ins, page services is to assign real frames
anywhere (Y). The ANYWHER option takes effect only when the page-fix count goes to zero.

,BRANCH=Y
,BRANCH=N

Specifies whether this is a branch entry.

If BRANCH=Y is specified, it is a branch entry and users of this option must provide the address of an
18-word save area in GPR 13. Cross memory callers and callers in AR mode must use BRANCH=Y.

If BRANCH=N is specified, it is an SVC entry.

,RELATED=value
Provides information to document the macro by relating the service performed to some corresponding
function or service. The format can be any valid coding value that the user chooses.

ABEND codes
PGSER might abnormally terminate with one of the following abend codes: X'18A', X'28A'. See z/OS MVS
System Codes for explanations and programmer responses.

Return and reason codes
When the PGSER macro returns control to your program, GPR 15 contains one of the following
hexadecimal return codes.

Option Code Meaning and Action

FIX 0 Meaning: The operation completed normally and the ECB will
not be posted.

Action: None. If the ECB parameter was specified, do not wait
on the ECB after receiving this return code because it will not
be posted.

FIX 8 Meaning: The operation is proceeding. The ECB (if available)
will be posted with X‘00’ when the requested pages are fixed.

Action: None. However, if the ECB parameter was specified,
issuing the WAIT macro for this ECB will allow your program
to synchronize with the completion of the page fix operation.

FREE 0 Meaning: The operation completed normally.

Action: None.

LOAD 0 Meaning: The operation completed normally and the ECB will
not be posted. If no ECB is supplied, the operation is
completed or proceeding.

Action: None. If the ECB parameter was specified, do not
issue the WAIT macro for the ECB after receiving this return
code because it will not be posted.

LOAD 8 Meaning: The operation is proceeding. The ECB will be
posted with X‘00’ when all page-ins are complete.

Action: None. However, if the ECB parameter was specified,
issuing the WAIT macro for this ECB will allow your program
to synchronize with the completion of the page load
operation.

PGSER macro

202 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Option Code Meaning and Action

OUT 0 Meaning: The operation completed normally.

Action: None.

OUT C Meaning: The operation completed normally. At least one
page in the requested range was not paged out.

Action: None.

RELEASE 0 Meaning: The operation completed normally.

Note: PGRLSE, PGSER RELEASE, PGSER FREE with
RELEASE=Y, and PGFREE RELEASE=Y may ignore some or all
of the pages in the input range and will not notify the caller if
this was done.

Any pages in the input range that match any of the following
conditions will be skipped, and processing continues with the
next page in the range:

• Storage is not allocated or all pages in a segment have not
yet been referenced.

• Page is in PSA, SQA or LSQA.
• Page is V=R. Effectively, it's fixed.
• Page is in BLDL, (E)PLPA, or (E)MLPA.
• Page has a page fix in progress or a nonzero FIX count.
• Pages with COMMIT in progress or with DISASSOCIATE in

progress.

Action: None.

ANYWHER 0 Meaning: The operation completed normally.

Action: None.

Example 1
Synchronously fix the page that starts at the address given in register 1 and ends at the address given in
LOADWORD. Use branch entry. No particular TCB is associated with this request. Include the IHAPVT
mapping macro.

PGSER R,FIX,A=(1),ECB=0,EA=LOADWORD,TCB=0,BRANCH=Y
IHAPVT

Example 2
Free the page specified in the PSL pointed to by register 2. The ECB address is given in register 8. Use
branch entry. Release all central and auxiliary storage associated with this virtual area. Do not attempt to
back the area below 16 megabytes on future page-ins. Include the IHAPVT mapping macro.

PGSER L,FREE,LA=(2),ECB=(8),RELEASE=Y,ANYWHER=Y,BRANCH=Y
IHAPVT

Example 3
Load the page specified in the PSL pointed to by register 1. Supply an ECB of zero. Include the IHAPVT
mapping macro.

PGSER macro

Chapter 26. PGSER — Page services 203

PGSER L,LOAD,LA=(1),ECB=0
IHAPVT

Example 4
Perform a page-out for the virtual area starting at the address given in register 1 and ending at the
address given in register 5. The address of the TCB is given in register 8. Use branch entry. Include the
IHAPVT mapping macro.

PGSER R,OUT,A=(1),EA=(5),TCB=(8),BRANCH=Y
IHAPVT

Example 5
Perform a page-out for the virtual area specified in the PSL located at LOADWORD. Use branch entry.
Include the IHAPVT mapping macro.

PGSER L,OUT,LA=LOADWORD
IHAPVT

Example 6
Protect the storage area that starts at the address in GPR 4 and ends at the address in the variable ENDIT.
Include the IHAPVT mapping macro.

PGSER R,PROTECT,A=(4),EA=ENDIT
IHAPVT

PGSER macro

204 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 27. PGSER — Fast path page services

Description
The fast path PGSER macro performs FIX and FREE requests for users on performance paths.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state and key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No spin locks can be held.

Control parameters: Must be in the primary address space

Programming requirements
The caller must include the IHAPVT mapping macro.

Restrictions
The following restrictions apply to the fast path services:

• Short term fixes only.
• No ECB can be specified.
• No TCB can be specified.
• No VIO window page scan be specified.
• When the list form of the macro is being used, all user-defined short page service lists (SSLs) must be

valid in nonpageable storage.
• Note: IBM recommends that page fixes of more than 100 pages be divided into several smaller fix

requests.

Large page fix requests can cause an excessive spin loop to occur.

The fast path PGSER macro does not verify any of the restricted conditions. The caller is responsible for
verifying the restricted conditions and providing recovery to purge FIX requests when the task terminates
before a page service request is complete.

Input register information
Before issuing the PGSER macro, the caller must ensure that GPR 13 points to a standard 18-word save
area in nonpageable storage.

Output register information
When control returns to the caller, the GPRs contain:

PGSER macro

© Copyright IBM Corp. 1988, 2020 205

Register
Contents

0-4
Used as work registers by the system

5-13
Unchanged

14-15
Used as work registers by the system

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
The fast path PGSER macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede PGSER.

PGSER

␢ One or more blanks must follow PGSER.

R

L

,FIX

,FREE

PGSER macro

206 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ,LA=list addr list addr: RX-type address or register (1), (5) - (12).

 Note: This parameter is valid only if L is specified.

 ,A=start addr start addr: RX-type address or register (1), (5) - (12).

 Note: This parameter is valid only if R is specified.

 ,EA=ending addr ending addr: RX-type address or register (2), (5) - (12).

 Note: This parameter is valid only if R is specified.

 ,BACKOUT=Y Default: BACKOUT=Y

 ,BACKOUT=N Note: This parameter is valid only for FIX requests.

 ,ASCB=ascb addr ascb addr: RX-type address or register (5) - (12).

 ,RELATED=value value: Any valid macro keyword specification.

,BRANCH=SPECIAL

Parameters
The parameters are explained as follows:

R
L

Specify the manner in which the input is supplied. If R is specified, the user supplies the starting and
ending addresses of the virtual storage area for which the service is to be performed. If L is specified,
the user supplies the address of the short page services list (SSL), which specifies the virtual storage
area for which the service is to be performed. See the topic “Input to Page Services” in z/OS MVS
Programming: Authorized Assembler Services Guide for a description of the SSL.

,FIX
,FREE

Indicate the function to be performed.

FIX specifies that the virtual storage areas are to reside in central (also called real) storage and are
ineligible for page-out while the address space is swapped in. This parameter does not prevent pages
from being paged out when the entire address space is swapped out of central storage. FIX will ignore
a request to fix storage in a system area that has the fixed attribute (for example, the LSQA and SQA).
A FIX request for a page in the LSQA or SQA will not cause the page to be backed by central storage
below 16 megabytes.

FREE specifies that the virtual storage areas that were previously fixed through the FIX option are
eligible for page-out. A fixed page is not considered pageable until the number of FREE and FIX
requests for the page are equal.

,LA=list addr
Specifies the address of the short page service list (SSL) for L requests.

PGSER macro

Chapter 27. PGSER — Fast path page services 207

,A=start addr
Specifies the address of the start of the virtual area for R requests.

,EA=end addr
Specifies the last byte on the last page of the virtual area for R requests.

,BACKOUT=Y
,BACKOUT=N

Specify the procedure to follow if an unallocated page is encountered during the processing of a fix
request.

If BACKOUT=Y is specified, all pages fixed as part of the request will be freed before control returns to
the caller.

If BACKOUT=N is specified, the pages previously fixed as part of the request will not be freed before
control returns to the caller. In this situation, no further pages are processed once an unallocated
page is encountered.

,ASCB=ascb addr
Specifies the address of the ASCB for the currently addressable address space.

Note: The ASCB must reside in 24-bit addressable storage.

,RELATED=value
Specifies information used to document the macro and to relate the service performed to some
corresponding service or function. The format of the information specified can be any valid coding
values that the user chooses.

,BRANCH=SPECIAL
Specifies a branch entry call to the fast path FIX and FREE services.

ABEND codes
None.

Return and reason codes
None.

Example 1
Fix 4096 bytes of storage starting at the address BUFFER. The address of the ASCB is in register 6.
Include the IHAPVT mapping macro.

PGSER R,FIX,A=BUFFER,EA=BUFFER+4095,BRANCH=SPECIAL,ASCB=(6)
IHAPVT

Example 2
Free the area specified in the SSL defined at LISTSSL. Use the ASCB in PSAAOLD. Include the IHAPVT
mapping macro.

L 5,PSAAOLD
PGSER L,FREE,LA=LISTSSL,ASCB=(5),BRANCH=SPECIAL
IHAPVT

PGSER macro

208 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 28. POST — Signal event completion

Description
Use the POST macro to set a specified event control block (ECB) to indicate the occurrence of an event. If
this event satisfies the requirements of an outstanding WAIT or EVENTS macro, the waiting task is taken
out of the wait state and dispatched according to its priority.

The bits in the ECB are set as follows:

• Bit 0 of the specified ECB is set to 0 (wait bit).
• Bit 1 is set to 1 (complete bit).
• Bits 2 through 31 are set to the specified completion code.

The POST macro is also described in z/OS MVS Programming: Assembler Services Reference IAR-XCT with
the exception of the parameters ASCB, ERRET, ECBKEY, and LINKAGE=BRANCH. For further information
on how to use POST to serialize parallel tasks, see z/OS MVS Programming: Authorized Assembler Services
Guide.

Environment
The requirements for callers of POST with LINKAGE=SVC are:

Environmental factor Requirement

Minimum authorization: Problem state with any PSW key. For the ASCB, ERRET, and ECBKEY
parameters, one or more of the following:

• Supervisor state
• PSW key 0-7
• APF-authorized

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31- or 64-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: If the caller specifies the ASCB parameter, the event control block
(ECB) must be addressable from the address space identified by the
ASCB parameter. If the caller does not specify the ASCB parameter,
the ECB must be in the home address space.

The requirements for callers of POST with LINKAGE=SYSTEM are:

POST macro

© Copyright IBM Corp. 1988, 2020 209

Environmental factor Requirement

Minimum authorization: Problem state with any PSW key. For the ASCB, ERRET, and ECBKEY
parameters, one or more of the following:

• Supervisor state
• PSW key 0-7
• APF-authorized

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31- or 64-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: If the caller specifies the ASCB parameter, the event control block
(ECB) must be addressable from the address space identified by the
ASCB parameter. If the caller does not specify the ASCB parameter,
the ECB must be in the caller's primary address space.

The requirements for callers of POST with LINKAGE=BRANCH are:

Environmental factor Requirement

Minimum authorization: Supervisor state and PSW key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: • If the caller specifies the ASCB parameter: any PASN, any HASN,
any SASN

• If the caller does not specify ASCB and is in primary ASC mode:
PASN=HASN with any SASN

• If the caller does not specify ASCB and is in secondary ASC mode:
SASN=HASN with any PASN.

AMODE: 24- or 31-bit

ASC mode: Primary or secondary

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: The caller must hold the local lock, unless the caller specifies the
ASCB parameter, in which case the local lock can be held but is not
required.

Control parameters: If the caller specifies the ASCB parameter, the event control block
(ECB) must be addressable from the address space identified by the
ASCB parameter. If the caller does not specify the ASCB parameter,
the ECB must be in the home address space.

Programming requirements
For LINKAGE=BRANCH or BRANCH=YES, the caller must include the CVT mapping macro.

Restrictions
Callers that specify LINKAGE=SVC cannot have any enabled unlocked task (EUT) functional recovery
routines (FRR) established.

POST macro

210 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Input register information
Before issuing the POST macro, the caller does not have to place any information into any register unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
For LINKAGE=SVC, when control returns to the caller the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

For LINKAGE=SYSTEM, when control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14

Used as a work register by the system
15

Return code

For LINKAGE=BRANCH, when control returns to the caller the general purpose registers (GPRs) contain
one of the following:

• If the ASCB parameter is not specified:
Register

Contents
0-9

Unchanged
10-11

Used as work registers by the system
12-13

Unchanged
14-15

Used as work registers by the system
• If the ASCB parameter is specified, the LOCAL lock is held and MEMREL=YES is specified (or defaulted):

Register
Contents

0
One of the following:

– If the ECBKEY parameter is not specified: Unchanged
– If the ECBKEY parameter is specified: Used as a work register by the system

1-9
Unchanged

POST macro

Chapter 28. POST — Signal event completion 211

10-15
Used as work registers by the system

• If the ASCB parameter is specified, the LOCAL lock is not held or MEMREL=NO is specified:
Register

Contents
0-8

Used as work registers by the system
9

Unchanged
10-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service and restore them after the system returns control.

Performance implications
None.

Syntax
The standard form of the POST macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in
column 1.

␣ One or more blanks must precede
POST.

POST

␣ One or more blanks must follow
POST.

ecb addr ecb addr: RX-type address, or
register (2) - (12), except (10).

 ,comp code comp code: Symbol, decimal or
hexadecimal digit, or register (0),
(2) - (9), (10), or (12). If specifying
a symbol, it must be valid when
used as an operand of a LA
instruction.

 Range of values: 0 to (230 − 1)
Default: 0

POST macro

212 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ,ASCB=addr,ERRET=err rtn

 ,ASCB=addr,ERRET=err rtn,ECBKEY=key

 addr: RX-type address, or register
(2) - (9), (12).

 err rtn: RX-type address, or address
in register (2) - (9), (12).

 key: Symbol, decimal or
hexadecimal digit, or register (2) -
(9), (12).

 Range of values: 0 - 15 (decimal),
Default: None.

Note: If the register form is
specified, bits 24-27 of the register
must contain the key.

 ,LINKAGE=SVC Default: LINKAGE=SVC

 ,LINKAGE=BRANCH

 ,LINKAGE=BRANCH,

 ECBKEY=key key: Symbol, decimal or
hexadecimal digit, or register (2) -
(9), (12).

Range of values: 0 - 15 (decimal),
Default: None.Note: If the register
form is specified, bits 24-27 of the
register must contain the key.

 ,LINKAGE=SYSTEM

 ,LINKAGE=SYSTEM,

 ERRET=err rtn err rtn: RX-type address, or address
in register (2) - (9), (12).

 ,USELARL=NO Default: USELARL=NO

 ,USELARL=YES

 ,BRANCH=NO Default: BRANCH=NO

 ,BRANCH=YES

 ,MEMREL=YES Default: MEMREL=YES

 ,MEMREL=NO Note: MEMREL can be coded only if
LINKAGE=BRANCH and the ASCB
and ERRET parameters are coded.

POST macro

Chapter 28. POST — Signal event completion 213

Syntax Description

 ,RELATED=value value: Any valid macro keyword
specification.

Parameters
The explanation of the parameters is as follows:

ecb addr
Specifies the address of the fullword event control block representing the event.

,comp code
Specifies the completion code to be placed in the event control block upon completion.

,ASCB=addr,ERRET=err rtn
,ASCB=addr,ERRET=err rtn,ECBKEY=key

Specifies the address of the ASCB of the address space containing the ECB being posted, and a
pointer to the address of the routine that receives control when an error condition resulting from a
POST failure is detected. The ASCB must reside in 24-bit addressable storage.

The ERRET routine is further described in Asynchronous Cross Memory POST in z/OS MVS
Programming: Authorized Assembler Services Guide.

,LINKAGE=SVC
,LINKAGE=BRANCH
,LINKAGE=BRANCH,ECBKEY=key
,LINKAGE=SYSTEM
,LINKAGE=SYSTEM,ERRET=err rtn

Specifies the type of linkage from the caller to a system service routine that POST invokes. The default
is LINKAGE=SVC.

For LINKAGE=SVC, the linkage is through an SVC instruction. This linkage is valid only when the caller
is in task mode and primary ASC mode, where primary, home, and secondary are the same address
space. For SVC callers, registers 2-14 are preserved.

For LINKAGE=BRANCH, the linkage is through a branch entry. This linkage is valid when the caller is in
primary or secondary ASC mode. The calling requirements and the registers that are preserved
depend on the other parameters specified, as follows:

• If ASCB is not specified, the caller must hold the local lock and be in noncross memory mode.
Registers 0-9, 12, and 13 are preserved.

• If ASCB is specified, the MEMREL parameter and the LOCAL lock determine the calling requirements
and registers saved.

– If the LOCAL lock is held and MEMREL=YES is specified (or defaulted), then the current address
space must be the home address space and registers 1-9 are preserved. If the ECBKEY
parameter is not specified, register 0 is also preserved.

– If the LOCAL lock is not held or MEMREL=NO is specified, then only register 9 is preserved. The
current address space can be any address space.

With LINKAGE=BRANCH, you can also specify the storage protection key of the ECB to be posted
using the ECBKEY parameter. The system checks the storage key of the ECB against the ECBKEY
before posting it.

Note: BRANCH=YES and BRANCH=NO are still supported by the system, but LINKAGE is the
recommended parameter.

For LINKAGE=SYSTEM, the linkage uses a non-SVC entry. Callers must be enabled, unlocked, and in
primary ASC mode. This linkage is valid for callers in both noncross memory and cross memory mode.

POST macro

214 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

If you specify the ASCB parameter, the ECB must be addressable from the address space identified by
ASCB. If you do not specify ASCB, the ECB must be in the caller's primary address space. When you
specify LINKAGE=SYSTEM and ASCB, you must also specify ECBKEY.

• ERRET=err_rtn specifies the routine that gets control when the system detects a POST failure after
control has been returned to the issuer of POST. If the caller is not authorized, the error routine
does not receive control. When the ASCB parameter is specified, the ERRET routine is used only
when asynchronous cross-memory POST fails in the address space identified by the ASCB. The
ERRET routine is further described in Asynchronous Cross Memory POST in z/OS MVS Programming:
Authorized Assembler Services Guide.

• When you issue LINKAGE=SYSTEM, the POST macro service issues the return codes described in
“Return codes” on page 215.

LINKAGE=SYSTEM without the ASCB parameter is intended to be used by programs in cross
memory mode.

,USELARL=NO
,USELARL=YES

Specifies whether to generate the address of the ERRET routine via the LA instruction (USELARL=NO)
or the LARL instruction (USELARL=YES). You might use USELARL=YES when you do not have code
addressability to the ERRET routine and you have not used the register form of ERRET (ERRET=(n)).

,MEMREL=YES
,MEMREL=NO

Specifies the address space in which the routine specified on the ERRET parameter is to run. MEMREL
can be specified with LINKAGE=BRANCH only:

• Specify MEMREL=YES (or accept the default of MEMREL=YES) if you want the ERRET routine to run
in the caller's home address space.

• Specify MEMREL=NO if you want the ERRET routine to run in the master scheduler's address space.

Note: You cannot specify MEMREL=YES if you hold the local lock and you are running in cross memory
mode. Therefore, if you do not know that the primary and home address spaces are the same, you
should specify MEMREL=NO.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information specified are at the
discretion of the user, and may be any valid coding values.

ABEND codes
POST might abnormally terminate with one of the following abend codes:

• X'102'
• X'202'
• X'302'
• X'402'
• X'502'
• X'602'
• X'702'

These hexadecimal codes are described in z/OS MVS System Codes.

Return codes
When you issue LINKAGE=SYSTEM, the POST macro service issues the following hexadecimal return
codes.

POST macro

Chapter 28. POST — Signal event completion 215

Table 33. Return Codes for the POST Macro

Return Code Meaning and Action

00 Meaning: Indicates a synchronous POST was done, as requested.

Action: None.

04 Meaning: Environmental error. Indicates an asynchronous POST is in progress. If you specified ERRET
and a failure occurs before the POST completes, the error routine that you specified will receive control.
If you did not specify ERRET and a failure occurs before the POST completes, no error routine exists to
receive control.

Action: None required. However, you might take some action based upon your application.

08 Meaning: Environmental error. Indicates an asynchronous POST is in progress. You specified ERRET;
however, if an error occurs before POST completes, the error routine that you specified will not receive
control.

Action: None required. However, you might take some action based upon your application.

Example 1
Post an event control block whose address is ECB, where the address space containing the ECB has an
ASCB specified by register 5, and where ERRRTN is the routine to be given control on error conditions.

POST ECB,ASCB=(REG5),ERRET=ERRRTN

Example 2
Post the ECB from example 1 with a hexadecimal completion code of 3FF.

POST ECB,X'3FF',ASCB=(REG5),ERRET=ERRRTN

Example 3
Post the ECB from example 1 using a stacking PC for linkage. The address of the error routine is in register
3.

POST ECB,LINKAGE=SYSTEM,ECBKEY=0,ASCB=(REG5),ERRET=(REG3)

POST - List form

Syntax
The list form of the POST macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in
column 1.

␢ One or more blanks must precede
POST.

POST

POST macro

216 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

␢ One or more blanks must follow
POST.

ecb addr ecb addr: A-type address.

 ,ASCB=addr,ERRET=err rtn

 ,ASCB=addr,ERRET=err rtn,ECBKEY=YES

addr: A-type address.

err rtn: A-type address.

 ,RELATED=value value: Any valid macro keyword
specification.

,MF=L

Parameters
The parameters are explained under the standard form of the POST macro, with the following exceptions:

,MF=L
Specifies the list form of the POST macro.

Note: The system assumes that the list form will be used for cross-memory post. If no ASCB address is
specified by either the list or execute form, the POST issued by the execute form will result in ABEND602
RC0 due to a zero ASCB address on a cross-memory post request.

POST - Execute form

Syntax
The execute form of the POST macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in
column 1.

␣ One or more blanks must precede
POST.

POST

POST macro

Chapter 28. POST — Signal event completion 217

Syntax Description

␣ One or more blanks must follow
POST.

ecb addr ecb addr: RX-type address, or
register (2) - (12).

 ,comp code comp code: Symbol, decimal or
hexadecimal digit, or register (0) or
(2) - (12).

 Range of values: 0 to (230 − 1)

 ,ASCB=addr,ERRET=err rtn

 ,ASCB=addr,ERRET=err rtn,ECBKEY=key

 addr: RX-type address, or register
(2) - (12).

 : RX-type address, or address in
register (2) - (12).

 key: Symbol, decimal or
hexadecimal digit, or register (2) -
(12).

 Range of values: 0 - 15 (decimal),
Default: None.

 Note: If the register form is
specified, bits 24-27 of the register
must contain the key.

 ,RELATED=value value: Any valid macro keyword
specification.

,MF=(E,prob addr) prob addr: RX-type address, or
register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the POST macro, with the following exception:

,MF=(E,prob addr)
Specifies the execute form of the POST macro using a remote control program parameter list.

POST macro

218 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 29. PTRACE — Processor trace

Description
The PTRACE macro creates a trace table entry and places it in the system trace table. The entry consists
of an event identifier, the contents of a designated range of general registers or storage locations, and
system supplied status information.

When using this macro, the user must provide the following information:

• The type of trace entry that is to be created
• The data to be recorded in the trace entry

The PTRACE macro can only be issued with DAT-ON. The caller must be in key 0 and supervisor state but
can be in cross memory mode and in either 24 or 31-bit addressing mode. All addresses passed to the
PTRACE routine are treated as 31-bit addresses. PTRACE users must include the IHAPSA and IHATRVT
mapping macros and register 13 must point to a 72-byte save area that can be used by the PTRACE
service.

PTRACE accepts the TRACEMODE=TRACG option to request the use of TRACG to record trace data. This
option alters the interpretation of the existing REGS and SAVEAREA options.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state, key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt Status: Enabled or disabled for I/O or external interrupts

Locks: Any locks may be held

Control parameters: Must be in the primary address space

Programming requirements
The PTRACE macro can only be issued with DAT-ON. All addresses passed to the PTRACE routine are
treated as 31-bit addresses. PTRACE users must include the IHAPSA and IHATRVT mapping macros and
register 13 must point to a 72-byte save area that can be used by the PTRACE service.

Restrictions
None.

Output register information
After the caller issues the macro, the macro might use some registers as work registers or might change
the contents of some registers. When the macro returns control to the caller, the contents of these
registers are not the same as they were before the macro was issued. Therefore, if the caller depends on

PTRACE Macro

© Copyright IBM Corp. 1988, 2020 219

these registers containing the same value before and after issuing the macro, the caller must save these
registers before issuing the macro and restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14

Used as a work register by the system
15

Return code

Performance implications
None.

Syntax
The PTRACE macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede PTRACE.

PTRACE

␢ One or more blanks must follow PTRACE.

TYPE=USRn n: hexadecimal digit 0 - F.

 ,REGS=(reg1,reg2) Default: REGS=(1)

 ,REGS=(1) reg1: decimal digit 2 - 12.

reg2: decimal digit 2 - 12.

,SAVEAREA=STANDARD

,SAVEAREA=F4SA

,TRACEMODE=TRACE Default: TRACE

,TRACEMODE=TRACG

PTRACE Macro

220 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Parameters
The parameters are explained as follows:

TYPE=USRn
Specifies a user-event explicit trace entry. The hexadecimal number, n, identifies the entry. Trace
processing places this number in the trace entry for identification purposes.

,REGS=(reg1,reg2)
,REGS=(1)

Defines the data to be placed in the user's trace entries. Multiple trace entries are created if more
than 5 registers or 5 words of data are requested.

If REGS=(reg1,reg2) is specified, the data is located in a range of registers, where reg1 specifies the
first register in the range and reg2 specifies the last register in the range. The register number, reg2,
must always be greater than or equal to the register number, reg1. A maximum of 11 words of data
can be indicated for tracing using REGS=(reg1,reg2).

If REGS=(1) is specified or used as the default, register 1 must contain the 31-bit address of a
parameter list. The high order bit of this address must be set to 0. If REGS=(1) is specified, up to 1024
words of data can be recorded. The parameter list contains N+1 fullword entries. The first word
contains the number of words of data (N) to be recorded. This is followed by the N words of data to be
placed in the user's trace entries.

For TRACEMODE=TRACG this refers to a range of 64-bit registers.

,SAVEAREA=STANDARD
,SAVEAREA=F4SA

STANDARD format specifies that register 13 contains the address of a 72-byte save area that can be
used by the PTRACE routine.

IF F4SA is used, specifies 64-bit GPR 13 contains the address of a 144-byte save area in F4SA format
for TRACEMODE=TRACG.

,TRACEMODE=TRACE
,TRACEMODE=TRACG

An optional operand that requests the use of TRACG for generation of a system trace entry. Omission
of this option requests the use of TRACE. TRACEMODE=TRACE may be explicitly coded to designate
the default use of the TRACE instruction.

When control returns to the caller, registers 2-13 are restored to their original values, but the original
contents of registers 0, 1, 14, and 15 are destroyed. On exit, register 15 contains a return code.

Return and reason codes
The hexadecimal return code from the PTRACE macro is as follows:

Table 34. Return Code for the PTRACE Macro

Return Code Meaning

00 Meaning: The function completed successfully.

Example 1
Create a trace table entry for user event 4. Registers 5, 6, and 7 contain the user data to be recorded.

PTRACE TYPE=USR4,REGS=(5,7),SAVEAREA=STANDARD

Example 2
Create trace table entries for user event C. Register 1 contains the address of a parameter list containing
the data to be recorded.

PTRACE TYPE=USRC,REGS=(1),SAVEAREA=STANDARD

PTRACE Macro

Chapter 29. PTRACE — Processor trace 221

PTRACE Macro

222 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 30. PURGEDQ — Purge SRB activity

Description
The PURGEDQ macro allows a task to purge particular SRB activity. The system dispatches an SRB
routine asynchronously from when the SCHEDULE macro was issued. For this reason, the conditions that
existed in the system at the time the SCHEDULE was issued might have changed by the time the routine is
dispatched. If the environment that the asynchronous routine requires to run successfully has been
changed, the results are unpredictable. For this reason, the PURGEDQ macro is available to:

• Dequeue SRBs not yet dispatched.
• Allow processing for dispatched SRBs to complete.
• “Clean up” each dequeued SRB.
• Purge a preemptable SRB at any point in time.
• Purge a non-preemptable SRB (that voluntarily gave up control by doing a Pause or a SUSPEND with

Token) prior to being released or resumed.

The parameters on PURGEDQ determine the target address space and limit the scope of the purge. When
purging SRBs scheduled in the primary address space, PURGEDQ waits for dispatched SRBs to finish.
When purging SRBs scheduled in an address space other than the primary, PURGEDQ does not purge
SRBs that have been dispatched, nor does PURGEDQ wait for dispatched SRBs to complete.

When the target address space is not the primary address space, PURGEDQ does not guarantee that all
SRBs matching the purge parameters will be purged. The issuer of PURGEDQ is not informed of SRBs that
are not purged. When purging SRBs scheduled in an address space other than primary, use a resource
manager termination routine (RMTR) if you need to know whether a particular SRB has been purged.

Except for the TCB, all input parameters to this macro can reside in storage above 16 megabytes if the
issuer is executing in 31-bit addressing mode.

See z/OS MVS Programming: Authorized Assembler Services Guide for more information on using the
PURGEDQ macro, especially the resource manager termination routine (RMTR).

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state or PSW key 0 - 7 or APF-authorized

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Must be in the caller's primary address space

Programming requirements
None.

PURGEDQ macro

© Copyright IBM Corp. 1988, 2020 223

Restrictions
None.

Input register information
Before issuing the PURGEDQ macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
After the caller issues the macro, the system might use some registers as work registers or might change
the contents of some registers. When the system returns control to the caller, the contents of these
registers are not the same as they were before the macro was issued. Therefore, if the caller depends on
these registers containing the same value before and after issuing the macro, the caller must save these
registers before issuing the macro and restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Performance implications
None.

Syntax
The standard form of the PURGEDQ macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede PURGEDQ.

PURGEDQ

PURGEDQ macro

224 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

␢ One or more blanks must follow PURGEDQ.

RMTR=RMTR addr RMTR addr: RX-type address, or register (2) - (12).

 ,ASID=ASID addr ASID addr: RX-type address, or register (2) - (12).

 ,ASIDTCB=addr addr: RX-type address of an 8-byte field, or register (2) - (12) that
contains an address of an 8-byte field.

Parameters
The parameters are explained as follows:

RMTR=RMTR addr
Specifies the address of the RMTR. If the program scheduled the SRB using SCHEDULE, this is the
address that was placed in the SRBRMTR field (mapped by IHASRB). If the program scheduled the
SRB using IEAMSCHD, this is the address specified on the RMTRADDR parameter. It limits the purge
to SRBs that are protected by the same RMTR; that is, where the SRBs have the same address.

,ASID=ASID addr
Specifies the address of a halfword that contains the ASID of the target address space into which the
SRB was scheduled. If you omit ASID, the system assumes that the primary address space is the
target address space. Note that when you use the ASID parameter to purge SRBs scheduled to an
address space other than primary, PURGEDQ does not guarantee that all SRBs will be purged.

,ASIDTCB=addr
Specifies the address of a doubleword that describes the TCB for which SRBs are to be purged.
Through this parameter, you can purge the SRBs associated with a specific task. If you omit the
parameter, the system purges SRBs associated with the current task in the primary address space.

When you use the ASID parameter to purge SRBs scheduled to an address space other than primary,
PURGEDQ does not guarantee that all SRBs will be purged.

Specify the ASIDTCB parameter in one of the following ways:

1. To attempt to purge all SRBs scheduled to a specific address space as defined by ASID, set the
ASIDTCB parameter as follows:

Set These Bytes To This Value Meaning

Bytes 0-7 Zero The system is to purge all SRBs defined by the ASID
(SRBASCB) and RMTR parameters, regardless of their
task (SRBPTCB) and address space (SRBPASID)
association.

2. To purge all SRBs scheduled by a specified address space, set the ASIDTCB parameter as
described below:

Set These Bytes To This Value Meaning

Bytes 0-1 Reserved The system is to purge all SRBs defined by

Bytes 2-3 ASID1 the ASID and RMTR parameters associated

Bytes 4-7 Zero with the target address space (SRBPASID), regardless of
their task (SRBPTCB).

PURGEDQ macro

Chapter 30. PURGEDQ — Purge SRB activity 225

3. To purge all SRBs associated with a specified TCB in a specified address space, set the ASIDTCB
parameter as described below:

Set These Bytes To This Value Meaning

Bytes 0-1 Zero The system is to purge all SRBs defined by

Bytes 2-3 ASID2 the ASID and RMTR parameters associated

Bytes 4-7 TCB address with the scheduling address space (SRBPASID) and task
(SRBPTCB). (If you specify SRBPTCB, you must also
specify SRBPASID.)

Note: The TCB resides in storage below 16 megabytes.

ABEND codes
17B
27B
47B

See z/OS MVS System Codes for an explanation and programmer responses for this code.

Return and reason codes
None.

Example 1
Purge all SRBs scheduled to ASID ‘20’X with:

• SRBPTCB equal to the current TCB (that is, the TCB issuing the PURGEDQ)
• SRBPASID equal to the primary ASID
• SRBRMTR equal to the address of RMTR routine RMTRA

 PURGEDQ ASID=AS1,RMTR=RMTRA

AS1 DC XL2'0020'

Example 2
Purge all SRBs scheduled to ASID ‘21’X, regardless of what is specified in SRBPASID and SRBPTCB, and
that have SRBRMTR equal to the address of RMTR routine RMTRB.

 PURGEDQ ASID=AS2,ASIDTCB=PURGPRM1,RMTR=RMTRB

PURGPRM1 DC XL8'00000000'
AS2 DC XL2'0021'

Example 3
Purge all SRBs scheduled to the primary address space (that is, the address space from which this
PURGEDQ was issued) that have:

• SRBPASID of ‘12’X
• SRBPTCB equal to the address of TCBX
• SRBRMTR equal to the address of RMTR routine RMTRC

 PURGEDQ ASIDTCB=PURGPRM2,RMTR=RMTRC

PURGPRM2 DS 0CL8
 DC XL2'0000'

PURGEDQ macro

226 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

PURGASID DC XL2'0012'
PURGTCB DC A(TCBX)

Example 4
Purge all SRBs scheduled into the primary address space, related to the current (terminating) task, and
associated with the resource manager termination routine located at RESCLEAN.

PURGEDQ RMTR=RESCLEAN

PURGEDQ - List form
For programs that require reentrant code, use the list form of the PURGEDQ macro together with the
execute form of the macro. The list form of the macro defines an area of storage that the execute form of
the macro uses to store parameter values.

Syntax
The list form of the PURGEDQ macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede PURGEDQ.

PURGEDQ

␢ One or more blanks must follow PURGEDQ.

 RMTR=RMTR addr RMTR addr: A-type address.

 ,ASID=ASID addr ASID addr: A-type address.

 ,ASIDTCB=addr addr: A-type address.

,MF=L

Parameters
The parameters are explained under the standard form of the PURGEDQ macro, with the following
exception:

,MF=L
Specifies the list form of the PURGEDQ macro.

PURGEDQ macro

Chapter 30. PURGEDQ — Purge SRB activity 227

Example
Specify the resource manager termination routine located at RESCLEAN and produce the parameter list to
be used by the execute form of the PURGEDQ macro.

STATPDQ PURGEDQ RMTR=RESCLEAN,MF=L

PURGEDQ - Execute form
For programs that require reentrant code, use the execute form of the PURGEDQ macro together with the
list form. The execute form of the macro stores the parameters into the storage area defined by the list
form.

Syntax
The execute form of the PURGEDQ macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede PURGEDQ.

PURGEDQ

␢ One or more blanks must follow PURGEDQ.

 RMTR=RMTR addr RMTR addr: RX-type address, or register (2) - (12).

 ,ASID=ASID addr ASID addr: RX-type address, or register (2) - (12).

 ,ASIDTCB=addr addr: RX-type address, or register (2) - (12).

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the PURGEDQ macro, with the following
exception:

,MF=(E,ctrl addr)
Specifies the execute form of the PURGEDQ macro, using a remote control program parameter list.

PURGEDQ macro

228 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Example
Purge all SRBs scheduled into the address space given in register 6 and associated with the resource
manager termination routine located at RESCLEAN. Indicate that the remote control program parameter
list is located at STATPDQ.

PURGEDQ ASID=(6),RMTR=RESCLEAN,MF=(E,STATPDQ)

PURGEDQ macro

Chapter 30. PURGEDQ — Purge SRB activity 229

PURGEDQ macro

230 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 31. QEDIT — Command input buffer
manipulation

Description
The QEDIT macro generates the required entry parameters and processes the command input buffer for
the following uses:

• Dechaining and freeing of a command input buffer (CIB) from the CIB chain for a task.
• Setting a limit for the number of CIBs that may be simultaneously chained for a task.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: When ORIGIN= is specified with no other parameters: PSW key 0-7

Otherwise: Problem state

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: Any

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Must be in the primary address space

Syntax
The QEDIT macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede QEDIT.

QEDIT

␢ One or more blanks must follow QEDIT.

ORIGIN=CIB addr ptr CIB addr ptr: RX-type address, or register (0),(2) - (12).

QEDIT macro

© Copyright IBM Corp. 1988, 2020 231

Syntax Description

 ,BLOCK=CIB addr CIB addr: RX-type address, or register (1), (2) - (12).

 ,CIBCTR=CIB nmbr CIB nmbr: Decimal digit, with a maximum value of 255 or register (1), (2)
- (12).

Parameters
The parameters are explained as follows:

ORIGIN=CIB addr ptr
Specifies the address of the pointer to the first CIB chain for the task. This address is obtained using
the EXTRACT macro. If BLOCK and CIBCTR are omitted, the caller must be executing under PSW key
0-7; in this case, the entire CIB chain is freed. The system prevents problem state programs from
freeing the entire CIB chain.

,BLOCK=CIB addr
Specifies the address of the CIB to be freed from the CIB chain for a task.

,CIBCTR=CIB nmbr
Specifies the limit for the number of CIBs to be chained at any time for a task.

Note:

1. When using any address returned from the EXTRACT macro as input to the QEDIT macro, the user
must use the IEZCOM mapping macro to establish addressability based on the address returned by
EXTRACT.

2. The CIB must reside in 24-bit addressable storage.

Return and reason codes
When QEDIT macro returns control to your program, GPR 15 contains a hexadecimal return code.

Table 35. Return Codes for the QEDIT Macro

Return Code Meaning

00 Meaning: The required function was successfully completed.

04 Meaning: The CIB to be deleted was not found on any CIB chain.

08 Meaning: The limit for the number of CIBs to be chained was exceeded; an issuer who made a request
to free all the CIBs on a chain was not in supervisor state and PSW key zero; or the user provided an
invalid address for the pointer to the CIB chain, an invalid address for the CIB address, or an invalid CIB
number as input to the macro.

Example 1
Free the entire CIB chain, where register 8 contains the address of the pointer to the CIB chain.

QEDIT ORIGIN=(8)

Example 2
Free the CIB whose address is in register 5 from the CIB chain. Register 8 contains the address of the
pointer to the CIB chain.

QEDIT ORIGIN=(8),BLOCK=(5)

QEDIT macro

232 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 32. RACF macros

See z/OS Security Server RACROUTE Macro Reference for the descriptions of the following macros:

• FRACHECK
• RACDEF
• RACHECK
• RACINIT
• RACLIST
• RACROUTE
• RACSTAT
• RACXTRT

© Copyright IBM Corp. 1988, 2020 233

234 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 33. RESERVE — Reserve a device (shared
DASD)

Description
The RESERVE macro reserves a device for use by a particular system; it must be issued by each task
needing to reserve a device shared with one or more systems. The RESERVE macro protects the caller
from interference by other tasks in the system and locks out other systems. The reserve actually occurs
when the first I/O is done to the device after the RESERVE macro is issued. When the reserving program
no longer needs the reserved device, it should issue a DEQ macro to release the resource. For information
about the synchronous reserve feature, see z/OS MVS Planning: Global Resource Serialization and z/OS
MVS Initialization and Tuning Guide.

For information about how to obtain the UCB address for a device, see the section “Finding the UCB
Address for the RESERVE Macro” in z/OS MVS Programming: Authorized Assembler Services Guide.

If global resource serialization is active, the hardware RESERVE can be suppressed leaving a SYSTEMS
ENQ depending on the contents of the resource name lists. See z/OS MVS Planning: Global Resource
Serialization for information on resource name lists.

A RESERVE used with the MASID and MTCB operands provides a special form of the RESERVE macro that
allows a further conditional control of a resource. One task, called the “issuing task” can issue a RESERVE
macro for a resource specifying the ASID and TCB of another task, called the “matching task”.

The RESERVE macro is also described in z/OS MVS Programming: Assembler Services Reference ABE-HSP,
with the exception of the MASID, MTCB, and ECB parameters.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Problem state with any PSW key. For the MASID, MTCB, and ECB
parameters, one of the following:

• Supervisor state
• PSW key 0-7
• APF-authorized.

Dispatchable unit mode: Task

Cross memory mode: For LINKAGE=SVC: PASN=HASN=SASN

For LINKAGE=SYSTEM: PASN=HASN=SASN or PASN¬=HASN¬=SASN

AMODE: 24- or 31- or 64-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: If the caller's AMODE is 24-bit, all parameters must reside below 16
megabytes.

RESERVE macro

© Copyright IBM Corp. 1988, 2020 235

Programming requirements
Before issuing the RESERVE macro with a UCB address, an authorized caller must serialize the UCB
against dynamic I/O reconfiguration requests. The caller can accomplish this serialization by allocating or
pinning the UCB. Such serialization ensures that a dynamic I/O reconfiguration request does not delete or
reuse the UCB before the RESERVE macro uses the address.

Restrictions
If a task issues two RESERVE macros for the same device without an intervening DEQ macro, the task
ends abnormally unless the second RESERVE specifies the keyword parameter RET or ECB. (If a restart
occurs after the caller successfully issued the RESERVE macro for a resource, the system does not
reserve the device again; the caller must reissue the RESERVE macro.) If a DEQ macro is not issued for a
particular resource, the system releases the reserved resource when the task ends.

The system counts and limits the number of concurrent resource requests in an address space. If an
unconditional RESERVE (a RESERVE macro with RET=NONE) causes the number of global resource
serialization requests to exceed the limit, the caller is abnormally terminated with a system code of
X'538'. For further information about limiting concurrent requests for resources, see in z/OS MVS
Programming: Assembler Services Guide. For further information about limiting global resource
serialization requests, see z/OS MVS Programming: Authorized Assembler Services Guide.

Input register information
Before issuing the RESERVE macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14

Used as a work register by the system
15

One of the following:

• If you specify RET=TEST, RET=USE, RET=HAVE, or the ECB parameter:
• If all return codes for the resources named in the RESERVE macro are 0, register 15 contains 0. If

any of the return codes are not 0, register 15 contains the address of a storage area containing the
return codes.

• Otherwise: used as a work register by the system.

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

RESERVE macro

236 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Syntax
The standard form of the RESERVE macro is written as follows:

Syntax Description

 name name: symbol. Begin name in column 1.

␢ One or more blanks must precede RESERVE.

RESERVE

␢ One or more blanks must follow RESERVE.

qname addr qname addr: A-type address, or register (2) - (12).

,rname addr rname addr: A-type address, or register (2) - (12).

, Default: E

,E

,S

,

,rname length rname length: symbol, decimal digit, or register (2) - (12).

,SYSTEMS

)

 ,RET=TEST

 ,RET=USE

 ,RET=HAVE

 ,RET=NONE

 ,ECB=ecb addr ecb addr: A-type address, or register (2) - (12).

,UCB=ucb addr ucb addr: A-type address, or register (2) - (12).

RESERVE macro

Chapter 33. RESERVE — Reserve a device (shared DASD) 237

Syntax Description

 ,LOC=BELOW Default: LOC=BELOW

 ,LOC=ANY

 ,MASID=matching-asid addr matching-asid addr: A-type address, or register (2) - (12).

 ,MTCB=matching-tcb addr matching-tcb addr: A-type address, or register (2) - (12).

 ,RELATED=value value: any valid macro keyword specification.

 ,LINKAGE=SVC DEFAULT: LINKAGE=SVC

 ,LINKAGE=SYSTEM

Parameters
The parameters are explained as follows:

(
Specifies the beginning of the resource description.

qname addr
Specifies the address in virtual storage of an 8-character name. The name should not start with SYS,
so that it will not conflict with system names. Every task issuing RESERVE against the same resource
must use the same qname and rname to represent the resource.

,rname addr
Specifies the address in virtual storage of the name used together with qname to represent a single
resource. The name can be qualified, and must be from 1 to 255 bytes long.

,
,E
,S

Specifies whether the request is for exclusive (E) or shared (S) control of the resource. If the resource
is modified while under control of the task, the request must be for exclusive control; if the resource is
not modified, the request should be for shared control.

,
,rname length

Specifies the length of the rname. If this parameter is omitted, the system uses the assembled length
of the rname. To override the assembled length, specify this parameter; the value you can code
depends on whether or not you also specify MASID and MTCB:

• If you specify MASID and MTCB, you can code a value between 1 and 128.
• If you do not specify MASID and MTCB, you can code a value between 1 and 255.

In either case, you can specify 0, which means that the length of the rname must be contained in the
first byte at the rname addr.

,SYSTEMS
Specifies that the resource is shared among systems.

)
Specifies the end of the resource description.

RESERVE macro

238 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

,RET=TEST
,RET=USE
,RET=HAVE
,RET=NONE

RET=TEST, RET=USE, and RET=HAVE specify a conditional request for the resource named on the
macro, as follows:
RET=TEST

The availability of the resource is to be tested, but control of the resource is not requested.
RET=USE

Control of the resource is to be assigned to the active task only if the resource is immediately
available.

RET=HAVE
Control of the resource is requested only if the same task does not already control or have an
outstanding request for the same resource.

RET=NONE specifies an unconditional request for the resource named on the macro.

,ECB=ecb addr
Specifies the address of an ECB, and conditionally requests the resource named in the macro. A
return code of 4 is returned if contention on the ENQ resource exits or if the hardware reserve is done
synchronously. The hardware reserve cannot be done if the request was converted to only a global
ENQ.

If the return code for one or more requested resources is 4 and the request is not nullified by a
corresponding DEQ, the ECB is posted when all the requested resources (specifically, those that
initially received a return code of 4) are assigned to the requesting task.

Note:

1. The ECB must reside in storage that is addressable from the caller's home address space.
2. The ECB can also be used to measure the contention time on the ENQ or hardware resource. For

more information, see "Timing Contention" section in z/OS MVS Programming: Authorized
Assembler Services Guide.

See z/OS MVS Planning: Global Resource Serialization for more information about RESERVE
conversion to global ENQs and synchronous (SYNCHRES) reserve processing.

,UCB=ucb addr
Specifies the address of a fullword that contains the address of the UCB for the device to be reserved.
The UCB does not need to be allocated to the job step before RESERVE is issued.

Note: The UCB keyword might specify a UCB address for a UCB that resides in storage above or below
16 megabytes. If the UCB address might point to a UCB above 16 megabytes you must also specify
LOC=ANY.

,MASID=matching-asid addr
Specifies the matching task (by defining a matching ASID) for the RESERVE. MASID defines the ASID
of a task that may be using a resource desired by the issuer of the RESERVE macro.

Note: MASID can be specified only if MTCB is also specified.

,MTCB=matching-tcb addr
Specifies the matching task (by defining a matching TCB) for the RESERVE. MTCB defines the TCB of a
task that may be using a resource desired by the issuer of the RESERVE macro.

Note: MTCB can be specified only if MASID is also specified.

If the task specified by the MASID and MTCB parameters is not using the resource, global resource
serialization gives control to the issuer of the RESERVE and returns a return code indicating whether
the resource can be used. If the task specified by MASID and MTCB parameters is using the resource,
global resource serialization records a request for the resource, suspends the issuing task until the
resource is available, or optionally returns a return code indicating that an ECB will be posted when
the resource can be used.

RESERVE macro

Chapter 33. RESERVE — Reserve a device (shared DASD) 239

The MASID and MTCB parameters are specified with the RET=HAVE, RET=TEST, or ECB parameters to
elicit additional return codes that provide information about the owner of the resource.

See the description of rname length for information about specifying rname length with MASID and
MTCB.

,LOC=BELOW
,LOC=ANY

Specifies the location of the input UCB address. ANY specifies that the input UCB address is to be
treated as a 31-bit address. BELOW specifies that the input UCB address is to be treated as a 24-bit
address. The default is LOC=BELOW.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information specified are at the
discretion of the user, and may be any valid values.

,LINKAGE=SVC
,LINKAGE=SYSTEM

Specifies the type of linkage the caller is using to invoke the RESERVE service.

For LINKAGE=SVC, the linkage is through an SVC instruction. This linkage is valid only when the caller
is in primary mode and the primary, home, and secondary address spaces are the same.

For LINKAGE=SYSTEM, the linkage uses a non-SVC entry. This linkage is valid in cross memory mode
or in non-cross memory mode. LINKAGE=SYSTEM is intended to be used by programs in cross
memory mode.

• If ECB= is specified, the ECB (not the address of the ECB) must be addressable from the home
address space.

The default is LINKAGE=SVC.

ABEND codes
For unconditional requests only, the caller might encounter abend code X'138' or X'538'. For
unconditional or conditional requests, the caller might encounter one of the following abend codes:

• X'238'
• X'338'
• X'438'
• X'738'
• X'838'
• X'938'

See z/OS MVS System Codes for explanations and responses for these codes.

Return and reason codes
Return codes are provided by the system only if you specify RET=TEST, RET=USE, RET=HAVE, or ECB; for
RET=NONE, return to the task indicates that control of the resource has been assigned to the task. If the
return code for the resource named in the RESERVE macro is 0, register 15 contains 0. If the return code
is not 0, register 15 contains the address of a 12-byte storage area containing the return code, as shown
in Figure 4 on page 241.

RESERVE macro

240 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Figure 4. Return Code Area Used by RESERVE

The return codes for the RESERVE macro with the RET=TEST parameter are described in Table 36 on
page 241.

Table 36. Return Codes for the RESERVE Macro with the RET=TEST Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The resource is immediately available.

Action: None required. However, you might take some action based on your
application.

4 Meaning: The resource is not immediately available or There might be contention
on the reservethe hardware reserve is done synchronously. There might be
contention on the reserve.

Action: None required. However, you might take some action based on your
application.

8 Meaning: A previous request for control of the same resource has been made for
the same task. The task has control of the resource.

Action: None required. However, you might take some action based on your
application.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of Byte 0 as shown in Figure 4 on page 241. If bit 3 is off, the
task has exclusive control; If bit 3 is on, the task has shared control.

14 Meaning: A previous request for control of the same resource has been made for
the same task. The task does not have control of the resource.

Action: None required. However, you might take some action based on your
application.

20 Meaning: The matching task (the task specified in the MASID and MTCB
parameters) owns the resource.

Action: None required. However, you might take some action based on your
application.

The return codes for the RESERVE macro with the RET=USE parameter are described in Table 37 on page
242.

RESERVE macro

Chapter 33. RESERVE — Reserve a device (shared DASD) 241

Table 37. Return Codes for the RESERVE Macro with the RET=USE Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The active task now has control of the resource.

Action: None.

4 Meaning: The resource is not immediately available.

Action: None required. However, you might take some action based on your
application.

8 Meaning: A previous request for control of the same resource has been made for
the same task. The task has control of the resource.

Action: None required. However, you might take some action based on your
application.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of Byte 0 as shown in Figure 4 on page 241. If bit 3 is off, the
task has exclusive control; If bit 3 is on, the task has shared control.

14 Meaning: A previous request for control of the same resource has been made for
the same task. The task does not have control of the resource.

Action: None required. However, you might take some action based on your
application.

18 Meaning: Environmental error. The limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless
some previous ENQ or RESERVE request caused the task to obtain control of the
resource.

Action: Retry the request one or more times. If the problem persists, consult your
system programmer, who might be able to tune the system so that the limit is no
longer exceeded.

The return codes for the RESERVE macro with the RET=HAVE parameter are described in Table 38 on
page 242.

Table 38. Return Codes for the RESERVE Macro with the RET=HAVE Parameter

Hexadecimal Return
Code

Meaning and Action

0 Meaning: The active task now has control of the resource.

Action: None.

8 Meaning: A previous request for control of the same resource has been made for the same task. The
task has control of the resource.

Action: None required. However, you might take some action based on your application.

To determine whether the task has exclusive control or shared control of the resource, check bit 3 of
Byte 0 as shown in Figure 4 on page 241. If bit 3 is off, the task has exclusive control; If bit 3 is on, the
task has shared control.

14 Meaning: A previous request for control of the same resource has been made for the same task. The
task does not have control of the resource.

Action: None required. However, you might take some action based on your application.

RESERVE macro

242 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 38. Return Codes for the RESERVE Macro with the RET=HAVE Parameter (continued)

Hexadecimal Return
Code

Meaning and Action

18 Meaning: Environmental error. The limit for the number of concurrent resource requests has been
reached. The task does not have control of the resource unless some previous ENQ or RESERVE request
caused the task to obtain control of the resource.

Action: Retry the request one or more times. If the problem persists, consult your system programmer,
who might be able to tune the system so that the limit is no longer exceeded.

20 Meaning: The matching task (the task specified in the MASID and MTCB parameters) owns the
resource.

Action: The caller can use the resource, but it must ensure that the owning task does not terminate
while the caller is using the resource. If the caller requested exclusive control, then this return code
indicates that the matching task is the only task that currently owns the resource. If the caller
requested shared control and the owning task requested shared control, this return code might indicate
that a previous task had requested exclusive control. The caller must issue a DEQ macro to cancel this
RESERVE request.

28 Meaning: The caller cannot obtain exclusive control of the resource using the RESERVE macro with the
MASID and MTCB parameters. The matching task's involvement with other tasks precludes control by
the caller.

Action: This task must not issue a DEQ macro to cancel the RESERVE request.

44 Meaning: The caller is violating a restriction of using the RESERVE macro with the MASID and MTCB
parameters in one or more of the following ways:

• Another task has already issued the RESERVE macro for this resource specifying the same values for
the MASID and MTCB parameters

• The MASID and MTCB parameters specify a task that acquired control of the resource by using the
RESERVE macro with the MASID and MTCB parameters

• The matching task requested ownership of the resource but has not yet been granted ownership.

Action: Do not use the resource; the caller does not have control of it.

The return codes for the RESERVE macro with the ECB parameter are described in Table 39 on page 243.

Table 39. Return Codes for the RESERVE Macro with the ECB Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The active task now has control of the resource.

Action: Do not wait on the ECB; it will not be posted.

4 Meaning: The ENQ resource is not immediately available or the hardware reserve
is done synchronously, so contention might exist on the reserve.

Action: None required. However, you might take actions based on your application.
To measure the time you want to wait for resolving the contention, you can set a
timer with ECB and wait on both the RESERVE ECB and the timer ECB.

8 Meaning: A previous request for control of the same resource has been made for
the same task. The task has control of the resource.

Action: Do not wait on the ECB; it will not be posted.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of Byte 0 as shown in Figure 4 on page 241. If bit 3 is off, the
task has exclusive control; If bit 3 is on, the task has shared control.

14 Meaning: A previous request for control of the same resource has been made for
the same task. The task does not have control of the resource.

Action: Do not wait on the ECB; it will not be posted.

RESERVE macro

Chapter 33. RESERVE — Reserve a device (shared DASD) 243

Table 39. Return Codes for the RESERVE Macro with the ECB Parameter (continued)

Hexadecimal
Return Code

Meaning and Action

18 Meaning: Environmental error. The limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless
some previous ENQ or RESERVE request caused the task to obtain control of the
resource.

Action: Do not wait on the ECB; it will not be posted. Retry the request one or more
times. If the problem persists, consult your system programmer, who might be
able to tune the system so that the limit is no longer exceeded.

20 Meaning: The matching task (the task specified in the MASID and MTCB
parameters) owns the resource.

Action: Do not wait on the ECB; it will not be posted. The caller can use the
resource, but it must ensure that the owning task does not terminate while the
caller is using the resource. If the caller requested exclusive control, then this
return code indicates that the matching task is the only task that currently owns
the resource. If the caller requested shared control and the owning task requested
shared control, this return code might indicate that a previous task had requested
exclusive control. The caller must issue a DEQ macro to cancel this RESERVE
request.

24 Meaning: The caller that specifies the RESERVE macro with the MASID and MTCB
parameters will have exclusive control after the ECB is posted.

Action: Wait on the ECB. Once the ECB is posted, the caller may use the resource,
but must ensure that the matching task does not terminate while the caller is using
the resource. The caller must issue a DEQ macro to cancel the RESERVE request.

28 Meaning: The caller cannot obtain exclusive control of the resource using the
RESERVE macro with the MASID and MTCB parameters. The matching task's
involvement with other tasks precludes control by the caller.

Action: Do not wait on the ECB; it will not be posted. The caller must not issue a
DEQ macro to cancel the RESERVE request.

44 Meaning: The caller is violating a restriction of using the RESERVE macro with the
MASID and MTCB parameters in one or more of the following ways:

• Another task has already issued the RESERVE macro for this resource specifying
the same values for the MASID and MTCB parameters

• The MASID and MTCB parameters specify a task that acquired control of the
resource by using the RESERVE macro with the MASID and MTCB parameters

• The matching task requested ownership of the resource but has not yet been
granted ownership.

Action: Do not wait on the ECB; it will not be posted. Do not use the resource; the
caller does not have control of it.

Example
Unconditionally reserve exclusive control of a device. The length of the rname is allowed to default.

RESERVE (MAJOR3,MINOR3,E,,SYSTEMS),UCB=(R3)

RESERVE macro

244 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

RESERVE—List form
The list form of the RESERVE macro is written as follows:

Syntax Description

 name name: symbol. Begin name in column 1.

␢ One or more blanks must precede RESERVE.

RESERVE

␢ One or more blanks must follow RESERVE.

(

 qname addr qname addr: A-type address.

 , rname addr: A-type address.

 ,rname addr

 ,

 ,E

 ,S

 , rname length: symbol or decimal digit.

 ,rname length

 ,

 ,SYSTEMS

)

 ,RET=TEST

 ,RET=USE

 ,RET=HAVE

 ,RET=NONE

RESERVE macro

Chapter 33. RESERVE — Reserve a device (shared DASD) 245

Syntax Description

 ,ECB=ecb addr ecb addr: A-type address.

,UCB=ucb addr ucb addr: A-type address or 0.

 ,LOC=BELOW Default: LOC=BELOW

 ,LOC=ANY

 ,MASID=0

 ,MTCB=0

 ,RELATED=value value: A-type address.

,MF=L

Parameters
The parameters are explained under the standard form of the RESERVE macro, with the following
exception:

,MF=L
Specifies the list form of the RESERVE macro.

The list form of this macro generates a prefix followed by the parameter list; however, the label specified
in MF=L does not include an offset prefix area. If MASID, MTCB, or ECB are specified, these labels are
offset; allowance must be made for the parameter list prefix.

Note: If the ECB parameter is specified on the execute form of the macro, it also must be specified on the
list form of the macro. If MASID and MTCB also are specified on the execute form, MASID=0 and MTCB=0
must be specified in the list form.

RESERVE - Execute form
The execute form of the RESERVE macro is written as follows:

Syntax Description

 name name: symbol. Begin name in column 1.

␢ One or more blanks must precede RESERVE.

RESERVE

RESERVE macro

246 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

␢ One or more blanks must follow RESERVE.

 (Note: (and) are the beginning and end of a parameter list. The entire list
is optional. If nothing in the list is desired, the (,), and all parameters
between (and) should not be specified. If something in the list is
desired, then (,), and all parameters in the list should be specified as
indicated at the left.

 qname addr qname addr: RX-type address, or register (2) - (12).

 , rname addr: RX-type address, or register (2) - (12).

 ,rname addr

 ,

 ,E

 ,S

 , rname length: symbol, decimal digit, or register (2) - (12).

 ,rname length Note: rname length must be coded if a register is specified for rname
addr above.

 ,

 ,SYSTEMS

)

 ,RET=TEST

 ,RET=USE

 ,RET=HAVE

 ,RET=NONE

 ,ECB=ecb addr ecb addr: RX-type address, or register (2) - (12).

 ,UCB=ucb addr ucb addr: RX-type address, or register (2) - (12).

 ,LOC=BELOW Default: LOC=BELOW

 ,LOC=ANY

RESERVE macro

Chapter 33. RESERVE — Reserve a device (shared DASD) 247

Syntax Description

 ,MASID=matching-asid addr matching-asid addr: A-type address, or register (2) - (12).

 ,MTCB=matching-tcb addr matching-tcb addr: A-type address, or register (2) - (12).

 ,RELATED=value value: any valid macro keyword specification.

 ,LINKAGE=SVC DEFAULT: LINKAGE=SVC

 ,LINKAGE=SYSTEM

,MF=(E, list addr) list addr: RX-type address, or register (1) - (12).

Parameters
The parameters are explained under the standard form of the RESERVE macro, with the following
exception:

,MF=(E,ctrl addr)
Specifies the execute form of the RESERVE macro.

list addr specifies the area that the system uses to contain the parameters.

Note: If the ECB parameter is specified on the execute form of the macro, it also must be specified on the
list form of the macro. If MASID and MTCB also are specified on the execute form, MASID=0 and MTCB=0
must be specified in the list form.

RESERVE macro

248 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 34. RESMGR — Add or delete a resource
manager

Description
RESMGR allows an authorized program to add (ADD parameter) or delete (DELETE parameter) a resource
manager routine.

Upon completion of RESMGR ADD, the resource manager is established for a task or address space. On
the TYPE parameter, you choose whether the resource manager routine receives control when a task
(TYPE=TASK or TYPE=JSPGMTASK) or an address space (TYPE=ADDRSPC) terminates. On the ROUTINE
parameter, you designate the routine and choose the kind of linkage the routine has with RTM:

• LINK macro
• Branch instruction
• PC instruction
• Reusable LX PC instruction

For information about the uses of resource managers, see z/OS MVS Programming: Authorized Assembler
Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state or PKM allowing key 0 - 7

Dispatchable unit mode: Task or SRB. However, you cannot issue TCB=CURRENT in SRB
mode.

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: The caller can hold the local lock, depending on whether the caller is
in noncross memory mode or cross memory mode:

• In noncross memory mode, the caller can hold the local lock for
the home (that is, primary) address space.

• In cross memory mode, the caller can hold the local lock for the
primary address space but not for the home address space.

If the caller holds a local lock, it can also hold the CMS lock.

Control parameters: Must be in the primary address space

Programming requirements
None.

RESMGR macro

© Copyright IBM Corp. 1988, 2020 249

Restrictions
None.

Input register information
Before issuing the RESMGR macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14

Used as a work register by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
The LINK option on the ROUTINE parameter might degrade the performance of the system during task
and address space termination.

If you specify TCB=ALL and ASID=ALL, the system invokes the resource manager program for every task
termination initiated by the system. You can improve system performance by specifying a particular task
or ASID.

Syntax
The standard form of the RESMGR macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede RESMGR.

RESMGR macro

250 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

RESMGR

␣ One or more blanks must follow RESMGR.

ADD

DELETE

,TOKEN=tokaddr tokaddr: A-type address or register (2) - (12).

 ,TYPE=ADDRSPC

 ,TYPE=TASK

 ,TYPE=JSPGMTASK

 ,ASID=CURRENT asid: A constant or register (2) - (12).

 ,ASID=ALL

 ,ASID=asid

 ,TCB=CURRENT

 ,TCB=ALL

 ,TCB=tcbaddr tcbaddr: A-type address or register (2) - (12).

 ,TTOKEN=ttoken ttoken: A-type address or register (2) - (12).

 ,ROUTINE=(LINK, pgname) pgname: C-type constant, A-type address, or register (2) - (12).

 ,ROUTINE=(BRANCH, pgaddr) pgaddr: A-type address or register (2) - (12).

 ,ROUTINE=(PC, pcnum) pcnum: A constant or register (2) - (12).

 ,ROUTINE=(RLXPC,
seqnumpcnum)

seqnumpcnum: A-type address or register (2) - (12).

 ,ECB=ecbaddr ecbaddr: A-type address or register (2) - (12).

 ,PARAM=paddr paddr: A-type address or register (2) - (12).

 ,RELATED=value value: Any valid macro keyword specification.

RESMGR macro

Chapter 34. RESMGR — Add or delete a resource manager 251

Parameters
The parameters are explained as follows:

ADD
DELETE

Specifies whether a resource manager is to be added or deleted. You must specify the same values
for TYPE, TCB, TTOKEN, and ASID on DELETE as you specified on those parameters for ADD. On
DELETE, you must specify the token that ADD returned so the system can identify the resource
manager that you want to delete.

Note that you can use RESMGR to delete a resource manager from the resource manager routine
itself.

,TOKEN=tokaddr
Specifies the address of the fullword where you want the system to store the token that it returns
after an ADD. The token represents the resource manager that the system added. On DELETE,
however, you store the token in this fullword before invoking the delete function. TOKEN is required
for both ADD and DELETE.

,TYPE=ADDRSPC
,TYPE=TASK
,TYPE=JSPGMTASK

Specifies whether the resource manager is an address space resource manager (ADDRSPC) or a task
resource manager (TASK or JSPGMTASK). TYPE=JSPGMTASK specifies that the task resource
manager is to cover any jobstep program task (for instance, the task attached for EXEC PGM=xxx, but
not any subtask attached by that task) in the address space. If a particular job is your current home or
primary address space and you want to cover the job’s jobstep program task (which can be located by
the address space’s ASCBXTCB field), you should use TYPE=TASK with TCB or TTOKEN, rather than
using TYPE=JSPGMTASK.

The default TYPE is address space. If you specify TYPE=ADDRSPC, you cannot specify
TTOKEN=ttoken. If you specify TYPE=JSPGMTASK, you cannot specify TCB or TTOKEN.

,ASID=CURRENT
,ASID=ALL
,ASID=asid

Specifies the ID of the address space or spaces to be monitored for termination (TYPE=ADDRSPCE) or
the home address space or the primary address space (TYPE=TASK). If you want to monitor:

• The home address space, specify ASID=CURRENT
• All address spaces, specify ASID=ALL
• A specific address space, specify ASID=asid.

If TYPE=TASK, asid must be the home or primary address space.

,TCB=CURRENT
,TCB=ALL
,TCB=tcbaddr
,TTOKEN=ttoken

Specifies the task that the system is to monitor for termination. If you want to monitor:

• The current task, specify TCB=CURRENT. Note that a program in SRB mode or in cross memory
mode cannot issue TCB=CURRENT.

If your program is in cross memory mode and you want to monitor a task in the primary address
space, do not specify TCB=CURRENT. In this case, specify the primary address space through
ASID=asid and the task through TCB=tcbaddr or TTOKEN=ttoken.

• All tasks in the specified address space, specify TCB=ALL. If you specify TCB=ALL with ASID=ALL,
the system monitors all tasks in all address spaces.

• A task in the primary or home address space, specify TCB=tcbaddr or TTOKEN=ttoken. Note that
TTOKEN is not valid on TYPE=ADDRSPC.

RESMGR macro

252 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

If your program is in cross memory mode and it holds the local lock for the primary address space, it
cannot request monitoring of a task in the home address space.

Do not specify TCB or TTOKEN with TYPE=JSPGMTASK.

,ROUTINE=(LINK, pgname)
,ROUTINE=(BRANCH, pgaddr)
,ROUTINE=(PC, pcnum)
,ROUTINE=(RLXPC, seqnumpcnum)

Specifies:

• the type of linkage to be used by the system when giving control to the resource manager
• the resource manager to receive control when the task or address space terminates.

The section on resource managers in z/OS MVS Programming: Authorized Assembler Services Guide
describes the registers on entry, the resource manager parameter list (RMPL), and some of the
responsibilities of the resource manager.

If you specify LINK, the system uses the LINK service. The resource manager routine must reside
within the Link Pack Area (LPA) or an APF-authorized library in the LNKLST set that is active when the
LINK is issued. The resource manager receives control in the addressing mode defined for that
routine. pgname is one of the following:

• A character constant of up to 8 characters.
• The address of an eight-byte field. If the name is less than eight characters, left-justify the name

and pad with blanks on the right to make up the eight characters.

If you specify PC, the resource manager receives control through a PC instruction. pcnum is the PC
number of the PC instruction that gives control to the resource manager. The address space from
which the resource manager is called must have the authority to issue the PC.

If you specify RLXPC, the resource manager receives control through a reusable LX PC instruction.
pcnumseqnum is the 8-byte area that identifies the PC instruction that gives control to the resource
manager. This 8-byte area consists of the following:

• The 4-byte sequence number of the LX with which the PC number is associated (returned within the
output area of the LXRES macro when REUSABLE=YES and EXLIST were specified) followed by

• The 4-byte PC number

The address space from which the resource manager is called must have the authority to issue the PC.

To code: Specify the 8-byte area, or its address in register (2) - (12).

If you specify BRANCH, the resource manager receives control in 31-bit addressing mode and in
primary ASC mode through a branch instruction, and the resource manager (whether address space
termination resource manager or task termination resource manager) must reside in storage
addressable from all address spaces in which it can get control. Note that for address space
termination, resource managers run in master's address space (ASID 1). pgaddr is the address of the
resource manager.

ROUTINE is required on the ADD request.

,ECB=ecbaddr
The processing to delete a resource manager might not be complete when RESMGR returns. If you
require notification after DELETE has completed, code ECB. The ECB will be posted when DELETE is
completed. Note, however, that DELETE may already be complete upon return, in which case the
system does not post any completion ECB. Check the return code from RESMGR before you wait on
the ECB.

The system associates the completion ECB with the home address space of the DELETE requestor.
ECB is valid only for DELETE. You must specify one of the following when you specify ECB:

• TYPE=ADDRSPC and ASID=ALL
• TYPE=TASK and ASID=ALL and TCB=ALL

RESMGR macro

Chapter 34. RESMGR — Add or delete a resource manager 253

• TYPE=JSPGMTASK and ASID=ALL

,PARAM=paddr
Specifies the address of an 8-byte field containing parameter data to be used by the resource
manager when it receives control. The parameter data must reside in the caller's primary address
space. PARAM is valid only with ADD. A copy of the 8-byte field is passed to the resource manager as
the second parameter.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information specified are at the
discretion of the user, and may be any valid coding values.

ABEND codes
None.

Return codes from the ADD function
Return codes from the ADD function follow. A return code greater than 4 indicates that RESMGR did not
establish a resource manager.

Table 40. Return Codes from the ADD Function

Decimal Return
Code

Meaning and Action

0 Meaning: The resource manager was successfully established. The word provided
by the TOKEN parameter contains the token required to delete the resource
manager.

Action: None.

12 Meaning: Program error. The caller did not provide the address of a word to
contain the token of the new resource manager.

Action: Issue the macro again with the TOKEN parameter.

16 Meaning: Program error. The caller did not provide the resource manager
description through the ROUTINE parameter.

Action: Issue the macro again with the ROUTINE parameter.

20 Meaning: Program error. The TCB address provided did not represent a valid TCB.

Action: Issue the macro again and ensure that the TCB address represents a valid
TCB.

24 Meaning: Program error. The ASID provided did not represent a valid ASCB.

Action: Issue the macro again and ensure that the ASCB address represents a
valid ASCB.

28 Meaning: Program error. The request type was not ADD or DELETE.

Action: Ensure that the parameter list created by the RESMGR macro is not
inadvertently overlaid or the contents lost due to an assembler coding error.

32 Meaning: Environmental error. RESMGR was unable to obtain storage for a work
area it needed to process the request.

Action: Rerun your program one or more times. If the problem persists, check with
the operator to see if another user in the installation is causing the problem, or if
the entire installation is experiencing storage constraint problems.

RESMGR macro

254 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 40. Return Codes from the ADD Function (continued)

Decimal Return
Code

Meaning and Action

36 Meaning: Program error. The caller held an incorrect lock.

Action: Ensure only the allowable locks are held before the macro is issued.

40 Meaning: Program error. Unless you specify ASID=ALL, it is not valid to establish a
task resource manager that is not the home or primary address space of the
requestor.

Action: Issue the RESMGR macro for a task within the home or primary address
space.

44 Meaning: System error. An unrecoverable error occurred while processing the
request.

Action: Rerun your program one or more times. If the problem persists, record the
return code and supply it to the appropriate IBM support personnel.

48 Meaning: Environmental error. RESMGR was unable to obtain storage to maintain
information about RESMGR.

Action: Rerun your program one or more times. If the problem persists, check with
the operator to see if another user in the installation is causing the problem, or if
the entire installation is experiencing storage constraint problems.

52 Meaning: Program error. The caller is not authorized to use RESMGR.

Action: Ensure that your program has the proper authorization.

56 Meaning: Environmental error. The TCB was already terminating and no more
dynamic resource managers can be established for it.

Action: Attempt to establish the resource manager before the task starts to
terminate.

60 Meaning: Environmental error. The ASCB was already in termination and no more
dynamic resource managers can be established for it.

Action: Attempt to establish the resource manager before the address space starts
to terminate.

64 Meaning: Program error. The TTOKEN parameter specified a task in an address
space other than the home address space.

Action: Issue the RESMGR macro from within the address space of the task
represented by the specified TTOKEN.

Return codes from the DELETE function
Return codes from the DELETE function follow. A return code greater than 8 indicates that RESMGR did
not delete a resource manager.

RESMGR macro

Chapter 34. RESMGR — Add or delete a resource manager 255

Table 41. Return Codes from the DELETE Function

Decimal Return
Code

Meaning and Action

0 Meaning: The resource manager was successfully deleted. An ECB is never posted
for this return code.

Action: None.

4 Meaning: The resource manager is currently in use. It has been queued for
deletion. The ECB, if provided, will be posted when the delete process has
completed.

Action: None.

8 Meaning: The resource manager was queued for deletion by a previous request. It
is still active and will be deleted as soon as it is no longer in use.

Action None.

12 Meaning: Program error. The caller did not provide a token to RESMGR.

Action: Specify the TOKEN parameter and value that represents the resource
manager to be deleted.

16 Meaning: Program error. The token provided did not represent a currently
established resource manager.

Action: Ensure that the token was properly saved after the resource manager was
established. Also ensure that the resource manager had not previously been
deleted either directly through RESMGR or indirectly through task or address space
termination.

20 Meaning: Program error. The TCB address provided did not represent a valid TCB.

Action: Ensure that the TCB represents a valid TCB within the home address
space.

24 Meaning: Program error. The ASID provided did not represent a valid ASCB.

Action: Ensure that the ASCB address represents a valid ASCB.

28 Meaning: Program error. The request type was not ADD or DELETE.

Action: Ensure that the parameter list created by the RESMGR macro was not
inadvertently overlaid or its contents lost due to an assembler coding error.

32 Meaning: Environmental error. RESMGR was unable to obtain storage for a work
area it needed to process the request.

Action: Rerun your program one or more times. If the problem persists, check with
the operator to see if another user in the installation is causing the problem, or if
the entire installation is experiencing storage constraint problems.

36 Meaning: Program error. The caller held an incorrect lock.

Action: Ensure only the allowable system locks are held prior before the macro is
issued.

40 Meaning: Program error. It is not valid to delete a task resource manager for a
specific task that is not in the home or primary address space of the requestor.

Action: Issue the RESMGR macro again for a task within the home or primary
address space.

RESMGR macro

256 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 41. Return Codes from the DELETE Function (continued)

Decimal Return
Code

Meaning and Action

44 Meaning: System error. An unrecoverable error occurred while processing the
request.

Action: Rerun your program one or more times. If the problem persists, record the
return code and supply it to the appropriate IBM support personnel.

48 Meaning: Program error. The ECB parameter was specified but is not supported for
the particular type of delete request.

Action: Refer to the ECB parameter description to ensure proper usage of this
parameter.

52 Meaning: The caller is not authorized to use RESMGR.

Action: Ensure that your program has the proper authorization.

64 Meaning: Program error. The TTOKEN parameter specified a task in an address
space other than the home address space.

Action: Issue the RESMGR macro from within the address space of the task
represented by the specified TTOKEN.

Example 1
Establish a resource manager that receives control for every address space termination and every task
termination. This resource manager is equivalent to having included the name IAMARESM in the
IEAVTRML table.

RESMGR ADD,TOKEN=MYTOKEN,TYPE=ADDRSPC,ASID=ALL,
 ROUTINE=(LINK,'IAMARESM')

RESMGR ADD,TOKEN=MYTOKEN,TYPE=TASK,ASID=ALL,TCB=ALL,
 ROUTINE=(LINK,'IAMARESM')

Example 2
Establish a resource manager for the current task, using a branch interface and specifying the routine
using register notation:

 L R2,RMADDR Obtain address of resource manager routine
 RESMGR ADD,TOKEN=MYTOKEN,TYPE=TASK,ASID=ALL,
 TCB=ALL,ROUTINE=(BRANCH,(R2))

 EXTRN RMROUTIN
RMADDR DC A(RMROUTIN) Address of resource manager routine

RESMGR - List form
Use the list form of RESMGR together with the execute form of the macro for applications that require
reentrant code. The list form of the macro defines an area of storage, which the execute form of the
macro uses to store the parameters.

Syntax
The list form of the RESMGR macro is written as follows:

RESMGR macro

Chapter 34. RESMGR — Add or delete a resource manager 257

Syntax Description

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede RESMGR

RESMGR

␣ One or more blanks must follow RESMGR

ADD

DELETE

,TOKEN=tokaddr tokaddr: A-type address or register (2) - (12).

 ,TYPE=ADDRSPC

 ,TYPE=TASK

 ,TYPE=JSPGMTASK

 ,ASID=CURRENT asid: A constant.

 ,ASID=ALL

 ,ASID=asid

 ,TCB=CURRENT

 ,TCB=ALL

 ,TCB=tcbaddr tcbaddr: A-type address

 ,TTOKEN=ttoken ttoken: A-type address

 ,ROUTINE=(LINK, pgname) pgname: C-type constant or A-type address.

 ,ROUTINE=(BRANCH, pgaddr) pgaddr: A-type address.

 ,ROUTINE=(PC, pcnum) pcnum: A constant.

 ,ROUTINE=(RLXPC,
seqnumpcnum)

seqnumpcnum: A-type address.

 ,ECB=ecbaddr ecbaddr: A-type address.

 ,PARAM=paddr paddr: A-type address.

RESMGR macro

258 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ,RELATED=value value: Any valid macro keyword specification.

,MF=L

Parameters
The parameters are explained under the standard form of the RESMGR macro with the following
exceptions:

,MF=L
Specifies the list form of the RESMGR macro.

RESMGR - Execute form
Use the execute form of RESMGR together with the list form of the macro for applications that require
reentrant code. The execute form of the macro stores the parameters into the storage area defined by the
list form. You do not have to specify any parameters except MF on the execute form. For the parameters
you do not specify on the execute form, RESMGR uses the parameters on the list form or their defaults.

Syntax
The execute form of the RESMGR macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede RESMGR

RESMGR

␣ One or more blanks must follow RESMGR

MF=(E,listaddr) listaddr: RX-type address or register (2) - (12).

 ,ADD

 ,DELETE

 ,TOKEN=tokaddr tokaddr: A-type address or register (2) - (12).

 ,TYPE=ADDRSPC

RESMGR macro

Chapter 34. RESMGR — Add or delete a resource manager 259

Syntax Description

 ,TYPE=TASK

 ,TYPE=JSPGMTASK

 ,ASID=CURRENT asid: A constant or register (2) - (12).

 ,ASID=ALL

 ,ASID=asid

 ,TCB=CURRENT

 ,TCB=ALL

 ,TCB=tcbaddr tcbaddr: RX-type address or register (2) - (12).

 ,TTOKEN=ttoken ttoken: RX-type address or register (2) - (12).

 ,ROUTINE=(LINK, pgname) pgname: a C-type constant, RX-type address, or register (2) - (12).

 ,ROUTINE=(BRANCH, pgaddr) pgaddr: RX-type address or register (2) - (12).

 ,ROUTINE=(PC, pcnum) pcnum: A constant, an expression, or register (2) - (12).

 ,ROUTINE=(RLXPC,
seqnumpcnum)

seqnumpcnum: RX-type address or register (2) - (12).

 ,ECB=ecbaddr ecbaddr: RX-type address or register (2) - (12).

 ,PARAM=paddr paddr: RX-type address or register (2) - (12).

 ,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained under the standard form of the RESMGR macro with the following
exceptions:

MF=(E,listaddr)
E specifies the execute form of the RESMGR macro and listaddr specifies the address of the
parameter list.

RESMGR macro

260 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 35. RESUME — Resume execution of a
suspended RB

Description
Note: To resume or purge a suspended SRB, use the variation of the RESUME macro described under
Chapter 36, “RESUME — Resume or purge a suspended SRB,” on page 265.

To resume a request block (RB) that was suspended through the SUSPEND macro, use this variation of
the RESUME macro.

Environment
Requirements for the calling program's environment are:

Environmental factor Requirement

Minimum authorization: Supervisor state with PSW key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Can be either enabled or disabled

Locks: For RETURN=N, cannot hold local lock

Control parameters: Must be in the caller's primary address space

Programming requirements
The task to be resumed must be in the primary address space.

The caller must include the IHAPSA and CVT mapping macros.

Restrictions
The list and execute forms of the RESUME macro are not valid for resuming execution of a suspended RB.

Input register information
Before issuing the RESUME macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
After the caller issues the macro, the system might use some registers as work registers or might change
the contents of some registers. When the system returns control to the caller, the contents of these
registers are not the same as they were before the macro was issued. Therefore, if the caller depends on
these registers containing the same value before and after issuing the macro, the caller must save these
registers before issuing the macro and restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents

RESUME macro for RBs

© Copyright IBM Corp. 1988, 2020 261

0
Reason code

1
Used as a work register by the system

2-3
Unchanged

4-5
Used as work registers by the system

6-10
Unchanged

11-14
Used as work registers by the system

15
Return code

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Performance implications
None.

Syntax
The RESUME macro is coded as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede RESUME.

RESUME

␢ One or more blanks must follow RESUME.

TCB=(4) Default: Register 4 contains TCB address.

TCB=tcbaddr tcbaddr: A-type address or registers (2) - (12).

,RB=(5) Default: Register 5 contains RB address.

RESUME macro for RBs

262 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

,RB=rbaddr rbaddr: A-type address or registers (2) - (12).

,RETURN=Y Default: RETURN=Y

,RETURN=N

,MODE=UNCOND Default: MODE=UNCOND

,MODE=COND

 ,ASYNC=Y Default: ASYNC=N

 ,ASYNC=N

,ASCB=ascbaddr Default: ASCB address of the home address space.

 ascbaddr: RX-type address or registers (1) or (2) - (3) or (6) - (12).

Parameters
The parameters are explained as follows:

TCB=(4)
TCB=tcbaddr

Specifies the TCB address of the task to be resumed. Register 4 is the default; it is assumed to contain
the TCB address.

Note: The TCB resides in storage below 16 megabytes.

,RB=(5)
,RB=rbaddr

Specifies the address of the RB to be resumed. Register 5 is the default; it is assumed to contain the
address of the RB to be resumed.

Note: The RB resides in storage below 16 megabytes.

,RETURN=Y
,RETURN=N

Specifies whether control is to be returned to the caller (RETURN=Y) or not (RETURN=N). RETURN=N
causes RESUME to make the specified TCB/RB dispatchable and gives the specified TCB/RB control
directly. Only programs running under an SRB in primary ASC mode can issue RETURN=N. If you
specify RETURN=N, you must also specify MODE=UNCOND and ASYNC=N and must not specify ASCB.

,MODE=UNCOND
,MODE=COND

If MODE=COND is specified, the action RESUME takes if the function cannot be completed
synchronously depends on the ASYNC option. If ASYNC=Y is specified, RESUME makes a conditional
attempt to acquire an SRB. If an SRB is available, it is scheduled to complete the RESUME function
asynchronously. If ASYNC=N is specified explicitly or as a default and the RESUME cannot
immediately complete the function, the system places return code 04 in register 15 and returns to the
caller.

If MODE=UNCOND is specified, the action RESUME takes also depends on the ASYNC option. If
ASYNC=Y is specified, RESUME makes an unconditional request for an SRB, and completes the
RESUME function asynchronously. If ASYNC=N is specified explicitly or as a default, RESUME

RESUME macro for RBs

Chapter 35. RESUME — Resume execution of a suspended RB 263

unconditionally obtains the CML lock of the ASCB whose TCB or RB is to be resumed. The TCB or RB is
resumed before control returns to the caller.

,ASYNC=Y
,ASYNC=N

Specifies whether the RESUME is to be completed asynchronously (Y) or not (N).
,ASCB=ascbaddr

Specifies the address of the ASCB whose TCB or RB is to be resumed. The caller must establish
current addressability to the address space before calling RESUME. If this option is not specified, the
home address space is assumed. This option must be specified if ASYNC=Y is specified.

Note: The ASCB resides in storage below 16 megabytes.

ABEND codes
070

See z/OS MVS System Codes for an explanation and programmer responses for this code.

Return codes
When the RESUME macro returns control to your program, GPR 15 contains a hexadecimal return code.

Table 42. Return Codes for the RESUME Macro for RBs

Return Code Meaning and Action

00 Meaning: A normal, synchronous RESUME completed the function.

Action: None.

04 Meaning: Environmental error. For MODE=COND and ASYNC=N, the RESUME cannot complete the
function.

For MODE=COND or MODE=UNCOND and ASYNC=Y, an SRB is completing the function asynchronously.

Action: None required. However, you might take some action based upon your application.

08 Meaning: Environmental error. For MODE=COND and ASYNC=Y the SRB cannot be acquired and
RESUME cannot complete the function.

Action: None required. However, you might take some action based upon your application.

Example
Resume execution of the task specified in the address labeled CURRTCB. Use the request block address
in register 5. Pass control back to the task (the issuer is currently in SRB mode and this step terminates
SRB mode processing).

RESUME TCB=CURRTCB,RB=(5),RETURN=N

RESUME macro for RBs

264 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 36. RESUME — Resume or purge a suspended
SRB

Description
Note: To resume an RB, use the variation of the RESUME macro described under Chapter 35, “RESUME —
Resume execution of a suspended RB,” on page 261.

To resume or purge a suspended supervisor request block (SRB), use this variation of the RESUME macro.
Optionally, the RESUME macro enables the caller to provide a fullword of data (the resume code) to the
suspended SRB routine.

Environment
Requirements for the calling program are:

Environmental factor Requirement

Minimum authorization: Supervisor state or PSW key 0 - 7

Dispatchable unit mode: SRB or task

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Can be enabled or disabled for interrupts

Locks: Can hold no locks or can hold the local lock, the CML lock, the CMS
lock, or the CPU lock

Control parameters: Must be in the caller's primary address space or addressable through
the caller's dispatchable unit access list (DU-AL)

Programming requirements
Programming requirements for the calling program are:

• Before issuing the RESUME macro, ensure that the global symbol &SYSASCE is correctly set to indicate
the ASC mode of your program. To test or set this global symbol, use the SYSSTATE macro.

• Programs in AR ASC mode must ensure that parameter addresses are ALET-qualified.

Restrictions
None.

Input register information
Before issuing the RESUME macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
After the caller issues the macro, the macro might use some registers as work registers or might change
the contents of some registers. When the macro returns control to the caller, the contents of these
registers are not the same as they were before the macro was issued. Therefore, if the caller depends on

RESUME Macro for SRBs

© Copyright IBM Corp. 1988, 2020 265

these registers containing the same value before and after issuing the macro, the caller must save these
registers before issuing the macro and restore them after the system returns control.

When control returns to the caller, the general purpose registers contain:
Register

Contents
0-1

Used as work registers by the macro
2-13

Unchanged
14

Used as a work register by the macro
15

Return code

When control returns to the caller, the access registers contain:
Register

Contents
0-1

Used as work registers by the macro
2-13

Unchanged
14-15

Used as work registers by the macro

Syntax
The standard form of the RESUME macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede RESUME.

RESUME

␢ One or more blanks must follow RESUME.

SPTOKEN=sptoken addr sptoken addr: RX-type address.

,PURGE=NO Default: PURGE=NO.

,PURGE=YES

 ,RSCODE=rscode addr rscode addr: RX-type address.

RESUME Macro for SRBs

266 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained as follows:

SPTOKEN=sptoken addr
Specifies the address of an 8-byte location that contains the system-provided suspend token. The
suspend token identifies the SRB that is to be resumed or purged.

,PURGE=NO
,PURGE=YES

Indicates whether the system is to resume (PURGE=NO) or purge (PURGE=YES) the SRB. The default
is PURGE=NO. A purged SRB never regains control and cannot be resumed. Do not use RSCODE with
PURGE=YES.

,RSCODE=rscode addr
Specifies the address of a fullword where you can place a value that the system will return to the
resumed SRB routine. Code RSCODE only if you also code PURGE=NO or take the default. If you omit
RSCODE, the system returns a resume code of zero to the resumed SRB routine.

,RELATED=value
Provides information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and content of the information provided is at the
discretion of the user and may be any valid coding values.

ABEND codes
17

See z/OS MVS System Codes for an explanation and programmer responses for this code.

Return codes
When the RESUME macro returns control to your program, GPR 15 contains a hexadecimal return code.

Table 43. Return Codes for the RESUME Macro for SRBs

Return Code Meaning and Action

00 Meaning: The system has scheduled the suspended SRB to be resumed.

Action: None.

04 Meaning: The address space in which the suspended SRB would have executed has been scheduled for
termination. The system will purge the suspended SRB.

Action: None required. However, you might take some action based upon your application.

08 Meaning: The suspend token (SPTOKEN) does not identify a currently suspended SRB routine. The SRB
may have already been resumed or purged.

Action: None required. However, you might take some action based upon your application.

24 Meaning: System error. An error occurred while trying to resume the suspended SRB. The SRB cannot
be resumed.

Action: Retry the request.

Example
Resume the execution of a suspended SRB.

⋮
 RESUME SPTOKEN=TOKEN,PURGE=NO,RSCODE=RCODE

RESUME Macro for SRBs

Chapter 36. RESUME — Resume or purge a suspended SRB 267

⋮
 DS F
RCODE DC X'99999999'
TOKEN DS CL8
⋮

RESUME - Resume or purge an SRB (List form)
For programs that require reentrant code, use the list form of the RESUME macro together with the
execute form of the macro. The list form of the macro defines an area of storage that the execute form of
the macro uses to store parameter values.

Syntax
The list form of the RESUME macro is valid only for resuming an SRB. It is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede RESUME.

RESUME

␢ One or more blanks must follow RESUME.

MF=L

 ,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained under the standard form of the RESUME macro with the following
exception:

MF=L
Requests the list form of RESUME.

RESUME - Resume or purge an SRB (Execute form)
For programs that require reentrant code, use the execute form of the RESUME macro together with the
list form. The execute form of the macro stores the parameters into the storage area defined by the list
form.

Syntax
The execute form of the RESUME macro is valid only for resuming an SRB. It is written as follows:

RESUME Macro for SRBs

268 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede RESUME.

RESUME

␢ One or more blanks must follow RESUME.

SPTOKEN=sptoken addr sptoken addr: RX-type address.

,MF=(E,cntl addr) cntl addr: RX-type address or register (2) - (12)

 ,RSCODE=rscode addr rscode addr: RX-type address.

 ,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained under the standard form of the RESUME macro with the following
exceptions:

,MF=(E,cntl addr)
Requests the execute form of RESUME. cntl addr must be the address of the parameter list provided
by the list form of the macro.

RESUME Macro for SRBs

Chapter 36. RESUME — Resume or purge a suspended SRB 269

RESUME Macro for SRBs

270 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 37. RISGNL — Issue remote immediate
signal

Description
The RISGNL macro uses the emergency signal (EMS) order code of the signal processor (SIGP) instruction
to invoke the execution of a specified software program on a specific processor in a multiprocessing
configuration. The program may be requested to execute in parallel or serially with the function
requesting the program. The specified software program (receiving routine) gets control disabled, in key
0, and supervisor state. The receiving routine cannot enable for I/O or external interrupts, request locks,
or issue SVCs. In addition, the receiving routine must return via the address in register 14.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state and PSW key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN

AMODE: 24- or 31-bit

ASC mode: Primary or secondary

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: No locks required

Control parameters: None

Programming requirements
• The receiving routine must be loaded into page-fixed, common storage.
• The caller must include the CVT mapping macro.

Restrictions
If the receiving routine establishes an FRR, the FRR should not depend on the storage areas passed to it
by the signalling routine. When alternate CPU recovery (ACR) is active, the signalling routine might receive
control from RISGNL before the receiving routine's FRR gets control. IBM recommends that the receiving
routine's FRR access only storage areas owned independently of the signalling routine. If the receiving
routine's FRR attempts to access storage and the signalling routine has already freed the storage, the FRR
might abnormally end.

Input register information
Before issuing the RISGNL macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
After the caller issues the macro, the system might use some registers as work registers or might change
the contents of some registers. When the system returns control to the caller, the contents of these

RISGNL macro

© Copyright IBM Corp. 1988, 2020 271

registers are not the same as they were before the macro was issued. Therefore, if the caller depends on
these registers containing the same value before and after issuing the macro, the caller must save these
registers before issuing the macro and restore them after the system returns control.

When control returns to the caller, the GPRs contain:
Register

Contents
0-1

Used as work registers by the system
2-10

Unchanged
11-12

Used as work registers by the system
13

Unchanged
14

Address of calling program
15

Return code

Performance implications
None.

Syntax
The RISGNL macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede RISGNL.

RISGNL

␢ One or more blanks must follow RISGNL.

PARALLEL

SERIAL

,CPU=PCCA addr PCCA addr: RX-type address, or register (1).

,EP=entry name addr entry name addr: RX-type address, or register (12).

 ,PARM=parm addr parm addr: RX-type address, or register (11).

RISGNL macro

272 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

Parameters
The parameters are explained as follows:

PARALLEL
SERIAL

Specifies that control is to be returned to the caller when the specified receiving routine has been
given control (PARALLEL) or has completed execution (SERIAL) on the designated processor.

,CPU=PCCA addr
Specifies the address of the physical configuration communication area (PCCA) of the processor on
which the function is to be performed.

,EP=entry name addr
Specifies the address of the receiving routine to be executed on the specified processor. The receiving
routine will get control in the same addressing mode as the macro issuer.

,PARM=parm addr
Specifies the address of a user-defined fullword parameter to be passed to the receiving routine.
When the receiving routine receives control, general purpose register one points to a fullword
parameter.

ABEND codes
07B

See z/OS MVS System Codes for an explanation and programmer responses for this code.

Return codes
When the RISGNL macro returns control to your program, GPR 15 contains a hexadecimal return code.

Table 44. Return Codes for the RISGNL Macro

Return Code Meaning and Action

00 Meaning: Specified receiving routine has been given control or has completed execution, as requested.

Action: None.

04 Meaning: Environmental error. Function not initiated because addressed processor not online. If it
appeared to be online, it is no longer in the configuration.

Action: None required. However, you might take some action based upon your application.

14 Meaning: Environmental error. Function not initiated because addressed processor was taken offline
during RISGNL processing.

Action: None required. However, you might take some action based upon your application.

Example 1
The routine whose address is in register 12 is to be given control on the processor whose PCCA address is
in register 1. Return control to the caller when the specified receiving routine has been given control.

RISGNL PARALLEL,CPU=(1),EP=(12)

Example 2
The routine whose address is in register 12 is to be given control on the processor whose PCCA address is
in register 1. The routine will complete before the caller of RISGNL receives control again. Register 11
contains the address of a parameter to be passed to the receiving routine.

RISGNL macro

Chapter 37. RISGNL — Issue remote immediate signal 273

RISGNL SERIAL,CPU=(1),EP=(12),PARM=(11)

RISGNL macro

274 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 38. SCHEDIRB — Schedule IRB

Description
Use the SCHEDIRB macro to initialize and schedule asynchronous exits.

Using the SCHEDIRB macro, you can:

• Schedule the asynchronous exit to run under any task in the current address space.
• Schedule the asynchronous exit to run prior to any RB under the current task in the current address

space.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state and PSW key 0

Dispatchable unit mode: Task or SRB. Task mode is required if the RBPTR keyword is
specified.

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled or disabled for I/O and external interrupts.

Locks: Local lock must be held for the address space where the
asynchronous exit will get control.

Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the SCHEDIRB macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged

SCHEDIRB macro

© Copyright IBM Corp. 1988, 2020 275

14
Used as a work register by the system

15
Return code

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
The standard form of the SCHEDIRB macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SCHEDIRB.

SCHEDIRB

␣ One or more blanks must follow SCHEDIRB.

EPPTR=ep addr ep addr: RX-type address or address in register (2) - (12).

,TCBPTR=tcb addr tcb addr: RX-type address or address in register (2) - (12).

,RBPTR=rb addr rb addr: RX-type address or address in register (2) - (12).

,IQEPTR=iqe addr iqe addr: RX-type address or address in register (2) - (12).

RETCODE is the only parameter you can specify with IQEPTR.

 ,MODE=PROB Default: MODE=PROB

 ,MODE=SUPR

SCHEDIRB macro

276 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ,KEY=PROP Default: KEY=PROP

 ,KEY=SUPR

 ,SVAREA=NO Default: SVAREA=NO

 ,SVAREA=YES SVAREA=YES can only be specified with TCBPTR

 ,PARAMPTR=parm addr parm addr: RX-type address or address in register (2) - (12).

 ,RETCODE=ret code ret code: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

EPPTR=ep addr
Specifies a required input parameter containing the 31-bit entry point address of the asynchronous
exit routine. The exit routine will get control in 31-bit addressing mode.

,TCBPTR=tcb addr
,RBPTR=rb addr
,IQEPTR=iqe addr

TCBPTR specifies an input parameter containing the address of a TCB in the current address space.
The asynchronous exit will run under the TCB specified. Use TCBPTR when you want your
asynchronous exit to run under a particular task.

RBPTR specifies an input parameter containing the address of an RB under the current TCB in the
current address space. The asynchronous exit will run directly prior to the specified RB. Use RBPTR
when you want your asynchronous exit to run before a particular RB.

IQEPTR specifies an input parameter containing the address of an IQE initialized using the CIRB
macro. If you specify IQEPTR, SCHEDIRB will not obtain a new IQE/IRB pair for scheduling the
asynchronous exit.

This option is only valid if you use the CIRB macro to create and initialize an IRB for the asynchronous
exit. For more information on using the CIRB macro, see the z/OS MVS Programming: Authorized
Assembler Services Guide.

RETCODE is the only optional parameter you can specify with IQEPTR.

Note:

1. The caller must be in task mode to use the RBPTR parameter.
2. You cannot specify the current RB (the RB of the calling program), or an RB that is not on the

current task's RB chain on the RBPTR parameter.
3. For best results with the RBPTR parameter, make sure that the calling program is running under an

IRB. If the calling program is not running under an IRB, and the system has suppressed
asynchronous exits or is in process-must-complete mode, the calling program will get a nonzero
return code.

You can make sure that the calling program is running under an IRB by first invoking the
SCHEDIRB macro with the TCBPTR option, or by invoking the STIMER macro.

SCHEDIRB macro

Chapter 38. SCHEDIRB — Schedule IRB 277

,KEY=PROP
,KEY=SUPR

Specifies that the asynchronous exit routine run in the key propagated from the target TCB (PROP) or
in supervisor key zero (SUPR).

,MODE=PROB
,MODE=SUPR

Specifies whether the asynchronous exit routine is to operate in problem program (PROB) or
supervisor (SUPR) state.

,SVAREA=NO
,SVAREA=YES

Specifies whether to obtain a 72-byte register save area from the virtual storage assigned to the task
specified by the TCBPTR keyword. SVAREA=YES can only be specified with TCBPTR. Do not use the
SVAREA=YES parameter with the MODE=SUPR parameter or the KEY=SUPR parameter if the exit is to
be invoked from a user address space task. Note that the system does not require the exit routine to
save and restore registers. For exiting purposes, the asynchronous exit routine can return via the
address in input register 14 or by branching to CVTEXIT.

,PARAMPTR=parm addr
Specifies an input parameter containing the address of the parameter list to be passed to the
asynchronous exit routine.

,RETCODE=ret code
Specifies a storage location or register where the system is to store the return code. The return code
is also in GPR 15.

ABEND codes
The SCHEDIRB macro issues the X'AC7' abend code. See z/OS MVS System Codes for more information.

Return and reason codes
When the SCHEDIRB macro returns control to your program, GPR 15 and retcode, if you specified
RETCODE, contains a return code. The return codes are shown in the following table.

Table 45. Return Codes for the SCHEDIRB Macro

Return Code
Hexadecimal (Decimal)

Meaning and Action

00 Meaning: Successful completion.

Action: None.

08
(8)

Meaning: Program error. The caller invoked SCHEDIRB with the RBPTR parameter, but RBPTR is not
valid when the system has suppressed asynchronous exits unless the calling program is running under
an IRB.

Action: Ensure that the calling program is running under an IRB when you invoke SCHEDIRB by first
invoking the SCHEDIRB macro with the TCBPTR option or by invoking the STIMER macro.

0C
(12)

Meaning: Program error. The caller invoked SCHEDIRB with the RBPTR parameter, but RBPTR is not
valid when the current task is in process-must-complete mode unless the calling program is running
under an IRB.

Action: Ensure that the calling program is running under an IRB when you invoke SCHEDIRB by first
invoking the SCHEDIRB macro with the TCBPTR option or by invoking the STIMER macro.

10
(16)

Meaning: Program error. See Action.

Action: Make sure that your program does not specify one of the following on the RBPTR parameter:

• The current RB (the RB of the caller).
• An RB that is not on the current task's RB chain.

SCHEDIRB macro

278 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

SCHEDIRB - List form
Use the list form of the SCHEDIRB macro together with the execute form of the macro for applications
that require reentrant code. The list form of the macro defines an area of storage, which the execute form
of the macro uses to store the parameters.

Syntax
The list form of the SCHEDIRB macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede SCHEDIRB macro.

SCHEDIRB macro

␢ One or more blanks must follow SCHEDIRB macro.

MF=(L,list addr) list addr: Symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the SCHEDIRB macro with the following
exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the SCHEDIRB macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value that is valid on an
assembler DS pseudo-op. You can use this parameter to force boundary alignment of the parameter
list. If you do not code attr, the system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

SCHEDIRB - Execute form
Use the execute form of the SCHEDIRB macro together with the list form of the macro for applications
that require reentrant code. The execute form of the macro stores the parameters into the storage area
defined by the list form.

SCHEDIRB macro

Chapter 38. SCHEDIRB — Schedule IRB 279

Syntax
The execute form of the SCHEDIRB macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede SCHEDIRB macro.

SCHEDIRB macro

␢ One or more blanks must follow SCHEDIRB macro.

EPPTR=ep addr ep addr: RX-type address or address in register (2) - (12).

,TCBPTR=tcb addr tcb addr: RX-type address or address in register (2) - (12).

,RBPTR=rb addr rb addr: RX-type address or address in register (2) - (12).

,IQEPTR=iqe addr iqe addr: RX-type address or address in register (2) - (12).

RETCODE is the only parameter you can specify with IQEPTR.

 ,MODE=PROB Default: MODE=PROB

 ,MODE=SUPR

 ,KEY=PROP Default: KEY=PROP

 ,KEY=SUPR

 ,SVAREA=NO Default: SVAREA=NO

 ,SVAREA=YES SVAREA=YES can only be specified with TCBPTR

 ,PARAMPTR=parm addr parm addr: RX-type address or address in register (2) - (12).

 ,RETCODE=ret code ret code: RX-type address or address in register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

SCHEDIRB macro

280 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Parameters
The parameters are explained under the standard form of the SCHEDIRB macro with the following
exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the SCHEDIRB macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for required parameters and
supply optional parameters that you did not specify.

SCHEDIRB macro

Chapter 38. SCHEDIRB — Schedule IRB 281

SCHEDIRB macro

282 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 39. SCHEDULE — Schedule a service request
block (SRB)

IBM recommends that you use the IEAMSCHD macro rather than SCHEDULE.

Description
Use the SCHEDULE macro to schedule a service request block (SRB) for asynchronous execution. The SRB
may be scheduled for execution in any address space and may be scheduled at either global or local
priorities.

A global SRB has a priority that is greater than, and independent of, any address space priority. A local
SRB has a priority within the specific address space in which it executes, but still has a priority greater
than that of any task within the address space.

On the SRB parameter, you specify the address of the SRB. See the section on scheduling SRBs in z/OS
MVS Programming: Authorized Assembler Services Guide for information about obtaining storage for the
SRB and initializing the fields in the SRB.

Environment
The requirements for the caller when MODE=FULLXM is specified on the SCHEDULE macro are:

Environmental factor Requirement

Minimum authorization: Supervisor state and PSW key zero

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: Any locks may be held

Storage requirements: The SRB to be scheduled must be in fixed, commonly addressable
storage, with any storage key (0-7).

The requirements for the caller when MODE=NONXM is specified on the SCHEDULE macro are:

Environmental factor Requirement

Minimum authorization: Supervisor state and PSW key zero

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: Any locks may be held

Storage Requirements: The SRB to be scheduled must be in fixed, key 0, common storage.

SCHEDULE macro

© Copyright IBM Corp. 1988, 2020 283

Programming requirements
The scheduling program must obtain 44 bytes of storage for the SRB and initialize certain fields, as
described in the section on scheduling SRBs in z/OS MVS Programming: Authorized Assembler Services
Guide.

The scheduling program that builds the SRB must include the IHASRB mapping macro, the CVT mapping
macro with DSECT=YES specified, and the IHAPSA mapping macro.

Restrictions
Address space resource managers cannot use the STOKEN parameter.

Input register information
Before issuing the SCHEDULE macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
The SCHEDULE macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

SCHEDULE macro

284 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

␢ One or more blanks must precede SCHEDULE.

SCHEDULE

␢ One or more blanks must follow SCHEDULE.

SRB=SRB addr SRB addr: RX-type address, or register (1) or (2) - (12).

 ,SCOPE=LOCAL Default: SCOPE=LOCAL

 ,SCOPE=GLOBAL

 ,LLOCK=NO Default: LLOCK=NO

 ,LLOCK=YES

 ,MODE=NONXM Default: MODE=NONXM

 ,MODE=FULLXM Do not specify DISABLED or STOKEN when specifying MODE=FULLXM.

 ,FRR=NO Default: FRR=NO

 ,FRR=YES

 ,DISABLED

 ,STOKEN=stoken addr stoken addr: RX-type address

 ,FEATURE=CRYPTO

Parameters
The parameters are explained as follows:

SRB=SRB addr
Specifies the address of the service request block (SRB).

,SCOPE=LOCAL
,SCOPE=GLOBAL

Specifies whether the service is to be scheduled at a local or global priority.
,LLOCK=NO
,LLOCK=YES

Specifies whether the SRB is to receive control with the LOCAL lock held.

SCHEDULE macro

Chapter 39. SCHEDULE — Schedule a service request block (SRB) 285

Note: CML (cross memory local) lock means the local lock of an address space other than the home
address space. LOCAL lock means the local lock of the home address space. When written in lower
case, local lock means any local-level lock, either the LOCAL or a CML lock.

,MODE=NONXM
,MODE=FULLXM

Specifies whether or not the SRB routine receives a copy of the scheduling program's dispatchable
unit access list (DU-AL), and it receives control in the scheduling program's current cross memory
environment.

When you specify NONXM, the SRB routine receives control in noncross memory mode, and it
receives an empty DU-AL. The SRB's primary, secondary, and home address spaces are all equal to
the contents of SRBASCB.

When you specify FULLXM:

• The SRB routine will be able to access a copy of the scheduling program's DU-AL, with the exception
of any subspace entries in the scheduling program's DU-AL. The system does not copy subspace
entries. If the scheduling program establishes addressability to any new data spaces after the SRB
is scheduled, the SRB routine will not have access to the new data space. See the discussion on
access lists in z/OS MVS Programming: Extended Addressability Guide for more details about how
the system copies a DU-AL.

• The SRB routine will receive control in the scheduling program's current cross memory
environment.

• Addressing is the following:

– Primary is the scheduling program's primary
– Secondary is the scheduling program's secondary
– Home is the scheduling program's home

When you specify FULLXM, a DU-AL with more than 256 entries is not available to the scheduled SRB
routine until the SRB routine is dispatched. If an error occurs before the SRB routine is dispatched,
the DU-AL might not be available to the SRB routine's FRR.

When you specify FULLXM, you cannot:

• Specify STOKEN or DISABLED with this parameter.
• Use the contents of SRBASCB because it does not contain relevant information for this type of

SCHEDULE invocation.

,FRR=NO
,FRR=YES

Specifies whether the SRB is to receive control with recovery established. If FRR=YES is specified, the
user must place the address of the FRR in the field SRBFRRA of the SRB. Before the SRB receives
control, the system adds the FRR to the FRR stack. When you specify YES, the system passes a 24-
byte FRR parameter area address to the SRB routine in register 2. If the scheduling program specifies
MODE=FULLXM and FRR=YES, the recovery routine will be established with SETFRR MODE=FULLXM.
If the scheduling program specifies MODE=NONXM and FRR=YES, the recovery routine will be
established with SETFRR MODE=HOME.

,DISABLED
Specifies that the calling program is running disabled. DISABLED should be specified only when the
calling program is disabled for I/O or external interrupts.

,STOKEN=stoken addr
Specifies the address of the 8-byte STOKEN of the address space in which the SRB routine is to run.
SCHEDULE verifies that SRBASCB represents the same address space that the STOKEN identifies and
that the address space is still active. If the address space is different or the address space is not
active, the system abends the caller. This action prevents a scheduled SRB from running in an address
space other than the one intended.

SCHEDULE macro

286 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

,FEATURE=CRYPTO
Specifies that the SRB routine must run on a processor that has an Integrated Cryptographic Feature
(ICRF) associated with it. When you specify this parameter, the system assigns the correct processor
affinity for the routine and overrides any affinity assigned for the routine in the SRBCPAFF field of the
SRB. Use this parameter only for routines whose exclusive purpose is to encrypt or decrypt data.

ABEND codes
If STOKEN is specified, the caller might encounter a X'075' abend. If STOKEN is not specified, the caller
might encounter a X'08C' abend. See z/OS MVS System Codes for an explanation and programmer
responses for these codes.

Return and reason codes
There are no return codes from the SCHEDULE macro. If the SCHEDULE fails, an abnormal termination
may occur.

Example 1
Schedule an SRB at a global priority.

SCHEDULE SRB=(1),SCOPE=GLOBAL

Example 2
Schedule an SRB at a local priority.

SCHEDULE SRB=(1),SCOPE=LOCAL

Example 3
Schedule an SRB at a global priority specifying that the SRB is to receive control with the LOCAL lock held
and recovery established. The issuer of the SCHEDULE macro is disabled.

SCHEDULE SRB=(1),SCOPE=GLOBAL,LLOCK=YES,FRR=YES,DISABLED

Example 4
Schedule an SRB at a local priority specifying that the SRB is to receive control with the LOCAL lock held
and recovery established. The SRBASCB field of the SRB points to the home address space ASCB. The
STOKEN parameter also identifies the home address space.

 MVC SRBASCB,PSAAOLD
 ALESERV EXTRACTH,STOKEN=MYSTOKEN
 SCHEDULE SRB=(1),LLOCK=YES,FRR=YES,STOKEN=MYSTOKEN
 .
 .
MYSTOKEN DS 2F

Example 5
Schedule an SRB at a local priority specifying that the SRB is to receive control with the scheduling
program's cross memory environment, a copy of the caller's DU-AL, and recovery established. The SRB
will have addressability to the data space represented by DSSTOKEN.

 ALESERV ADD,STOKEN=DSSTOKEN,ALET=DSALET
 SCHEDULE SRB=(1),MODE=FULLXM,FRR=YES
 .
 .
DSSTOKEN DS 2F
DSALET DS 1F

SCHEDULE macro

Chapter 39. SCHEDULE — Schedule a service request block (SRB) 287

Example 6
Schedule an SRB at a local priority specifying that the SRB routine is to run on a processor with an ICRF
associated with it.

SCHEDULE SRB=(1),SCOPE=LOCAL,FEATURE=CRYPTO

SCHEDULE macro

288 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 40. SCHEDXIT — Schedule an exit routine for
execution

Description
Note: IBM recommends that you use the SCHEDIRB macro rather than SCHEDXIT to request
asynchronous exits.

The SCHEDXIT macro schedules an asynchronous exit routine for execution under a specific task.

Before using this macro, read the description of using asynchronous exits in the z/OS MVS Programming:
Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state with PSW key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN or PASN¬=HASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Local lock held

Control parameters: None

Programming requirements
If the IQE resides below 16 megabytes, the IQE address that is passed must be a 31-bit address with the
high-order byte of the address set to zero.

The caller must have addressability to the address space on which the exit routine is to be dispatched.

Restrictions
None.

Input register information
Before issuing the SCHEDXIT macro, the caller does not have to place any information into any register
unless using it in register notation for a particular parameter or using it as a base register.

Output register information
After the caller issues the macro, the system might use some registers as work registers or might change
the contents of some registers. When the system returns control to the caller, the contents of these
registers are not the same as they were before the caller issued the macro. Therefore, if the caller
depends on these registers containing the same value before and after issuing the macro, the caller must
save these registers before issuing the macro and restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

SCHEDXIT macro

© Copyright IBM Corp. 1988, 2020 289

Register
Contents

0
Used as a work register by the system

1
IQE address

2-13
Unchanged

14-15
Used as work registers by the system

Performance implications
None.

Syntax
The standard form of the SCHEDXIT macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede SCHEDXIT.

SCHEDXIT

␢ One or more blanks must follow SCHEDXIT.

IQE=iqe-address iqe-address: RX-type address or register (2) - (12).

Parameters
The parameter is explained as follows:

IQE=iqe-address
Specifies the address of the interrupt queue element (IQE) that defines the task under which the exit
routine will execute.

ABEND codes
00A

See z/OS MVS System Codes for an explanation and programmer responses for this code.

Return and reason codes
None.

SCHEDXIT macro

290 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 41. SDUMP — Dump virtual storage

Description
Note: IBM recommends that you use the SDUMPX macro, rather than the SDUMP macro, for all newly
written code. Since MVS/ESA, new features and enhancements are added only to the SDUMPX
parameters. However, code that invokes the SDUMP macro may benefit from enhancements made to SVC
dump processing. For instance, some 64-bit storage is dumped because of an SDUMP macro invocation,
even though none of its parameters allow 64-bit address specification. See the SDUMPX macro for
information about SVC dump interfaces and behavior.

The SDUMP macro invokes SVC dump to provide a fast unformatted dump of virtual storage to a data set.
It is intended for use by authorized routines that encounter errors. If your program is in primary ASC
mode, you can use either SDUMP or SDUMPX. If your program runs in access register (AR) mode, use
SDUMPX instead of SDUMP. SDUMPX provides all of the functions of SDUMP, as well as some that SDUMP
does not offer, but generates code and addresses that are appropriate for AR mode.

You cannot use the SDUMP macro to dump data space storage. To dump data space storage, issue
SDUMPX.

There are two phases in SVC dump processing:

• The capture phase, in which all the data for the dump is captured.
• The writing phase, in which the data is written to the dump data set.

The caller can initiate an SVC dump in an address space other than the primary. A branch entry is
available for callers who wish a dump of their own or another address space, but cannot issue an SVC.

When you request a dump of virtual storage, the combination of parameters you code determines
whether MVS produces either a scheduled (asynchronous) or a synchronous SVC dump. You might make
different design decisions for your program based on the type of dump that MVS produces. Read the
information about dumping virtual storage in z/OS MVS Programming: Authorized Assembler Services
Guide for the parameter combinations that produce each type of dump, and for guidance about designing
your program to handle each type.

Except for the data control block (DCB) parameter, all input parameters to this macro can reside in
storage above 16 megabytes if the caller is executing in 31-bit addressing mode.

You can produce reentrant code using the standard form of SDUMP if you do not specify parameters other
than the following:

• SDATA
• TYPE
• HDR
• ID
• BRANCH
• SUSPEND
• QUIESCE
• BUFFER
• PLISTVER

Programs in page-protected storage (such as the nucleus, PLPA, and MLPA) can issue the standard form
of the SDUMP macro without causing a protection exception. However, IBM recommends using the list
and execute forms of SDUMP for programs in page-protected storage.

SDUMP macro

© Copyright IBM Corp. 1988, 2020 291

Environment
The requirements for the caller with BRANCH=NO are:

Environmental factor Requirement

Minimum authorization: Any one or more of the following:

• Supervisor state
• PSW keys 0 - 7
• APF-authorized

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters and all areas the parameter list points to (except
the DCB, ECB, and SRB) must be addressable from the current
address space. The DCB must be addressable in the home address
space. The ECB and SRB must be addressable from each address
space included in the dump. The SRB must be addressable from the
address space in which it will run.

The requirements for the caller with BRANCH=YES are:

• Be in SRB mode
• Hold any lock
• Have an enabled-unlocked-task FRR on the FRR stack

Assuming that one of the above conditions has been satisfied, other requirements for callers with
BRANCH=YES are:

Environmental factor Requirement

Minimum authorization: All of the following:

• Supervisor state
• PSW key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: No requirement

SDUMP macro

292 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Environmental factor Requirement

Control parameters: Control parameters and all areas the parameter list points to (except
the DCB, ECB, and SRB) must be addressable from the current
address space. The DCB must be addressable in the home address
space. The ECB and SRB must be addressable from each address
space included in the dump. The SRB must be addressable from the
address space in which it will run.

Programming requirements
To generate reentrant code, code the list and execute forms of the SDUMP macro. Because the execute
form of the macro is dependent on the length determined by the list form, the list form must appear
before the execute form in a reentrant program.

Callers can determine the length of the parameter list by using the following programming technique to
calculate the amount of storage needed for only those options specified for the SDUMP macro:

SDUMPBEG SDUMP SDATA=(SUM),SUMLIST=SLIST,MF=L
SDUMPEND EQU *
SDUMPLEN DC A(SDUMPEND-SDUMPBEG)

Callers that issue SDUMP with BRANCH=YES must include the CVT mapping macro.

Restrictions
For SVC entry, the caller cannot have an EUT FRR established.

Input register information
Upon invocation, general purpose register (GPR) 13 must contain the address of a 72-byte savearea if
BRANCH=YES is specified.

Output register information
After the caller issues the macro, the system might use some registers as work registers or might change
the contents of some registers. When the system returns control to the caller, the contents of these
registers are not the same as they were before the macro was issued. Therefore, if the caller depends on
these registers containing the same value before and after issuing the macro, the caller must save these
registers before issuing the macro and restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14

Used as a work register by the system
15

Return code in bits 24-31. If the return code is X'08', and you specified the FAILRC parameter, GPR
15 also contains a reason code in bits 16-23.

When control returns to the caller, the access registers (ARs) contain:
Register

Contents
0-1

Used as work registers by the system

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 293

2-13
Unchanged

14-15
Used as work registers by the system

Performance implications
None.

Syntax
The standard form of the SDUMP macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SDUMP.

SDUMP

␣ One or more blanks must follow SDUMP.

 HDR=‘dump title’ dump title: From 1 to 100 characters.

 HDRAD=dump title addr dump title addr: A-type address, or register (2) - (12).

 ,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

 ,ASID=ASID addr ASID addr: A-type address, or register (2) - (12).

 ,ASIDLST=list addr list addr: RX-type address, or register (2) - (12).

 ,TYPE=(type code) type code: Any of the following, separated by commas:

XMEM, XMEME, NOLOCAL, FAILRC

Note: XMEM and XMEME are mutually exclusive codes.

 ,PLISTVER=1 decimal digit 1: Use up to a 68-byte parameter list.

 ,PLISTVER=2 decimal digit 2: Use 128-byte parameter list.

 Default: PLISTVER=1, unless you specify SYMREC, ID, IDAD, PSWREGS,
SDATA=DEFS, SDATA=NODEFS, or SDATA=IO, in which case the default
is PLISTVER=2.

 ,SYMREC=symrec addr symrec addr: RX-type address, or register (2) - (12).

SDUMP macro

294 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ,ID=‘identifier’ identifier: From 1 to 50 characters.

 ,IDAD=identifier addr. identifier addr: RX-type address, or register (2) - (12).

 ,PSWREGS=parm list addr parm list addr: RX-type address, or register (2) - (12).

 ,ECB=(ecb addr) ecb addr: A-type address, or register (2) - (12).

 ,SRB=(srb addr) srb addr: A-type address, or register (2) - (12).

 Note:

1. SVC dump posts the ECB at the completion of the capture phase
unless the DCB parameter is specified with the ECB parameter. If you
specify both the DCB and ECB parameters, the ECB is posted at the
completion of the writing phase.

2. SVC dump schedules the SRB at the completion of the capture phase
unless the DCB parameter is specified with the SRB parameter. If you
specify both the DCB and SRB parameters, the SRB is scheduled at
the completion of the writing phase.

 ,SDATA=(sdata options) sdata options: Any combination of the following, separated by commas:

ALLNUC, ALLPSA, CSA, GRSQ, LPA, LSQA,

NOALLPSA/NOALL, NOSQA, NOSUMDUMP/NOSUM,

NUC, PSA, RGN, SQA, SUMDUMP/SUM, SWA, TRT

DEFAULTS/DEFS, NODEFAULTS/NODEFS, IO

Note:

1. Executing SDUMP causes ALLPSA, SQA, IO, and SUMDUMP storage
areas to be dumped unless excluded by NOALLPSA, NOSQA,
NODEFAULTS, or NOSUMDUMP.

2. The PSA and IO options are not required unless NODEFAULTS is
specified, because they are dumped as a default in all SVC dumps.

3. DEFAULTS is not required. All SVC dumps include the default SDATA
options unless NODEFAULTS has been specified.

 ,STORAGE=(strt addr,end strt addr: A-type address, or register (2) - (12).

 addr) end addr: A-type address, or register (2) - (12).

 ,LIST=list addr list addr: A-type address, or register (2) - (12).

 ,LISTA=list addr Note: Specify one or more pairs of addresses, separated by commas.

 ,SUBPLST=subpool id list subpool id list addr: RX-type address, or register (2) - (12).

 addr

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 295

Syntax Description

 ,KEYLIST=storage key list storage key list addr: RX-type address, or register (2) - (12).

 addr Note: KEYLIST cannot be specified without SUBPLST.

 ,BUFFER=NO Default: BUFFER=NO

 ,BUFFER=YES

 ,QUIESCE=YES Default: QUIESCE=YES

 ,QUIESCE=NO

 ,BRANCH=NO Default: BRANCH=NO

 ,BRANCH=YES Note: If BRANCH=YES is specified, ASID or ASIDLST must also be
specified.

 ,SUSPEND=NO Default: SUSPEND=NO

 ,SUSPEND=YES

 ,SUMLIST=list addr list addr: RX-type address, or register (2) - (12).

 ,SUMLSTA=list addr

Parameters
The parameters are explained as follows:

,ASID=ASID addr
,ASIDLST=list addr

Specifies the address of a halfword or a list of halfwords containing the hexadecimal address space
identifier of an address space to be dumped. If register notation is used, the low-order halfword of the
register contains the address space identifier of the address space to be dumped. If both parameters
are omitted, the primary address space is dumped. If 0 is specified for the address space identifier, a
dump is scheduled for the home address space of the issuer of the SDUMP macro. No private area
storage is included in the dump for the specified address space if either of the following events
occurred:

• No SDATA parameters were specified that apply to the private area of the requested address space.
• The CHNGDUMP operator command was used to set an overriding parameter in the system dump

options list that limits SVC dumps to areas outside of the private area.

The ASID list can contain a maximum of 15 address space identifiers. The high-order bit of the
halfword containing the last identifier of the list must be set to 1, and all other high-order bits must be
set to 0.

,BRANCH=NO
,BRANCH=YES

Specifies that a branch entry is to be used for interfacing with SVC dump to schedule a dump (YES), or
that an SVC instruction is to be generated for interfacing with SVC dump (NO).

SDUMP macro

296 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

For BRANCH=YES, MVS produces a scheduled (asynchronous) SVC dump. For BRANCH=NO, the
parameters you code to identify storage determine whether MVS produces a scheduled or
synchronous SVC dump. MVS produces a scheduled dump when you code BRANCH=NO with one or
more of the following:

• ASIDLIST
• ASID=asid addr
• TYPE=XMEM or TYPE=XMEME
• LISTA
• LISTD=list addr, when the STOKEN represents either an address space other than the primary

address space, or a SCOPE=SINGLE data space owned by a program that is not running in the
primary address space.

• SUBPLST=subpool id list addr, when the list of address spaces with associated subpool IDs contains
at least one address space other than the primary address space.

You might make different design decisions for your program based on the type of dump MVS
produces. See z/OS MVS Programming: Authorized Assembler Services Guide for guidance about
designing your program to handle each type of dump. If BRANCH=YES is specified and the caller has
not specified at least one of the following keywords: ASID, ASIDLST, TYPE=XMEM, TYPE=XMEME, or
LISTA, the dump is scheduled to the home address space. Routines that issue SDUMP with
BRANCH=YES must provide a 72-byte save area pointed to by register 13, and must include the CVT
mapping macro.

For BRANCH=YES entry by reentrant recovery routines, SDUMP processing moves the data supplied
by the following parameters to a system area:

• HDR
• HDRAD
• ID
• IDAD
• ASIDLIST
• STORAGE
• LIST
• LISTA
• SUBPLST
• KEYLIST

This enables the recovery routine to free its storage on return from SDUMP although the dump has not
completed.

,BUFFER=NO
,BUFFER=YES

Specifies that the contents of the SQA buffer is (YES) or is not (NO) to be included in the dump. This is
an archaic interface so consider obtaining a summary dump instead. Details about summary dump
invocations are associated with the SUMDUMP parameter of the SDUMPX macro description. (The
SQA buffer does not include the SDUMP parameter list or any data pointed to by the parameter list.)
Callers who specify BUFFER=YES on the SDUMP macro will obtain a dump of a 4KB buffer reserved in
the SQA for the callers of SVC dump. You can reserve the buffer by setting the high-order bit of the
CVTSDBF field in the communications vector table (CVT). Once you have reserved the buffer, you can
fill it with data before issuing SDUMP. Programs that are involved with data that might change before
SDUMP can dump it should instead use the SUMDUMP parameter to request a summary dump. Some
of the problems associated with using the BUFFER=YES parameter are addressed using the
SUMDUMP interface.

The CVTSDBF field of the CVT points to the buffer. Before using the buffer, use compare and swap
logic to serialize on the high-order bit of CVTSDBF. If the bit was on (B'1'), the buffer is in use, and

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 297

you should continue processing as though a dump could not be taken. If the bit was off (B'0'), the bit
is set to B'1' by the compare and swap instruction. You must also set the ASCBSDBF bit of the home
address space ASCB immediately after setting the CVTSDBF high-order bit to B'1', also by the
compare and swap instruction. You can then fill the buffer and issue SDUMP. If the compare and swap
instruction sets the CVTSDBF bit, SDUMP resets both CVTSDBF and ASCBSDBF for you. If you do not
take the SDUMP, you must reset both bits (resetting ASCBSDBF first, by the compare and swap
instruction). SDUMP resets the CVTSDBF bit if your home address space terminates.

,DCB=dcb addr
Specifies the address of a previously opened data control block (DCB) for the data set that is to
contain the dump. If this parameter is omitted, one of the SYS1.DUMP data sets is used. When you
specify the DCB parameter, the dump contains data from only the requestor's home address space.
The DCB must be addressable from the home address space. The control blocks built by OPEN must
also be addressable from the home address space. The DCB must support EXCP. You must specify the
following parameters on the DCB macro: RECFM=FB, LRECL=4160, and BLKSIZE=4160.

The DCB must reference device types supported by SVC dump. Eligible device types are unlabeled 9-
track 2400-series tape devices (or tape devices compatible with the 2400-series) and any direct
access devices supported by the system that have a track size of at least 4160 bytes. (4160 bytes
equals 1 SVC dump output record.) SVC dump does not support secondary extents on DCB data sets.

SVC dump does not close the dump data set. Use the CLOSE macro to close the data set and cause an
end-of-file mark or a tape mark to be placed after the dump data. SVC dump sets up the DCB so that
CLOSE works correctly and positions the end-of-file mark or tape mark at the correct place on the
data set. For tape data sets, you can write a tape mark to separate multiple dumps without using the
CLOSE macro.

Because it is the caller's responsibility to close the dump data set and the data set may be closed only
after all the data has been written to it, the caller needs to receive notification when the dump writing
phase is complete. Therefore, if you specify the DCB parameter with the ECB parameter, the system
posts the ECB at the completion of the dump writing phase. The ECB parameter is required when a
DCB is provided for scheduled dumps. If an ECB is not provided with the DCB for a synchronous
dump, SVC dump returns to the caller at the completion of the dump writing phase. See z/OS MVS
Programming: Authorized Assembler Services Guide for descriptions of scheduled and synchronous
dumps.

,ECB=(ecb addr)
,SRB=(srb addr)

Specifies how the system should synchronize your program with dump processing. Note that these
interfaces will not be driven if the call to SDUMP results in a non-zero return code.

ECB specifies that the system should post the event control block (ECB) indicated by ecb addr. The
system normally posts the ECB at the completion of the capture phase. However, if you specify the
DCB parameter with the ECB parameter, the system posts the ECB at the completion of the dump
writing phase. If the capture phase is not successful, the system posts the ECB at the completion of
SVC dump processing.

If an A-type address is specified, ecb addr specifies the address of a fullword containing the address
of the ECB. If a register operand is used, the register must contain the actual address of the ECB. If
this parameter is omitted, the caller is not notified of the completion of the capture phase. The
fullword and the ECB must be addressable from the home address space. The fullword address that
points to the ECB must be a 24-bit or 31-bit address.

The storage for the supplied ECB must always be available for SVC dump processing to post. The only
recovery scenario where the ECB storage may be freed before SVC dump processing can post it is for
address space termination. To ensure that the storage can tolerate task termination, the ECB should,
in general, be in ELSQA/LSQA or common storage. Once the ECB has been posted, the storage may be
explicitly freed.

SRB specifies that the system should schedule the service request block (SRB) indicated by srb addr.
The system normally schedules the SRB at the completion of the capture phase. However, if you
specify the DCB parameter with the SRB parameter, the system schedules the SRB at the completion

SDUMP macro

298 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

of the dump writing phase. If the capture phase is not successful, the system schedules the SRB at
the completion of SVC dump processing.

When the caller builds the SRB, the caller may pass the address of a status area in the SRBPARM field.
This status area, SDSTATUS, is mapped by IHASDST. SVC dump passes information about the dump
to the SRB routine by means of this status area. If SVC dump schedules the SRB at the completion of
the capture phase, the name of the dump data set is not passed to the caller.

Note: If you want SVC dump to pass the name of the dump data set to the caller, use the SDUMPX
macro and specify SRB=(srb addr,WRITE).

HDR=’dump title’
HDRAD=dump title addr

Specifies the title or address of the title to be used for the dump. If HDR is specified, the title must be
1-100 characters enclosed in apostrophes, although the apostrophes do not appear in the actual title.
If HDRAD is specified, the first byte at the indicated address specifies the length of the title in bytes.

If the length of the title is greater than 100, SVC dump issues an abend with a completion code of
X'233', reason code X'14', then returns to the caller with a return code of 8. If the length of the title
is zero, SVC dump continues processing as if the HDR or HDRAD parameter was not specified.

If these keywords are specified with BRANCH=YES or ASID/ASIDLST (that is, to cause a scheduled
dump), the system moves the title to SVC dump storage before it returns control to the caller. There is
no requirement to synchronize with the completion of the dump.

,ID=’identifier’
,IDAD=identifier addr

Specifies an identifier that is included in the dump message IEA911E or IEA611I, which is issued at
the completion of the dump. The identifier must be from one to 50 printable characters. If ID is
specified, the identifier must be enclosed in apostrophes, although the apostrophes do not appear in
the actual identifier. If IDAD is specified, the first byte at the indicated address specifies the length of
the identifier in bytes. If the length of the identifier is greater than 50, SVC dump issues an abend with
a completion code of X'233', reason code X'8C', then returns to the caller with a return code of 8. If
the length of the identifier is zero, SVC dump continues processing as if the ID or IDAD parameter was
not specified.

,KEYLIST=storage key list addr
Specifies the address of a list of storage keys associated with the virtual storage to be dumped. If the
key of a subpool specified in SUBPLST does not match a key in this list, the data in the subpool is not
dumped. SUBPLST must be specified if the KEYLIST option is used. If you do not specify KEYLIST, all
storage (regardless of key) associated with the requested subpools is included in the dump.
Therefore, if you want to dump the storage corresponding to all 16 keys, do not specify this
parameter.

The list contains one-byte entries and starts on a halfword boundary. The first byte indicates the
length of the list (including this byte). The list has a maximum length of 16 bytes so that up to 15 keys
can be specified. Specify each key in the left-most four bits of each byte, except the length byte.

,PLISTVER=1
,PLISTVER=2

Specifies the length of the parameter list used. When PLISTVER=1 is specified, SDUMP uses a
parameter list of up to 68 bytes. PLISTVER=2 specifies a 128-byte parameter list. The default is
PLISTVER=1, unless you specify SYMREC, ID, IDAD, PSWREGS, SDATA=DEFAULTS,
SDATA=NODEFAULTS, or SDATA=IO, in which case the default is PLISTVER=2.

,PSWREGS=list addr
Specifies a PSW or register area to be passed to SVC dump. This area may contain a PSW, control
registers 3 and 4, all the general purpose registers (GPRs), and all the access registers (ARs). When
PSWREGS is specified, SVC dump includes the following information in the summary dump portion of
the dump:

• The PSWREGS parameter list.

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 299

• If the PSW is provided, 4K of storage before and 4K after the PSW address from the primary address
space.

• 4K of storage before and 4K of storage after each of the GPRs from the primary and secondary
address spaces.

• If the ARs are provided, they qualify the addresses of the area that includes the 4K of storage before
and 4K of storage after each of the GPRs. GPRs will be used to locate storage; ARs (if provided along
with a PSW in AR mode) will be used to identify the source address space or data space.

Note: If the control registers are provided, they will be used to determine the primary and secondary
address spaces. If no control registers are provided, then the storage will be dumped from the caller's
primary and secondary address spaces.

The PSWREGS parameter allows programs running in a nonabend environment, where there is no
SDWA, to request SVC dump and dump suppression services similar to those available in an abend
environment, where an SDWA is present.

The parameter list for the PSWREGS parameter must reside in the address space currently
addressable by SVC dump. The caller must provide at least the length and the mask field. Each bit in
the mask refers to a data area.

• If a mask bit is set, SVC dump expects that the data area and the appropriate size in the length field
to be supplied.

• If a mask bit is off , but any lower-order mask bit is on, the corresponding storage area must still be
included in the parameter list, and the total length specified must match the entire area. For
instance, if only general purpose registers are specified. Set bit 3 on, store the register values
starting at X'14' into the parameter list, and set the total length to 84 (64+8+8+2+2). This total
length is the same whether or not the user wants to supply PSW or control registers 3 and 4
information.

The following describes the expected length of the entire parameter list relative to the highest bit set
in the mask:

• If bit 4 is set (indicating ARs are included), the length must be 148.
• If bit 3 is set (GPRs are included), the length must be 84.
• If bit 2 is set (CRs are included), the length must be 20.
• If bit 1 is set (PSW is included), the length must be 12.
• If none of the bits are to be set ('nothing' is indicated), the length must be 4.

The following table describes the parameter list:

Table 46. PSWREGS parameter list

Offset in Hex Length Field Description

00 2 The total length of the PSWREGS parameter list

02 2 Bit mask describing data areas included in the PSW/register
area

1... Bit 1: On - The PSW is included in the PSW/register area

.1.. Bit 2: On - Control registers 3 and 4 are included in the PSW/
register area

..1. Bit 3: On - General purpose registers are included in the
PSW/register area

...1 Bit 4: On - ARs are included in the PSW/register area.

Bits 5 - 16: Initialize these bits to zero.

04 8 PSW: Data only supplied if the PSW mask bit is set

SDUMP macro

300 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 46. PSWREGS parameter list (continued)

Offset in Hex Length Field Description

0C 8 Control registers 3 and 4: Data only supplied if mask bit is
set.

14 64 General purpose registers 0 - 15: Data only supplied if mask
bit is set.

54 64 ARs 0 - 15: Data only supplied if mask bit is set.

,QUIESCE=YES
,QUIESCE=NO

Specifies that the system is to be set nondispatchable until the contents of the SQA and the CSA are
dumped (YES), or that the system is to be left dispatchable (NO). If the SDATA parameter does not
specify SQA or CSA, the QUIESCE=YES request is ignored.

Notes:

1. Summary dumps (SUMDUMP) for branch entries (BRANCH=YES) always cause the system to be
set nondispatchable until the summary dump is written.

2. A Q=YES|NO setting for the CHNGDUMP command overrides this parameter. For the use of the
CHNGDUMP command, see z/OS MVS System Commands.

,SDATA=(sdata options)
Specifies the system is to dump the following:
Option

Data to be dumped
ALLNUC

The DAT-ON and DAT-OFF nuclei. The read-only (page-protected) area of the nucleus and the
DAT-OFF nucleus is not included in the dump unless this keyword is specified.

ALLPSA
All of the prefixed storage areas (PSAs) in the system.

CSA
Dumps the following storage:

• The CSA and ECSA subpools (subpools 227, 228, 231, and 241)

Only those obtained pages that have something stored into them are dumped. The dump does
not include pages of storage that are in a freshly-obtained state.

• Virtual storage for 64-bit addressable memory objects created using one of the following
services:

– IARV64 REQUEST=GETCOMMON,DUMP=LIKECSA
– IARCP64 COMMON=YES,DUMP=LIKECSA
– IARST64 COMMON=YES,TYPE=PAGEABLE

GRSQ
Global resource serialization control blocks.

LPA
The active link pack area modules and SVCs for each address space being dumped.

LSQA
Dumps the following storage:

• The LSQA and ELSQA for each address space being dumped (subpools 203-205, 213-215,
223-225, 233-235, and 253-255)

• Virtual storage for 64-bit addressable memory objects created using one of the following
services:

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 301

– IARV64 REQUEST=GETSTOR,DUMP=LIKELSQA
– IARCP64 COMMON=NO,DUMP=LIKELSQA
– IARST64 COMMON=NO

NOALLPSA
NOALL

The PSA for one processor is dumped. This is either the processor at the time of the error or the
processor at the time of the dump.

NOSQA
The system queue area is not dumped.

NOSUMDUMP
NOSUM

A summary dump is not included in the SVC dump.
NUC

The non-page-protected areas of the DAT-ON nucleus. (The ALLNUC parameter must be specified
to obtain the entire nucleus, including the page-protected areas of the DAT-ON nucleus and the
DAT-OFF nucleus.)

PSA
The PSA for one processor is dumped. This is either the processor at the time of the error or the
processor at the time of the dump.

RGN
Dumps the following storage:

• The allocated pages in the private area of each address space being dumped. This includes the
following areas:

Subpools Storage

0-127, 129-132, 229, 230, 240, 244, 249,
250-252

All storage allocated to these subpools

203-205, 213-215, 223-225, 233-235,
253-255

All storage allocated to the LSQA and ELSQA

236, 237 All storage allocated to the SWA and ESWA

Only those obtained pages that have something stored into them are dumped. The dump does
not include pages of storage that are in a freshly-obtained state. This reduces the number of
page faults that occur during SVC dump processing, decreases the time required to take a
dump, and reduces the size of the dump.

• Virtual storage for 64-bit user region memory objects created using one of the following
services:

– IARV64 REQUEST=GETSTOR,DUMP=LIKERGN
– IARV64 REQUEST=GETSTOR,SVCDUMPRGN=YES
– IARCP64 COMMON=NO,DUMP=LIKERGN
– IARST64 COMMON=NO

• Data-in-virtual (DIV) pages are dumped when they have been changed since the last DIV macro
(that specified the SAVE service) executed. DIV pages that have not been changed, are
considered to be in a freshly-obtained state.

SQA
Dumps the following storage:

• The SQA and ESQA subpools (226, 239, 245, 247, and 248)

Only those obtained pages that have something stored into them are dumped. The dump does
not include pages of storage that are in a freshly-obtained state.

SDUMP macro

302 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

• Virtual storage for 64-bit addressable memory objects created using one of the following
services:

– IARV64 REQUEST=GETCOMMON,DUMP=LIKESQA
– IARCP64 COMMON=YES,DUMP=LIKESQA
– IARST64 COMMON=YES,TYPE=FIXED
– IARST64 COMMON=YES,TYPE=DREF

SUMDUMP
SUM

A summary dump is to be included with the SVC dump output. The trace table is included in the
nonsummary portion of the dump if this option is specified or used as a default.

The type of summary dump depends on how you specify the BRANCH and SUSPEND parameters:

• If you specify BRANCH=YES and SUSPEND=NO, you get a disabled summary dump.
• If you specify BRANCH=YES and SUSPEND=YES, you get a suspend summary dump.
• If you specify BRANCH=NO, you get an enabled summary dump.

For a description of the dump contents, see z/OS MVS Diagnosis: Tools and Service Aids.

SWA
The scheduler work area subpools for each address space being dumped (subpools 236 and 237).
This includes all storage allocated above and below 16 megabytes.

TRT
The system trace table, the GTF trace records, and master trace data if these types of traces are
active.

DEFAULTS
DEFS

The following default SDATA options are included in the SVC dump:

• ALLPSA
• SQA
• SUMDUMP
• IO
• Any default SDATA options specified by the CHNGDUMP command when CHNGDUMP is in ADD

mode.

Note:

1. DEFAULTS is not required. All SVC dumps include the default SDATA options unless
NODEFAULTS is specified.

2. DEFAULTS and NODEFAULTS are mutually exclusive.

NODEFAULTS
NODEFS

The SDATA defaults are NOT included in the SVC dump. Specifying NODEFAULTS reduces the size
of an SVC dump by excluding the following default SDATA options:

• ALLPSA
• SQA
• SUMDUMP
• IO
• Any default SDATA options specified by the CHNGDUMP command when CHNGDUMP is in ADD

mode.

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 303

If a data area relating to an SDATA option is required in the dump, the programmer can code that
SDATA option on the SDUMP macro invocation. All keywords and SDATA options are valid when
NODEFS is coded.

If you specify NODEFAULTS, the dump still contains some default system areas that are included
in all dumps.

IO
The IO data areas are included in the SVC dump.

,STORAGE=(strt addr,end addr)
,LIST=list addr
,LISTA=listaddr

Specifies one or more pairs of starting and ending addresses (STORAGE), a list of starting and ending
addresses (LIST), or a list of ASIDs and storage ranges (LISTA). Each starting address must be less
than its corresponding ending address.

When LIST or STORAGE is specified, the list must contain an even number of addresses, and each
address must occupy one fullword. In the list, the high-order bit of the fullword containing the last
ending address of the list must be set to 1; all other high-order bits must be set to 0.

When LISTA is specified, the first fullword of the storage list contains the number of bytes (including
the first word) in the list. LISTA specifies a list of ASIDs and storage ranges as follows:

Note: If LISTA or SUBPLST is specified for a scheduled dump request and if the list does not exceed
484 bytes in size, SVC dump will move the list to SVC dump storage. The caller can free or reuse this
space on return from SVC dump. No synchronization with SVC dump completion is required. If the list
exceeds 484 bytes, SVC dump will not move the list and synchronization with SVC dump completion is
required.

,SUBPLST=subpool id list address
Specifies a list of ASIDs with associated subpool ids corresponding to subpools of virtual storage that
are to be included in the SVC dump.

The first fullword of the list contains the number of bytes (including the first word) in the list. The list
can contain a maximum of 200 bytes consisting of unique ASIDs and subpool IDs. If the list contains
duplicate ASIDs or subpool IDs, the length can exceed 200 bytes because SDUMP stores the unique
subpool IDs in a 200-byte work area.

The structure of the list for each ASID follows:

SDUMP macro

304 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

• The first word contains the ASID in bits 0-15 and the number of subpools associated with this ASID
(n) in bits 16 - 31. If 0 is specified as the ASID, the caller's home ASID is used.

• The next n halfwords contain the subpool IDs (right justified) corresponding to the virtual storage to
be included in the SVC dump. The manner in which these subpools are dumped depends on
whether they are private or common area subpools.

– If a private area subpool (related to a TCB) is specified, all virtual storage associated with this
subpool, for all TCBs in the specified address space, is dumped.

– If a common area subpool is specified, all of the virtual storage allocated in the subpool is
dumped.

SVC dump does not dump all the obtained storage in an address space if the SUBPLST list keyword for
private subpools is coded. This reduces the number of page faults that occur during SVC dump
processing and the time required to take a dump. It also reduces the size of dumps on tape or DASD.

For storage that is not related to data-in-virtual, only obtained pages that have something stored into
them are dumped. This eliminates the pages of storage that are in a freshly obtained state.

For storage that is related to data-in-virtual, only pages that are in central storage are dumped, as
well as pages that have been changed since the last data-in-virtual SAVE operation.

Notes:

1. SVC dump ignores unassigned subpool IDs and ASIDs.
2. If an invalid subpool or ASID (ASID greater than ASVTMAXU) is specified, the caller receives a 233

ABEND and SDUMP processing terminates the dump.
3. If all ASIDs specified in SUBPLST are the current ASID, SUBPLST does not force a scheduled

dump. However, if any of the ASIDs are different, a scheduled (or asynchronous) dump results.
4. SDUMP callers executing in key 0 and supervisor state, who request storage from subpool 0 via

GETMAIN obtain that storage from subpool 252 instead. Therefore, when these callers want to
dump this storage, they must specify subpool 252 rather than subpool 0.

,SUMLIST=list addr
,SUMLSTA=list addr

Specifies a list of starting and ending addresses of areas to be included in a summary dump
(SUMLIST) or specifies a combined list of ASIDs and storage ranges (SUMLSTA). SUMDUMP must be
specified as an SDATA parameter and each starting address must be less than its corresponding
ending address.

For SUMLIST, the storage list must contain an even number of addresses, and each address must
occupy one fullword. In the list, the high-order bit of the fullword containing the last ending address
of the list must be set to 1, and all other high-order bits must be set to 0.

For SUMLSTA, the first fullword of the list contains the number of bytes (including the first word) in
the list. SUMLSTA specifies a list of ASIDs and storage ranges as follows:

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 305

Restriction: The maximum number of ASIDs that the combined TYPE=XMEM, TYPE=XMEME, LISTA,
ASIDLST, ASID, and SUBPLST parameters can specify is fifteen.

Note: There is no restriction on the number of ASIDs that the SUMLSTA can specify.

When BRANCH=YES and SUSPEND=NO are also specified, the list must be addressable using the
addressability established when SVC dump was entered. The lists themselves and all ranges specified
must reference paged-in data. Paged-out data is not dumped by summary dump.

When BRANCH=YES and SUSPEND=YES are also specified, the lists must be addressable using the
addressability established when SVC dump was entered. The lists and referenced data can either be
in paged in or paged out areas. The maximum amount of summary dump data with this type of dump
is 8M.

When BRANCH=NO is also specified, the lists must be addressable in all address spaces in which the
dump will be taken (those address spaces specified by ASID, ASIDLST, LISTA, or TYPE=XMEM,
TYPE=XMEME, or SUBPLST). Synchronization with the capture phase via the SRB or ECB option is also
required, as you cannot free the storage containing these lists until the capture phase is completed.
The lists and referenced data can be in paged-in or paged-out areas. The maximum amount of
summary dump data possible with this type of dump is dependent only on the size of the dump data
set.

Each ASID specified with SUMLSTA must represent a valid, swapped-in address space in order for the
data to be dumped.

Programming Notes: The total number of distinct ASIDs that can be specified by TYPE=XMEM,
TYPE=XMEME, LISTA, ASID, SUBPLST and ASIDLST is fifteen. If more than fifteen are requested, only
the first fifteen are processed. There is no restriction on the number of ASIDs specified by the
SUMLSTA parameter, nor do SUMLSTA ASIDs contribute toward the fifteen ASID limit.

,SUSPEND=NO
,SUSPEND=YES

Specifies that a suspend summary dump is requested (YES) or not requested (NO). SUSPEND=YES
must be used together with the BRANCH=YES and SDATA=SUMDUMP parameters. This keyword
should be used by routines that can experience page faults but that want to save dump information in
a virtual storage buffer.

In releases prior to z/OS V1R7, when SUSPEND=YES is specified with SDATA=TRT, an immediate
attempt is made to capture system trace table status. If this fails, the capture is retried toward the
end of the dumping process. z/OS V1R7 adds an earlier retry to the process, reacting to a blockage
when the initial attempt is made by immediately scheduling an SRB to request the capture.

SDUMP macro

306 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

RTCTSDSU is supported in z/OS V1R7 and above to indicate the amount of enabled summary dump
space is available.

,SYMREC=symrec addr
Specifies the address of a valid symptom record for DAE to use for dump suppression. DAE
suppresses the SVC dump if the primary symptom string found in the symptom record matches
previously known symptoms, and, suppression has been enabled by the installation.

The caller must build the symptom record and fill in at least the ‘SR’ identifier and the primary
symptom string, which should uniquely identify the error.

SVC dump issues an abend with a completion code of X'233', reason code X'9C', then returns to
the caller with a return code of 8 if the symptom record identifier is not 'SR', if the offset and length
of the primary symptom string are not initialized, or if the first byte of the symptom record and the last
byte of the secondary symptom string are not addressable.

SVC dump does not include the symptom record in the dump. The caller can use the SUMLIST
keyword to include the symptom record in the dump.

See the dump analysis and elimination (DAE) section in z/OS MVS Programming: Authorized Assembler
Services Guide for more information on symptom strings and how to build them.

The ADSR macro maps the symptom record. See z/OS MVS Data Areas in the z/OS Internet library
(www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary) for a macro mapping of
the ADSR.

,TYPE=XMEM
,TYPE=XMEME
,TYPE=NOLOCAL
,TYPE=FAILRC

Specifies that the caller's cross memory mode determines the address spaces to dump (XMEM or
XMEME) or that the caller cannot allow SDUMP to obtain a local lock (NOLOCAL) or that SVC dump
should return a reason code with the return code to the DUMP command processor when the
requested dump was not taken (FAILRC).
XMEM

Requests SVC dump to use the caller's cross memory mode at the time the SDUMP macro is
executed.

XMEME
Requests SVC dump to use the caller's cross memory mode at the time of the error for which the
dump is being taken. The home address space is dumped for both keywords. The relevant primary
and secondary address spaces are also dumped if they are unique. If a cross memory local lock
was held, the address space whose local lock is held is also dumped.

NOLOCAL
Indicates that the caller is in an environment where SDUMP cannot hold a local lock. This option
has meaning only when BRANCH=YES is specified and the caller is enabled and unlocked (for
example, the caller has an enabled unlocked task FRR established or is in SRB or cross memory
mode).

FAILRC
Requests that the caller receive special information from SVC dump whenever the dump fails.
Some information is already placed in SDWASDRC as a result of the SVC dump failure. When the
caller receives control again after a dump failure (return code 8) and the caller has specified
TYPE=FAILRC, the reason code is combined with the return code and passed to the caller in either
register 15 or the ECB, or through the IHASDST mapping macro if the SRBPARM area was
provided for an SRB. The reason code is in bits 16 - 23; the return code is in bits 24 - 31. When the
return code is in the ECB, the POST flag is set on. SDUMP passes back a return code in register 15
and places the reason code in the SDWA. The reason code explains why the dump failed.

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 307

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Return and reason codes
The following tables identify return codes and reason codes, tell what each means, and recommend
actions that you should take.

Register 15 return codes
If BRANCH=NO was specified and no ASIDs other than the current ASID were requested, register 15
contains one of the following hexadecimal return codes when control is returned at the completion of the
capture phase:

Table 47. Return Codes for the SDUMP Macro when BRANCH=NO

Return Code Meaning and Action

00 Meaning: A complete dump was taken.

Action: For scheduled dumps, the ECB will be POSTed, or the SRB will receive control.

04 Meaning: A partial dump was taken because the dump data set did not have sufficient space.

Action: Examine the reason code that explains why a partial dump was taken. The reason code is
contained in message IEA911E. For scheduled dumps, the ECB will be POSTed,or if you specified, the
routine can include the IHASDRSN mapping macro to map the reason code information.

08 Meaning: The system was unable to take a dump.

Action: Examine the reason code that explains why no dump was taken (see “Reason codes for return
code 08” on page 309). For scheduled dumps, programs must not wait on the ECB, or expect the SRB to
receive control.

If BRANCH=YES or any ASID other than the current ASID was requested, register 15 contains one of the
following hexadecimal return codes when control is returned after the system has scheduled the dump:

Table 48. Return Codes for the SDUMP Macro when BRANCH=YES

Return Code Meaning and Action

00 Meaning: A dump was scheduled.

Action: For scheduled dumps, the ECB will be posted, or the SRB will receive control.

08 Meaning: The system was unable to schedule a dump.

Action: Examine the reason code that explains why no dump was taken (see “Reason codes for return
code 08” on page 309). Programs must not wait on the ECB, or expect the SRB to receive control.

ECB and SRB return codes
If you specify the ECB or SRB parameter without the DCB parameter, the system also returns one of
following hexadecimal codes in the ECB or SRB at the completion of the capture phase:

Table 49. Return Codes for the ECB Parameter and SRB Parameter

Return Code Meaning and Action

00 Meaning: All the requested data was captured and the dump writing phase was successfully initiated.

Action: None

04 Meaning: Some of the requested data could not be captured and one or more partial dump indicators
have been set in SDRSN. The dump writing phase was successfully initiated.

Action: Examine the reason code that explains why a partial dump was taken. The reason code is
contained in message IEA911E. If you specified the SRB parameter, you can include the IHASDRSN
mapping macro to map the reason code information.

08 Meaning: The system was unable to take a dump.

Action: Examine the reason code that explains why no dump was taken (see “Reason codes for return
code 08” on page 309).

SDUMP macro

308 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

If you specify the DCB parameter with the ECB or SRB parameter, the system also returns one of the
following hexadecimal codes in the ECB or SRB at the completion of the dump writing phase:

Table 50. Return Codes for the ECB or SRB Parameter with the DCB Parameter

Return Code Meaning and Action

00 Meaning: All the requested data was captured and then written to the dump data set.

Action: None

04 Meaning: Some of the requested data could not be captured or could not be written to the dump data
set.

Action: Examine the reason code that explains why a partial dump was taken. The reason code is
contained in message IEA911E. If you specified the SRB parameter, you can include the IHASDRSN
mapping macro to map the reason code information. The reason codes might also be passed to the SRB
routine in the SDSTPDRC field of SDSTATUS.

08 Meaning: The system was unable to take a dump.

Action: Examine the reason code that explains why no dump was taken (see “Reason codes for return
code 08” on page 309)

Note: The ECB will not be posted unless the return code from SDUMP is 0.

Reason codes for return code 08
When a return code of 08 is received, a hexadecimal reason code is returned. The reason code is in the
following locations:

• In the SDWASDRC field of the SDWA if you issued SDUMP in a recovery routine, and the system
provided an SDWA.

• In the ECB or register 15 (bits 16-23), provided that the FAILRC parameter is specified.
• In the SDSTATUS field. This field is pointed to by the SRBPARM field that is in the SRB parameter list.

The parameter list is passed to SDUMP by using the SRB keyword.

The reason codes are as follows:

Table 51. Reason codes for return code 08

Reason Code Meaning and Action

0 Meaning: No SVC dump was requested.

Action: None

2 Meaning: An SVC dump was suppressed because the capture phase of another SVC dump was in
progress.

Action: Wait until the dump in progress has been captured (as identified by message IEA794I) and
reissue SDUMP.

3 Meaning: An SVC dump was suppressed by a request by the installation (for example: DUMP=NO at IPL
or CHNGDUMP SET,NODUMP).

Action: Issue CHNGDUMP SET,SDUMP or CHNGDUMP RESET,SDUMP and reissue SDUMP.

4 Meaning: An SVC dump was suppressed by a SLIP NODUMP command.

Action: Delete SLIP trap with SLIP DEL command and reissue SDUMP.

5 Meaning: An SVC dump was suppressed because a SYS1.DUMP data set was not available.

Action: If MSGTIME expired, increase MSGTIME limit with CD SET,SDUMP,MSGTIME= command. Make
a dump dataset available via the DUMPDS ADD,DSN= and/or DUMPDS CLEAR,DSN= commands and
reissue SDUMP.

6 Meaning: An SVC dump was suppressed because an I/O error occurred during the initialization of the
SYS1.DUMP data set.

Action: Reissue SDUMP.

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 309

Table 51. Reason codes for return code 08 (continued)

Reason Code Meaning and Action

8 Meaning: An SVC dump was suppressed because an SRB could not be scheduled to activate the dump
tasks in the requested address spaces.

Action: None

9 Meaning: An SVC dump was suppressed because a terminating error occurred in SVC dump before the
first dump record was written.

Action: Reissue SDUMP.

A Meaning: An SVC dump was actually started, but because the status stop SRB condition was detected,
no notification can be returned to the application when the dump completes, regardless of the SRB or
ECB parameter settings.

Action: None

B Meaning: An SVC dump was suppressed by DAE.

Action: None.

C Meaning: The DUMPSRV primary task is unavailable to process SVC dumps.

Action: DUMPSRV may be restarting after processing a CANCEL request. Try reissuing the SDUMP at a
later time. If the condition persists, notify the system programmer that DUMPSRV is unavailable and
that they may require IBM assistance to get it restarted.

15 Meaning: The parameter list address is zero.

Action: Supply a parameter list address in register 1 and reissue SDUMP.

16 Meaning: The parameter list is not a valid SVC or SNAP parameter list.

Action: Provide the address of a valid SVC dump parameter list in register 1 and reissue SDUMP.

17 Meaning: The caller-supplied data set is not supported.

Action: Supply a dataset with LRECL >= 4160 open with EXCP on a device supported by SVC dump (or
use a system dump dataset) and reissue SDUMP.

18 Meaning: The start address is greater than or equal to the end address in a storage list.

Action: Correct the address range that is not valid and reissue SDUMP.

19 Meaning: The caller-supplied header is longer than 100 characters.

Action: Supply a shorter header and reissue SDUMP.

1A Meaning: The caller requested a 4K buffer, but did not reserve it.

Action: Consider converting the SDUMP invocation to generate a summary dump instead of using the
BUFFER=YES parameter. Otherwise, refer to the information for the BUFFER=YES parameter in the
SDUMPX macro description and reissue the SDUMPX after the correction is made.

1B Meaning: A storage list overlaps the 4K buffer.

Action: Move the storage list so that it does not overlap the SVC dump 4K buffer pointed to by
CVTSDBF. Reissue SDUMP.

1C Meaning: The caller-supplied DCB is not valid.

Action: Make sure DCB is open, does not overlap 4K buffer, and represents a tape or DASD dataset,
then reissue SDUMP.

1E Meaning: An ASID in the ASID list is syntactically not valid.

Action: Supply a valid ASID (<= ASVTMAXU) and reissue SDUMP.

22 Meaning: The 4K buffer was requested with an SVC dump already in progress.

Action: Wait until the dump in progress has been captured and reissue SDUMP.

25 Meaning: A nonvalid subpool ID was specified in the subpool list.

Action: Supply a valid subpool id (<= 255) and reissue SDUMP.

SDUMP macro

310 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 51. Reason codes for return code 08 (continued)

Reason Code Meaning and Action

28 Meaning: Part of the parameter list is inaccessible.

Action: Make sure the parameter list is addressable from the caller's current address space. Reissue
SDUMP.

29 Meaning: The caller-supplied DCB is inaccessible.

Action: Make sure the DCB is addressable from the caller's current address space. Reissue SDUMP.

2A Meaning: The caller-supplied storage list is inaccessible.

Action: Make sure the storage list is addressable from the caller's current address space. Reissue
SDUMP.

2B Meaning: The caller-supplied header data is inaccessible.

Action: Make sure the header is addressable from the caller's current address space. Reissue SDUMP.

2C Meaning: The caller-supplied ECB is inaccessible.

Action: Make sure the ECB is addressable from the caller's current address space. Reissue SDUMP.

2D Meaning: The caller's ASID list is inaccessible.

Action: Make sure the ASID list is addressable from the caller's current address space. Reissue SDUMP.

2E Meaning: The caller's SUMLIST/SUMLSTA is inaccessible.

Action: Make sure the SUMLIST/SUMLSTA is addressable from the caller's current address space.
Reissue SDUMP.

2F Meaning: The caller's SUBPLST list is inaccessible.

Action: Make sure the SUBPLST is addressable from the caller's current address space. Reissue
SDUMP.

30 Meaning: The caller's KEYLIST is inaccessible.

Action: Make sure the KEYLIST is addressable from the caller's current address space. Reissue SDUMP.

31 Meaning: Copies of the SLIP register and PSW are inaccessible.

Action: None

32 Meaning: The caller-supplied SRB is inaccessible.

Action: Make sure the SRB is addressable from the caller's current address space. Reissue SDUMP.

33 Meaning: The version number in the parameter list is not valid.

Action: Supply a parameter list with a valid version number and reissue SDUMP.

34 Meaning: The caller's LISTD is inaccessible.

Action: Make sure the LISTD is addressable from the caller's current address space. Reissue SDUMP.

35 Meaning: The caller's SUMLISTL is inaccessible.

Action: Make sure the SUMLISTL is addressable from the caller's current address space. Reissue
SDUMP.

36 Meaning: The parameter list contains conflicting parameters.

Action: Remove the conflicting parameters (for example, both ECB and SRB specified) and reissue
SDUMP.

37 Meaning: The ID is longer than 50 characters.

Action: Supply a shorter ID and reissue SDUMP.

38 Meaning: The ID is not addressable.

Action: Make sure the ID is addressable from the caller's current address space. Reissue SDUMP.

39 Meaning: The PSWREGS area is an incorrect length.

Action: Correct the length of the PSWREGS area and reissue SDUMP.

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 311

Table 51. Reason codes for return code 08 (continued)

Reason Code Meaning and Action

3A Meaning: The PSWREGS area is not addressable.

Action: Make sure the PSWREGS area is addressable from the caller's current address space. Reissue
SDUMP.

3B Meaning: The symptom record is not valid.

Action: Supply a valid symptom record and reissue SDUMP.

3C Meaning: The symptom record is not addressable.

Action: Make sure the symptom record is addressable from the caller's current address space. Reissue
SDUMP.

3D Meaning: The DEB for the caller-supplied DCB is inaccessible.

Action: Make sure the DEB for the caller-supplied DCB is addressable from the caller's current address
space. Reissue SDUMP.

3E Meaning: SVC dump is already using the maximum amount of virtual storage (as determined by the
installation, using the MAXSPACE parameter on the CHNGDUMP command) to process other dumps.

Action: Make a dump dataset available via the DUMPDS ADD,DSN= or DUMPDS CLEAR,DSN= command,
reply DELETE to an outstanding IEA793A message, or increase the amount of virtual storage that
SDUMP is allowed to use via the CHNGDUMP SET,SDUMP,MAXSPACE= command, then reissue SDUMP.

46 Meaning: SVC dump processing has determined that its threshold for using auxiliary storage (AUX) has
been exceeded. If the threshold was exceeded while an SVC dump was in progress, that processing will
be stopped and the resulting dump will be partial. Also, as long as the threshold is exceeded, no new
dumps will be allowed to start. If the DUMPSRV address space is the largest consumer of AUX, then
either captured SVC dumps are not being written to DASD quickly enough, or the size of the current
dump request is considerable.

Action: Ensure that enough DASD resource is available for accommodating the captured SVC dumps.
Because other applications might be using the paging resource, more paging space might be required.
When SVC dump processing has detected a shortage, the auxiliary storage utilization must drop below
35% before new SVC dump requests are honored. See the system programmer response for message
IRA201E to determine how to relieve the shortage. Then redrive the SVC dump. You can use the
AUXMGMT and MAXSPACE parameters of the CHNGDUMP SET command to manage the use of virtual
and auxiliary storage by SVC dump processing. See z/OS MVS System Commands for more details about
the CHNGDUMP command.

FF Meaning: An SVC dump was suppressed for some other unspecified reason.

Action: None

Example 1
This example shows how SVC dump can be branch entered to initiate a dump in an address space by
callers who cannot issue an SVC. Areas to be dumped are requested via three parameters (BUFFER,
SDATA, and STORAGE). The dump has the title indicated in the HDR parameter, the caller requests to be
notified of the completion of the scheduled dump via the ECB parameter, and the dump is going to a
private data set (indicated by the DCB option).

SDUMP HDR='USER DATA FOR TEST A',DCB=TESTADCB,BUFFER=YES, X
 ASID=TSTAASID,ECB=(8),QUIESCE=YES,BRANCH=YES, X
 STORAGE=(A,B,C,D,(9),E),SDATA=(ALLPSA,SQA,LSQA)

Example 2
This example shows how SVC dump can be invoked via a branch entry to initiate a dump of several
address spaces by callers who cannot issue an SVC. Areas to be dumped are requested via four
parameters (BUFFER, SDATA, LIST, and SUMLIST). The address spaces to be dumped are described by
the ASIDLST parameter. Note that areas specified by SUMLIST only apply to the primary address space.
The LIST addressed by the LIST keyword must be addressable from any address space. The dump has
the title indicated in the HDR parameter, and the caller requests to be notified of the completion of the
scheduled dump via the ECB parameter.

SDUMP macro

312 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

SDUMP HDR='USER DATA FOR TEST B', X
 BUFFER=YES,ASIDLST=TSTALIST,ECB=(8), X
 QUIESCE=YES,BRANCH=YES,LIST=(9), X
 SDATA=(ALLPSA,NUC,SQA,SUMDUMP), X
 SUMLIST=TSTSLIST
 .
 .
 .
TSTALIST DC X'0000000A800B'
TSTSLIST DC X'0000000080400000'

SDUMP - List form
Use the list form of the SDUMP macro to construct a control program parameter list. You can specify any
number of storage addresses using the STORAGE parameter. Therefore, the number of starting and
ending address pairs in the list form of SDUMP must be equal to the maximum number of addresses
specified in the execute form of the macro.

Syntax
The list form of the SDUMP macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede SDUMP.

SDUMP

␢ One or more blanks must follow SDUMP.

 HDR=‘dump title’ dump title: From 1 to 100 characters.

 HDRAD=dump title addr dump title addr: A-type address.

 ,DCB=dcb addr dcb addr: A-type address.

 ,PLISTVER=1 decimal digit 1: Use up to 68-byte parameter list

 ,PLISTVER=2 decimal digit 2: Use 128-byte parameter list. Default: PLISTVER=1,
unless you specify SYMREC, ID, IDAD, PSWREGS, SDATA=DEFS,
SDATA=NODEFS, or SDATA=IO, in which case the default is PLISTVER=2.

 ,SYMREC=symrec addr symrec addr: RX-type address, or register (2) - (12).

 ,ID=‘identifier’ identifier: From 1 to 50 characters.

 ,IDAD=identifier addr identifier addr: RX-type address, or register (2) - (12).

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 313

Syntax Description

 ,PSWREGS=parm list addr parm list addr: RX-type address, or register (2) - (12).

 ,SDATA=(sdata options) sdata options: Any combination of the following, separated by commas:

 ALLNUC, ALLPSA, CSA, GRSQ, LPA, LSQA, NOALLPSA/NOALL, NOSQA,
NOSUMDUMP/NOSUM, NUC, PSA, RGN, SQA, SUMDUMP/SUM, SWA, TRT
DEFAULTS/DEFS, NODEFAULTS/NODEFS, IO

 Note:

1. Executing the SDUMP macro causes ALLPSA, SQA, IO, and SUMDUMP
storage areas to be dumped unless excluded by NOALLPSA, NOSQA,
NODEFAULTS, or NOSUMDUMP.

2. The PSA and IO options are not required unless NODEFAULTS is
specified, because they are dumped as a default in all SVC dumps.

3. DEFAULTS is not required. All SVC dumps include the default SDATA
options unless NODEFAULTS has been specified.

 ,STORAGE=(strt addr,end strt addr: A-type address.

 addr) end addr: A-type address.

 ,LIST=list addr list addr: A-type address

 ,LISTA=list addr Note: Specify one or more pairs of addresses, separated by commas.

 ,SUBPLST=subpool id list subpool id list addr: A-type address, or register (2) - (12).

 addr

 ,KEYLIST=storage key list storage key list addr: A-type address, or register (2) - (12).

 addr Note: KEYLIST cannot be specified without SUBPLST.

 ,BUFFER=NO Default: BUFFER=NO

 ,BUFFER=YES

 ,QUIESCE=YES Default: QUIESCE=YES

 ,QUIESCE=NO

 ,TYPE=(type code) type code: Any combination of the following, separated by commas:
XMEM or XMEME, NOLOCAL.

,MF=L

SDUMP macro

314 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

Parameters
The parameters are explained under the standard form of the SDUMP macro, with the following
exception:

,MF=L
Specifies the list form of the SDUMP macro.

Note: If SYMREC, ID, IDAD, PSWREGS, SDATA=NODEFS, SDATA=DEFS or SDATA=IO is not used on the
list form of the macro, but is coded on the execute form, use PLISTVER=2 when specifying MF=L to
generate a 128-byte parameter list.

SDUMP - Execute form
A remote control program parameter list is referred to and can be modified by the execute form of the
SDUMP macro.

If you code one or more of the SDATA parameters on the execute form of the macro, any SDATA
parameters coded on the list form are lost.

Syntax
The execute form of the SDUMP macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␢ One or more blanks must precede SDUMP.

SDUMP

␢ One or more blanks must follow SDUMP.

 HDR=‘dump title’ dump title: From 1 to 100 characters.

 HDRAD=dump title addr dump title addr: A-type address, or register (2) - (12).

 ,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

 ,ASID=ASID addr ASID addr: A-type address, or register (2) - (12).

 ,ASIDLST=list addr list addr: RX-type address, or register (2) - (12).

 ,TYPE=(type code) type code: Any of the following, separated by commas: XMEM, XMEME,
NOLOCAL, FAILRC

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 315

Syntax Description

 Note: XMEM and XMEME are mutually exclusive codes.

 ,PLISTVER=1 decimal digit 1: Use up to a 68-byte parameter list.

 ,PLISTVER=2 decimal digit 2: Use 128-byte parameter list.

 Default: PLISTVER=1, unless you specify SYMREC, ID, IDAD, PSWREGS,
SDATA=DEFS, SDATA=NODEFS, or SDATA=IO, in which case the default
is PLISTVER=2.

 ,SYMREC=symrec addr symrec addr: RX-type address, or register (2) - (12).

 ,ID=‘identifier’ identifier: From 1 to 50 characters.

 ,IDAD=identifier addr. identifier addr: RX-type address, or register (2) - (12).

 ,PSWREGS=parm list addr parm list addr: RX-type address, or register (2) - (12).

 ,ECB=(ecb addr) ecb addr: A-type address, or register (2) - (12).

 ,SRB=(srb addr) srb addr: A-type address, or register (2) - (12).

 Note:

1. SVC dump posts the ECB at the completion of the capture phase
unless the DCB parameter is specified with the ECB parameter. If you
specify both the DCB and ECB parameters, the ECB is posted at the
completion of the writing phase.

2. SVC dump schedules the SRB at the completion of the capture phase
unless the DCB parameter is specified with the SRB parameter. If you
specify both the DCB and SRB parameters, the SRB is scheduled at
the completion of the writing phase.

 ,SDATA=(sdata options) sdata options: Any combination of the following, separated by commas:

 ALLNUC, ALLPSA, CSA, GRSQ, LPA, LSQA, NOALLPSA/NOALL, NOSQA,
NOSUMDUMP/NOSUM, NUC, PSA, RGN, SQA, SUMDUMP/SUM, SWA, TRT
DEFAULTS/DEFS, NODEFAULTS/NODEFS, IO

 Note:

1. Executing SDUMP causes ALLPSA, SQA, IO, and SUMDUMP storage
areas to be dumped unless excluded by NOALLPSA, NOSQA,
NODEFAULTS, or NOSUMDUMP.

2. The PSA and IO options are not required unless NODEFAULTS is
specified, because they are dumped as a default in all SVC dumps.

3. DEFAULTS is not required. All SVC dumps include the default SDATA
options unless NODEFAULTS has been specified.

SDUMP macro

316 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ,STORAGE=(strt addr,end strt addr: A-type address, or register (2) - (12).

 addr) end addr: A-type address, or register (2) - (12).

 ,LIST=list addr list addr: A-type address, or register (2) - (12).

 ,LISTA=list addr Note: Specify one or more pairs of addresses, separated by commas.

 ,SUBPLST=subpool id list subpool id list addr: RX-type address, or register (2) - (12).

 addr

 ,KEYLIST=storage key list addr storage key list addr: RX-type address, or register (2) - (12).

 Note: KEYLIST cannot be specified without SUBPLST.

 ,BUFFER=NO Default: BUFFER=NO

 ,BUFFER=YES

 ,QUIESCE=YES Default: QUIESCE=YES

 ,QUIESCE=NO

 ,BRANCH=NO Default: BRANCH=NO

 ,BRANCH=YES Note: If BRANCH=YES is specified, ASID or ASIDLST must also be
specified.

 ,SUSPEND=NO Default: SUSPEND=NO

 ,SUSPEND=YES

 ,SUMLIST=list addr list addr: RX-type address, or register (2) - (12).

 ,SUMLSTA=list addr

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the SDUMP macro, with the following
exception:

,MF=(E, ctrl addr)
Specifies the execute form of the SDUMP macro using a remote control program parameter list.

SDUMP macro

Chapter 41. SDUMP — Dump virtual storage 317

Example 1
The execute form is used to change SDATA areas, BUFFER, and QUIESCE options in the SDUMP
parameter list. The list form of SDUMP was previously used to create the basic SDUMP parameter list
located by register 1.

SDUMP SDATA=(SQA,LPA),BUFFER=NO,QUIESCE=NO,MF=(E,(1))

Example 2
Operation: This example shows a dump request from SUBSYSTEM1. This dump will be suppressed if the
symptoms in the symptom record match a previous dump's symptoms, and if the installation has enabled
dump suppression. The dump does not include the SDATA options specified on CHNGDUMP or the
ALLPSA or SQA data areas. The dump does include the IO data areas and a summary dump which
contains PSW/register data.

SDUMP ID='SUBSYSTEM1',SYMREC=(8),SDATA=(NODEFS,IO),PSWREGS=(9)

SDUMP macro

318 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Chapter 42. SDUMPX — Dump virtual storage

Description
The SDUMPX macro invokes SVC dump to provide a fast unformatted dump of virtual storage or Coupling
facility structure information to a data set. Programs that run in either primary or access register (AR)
mode can use SDUMPX.

SDUMPX is similar to SDUMP, except that SDUMPX can generate code and addresses that are appropriate
for AR mode, whereas SDUMP cannot. All parameters on SDUMP are valid for SDUMPX.

Parameters available only on SDUMPX are: HCSAByASID, HCSANoOwner, HCSASysOwner, LISTD;
LIST64; SUMLSTL; SUMLIST64; STRLIST; COUPLE, WLM, and XESDATA options on SDATA; options on
ECB and SRB; REMOTE; INTOKEN; PROBDESC; JOBLIST; DSPLIST; and PLISTVER=3.

To dump data space storage, issue SDUMPX and specify one of the following parameters: DSPLIST,
LISTD, LIST64, SUMLSTL or SUMLIST64.

There are two phases in SVC dump processing:

• The capture phase, in which all the volatile data for the dump is copied into DUMPSRV data spaces.
• The writing phase, in which the data is written to the dump data set.

The caller can initiate an SVC dump in an address space other than the primary. A branch entry is
available for callers who wish a dump of their own or another address space, but cannot issue an SVC.

When you request a dump of virtual storage, the combination of parameters you code determines
whether MVS produces either a scheduled (asynchronous) or a synchronous SVC dump. You might make
different design decisions for your program based on the type of dump that MVS produces. Read the
information about dumping virtual storage in z/OS MVS Programming: Authorized Assembler Services
Guide for the parameter combinations that produce each type of dump, and for guidance about designing
your program to handle each type.

Except for the data control block (DCB) parameter, all input parameters to this macro can reside in
storage above 16 megabytes if the caller is executing in 31-bit addressing mode.

You can produce reentrant code using the standard form of SDUMPX if you do not specify parameters
other than the following:

• SDATA
• TYPE
• HDR
• ID
• BRANCH
• SUSPEND
• QUIESCE
• BUFFER
• PLISTVER

SVC dump allows programs in page-protected storage (such as the nucleus, PLPA, and MLPA) to issue the
standard form of the SDUMPX macro without causing a protection exception. However, IBM recommends
using the list and execute forms of SDUMPX for programs in page-protected storage.

SDUMPX macro

© Copyright IBM Corp. 1988, 2020 319

Wildcards
You can use wildcards to identify multiple names. On an SDUMPX macro, you can specify wildcards in job
names, data space names, and system names. The parameter descriptions tell you when you can use
wildcards. The wildcards are:
Wildcards

Meaning
*

Zero or more characters, up to the maximum length of the string. An * can start the string, end it,
appear in the middle, or appear in several places in the string. A single * for the name indicates that all
job names, data space names, or system names will match.

?
One character. One or more ? can start the string, end it, appear in the middle, or appear in several
places in the string. A single ? indicates all names consisting of one character.

Note: You can mix wildcards in any combination.

Examples are:

• *A* specifies all names that contain an A, including the name A.
• *A*B specifies all names that contain an A followed by and ending with a B, with or without any

intervening characters. The name can have characters before the A.
• ?A? specifies all 3-character names with an A as the second character.
• ?A?B specifies all 4-character names with A as the second character and B as the fourth character.
• ?A* specifies all names of 2 or more characters with A as the second character.

Environment
The requirements for the caller with BRANCH=NO are:

Environmental factor Requirement

Minimum authorization: Any one or more of the following:

• Supervisor state
• PSW keys 0 - 7
• APF-authorized

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31- or 64-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters and all areas the parameter list points to, except
the DCB, ECB, and SRB, must be in an address/data space that is
addressable from the current address space. The DCB must be
addressable in the home address space. The ECB and SRB must be
addressable from each address space included in the dump. The SRB
must be addressable from the address space in which it will run.

The requirements for the caller with BRANCH=YES are:

SDUMPX macro

320 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Environmental factor Requirement

Minimum authorization: All of the following:

• Supervisor state
• PSW key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: The caller may hold locks, but is not required to hold any

Control parameters: Control parameters and all areas the parameter list points to, except
the DCB, ECB, and SRB, must be in an address/data space that is
addressable from the current address space. The DCB must be
addressable in the home address space. The ECB and SRB must be
addressable from each address space included in the dump. The SRB
must be addressable from the address space in which it will run.

Programming requirements
• To run in 64-bit addressing mode, issue the SYSSTATE AMODE64 variable set to 'YES' prior to invoking

SDUMPX.
• For AR mode callers:

– Issue the SYSSTATE ASCENV=AR macro before SDUMPX. SYSSTATE ASCENV=AR tells the system to
generate code appropriate for AR mode.

– The parameter list address must be qualified by an ALET of zero.

• To generate reentrant code, code the list and execute forms of the SDUMPX macro. Because the
execute form of the macro is dependent on the length determined by the list form, the list form must
appear before the execute form in a reentrant program.

Callers can determine the length of the parameter list by using the following programming technique to
calculate the amount of storage needed for only those options specified for the SDUMPX macro:

SDMPXBEG SDUMPX SDATA=(SUM),SUMLIST=SLIST,MF=L
SDMPXEND EQU *
SDMPXLEN DC A(SDMPXEND-SDMPXBEG)

• The TCBOWNS option defaults to using a PLISTVER=3 sized parameter list for the standard and execute
forms, so ensure that a parameter on the list version of the macro results in a PLISTVER=3 sized area.

Callers that issue SDUMPX with BRANCH=YES must include the CVT mapping macro.

Restrictions
1. The parameter list and all non-register notation keyword address parameters must reside in 31-bit

addressable virtual storage, including for invokers that are executing in 64-bit addressing mode.

Note: This restriction applies to macro keyword values that address the invoker-specified SDUMPX
control information. For certain parameters, the content of the virtual storage addressed by a runtime
keyword value may include virtual storage addresses above 2 gigabytes. For example, the LIST64
parameter must address a storage location residing in 31-bit addressable virtual storage, but the list
content at that storage location may, in turn, address 64-bit addressable virtual storage.

2. The areas associated with the following parameters must be in common storage:

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 321

• DSPLIST
• JOBLIST
• PROBDESC
• REMOTE
• SUMLSTA (for BRANCH=NO invocations)

Input register information
If BRANCH=YES is specified, before issuing the SDUMPX macro, the caller must ensure that the following
general purpose register (GPR) contains the specified information.
Register

Contents
13

The address of a 72-byte save area

Before issuing the SDUMPX macro, the caller does not have to place any information into an access
register (AR).

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14

Used as a work register by the system
15

Return code in bits 24-31. If the return code is X'08', and you specified the FAILRC parameter, GPR
15 also contains a reason code in bits 16-23.

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
issuing the service, and restore them after the system returns control.

Performance implications
None.

Syntax
The standard form of the SDUMPX macro is written as follows:

SDUMPX macro

322 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SDUMPX.

SDUMPX

␣ One or more blanks must follow SDUMPX.

 ,ASID=ASID addr ASID addr: A-type address, or register (2) - (12).

 ,ASIDLST=list addr list addr: RX-type address, or register (2) - (12).

 ,BRANCH=NO Default: BRANCH=NO

 ,BRANCH=YES Note: If BRANCH=YES is specified, ASID or ASIDLST must also be
specified.

 ,BUFFER=NO Default: BUFFER=NO

 ,BUFFER=YES

 ,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

 ,DSPLIST=list addr list addr: RX-type address, or register (2) - (12).

 ,ECB=(ecb options) ecb options: Positional parameters
First parameter

ecb addr: A-type address, or register (2) - (12)
Second parameter (optional)

WRITE or CAPTURE
Third parameter (optional)

TCBOWNS

 HDR=‘dump title’ dump title: From 1 to 100 characters.

 HDRAD=dump title addr dump title addr: A-type address, or register (2) - (12).

 ,ID=‘identifier’ identifier: From 1 to 50 characters.

 ,IDAD=identifier addr identifier addr: RX-type address, or register (2) - (12).

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 323

Syntax Description

 ,INTOKEN=token addr token addr: RX-type address, or register (2) - (12).

 ,JOBLIST=list addr list addr: RX-type address, or register (2) - (12).

 ,KEYLIST=storage key list addr storage key list addr: RX-type address, or register (2) - (12).

 Note: KEYLIST cannot be specified without SUBPLST.

 ,LIST=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

 end addr: A-type address, or register (2) - (12).

 Note: Specify one or more pairs of addresses, separated by commas.

 ,LISTA=list addr list addr: RX-type address, or register (2) - (12).

 ,LISTD=list addr

 ,LIST64=list addr

 ,PLISTVER=1 decimal digit 1: Use up to 112-byte parameter list.

 ,PLISTVER=2 decimal digit 2: Use 128-byte parameter list.

 ,PLISTVER=3 decimal digit 3: Use 184-byte parameter list.

 Defaults are as follows:

PLISTVER=2, if you specify SYMREC, ID, IDAD, PSWREGS, SDATA=DEFS,
SDATA=NODEFS, or SDATA=IO.

PLISTVER=3, if you specify STRLIST, REMOTE, INTOKEN, DSPLIST,
JOBLIST, PROBDESC, LIST64, SUMLIST64, or ECB=(*,*,TCBOWNS).

PLISTVER=1, in all other cases.

 ,PROBDESC=area addr area addr: RX-type address, or register (2) - (12).

 ,PSWREGS=parm list addr parm list addr: RX-type address, or register (2) - (12).

 ,QUIESCE=YES Default: QUIESCE=YES

 ,QUIESCE=NO

 ,REMOTE=area addr area addr: RX-type address, or register (2) - (12).

 ,SDATA=(sdata options) sdata options: Any combination of the following, separated by commas:

SDUMPX macro

324 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ALLNUC, ALLPSA, COUPLE, CSA, GRSQ, HCSAByASID, HCSANoOwner,
HCSASysOwner, LPA, LSQA, NOALLPSA/NOALL, NOSQA, NOSUMDUMP/
NOSUM, NUC, PSA, RGN, SERVERS, SQA, SUMDUMP/SUM, SWA, TRT,
XESDATA, DEFAULTS/DEFS, NODEFAULTS/NODEFS, IO

 Note:

1. Executing SDUMPX causes ALLPSA, SQA, IO, and SUMDUMP storage
areas to be dumped unless excluded by the NOALLPSA, NOSQA,
NODEFAULTS, or NOSUMDUMP parameter.

2. The PSA and IO options are not required unless NODEFS is specified,
because they are dumped as a default in all SVC dumps.

3. DEFAULTS is not required. All SVC dumps include the default SDATA
options unless NODEFAULTS has been specified.

4. SDATA=SERVERS results in a scheduled (asynchronous) dump.
5. High virtual CSA storage (high virtual common storage with the

DUMP=LIKECSA dumpable attribute) filter support (HCSAByASID,
HCSANoOwner, HCSASysOwner) is intended mainly for use via the
command interface (such as, CHNGDUMP, DUMP, and so on), and not
via the SDUMPX macro.

 ,SRB=(srb addr) srb addr: A-type address, or register (2) - (12).

 ,SRB=(srb addr,CAPTURE) Note: If you code SRB=(srb addr), without specifying CAPTURE or
WRITE, SVC dump schedules the SRB at the completion of the capture
phase unless you also specify the DCB parameter. If you specify both the
SRB and DCB parameters, the SRB is scheduled at the completion of the
writing phase.

 ,SRB=(srb addr,WRITE)

 ,STORAGE=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

 end addr: A-type address, or register (2) - (12).

 Note: Specify one or more pairs of addresses, separated by commas.

 ,STRLIST=structure list addr structure list addr: RX-type address or register (2) - (12).

 Use the IHABLDP macro to build the structure list address.

 ,SUBPLST=subpool id list addr subpool id list addr: RX-type address, or register (2) - (12).

 ,SUMLIST=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

 end addr: A-type address, or register (2) - (12).

 Note: Specify one or more pairs of addresses, separated by commas.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 325

Syntax Description

 ,SUMLSTA=list addr list addr: RX-type address or register (2) - (12).

 ,SUMLSTL=list addr

 ,SUMLIST64=list addr

 ,SUSPEND=NO Default: SUSPEND=NO

 ,SUSPEND=YES

 ,SYMREC=symrec addr symrec addr: RX-type address, or register (2) - (12).

 ,TYPE=(type code) type code: Any of the following, separated by commas: XMEM, XMEME,
NOLOCAL, FAILRC

 Note: XMEM and XMEME are mutually exclusive codes.

,UTOKEN=list addr list addr: RX-type address, or register (2) - (12).

Parameters
The parameters are explained as follows:

,ASID=ASID addr
,ASIDLST=list addr

Specifies the address of a halfword or a list of halfwords containing the hexadecimal address space
identifier of an address space to be dumped. If register notation is used, the low-order halfword of the
register contains the address space identifier of the address space to be dumped. If both parameters
are omitted, the primary address space is dumped. If 0 is specified for the address space identifier, a
dump is scheduled for the home address space of the issuer of the SDUMPX macro. No private area
storage is included in the dump for the specified address space if either of the following events
occurred:

• No SDATA parameters were specified that apply to the private area of the requested address space.
• The CHNGDUMP operator command was used to set an overriding parameter in the system dump

options list that limits SVC dumps to areas outside of the private area.

The ASID list can contain a maximum of 15 address space identifiers. The high-order bit of the
halfword containing the last identifier of the list must be set to 1, and all other high-order bits must be
set to 0.

If the combined address spaces from the following exceed 15, the system dumps the first 15.

• Specified by the ASID or ASIDLST parameter
• Associated with the jobs specified in the JOBLIST parameter
• Associated with each data space specified in the DSPLIST, LISTD, or LIST64 parameter when the

data space was created by a DSPSERV CREATE macro with SCOPE=SINGLE
• Associated with the address ranges specified in the LISTD or LIST64 parameter

Wildcards used in the parameters can result in multiple address spaces.

,BRANCH=NO
,BRANCH=YES

Specifies that a branch entry is to be used for interfacing with SVC dump to schedule a dump (YES), or
that an SVC instruction is to be generated for interfacing with SVC dump (NO).

SDUMPX macro

326 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

For BRANCH=YES, MVS produces a scheduled (asynchronous) SVC dump. For BRANCH=NO, the
parameters you code to identify storage determine whether MVS produces a scheduled or
synchronous SVC dump. MVS produces a scheduled dump when you code BRANCH=NO with one or
more of the following:

• ASID=asid addr
• ASIDLST
• JOBLIST
• LISTA
• LISTD=list addr, when the STOKEN represents either an address space other than the primary

address space, or a SCOPE=SINGLE data space owned by a program that is not running in the
primary address space

• LIST64=list addr, when the STOKEN represents either an address space other than the primary
address space, or a SCOPE=SINGLE data space owned by a program that is not running in the
primary address space

• SUBPLST=subpool id list addr, when the list of address spaces with associated subpool IDs contains
at least one address space other than the primary address space.

• TYPE=XMEM or TYPE=XMEME

You might make different design decisions for your program based on the type of dump MVS
produces. See z/OS MVS Programming: Authorized Assembler Services Guide for guidance about
designing your program to handle each type of dump.

If BRANCH=YES is specified and the caller has not specified at least one of the following keywords:
ASID, ASIDLST, JOBLIST, TYPE=XMEM, TYPE=XMEME, or LISTA, the dump is scheduled to the home
address space.

Routines that issue SDUMPX with BRANCH=YES must provide a 72-byte save area pointed to by
register 13, and must include the CVT mapping macro.

For BRANCH=YES entry by reentrant recovery routines, SDUMPX processing moves the data supplied
by the following parameters to a system area:

• HDR
• HDRAD
• ID
• IDAD
• ASIDLST
• STORAGE
• LIST
• LISTA
• SUBPLST
• KEYLIST

This enables the recovery routine to free its storage on return from SDUMPX although the dump has
not completed.

,BUFFER=NO
,BUFFER=YES

Specifies that the contents of a 4096 byte SQA buffer is (YES) or is not (NO) reserved and used by the
caller before SDUMP processing was invoked. Callers who specify BUFFER=YES on the SDUMPX
macro must have reserved it for usage and properly initialized it before the SVC dump processing is
invoked. If the caller is using the buffer to dump data that might change before normal SVC dump
processing can dump it, the caller should instead consider using the SUMDUMP option of the SDATA
parameter and one of the SUMLIST related parameters to dump that data. SUMDUMP provides far
greater capacity for data capture.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 327

The SQA buffer is pointed to by the CVTSDBF field of the Communications Vector Table (CVT). To
reserve the SQA buffer area, use the compare and swap (CS) instruction to serialize the setting of the
high-order bit of the CVTSDBF field. Setting of that bit prevents any other SDUMP requests from being
processed. It essentially indicates the beginning of SVC dump processing, and only one SVC dump can
be active in the system at a time. If the CS fails to set the bit on (B'1'), the buffer is already in use;
processing should neither attempt to use the buffer, nor issue the SDUMPX request. If the bit was
successfully set to B'1' by the CS instruction, the caller must also set the ASCBSDBF bit of the home
address space ASCB (Address Space Control Block) using a CS instruction. When both operations
were successful, the caller can place data into the buffer and issue the SDUMPX request. If the caller
sets either bit, and then fails to invoke SDUMPX, it must reset the bit(s) that it set (resetting the
ASCBSDBF bit first, then the CVTSDBF high order bit). If the home address space of the caller
terminates after the setting of the ASCBSDBF bit, or once SVC dump processing has begun, SVC dump
processing will reset both bits appropriately.

When the dump is being processed by IPCS, the contents of the SQA buffer is accessible for
BUFFER=YES dumps by using the IPCS LIST 0 DOMAIN(SDUMPBUFFER) LENGTH(4096) command.

,DCB=dcb addr
Specifies the address of a previously opened data control block (DCB) for the data set that is to
contain the dump. If this parameter is omitted, one of the SYS1.DUMP data sets is used. When you
specify the DCB parameter, the dump contains data from only the requestor's home address space.
The DCB must be addressable from the home address space. The control blocks built by OPEN must
also be addressable from the home address space. The DCB must support EXCP. You must specify the
following parameters on the DCB macro: RECFM=FB, LRECL=4160, and BLKSIZE=4160.

The DCB must reference device types supported by SVC dump. Eligible device types are unlabeled 9-
track 2400-series tape devices (or tape devices compatible with the 2400-series) and any direct
access devices supported by the system that have a track size of at least 4160 bytes. (4160 bytes
equals 1 SVC dump output record.) SVC dump does not support secondary extents on DCB data sets.

SVC dump does not close the dump data set. Use the CLOSE macro to close the data set and cause an
end-of-file mark or a tape mark to be placed after the dump data. SVC dump sets up the DCB so that
CLOSE works correctly and positions the end-of-file mark or tape mark at the correct place on the
data set. For tape data sets, you can write a tape mark to separate multiple dumps without using the
CLOSE macro.

Because it is the caller's responsibility to close the dump data set and the data set may be closed only
after all the data has been written to it, the caller needs to receive notification when the dump writing
phase is complete. Therefore, if you specify the DCB parameter with the ECB parameter, the system
posts the ECB at the completion of the dump writing phase, no matter what has been specified on the
ECB parameter. The ECB parameter is required when a DCB is provided for scheduled dumps. If an
ECB is not provided with the DCB for a synchronous dump, SVC dump returns to the caller at the
completion of the dump writing phase. See z/OS MVS Programming: Authorized Assembler Services
Guide for descriptions of scheduled and synchronous dumps.

,DSPLIST=list addr
Specifies the address of an area that identifies the data space information to be dumped. Hiperspaces
are not supported so they will not be dumped. If the area exceeds 512 bytes, the area must be in
common storage and the caller must not free the area until data capture for the dump is completed.
For an asynchronous dump, use the ECB or SRB parameter to be notified when data capture is
completed or use the SUSPEND parameter to suspend other processing until data capture is
completed. For a synchronous dump (only one address space and its data spaces involved), you do
not need to worry about freeing the area too soon because the system does not return control to the
caller until data capture is completed. Additionally, the number of data spaces that can be handled is
limited to 256. If wildcard specifications are used, only the first 256 data spaces that match can be
dumped. Also, each data space reduces the number of LISTD entries available by one. If register
notation is used, the register contains the address of the area. If the parameter is omitted, data
spaces are not dumped.

The area consists of:

SDUMPX macro

328 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

• A 4-byte header, which indicates the total length of the area. The length includes the four bytes of
the header.

If the length is less than four bytes, the system ignores the DSPLIST parameter.
• One or more 16-byte data space identifiers for data spaces to be included in the dump. An
identifier is an ASID or jobname in the left 8 bytes and the data space name in the right 8 bytes:
ASID

An 8-byte field containing an explicit hexadecimal address space identifier in bytes 7 and 8.
Bytes 1 through 6 must be hexadecimal zeros.

jobname
A 1 to 8 character job name left-justified in the 8-byte field. Pad it on the right with blanks, if
needed. The job name can be specified with wildcards. See “Wildcards” on page 320.

data space name
The 1 to 8 character name associated with the data space at its creation. Left justified in the 8-
byte field. Padded on the right with blanks if needed. The data space name can be specified with
wildcards. See “Wildcards” on page 320.

See the ASID parameter for the limit on address spaces that can be specified.

,ECB=(ecb addr[,[CAPTURE|WRITE][,TCBOWNS]])
Specifies how the system should synchronize your program with dump processing. Note that these
interfaces will not be driven if the call to SDUMPX results in an initial non-zero return code. When the
initial return code is zero, the return code for capturing the data is available as documented when the
TYPE=FAILRC parameter is used.

ECB specifies that the system should post the event control block (ECB) indicated by ecb addr. If an
A-type address is specified, ecb addr specifies the address of a fullword containing the address of an
ECB that is posted on completion of a scheduled dump. If a register operand is used, the register
must contain the actual address of the ECB. If this parameter is omitted, the caller is not notified of
the dump completion. The fullword and the ECB must be addressable from the home address space.
The fullword address that points to the ECB must be a 24-bit or 31-bit address.

For ECB=ecb addr and ECB=(ecb addr,CAPTURE), the system posts the ECB at the completion of the
capture phase, unless the DCB parameter was also specified. When both the DCB and ECB
parameters are specified, CAPTURE is ignored. So for that case, and for ECB=(ecb addr,WRITE), the
system posts the ECB at the completion of the writing phase. If the capture phase is not successful,
the system posts the ECB at the completion of SVC dump processing. Include the TYPE=FAILRC
parameter in order to receive a return code and reason code at dump completion.

The storage for the supplied ECB must always be available for SVC dump processing to post. Once the
ECB has been posted, the storage may be explicitly freed. There are two recovery scenarios where the
ECB storage may be freed before SVC dump processing can post it. One is when the requestor's
address space terminates. The other relates to task termination when the TCBOWNS option of the
ECB parameter is specified. This indicates to SDUMP processing that the task requesting the SDUMP
owns the ECB storage. Otherwise, the ECB should be in ELSQA/LSQA or common storage, and its
availability managed appropriately.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 329

HDR=‘dump title’
HDRAD=dump title addr

Specifies the title or address of the title to be used for the dump. If HDR is specified, the title must be
1-100 characters enclosed in apostrophes, although the apostrophes do not appear in the actual title.
If HDRAD is specified, the first byte at the indicated address specifies the length of the title in bytes.

If the length of the title is greater than 100, SVC dump issues an abend with a completion code of
X'233', reason code X'14', then returns to the caller with a return code of 8. If the length of the title is
zero, SVC dump continues processing as if the HDR or HDRAD parameter was not specified.

If these keywords are specified with BRANCH=YES or ASID/ASIDLST (that is, to cause a scheduled
dump), the system moves the title to SVC dump storage before it returns control to the caller. There is
no requirement to synchronize with the completion of the dump.

,ID='identifier'
,IDAD=identifier addr

Specifies an identifier that is included in the dump message IEA911E or IEA611I, which is issued at
the completion of the dump. The identifier must be from one to 50 printable characters. If ID is
specified, the identifier must be enclosed in apostrophes, although the apostrophes do not appear in
the actual identifier. If IDAD is specified, the first byte at the indicated address specifies the length of
the identifier in bytes. If the length of the identifier is greater than 50, SVC dump issues an abend with
a completion code of X'233', reason code X'8C', then returns to the caller with a return code of 8. If
the length of the identifier is zero, SVC dump continues processing as if the ID or IDAD parameter was
not specified.

,INTOKEN=token addr
Specifies the address of a 32-byte area that contains an incident token previously built by an
IEAINTKN macro. If register notation is used, the register contains the address of the area.

The system associates the token with the SVC dump on this system and with any SVC dumps
requested by the REMOTE parameter on other sysplex systems. If the parameter is omitted, the
system generates an incident token.

,JOBLIST=list addr
Specifies the address of an area that identifies jobs to be dumped. If register notation is used, the
register contains the address of the area. If the parameter is omitted, the current job is dumped.

The area, which must be in common storage and should never be larger than 124 bytes (8 bytes ×
15 entries + 4-byte header), consists of:

• A 4-byte header, which indicates the total length of the area. The length includes the 4 bytes of the
header.

If the area exceeds 256 bytes, the caller must not free the area until data capture for the dump is
completed. For an asynchronous dump, use an ECB or SRB parameter to be notified when data
capture is complete or use a SUSPEND parameter to suspend other processing until data capture is
completed. (For a synchronous dump on the local system, you do not have to worry about freeing
the area too soon because the system does not return control to the caller until processing
completes.)

If the length is less than 4 bytes, the system ignores the JOBLIST parameter.
• One or more 8-character job names for jobs to be included in the dump. Left justify each name in

its 8-character field; pad it on the right with blanks, if needed. A job name can be specified with
wildcards. See “Wildcards” on page 320.

SDUMPX macro

330 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

You can specify a maximum of 15 job names. See the ASID parameter for the limit on address spaces
that can be specified.

,KEYLIST=storage key list addr
Specifies the address of a list of storage keys associated with the virtual storage to be dumped. If the
key of a subpool specified in SUBPLST does not match a key in this list, the data in the subpool is not
dumped. SUBPLST must be specified if the KEYLIST option is used. If you do not specify KEYLIST, all
storage (regardless of key) associated with the requested subpools is included in the dump.
Therefore, if you want to dump the storage corresponding to all 16 keys, do not specify this
parameter.

The list contains one-byte entries and starts on a halfword boundary. The first byte indicates the
length of the list (including this byte). The list has a maximum length of 16 bytes so that up to 15 keys
can be specified. Specify each key in the left-most four bits of each byte, except the length byte.

,LIST=(strt addr,end addr)
,LISTA=list addr
,LISTD=list addr
,LIST64=listaddr

Specifies one of the following lists:

• A list of starting and ending addresses (LIST)
• A list of ASIDs and storage ranges (LISTA)
• A list of address ranges, qualified by STOKENs, of areas to be included in the SVC dump (LISTD)
• A list of virtual storage address ranges, qualified by STOKENs, of areas to be included in the dump

(LIST64)

Each starting address must be less than its corresponding ending address.
LIST

When LIST is specified, the list must contain an even number of addresses, and each address
must occupy one fullword. In the list, the high-order bit of the fullword containing the last ending
address of the list must be set to 1; all other high-order bits must be set to 0.

LISTA
When LISTA is specified, the first fullword of the storage list contains the number of bytes
(including the first word) in the list. LISTA specifies a list of ASIDs and storage ranges, as follows:

Note: If LISTA or SUBPLST is specified for a scheduled dump request and if the list does not
exceed 484 bytes in size, SVC dump will move the list to SVC dump storage. The caller can free or

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 331

reuse this space on return from SVC dump. No synchronization with SVC dump completion is
required. If the list exceeds 484 bytes, SVC dump will not move the list and synchronization with
SVC dump completion is required.

LISTD
When LISTD is specified, the first fullword of the list contains the number of bytes (including the
first word) in the list. The list can be up to 5124 bytes (for a possible 256 single range entries).
The number of entries processed will be fewer than 256, if either data spaces are requested using
the DSPLIST parameter, or multiple ranges are specified for an STOKEN. For LISTD, specify the
STOKENs and address ranges as follows:

STOKEN refers to any address/data space. SVC dump does not dump data space storage that has
not been referenced.

LISTD causes a scheduled dump when the caller performs one of the following actions:

• Requests a SCOPE=SINGLE data space that is owned by a task in an address space other than
the caller's primary address space.

• Requests an address space other than the primary

See the ASID parameter for the limit on address spaces that can be specified.

Dumps on other systems in a sysplex: If the SDUMPX macro specifies
SDRMT_IDCON_STORAGE_COPY in the area specified by the REMOTE parameter, the dumps
requested by REMOTE contain areas specified by LISTD on this macro; the dumps do not contain
areas specified by LIST and LISTA. If an STOKEN is all zeros in the area specified by the REMOTE
parameter, the dumps include the indicated address range within all address spaces included in
the dump.

If the LISTD area exceeds 484 bytes, only the data requested in the first 484 bytes is included in
the dumps requested by REMOTE.

LIST64
Specifies a storage location describing a list of STOKEN-qualified virtual storage address ranges to
be included in the dump.

SDUMPX macro

332 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

The address ranges are described with 64-bit starting and ending addresses and may refer to any
address space virtual storage, including virtual storage above the 2 gigabyte bar and any data
space storage.

The LIST64 parameter is mutually exclusive with the LISTD parameter.

When LIST64=list addr is specified, the first fullword of the storage list contains the number of
bytes, including the first word, in the list.

SDUMPX behavior for the LIST64 keyword is the same as LISTD behavior when REMOTE is also
specified. Prior releases will ignore 64-bit addresses in a remote list.

The LIST64 storage list format is exactly analogous to the LISTD storage list format, and the
STOKENs and address ranges as follows:

• A range's ending address must be greater than its starting address for each specified range.
• The ending address for any data space range cannot exceed X'000000007FFFFFFF'.
• If any STOKEN in the list describes a SCOPE=SINGLE data space, or is for an address space

other than the SDUMPX invoker's primary address space, then a scheduled dump is performed.

See the ASID parameter for the limit on the number of differing address spaces that can own virtual
storage included in the dump.

,PLISTVER=1
,PLISTVER=2
,PLISTVER=3

Specifies the length of the parameter list used:

• For PLISTVER=1, the length is up to 112 bytes.
• For PLISTVER=2, the length is 128 bytes.
• For PLISTVER=3, the length is 184 bytes.

Defaults are as follows:

• When you specify SYMREC, ID, IDAD, PSWREGS, SDATA=DEFS, SDATA=NODEFS, or SDATA=IO, the
default is PLISTVER=2.

• When you specify STRLIST, REMOTE, INTOKEN, PROBDESC, JOBLIST, DSPLIST, LIST64,
SUMLIST64, or ECB=(*,*,TCBOWNS), the default is PLISTVER=3.

• For other specifications, the default is PLISTVER=1.

Note: When the TCBOWNS option is specified for the ECB parameter of the EXECUTE form of the
macro, use PLISTVER=3 when specifying MF=L to generate a 184-byte parameter list.

,PROBDESC=area addr
Specifies the address of an area that contains information describing the problem. If register notation
is used, the register contains the address of the area.

The area can be passed to any SVC dump, but is primarily intended for dumps requested by the
REMOTE parameter. When a dump is requested through REMOTE, the system being dumped calls an
IEASDUMP.QUERY routine. The routine uses the area to determine if its system should be dumped
and, if so, what storage areas should be added to the dump.

The area is mapped by the IHASDPD mapping macro and must be in common storage. The area
consists of:

• A 4-byte header, which indicates the total length of the area. The length includes the 4 bytes of the
header.

• Key, length, data entries. Each entry consists of:
Key

An 8-byte key, which you can use to identify the application or the problem or both. You might
use the key field, for example, to contain a 3-byte identifier for the application and a 5-byte area
for application information.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 333

The key corresponds to the SDPD_KLD_KEY field in the IHASDPD mapping macro. The key must
not begin with A through I or SYS; these are reserved for IBM use. IBM-supplied values for key
are:

– SYSDCOND: Suppresses a dump on another system in a sysplex if the other system does not
have an IEASDUMP.QUERY routine or if no IEASDUMP.QUERY routine returns a code of 0.

– SYSDLOCL: Requests a second, deferred dump of the local system, if the area for the REMOTE
parameter specifies the local system. The deferred dump contains areas added by
IEASDUMP.QUERY, IEASDUMP.GLOBAL, and IEASDUMP.LOCAL exit routines, if any routines
had been associated with those exits.

Length
A 2-byte field that gives the length of the data portion. The length does not include the length of
this field itself or of the key field. A length of zero is valid.

Data
The data portion, which consists of the number of bytes specified in the preceding field. You can
place in the data portion any information you desire in any format.

If the area exceeds 1024 bytes, the caller must not free the area until data capture for the dump is
completed. For an asynchronous dump, use an ECB or SRB parameter to be notified when data
capture is complete or use a SUSPEND parameter to suspend other processing until data capture is
completed. (For a synchronous dump on the local system, you do not have to worry about freeing the
area too soon because the system does not return control to the caller until processing completes.) If
the area exceeds 32,768 bytes, the system places in the dump only the first 32,768 bytes.

If the length is less than 4 bytes, the system ignores the PROBDESC parameter.

,PSWREGS=list addr
Specifies a PSW or register area to be passed to SVC dump. This area may contain a PSW, control
registers 3 and 4, all the general purpose registers (GPRs), and all access registers (ARs). When
PSWREGS is specified, SVC dump includes the following information in the summary dump portion of
the dump:

• The PSWREGS parameter list.
• If the PSW is provided, 4K of storage before and 4K after the PSW address from the primary address

space.

SDUMPX macro

334 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

• 4K of storage before and 4K of storage after each of the GPRs from the primary and secondary
address spaces.

• If the ARs are provided, they qualify the addresses of the area that includes the 4K of storage before
and 4K of storage after each of the GPRs. GPRs will be used to locate storage; ARs (if provided along
with a PSW in AR mode) will be used to identify the source address space or data space.

Notes:

1. If the control registers are provided, they will be used to determine the primary and secondary
address spaces. If no control registers are provided, then the storage will be dumped from the
caller's primary and secondary address spaces.

2. The content of the storage location specified by PSWREGS parameter can include both the high-
order and low-order halves of the GPRs.

The PSWREGS parameter allows programs running in a non-abend environment, where there is no
SDWA, to request SVC dump and dump suppression services similar to those available in an abend
environment, where an SDWA is present.

The parameter list for the PSWREGS parameter must reside in the address space currently
addressable by SVC dump. The caller must provide at least the length and the mask field. Each bit in
the mask refers to a data area.

• If a mask bit is set, SVC dump expects that the data area and the appropriate size in the length field
to be supplied.

• If a mask bit is off , but any lower-order mask bit is on, the corresponding storage area must still be
included in the parameter list, and the total length specified must match the entire area. For
instance, if only general purpose registers are specified. Set bit 3 on, store the register values
starting at X'14' into the parameter list, and set the total length to 84 (64 + 8 + 8 + 2 + 2).
This total length is the same whether or not the user wants to supply PSW or control registers 3 and
4 information.

The following describes the expected length of the entire parameter list relative to the highest bit set
in the mask:

• If bit 5 is set (indicating that the high halves of the general purpose registers are included in the
PSW/register area), the length must be 212 bytes, even if bit 3 is the only other bit set.

• If bit 4 is set (indicating ARs are included), the length must be 148.
• If bit 3 is set (GPRs are included), the length must be 84.
• If bit 2 is set (CRs are included), the length must be 20.
• If bit 1 is set (PSW is included), the length must be 12.
• If none of the bits are to be set ('nothing' is indicated), the length must be 4.

Table 52 on page 335 describes the PSWREGS parameter list.

Table 52. PSWREGS parameter list

Offset (in hex) Length Field description

00 2 The total length of the PSWREGS parameter list

02 2 Bit mask describing data areas included in the PSW/register
area

1... Bit 1: On - The PSW is included in the PSW/register area

.1.. Bit 2: On - Control registers 3 and 4 are included in the PSW/
register area

..1. Bit 3: On - General purpose registers are included in the
PSW/register area

...1 Bit 4: On - ARs are included in the PSW/register area.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 335

Table 52. PSWREGS parameter list (continued)

Offset (in hex) Length Field description

.... 1... Bit 5: On - High halves of general purpose registers are
included in the PSW/register area.

Bits 6 - 16: Initialize these bits to zero.

04 8 PSW: Data only supplied if the PSW mask bit is set

0C 8 Control registers 3 and 4: Data only supplied if mask bit is
set.

14 64 General purpose registers 0 - 15: Data only supplied if mask
bit is set.

54 64 ARs 0 - 15: Data only supplied if mask bit is set.

94 64 High halves of general purpose registers 0 - 15: Data only
supplied if mask bit is set

In addition to dumping virtual storage areas around the general purpose registers using 31-bit
addresses, if the high order register halves are also specified then SDUMP will also dump the
anologous virtual storage areas addressed by the resulting 64-bit register contained addresses using
the same guidelines for dumping areas in the primary, secondary, home and access register qualified
storage locations.

,QUIESCE=YES
,QUIESCE=NO

Specifies that the system is to be set nondispatchable until the contents of the SQA and the CSA are
dumped (YES), or that the system is to be left dispatchable (NO). If the SDATA parameter does not
specify SQA or CSA, the QUIESCE=YES request is ignored.

Notes:

1. Summary dumps (SUMDUMP) for branch entries (BRANCH=YES) always cause the system to be
set nondispatchable until the summary dump is written.

2. A Q=YES|NO setting for the CHNGDUMP command overrides this parameter. For the use of the
CHNGDUMP command, see z/OS MVS System Commands.

,REMOTE=area addr
Specifies the address of an area that identifies other systems in the sysplex to be dumped by this
SDUMPX macro. If register notation is used, the register contains the address of the area. If the
parameter is omitted, only the current system is dumped.

The area is mapped by the IHASDRMT mapping macro and must be in common storage. Through
IHASDRMT, you can identify the systems to be dumped and specify the content of the dumps on
individual systems. The area consists of:

• A 4-byte header, which indicates the total length of the area. The length includes the 4 bytes of the
header.

• ID, length, contents entries. Each entry consists of:
ID

A 2-byte field, whose value identifies the type of the contents. The values are declared by the
constants with names beginning with SDRMT_IDCON in the IHASDRMT mapping.

Length
A 2-byte field that gives the length of the contents portion. The length includes the 2 bytes of
this length field and the 2 bytes of the ID field.

Contents
A variable field that gives the contents identified in the ID field. The contents you can specify are
the system names, job names, XCF group and member names, data space names, address

SDUMPX macro

336 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

space identifiers, SDATA options, storage ranges, subpools, and keys. Within the contents, you
can specify items explicitly or, for the following, use wildcards.

– System name
– Job name
– XCF group name
– XCF member name
– Data space name and its qualifying job name

See “Wildcards” on page 320.

If the area exceeds 1024 bytes, the caller must not free the area until data capture for the dump is
completed. For an asynchronous dump, use an ECB or SRB parameter to be notified when data
capture is complete or use a SUSPEND parameter to suspend other processing until data capture is
completed. (For a synchronous dump on the local system, you do not have to worry about freeing the
area too soon because the system does not return control to the caller until processing completes.)

If the length of the area is less than 4 bytes, the system ignores the REMOTE parameter. If the length
of any of its entries is less than 4 bytes, the dump request returns with an error return code.

The dumps requested through REMOTE are affected by other parameters on the SDUMPX macro:
LISTD, SDATA, ASIDLST, JOBLIST, DSPLIST, SUBPLST, and KEYLIST; you can specify that the values
of these parameters be copied for the dumps requested through REMOTE. The dumps requested
through REMOTE do not contain information for the LIST and LISTA parameters.

,SDATA=(sdata options)
Specifies the system is to dump the following:
Option

Data to be Dumped
ALLNUC

The DAT-ON and DAT-OFF nuclei. The read-only (page-protected) area of the nucleus and the
DAT-OFF nucleus is not included in the dump unless this keyword is specified.

ALLPSA
All of the prefixed storage areas (PSAs) in the system.

COUPLE
Cross-system coupling facility (XCF) information

CSA
Dumps the following storage:

• The CSA and ECSA subpools (subpools 227, 228, 231, and 241)

Only those obtained pages that have something stored into them are dumped. The dump does
not include pages of storage that are in a freshly-obtained state.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 337

• Virtual storage for 64-bit addressable memory objects created using one of the following
services:

– IARV64 REQUEST=GETCOMMON,DUMP=LIKECSA
– IARCP64 COMMON=YES,DUMP=LIKECSA
– IARST64 COMMON=YES,TYPE=PAGEABLE

GRSQ
Global resource serialization control blocks.

HCSAByASID
High virtual CSA storage that is owned by the ASIDs for which SDUMP captures data. See the ASID
parameter for details about the ASIDs that are dumped.

Attention: When this option is specified alone, it might result in the inclusion of none of the
above the bar CSA storage in the dump.

The following table describes how HCSAByASID, HCSANoOwner, and HCSASysOwner affect the
CSA storage that is captured in an SVC dump:

HCSANoOwner
High virtual CSA storage for which the owner has ended.

Attention: When this option is specified alone, it might result in the inclusion of none of the
above the bar CSA storage in the dump.

HCSASysOwner
High virtual CSA storage that belongs to the SYSTEM.

Attention: When this option is specified alone, it might result in the inclusion of none of the
above the bar CSA storage in the dump.

Table 53. Affects on the CSA storage captured in an SVC dump

Specified SDATA option or options CSA storage that is included in the dump

CSA All above the bar and below the bar CSA
storage

CSA, HCSAByASID, HCSANoOwner,
HCSASysOwner

All below the bar CSA storage, high virtual CSA
storage that is owned by the ASIDs that are
included in the dump, high virtual CSA storage
for which the owner has ended, and high virtual
CSA storage that belongs to the SYSTEM.

The dump does not include high virtual CSA
storage that is owned by the ASIDs that are
excluded from the dump.

HCSAByASID, HCSANoOwner, HCSASysOwner All high virtual CSA storage that is owned by
the ASIDs that are included in the dump, high
virtual CSA storage for which the owner has
ended, and high virtual CSA storage that
belongs to the SYSTEM

No below the bar CSA storage is included in the
dump.

(Neither CSA nor any of the HCSAxxxx options) None of the CSA storage is included in the
dump.

LPA
The active link pack area modules and SVCs for each address space being dumped.

SDUMPX macro

338 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

LSQA
Dumps the following storage:

• The LSQA and ELSQA for each address space being dumped (subpools 203-205, 213-215,
223-225, 233-235, and 253-255)

• Virtual storage for 64-bit addressable memory objects created using one of the following
services:

– IARV64 REQUEST=GETSTOR,DUMP=LIKELSQA
– IARCP64 COMMON=NO,DUMP=LIKELSQA
– IARST64 COMMON=NO

NOALLPSA
NOALL

The PSA for one processor is dumped. This is either the processor at the time of the error or the
processor at the time of the dump.

NOSQA
The system queue area is not dumped.

NOSUMDUMP
NOSUM

A summary dump is not included in the SVC dump.
NUC

The non-page-protected areas of the DAT-ON nucleus. (The ALLNUC parameter must be specified
to obtain the entire nucleus, including the page-protected areas of the DAT-ON nucleus and the
DAT-OFF nucleus.)

PSA
The PSA for one processor is dumped. This is either the processor at the time of the error or the
processor at the time of the dump.

RGN
Dumps the following storage:

• The allocated pages in the private area of each address space being dumped. This includes the
following areas:

Subpools Storage

0-127, 129-132, 229, 230, 240, 244, 249,
250-252

All storage allocated to these subpools

203-205, 213-215, 223-225, 233-235,
253-255

All storage allocated to the LSQA and ELSQA

236, 237 All storage allocated to the SWA and ESWA

Only those obtained pages that have something stored into them are dumped. The dump does
not include pages of storage that are in a freshly-obtained state. This reduces the number of
page faults that occur during SVC dump processing, decreases the time required to take a
dump, and reduces the size of the dump.

• Virtual storage for 64-bit user region memory objects created using the following services:

– IARV64 REQUEST=GETSTOR,DUMP=LIKERGN
– IARV64 REQUEST=GETSTOR,SVCDUMPRGN=YES
– IARCP64 COMMON=NO,DUMP=LIKERGN
– IARST64 COMMON=NO

• Data-in-virtual (DIV) pages are dumped when they have been changed since the last DIV macro
(that specified the SAVE service) executed. DIV pages that have not been changed, are
considered to be in a freshly-obtained state.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 339

SERVERS
Client-related data in address spaces and dataspaces other than the client's should be added to
the dump via IEASDUMP.SERVERS exit invocations. Note that this will convert synchronous dumps
to asynchronous dumps.

SQA
Dumps the following storage:

• The SQA and ESQA subpools (226, 239, 245, 247, and 248)

Only those obtained pages that have something stored into them are dumped. The dump does
not include pages of storage that are in a freshly-obtained state.

• Virtual storage for 64-bit addressable memory objects created using one of the following
services:

– IARV64 REQUEST=GETCOMMON,DUMP=LIKESQA
– IARCP64 COMMON=YES,DUMP=LIKESQA
– IARST64 COMMON=YES,TYPE=FIXED
– IARST64 COMMON=YES,TYPE=DREF

SUMDUMP
SUM

A summary dump is to be included with the SVC dump output. The trace table is included in the
non-summary portion of the dump if this option is specified or used as a default.

The type of summary dump depends on how you specify the BRANCH and SUSPEND parameters:

• If you specify BRANCH=YES and SUSPEND=NO, you get a disabled summary dump.
• If you specify BRANCH=YES and SUSPEND=YES, you get a suspend summary dump.
• If you specify BRANCH=NO, you get an enabled summary dump.

For a description of the dump contents, see z/OS MVS Diagnosis: Tools and Service Aids.

SWA
The scheduler work area subpools for each address space being dumped (subpools 236 and 237).
This includes all storage allocated above and below 16 megabytes.

TRT
The system trace table, the GTF trace records, and master trace data if these types of traces are
active

XESDATA
Cross-system extended services (XES) information.

DEFAULTS
DEFS

The following default SDATA options are included in the SVC dump:

• ALLPSA
• SQA
• SUMDUMP
• IO
• Any default SDATA options specified by the CHNGDUMP command when CHNGDUMP is in ADD

mode.

Notes:

1. DEFAULTS is not required. All SVC dumps include the default SDATA options unless
NODEFAULTS is specified.

2. DEFAULTS and NODEFAULTS are mutually exclusive.

SDUMPX macro

340 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

NODEFAULTS
NODEFS

The SDATA defaults are NOT included in the SVC dump. Specifying NODEFAULTS reduces the size
of an SVC dump by excluding the following default SDATA options:

• ALLPSA
• SQA
• SUMDUMP
• IO
• Any default SDATA options specified by the CHNGDUMP command when CHNGDUMP is in ADD

mode.

If a data area relating to an SDATA option is required in the dump, the programmer can code that
SDATA option on the SDUMPX macro invocation. All keywords and SDATA options are valid when
NODEFS is coded.

If you specify NODEFAULTS, the dump still contains some default system areas that are included
in all dumps.

IO
The IO data areas are included in the SVC dump.

,SRB=(srb addr)
,SRB=(srb addr,CAPTURE)
,SRB=(srb addr,WRITE)

Specifies how the system should synchronize your program with dump processing. Note that these
interfaces will not be driven if the call to SDUMPX results in a non-zero return code.

SRB specifies that the system should schedule the service request block (SRB) indicated by srb addr.
For SRB=srb addr and SRB=(srb addr,CAPTURE), the system schedules the SRB at the completion of
the capture phase unless you have also specified the DCB parameter. If you specify both the DCB and
SRB parameters, the system schedules the SRB at the completion of the writing phase, no matter
what has been specified on the SRB parameter. For SRB=(srb addr,WRITE), the system schedules the
SRB at the completion of the dump writing phase. If the capture phase is not successful, the system
schedules the SRB at the completion of SVC dump processing.

When the caller builds the SRB, the caller may pass the address of a status area in the SRBPARM field.
This status area, SDSTATUS, is mapped by IHASDST. SVC dump passes information about the dump
to the SRB routine by means of this status area. If SVC dump schedules the SRB at the completion of
the capture phase, the name of the dump data set is not passed to the caller.

,STORAGE=(strt addr,end addr)
Specifies one or more pairs of starting and ending addresses. Each starting address must be less than
its corresponding ending address.

When STORAGE is specified, the list must contain an even number of addresses, and each address
must occupy one fullword. In the list, the high-order bit of the fullword containing the last ending
address of the list must be set to 1. All other high-order bits must be set to 0.

,STRLIST=structure list addr
Specifies the address of an area that contains a dump parameter list. The list can contain lists of
structures, ranges, and options to be dumped from a Coupling facility. Use the IHABLDP macro to
build this list for input to SDUMPX. If any structure specified is not accessible or not eligible to be
dumped, a partial dump occurs.

The size of the structure list can range from a minimum of 72 bytes to a maximum of 8K.

,SUBPLST=subpool id list address
Specifies a list of ASIDs with associated subpool ids corresponding to subpools of virtual storage that
are to be included in the SVC dump.

The first fullword of the list contains the number of bytes (including the first word) in the list. The list
can contain a maximum of 200 bytes consisting of unique ASIDs and subpool IDs. If the list contains

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 341

duplicate ASIDs or subpool IDs, the length can exceed 200 bytes because SDUMPX stores the unique
subpool IDs in a 200-byte work area.

The structure of the list for each ASID follows:

• The first word contains the ASID in bits 0-15 and the number of subpools associated with this ASID
(n) in bits 16-31. If 0 is specified as the ASID, the caller's home ASID is used.

• The next n halfwords contain the subpool IDs (right justified) corresponding to the virtual storage to
be included in the SVC dump. The manner in which these subpools are dumped depends on
whether they are private or common area subpools.

– If a private area subpool (related to a TCB) is specified, all virtual storage associated with this
subpool, for all TCBs in the specified address space, is dumped.

– If a common area subpool is specified, all of the virtual storage allocated in the subpool is
dumped.

SVC dump does not dump all the obtained storage in an address space if the SUBPLST list keyword for
private subpools is coded. This reduces the number of page faults that occur during SVC dump
processing and the time required to take a dump. It also reduces the size of dumps on tape or DASD.

For storage that is not related to data-in-virtual, only obtained pages that have something stored into
them are dumped. This eliminates the pages of storage that are in a freshly obtained state.

For storage that is related to data-in-virtual, only pages that are in central storage are dumped, as
well as pages that have been changed since the last data-in-virtual SAVE operation.

Notes:

1. SVC dump ignores unassigned subpool IDs and ASIDs.
2. If an invalid subpool or ASID (ASID greater than ASVTMAXU) is specified, the caller receives a 233

ABEND and SDUMP processing terminates the dump.
3. If all ASIDs specified in SUBPLST are the current ASID, SUBPLST does not force a scheduled

dump. However, if any of the ASIDs are different, a scheduled (or asynchronous) dump results.
4. SDUMPX callers executing in key 0 and supervisor state, who request storage from subpool 0 via

GETMAIN obtain that storage from subpool 252 instead. Therefore, when these callers want to
dump this storage, they must specify subpool 252 rather than subpool 0.

,SUMLIST=(strt addr,end addr)
,SUMLSTA=list addr
,SUMLSTL=list addr
,SUMLIST64=list addr

Specifies one of the following:

• A list of starting and ending addresses of areas to be included in a summary dump (SUMLIST).
• A combined list of ASIDs and storage ranges (SUMLSTA).
• A list of address ranges, qualified by ALETs, of areas to be included in a summary dump (SUMLSTL).
• A list of virtual address ranges, qualified by ALETs or STOKENs, of areas to be included in a

summary dump (SUMLIST64).

SUMDUMP must be specified as an SDATA parameter and each starting address must be less than its
corresponding ending address.

SUMLIST: For SUMLIST, the storage list must contain an even number of addresses, and each
address must occupy one fullword. In the list, the high-order bit of the fullword containing the last
ending address of the list must be set to 1, and all other high-order bits must be set to 0.

SUMLSTA: For SUMLSTA, the first fullword of the list contains the number of bytes (including the first
word) in the list. SUMLSTA specifies a list of ASIDs and storage ranges as follows:

SDUMPX macro

342 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Restriction: The maximum number of ASIDs that the combined ASID, ASIDLST, JOBLIST, LISTA,
TYPE=XMEM, TYPE=XMEME, and SUBPLST parameters can specify is fifteen.

Note: There is no restriction on the number of ASIDs that the SUMLSTA can specify.

When BRANCH=YES and SUSPEND=NO are also specified, the list must be addressable using the
addressability established when SVC dump was entered. The lists themselves and all ranges specified
must reference paged-in data. Paged-out data is not dumped by summary dump.

When BRANCH=YES and SUSPEND=YES are also specified, the lists must be addressable using the
addressability established when SVC dump was entered. The lists and referenced data can either be
in paged in or paged out areas. The maximum amount of summary dump data with this type of dump
is 8M.

When BRANCH=NO is also specified, the lists must be addressable in all address spaces in which the
dump will be taken (those address spaces specified by ASID, ASIDLST, JOBLIST, LISTA, or
TYPE=XMEM, TYPE=XMEME, or SUBPLST), which typically means that the list must be in common
storage. Synchronization with the capture phase via the SRB or ECB option is also required, as you
cannot free the storage containing these lists until the capture phase is completed. The lists and
referenced data can be in paged-in or paged-out areas. The maximum amount of summary dump data
possible with this type of dump is dependent only on the size of the dump data set.

Each ASID specified with SUMLSTA must represent a valid, swapped-in address space in order for the
data to be dumped.

Programming Notes: The total number of distinct ASIDs that can be specified by ASID, ASIDLST,
JOBLIST, LISTA, TYPE=XMEM, TYPE=XMEME, and SUBPLST is fifteen. If more than fifteen are
requested, only the first fifteen are processed. There is no restriction on the number of ASIDs
specified by the SUMLSTA parameter, nor do SUMLSTA ASIDs contribute toward the fifteen ASID
limit.

SUMLSTL: For SUMLSTL, the first fullword of the list contains the number of bytes (including the first
word) in the list. Specify the ALETs and address ranges as follows:

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 343

ALET refers to entries in either a DU-AL or a PASN-AL, and associated with any address/data space
that the caller has addressability to. SVC dump does not dump data space storage that has not been
referenced.

SUMLIST64=list addr
Specifies a storage location describing a list of virtual storage address ranges, qualified by STOKEN or
ALET, to be included in the dump.

The address ranges are described with 64-bit starting and ending addresses and may refer to any
address space virtual storage, including virtual storage above the 2 gigabyte bar and any data space
storage.

The SUMLIST64 parameter is mutually exclusive with the SUMLSTL parameter.

When SUMLIST64=list addris specified, the first fullword of the storage list contains the number of
bytes, including the first word, in the list.

The SUMLIST64 storage list format is essentially analogous to the SUMLSTL storage list format, and
the STOKENs or ALETs and the address ranges can be specified as follows:

• The flags field contains one byte of bit indicators.
• A flags value of X'80' indicates the STOKEN/ALET field contains a STOKEN.
• A value of X'40' indicates the STOKEN/ALET field contains an ALET.

Note: The ALET must be right-aligned in the 8-byte field (placed into the last 4 bytes).
• The only values supported in the flags field are X'80' and X'40'.
• The ending address for any data space range cannot exceed hexadecimal '000000007FFFFFFF'.

The STOKEN/ALET field is specified as follows:

SDUMPX macro

344 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

If a STOKEN is specified, the address of data space represented by the stoken must be addressable
via PASN access list.

SUMLIST64 may only be specified in conjunction with SDATA=SUMDUMP.

,SUSPEND=NO
,SUSPEND=YES

Specifies that a suspend summary dump is requested (YES) or not requested (NO). SUSPEND=YES
must be used together with the BRANCH=YES and SDATA=SUMDUMP parameters. This keyword
should be used by routines that can experience page faults but that want to save dump information in
a virtual storage buffer.

In z/OS V1R7 and later releases, when SUSPEND=YES is specified with SDATA=TRT, dumping of the
trace table prior to suspend summary dump processing is initiated. Prior releases did this in the
opposite order, risking the loss of valuable system trace table entries.

Applications that request the recording of a significant amount of data during suspend summary
dump processing can budget their requests using field SMEWVSPC. SMEWVSPC is formally supported
in z/OS V1R7 to indicate the capacity of the suspend summary dump buffer.

,SYMREC=symrec addr
Specifies the address of a valid symptom record for DAE to use for dump suppression. DAE
suppresses the SVC dump if the primary symptom string found in the symptom record matches
previously known symptoms, and, suppression has been enabled by the installation.

The caller must build the symptom record and fill in at least the ‘SR’ identifier and the primary
symptom string, which should uniquely identify the error.

SVC dump issues an abend with a completion code of X'233', reason code X'9C', then returns to
the caller with a return code of 8 if the symptom record identifier is not ‘SR’, if the offset and length of
the primary symptom string are not initialized, or if the first byte of the symptom record and the last
byte of the secondary symptom string are not addressable.

SVC dump does not include the symptom record in the dump. The caller can use the SUMLIST
keyword to include the symptom record in the dump.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 345

See the dump analysis and elimination (DAE) section in z/OS MVS Programming: Authorized Assembler
Services Guide for more information on symptom strings and how to build them.

The ADSR macro maps the symptom record. See z/OS MVS Data Areas in the z/OS Internet library
(www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary) for a macro mapping of
the ADSR.

,TYPE=XMEM
,TYPE=XMEME
,TYPE=NOLOCAL
,TYPE=FAILRC

Specifies that the caller's cross memory mode determines the address spaces to dump (XMEM or
XMEME) or that the caller cannot allow SDUMPX to obtain a local lock (NOLOCAL) or that SVC dump
should return a reason code with the return code to the DUMP command processor when the
requested dump was not taken (FAILRC).
XMEM

Requests SVC dump to use the caller's cross memory mode at the time the SDUMPX macro is
executed.

XMEME
Requests SVC dump to use the caller's cross memory mode at the time of the error for which the
dump is being taken.

See the ASID, ASIDLST, or JOBLIST descriptions for the default behavior if TYPE=XMEM or
TYPE=XMEME is not specified.

The home address space is dumped for both keywords. The relevant primary and secondary
address spaces are also dumped if they are unique. If a cross memory local lock was held, the
address space whose local lock is held is also dumped.

NOLOCAL
Indicates that the caller is in an environment where SDUMPX cannot hold a local lock. This option
has meaning only when BRANCH=YES is specified and the caller is enabled and unlocked (for
example, the caller has an enabled unlocked task FRR established or is in SRB or cross memory
mode).

FAILRC
Requests that the caller receive special information from SVC dump whenever the dump fails.
Some information is already placed in SDWASDRC as a result of the SVC dump failure. When the
caller receives control again after a dump failure (return code 8) and the caller has specified
TYPE=FAILRC, the reason code is combined with the return code and passed to the caller in either
register 15 or the ECB, or through the IHASDST mapping macro if the SRBPARM area was
provided for an SRB. The reason code is in bits 16-23; the return code is in bits 24-31. When the
return code is in the ECB, the POST flag is set on. SDUMPX passes back a return code in register
15 and places the reason code in the SDWA. The reason code explains why the dump failed.

,UTOKEN=list addr
Specifies the address of an area that identifies the user token information to use to collect the high
virtual storage. To include these memory objects in an SVC dump, it is required that they were created
using 64-bit storage services with a user token and no dumpable attributes. If the area exceeds 512
bytes, the area must reside in common storage and the caller must not free the area until data
capture for the dump completes. For an asynchronous dump, use the ECB or SRB parameter so that
you are notified when data capture completes. Alternatively, use the SUSPEND parameter to suspend
other processing until data capture completes. For a synchronous dump where only one address
space and its data spaces are involved, do not worry about freeing the storage so soon because the
system does not return control to the caller until data capture completes.

A maximum of 256 user token entries are processed by DUMPSRV and the rest are ignored. If register
notation is used, the register contains the address of the area. UTOKEN SVC dump processing
captures only those 64-bit memory objects that were created with a memory or user token and no
dumpable attributes, meaning that either DUMP=NO or SVCDUMPRGN=NO is specified on the 64-bit
storage service.

SDUMPX macro

346 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

The area consists of:

• A 8-byte header, which indicates the length of the area. The first 4 bytes contain the area length
followed by 4 reserved bytes. If the value in the length field is less than 20, the system ignores the
UTOKEN parameter.

• One or more 12-byte user token identifiers for the high virtual storage that is included in the
dump. An identifier is an ASID, STORAGE_TYPE indicator and a double word user token.
ASID

A 2 byte field that contains an explicit hexadecimal address space identifier. ASID is ignored for
common storage user tokens. If an ASID is zero for the region entry, matching high virtual region
storage for all dumping ASIDs for the supplied user token are included in the dump.

STORAGE_TYPE
A 1 byte character that indicates storage type:

– 'C' or 'c' represents HV common storage
– 'R' or 'r' represents HV region (private) storage

If STORAGE_TYPE and ASID are omitted for an entry, matching high virtual common as well as
high virtual region storage for the supplied user token is included in the dump. If
STORAGE_TYPE is omitted but an ASID is specified for an entry, the dump includes matching
high virtual common storage as well as high virtual region storage for the specified ASID for the
supplied user token.

USERTOKEN
An 8 byte hexadecimal user token that was either supplied or returned when the associated 64-
bit storage service was used to create the memory object. If an ASID or STORAGE_TYPE value is
specified but the user token is omitted, then the UTOKEN entry is ignored.

Provide usertoken information as formatted in the following chart to ensure that the desired storage is
not excluded from the dump.

4 byte length + 4 reserved bytes

2 byte ASID for usertoken_1 +1 byte storage type + 1 byte RSVD

8 bytes usertoken_1

2 byte ASID for usertoken_2 +1 byte storage type + 1 byte RSVD

8 bytes usertoken_2

...

2 byte ASID for usertoken_n +1 byte storage type + 1 byte RSVD

8 bytes usertoken_n

With the introduction of 64-bit storage, SVC dump enhanced its existing processing to dump high
virtual storage when the associated SDATA option was specified. For example, when SDATA=CSA was
specified, all storage with the DUMP=LIKECSA dumping attribute was automatically included in the
dump. This was done to reduce the complexity of a large SDUMP interface or parameter list. However,
with the increase in 64-bit exploitation, this approach resulted in larger than desired SVC dumps
because more storage was dumped than was needed for diagnosing problems. Now that SDUMPX
supports the UTOKEN parameter, applications have a simpler mechanism for dumping sections of
high virtual storage without having to manage lists or addresses.

IBM strongly recommends that you exploit the memory token (MOTKN= or USERTKN=) support that
is available for 64-bit storage services when memory objects are created. While you can associate
memory tokens with memory objects that might have other dumpable attributes, using a memory
token as the exclusive dumpable attribute (MOTKN|USERTKN and DUMP=NO or SVCDUMPRGN=NO)
for memory objects offers an advantage. Applications can control what is dumped without the need to
track address ranges that are supplied to SDUMPX using a LIST64 parameter. You can also make the

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 347

storage dumpable without associating it with a particular storage characteristic or larger dumpable
attribute regions like SVCDUMPRGN=YES areas. As exploitation increases, there is little, if any, need
for installations to use the HCSAxxxx CHNGDUMP options to grossly filter what storage is captured for
a dump.

While not required, there are also potential advantages to using one or more different tokens with
different diagnostic characteristics for storage. For example, some dumps might need only global and
trace data, while others might need local data tables. It is recommended to use one or more different
tokens for common and region storage areas that you need to dump, because you need to create
separate usertoken entries for these tokens. This will reduce the search time in storage manager
when looking for matching storage areas.

Return and reason codes
The following tables identify return codes and reason codes, tell what each means, and recommend
actions that you should take.

Register 15 return codes
If BRANCH=NO was specified and no ASIDs other than the current ASID were requested, register 15
contains one of the following hexadecimal return codes when control is returned at the completion of the
capture phase:

Table 54. Return Codes for the SDUMPX Macro when BRANCH=NO

Hexadecimal Return
Code

Meaning and Action

00 Meaning: A complete dump was taken.

Action: For scheduled dumps, the ECB will be POSTed, or the SRB will receive control.

04 Meaning: A partial dump was taken because the dump data set did not have sufficient space.

Action: Examine the reason code that explains why a partial dump was taken. The reason code is
contained in message IEA911E. For scheduled dumps, the ECB will be POSTed, or if specified, the
routine can include the IHASDRSN mapping macro to map the reason code information.

08 Meaning: The system was unable to take a dump.

Action: Examine the reason code that explains why no dump was taken (see “Reason codes for return
code 08” on page 349). For scheduled dumps, programs must not wait on the ECB, or expect the SRB to
receive control.

If BRANCH=YES or any ASID other than the current ASID was requested, register 15 contains one of the
following hexadecimal return codes when control is returned after the system has scheduled the dump:

Table 55. Return Codes for the SDUMPX Macro when BRANCH=YES

Hexadecimal Return
Code

Meaning and Action

00 Meaning: A dump was scheduled.

Action: An ECB will be POSTed, or the SRB will receive control.

08 Meaning: The system was unable to schedule a dump.

Action: Examine the reason code that explains why no dump was taken (see “Reason codes for return
code 08” on page 349). Programs must not wait on the ECB, or expect the SRB to receive control.

ECB and SRB return codes
If ECB=(ecb addr), ECB=(ecb addr,CAPTURE), SRB=(srb addr), or SRB=(srb addr,CAPTURE), was specified
and the DCB parameter was not specified, the system also returns one of following hexadecimal codes in
the ECB or SRB at the completion of the capture phase:

SDUMPX macro

348 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 56. Return Codes for the ECB Parameter and SRB Parameter

Hexadecimal Return
Code

Meaning and Action

00 Meaning: All the requested data was captured and the dump writing phase was successfully initiated.

Action: None

04 Meaning: Some of the requested data could not be captured and one or more partial dump indicators
have been set in SDRSN. The dump writing phase was successfully initiated.

Action: Examine the reason code that explains why a partial dump was taken. The reason code is
contained in message IEA911E. If you specified the SRB parameter, you can include the IHASDRSN
mapping macro to map the reason code information.

08 Meaning: The system was unable to take a dump.

Action: Examine the reason code that explains why no dump was taken (see “Reason codes for return
code 08” on page 349).

If ECB=(ecb addr,WRITE) or SRB=(srb addr,WRITE) was specified, or if any of the options on the ECB or
SRB parameters were specified along with the DCB parameter, the system also returns one of the
following hexadecimal codes in the ECB or SRB at the completion of the dump writing phase:

Table 57. Return codes for the ECB or SRB parameter with the DCB parameter

Hexadecimal return
code

Meaning and action

00 Meaning: All the requested data was captured and then written to the dump data set.

Action: None

04 Meaning: Some of the requested data could not be captured or could not be written to the dump data
set.

Action: Examine the reason code that explains why a partial dump was taken. The reason code is
contained in message IEA911E. If you specified the SRB parameter, you can include the IHASDRSN
mapping macro to map the reason code information. The reason codes might also be passed to the SRB
routine in the SDSTPDRC field of SDSTATUS.

08 Meaning: The system was unable to take a dump.

Action: Examine the reason code that explains why no dump was taken (see “Reason codes for return
code 08” on page 349).

Note: The ECB will not be posted unless the return code from SDUMPX is 0.

Reason codes for return code 08
When a return code of 08 is received, a hexadecimal reason code is returned. The reason code is in the
following locations:

• In the SDWASDRC field of the SDWA if you issued SDUMPX in a recovery routine, and the system
provided an SDWA.

• In the ECB or register 15 (bits 16 - 23), provided that the FAILRC parameter is specified.
• In the SDSTATUS field. This field is pointed to by the SRBPARM field that is in the SRB parameter list.

The parameter list is passed to SDUMPX by using the SRB keyword.

The reason codes are as follows:

Table 58. Reason codes for return code 08

Hexadecimal reason
code

Meaning and action

0 Meaning: SVC dump processing could not be serialized.

Action: None

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 349

Table 58. Reason codes for return code 08 (continued)

Hexadecimal reason
code

Meaning and action

1 Meaning: An SVC dump was successfully started.

Action: None

2 Meaning: An SVC dump was suppressed because the capture phase of another SVC dump was in
progress.

Action: Wait until the dump in progress has been captured (as identified by message IEA794I) and
reissue SDUMPX.

3 Meaning: An SVC dump was suppressed by a request by the installation (for example: DUMP=NO at IPL
or CHNGDUMP SET,NODUMP).

Action: Issue CHNGDUMP SET,SDUMP or CHNGDUMP RESET,SDUMP and reissue SDUMPX.

4 Meaning: An SVC dump was suppressed by a SLIP NODUMP command.

Action: Delete SLIP trap with SLIP DEL command and reissue SDUMPX.

5 Meaning: An SVC dump was suppressed because a SYS1.DUMP data set was not available.

Action: If MSGTIME expired, increase MSGTIME limit with CD SET,SDUMP,MSGTIME= command. Make
a dump dataset available via the DUMPDS ADD,DSN= and/or DUMPDS CLEAR,DSN= commands and
reissue SDUMPX.

6 Meaning: An SVC dump was suppressed because an I/O error occurred during the initialization of the
SYS1.DUMP data set.

Action: Reissue SDUMPX.

8 Meaning: An SVC dump was suppressed because an SRB could not be scheduled to activate the dump
tasks in the requested address spaces.

Action: None

9 Meaning: An SVC dump was suppressed because a terminating error occurred in SVC dump before the
first dump record was written.

Action: Reissue SDUMPX.

A Meaning: An SVC dump was actually started, but because the status stop SRB condition was detected,
no notification can be returned to the application when the dump completes, regardless of the SRB or
ECB parameter settings.

Action: None

B Meaning: An SVC dump was suppressed by DAE.

Action: None.

C Meaning: The DUMPSRV primary task is unavailable to process SVC dumps.

Action: DUMPSRV may be restarting after processing a CANCEL request. Try reissuing the SDUMPX at a
later time. If the condition persists, notify the system programmer that DUMPSRV is unavailable and
that they may require IBM assistance to get it restarted.

15 Meaning: The parameter list address is zero.

Action: Supply a parameter list address in register 1 and reissue SDUMPX.

16 Meaning: The parameter list is not a valid SVC or SNAP parameter list.

Action: Provide the address of a valid SVC dump parameter list in register 1 and reissue SDUMPX.

17 Meaning: The caller-supplied data set is not supported.

Action: Supply a dataset with LRECL >= 4160 open with EXCP on a device supported by SVC dump (or
use a system dump dataset) and reissue SDUMPX.

SDUMPX macro

350 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 58. Reason codes for return code 08 (continued)

Hexadecimal reason
code

Meaning and action

18 Meaning: The start address is greater than or equal to the end address in a storage list.

• For the LIST, STORAGE and SUMLIST parameters, ensure that the high-order bit of the last ending
address is set to 1.

• For the LISTA, LISTD, LIST64, SUMLSTA, SUMLSTL and SUMLIST64 parameters, ensure that the
length of the list or the number of ranges was specified correctly.

Action: Correct the address range that is not valid and reissue SDUMPX.

19 Meaning: The caller-supplied header is longer than 100 characters.

Action: Supply a shorter header and reissue SDUMPX.

1A Meaning: The caller requested a 4K buffer, but did not reserve it.

Action: Consider converting the SDUMP invocation to generate a summary dump instead of using the
BUFFER=YES parameter. Otherwise, refer to the information for the BUFFER=YES parameter in the
SDUMPX macro description and reissue the SDUMPX after the correction is made.

1B Meaning: A storage list overlaps the 4K buffer.

Action: Move the storage list so that it does not overlap the SVC dump 4K buffer pointed to by
CVTSDBF. Reissue SDUMPX.

1C Meaning: The caller-supplied DCB is not valid.

Action: Make sure DCB is open, does not overlap 4K buffer, and represents a tape or DASD dataset,
then reissue SDUMPX.

1E Meaning: An ASID in the ASID list is syntactically not valid.

Action: Supply a valid ASID (<= ASVTMAXU) and reissue SDUMPX.

22 Meaning: The 4K buffer was requested with an SVC dump already in progress.

Action: Wait until the dump in progress has been captured and reissue SDUMPX.

25 Meaning: A subpool ID that was not valid was specified in the subpool list.

Action: Supply a valid subpool id (<= 255) and reissue SDUMPX.

28 Meaning: Part of the parameter list is inaccessible.

Action: Make sure the parameter list is addressable from the caller's current address space. Reissue
SDUMPX.

29 Meaning: The caller-supplied DCB is inaccessible.

Action: Make sure the DCB is addressable from the caller's current address space. Reissue SDUMPX.

2A Meaning: The caller-supplied storage list is inaccessible.

Action: Make sure the storage list addressable from the caller's current address space. Reissue
SDUMPX.

2B Meaning: The caller-supplied header data is inaccessible.

Action: Make sure the header is addressable from the caller's current address space. Reissue SDUMPX.

2C Meaning: The caller-supplied ECB is inaccessible.

Action: Make sure the ECB is addressable from the caller's current address space. Reissue SDUMPX.

2D Meaning: The caller's ASID list is inaccessible.

Action: Make sure the ASID list is addressable from the caller's current address space. Reissue
SDUMPX.

2E Meaning: The caller's SUMLIST/SUMLSTA is inaccessible.

Action: Make sure the SUMLIST/SUMLSTA is addressable from the caller's current address space.
Reissue SDUMPX.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 351

Table 58. Reason codes for return code 08 (continued)

Hexadecimal reason
code

Meaning and action

2F Meaning: The caller's SUBPLST list is inaccessible.

Action: Make sure the SUBPLST is addressable from the caller's current address space. Reissue
SDUMPX.

30 Meaning: The caller's KEYLIST is inaccessible.

Action: Make sure the KEYLIST is addressable from the caller's current address space. Reissue
SDUMPX.

31 Meaning: Copies of the SLIP register and PSW are inaccessible.

Action: None

32 Meaning: The caller-supplied SRB is inaccessible.

Action: Make sure the SRB is addressable from the caller's current address space. Reissue SDUMPX.

33 Meaning: The version number in the parameter list is not valid.

Action: Supply a parameter list with a valid version number and reissue SDUMPX.

34 Meaning: The caller's LISTD or LIST64 is inaccessible.

Action: Make sure the LISTD or LIST64 is addressable from the caller's current address space. Reissue
SDUMPX.

35 Meaning: The caller's SUMLSTL or SUMLIST64 is inaccessible.

Action: Make sure the SUMLSTL or SUMLIST64 is addressable from the caller's current address space.
Reissue SDUMPX.

36 Meaning: The parameter list contains conflicting parameters.

Action: Remove the conflicting parameters (for example, both ECB and SRB specified) and reissue
SDUMPX.

37 Meaning: The ID is longer than 50 characters.

Action: Supply a shorter ID and reissue SDUMPX.

38 Meaning: The ID is not addressable.

Action: Make sure the ID is addressable from the caller's current address space. Reissue SDUMPX.

39 Meaning: The PSWREGS area is an incorrect length.

Action: Correct the length of the PSWREGS area and reissue SDUMPX.

3A Meaning: The PSWREGS area is not addressable.

Action: Make sure the PSWREGS area is addressable from the caller's current address space. Reissue
SDUMPX.

3B Meaning: The symptom record is not valid.

Action: Supply a valid symptom record and reissue SDUMPX.

3C Meaning: The symptom record is not addressable.

Action: Make sure the symptom record is addressable from the caller's current address space. Reissue
SDUMPX.

3D Meaning: The DEB for the caller-supplied DCB is inaccessible.

Action: Make sure the DEB for the caller-supplied DCB is addressable from the caller's current address
space. Reissue SDUMPX.

3E Meaning: SVC dump is already using the maximum amount of virtual storage (as determined by the
installation, using the MAXSPACE parameter on the CHNGDUMP command) to process other dumps.

Action: Make a dump dataset available via the DUMPDS ADD,DSN= or DUMPDS CLEAR,DSN= command,
reply DELETE to an outstanding IEA793A message, or increase the amount of virtual storage that
SDUMPX is allowed to use via the CHNGDUMP SET,SDUMP,MAXSPACE= command, then reissue
SDUMPX.

SDUMPX macro

352 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Table 58. Reason codes for return code 08 (continued)

Hexadecimal reason
code

Meaning and action

3F Meaning: The caller-supplied STRLIST area is inaccessible.

Action: Make sure the STRLIST area is addressable from the caller's current address space. Reissue
SDUMPX.

40 Meaning: The caller-supplied INTOKEN area is inaccessible.

Action: Make sure the INTOKEN area is addressable from the caller's current address space. Reissue
SDUMPX.

41 Meaning: The caller-supplied REMOTE area is inaccessible.

Action: Make sure the REMOTE area is addressable from the caller's current address space. Reissue
SDUMPX.

42 Meaning: The caller-supplied PROBDESC area is inaccessible.

Action: Make sure the PROBDESC area is addressable from the caller's current address space. Reissue
SDUMPX.

43 Meaning: The caller-supplied JOBLIST area is inaccessible.

Action: Make sure the JOBLIST area is addressable from the caller's current address space. Reissue
SDUMPX.

44 Meaning: The caller-supplied DSPLIST area is inaccessible.

Action: Make sure the DSPLIST area is addressable from the caller's current address space. Reissue
SDUMPX.

45 Meaning: The caller-supplied REMOTE area is not valid. The length of a field in the REMOTE area is
specified as less than 4 bytes.

Note that, if the length of the entire REMOTE area is less than 4 bytes, the REMOTE parameter is
ignored.

Action: Correct the lengths specified in the area mapped by the IEASDRMT macro. Reissue SDUMPX.

46 Meaning: SVC dump processing has determined that its threshold for using auxiliary storage (AUX) has
been exceeded. If the threshold was exceeded while an SVC dump was in progress, that processing will
be stopped and the resulting dump will be partial. Also, as long as the threshold is exceeded, no new
dumps will be allowed to start. If the DUMPSRV address space is the largest consumer of AUX, then
either captured SVC dumps are not being written to DASD quickly enough, or the size of the current
dump request is considerable.

Action: Ensure that enough DASD resource is available for accommodating the captured SVC dumps.
Because other applications might be using the paging resource, more paging space might be required.
When SVC dump processing has detected a shortage, the auxiliary storage utilization must drop below
35% before new SVC dump requests are honored. See the system programmer response for message
IRA201E to determine how to relieve the shortage. Then redrive the SVC dump. You can use the
AUXMGMT and MAXSPACE parameters of the CHNGDUMP SET command to manage the use of virtual
and auxiliary storage by SVC dump processing. See z/OS MVS System Commands for more details about
the CHNGDUMP command.

47 Meaning: A LIST64 range exceeds 2 gigabyte addressability in an ESA environment.

Action: Remove the ranges from the LIST64 parameter that exceeds 2 gigabyte addressability. Then
reissue the SDUMPX macro.

SDUMPX - List form
Use the list form of the SDUMPX macro to construct a control program parameter list. You can specify any
number of storage addresses using the STORAGE parameter. Therefore, the number of starting and
ending address pairs in the list form of SDUMPX must be equal to the maximum number of addresses
specified in the execute form of the macro.

Syntax
The list form of the SDUMPX macro is written as follows:

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 353

Syntax Description

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SDUMPX.

SDUMPX

␣ One or more blanks must follow SDUMPX.

 HDR=‘dump title’ dump title: From 1 to 100 characters.

 HDRAD=dump title addr dump title addr: A-type address.

 ,DCB=dcb addr dcb addr: A-type address.

 ,JOBLIST=list addr list addr: RX-type address, or register (2) - (12).

 ,DSPLIST=list addr list addr: RX-type address, or register (2) - (12).

 ,PLISTVER=1 decimal digit 1: Use up to 112-byte parameter list.

 ,PLISTVER=2 decimal digit 2: Use 128-byte parameter list.

 ,PLISTVER=3 decimal digit 3: Use 184-byte parameter list.

 Defaults are as follows:

PLISTVER=2, if you specify SYMREC, ID, IDAD, PSWREGS, SDATA=DEFS,
SDATA=NODEFS, or SDATA=IO.

PLISTVER=3, if you specify STRLIST, REMOTE, INTOKEN, DSPLIST,
JOBLIST, PROBDESC, LIST64 or SUMLIST64.

PLISTVER=1, in all other cases.

 ,SYMREC=symrec addr symrec addr: RX-type address, or register (2) - (12).

 ,ID=‘identifier’ identifier: From 1 to 50 characters.

 ,IDAD=identifier addr identifier addr: RX-type address, or register (2) - (12).

 ,INTOKEN=token addr token addr: RX-type address, or register (2) - (12).

 ,REMOTE=area addr area addr: RX-type address, or register (2) - (12).

SDUMPX macro

354 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 ,STRLIST-structure list addr structure list addr: RX-type address or register (2) - (12).

 ,PSWREGS=parm list addr parm list addr: RX-type address, or register (2) - (12).

 ,SDATA=(sdata options) sdata options: Any combination of the following, separated by commas:

 ALLNUC, ALLPSA, COUPLE, CSA, GRSQ, HCSAByASID, HCSANoOwner,
HCSASysOwner, LPA, LSQA, NOALLPSA/NOALL, NOSQA, NOSUMDUMP/
NOSUM, NUC, PSA, RGN, SQA, SUMDUMP/SUM, SWA, TRT, XESDATA,
DEFAULTS/DEFS, NODEFAULTS/NODEFS, IO

 Note:

1. Executing the SDUMPX macro causes ALLPSA, SQA, IO, and
SUMDUMP storage areas to be dumped unless excluded by
NOALLPSA, NOSQA, NODEFAULTS, or NOSUMDUMP.

2. The PSA and IO options are not required unless NODEFAULTS is
specified, because they are dumped as a default in all SVC dumps.

3. DEFAULTS is not required. All SVC dumps include the default SDATA
options unless NODEFAULTS has been specified.

 ,PROBDESC=area addr area addr: RX-type address, or register (2) - (12).

 ,STORAGE=(strt addr,end addr) strt addr: A-type address.

 end addr: A-type address.

 ,LIST=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

 end addr: A-type address, or register (2) - (12).

 Note: Specify one or more pairs of addresses, separated by commas.

 ,LISTA=list addr list addr: RX-type address, or register (2) - (12).

 ,LISTD=list addr

 ,LIST64=list addr

 ,SUMLIST=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

 end addr: A-type address, or register (2) - (12).

 Note: Specify one or more pairs of addresses, separated by commas.

 ,SUMLSTA=list addr list addr: RX-type address, or register (2) - (12).

 ,SUMLSTL=list addr

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 355

Syntax Description

 ,SUMLIST64=list addr

 ,SUBPLST=subpool id list addr subpool id list addr: A-type address, or register (2) - (12).

 ,KEYLIST=storage key list addr storage key list addr: A-type address, or register (2) - (12).

 Note: KEYLIST cannot be specified without SUBPLST.

 ,BUFFER=NO Default: BUFFER=NO

 ,BUFFER=YES

 ,QUIESCE=YES Default: QUIESCE=YES

 ,QUIESCE=NO

 ,TYPE=(type code) type code: Any combination of the following, separated by commas:
XMEM or XMEME, NOLOCAL.

 ,UTOKEN=list addr list addr: RX-type address, or register (2) - (12).

,MF=L

Parameters
The parameters are explained under the standard form of the SDUMPX macro, with the following
exception:

,MF=L
Specifies the list form of the SDUMPX macro.

Notes:

• If SYMREC, ID, IDAD, PSWREGS, SDATA=NODEFS, SDATA=DEFS or SDATA=IO is not used on the list
form of the macro, but is coded on the execute form, use PLISTVER=2 when specifying MF=L to
generate a 128-byte parameter list.

• When the TCBOWNS option is specified for the ECB parameter of the EXECUTE form of the macro, use
PLISTVER=3 when specifying MF=L to generate a 184-byte parameter list.

SDUMPX - Execute form
A remote control program parameter list is referred to and can be modified by the execute form of the
SDUMPX macro.

If you code one or more of the SDATA parameters on the execute form of the macro, any SDATA
parameters coded on the list form are lost.

SDUMPX macro

356 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax
The execute form of the SDUMPX macro is written as follows:

Syntax Description

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SDUMPX.

SDUMPX

␣ One or more blanks must follow SDUMPX.

 HDR=‘dump title’ dump title: From 1 to 100 characters.

 HDRAD=dump title addr dump title addr: A-type address, or register (2) - (12).

 ,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

 ,ASID=ASID addr ASID addr: A-type address, or register (2) - (12).

 ,ASIDLST=list addr list addr: RX-type address, or register (2) - (12).

 ,JOBLIST=list addr list addr: RX-type address, or register (2) - (12).

 ,DSPLIST=list addr list addr: RX-type address, or register (2) - (12).

 ,TYPE=(type code) type code: Any of the following, separated by commas: XMEM, XMEME,
NOLOCAL, FAILRC

 Note: XMEM and XMEME are mutually exclusive codes.

 ,PLISTVER=1 decimal digit 1: Use up to 112-byte parameter list.

 ,PLISTVER=2 decimal digit 2: Use 128-byte parameter list.

 ,PLISTVER=3 decimal digit 3: Use 184-byte parameter list.

 Defaults are as follows:

PLISTVER=2, if you specify SYMREC, ID, IDAD, PSWREGS, SDATA=DEFS,
SDATA=NODEFS, or SDATA=IO.

PLISTVER=3, if you specify STRLIST, REMOTE, INTOKEN, DSPLIST,
JOBLIST, PROBDESC, LIST64, SUMLIST64, or ECB=(*,*,TCBOWNS).

PLISTVER=1, in all other cases.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 357

Syntax Description

 ,SYMREC=symrec addr symrec addr: RX-type address, or register (2) - (12).

 ,ID=‘identifier’ identifier: From 1 to 50 characters.

 ,IDAD=identifier addr identifier addr: RX-type address, or register (2) - (12).

 ,INTOKEN=token addr token addr: RX-type address, or register (2) - (12).

 ,REMOTE=area addr area addr: RX-type address, or register (2) - (12).

 ,STRLIST-structure list addr structure list addr: RX-type address or register (2) - (12).

 ,PSWREGS=parm list addr parm list addr: RX-type address, or register (2) - (12).

 ,ECB=(ecb options) ecb options: Positional parameters
First parameter

ecb addr: A-type address, or register (2) - (12)
Second parameter (optional)

WRITE or CAPTURE
Third parameter (optional)

TCBOWNS

 ,SRB=(srb addr) srb addr: A-type address, or register (2) - (12).

 ,SRB=(srb addr,CAPTURE) Note:

1. If you code ECB=(ecb addr), without specifying CAPTURE or WRITE,
SVC dump posts the ECB at the completion of the capture phase
unless you also specify the DCB parameter. If you specify both the
ECB and DCB parameters, the ECB is posted at the completion of the
writing phase.

2. If you code SRB=(srb addr), without specifying CAPTURE or WRITE,
SVC dump schedules the SRB at the completion of the capture phase
unless you also specify the DCB parameter. If you specify both the
SRB and DCB parameters, the SRB is scheduled at the completion of
the writing phase.

 ,SRB=(ecb addr,WRITE)

 ,SDATA=(sdata options) sdata options: Any combination of the following, separated by commas:

 ALLNUC, ALLPSA, COUPLE, CSA, GRSQ, HCSAByASID, HCSANoOwner,
HCSASysOwner, LPA, LSQA, NOALLPSA/NOALL, NOSQA, NOSUMDUMP/
NOSUM, NUC, PSA, RGN, SQA, SUMDUMP/SUM, SWA, TRT, XESDATA,
DEFAULTS/DEFS, NODEFAULTS/NODEFS, IO

SDUMPX macro

358 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Syntax Description

 Note:

1. Executing SDUMPX causes ALLPSA, SQA, IO, and SUMDUMP storage
areas to be dumped unless excluded by the NOALLPSA, NOSQA,
NODEFAULTS, or NOSUMDUMP parameter.

2. The PSA and IO options are not required unless NODEFS is specified,
because they are dumped as a default in all SVC dumps.

3. DEFAULTS is not required. All SVC dumps include the default SDATA
options unless NODEFAULTS has been specified.

 ,PROBDESC=area addr area addr: RX-type address, or register (2) - (12).

 ,STORAGE=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

 end addr: A-type address, or register (2) - (12).

 ,LIST=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

 end addr: A-type address, or register (2) - (12).

 Note: Specify one or more pairs of addresses, separated by commas.

 ,LISTA=list addr list addr: RX-type address, or register (2) - (12).

 ,LISTD=list addr

 ,LIST64=list addr

 ,SUBPLST=subpool id list addr subpool id list addr: RX-type address, or register (2) - (12).

 ,KEYLIST=storage key list addr storage key list addr: RX-type address, or register (2) - (12).

 Note: KEYLIST cannot be specified without SUBPLST.

 ,BUFFER=NO Default: BUFFER=NO

 ,BUFFER=YES

 ,QUIESCE=YES Default: QUIESCE=YES

 ,QUIESCE=NO

 ,BRANCH=NO Default: BRANCH=NO

 ,BRANCH=YES Note: If BRANCH=YES is specified, ASID or ASIDLST must also be
specified.

SDUMPX macro

Chapter 42. SDUMPX — Dump virtual storage 359

Syntax Description

 ,SUSPEND=NO Default: SUSPEND=NO

 ,SUSPEND=YES

 ,SUMLIST=(strt addr,end addr) strt addr: A-type address, or register (2) - (12).

 end addr: A-type address, or register (2) - (12).

 Note: Specify one or more pairs of addresses, separated by commas.

 ,SUMLSTA=list addr list addr: RX-type address, or register (2) - (12).

 ,SUMLSTL=list addr

 ,SUMLIST64=list addr

 ,UTOKEN=list addr list addr: RX-type address, or register (2) - (12).

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the SDUMPX macro, with the following
exception:

,MF=(E, ctrl addr)
Specifies the execute form of the SDUMPX macro using a remote control program parameter list.

SDUMPX macro

360 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Appendix A. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (www.ibm.com/
support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the
Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited
vision use software products successfully. The accessibility features in z/OS can help users do the
following tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with
a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or
more syntax elements are always present together (or always absent together), they can appear on the
same line because they are considered a single compound syntax element.

© Copyright IBM Corp. 1988, 2020 361

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)
are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one
syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the
syntax element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted
decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However,
if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times.
A dotted decimal number followed by the * symbol indicates that this syntax element can be used
zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data area, or no data area.

362 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

If you hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix A. Accessibility 363

364 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for the Knowledge Centers. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1988, 2020 365

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or

366 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details
in the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease
if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Notices 367

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Programming interface information
This information is intended to help the customer to code macros that are available to authorized
assembler language programs. This information documents intended programming interfaces that allow
the customer to write programs to obtain services of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

368 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Index

A
accessibility

contact IBM 361
features 361

addressing mode and the services 2
ALET qualification

of parameters 3
AR () mode

description 3
ASC (address space control) mode

defining 3
ASCB (address space control block)

locating 51
assistive technologies 361
asynchronous execution

scheduling system services 284

C
callable service

coding 14
coding the callable services 14
coding the macros 11
command input buffer

manipulating 231
contact

z/OS 361
continuation line 13
CVT (communications vector table)

CVTSDBF field 297

D
dynamic output

text unit
pointer list 144

E
event

signalling completion 209

F
fast path page service 205
feedback xxv
FRACHECK macro 233

I
initialize asynchronous exits 275
internal START command 95
issue

remote immediate signal 271

K
keyboard

navigation 361
PF keys 361
shortcut keys 361

L
linkage index

freeing 55
reserving 61

LLACOPY macro 27
LOAD macro 33
load module

bringing into virtual storage 33
LOADWAIT macro 45
LOCASCB macro 51
lock

providing
via an NI instruction 125
via an OI instruction 137

LXFRE macro 55
LXRES macro 61

M
macro

coding 11
forms 10
level

selecting 1
sample 12
selecting level 1
user parameter, passing 4
X-macros

using 9
MCSOPER macro 69
MCSOPMSG macro 85
MGCR macro 95
MGCRE macro 99
MIHQUERY macro 107
MODESET macro 115

N
navigation

keyboard 361
NIL macro 125
NML (nucleus module list) 129
NMLDEF macro 129
nucleus map lookup service 133
nucleus module list

description 129
NUCLKUP macro 133

Index 369

O
OIL macro 137
OUTADD macro 141
OUTDEL macro 157
output descriptor

creating 141
deleting 157
system-generated name 144

P
page service 195
parameter list

length for SDUMP macro 293
length for SDUMPX macro 321

PCLINK macro 169
PGANY macro 179
PGFIX macro

contents
fixing 183

PGFIXA macro 187
PGFREE macro 189
PGFREEA macro 193
PGSER macro 195, 205
PGSER macro (fast path) 205
POST macro 209
program call

linkage information
EXTRACT 176
STACK 169
UNSTACK 172

PTRACE macro 219
PURGEDQ macro 223

Q
QEDIT macro 231

R
RACDEF macro 233
RACF macros 233
RACHECK macro 233
RACINIT macro 233
RACLIST macro 233
RACROUTE macro 233
RACSTAT macro 233
RACXTRT macro 233
RESERVE macro 235
RESMGR macro 249
RESUME macro for RBs 261
RESUME macro for SRBs 265
RISGNL macro 271

S
SCHEDIRB macro 275
schedule asynchronous exits 275
SCHEDULE macro 283
schedule system services for asynchronous execution 284
SCHEDXIT macro 289
SDUMP macro

SDUMP macro (continued)
calculating parameter list length 293
in a reentrant program 293

SDUMPX macro
calculating parameter list length 321
in a reentrant program 321

sending to IBM
reader comments xxv

service
ALET qualification 3
summary 15

services
addressing mode 2
ASC mode

defining 3
using 1

shared DASD
reserve a device 235

shortcut keys 361
SQA buffer

dumped by SDUMPX 297
SRB (service request block)

purging activity 223
START command

internal 95
summary of changes

z/OS V2R2 xxvii
z/OS V2R3 xxvii
z/OS V2R4 xxvii

SYS1.NUCLEUS parmlib member
with NMLs 129

system status
changing 115

U
user interface

ISPF 361
TSO/E 361

user parameter
passing 4

V
virtual storage

bringing in a load module 33
contents

fix 187
free 189

dumping 291, 319
freeing contents 193

W
wait state

putting the system into 45

X
X-macros

using 9

370 z/OS: z/OS MVS Authorized Assembler Services Reference LLA-SDU

IBM®

Product Number: 5650-ZOS

SA23-1374-40

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 4
	Summary of changes for z/OS Version 2 Release 3
	Summary of changes for z/OS Version 2 Release 2 (V2R2)

	Chapter 1. Using the services
	Compatibility of MVS macros
	Addressing mode (AMODE)
	Address space control (ASC) mode
	ALET qualification
	User parameters

	Telling the system about the execution environment
	Specifying a macro version number
	How to request a macro version using PLISTVER
	Hints for using PLISTVER

	Register use
	Handling return codes and reason codes
	Handling program errors
	Handling environmental and system errors

	Using X-macros
	Macro forms
	Conventional list form macros
	Alternative list form macros

	Coding the macros
	Continuation lines

	Coding the callable services
	Including equate (EQU) statements
	Link-editing linkage-assist routines

	Service summary

	Chapter 2. LLACOPY - Library lookaside refresh
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	LLACOPY - List form
	Syntax
	Parameters

	LLACOPY - Execute form
	Syntax
	Parameters

	Chapter 3. LOAD - Bring a load module into virtual storage
	LOAD description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2

	LOAD - List form
	Syntax
	Parameters

	LOAD - Execute form
	Syntax
	Parameters

	Chapter 4. LOADWAIT — Build a wait state parameter list for use with WTO
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications

	LOADWAIT - List form
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2
	Example 3

	LOADWAIT - Modify form
	Syntax
	Parameters
	Example 1
	Example 2

	Chapter 5. LOCASCB — Locate address space control block (ASCB) address
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2

	Chapter 6. LXFRE - Free a linkage index
	Description
	Related macro
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	LXFRE - List form
	Syntax
	Parameters

	LXFRE - Execute form
	Syntax
	Parameters

	Chapter 7. LXRES — Reserve a linkage index
	Description
	Related macro
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	LXRES - List form
	Syntax
	Parameters

	LXRES - Execute form
	Syntax
	Parameters

	Chapter 8. MCSOPER - Manage extended MCS operations
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3

	MCSOPER - List form
	Syntax
	Parameters

	MCSOPER - Modify form
	Syntax
	Parameters

	MCSOPER - Execute form
	Syntax
	Parameters

	Chapter 9. MCSOPMSG - Retrieve MCS operator messages
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	MCSOPMSG - List form
	Syntax
	Parameters

	MCSOPMSG - Execute form
	Syntax
	Parameters

	MCSOPMSG - Modify form
	Syntax
	Parameters

	Chapter 10. MGCR — Issue an internal START or REPLY command
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 11. MGCRE — Issue internal commands
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications

	MGCRE - List form
	Syntax
	Parameters

	MGCRE - Execute form
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 12. MIHQUERY — Retrieve MIH time interval
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	MIHQUERY - List form
	Syntax
	Parameters

	MIHQUERY - Execute form
	Syntax
	Parameters

	Chapter 13. MODESET — Change system status
	Description
	Inline code generation
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	SVC generation
	Environment for SVC generation
	Programming requirements for SVC generation
	Restrictions for SVC generation
	Input register information for SVC generation
	Output register information for SVC generation
	Performance implications for SVC generation
	Syntax for SVC generation
	Parameters for SVC generation
	ABEND codes for SVC generation
	Return and reason codes for SVC generation
	Example for SVC generation

	MODESET - List form
	Syntax
	Parameters

	MODESET - Execute form
	Syntax
	Parameters

	Chapter 14. NIL — Provide a lock via an AND IMMEDIATE (NI) instruction
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 15. NMLDEF — Customizing the nucleus
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3

	Chapter 16. NUCLKUP — Nucleus map lookup service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2
	Example 3

	Chapter 17. OIL — Provide a lock via an OR IMMEDIATE (OI) instruction
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 18. OUTADD — Create an output descriptor
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications

	OUTADD - List form
	Syntax
	Example

	OUTADD - Execute form
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Reason codes for return code 04
	Reason codes for return code 08
	Reason codes for return code 0C
	Reason codes for return code 10
	Example

	Chapter 19. OUTDEL — Delete an output descriptor
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications

	OUTDEL - List form
	Syntax
	Parameters
	Example

	OUTDEL - Execute form
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Reason codes for return code 04
	Reason codes for return code 08
	Reason codes for return code 0C
	Reason codes for return code 10
	Example

	Chapter 20. PCLINK — Stack, unstack, or extract program call linkage information
	Description
	STACK option of PCLINK
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	UNSTACK option of PCLINK
	Environment
	Programming requirements
	Restrictions
	Input register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	EXTRACT option of PCLINK
	Environment
	Programming requirements
	Restrictions
	Input register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 21. PGANY — Page anywhere
	Description
	Input register information
	Output register information
	Syntax
	Parameters
	Return and reason codes

	Chapter 22. PGFIX — Fix virtual storage contents
	Description
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2
	Example 3

	Chapter 23. PGFIXA — Fix virtual storage contents
	Description
	Output
	Restrictions
	Syntax
	Parameters
	Example 1
	Example 2

	Chapter 24. PGFREE — Free virtual storage contents
	Description
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2
	Example 3

	Chapter 25. PGFREEA — Free virtual storage contents
	Description
	Syntax
	Restrictions
	Output

	Chapter 26. PGSER — Page services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Chapter 27. PGSER — Fast path page services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	Chapter 28. POST — Signal event completion
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2
	Example 3

	POST - List form
	Syntax
	Parameters

	POST - Execute form
	Syntax
	Parameters

	Chapter 29. PTRACE — Processor trace
	Description
	Environment
	Programming requirements
	Restrictions
	Output register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2

	Chapter 30. PURGEDQ — Purge SRB activity
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4

	PURGEDQ - List form
	Syntax
	Parameters
	Example

	PURGEDQ - Execute form
	Syntax
	Parameters
	Example

	Chapter 31. QEDIT — Command input buffer manipulation
	Description
	Environment
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2

	Chapter 32. RACF macros
	Chapter 33. RESERVE — Reserve a device (shared DASD)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	RESERVE—List form
	Parameters

	RESERVE - Execute form
	Parameters

	Chapter 34. RESMGR — Add or delete a resource manager
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes from the ADD function
	Return codes from the DELETE function
	Example 1
	Example 2

	RESMGR - List form
	Syntax
	Parameters

	RESMGR - Execute form
	Syntax
	Parameters

	Chapter 35. RESUME — Resume execution of a suspended RB
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Chapter 36. RESUME — Resume or purge a suspended SRB
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	RESUME - Resume or purge an SRB (List form)
	Syntax
	Parameters

	RESUME - Resume or purge an SRB (Execute form)
	Syntax
	Parameters

	Chapter 37. RISGNL — Issue remote immediate signal
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2

	Chapter 38. SCHEDIRB — Schedule IRB
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	SCHEDIRB - List form
	Syntax
	Parameters

	SCHEDIRB - Execute form
	Syntax
	Parameters

	Chapter 39. SCHEDULE — Schedule a service request block (SRB)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Chapter 40. SCHEDXIT — Schedule an exit routine for execution
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 41. SDUMP — Dump virtual storage
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Register 15 return codes
	ECB and SRB return codes
	Reason codes for return code 08
	Example 1
	Example 2

	SDUMP - List form
	Syntax
	Parameters

	SDUMP - Execute form
	Syntax
	Parameters
	Example 1
	Example 2

	Chapter 42. SDUMPX — Dump virtual storage
	Description
	Wildcards
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Register 15 return codes
	ECB and SRB return codes
	Reason codes for return code 08

	SDUMPX - List form
	Syntax
	Parameters

	SDUMPX - Execute form
	Syntax
	Parameters

	Appendix A. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	A
	C
	D
	E
	F
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	U
	V
	W
	X

