
z/OS
Version 2 Release 4

XML System Services User's Guide and
Reference

IBM

SA38-0681-40

Note

Before using this information and the product it supports, read the information in “Notices” on page
239.

This edition applies to Version 2 Release 4 of z/OS (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2019-07-10
© Copyright International Business Machines Corporation 2006, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Tables.. ix

About this document...xi
Who should use this document...xi
z/OS information..xi

How to send your comments to IBM...xiii
If you have a technical problem.. xiii

Summary of changes..xv
Summary of changes for z/OS XML System Services User's Guide and Reference for Version 2

Release 4 (V2R4)...xv
Summary of changes.. xv
Summary of changes.. xv

Chapter 1. Introduction... 1
What is XML?.. 1
z/OS XML System Services.. 1

Chapter 2. Overview of z/OS XML System Services... 3
z/OS XML System Services features..3
z/OS XML System Services functions.. 4

Querying XML documents.. 4
Parsing XML documents without validation...4
Parsing XML documents with validation.. 4
Parsing XML document fragments with validation.. 5
Parsing XDBX input streams.. 5

Document processing model... 5
Output buffer format..6
Optimized Schema Representation...7
String Identifiers.. 7
Memory management..7
Enable offload to specialty engines...7

Chapter 3. Querying XML documents..9
Header files and data macros..9

Chapter 4. Parsing XML documents.. 11
Steps for parsing XML documents without validation.. 12
Loading the validating parser code... 12
Steps for parsing XML documents with validation..13

Using Optimized Schema Representations... 14
Restricting the root element name.. 15
Parsing XML document fragments with validation..15
Obtaining information on schema locations..17
Obtaining additional error information.. 18
XML Path language... 19
Setting up and running the CICS PLT program.. 20

Support for error toleration... 20

 iii

Header files and data macros..21
Parsed data model...22

Common record header... 22
Record (token) types.. 23

Metadata records...24
Buffer info record... 24
Error info record... 25
Aux info record... 25
Aux info record - Error_Location.. 29
Aux info record - ERROR_STRING... 31
Aux info record - EXPECTED_STRING..31
Aux info record - TOLERATED_ERROR...32
Extended end element record... 32
Default content flag (XEH_DEFAULT).. 33
31- and 64-bit compatibility.. 33

Length/Value pairs...33
String Identifiers.. 34
Record forms..34

Record form 0...35
Record form 1...35
Record form 2...35
Record form 3...36

Field values by record type..37
Spanning buffers..39

Splitting records... 39
Splitting multibyte characters..40

Processing DTDs.. 41
Resolving entity references... 41
Non-representable characters.. 41
Namespace declarations... 41
Using the z/OS XML parser in a multithreaded environment... 42
Parsing XDBX input streams..42

Chapter 5. Additional usage considerations.. 45
Recovery considerations... 45
Encoding support...45

EBCDIC encoding considerations.. 46
Managing memory resources.. 46
Using return and reason codes..47

Chapter 6. z/OS XML parser API: C/C++... 49
Setting the XPLINK(ON) Language Environment runtime option...49
Support for the Metal C compiler option...49
Where to find the header files, DLLs and side decks.. 49
Using the recovery routine...49
z/OS XML XL C/C++ API... 50

gxlpControl — perform a parser control function.. 50
gxlpControl features and functions... 53
gxlpInit — initialize the z/OS XML parser... 69
gxlpLoad — load a z/OS XML function..72
gxlpParse — parse a buffer of XML text... 74
gxlpQuery — query an XML document...76
gxlpTerminate — terminate a parse instance.. 78

OSR generator API...79
gxluInitOSRG — initialize an OSR generator instance... 79
gxluControlOSRG — perform an OSR generator control operation...81
gxluTermOSRG — terminate an OSR generator instance.. 83

iv

gxluLoadSchema — load a schema into the OSR generator..85
gxluSetStrIDHandler — specify the StringID handler for OSR generation... 87
gxluSetEntityResolver — specify the entity resolver for OSR generation... 89
gxluLoadOSR — load an OSR into the OSR generator... 91
gxluGenOSR — generate an Optimized Schema Representation (OSR)... 93
gxluGenStrIDTable — generate StringID table from an OSR...95
gxluGetStringIDs — generate StringID table from an OSR..97
gxluFreeStringIDs — free a StringID table...98
gxluGetRootElements — retrieve the root elements from an OSR... 99
gxluFreeRootElements — free a root element structure...100
gxluGetTargetNamespaces — retrieve the target namespaces from an OSR.................................. 100
gxluFreeNamespaces — free a namespace structure...101
GXLPSYM31 (GXLPSYM64) — StringID handler.. 102

Chapter 7. z/OS XML parser API: Assembler...105
How to invoke the z/OS XML System Services assembler API...105
z/OS XML parser Assembler API... 106

API entry points... 106
Common register conventions...106
Using the recovery routine...108
GXL1CTL (GXL4CTL) — perform a parser control function... 108
GXL1CTL (GXL4CTL) features and functions...110
GXL1INI (GXL4INI) — initialize a parse instance.. 125
GXL1PRS (GXL4PRS) — parse a buffer of XML text...129
GXL1QXD (GXL4QXD) — query an XML document.. 132
GXL1TRM (GXL4TRM) — terminate a parse instance..134
GXL1LOD (GXL4LOD) — load a z/OS XML function..135

Chapter 8. z/OS XML System Services exit interface... 139
Exit functions... 139
Common register conventions.. 139

Input registers..139
Output registers... 140
Environmental requirements... 140
Restrictions.. 141

GXLGST31 (GXLGST64) — get memory...141
GXLFST31 (GXLFST64) — free memory.. 143
GXLSYM31 (GXLSYM64) — StringID service...145
GXLSTRI — StringID service for Language Environment and Metal C..147

Chapter 9. Diagnosis and problem determination..149
XMLDATA IPCS subcommand... 149
Diagnostic Area..151
SLIP trap for return codes from the z/OS XML parser.. 152
ARR recovery routine...152

Appendix A. Return codes listed by value... 153

Appendix B. Reason codes listed by value.. 155

Appendix C. xsdosrg command reference... 205
Name..205
Synopsis .. 205
Description...205
Options...205
Operands..205

 v

Example... 206
Environment variables...206
Usage notes... 206
Exit values..206
Related information... 206

Appendix D. C/C++ header files and assembler macros.......................................207
gxlhxml.h - main z/OS XML header file... 207
gxlhxeh.h (GXLYXEH) - mapping of the output buffer record...207
gxlhxec.h (GXLYXEC) - constants definitions..208
gxlhqxd.h (GXLYQXD) - mapping of the output from the query XML declaration service..................... 208
gxlhxd.h (GXLYXD) - mapping of extended diagnostic area... 209
gxlhxr.h (GXLYXR) - defines the return codes and reason codes... 209
gxlhxsv.h (GXLYXSV) - mapping of the system service vector... 209
gxlhctl.h (GXLYCTL) - mapping of the control input parameters area..209
gxlhxft.h (GXLYXFT) - mapping of the control feature input output area.. 210
gxlhxosr.h (GXLYXOSR) - mapping of the OSR control area... 210
gxlhosrg.h - OSR generator prototypes...210
gxlhosrd.h - mapping of the OSR generator diagnostic area..210
gxlhxstr.h - StringID table..211

Appendix E. Callable services examples - AMODE 31... 213
GXL1CTL example..213
GXL1INI example.. 214
GXL1PRS example... 215
GXL1TRM example.. 215

Appendix F. Callable services examples - AMODE 64..217
GXL4CTL example..217
GXL4INI example.. 218
GXL4PRS example... 219
GXL4TRM example.. 219

Appendix G. Exit examples..221
GXLEFRM (GXLFST example).. 221
GXLEGTM (GXLGST example)..222
GXLSYM example...222

GXLEINI..223
GXLEIDI (GXLSYM example module).. 223
GXLEIDR... 224

GXLESTRI...225

Appendix H. CICS examples...229

Appendix I. Supported encodings.. 231

Appendix J. Enabling z/OS V1R12 XML functionality in z/OS V1R10 and z/OS
V1R11... 233

Appendix K. Accessibility...235
Accessibility features.. 235
Consult assistive technologies.. 235
Keyboard navigation of the user interface.. 235
Dotted decimal syntax diagrams...235

Notices..239

vi

Terms and conditions for product documentation... 240
IBM Online Privacy Statement.. 241
Policy for unsupported hardware..241
Minimum supported hardware..242
Trademarks.. 242

Index.. 243

 vii

viii

Tables

1. Common record header.. 22

2. Record flag bits..22

3. Record types..23

4. Buffer info record structure.. 24

5. Error info record structure.. 25

6. Aux info record.. 26

7. Alternate structure for variable section of aux info record (GXLHXEH_AUX_LONG_VALUE = OFF)........ 28

8. Alternate structure for variable section of aux info record (GXLHXEH_AUX_LONG_VALUE = ON).......... 28

9. Aux info record - Error_Location... 29

10. Aux info record - Error_String... 31

11. Aux info record - Expected_String..32

12. Aux info record - TOLERATED_ERROR..32

13. Extended end element record (no StringID).. 33

14. Extended end element record (StringID)... 33

15. Record form 0..35

16. Record form 1..35

17. Record form 2 (with StringID)...35

18. Record form 2 (without StringID)... 36

19. Record form 3 (with StringID)...36

20. Record form 3 (without StringID)... 36

21. Field values by record type...37

22. Splittable record types..40

23. Code page CCSID values...45

 ix

24. z/OS XML parser properties and resources reset by control functions...52

25. Load module for C/C++ parser..74

26. Caller stubs and associated offsets..105

27. Capability bits... 106

28. Input register conventions... 106

29. Output register conventions... 107

30. Output access register conventions... 107

31. Output vector register conventions..107

32. Load modules..137

33. System services input register conventions.. 139

34. System services input access register conventions.. 139

35. System services output register conventions.. 140

36. System services output access register conventions.. 140

37. System services output vector register conventions...140

38. XMLDATA options..149

39. SLIP examples by release...152

40. Code page CCSID values...231

x

About this document

This document presents the information you need to use the z/OS XML System Services (z/OS® XML)
parser.

Who should use this document
This document is for application programmers, system programmers, and end users working on a z/OS
system and using the z/OS XML parser.

This document assumes that readers are familiar with the z/OS system and with the information for z/OS
and its accompanying products.

z/OS information
This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS library, go to IBM Knowledge Center (www.ibm.com/support/knowledgecenter/
SSLTBW/welcome).

© Copyright IBM Corp. 2006, 2019 xi

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

xii z/OS: XML System Services User's Guide and Reference

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xiii.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM® Knowledge Center function
If your comment or question is about the IBM Knowledge Center functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Knowledge Center
Support at ibmkc@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS XML System Services User's Guide and

Reference, SA38-0681-40
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 2006, 2019 xiii

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmkc@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xiv z/OS: XML System Services User's Guide and Reference

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

Summary of changes for z/OS XML System Services User's Guide and
Reference for Version 2 Release 4 (V2R4)

This information contains no technical changes for this release.

Summary of changes for z/OS Version 2 Release 3 (V2R3)
The following changes are made in z/OS Version 2 Release 3 (V2R3).

The most recent updates are listed at the top of the section.

New

• A reference was added to the XML Toolkit for z/OS information, see “z/OS XML System Services
functions” on page 4.

• For APAR OA55441, a new feature was added: XEC_FEAT_WHITESPACE_AS_CHARDATA. For more
information on this feature, see the following sections: “Properties and resources reset by control
functions” on page 52, “XEC_CTL_FEAT” on page 112, and “GXL1INI (GXL4INI) — initialize a parse
instance” on page 125

• A new control feature that allows a minimum value (threshold value) to be set for splittable records, see
“GXLHXEC_CTL_SPLIT_RECORD_THRESHOLD” on page 68.

Summary of changes for z/OS Version 2 Release 2 (V2R2)
The following changes are made in z/OS Version 2 Release 2 (V2R2).

New

• A control operation that allows the caller to reset the error and document state. For more information on
this new function, see “GXLHXEC_CTL_RESET” on page 67.

© Copyright IBM Corp. 2006, 2019 xv

xvi z/OS: XML System Services User's Guide and Reference

Chapter 1. Introduction

What is XML?
XML allows you to tag data in a way that is similar to how you tag data when creating an HTML file. XML
incorporates many of the successful features of HTML, but was also developed to address some of the
limitations of HTML. XML tags may be user-defined, by either a DTD or a document written in the XML
Schema language, that can be used for validation. In addition, namespaces can help ensure you have
unique tags for your XML document. The syntax of XML has more restrictions than HTML, but this results
in faster and cheaper browsing. The ability to create your own tagging structure gives you the power to
categorize and structure data for both ease of retrieval and ease of display. XML is already being used for
publishing, as well as for data storage and retrieval, data interchange between heterogeneous platforms,
data transformations, and data displays. As these XML applications evolve and become more powerful,
they may allow for single-source data retrieval and data display.

The benefits of using XML vary but, overall, marked-up data and the ability to read and interpret that data
provide the following benefits:

• With XML, applications can more easily read information from a variety of platforms. The data is
platform-independent, so now the sharing of data between you and your customers can be simplified.

• Companies that work in the business-to-business (B2B) environment are developing DTDs and schemas
for their industry. The ability to parse standardized XML documents gives business products an
opportunity to be exploited in the B2B environment.

• XML data can be read even if you do not have a detailed picture of how that data is structured. Your
clients will no longer need to go through complex processes to update how to interpret data that you
send to them because the DTD or schema gives the ability to understand the information.

• Changing the content and structure of data is easier with XML. The data is tagged so you can add and
remove elements without impacting existing elements. You will be able to change the data without
having to change the application.

However, despite all the benefits of using XML, there are some things to be aware of. First of all, working
with marked up data can be additional work when writing applications because it physically requires more
pieces to work together. Given the benefits of using XML, this additional work up front can reduce the
amount of work needed to make a change in the future. Second, although it is a recommendation
developed by the World Wide Web Consortium (W3C®), XML, along with its related technologies and
standards including Schema, XPath, and DOM/SAX APIs, is still a developing technology.

An XML parser is a processor that reads an XML document and determines the structure and properties of
the data. It breaks the data up into discrete units and provides them to other components. There are two
basic types of XML parsers: non-validating and validating. A non-validating parser checks if a document is
well-formed, but does not check a document against any DTDs or XML Schemas. A validating parser not
only checks if a document is well-formed, but also verifies that it conforms to a specific DTD or XML
Schema.

z/OS XML System Services
z/OS XML System Services () is an XML processing component of the z/OS operating system. It contains
an XML parser intended for use by system components, middleware, and applications that need a simple,
efficient, XML parsing solution. The XML parser can parse documents either with or without validation.

Note: The use of the term z/OS XML parser in this document refers specifically to the z/OS XML System
Services parser.

The following are some distinct characteristics of z/OS XML:

© Copyright IBM Corp. 2006, 2019 1

• z/OS XML is an integrated component of z/OS. There is no need to download or install any additional
packages to use it.

• z/OS XML provides a collection of programming interfaces for callers to use:

– C/C++ and assembler interfaces to the z/OS XML parser itself.
– C/C++, Java™, and UNIX command line interfaces to utility functions that build binary artifacts

required for validation during a parse.

Note: More information on the Java interfaces can be found in the Javadoc located at /usr/
include/java_classes/gxljdocs.jar.

– Assembler interfaces for user exits that give callers control over how the z/OS XML parser interacts
with the rest of z/OS.

– C/C++ interfaces to a service similar to a user exit, called a StringID handler, that allows for shorthand
communications between the z/OS XML parser and the caller.

• The z/OS XML parser utilizes a buffer-in, buffer-out processing model instead of the event driven model
common to SAX parsers. Input to, and output from the parser may span multiple buffers, allowing the
caller to request parses for documents that are arbitrarily long.

• z/OS XML has minimal linkage overhead in order to reduce CPU usage as much as possible.
• z/OS XML provides assistive aids to the user in debugging not-well-formed documents.
• z/OS XML supports a number of character encodings, among them UTF-8, UTF-16 (big endian),

IBM-1047 and IBM-037. There is no need on the part of the caller to transcode documents to a
canonical encoding before calling the z/OS XML parser. For a full list of these supported encodings, see
Appendix I, “Supported encodings,” on page 231.

• Support for enhanced error information records on a validating parse, see “Obtaining additional error
information” on page 18.

• Support for error toleration. See “Support for error toleration” on page 20.

The z/OS XML parser is invoked as a callable service and can be used as such. The callable services stubs
are shipped in CSSLIB.

Note about constant names: Some constant names begin with the string "GXLH". These constants are
used solely by C callers. For assembler callers, remove the "GXLH" portion to get the appropriate constant
name.

2 z/OS: XML System Services User's Guide and Reference

Chapter 2. Overview of z/OS XML System Services

This chapter provides an overview of the z/OS XML System Services; it briefly describes some of the XML
features supported by the z/OS XML System Services and other technologies used by the z/OS XML
parser. The following topics are discussed within this chapter:

• “z/OS XML System Services features” on page 3
• “z/OS XML System Services functions” on page 4
• “Document processing model” on page 5
• “Output buffer format” on page 6
• “Optimized Schema Representation” on page 7
• “String Identifiers” on page 7
• “Memory management” on page 7
• “Enable offload to specialty engines” on page 7

z/OS XML System Services features
The following is a list of features provided by z/OS XML System Services. References to additional
information on the various features are provided where appropriate:

• An external C and C++ API, see “z/OS XML XL C/C++ API” on page 50
• An external assembler API, see Chapter 7, “z/OS XML parser API: Assembler,” on page 105
• Support for AMODE 31- and 64-bit callers with data above or below the bar.
• Support for memory allocation above the bar when called by 31 bit applications.
• Support for UTF-8, UTF-16 (big endian only), IBM-1047, IBM-037, and several other encodings. See

“Encoding support” on page 45 for more information.
• XML processing features

– Parsing with XML schema 1.0 validation (validation with DTD not supported)
– Parsing document fragments, see “Parsing XML document fragments with validation” on page 15
– Parsing of Extensible Dynamic Binary XML (XDBX) streams with validation, see “Parsing XDBX input

streams” on page 5
– Support in the parsed data stream for offsets back into the original source document
– Optionally return fully qualified element names in end element records
– Support for XML 1.0 (fourth edition) and XML 1.1 (second edtion).
– Newline normalization, see “EBCDIC encoding considerations” on page 46
– Attribute value normalization
– Omit or return comments in the parsed data stream
– Optionally return significant white space in unique white space records (instead of character data

records)
– Support for namespaces in XML 1.0 (second edition) and XML 1.1, see “Namespace declarations” on

page 41
– Entity resolution, see “Resolving entity references” on page 41
– Partial DTD processing, see “Processing DTDs” on page 41
– Dynamic discovery of schema location information, see “Obtaining information on schema locations”

on page 17
– Restrict the root element name, see “Restricting the root element name” on page 15

© Copyright IBM Corp. 2006, 2019 3

– Support for obtaining additional error information on a validating parse, see “Obtaining additional
error information” on page 18.

– Support to continue a non-validating parse when an undefined prefix is encountered.
• User exits for system services, see Chapter 8, “z/OS XML System Services exit interface,” on page 139
• Query service for determining document characteristics, see Chapter 3, “Querying XML documents,” on

page 9
• Diagnostic support (Chapter 9, “Diagnosis and problem determination,” on page 149), including:

– Diagnostic area, see “Diagnostic Area” on page 151
– Slip trap support, see “SLIP trap for return codes from the z/OS XML parser” on page 152
– ARR recovery routine, see “ARR recovery routine” on page 152
– IPCS formatting, see “XMLDATA IPCS subcommand” on page 149

• Segmented input and output (the entire document does not have to reside in a single buffer), see
“Spanning buffers” on page 39

• Mapping macro interfaces for parsed data
• “Enable offload to specialty engines” on page 7

z/OS XML System Services functions
z/OS XML System Services include the following three primary functions:

• A query service that allows callers to determine the encoding of the document and acquire information
from the XML declaration.

• Parsing with schema validation
• Parsing without validation

These functions are provided in the form of callable services. A caller can access these services through
the z/OS XML System Services APIs (for information on the APIs, see “z/OS XML XL C/C++ API” on page
50 and Chapter 7, “z/OS XML parser API: Assembler,” on page 105). The following sections provide a
summary of the functions, with pointers on where to go for more information.

Note: For information about the separately orderable product XML Toolkit for z/OS, which contain both
the XML Parser, C++ Edition and XSLT Processer, C++ Edition, see XML Toolkit for z/OS V1R10 User's
Guide (www.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=20016220USEN).

Querying XML documents
XML documents have characteristics that affect the way they are parsed, and the kinds of information that
the parser generates during the parse process. One such characteristic is the encoding scheme of the
document, which the z/OS XML parser must know before parsing. Using the query service will allow the
caller to acquire this information, after which it can then pass it to the z/OS XML parser. The z/OS XML
parser will then be able to use the correct encoding scheme to parse the document. For more on this
service, see Chapter 3, “Querying XML documents,” on page 9.

Parsing XML documents without validation
The non-validating parse process consists of three fundamental steps: initialize the parser, parse the
document, and terminate the parser. Multiple documents may be parsed using either a single instance of
the parser, or several distinct instances as the caller requires. For more information on this procedure and
the individual services called, see Chapter 4, “Parsing XML documents,” on page 11.

Parsing XML documents with validation
Parsing with validation follows the same basic process as for a non-validating parse, with a couple of
differences. Firstly, the validating parser must be loaded into storage prior to use. Secondly, an additional

4 z/OS: XML System Services User's Guide and Reference

https://www.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=20016220USEN
https://www.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=20016220USEN

step is required to load a pre-processed version of the schema used to validate the document during the
parse. This binary schema, referred to as an Optimized Schema Representation (OSR) can be loaded once,
and used to validate any document that conforms to it.

For more information on loading the validating parser, see “Loading the validating parser code” on page
12. For more information on OSRs, see “Optimized Schema Representation” on page 7.

Parsing XML document fragments with validation
The validating parser provides support for parsing XML document fragments. The W3C XML specification
allows parsing of such document fragments as external parsed entities. The document fragment can be
the value of a single attribute, as well as a single element and its descendants. It may be followed by
comments and processing instructions. The parser must be provided ancestor and namespace context
information to ensure proper validation.

The following example illustrates the usefulness of validating parser support for parsing XML document
fragments. Consider a large XML document representing an employee list of the form:

<root>
 <Person>
 <name mgr = "NO">Bill</name>
 <age>60</age>
 </Person>

 <Person>
 <name mgr = "NO">Joe</name>
 <age>45</age>
 </Person>
</root>

Each Person element is a fragment. If the caller wants to add another Person element fragment and
validate that it adheres to an associated schema, with validating fragment support, the caller can perform
a validating parse of just the individual fragment to be added and then insert the fragment into the
document. Prior to this support, the caller would have had to perform a validating parse of the entire
document after inserting the new fragment.

For more information on parsing document fragments, see “Parsing XML document fragments with
validation” on page 15.

Note: The non-validating parser does not support fragment parsing.

Parsing XDBX input streams
z/OS XML supports the parsing of Extensible Dynamic Binary XML (XDBX) streams with validation. This
allows a caller to pass binary XML streams, which are more compact and which can be processed by the
validating parser using fewer resources. The result is a conventional z/OS XML record stream. See IBM
binary XML specification (www.ibm.com/support/docview.wss?uid=swg27019354) for more information
on the XDBX binary XML format.

For more information on parsing XDBX input streams, see “Parsing XDBX input streams” on page 42.

Document processing model
There are three main components required for parsing XML documents: input buffer, z/OS XML parser,
and output buffer. These three components and their interrelationships make up the processing model.
There may be more than one input and output buffer, depending on the size of the document being
parsed. If the document is sufficiently large, the caller may find it necessary to provide it to the parser in
several pieces, using buffer spanning to maintain the document structure as it is being parsed. Similarly,
the caller may need to provide multiple buffers to contain the data stream that the z/OS XML parser
generates. For more information on how buffer spanning works, see “Spanning buffers” on page 39.

Document processing is the creation of the output buffers from the parsed input data. As the z/OS XML
parser traverses through the input buffer, the output buffer is built. See “Parsed data model” on page 22
for more information on this format.

Overview of z/OS XML System Services 5

http://www.ibm.com/support/docview.wss?uid=swg27019354
http://www.ibm.com/support/docview.wss?uid=swg27019354

The following is a diagram of the processing model using buffer spanning. It shows both the input and
output buffers, where buffers 2-5 represent the additional buffers created to support a large document.

Figure 1. Processing model

For more on how to parse XML documents using the z/OS XML parser, see Chapter 4, “Parsing XML
documents,” on page 11.

Output buffer format
The output buffer contains the parsed data stream that results from the parse process. This data stream
will contain the parsed XML document contents, along with header and any error information that was

6 z/OS: XML System Services User's Guide and Reference

produced during the parse. For more information on the format of the output data stream, see “Parsed
data model” on page 22.

Optimized Schema Representation
Optimized Schema Representations (OSRs) are pre-processed versions of schemas. They are more easily
and more efficiently handled than schemas in text form. When parsing with validation, this form of
schema is utilized. An OSR API is provided to assist in the generation, loading and manipulation of these
specialized schemas. For information on how to use OSRs, see “Using Optimized Schema
Representations” on page 14. For more information on the OSR API, see “OSR generator API” on page
79. For information on performing a validating parse, see Chapter 4, “Parsing XML documents,” on page
11.

String Identifiers
String Identifiers (StringIDs) are a special type of output data used to represent some of the strings that
the z/OS XML parser encounters during a parse. A StringID is a 4 byte numeric value used to represent a
complete string of text, thereby substantially reducing the size of the parsed data stream for documents
containing frequently recurring strings, like namespace references. StringIDs can only be used if the
optional StringID exit service is activated. For more information on StringIDs, see “String Identifiers” on
page 34.

Memory management
The z/OS XML parser provides a memory allocation/deallocation exit allowing callers to provide a pair of
allocation/deallocation services. For callers that do not provide a memory allocation exit, the z/OS XML
parser provides an option at initialization time allowing the caller to specify how the z/OS XML parser's
default routine allocates memory. For more information on these services and the special initialization
time feature, see “Managing memory resources” on page 46.

Enable offload to specialty engines
z/OS XML System Services provides the ability for parsing operations to be run on specialty processors: an
IBM System z® Application Assist Processor (zAAP) or an IBM System z10 Integrated Information
Processor (zIIP). The z/OS XML parser, when running in TCB mode, is eligible to run on a zAAP, in
environments in which one or more zAAPs are configured. The z/OS XML parser, when running in enclave
SRB mode, is eligible to run on a zIIP processor, in environments where one or more zIIPs are configured.
Ancillary z/OS XML System Services, such as the query service and the control service, as well as the
StringID exit and memory management exits, are not eligible to run on specialty processors. Running of
z/OS XML System Services parsing operations on a specialty processor occurs transparently to the calling
application.

Overview of z/OS XML System Services 7

8 z/OS: XML System Services User's Guide and Reference

Chapter 3. Querying XML documents

About this task

An XML document contains declarations that may need special handling during a parse. For instance, if
the encoding of the document to parse is unknown, the query service provided by z/OS XML parser can be
used to help determine the encoding in order to provide the correct Coded Character Set IDentifier
(CCSID) to the parser, when the actual parse is performed.

In order for the caller to query an XML document, all the caller needs to do is use the query service
(gxlpQuery for C/C++ callers, GXL1QXD (GXL4QXD) for assembler callers). This service allows the caller to
obtain all the XML characteristics of the document. These characteristics can be either the default values
or those explicitly contained in an XML declaration. Once these characteristics are obtained, the caller can
then determine the encoding scheme needed to parse the document, along with any additional steps that
may be needed.

For example, if the document in question uses an encoding scheme of UTF-16, it will require that the z/OS
XML parser also uses the UTF-16 encoding scheme when parsing this document. The caller would use the
query service to ascertain the encoding type of the document being parsed. Once this information is
acquired, the z/OS XML parser can be initialized using the initialization service (gxlpInit for C/C++ callers,
GXL1INI (GXL4INI) for assember callers, see Chapter 4, “Parsing XML documents,” on page 11) passing
the encoding scheme to parse the UTF-16 encoded document.

Note: The query service is the only service that provides support for both UTF-16 (little endian) and
UTF-16 (big endian), whereas the other services only support UTF-16 (big endian).

The CCSID value returned by the query service can be used to invoke Unicode Services in order to convert
the input document into one of the encodings supported by the z/OS XML parser.

For more information on the query service, see “gxlpQuery — query an XML document” on page 76 for
C/C++ callers, and “GXL1QXD (GXL4QXD) — query an XML document” on page 132 for assembler callers.
For more information on document encoding support, see “Encoding support” on page 45.

Header files and data macros
This section provides information on the various header files and data macros associated with the z/OS
XML parser query service. The names and purposes of these files are listed below:

Note: For each item below, the name of the header file is listed first, followed by the name of the
corresponding assembler macro (if any).

gxlhxec.h, GXLYXEC
Contains assorted constant values that are used in the parsed data stream, values used for assorted
fields of the API, and minimum sizes for data areas passed to the z/OS XML parser.

gxlhqxd.h, GXLYQXD
Maps the data area returned from the query service.

gxlhxr.h, GXLYXR
Contains mnemonic values that describe the return and reason codes generated by the z/OS XML
parser.

For information on these header files and data macros, see Appendix D, “C/C++ header files and
assembler macros,” on page 207.

© Copyright IBM Corp. 2006, 2019 9

10 z/OS: XML System Services User's Guide and Reference

Chapter 4. Parsing XML documents

Before the z/OS XML parser can perform a parse on an XML document, it must first establish a context in
which it can operate. This is accomplished when the caller invokes the initialization routine and passes in
a piece of memory where the z/OS XML parser establishes a Parse Instance Memory Area (PIMA). This is
the area where the z/OS XML parser creates a base for the internal data structures it uses to complete the
parse process.

Rule: A particular PIMA must only be used during the parse of a single XML document at a time. Only after
the parse is complete and the parse instance is reset can a PIMA be reused for the parse of another
document.

In addition to control information, the PIMA is used as a memory area to store temporary data required
during the parse. When the z/OS XML parser needs more storage than was provided in the PIMA,
additional storage is allocated. Because allocating additional storage is an expensive operation, the PIMA
should be initially allocated with sufficient storage to handle the expected document size, in order to
optimize memory allocation requests.

Rule: For the non-validating z/OS XML parser, the minimum size for the PIMA is 128 kilobytes. For the
validating z/OS XML parser, the minimum size for the PIMA is 768 kilobytes.

Everything that the z/OS XML parser needs to complete the parse of a document is kept in the PIMA,
along with any associated memory extensions that the parser may allocate during the parse process. The
caller also must provide input and output buffers on each call to the parse service (gxlpParse for C/C++
callers, GXL1PRS (GXL4PRS) for assember callers). In the event that either the text in the input buffer is
consumed or the parsed data stream fills the output buffer, the z/OS XML parser will return
XRC_WARNING, along with a reason code indicating which buffer (possibly both) needs the caller's
attention. It also indicates the current location and number of bytes remaining in each buffer by updating
the buffer_addr and buffer_bytes_left parameters passed in on the parse request (for C/C++ callers, see
the description of “gxlpParse — parse a buffer of XML text” on page 74; for assembler callers, see the
description of “GXL1PRS (GXL4PRS) — parse a buffer of XML text” on page 129). This process is referred
to as buffer spanning. For more information, see “Spanning buffers” on page 39.

If the entire document has been processed when the z/OS XML parser returns to the caller, the parse is
complete and the caller proceeds accordingly. If the caller requires another document to be parsed, it has
the option of terminating the current parse instance by calling the termination service (gxlpTerminate for
C/C++ callers, GXL1TRM(GXL4TRM) for assembler callers). This will free up any resources that the z/OS
XML parser may have acquired and resets the data structures in the PIMA. If the caller needs to parse
another document, it will have to call the initialization service again to either completely re-initialize an
existing PIMA that has been terminated or initialize a new PIMA from scratch.

Another option is to use the finish/reset function of the z/OS XML parser control service (gxlpControl for
C/C++ callers, GXL1CTL (GXL4CTL) for assembler callers) to reset the PIMA so that it can be reused. This
is a lighter-weight operation that preserves certain information that can be reused across parsing
operations for multiple documents. This potentially improves the performance for subsequent parses,
since this information can be reused instead of rebuilt from scratch. Reusing the PIMA in this way is
particularly beneficial to callers that need to handle multiple documents that use the same symbols (for
example, namespaces and local names for elements and attributes). The PIMA can only be reused in this
way when the XML documents are in the same encoding.

Restriction: The following restrictions apply when conducting a validating parse:

• When parsing in non-Unicode encodings, non-representable character entities are replaced with the "-"
character prior to validation. See “Non-representable characters” on page 41 for more information on
non-representable character entities.

• There is a maximum of 64 KB non-wildcard attributes for a single element, and 64 KB elements in an
All group.

© Copyright IBM Corp. 2006, 2019 11

Steps for parsing XML documents without validation

About this task

The following steps summarize the process of parsing XML documents using the z/OS XML parser:

Procedure

1. Call the initialization service. This establishes the PIMA, which is then used to create and store the
initial data structures required to begin the parse process.

2. Call the parse service to parse the document.

Note: During the parse process and before the end of the document is reached, if the input buffer is
empty or the output buffer is full, a warning is issued and the parse service is stopped. Otherwise, the
parse service will continue until the document is fully processed.

3. The application processes the output buffer.
4. Determine if there are additional documents to be processed. If so, call the termination service to

terminate the existing parse process, and repeat Steps 1-3.

Tip: For increased performance, the caller can use the control service in place of the termination and
initialization services. The control service enables the PIMA to be reused, avoiding the need to free
resources and initialize a new PIMA. However, the PIMA can only be reused in this way when the XML
documents are in the same encoding. See “gxlpControl — perform a parser control function” on page
50 and “GXL1CTL (GXL4CTL) — perform a parser control function” on page 108 for more information
on the control service.

Introduction to data types
There are several data types that can be returned in the output buffer. Therefore, the caller must know
what type of data is being returned to effectively process it. The following topics discuss the various data
types:

• “Parsed data model” on page 22 - overview of the structures that make up the data stream produced
by the parser.

• “Length/Value pairs” on page 33 - the default representation of strings that have been parsed from the
original XML document.

• “String Identifiers” on page 34 - a unique numeric value returned by the z/OS XML parser that
represents a given text string (a StringID exit service must be provided by the caller to generate these
IDs).

• “Metadata records” on page 24 - data records that contain metadata about the parse stream or error
information

Loading the validating parser code
Prior to parsing XML documents with validation, the validating parser code must be loaded into storage.
To do this, add the validating module, GXLIMODV, to the link pack area, which will make it available to all
programs on the system. The size of the GXLIMODV module is ≥ 3 megabytes. Adding this module to LPA
will reduce the size of the private area in every address space by this amount. If you have applications
that do not use the validating parser that are already storage constrained, then the LPA approach may not
be acceptable to your installation. For the exact size of GXLIMODV, run the AMBLIST utility.

If GXLIMODV is not installed into the link pack area, the application must load it into storage. In the non-
CICS environment, the application can use the GXL*LOD APIs to load the validating parser into private
storage. The load API should be done once per application instance, making validating parser available for

12 z/OS: XML System Services User's Guide and Reference

use by the entire application. For more information on the load APIs, see “gxlpLoad — load a z/OS XML
function” on page 72.

In the CICS® environment, if GXLIMODV is not in the link pack area, it can be loaded into the CICS private
region by running the program list table (PLT) program, GXLINPLT at CICS start time or as a transaction
program. For more information on setting up and running the CICS PLT program see “Setting up and
running the CICS PLT program” on page 20. Loading GXLIMODV into CICS private will take up
approximately 3 megabytes of private storage in each CICS region where the PLT program is run. If you
are running many CICS regions on the same system, consider using the LPA approach to reduce real
storage usage or paging. For size information of module GXLIMODV, which is installed in
SYS1.SIEALNKE, use a utility such as AMBLIST.

Steps for parsing XML documents with validation

About this task

The following steps summarize the process of parsing XML documents using the z/OS XML parser with
validation:

Procedure

1. Call the parser load service or run the XML CICS PLT program if in the CICS environment. This will load
the parser into storage. For more information, see “Loading the validating parser code” on page 12.

2. Call the OSR initialization utility. This establishes the OSR generator Instance Memory Area (OIMA),
which is then used as the work area for the OSR generator.

3. Call the OSR generator utility. This utility creates an OSR from one or more text-based schemas passed
to the OSR generator instance, using the load schema utility.

Note: An OSR can be saved and then used for parsing future documents that share the same
schema(s) from which the OSR was generated. As a result, steps 2 and 3 may not be required each
time an XML document is parsed using validation.

4. Call the parser initialization service. This establishes the PIMA, which is then used to create and store
the initial data structures required to begin the parse process.

5. Call the control service. This will load the generated OSR into the z/OS XML parser.
6. Call the parse service to parse the document.

Note: During the parse process and before the end of the document is reached, if the input buffer is
empty or the output buffer is full, a warning is issued and the parse service is stopped. Otherwise, the
parse service will continue until the document is fully processed.

7. The application processes the output buffer.
8. Determine if additional schemas need to be processed. If so, repeat steps 3, 5 and 6. If you want to

reuse an existing OSR, use the OSR load utility.
9. Determine if there are additional documents to be processed. If so, call the termination service to

terminate the existing parse process, and repeat steps 1 -7.

Tip: For increased performance, the caller can use the control service in place of the termination and
initialization services. The control service enables the PIMA to be reused, avoiding the need to free
resources and re-initiate a new PIMA. However, the PIMA can only be reused in this way when the XML
documents are in the same encoding. See “gxlpControl — perform a parser control function” on page
50 and “GXL1CTL (GXL4CTL) — perform a parser control function” on page 108 for more information
on the control service.

Parsing XML documents 13

Using Optimized Schema Representations
Optimized Schema Representations (OSRs) are specialized forms of schemas used during the validating
parse process. They can be created from utilities provided by the OSR generator API. For more
information about the OSR generator API, see “OSR generator API” on page 79.

Setting up the environment

About this task

Before the caller can begin generating OSRs, some environment variables must be set. The following lists
the environment variables that must be set along with their appropriate values.

Note:

1. The caller should use the proper 31/64-bit versions of the binaries listed below. Mixing versions of
different binaries will result in unpredictable results.

2. The OSR generator is only supported with IBM 31-bit SDK for z/OS, Java 2 Technology Edition, V5 and
above.

LIBPATH
must include paths to the following:

• For C API callers only (gxlcosr1.dll for 31-bit, gxlcosr4.dll for 64-bit) - /usr/lib
• For 31-bit callers - /usr/lib/java_runtime
• For 64-bit callers - /usr/lib/java_runtime64
• Java binaries and JVM

– For 31-bit callers -

- /usr/lpp/java/J5.0/bin
- /usr/lpp/java/J5.0/bin/j9vm

– For 64-bit callers -

- /usr/lpp/java/J5.0_64/bin
- /usr/lpp/java/J5.0_64/bin/j9vm

CLASSPATH
must include paths to the following:

• The Java API callers only (gxljapi.jar) - /usr/include/java_classes

Note:

1. Do not include gxljosrgimpl.jar. It will be loaded from /usr/include/java_classes
2. Callers of the Java API must choose the 31- or 64-bit version of Java that they intend to use.

They may either specify the explicit path to the required executable (/usr/lpp/java/J5.0/bin/java
for 31-bit, /usr/lpp/java/J5.0_64/bin/java for 64-bit), or include the path to the required Java
version in their PATH variable. Users of the C API and command interfaces do not need to be
concerned with this.

Usage tips

Tips are provided below to facilitate the usage of OSRs:

• An OSR is not a schema library. In other words, you should not throw all necessary schemas into a
single OSR and use it similar to a library.

• Schemas should reference one another by way of the <xs:import …> construct. That is, OSRs are
meant to contain hierarchies of schemas, where one or more schemas reference others to handle
increasingly more specific structures in the source XML document being transformed.

• You should consider creating one schema OSR to validate entire classes of documents.

14 z/OS: XML System Services User's Guide and Reference

The OSR used for validation becomes part of the parse instance, and remains in use for all validating
parse requests until a different one is specified through the control service. Callers who use buffer
spanning to pass documents to and from the parser in pieces should know that schemas cannot be
changed in the middle of the parse process. A control request to specify a different schema will cause a
reset of the parse instance so that the next parse request must be for a new XML document.

Note: For callers using schemas written in XML 1.1 format, use IBM Java Technology Edition V6 available
from the z/OS Java home page (www.ibm.com/systems/z/os/zos/tools/java).

Restricting the root element name
While performing a validating parse, the caller has the option to restrict the root element name to a list of
one or more root name or namespace pairs. When selecting this option, validation is performed on the
root name in the document being parsed. This option is only available for validating parses.

To enable this option, during the parse step the caller must perform a control call (gxlpControl) with the
control option GXLHXEC_CTL_RESTRICT_ROOT prior to parsing the document to indicate that the root
name is to be validated. The caller must also pass along a data area in the format of GXLHXRR, which
contains the list of root names. Failing to do this will cause an error, resulting in the z/OS XML parser
needing to be reset using CTL_FIN. The root names are specified by a local name (root name) and an
optional URI for the root namespace. The strings passed in to the control call (gxlpControl) call must be in
the encoding of the z/OS XML parser configured at initialization time.

The control call (gxlpControl) prepares the z/OS XML parser for a new document, but the current feature
set is preserved. Subsequent resets (such as CTL_FEAT) will not change the current settings of the
restrict root element control call. These settings will still apply when parsing subsequent documents.

The information produced in the output buffer from the subsequent parse does not change when using
this option.

The caller can remove the restriction on the root element name by calling gxlpControl () with the control
option GXLHXEC_CTL_RESTRICT_ROOT and setting the XRR_ENTRY_COUNT value to '0' in the GXLHXRR
data area.

The following is an example call sequence:

gxlpLoad
gxlpInit
gxlpControl(GXLHXEC_CTL_LOAD_OSR)
gxlpControl(GXLHXEC_CTL_RESTRICT_ROOT,GXLHXRR)
gxlpParse
gxlpTerminate

Parsing XML document fragments with validation
Before beginning document fragment parsing, the caller must specify the fragment path. The namespace
binding information is also required when there is namespace context associated with the fragment path.
To load the fragment context, the caller needs to issue a gxlpControl call with the control option
XEC_CTL_LOAD_FRAG_CONTEXT. This must occur before document fragment parsing is enabled .

Note: A new OSR with the extra Fragment Parsing Table information is required in order to parse a
document fragment with validation. Pre-z/OS V1R12 OSRs cannot be used in this parsing environment. To
load the OSR, the caller needs to issue a control call with the control option XEC_CTL_LOAD_OSR. This
must occur before document fragment parsing is enabled.

To enable fragment parsing, the caller needs to issue a gxlpControl call with the control option
XEC_CTL_FRAGMENT_PARSE and set the XFP_FLAGS_FRAGMENT_MODE bit to 'ON' in the control data
structure. This must occur prior to issuing the gxlpParse call with the XML document fragment loaded into
the input buffer. The z/OS XML parser will perform regular parsing including well-formedness checking
and validation, however the root element is not required. The XML declaration and Doctype Declaration
are not allowed as part of the document fragment.

If the z/OS XML parser reaches the end of the input buffer, and the parsed document fragment is well-
formed, the z/OS XML parser ends the parse successfully. If the z/OS XML parser reaches the end of the

Parsing XML documents 15

http://www.ibm.com/systems/z/os/zos/tools/java

input buffer, and the parsed document fragment is not well-formed, the z/OS XML parser will return an
error. Otherwise, the z/OS XML parser will return to request more input or output buffer space. Fragment
parsing with validation is restricted to a single attribute, as well as a single element and its descendants,
optionally followed by comments and processing instructions. Attempts to parse multiple element
fragments with validation will result in an error . If the caller decides to finish parsing the document
fragment, and the z/OS XML parser returns to request for more input and output buffer space during
fragment parsing, an error will occur. A gxlpControl call with the control option XEC_CTL_FIN must be
issued in order to parse another document or document fragment.

When the caller finishes parsing a document fragment, they must issue a gxlpControl call with the control
option XEC_CTL_FRAGMENT_PARSE and set the XFP_FLAGS_FRAGMENT_MODE bit to 'OFF' in the control
data structure to notify the z/OS XML parser that fragment parsing has been disabled.

The following is an example call sequence for a validating fragment parse:

gxlpLoad
gxlpInit
gxlpControl(XEC_CTL_LOAD_OSR)
gxlpControl(XEC_CTL_LOAD_FRAG_CONTEXT, FPATH)
gxlpControl(XEC_CTL_FRAGMENT_PARSE) -- enable the fragment mode
gxlpParse
gxlpControl(XEC_CTL_FRAGMENT_PARSE) -- disable the fragment mode
gxlpTerminate

If the caller wants to perform document fragment parsing or non-fragment parsing on a different
document, a gxlpControl call with the control option XEC_CTL_FIN must be issued prior to a gxlpParse
call. This XEC_CTL_FIN operation will reset and prepare the current parse instance for a new document
parse. The loaded fragment context will remain in storage and become active when fragment mode is
enabled again. If the next document fragment to be parsed requires different fragment path or
namespace binding information, then a new XEC_CTL_LOAD_FRAG_CONTEXT control call must be made
to update this information. Failure to load the correct information may cause unexpected results such as
well-formedness or validation errors.

The following is an example call sequence for a validating parse with fragments from two different
documents:

gxlpLoad
gxlpInit
gxlpControl(XEC_CTL_LOAD_OSR)
gxlpParse
gxlpControl(XEC_CTL_LOAD_FRAG_CONTEXT, FPATH1)
gxlpControl(XEC_CTL_FRAGMENT_PARSE, BIT:ON) -- enable fragment mode #1
gxlpParse -- parse document fragment #1 part1 in FPATH1
gxlpParse -- parse document fragment #1 part2 in FPATH1
gxlpControl(XEC_CTL_FRAGMENT_PARSE, BIT:OFF) -- disable fragment mode #1
gxlpControl(XEC_CTL_FIN)
gxlpControl(XEC_CTL_LOAD_FRAG_CONTEXT, FPATH2)
gxlpControl(XEC_CTL_FRAGMENT_PARSE, BIT:ON) -- enable fragment mode #2
gxlpParse -- parse document fragment #2 in FPATH2
gxlpControl(XEC_CTL_FRAGMENT_PARSE, BIT:OFF) -- disable fragment mode #2
gxlpTerminate

Restrictions: Validation in fragment parsing cannot satisfy all aspects of schema validation for an
arbitrary input string as various aspects of schema validation refer to other aspects of the document.
Although it may be possible to validate some aspects of the following schema constructs, in general they
require the entire document to be available. The restriction falls into two broad categories: those things
that cannot be validated reasonably and those things that can be validated in isolation but could possibly
fail within the context of a document. The first category is avoided by requiring the client to ensure that
the name of the element matches the element that it is replacing. The second category includes the
following:
Namespaces

The gxlpControl API allows the establishment of a namespace context in which to do the validation. If
none are provided, it will be assumed that there are no namespaces bound to prefixes other than
those bound within the input to be validated.

16 z/OS: XML System Services User's Guide and Reference

ID/IDREF
This requires knowledge of other portions of the instance document and will only be validated using
the appropriate simple content validator.

Unique elements and attributes
Unique elements and attributes are contained within the subtree of the element containing the unique
schema indicator. If this element is the root for the document fragment or is a descendant, then the
unique element or attribute can be handled normally. However, if the unique specifier is an ancestor of
the root, there could be collisions which will not be detected.

KEY/KEYREF
This is similar to ID/IDREF in that the KEYs must be unique and KEYREFs must match a KEY, and
similar to unique attributes in that it must be contained in the subtree. Those aspects that can be
checked are validated, but those aspects that refer to ancestral content are not validated.

Validating attributes and elements with attributes (other than xsi:type)
These attributes are meaningless in fragments and are only validated using the appropriate simple
type validator. This means that the special characteristics of these attributes will not have an effect.
For example, schemaLocation will not indicate a schema but will just be validated against string.

xsi:type
When xsi:type is an attribute on an element, it will have the expected effect. Validating this as a single
attribute will result in it being validated using the qname simple type validator.

DTDs
Because the z/OS XML parser is only passed the document fragment, it has no knowledge of the entity
definitions or default attribute values in the internal DTD subset. Therefore, if the schema contains an
attribute with a type of ENTITY, it will fail. It will also fail if it relies on a default attribute value defined
in the internal DTD subset.

Comments, processing Instructions and annotations
These constructs can be included in the normal ways within an element being validated.

Attributes that rely on an xsi:type attribute to also be present
When validating an attribute, the attribute is validated using the type containing the attribute.
Therefore, it cannot be a derived attribute or an attribute only available on a derived type.

The parser cannot determine the actual particle when an element is indicated
The parser cannot determine the actual particle when an element is indicated. Rather, the designator
is used to indicate a type so information on the particle, such as fixed values and nillable are not
checked.

The impact of the validation within its context is not checked
The impact of the validation within its context is not checked. Therefore, the effects of changing an
element to a different element (likewise with attributes) are not checked. Checking such
characteristics requires validating the parent and document fragment does not provide this
information.

Obtaining information on schema locations
When parsing a document containing schema references, the caller generates and loads an OSR. In order
to make sure that the appropriate OSR is loaded, the caller must determine which schemas are
referenced in the document and their locations. To this end, the caller can query the XML document for
namespaces and schema locations.

The caller can obtain information on the schema location by initializing the PIMA with the
GXLHXEC_FEAT_SCHEMA_DISCOVERY feature. This will cause the z/OS XML parser to pause after parsing
the start tag of the root element. The output buffer is then populated with records as if a normal parse
was performed, with the following additional records: GXLHXEC_TOK_ROOT_ELEMENT and
GXLHXEC_TOK_SCHEMA_LOCATION. GXLHXEC_TOK_ROOT_ELEMENT contains the root element name
and GXLHXEC_TOK_SCHEMA_LOCATION contains the schema location information. The output buffer will
not contain any start element, attribute value, or namespace declaration records. After the end of the
start tag has been reached and all schema info records have been outputted, the z/OS XML parser
provides the caller an opportunity to load an OSR before the parse is continued. If the parse is continued,

Parsing XML documents 17

whichever OSR was loaded by a GXLHXEC_CTL_LOAD_OSR operation will be used to validate the
document. If no OSR loading operation has been performed since parser initialization, the parser must be
reset in order to parse again.

The following is an example sequence, with the GXLHXEC_FEAT_SCHEMA_DISCOVERY enabled:

gxlpLoad
gxlpInit (with GXLHXEC_FEAT_SCHEMA_DISCOVERY enabled)
gxlpParse
gxlpControl(GXLHXEC_CTL_LOAD_OSR)
gxlpParse
gxlpTerminate

If the document does not contain either a schemaLocation or noNamespaceSchemaLocation attribute,
then GXLHXEC_TOK_SCHEMA_LOCATION records will not appear in the output stream .

See “gxlpInit — initialize the z/OS XML parser” on page 69 and “GXL1INI (GXL4INI) — initialize a parse
instance” on page 125 for more information on using this feature.

Obtaining additional error information
The default behavior when there is an XML document error is the z/OS XML parser returns a reason code
which identifies the error, and an offset into the original document which is being parsed. In many cases,
this is insufficient as XML documents are commonly transcoded in transit. Such transcodings can cause
offsets to change in the document, rendering the offsets less useful.

The type of error information that can be provided will necessarily vary by the particular error
encountered. The following are examples of additional error information that may be made available
when an error is encountered:

• A bit indicator which identifies the general location within the document. This can be XML declaration,
DTD, element, miscellaneous, or an attribute which is a namespace declaration. If the error occurs in
entity replacement text, an additional bit will be set.

• A location string which represents a path-like expression for the ancestor element node(s) at the point
of the error. This will be only applicable when the error occurs within the XPath addressable portion of
the document. There also will be an associated namespace context provided in order to assist in
correctly identifying the failing location.

• A failed string which represents information taken from the document. For example, this could be an
incorrect element name or an invalid Unicode character.

• A string which is expected to be present but is missing.

Because element occurrences can be repeated with the same names, it is possible to also include
position information in the path-like expression. However, tracking element positions will be detrimental
to performance even when there is no error.

This additional error information may be obtained for a validating parse by using the
XEC_CTL_ERROR_HANDLING control option along with the XERR structure which is mapped by GXLHERR
in gxlhctl.h to enable this feature. The XERR_ENH_ERROR_INFORMATION flag will cause additional
auxiliary records to be returned which may contain information on the location of the error, the string
which is in error and also possibly an expected string. The XERR_XD_PTR is where the service will store
the address of the diagnostic area, which is mapped by GXLHXD in the gxlhxd.h file. The XD_LastOutput
field is a pointer to the data area containing these records. This data area is within the PIMA and is
formatted in the same manner as a normal output buffer. It will have a buffer information record followed
by one or more additional records. This data area will be overlaid on a subsequent call to the z/OS XML
parser.

The XERR_ENH_ERROR_LOCATION feature flag may also be specified to request that position indexes be
returned in the XPath expression which represents the error location. Enabling this feature will impact
performance.

18 z/OS: XML System Services User's Guide and Reference

In order to explain how element position indexes are tracked, the concept of an expanded QName needs
to be explained. See the following example:

<?xml version="1.0"?>
<root>
<pre:elem1 xmlns:pre=”http://w3.pok.ibm.com”>
</pre:elem1>
<pfx:elem1 xmlns:pre=”http://w3.pok.ibm.com”>
</pfx:elem1>
</root>

For the first non-root element, the QName would be pre:elem1 and the second pfx:elem1. However,
an expanded QName consists of the namespace URI and the local name. Two expanded QNames are
equal if their namespace URIs and local names are equal (even if the prefixes are not equal). So in this
case, if an error occurred on the pfx:elem1, the index would be "[2]" since both expanded QNames are
http://w3.pok.ibm.com:elem1. This is a simple example. With default namespaces, the situation
can be more complicated.

XML Path language
XML Path (XPath) is a language for addressing parts of an XML document. It is a W3C recommendation.
XPath is well known and commonly used in XML applications. This language will be used for specifying
location path expressions which covers most areas of an XML document.

The following are considered nodes in the XPath language:

• Document root
• Elements
• Attributes that are not namespace declarations
• Processing instructions (PIs)
• Comments
• Text

During the progress of a particular parse, constructs will become "XPath identifiable" when sufficient
characters are parsed to uniquely recognize the type of node and its name (if it has one). The following are
the points where this occurs for each node:
Document root

This is identifiable when the first non-XML declaration structure is discovered. This will never have a
corresponding name.

Element
This is identifiable after the element type is fully parsed. This will be when either whitespace, a '>'
character or a '/' character are encountered after the element type.

Attribute
This is identifiable after the attribute name is fully parsed. This will be when either whitespace or an
'=' character are encountered after the attribute name.

PI
This is identifiable after the PI target is fully parsed. This will be when either whitespace or a “?”
character are encountered after the PI target.

Comment
This is identifiable after the beginning of the comment markup is parsed. This will be after the “” are
encountered.

Text
This is identifiable after the “>” of markup within element nodes.

Some structures within an XML document are not identifiable using the XPath language. The following
constructs are not XPath identifiable:

Parsing XML documents 19

XML declaration
The path location string will be 0 length. This is recognized when “<?xml “ is encountered at the
beginning of the document and before the subsequent “>" is encountered.

Doctype declaration
The path location string will be 0 length. This is recognized when "<?DOCTYPE " is encountered and
before the subsequent "]".

Namespace declarations
The path location string will denote the containing element node. This is recognized when "xmlns" is
encountered where there should be an attribute.

While text nodes are XPath identifiable, they will not be uniquely denoted. Instead, the location path will
denote the containing parent element node.

For more information on the format of the auxiliary information records, see “Metadata records” on page
24.

Setting up and running the CICS PLT program

About this task

The GXLINPLT assembler program uses the MVS™ LOAD command on the z/OS XML System Services
module, GXLIMODV, the validating parser. GXLINPLT is distributed as part of z/OS and is installed in
SYS1.SIEALNKE(GXLINPLT). By default, it is in the LNKLST.

The following steps are required to add GXLINPLT as a program list table (PLT) program in CICS and to run
at CICS start up:

Procedure

1. Define GXLINPLT to the CICS CSD. See Appendix H, “CICS examples,” on page 229 for an example of a
job that uses the DFHCSDUP program to define GXLINPLT to the CICS CSD. See CICS Transaction
Server for z/OS (www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html) for more
information on DFHCSDUP programs and the CICS CSD.

2. Add the CICS group that contains the GXLINPLT program in a GRPLST that is included at CICS startup.
Here is an example: add a new group, GXLXMLCG to GRPLST GXLXMLCL, and add GXLXMLCL to the
GRPLST parameter in the DFH$SIPx file.

3. Customize the Program Load Table (PLT) to include the z/OS XML System Services program, GXLINPLT,
to run during the second stage of initialization. For an example of a job to update the PLT table, see
Appendix H, “CICS examples,” on page 229. For this example, the DFH$SIPx would include the entry:
PLTPI=I1. Next, add the load module where the program (in the above example, the DFHPLTI1
program) is installed, to the CICS DFHRPL concatenation.

4. Add the data set where GXLINPLT is installed to the CICS DFHRPL concatenation. By default, this data
set is SYS1.SIEALNKE.

Note: GXLINPLT may also run as a CICS transaction.

Results

For more information on how to setup and run CICS PLT programs, see CICS Transaction Server for z/OS
(www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html).

Support for error toleration
The default behavior when the parser encounters an error is to report a reason code and then terminate
the parse. In the event that the caller does not want this error to terminate the parse, they may use the
XEC_CTL_ERROR_HANDLING control option to override this default behavior and continue parsing. The
XEH_Error_Tolerated bit in the XEH_Flags field will be set in the record header when this occurs.

20 z/OS: XML System Services User's Guide and Reference

http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html

The XEC_CTL_ERROR_HANDLING control option will enable error toleration on a control call by way of
the XERR structure which is mapped by GXLHERR in the gxlhctl.h file.

The following describes the type of error toleration that is supported:
XERR_TOL_UNDECL_NS_PREFIX

Turning on the bit enables a non-validating parser to tolerate an undefined prefix on an element or
attribute. The “undefined prefix:local name” will then be returned as the local name field in the output
buffer.

In addition to continuing on the error, an auxiliary information record may be generated in the output
buffer if desired. This will contain the tolerated return and reason codes and the error offset. In order for
this record to be returned, the XERR_ERROR_INFORMATION flag must be set in the XERR_FLAGS field.
This requires that the feature flag also be set. This new record will have a type of XEC_TOK_AUX_INFO
(0xF0FF) and an AUX type of XEC_TOLERATED_ERROR (0x0110). For the format of this record, see “Aux
info record - TOLERATED_ERROR” on page 32.

Header files and data macros
This section provides information on the header files and data macros associated with the z/OS XML
parser. The names and purposes of these files are listed below:

Note: For each item below, the name of the header file is listed first, followed by the name of the
corresponding assembler macro (if any).

gxlhxml.h

Contains prototypes for all of the API entry points, as well as include statements for all of the other
header files that are required for the API. The Metal C version of this header also includes logic to call
either the 31 or 64 bit version of the requested API, depending on the addressing mode of the caller.

There is no corresponding assembler version of this header file.

gxlhxeh.h, GXLYXEH
Describes all of the structures that the z/OS XML parser generates in the parsed data stream. This
includes both the records that represent the individual markup and content parsed from the
document, as well as metadata about the data stream itself.

gxlhxec.h, GXLYXEC
Contains assorted constant values that are used in the parsed data stream, values used for assorted
fields of the API, and minimum sizes for data areas passed to the z/OS XML parser.

gxlhqxd.h, GXLYQXD
Contains the structure that describes the information returned from the Query XML Declaration (QXD)
service. It also contains constants that enumerate the allowable values for certain fields of the
structure.

gxlhxd.h, GXLYXD
Maps the z/OS XML parser extended diagnostic area.

gxlhxr.h, GXLYXR
Contains mnemonic values that describe the return and reason codes generated by the z/OS XML
parser.

gxlhxsv.h, GXLYXSV
Maps the system service vector that the caller uses to describe the exits that it provides to the z/OS
XML parser.

gxlhctl.h, GXLYCTL
Contains the various structures that are used in the gxlpControl (GXL1CTL/GXL4CTL) service.

gxlhxft.h, GXLYXFT
Maps the input and output area used by the control feature flag of the gxlpControl GXL1CTL
(GXL4CTL) service.

Parsing XML documents 21

gxlhxosr.h, GXLYXOSR
Maps the input and output area used by the optimized schema representation.

For information on these header files and corresponding data macros, see Appendix D, “C/C++ header
files and assembler macros,” on page 207.

Parsed data model
This section provides information on the data model used to represent the contents of the output buffer.
The caller needs to understand this data model so that it can effectively process the parsed data stream
that has been created in the output buffer.

The z/OS XML parser produces a structured data stream resulting from the parse process. It is a feature
that distinguishes the z/OS XML parser from most other XML parsers. The parsed data stream consists of
a set of self-describing records representing the output of the parser. These records provide a structure to
the data stream that allows a consumer to navigate the data stream as needed. Some of the records
represent the actual semantic content of the parsed document, while others provide metadata about the
parse itself. There may be more than one group of these records (or record groups) in a single output
buffer. This can occur if the input buffer spans multiple times before the output buffer is filled.

Common record header
Each record in the parsed data stream consists of a common header, followed by information that is
specific to a given record type. The common header has the following structure:

Table 1. Common record header

Fields

+0 record type (2 bytes) flags (1 byte) reserved (1 byte)

+4 record length

The record type determines the form of the data that immediately follows the header and which makes up
the body of the record. The record flags provide information about the specific record to which they
belong. Each bit of the flags byte has the following meaning:

Table 2. Record flag bits

Bit position Name Purpose

0 XEH_CONTINUED This record is continued in the next output buffer.

1 XEH_NO_ESCAPES There are no characters that need to be escaped in
this record.

2 XEH_DEFAULT This record is supplied with default content from a
DTD or a schema.

3 XEH_ERROR_TOLERATED This record contains an undefined prefix which is
tolerated because this behavior was requested.

The XEH_No_Escapes flag is provided as an aid to callers that need to re-serialize the parsed data stream
back to an XML document in text form. It is relevant only for records that represent character data or
attribute values (its meaning is undefined for all other records). It indicates that there are no special
characters present that need to be escaped in the text of the record during re-serialization. The set of
these special characters is made up of "<", ">", "&", and the single and double quotes. The caller must
substitute either one of the well known strings ("<", ">", "amp;", "'", """) or a numeric
character reference in the serialized text in order to create a well formed XML document.

22 z/OS: XML System Services User's Guide and Reference

Note: Single and double quotes are allowed within character data. If they appear within character data,
they are not considered escaped characters. However, if single or double quotes exist within attribute
values, they are considered escaped characters.

When this flag is on, the caller can safely avoid scanning the text associated with the record to look for
characters that must be escaped during re-serialization. When the flag is off, one of the special characters
may be present, and such a scan is required. Note that there are certain instances involving buffer
spanning when it is not possible for the parser to determine that this bit should be set. As a result, for
character data and attribute value records that span multiple output buffers, the XEH_No_Escapes bit
may be off, even when there are actually no characters that need to be replaced during serialization. If the
bit is on though, it will always be safe to avoid scanning for characters that need escaping.

The flags field is followed by 1 reserved byte and the record length. The record length contains the total
length of the record - including the header. Navigating from one record to the next is done by moving a
pointer, by the specified record length, from the first byte of the current record header.

Record (token) types
Record types are values used to identify the purpose of each record parsed from the input document. The
record type, along with the data stream options in the buffer info record (see “Buffer info record” on page
24), indicates the form of the record. Record forms are a means of indicating the number of values that
make up the record itself, and are described in a separate section below. Here are the record types
returned by the z/OS XML parser (their definitions are provided in gxlhxec.h for C and C++ callers, and
GXLYXEC for assembler callers):

Table 3. Record types

Token name Meaning

GXLHXEC_TOK_BUFFER_INFO information about the buffer containing the
parsed data stream

GXLHXEC_TOK_ERROR error information

GXLHXEC_TOK_XML_DECL an XML declaration

GXLHXEC_TOK_START_ELEM start of an element

GXLHXEC_TOK_END_ELEM end of an element

GXLHXEC_TOK_ATTR_NAME name of an attribute

GXLHXEC_TOK_ATTR_VALUE value of an attribute

GXLHXEC_TOK_NS_DECL a namespace declaration

GXLHXEC_TOK_CHAR_DATA character data

GXLHXEC_TOK_START_CDATA start of a CDATA section

GXLHXEC_TOK_END_CDATA end of a CDATA section

GXLHXEC_TOK_WHITESPACE a string of white space characters

GXLHXEC_TOK_PI processing instruction

GXLHXEC_TOK_COMMENT a comment

GXLHXEC_TOK_DTD_DATA DOCTYPE declaration information

GXLHXEC_TOK_UNRESOLVED_REF an entity reference that cannot be resolved

GXLHXEC_TOK_AUX_INFO auxiliary information about individual items in
the parsed data stream

GXLHXEC_TOK_SCHEMA_LOCATION schema location information

Parsing XML documents 23

Table 3. Record types (continued)

Token name Meaning

GXLHXEC_TOK_ROOT_ELEMENT root element name

The above token names are for the C/C++ callers. Assembler callers use token names without the prefix
"GXLH".

Most of the record types listed above fall into one of four classes, based on the number of values they
contain from the document being parsed. Two of these record types - the buffer info and error records -
are different (see “Buffer info record” on page 24and “Error info record” on page 25) because they
contain metadata about the information in one of the buffers (input or output), rather than data parsed
from the input stream. The form of the data they contain is unique to the purpose of the record.

The data structures that describe this data stream can be found in the data model header file gxlhxeh.h
for C/C++ callers, and the mapping macro GXLYXEH for assembler callers. Data is not aligned on any kind
of boundary, and there are no alignment requirements for the input or output buffers provided by the
caller.

Metadata records
Some records contain metadata related to the parsing process. These records are discussed below.

Buffer info record
Because the data stream that the z/OS XML parser generates in the output buffer consists of one or more
groups of records, each group always begins with the buffer info record - a record containing metadata
about the parsed data stream contained in the current output buffer. This record includes the length of
the buffer used by the record group and flags indicating the characteristics of the data stream.

The following is the structure for the buffer info record, including the record header:

Table 4. Buffer info record structure

Fields

+0 record type flags reserved

+4 record length

+8 datastream options

+C parse status reserved

+10 buffer length used

+14

+18 offset to error record

+20

This record is not allowed to span output buffers, so the continuation flag in the record flags field of the
buffer header will always be zero. The datastream options contain a flag indicating whether or not
StringIDs are in use, plus some of the flags from the feature flags parameter on the z/OS XML parser init
call. These flags indicate some characteristic of the data in the parsed data stream. The full list of flags
indicate:

• StringIDs are in effect
• Comments are stripped (GXLHXEC_FEAT_STRIP_COMMENTS)
• White space is being tokenized (GXLHXEC_FEAT_TOKENIZE_WHITESPACE)

24 z/OS: XML System Services User's Guide and Reference

• Returning CDATA as CHARDATA (GXLHXEC_FEAT_CDATA_AS_CHARDATA)
• Validating parser is enabled (GXLHXEC_FEAT_VALIDATE)
• Source offsets are enabled (GXLHXEC_FEAT_SOURCE_OFFSETS)
• Full end tag feature is enabled (GXLHXEC_FEAT_FULL_END)

Note:

1. The GXLHXEC_FEAT* flags in above parentheses are defined in gxlhxec.h for C/C++ callers and
GXLYXEC for assembler callers. For assembler callers, remove the "GXLH" prefix from the constant
names.

2. The buffer info record is mapped out in gxlhxeh.h for C/C++ callers and GXLYXEH for assembler callers.

The "parser status" field is another set of flags in the buffer info record. If an unresolved external
reference is present in this buffer, the unresolved reference bit will be on. If a non-representable
character reference is present in this or a subsequent buffer for this document, the non-representable
character reference bit will be on.

The "buffer length used" field indicates the portion of the output buffer consumed by the group of records
represented by this buffer info record. If no buffers are spanned during the parse process, there will be
only one buffer info record present in the output buffer, representing a single group of records. If buffers
are spanned, there may be several record groups, each with corresponding buffer info records present in
the output buffer. The number of record groups and buffer info records depends on how the caller
manages the buffers that are passed to the parser. See “Spanning buffers” on page 39 for more
information.

The "error record offset" field indicates the offset from the beginning of the buffer info record to the
beginning of the error info record. If this offset is zero, there is no error record present in the group of
records represented by the buffer info record.

Error info record
The error info record is placed in the parsed data stream whenever a parsing error is detected. The offset
to the error from the start of the document, along with the return and reason code generated by the z/OS
XML parser when the error was encountered, are kept in a field of the error info record. Here is the
structure of the record, including the record header:

Table 5. Error info record structure

Fields

+0 record type flags reserved

+4 record length

+8 return code

+C reason code

+10 offset of the error from the start of the document

+14

Note: The error info record is mapped out in gxlhxeh.h for C/C++ callers, and GXLYXEH for assembler
callers.

For information on error codes and how to use them, see “Using return and reason codes” on page 47.

Aux info record
When the source document offsets feature (GXLHXEC_FEAT_SOURCE_OFFSETS) is selected, or the
character reference record (GXLHXEC_UNREPRESENTABLE_CHARREF_REC) is requested, an information
record is inserted in the output buffer. The record has the following structure:

Parsing XML documents 25

Table 6. Aux info record

Fields

+0 record type flags reserved

+4 record length

+8 aux flags information type

+C -varied information-

The record values are defined as follows:
Record header

This is the standard record header of all records in the data model. The record type is
GXLHXEC_TOK_AUX_INFO.

Aux flags
These flags provide information about the form of the data in the rest of the record:

• XEH_AUX_LONG_VALUE - This flag is only used in records which contain values which can vary in
size. This bit will be OFF if the record contains integer values that are 4 bytes in length. The bit will
be ON if the record contains values that are 8 bytes in length. Any value or record length fields in the
record such as the record length in the header will always be 4 bytes no matter what the value of
this bit is.

All offset values which are under 4GB-1 in magnitude will be represented as a 4 byte value in the
data stream and the XEH_AUX_LONG_VALUE flag will be OFF. When an offset is encountered which
exceeds 4 GB, then all offset records from that point on will be represented as 8 byte values in the
data stream and the XEH_AUX_LONG_VALUE will be set ON.

• AUX_ENTITY - This is set for information records that are generated from entities.

Information type
This value identifies what information is contained in the record. See information types for details on
the different types.

-varied information-
The contents of the additional information will depend on the information type and flags. For offset
records, this will contain either a 4 or an 8 byte value which represents the offset of the particular
structure from the beginning of the document. It will be 4 bytes if the XEH_AUX_LONG_VALUE bit flag
bit is OFF in the header. It will be 8 bytes if the XEH_AUX_LONG_VALUE bit flag is ON in the header.

Information types:
GXLHXEC_OFFSET_START_STARTTAG

This is the offset of the ‘<’ at the beginning of an XML start tag. This record occurs in the datastream
immediately preceding the GXLHXEC_TOK_START_ELEM .

GXLHXEC_OFFSET_END_STARTTAG
This is the offset of the ‘>’ at the end of an XML start tag. This record occurs in the datastream
immediately after the last GXLHXEC_OFFSET_END_ATTRVALUE, if there are attributes, or the
GXLHXEC_OFFSET_END_STARTTAGNAME record if there are no attributes.

GXLHXEC_OFFSET_END_STARTTAGNAME
This is the offset to the end of the XML start name qname. This record occurs in the datastream
immediately following the GXLHXEC_TOK_START_ELEM.

GXLHXEC_OFFSET_START_ATTRVALUE
This is the offset of the beginning quote of the attribute value. This record occurs in the datastream
immediately preceding the GXLHXEC_TOK_ATTR_VALUE.

GXLHXEC_OFFSET_END_ATTRVALUE
This is the offset of the ending quote of the attribute value. This record occurs in the datastream
immediately after the GXLHXEC_TOK_ATTR_VALUE.

26 z/OS: XML System Services User's Guide and Reference

GXLHXEC_OFFSET_START_COMMENT
This is the offset of the ‘<’ at the beginning of an XML comment. This record occurs in the datastream
immediately preceding the GXLHXEC_TOK_COMMENT.

GXLHXEC_OFFSET_END_COMMENT
This is the offset of the ‘>’ at the end of an XML comment. This record occurs in the datastream
immediately following the GXLHXEC_TOK_COMMENT.

GXLHXEC_OFFSET_START_CDATA
This is the offset of the ‘<’ at the beginning of an XML CDATA. This record occurs in the datastream
immediately preceding the GXLHXEC_TOK_START_CDATA.

GXLHXEC_OFFSET_END_CDATA
This is the offset of the ‘>’ at the end of an XML CDATA. This record occurs in the datastream
immediately following the GXLHXEC_TOK_END_CDATA.

GXLHXEC_OFFSET_START_PI
This is the offset of the ‘<’ at the beginning of an XML PI. This record occurs in the datastream
immediately preceding the GXLHXEC_TOK_PI.

GXLHXEC_OFFSET_END_PI
This is the offset of the ‘>’ at the end of an XML PI. This record occurs in the datastream immediately
following the GXLHXEC_TOK_PI.

GXLHXEC_OFFSET_START_XMLDECL
This is the offset of the ‘<’ at the beginning of an XML Declaration. This record occurs in the
datastream immediately preceding the GXLHXEC_TOK_XML_DECL.

GXLHXEC_OFFSET_END_XMLDECL
This is the offset of the ‘>’ at the end of an XML Declaration. This record occurs in the datastream
immediately following the GXLHXEC_TOK_XML_DECL.

GXLHXEC_OFFSET_START_ENDTAG
This is the offset of the ‘<’ at the beginning of an XML end tag. This record occurs in the datastream
immediately preceding the GXLHXEC_TOK_END_ELEM.

GXLHXEC_OFFSET_END_ENDTAG
This is the offset of the ‘>’ at the end of an XML end tag. This record occurs in the datastream
immediately following the GXLHXEC_TOK_END_ELEM.

GXLHXEC_OFFSET_START_DTD
This is the offset of the ‘<’ at the beginning of an XML DOCTYPE declaration. This record occurs in the
datastream immediately preceding the GXLHXEC_TOK_DTD_DATA.

GXLHXEC_OFFSET_END_DTD
This is the offset of the ‘>’ at the end of an XML DOCTYPE declaration. This record occurs in the
datastream immediately following the GXLHXEC_TOK_DTD_DATA.

GXLHXEC_OFFSET_START_NSVALUE
This is the offset of the quote at the beginning of an XML namespace declaration value. This record
occurs in the datastream immediately preceding the GXLHXEC_TOK_NS_DECL.

GXLHXEC_OFFSET_END_NSVALUE
This is the offset of the quote at the end of an XML namespace declaration value. This record occurs in
the datastream immediately following the GXLHXEC_TOK_NS_DECL.

GXLHXEC_OFFSET_ROOT_ELEMENT
This is the offset of the < at the beginning of the root element start tag. This record occurs in the
datastream immediately preceding the GXLHXEC_TOK_ROOT_ELEMENT.

GXLHXEC_CHARREF_UNREP_REC
This record type contains information about non representable character references in the document.

Note: This information type contains a different auxiliary information record than the previous
information types. The variable section of the record is as follows:

Parsing XML documents 27

Table 7. Alternate structure for variable section of aux info record (GXLHXEH_AUX_LONG_VALUE =
OFF)

Fields

+0 The binary value of the character reference that cannot be represented.

+4 The offset of the character reference that cannot be represented in the
document.

+8 The offset into the string of the previous replacement character's record in the
output record.

If the GXLHXEH_AUX_LONG_VALUE bit is set to 'ON' in the GXLHXEH_AUX flag, the variable section of
the record has the following structure:

Table 8. Alternate structure for variable section of aux info record (GXLHXEH_AUX_LONG_VALUE =
ON)

Fields

+0 The binary value of the character reference that cannot be represented.

+4 -reserved-

+8 The offset of the character reference that cannot be represented in the
document.

+C

+10 The offset into the string of the previous replacement character's record in the
output record.

+14

The above information type names are for the C/C++ callers. Assembler callers use information type
names without the "GXLH" prefix.

Entities and default XML structures

If the records are inserted in the output stream via XML entity replacement or default generation, then
offset information records will be generated, and the varied information field will represent the offset of
the ‘;’ character of the entity reference in the main document or the ‘>’ character of the element which
contains the default attribute. Also, all information records generated from entities will have the entity
flag bit set ON.

Default XML structures include any of the following:
Attributes

These can be generated from DTDs or schemas.
Namespace declarations

These can be generated from DTDs or schemas.
Start tags and end tags

These can be generated from schemas only.
Content

These can be generated from schemas only and only within default start and end tags.

Interactions with other features

The source offsets feature can interact with other features. The following is a list of those features, along
with an explanation of the interaction:
Strip comments (GXLHXEC_FEAT_STRIP_COMMENTS)

When source offsets are enabled, comment records will continue to be stripped. However, the source
offset information records for comment markup will continue to be inserted into the output.

28 z/OS: XML System Services User's Guide and Reference

CDATA as char data (GXLHXEC_FEAT_CDATA_AS_CHARDATA)
When source offsets are enabled, CDATA will continue to be outputted as character records. However,
the source offset information records for CDATA markup will continue to be inserted into the output.
In this case, the order of the information records will not be in document order in relation to the data
in the character records.

Validation
Information records will be created when using the validating parser as well as the non-validating
parsing.

Fragment parsing (GXLHXEC_CTL_FRAGMENT_PARSE)
Normally, source offset values are presented based on the beginning of the XML document, However,
when document fragment parsing is enabled, the source offset values are presented based on the
fragment parsing block constituted by the start and end fragment parsing control call. Therefore, the
source offset will start from zero for every document fragment that is parsed after the start fragment
parsing control call is made.

Aux info record - Error_Location
This is a type of aux info record. This record pertains to the XEC_CTL_ERROR_HANDLING features. It has
the following format:

Table 9. Aux info record - Error_Location

Fields

+0 record type flags reserved

+4 record length

+8 aux flag aux type = 0x0101

+C error flags

+10 error location path length

+14 error location path value

+n error namespace context length

+n+4 error namespace context value

• The record header flags field will always be 0.
• The record length field contains the total length of the record - including the header
• The XEH_AUXFlag field will always be 0.
• The aux record type field will have the value 0x0101 - XEC_ERROR_LOCATION

The flags field (XEH_ErrFlags) consists of the following possible values:
XEH_ERRXMLDECL

Error occurred in the XML declaration or text declaration portion of the document.
XEH_ERRDTD

Error occurred in the document type declaration portion of the document.
XEH_ERRELEMENT

Error occurred in the element portion of the document.
XEH_ERRMISC

Error occurred within PIs, comments in the prolog, miscellaneous areas of the document, or between
markup.

XEH_ERRREPTEXT
Error occurred within entity replacement text while resolving an entity reference. This bit will be on in
addition to the other bits.

Parsing XML documents 29

XEH_ERRNSDECL
Error occurs within an attribute which is a namespace declaration.

The error location path field is a string in the form of a length/value pair which represents the approximate
location of the failure.

The namespace context is a list of namespace URIs delimited by '/' characters with each step
corresponding to the same step in the error location path. Each namespace URI will be surrounded by
double quote characters to aid in parsing the string.

Error location path and namespace context

This is defined as a list of element and attribute nodes in the format of an XPath expression which
denotes the closest ancestor to the failure point which has passed sufficient well-formedness or
validation checks to be XPath identifiable as a node. If the enhanced error information feature is enabled,
then position indexes will be included in the XPath expression for any nodes whose position is greater
than 1.

Note: In the XPath specification, the position is 1 based.

If the XML document includes namespace definitions, then the nodes in the expression will be
namespace prefix qualified as they were in the original XML document. In addition, the namespace
context at the point of the failure is provided. If no namespaces URIs are applicable at the point of the
failure, then the length of the namespace context field will be 0. If the path denotes a PI or comment,
then the corresponding step in the namespace definition will not be present.

If fragment parsing is in progress when the error occurs, the path will only include nodes that had been
parsed in the current document fragment. It will not include nodes which were only passed in by way of
the load fragment context CTL call.

The error location path follows the definitions in the XPath 1.0 specification. The following XPath
constructs are used:
'/'

This identifies the root node of the document and includes prolog and miscellaneous nodes which are
XPath identifiable as comments and processing instructions. If an error occurs in the root element's
type (qname), then the path will be /. If the error location path is present, it will always begin with '/'.

location step
Consists of a node test. The following node tests are supported:
QName

This corresponds to element nodes in the path and will be a prefix:localname if the qname is
namespace qualified. Elements using default namespaces will not have a prefix.

@Qname
This corresponds to attribute nodes in the path will be a prefix:localname if the qname is
namespace qualified. This can only appear at the end of the path.

comment()
This is used when an error occurs in an XPath identifiable comment.

processing-instruction('name')
This is used when an error occurs in a processing instruction. The 'name' is a string which
represents the name of the processing instruction if it was correctly specified in the document.

[n]
This is the 1 based position index which will be appended to a qname if the enhanced location
feature is enabled and the position index of the node is > 1.

Additional usage notes are as follows:

• Location steps are separated by a '/' character.
• If an error occurs in the XML declaration or DOCTYPE, then the error location length is 0.
• If an error occurs outside the root element with markup that cannot be identified by Xpath, then the

error location path will be a '/'.

30 z/OS: XML System Services User's Guide and Reference

• If an error occurs between markup but outside the root element, then the error location path will be a
'/'.

• If an error occurs within a namespace declaration, then the location path will denote the parent
element node.

• If an error occurs within the an attribute and is not XPath identifiable as an attribute node, the location
path will denote the parent element node.

• If an error occurs in a text node, then the location path will denote the parent element node.
• If the path or namespace context would be longer than 2 gigabytes, then they are truncated to 2

gigabytes.

Error location and fragment parsing

There are some special considerations when fragment parsing is enabled:

• If the fragment context denotes that the fragment is an attribute value, then the error location will be a
zero length string.

• If the error occurs before or after the main element in the fragment, the error location will be a zero
length string.

• The XEH_ErrFlags field can only have the XEH_ERRXMLDECL bit on if the error occurs in the text
declaration portion of the fragment, or the XEH_ERRELEMENT bit on if it occurs anywhere else in the
fragment.

Aux info record - ERROR_STRING
This is a type of aux info record. This record pertains to the XEC_CTL_ERROR_HANDLING features. It has
the following format:

Table 10. Aux info record - Error_String

Fields

+0 record type flags reserved

+4 record length

+8 aux flag aux type = 0x0102

+C failing string length

+10 failing string value

• The record header flags field will always be zero.
• The record length field contains the total length of the record - including the header
• The XEH_AUXFlag field will always be zero.
• The aux record type field will have the value 0x0102 - XEC_ERROR_STRING

The failing string contains a string in the form of a length/value pair from the document which is
associated with the failure. The parser will test the failing byte sequence. If it is in an US-ASCII
displayable range of characters, then the character itself will be present in the string. If it is not
displayable, it will instead be the hex representation. These will follow the C convention of 0xnn. For
example, if a character is found which is not allowed in an xml document, then it may show here as
0xC270.

In cases where the XEH_ERRREPTEXT bit is on in the error location record, this string will contain the
entity reference in the main document which led to the error occurrence.

Aux info record - EXPECTED_STRING
This is a type of aux info record. This record pertains to the XEC_CTL_ERROR_HANDLING features. It has
the following format:

Parsing XML documents 31

Table 11. Aux info record - Expected_String

Fields

+0 record type flags reserved

+4 record length

+8 aux flag aux type = 0x0103

+C expected string length

+10 expected string value

• The record header flags field will always be zero.
• The record length field contains the total length of the record - including the header
• The XEH_AUXFlag field will always be zero.
• The aux record type field will have the value 0x0103 - XEC_EXPECTED_STRING

The expected string contains a string in the form of a length/value pair which shows a string which was
expected in the document in order for the document to parse correctly.

If there is more than one option for what is required at any point, this record will not be present.

Aux info record - TOLERATED_ERROR
This is a type of aux info record. This record pertains to the XEC_CTL_ERROR_HANDLING features. The
information data has the following format:

Table 12. Aux info record - TOLERATED_ERROR

Fields

+0 record type flags reserved

+4 record length

+8 aux flag aux type = 0x0110

+C error return code

+10 error reason code

+14 error offset

+18

• The record header flags field will always be zero.
• The record length field contains the total length of the record - including the header
• The XEH_AUXFlag field will always be zero.
• The aux record type field will have the value 0x0110 - XEC_TOLERATED_ERROR.
• Error return code, error reason code and error offset depend on the errors.
• The error offset will be a 64-bit field.
• In the event that source offset auxiliary records are also being returned, this record will immediately

follow those records for the element or attribute in the output buffer.

Extended end element record
If the XEC_FEAT_FULL_END feature is enabled, then the XEC_TOK_END_ELEM record will be generated
as a Record Form 3 instead of Record Form 0. Here are the contents of the record when StringIDs are
disabled:

32 z/OS: XML System Services User's Guide and Reference

Table 13. Extended end element record (no StringID)

Fields

+0 record type flags reserved

+4 record length

+8 length of Lname

+C value of Lname

+10

+14 length of URI

+18 value of URI

+1C

+20 length of prefix

+24 value of prefix

+28

Here are the contents of the record when StringIDs are enabled:

Table 14. Extended end element record (StringID)

Fields

+0 record type flags reserved

+4 record length

+8 StringID of Lname

+C StringID of URI

+10 StringID of prefix

Default content flag (XEH_DEFAULT)
When an output record is generated from a definition in the DTD or schema, the XEH_DEFAULT flag bit will
be set in the record header flags field. This bit will indicate that an attribute, namespace or element was
generated from the DTD or schema.

31- and 64-bit compatibility
The length and offset fields outlined in the metadata records above are all 64-bit values, with associated
31-bit versions to provide 31- and 64-bit compatibility. Assembler callers in 64-bit mode can pass in
buffer lengths greater than 2 GB to GXL4PRS. As a result, the z/OS XML parser may have values in length
and offset fields that are much greater than 2 GB. 31-bit assembler callers are limited to 2 GB, and should
reference the XEH_*31 fields in order to use the proper value. The XEH_*31 fields are in GXLYXEH . These
fields can also be found in gxlhxeh.h for C/C++ callers.

Note: The offset of the error from the start of the document, when the input document is segmented and
the sum of the segment sizes is greater than 2 GB, may be a 64-bit value even though the caller may only
be 31-bit.

Length/Value pairs
Strings that have been parsed from the original XML document (qualified name components, character
data, comment text, etc.) are, by default, represented by length/value pairs. This length indicates the

Parsing XML documents 33

actual length of the text represented by the pair. There are no string terminators, such as a NULL
character used to indicate the end of a piece of text. Length fields may be zero, indicating that a particular
string is not present (for example, the namespace string length for an element that is not namespace
qualified will be zero), and the value length will also be zero. In the absence of a String Identifier exit (see
“String Identifiers” on page 34), all strings in the parsed data stream are represented by a length/value
pair.

String Identifiers
This section provides information on the String Identifiers (StringIDs) that can be passed back to the
caller by the z/OS XML parser.

Note: The StringID exit is an optional service that the caller may supply. If there is no StringID exit
available, the z/OS XML parser will simply return the actual length/value pairs for the strings representing
localnames, URIs, and prefixes in the data stream it returns to the caller. See “Length/Value pairs” on
page 33for more discussion on this topic.

StringIDs are 4 byte numeric values that are used to represent a given string that is returned from the
z/OS XML parser to the caller. StringIDs can be used to represent the localname (lname), namespace
prefix, and namespace URI for the following items:

• element names
• attribute names
• namespace declarations

These are the strings in the parsed data stream that are most likely to be repeated. StringIDs are provided
by a caller-supplied service exit that the z/OS XML parser invokes any time it encounters certain strings
that it hasn't seen before. See the description of the symbol service exit (“GXLSYM31 (GXLSYM64) —
StringID service” on page 145, “GXLPSYM31 (GXLPSYM64) — StringID handler” on page 102) for more
details.

Once the z/OS XML parser receives a StringID for a given string, it will record the ID, and return it in place
of the actual lname, namespace prefix, or namespace URI string in the parsed data stream that is
returned to the caller. The use of StringIDs reduces the size of the parsed data stream especially for
documents with namespace references. URIs that would normally be returned for every element and
attribute name can be represented in 4 bytes instead of their text that is generally much longer.

Record forms
The general form of a record created in the parsed data stream contains a fixed header section, followed
by zero or more values. These values may consist of either a length and value pair, or a single StringID
value, depending on the type of data being represented, and the data stream options that are in use.
StringIDs are used to represent attribute and element name components - the lname, namespace URI,
and namespace prefix for start element and attribute name records, and the namespace prefix and URI
for namespace declarations. When StringIDs are not in use, these name components are represented by
length and value pairs, just like other types of data returned in the records that make up the parsed data
stream.

Each record begins with a fixed section that contains the record type, a set of flags, and the length of the
entire record. This is followed by the values relevant to the specific type of information represented by the
record. In most cases, these values represent an individual item parsed from the XML document. The
exceptions are the metadata records (the buffer info and error records), which contain information
describing the input and output streams, but which are not directly related to a specific item from the XML
document.

The record length field is the value that must be used to navigate from one record to the next in the
parsed data stream. Although the lengths and types of the individual fields of a record are explained
below, the caller must not use these to calculate the location of subsequent records.

34 z/OS: XML System Services User's Guide and Reference

The data stream options contained in the buffer info record of each output buffer, and the token types of
each record within those buffers uniquely identify the type of information contained in each record. This
type information is reflected in the record form used for each record. These structures are defined in the
header file “gxlhxeh.h (GXLYXEH) - mapping of the output buffer record” on page 207. For assembler
callers, they are defined in GXLYXEH. Also, see Table 21 on page 37 for a description of the various
record types.

Record form 0
This is a simple record that is used to describe items in the output stream that have no associated value.
It consists of only a record header.

Table 15. Record form 0

Fields

record type flags reserved

record length

Record form 1
These records describe items in the output stream that have one associated value - most often a
character string.

Table 16. Record form 1

Fields

record type flags reserved

record length

value 1 length

bytes 1 to n of value 1

These records are used to return things like character data to the caller. StringIDs are never used in these
records.

Record form 2
These records describe items in the output stream that contain two values. There are two variations of
this record form, depending on whether or not StringIDs are being used. Namespace declaration records
are examples of these. In the case where StringIDs are provided by the caller through the GXLSYM31
(GXLSYM64) StringID service exit, the record form looks like the following:

Table 17. Record form 2 (with StringID)

Fields

record type flags reserved

record length

StringID for value 1

StringID for value 2

When StringIDs are not in use, values one and two are represented as conventional length and value
pairs:

Parsing XML documents 35

Table 18. Record form 2 (without StringID)

Fields

record type flags reserved

record length

value 1 length

bytes 1 to n of value 1

value 2 length

bytes 1 to n of value 2

There are other form 2 records that will always use length and value pairs, regardless of whether or not
StringIDs are available. Processing instructions are an example of this kind of record, since the target and
value of a processing instruction are always returned as strings represented by length and value pairs.

Record form 3
Records of this form are for parsed data that is described by 3 separate values. These records include
those for element and attribute names, which can contain either StringIDs or length and value pairs, as
well as XML declarations, which are always represented by the length and value pair version of this record
form. Here is what the StringID based version of this form looks like:

Table 19. Record form 3 (with StringID)

Fields

record type flags reserved

record length

StringID for value 1

StringID for value 2

StringID for value 3

The following is the length and value pair version of the record form:

Table 20. Record form 3 (without StringID)

Fields

record type flags reserved

record length

value 1 length

bytes 1 to n of value 1

value 2 length

bytes 1 to n of value 2

value 3 length

bytes 1 to n of value 3

36 z/OS: XML System Services User's Guide and Reference

Field values by record type
The following is a complete listing of the descriptions of values for each record type. The actual type of
certain values will differ, depending on the use of StringID.

Table 21. Field values by record type

Record type
Record
form

Contains
StringIDs

Value
number Value description

GXLHXEC_TOK_ATTR_NAME 3 No 1 length and value of
Lname

2 length and value of
namespace URI

3 length and value of
namespace prefix

GXLHXEC_TOK_ATTR_NAME 3 Yes 1 StringID of Lname

2 StringID of
namespace URI

3 StringID of
namespace prefix

GXLHXEC_TOK_ATTR_VALUE 1 - 1 length and value of
attribute value

GXLHXEC_TOK_AUX_INFO

GXLHXEC_TOK_BUFFER_INFO N/A N/A - See “Buffer info
record” on page 24

GXLHXEC_TOK_COMMENT 1 - 1 length and value of
comment

GXLHXEC_TOK_CHAR_DATA 1 - 1 length and value of
character data

GXLHXEC_TOK_DTD_DATA 3 - 1 length and value of
root element name

2 length and value of
public identifier

3 length and value of
system identifier

GXLHXEC_TOK_END_CDATA 0 - - none

GXLHXEC_TOK_END_ELEM 0 - - none

GXLHXEC_TOK_END_ELEM (only used when
GXLHXEC_FEAT_FULL_END feature is enabled)

3 No 1 length and value of
Lname

2 length and value of
namespace URI

3 length and value of
namespace prefix

GXLHXEC_TOK_END_ELEM (only used when
GXLHXEC_FEAT_FULL_END feature is enabled)

3 Yes 1 StringID of Lname

2 StringID of
namespace URI

3 StringID of
namespace prefix

Parsing XML documents 37

Table 21. Field values by record type (continued)

Record type
Record
form

Contains
StringIDs

Value
number Value description

GXLHXEC_TOK_ERROR N/A N/A - See “Error info
record” on page 25

GXLHXEC_TOK_NS_DECL 2 No 1 length and value of
namespace prefix

2 length and value of
namespace URI

GXLHXEC_TOK_NS_DECL 2 Yes 1 StringID of
namespace prefix

2 StringID of
namespace URI

GXLHXEC_TOK_PI 2 - 1 length and value of PI
target

2 length and value of PI
text

GXLHXEC_TOK_ROOT_ELEMENT 2 No 1 length and value of
namespace

2 length and value of
Lname

GXLHXEC_TOK_ROOT_ELEMENT 2 Yes 1 StringID of
namespace

2 StringID of Lname

GXLHXEC_TOK_SCHEMA_LOCATION 2 No 1 length and value of
namespace URI

2 length and value of
schema URI

GXLHXEC_TOK_SCHEMA_LOCATION 2 Yes 1 StringID of
namespace URI

2 none

GXLHXEC_TOK_START_CDATA 0 - - none

GXLHXEC_TOK_START_ELEM 3 No 1 length and value of
Lname

2 length and value of
namespace URI

3 length and value of
namespace prefix

GXLHXEC_TOK_START_ELEM 3 Yes 1 StringID of Lname

2 StringID of
namespace URI

3 StringID of
namespace prefix

GXLHXEC_TOK_UNRESOLVED_REF 1 No 1 length and value of
entity name

GXLHXEC_TOK_WHITESPACE 1 - 1 length and value of a
white space string

38 z/OS: XML System Services User's Guide and Reference

Table 21. Field values by record type (continued)

Record type
Record
form

Contains
StringIDs

Value
number Value description

GXLHXEC_TOK_XML_DECL 3 - 1 length and value for
version

2 length and value for
encoding

3 length and value for
standalone

The above token names are for the C/C++ callers. Assembler callers use token names without the "GXLH"
prefix.

Spanning buffers
The z/OS XML parser is built to handle documents that may be larger than any single buffer the caller can
pass to the z/OS XML parser. When buffers need to be spanned (because either the text in the input buffer
is consumed, or the parsed data stream fills the output buffer), the z/OS XML parser returns a conditional
success return code (XRC_WARNING), and a reason code that indicates which buffer caused the spanning
condition. The caller then should handle the spanning buffer, and can optionally manage the other buffer
as well.

For example, if the z/OS XML parser indicates that the output buffer is full on a return to the caller after
saving and refreshing the output buffer pointers, the caller may choose to refill the input buffer with more
text to parse before calling the parse service again to continue the parse process. This will require either
moving the unparsed text to the front of the current input buffer, or to a new input buffer, and filling in the
remainder with more unparsed text. In this way, the caller potentially reduces the number of times the
z/OS XML parser has to return to the caller because of a spanned buffer during the parse of a document.

The z/OS XML parser will advance the input and output pointers to the byte after the last byte that the
parser processed in each buffer. Similarly, it will update the bytes_left parameters to indicate the number
of unprocessed or unused bytes in each buffer. The caller must use the reason code returned from the
z/OS XML parser to tell which buffer must be handled and which buffer may optionally be handled. The
caller cannot rely on either the address values or the bytes_left values to tell which buffer has spanned.

Splitting records
When building the parsed data stream in the output buffer, the z/OS XML parser will always ensure that all
records are fully formed. Since some records represent items from the document that may be very long
(for example, CDATA, white space, or comments), certain types of records are deemed to be splittable. In
these cases, the z/OS XML parser will always ensure that the header for the split record is complete, but
the value(s) in the record will only contain a part of the item being parsed. A flag in the record header will
be set to indicate that the record is continued.

Note: In fragment parsing mode, the flag is set to 'OFF' on a continued character data record when CDATA
is outside an element tag (start and end tag). However, if CDATA is inside an element that splits, the
continuation flag will still be 'ON'.

Split records may span several output buffers if they are very long, or if the output buffers are relatively
short.

Records that represent items of fixed length or that contain multiple values are mostly deemed to be non-
splittable. If there is no room in the current output buffer to hold them, the entire record will be placed in
the next output buffer. These records represent things like start element tags, attribute names,
namespace declarations, or end element tags.

Note: The one exception to this rule are processing instructions (PIs). Because the text associated with
PIs can be arbitrarily long, they are permitted to split.

Parsing XML documents 39

If the z/OS XML parser determines that an output buffer is spanned, and requests another buffer to
continue processing, the caller needs to return a new buffer large enough to contain a minimum set of
complete data. If the item that needs to be placed at the beginning of this new buffer is a non-splittable
record that doesn't fit, the z/OS XML parser will return with a return code of XRC_FAILURE, and a reason
code of XRSN_BUFFER_OUTBUF_SMALL.

The z/OS XML parser generally does not split records unless there is a need to - for example, to fit into a
given output buffer. However, the decision to split a record depends on many factors. There are instances
where the z/OS XML parser will split records of the same type within the same buffer, and this is normal.
This is particularly true for XDBX streams, where the z/OS XML parser generates records based on the
stream of XDBX tags presented by the builder of the stream. One should not expect, for instance, that the
stream of z/OS XML records generated for a given text document will have records split in the same way
as for an XDBX stream representing the same document.

The following table shows which record types can be split:

Table 22. Splittable record types

Record type Splittable?

GXLHXEC_TOK_ATTR_NAME No

GXLHXEC_TOK_ATTR_VALUE Yes

GXLHXEC_TOK_AUX_INFO No

GXLHXEC_TOK_BUFFER_INFO No

GXLHXEC_TOK_COMMENT Yes

GXLHXEC_TOK_CHAR_DATA Yes

GXLHXEC_TOK_END_CDATA No

GXLHXEC_TOK_END_ELEM No

GXLHXEC_TOK_ERROR No

GXLHXEC_TOK_DTD_DATA No

GXLHXEC_TOK_NS_DECL No

GXLHXEC_TOK_PI Yes

GXLHXEC_TOK_ROOT_ELEMENT No

GXLHXEC_TOK_SCHEMA_LOCATION No

GXLHXEC_TOK_START_CDATA No

GXLHXEC_TOK_START_ELEM No

GXLHXEC_TOK_UNRESOLVED_REF No

GXLHXEC_TOK_WHITESPACE Yes

GXLHXEC_TOK_XML_DECL No

The above token names are for the C/C++ callers. Assembler callers use token names without the "GXLH"
prefix.

Splitting multibyte characters
When a caller segments an input stream for passing to the z/OS XML parser in several parts, the
possibility exists that the end of an input buffer falls in the middle of a multibyte character. When this
happens, the z/OS XML parser will detect the partial character, and buffer up any bytes for that character
from the current buffer before returning to the caller for more input. When the next buffer of input arrives,

40 z/OS: XML System Services User's Guide and Reference

the z/OS XML parser will virtually prefix the saved bytes of the split character to the beginning of the new
buffer, and continue processing. This relieves the caller from having to ensure that multibyte characters at
the end of a buffer are complete before calling the z/OS XML parser.

Processing DTDs
z/OS XML System Services will handle internal DTDs for the purpose of processing entity declarations and
default attribute value definitions. It only processes entity declarations and default attribute values from
the internal DTD. Processing instructions that fall within the internal DTD will be returned to the caller, but
no other text from the DTD will be processed. The z/OS XML parser will return a DTD record in the parsed
data stream that contains the name of the root element, plus the system and public literals that make up
the identifier of any external subset. The content of the internal subset is not returned to the caller.

Resolving entity references
Entities declared in the internal DTD will have all references to them in the root element resolved. These
references will have the text from the entity declaration substituted for the reference, and there will be no
other indications made in the parsed data stream that an entity reference was present in the parsed
document.

Unresolved entities are references to entity names that have no declaration in the internal DTD.
Unresolved entities in the root element are tolerated if there is an external subset (standalone="no" in the
XML declaration). In this case, if the XEAR_ENTREF_STOP_UNRESOLVED control option is not set, a record
of type XEC_TOK_UNRESOLVED_REF is generated in the parsed data stream, with the associated value
being the name of the entity. Also in this case, if the XEAR_ENTREF_STOP_UNRESOLVED control option is
set, the parse stops and this condition is flagged as an error. When the document only has an internal
subset (standalone="yes"), all unresolved entities are flagged as errors.

Non-representable characters
By default, when a character reference which cannot be represented in the current code page is
encountered, the z/OS XML parser places a dash (“-“) in the output stream for that character. The caller
may use the XEC_CTL_ENTS_AND_REFS control call to specify that a different character appear in the
output stream. The caller may also request by way of this control call that an additional output record be
placed in the output stream with more information on the character reference.

Namespace declarations
Namespace declaration records are placed in the parsed data stream between the start and end element
records for the elements that contain them. This is different than in SAX-like environments where the
namespace declaration events precede the start element event for a given element.

Only the namespaces that have been declared within an element, including the default namespace, will
have entries in the parsed data stream for that element. The caller may construct the complete
namespace context for an element by keeping a stack of namespace declarations as they are encountered
in the parsed data stream. Default namespaces will have URI values, but no associated prefix. When a
default namespace is unset, it is represented in the parsed data stream as a namespace declaration
record with no URI or prefix.

Note: The z/OS XML parser is an XML compliant namespace parser only, and not an XML non-namespace
parser. Because of this, if the z/OS XML parser parses a document compliant with the XML non-
namespace standard, it can attribute namespace characteristics to an element that is not intended to
contain namespaces. This is because non-namespace documents can have a ":" in an element structure
that does not actually indicate a namespace. Thus, if non-namespace documents are being parsed, the

Parsing XML documents 41

resulting parsed data stream may not match the expected parsed data stream or the parser may flag the
document as erroneous.

Using the z/OS XML parser in a multithreaded environment
The z/OS XML parser can be called from multiple work units (threads/tasks or SRBs) to parse multiple
documents at the same time, provided that each parse utilizes a unique Parse Instance Memory Area
(PIMA). Multiple work units must not utilize the same PIMA simultaneously, or the z/OS XML parser will
behave unpredictably. As long as the caller has a separate PIMA that has been initialized by the z/OS XML
parser for each document being processed, multiple documents can be handled simultaneously. A caller
may choose to preallocate a pool of PIMAs to be used for parse requests. It is the responsibility of the
caller to allocate the PIMA in a subpool that will not be cleaned up while the PIMA is in use. Subpools tied
to the job step task are recommended.

Parsing XDBX input streams
Extensible Dynamic Binary XML (XDBX) is a binary XML form composed of both numeric and string data.
The numeric data is used for several purposes, including identifying the semantic purpose and length of
each associated string in the stream. See IBM binary XML specification (www.ibm.com/support/
docview.wss?uid=swg27019354) for more information about the format of XDBX streams.

XDBX can be passed to z/OS XML and parsed with validation to create a z/OS XML record stream, in the
same way that regular XML text documents are handled. See the appropriate parser API section for
details about how to initialize and control a parse instance for XDBX streams. Once the parse instance is
initialized and configured, parsing proceeds in the same way as for regular XML text input. Non-validating
parse requests are not supported for XDBX streams.

Although the API is called the same way for both XML text and XDBX input streams, there are important
differences in the way the parser handles each type of input. More precisely, there is no need for z/OS
XML to perform certain low level parsing functions on XDBX streams. Key among these is the need for a
low-level scan of the input stream. XDBX streams already have tag fields that describe the meaning of
each string and length fields that delimit the strings' boundaries. The z/OS XML parser gains a
performance advantage over the validation of XML text input by using the information already provided in
the XDBX form.

z/OS XML does not re-scan each string of text from an XDBX stream. Consequently, the no-escapes bit
setting is determined entirely from the tag used to represent a given string. This is important for the 'U'
(text), 'b' (attribute), and 'W' (whitespace) tags in the XDBX stream. If the XDBX stream creator associated
these tags with strings that do in fact contain characters that need to be escaped on serialization of the
stream, z/OS XML will not catch this, and will set the XEH_NO_ESCAPES bit in the record header for any
associated records generated during validation. Similarly, if a 'T' (text), 'y' (attribute) or a 'C' (CDATA) tag is
used when the associated string has no characters that require escaping for serialization, the
XEH_NO_ESCAPES flag will be off. This is true even when values are defaulted from the DTD or schema
during the validation process.

Another difference from XML text input is that XDBX streams are required to have all entity references
resolved. For this reason, none of the z/OS XML functionality implemented for managing unresolved
entities is relevant for XDBX input. See the descriptions of the control APIs for more information about
how character and entity references are handled for XDBX streams.

Every XDBX stream begins with a magic number (0xCA3B), and is encoded in big-endian form. There is no
need for a byte-order-mark, and the parse request will fail if one is present in the XDBX stream.

The following usage notes apply to parsing XDBX streams:

• XDBX input streams may be passed to z/OS XML for parsing with validation when the
GXLHXEC_FEAT_XDBX_INPUT feature is enabled. Attempts to initialize a parse instance for an XDBX
input stream without validation will result in a failure.

42 z/OS: XML System Services User's Guide and Reference

http://www.ibm.com/support/docview.wss?uid=swg27019354
http://www.ibm.com/support/docview.wss?uid=swg27019354

• Validation is performed using an Optimized Schema Representation (OSR) in the same way as for
conventional XML text input. The output of the parser is a conventional z/OS XML record stream.

• XDBX input streams contain a combination of binary information and UTF-8 text strings, meaning that
the CCSID specified at parser initialization must always be UTF-8.

• Certain other parser features are not currently supported in combination with XDBX streams:

– GXLHXEC_FEAT_SCHEMA_DISCOVERY
– GXLHXEC_FEAT_SRC_OFFSETS

In addition, some control operations are not allowed when the parser is initialized to handle XDBX
streams. See the section describing the “gxlpControl — perform a parser control function” on page
50operation for details of those functions that are not compatible with XDBX streams.

Parsing XML documents 43

44 z/OS: XML System Services User's Guide and Reference

Chapter 5. Additional usage considerations

This chapter provides additional usage information for the z/OS XML parser. The following topics are
discussed:

• “Recovery considerations” on page 45
• “Encoding support” on page 45
• “Managing memory resources” on page 46
• “Using return and reason codes” on page 47

Recovery considerations
z/OS XML provides an ARR recovery routine. This recovery routine can be turned on through an
initialization option when invoked through the assembler API. For callers of the C/C++ parse API
(gxlpParse), when running in Language Environment®, the ARR recovery routine is provided by default in
most cases. For more information on the ARR recovery routine, see “ARR recovery routine” on page 152.

Recovery can also be supplied by the caller. Callers who want to clean up z/OS XML parser resources
should invoke GXL1TRM (GXL4TRM), the parser termination service, either when the parse completes or if
an unexpected error occurs during the parse. The termination service will cause all secondary storage to
be freed. It is up to the caller to free the PIMA storage (see “Managing memory resources” on page 46
for more information).

Encoding support
z/OS XML System Services supports several code pages. The caller must supply the CCSID of the
encoding for the document at the time the z/OS XML parser is initialized. For a complete listing of the
supported code pages, see Appendix I, “Supported encodings,” on page 231. The following table lists
more commonly used code pages with their associated CCSID values, along with the equates provided for
the caller.

Table 23. Code page CCSID values

Code page CCSID Equate Names

UTF-8 1208 GXLHXEC_ENC_UTF_8

UTF-16 (big endian) 1200 GXLHXEC_ENC_UTF_16

EBCDIC/IBM-037 37 GXLHXEC_ENC_IBM_037

EBCDIC/IBM-1047 1047 GXLHXEC_ENC_IBM_1047

Assembler callers use equate names without the "GXLH" prefix.

The query service can be used to query a document's XML declaration so that a caller can determine if the
document has to first be converted to one of the supported encodings before parsing begins. This function
will return a parsed record for the XML declaration that contains, among other things, a Coded Character
Set IDentifier (CCSID) which can be passed to an encoding conversion service, such as Unicode Services,
to put the document in a form that the z/OS XML parser can process. See the description for “gxlpQuery —
query an XML document” on page 76 or “GXL1QXD (GXL4QXD) — query an XML document” on page 132
for more information.

© Copyright IBM Corp. 2006, 2019 45

EBCDIC encoding considerations
There are a couple of EBCDIC encoding considerations to deal with when trying to parse an XML file on
z/OS. The first involves the character set differences between EBCDIC and Unicode. Because only a small
number of Unicode characters can be represented in EBCDIC, when an EBCDIC encoded XML document
is parsed, any Unicode character entity in the parsed document that does not have an EBCDIC value is
converted into a dash.

Note: The default for an non-representable character is a dash. This can be overridden with a control call
to XEC_CTL_ENTS_AND_REFS.

Secondly, if the EBCDIC XML document has been created or modified on a z/OS system, then the line
ending character is typically a NL (x'15') character. This is commonly associated with the Unicode NEL
character (x'85'). For EBCDIC code page documents, the z/OS XML parser will accept XML 1.0 documents
that have a NL as a line termination character, and will normalize all line-endings to EBCDIC NL (NEL).
However, because these documents are non-compliant, they may not be accepted by parsers on other
platforms. In general, EBCDIC is not a portable encoding so IBM does not recommend using EBCDIC for
XML documents going between platforms or on the Internet.

Note: For XML 1.1 documents, NL is legitimate and the z/OS XML parser is compliant in processing it as
such.

Managing memory resources
The z/OS XML parser processes a document using memory resources that are provided by the caller. This
storage is passed from caller to z/OS XML parser in the form of a Parse Instance Memory Area (PIMA).
This required data area is used by the z/OS XML parser to suballocate a call stack, control blocks, and the
tables and trees that are used to hold assorted document-specific information for the document being
parsed. The environment created by the z/OS XML parser in this memory area completely describes the
context of a given document parse.

A memory allocation exit is supported by the z/OS XML parser so that the caller can provide a pair of
allocation/deallocation services. The allocation service will be called by the z/OS XML parser in the event
that a given document causes the z/OS XML parser to exhaust the PIMA. For performance reasons, it is
best if the PIMA provided by the invoker is large enough that this exit is not used. However, the exit gives
the z/OS XML parser a means to complete processing of a document in the event that the memory area
provided at initialization time is too small. This exit is only used to extend the PIMA, and is not used in any
way to manage input or output buffers.

The deallocation service will be called by the z/OS XML parser to free the memory extension created by
the allocation service. The deallocation service will never free the original PIMA storage.

For callers that do not provide a memory allocation exit, the z/OS XML parser provides default routines to
allocate and free memory. The z/OS XML parser also provides an option at initialization time allowing the
caller to specify how the 's default routine allocates memory. This feature should be specified when
PIMAs are used on multiple tasks, in order to prevent task termination from causing storage extents to be
freed before the z/OS XML parser is done using them. Normally, z/OS XML parser will allocate memory at
the task level. However, when the feature is specified, the z/OS XML parser will allocate memory at the
Job Step Task (JST) level instead.

In both cases, the caller is assuming the responsibility to call GXL1TRM (GXL4TRM) in the event the z/OS
XML parser abends and the caller's recovery gets control.

When no memory allocation exit is provided, the subpool used will be as follows:

• If running in SRB or cross memory mode, subpool 129 will be used. This is JST related and cannot be
freed by unauthorized callers. The key will be the same as the key at the time the z/OS XML parser is
invoked.

• If running in task mode (PSATOLD not zero), with PRIMARY=SECONDARY=HOME, then the subpool
chosen will depend on the authorization state of the caller and on the specification of the

46 z/OS: XML System Services User's Guide and Reference

XEC_FEAT_JST_OWNS_STORAGE feature on the GXL1INI (GXL4INI) call. If the caller is running in key
0-7 or supervisor state, they will be considered authorized.

– Authorized and JST requested — subpool 129
– Authorized and JST not requested — subpool 229
– Unauthorized and JST requested — subpool 131
– Unauthorized and JST not requested — subpool 0

Note: If running on a subtask which is sharing subpool 0, then this storage will be owned by the task
that owns subpool 0.

These choices of subpool will eliminate the possibility of the z/OS XML parser running in an authorized
state while using problem key storage which could be freed and reallocated.

Using return and reason codes
The z/OS XML parser API services provide a return and reason code to indicate the success or failure of
the parse process. The return code is a fullword value that indicates the class of the return status, and
takes on one of the following values:

• Success (XRC_SUCCESS)
• Warning (XRC_WARNING) - parsing is successful, but incomplete. This is most often caused by the z/OS

XML parser reaching the end of either the input or the output buffer.
• Failure (XRC_FAILURE) - a terminating failure has occurred. The return information passed back in the

parameters, such as the numbers of bytes left in the input and output buffers, are valid. The extended
diagnostic information may also contain additional problem determination information that is of use.

• Not-well-formed (XRC_NOT_WELL_FORMED) - a terminating failure has occurred because the input
document is not well formed. As with the failure case above, all return information passed back through
the parameters and extended diagnostic area is valid.

• Fatal (XRC_FATAL) - a terminating error has occurred. None of the return information is valid.
• Not valid (XRC_NOT_VALID) - The document is not valid according to the specified schema.

In addition to the return code describing the class of error, the reason code provides more detail. The
reason code is only valid when the return code is not XRC_SUCCESS. When a service of the z/OS XML
parser API returns XRC_SUCCESS, the reason code may have any random value.

The reason code itself is a fullword value, but is made up of two halfwords. The upper halfword is
reserved for a module identifier that is used by IBM Service to isolate the source of the problem, and the
lower halfword indicates the reason why the parse process was paused or terminated. When checking the
value of the reason code, the caller must be sure to AND the reason code with the reason code mask
(XRSN_REASON_MASK) before testing the value. The declaration of XRSN_REASON_MASK and all of the
defined reason code values are contained in the GXLYXR macro. A list of the reason codes and their
descriptions can be found in Appendix B, “Reason codes listed by value,” on page 155.

Additional usage considerations 47

48 z/OS: XML System Services User's Guide and Reference

Chapter 6. z/OS XML parser API: C/C++

This chapter lists the C/C++ callable services interface used for the z/OS XML parser.

Setting the XPLINK(ON) Language Environment runtime option
If the calling application is compiled without XPLINK and wants to use z/OS XML System Services, the
calling application must set the following option:

export _CEE_RUNOPTS="XPLINK(ON)"

If this option is not set, an error will occur once the application is run.

For more information on the XPLINK compiler option, see z/OS Language Environment Programming
Guide.

Support for the Metal C compiler option
Support is provided for callers who wish to use the Metal C compiler option. The same APIs available to
the standard C and C++ callers are also available to Metal C users, with the following restrictions:

• All parameters must be variables.
• The functions do not return values.

Note: Return codes and reason codes are still returned through the parameter lists.

For more information on how to use the Metal C compiler option, see Metal C Run-time Library Guide and
Reference.

Where to find the header files, DLLs and side decks
Header files for non-Metal C can be found in the z/OS UNIX directory /usr/include. Header files for
Metal C can be found in the z/OS UNIX directory /usr/include/metal. If you are not using z/OS UNIX,
then the non-Metal C header files can be found in the PDSE SYS1.SIEAHDRV.H . There are no Metal C
header files for the batch environment.

DLLs for non-Metal C can be found in the z/OS UNIX directory /usr/lib. If you are not using z/OS UNIX,
then the DLLs can be found in SYS1.SIEALNKE . There are no DLLs for Metal C.

Side decks for non-Metal C can be found in /usr/lib. If you are not using z/OS UNIX, then the side
decks can be found in SYS1.SIEASID. There are no side decks for Metal C.

Using the recovery routine
z/OS XML provides an ARR recovery routine to assist with problem determination and diagnostics. In the
C/C++ environment, the recovery routine is provided as the default setting in most cases and will recover
the code and collect dumps for most abends that occur during a parse. For unauthorized C/C++ callers, an
IEATDUMP will be taken in data set userid.GXLSCXML.DYYMMDD.THHMMSS.DUMP, where the userid is
extracted from the task level ACEE if present or the address space ACEE, and where DYYMMDD is the date
and THHMMSS is the time the dump was taken. For authorized C/C++ callers, an SDUMPX will be taken
into a system dump data set. See “ARR recovery routine” on page 152 for more information.

© Copyright IBM Corp. 2006, 2019 49

In order to effectively use the recovery routine, you must set the following runtime option:
TRAP(ON,NOSPIE). If this runtime option is not set, unpredictable behavior may result with regard to
recovery.

z/OS XML XL C/C++ API

gxlpControl — perform a parser control function

Description

This is a general purpose service which provides control functions for interacting with the z/OS XML
parser. The function performed is selected by setting the ctl_option parameter using the constants
defined in gxlhxec.h . These functions include:
GXLHXEC_CTL_FIN

The caller has finished parsing the document. Reset the necessary structures so that the PIMA can be
reused on a subsequent parse, and return any useful information about the current parse. For more
information on this function, see “GXLHXEC_CTL_FIN” on page 53.

GXLHXEC_CTL_FEAT
The caller wants to change the feature flags. A GXLHXEC_CTL_FIN function will be done implicitly.

Note: Some feature flags are not supported on gxlpControl. See “GXLHXEC_CTL_FEAT” on page 54
for a list of these feature flags.

For more information on this function, see “GXLHXEC_CTL_FEAT” on page 54.
GXLHXEC_CTL_LOAD_OSR

The caller wants to load and use an Optimized Schema Representation (OSR) for a validating parse.
For more information on this function, see “GXLHXEC_CTL_LOAD_OSR” on page 56.

GXLHXEC_ CTL_QUERY_MIN_OUTBUF
The caller is requesting the minimum output buffer size required on a subsequent parse. This function
will also enable the parse to be continued after a GXLHXRSN_BUFFER_OUTBUF_SMALL reason code
has been received from gxlpParse.

Note: Finish and reset processing is performed by all operations available through this control service,
except GXLHXEC_CTL_QUERY_MIN_OUTBUF and GXLHXEC_CTL_LOAD_OSR. See the descriptions of
these operations under ctl_operation for more information.

For more information on this function, see “GXLHXEC_CTL_QUERY_MIN_OUTBUF” on page 57.
GXLHXEC_CTL_ENTS_AND_REFS

The caller can request additional flexibility when processing character and entity references as
follows:

• When an unresolved entity reference is encountered, the caller can request that the parser stop
processing and return an error record.

• When a character reference which cannot be represented in the current code page is encountered,
z/OS XML System Services places a dash (-) in the output stream for that character. The caller may
specify, with this control call, to output a character other than dash (-) in the output stream.

• When a character reference which cannot be represented in the current code page is encountered,
the caller can request, using this control call, an additional output record to be generated in the
output stream that contains information about this character reference.

Note:

1. Finish and reset processing is performed for this control operation. See “Usage notes” on page
110for more information.

2. If the parse instance has been initialized to process XDBX binary XML streams, then the input
stream will never have entity references to resolve. Performing the

gxlpControl

50 z/OS: XML System Services User's Guide and Reference

GXLHXEC_CTL_ENTS_AND_REFS operation will have no effect on the output of the parser. In order
to prevent accidental attempted use of this operation in this environment, the parser will return a
failure for this control request if the input is an XDBX stream.

For more information on this function, see “GXLHXEC_CTL_ENTS_AND_REFS” on page 58.
GXLHXEC_CTL_LOAD_FRAG_CONTEXT

The caller wants to load fragment context including fragment path and namespace binding
information for document fragment parsing.

Note:

1. This control operation does not perform finish and reset processing through the control service.
See the description in ctl_operation for more information.

2. Fragment parsing is not supported for XDBX input. For this reason, attempting to load a fragment
context for parse instances initialized to handle XDBX streams will fail.

For more information on this function, see “GXLHXEC_CTL_LOAD_FRAG_CONTEXT” on page 59.
GXLHXEC_CTL_FRAGMENT_PARSE

The caller wants to enable or disable document fragment parsing.

Note:

1. This control operation does not perform finish and reset processing through the control service.
See the description in ctl_operation for more information.

2. Fragment parsing is not supported for XDBX input. For this reason, attempting to enable document
fragment parsing for parse instances initialized to handle XDBX streams will fail.

For more information on this function, see “GXLHXEC_CTL_FRAGMENT_PARSE” on page 61.
GXLHXEC_CTL_RESTRICT_ROOT

The caller wishes to restrict the root element name on the next parse. This operation is only valid
when the PIMA has been configured for validation and schema information is requested. For more
information on this function, see “GXLHXEC_CTL_RESTRICT_ROOT” on page 64.

GXLHXEC_CTL_ERROR_HANDLING
With this control operation, the caller can do the following for a validating parse:

• Enable the creation of auxiliary records which can include the location of an error in the XML
document, the string which is in error, and also a possible expected string.

• Enable position indexes to be present in the error location path in order to facilitate locating the
error.

• XERR_TOL_DUPLICATE_ATTR
• XERR_TOL_SCHEMA_VAL_ERRORS

For a non-validating parse, it can be used to:

• Enable the ability to continue parsing when an undefined prefix is encountered on an element or
attribute. The "prefix:local name" will be treated as the local name.

• Request an auxiliary information record that contains the tolerated return and reason codes and the
error offset.

• XERR_TOL_DUPLICATE_ATTR
• XERR_TOL_MULTI_ROOTELEMENT

For more information on this function, see “GXLHXEC_CTL_ERROR_HANDLING” on page 65.
GXLHXEC_CTL_RESET

With this control operation, the caller can reset the error and document state. For more information on
this function, see “GXLHXEC_CTL_RESET” on page 67.

GXLHXEC_CTL_SPLIT_RECORD_THRESHOLD
With this control options, the caller can set the threshold for splittable record size.

gxlpControl

z/OS XML parser API: C/C++ 51

Performance Implications

The finish-and-reset function allows the caller to re-initialize the PIMA to make it ready to handle a new
XML document. This re-initialization path enables the z/OS XML parser to preserve its existing symbol
table, and avoid other initialization pathlength that's performed by calling the initialization service. The
reset features function also allows the caller to re-initialize the z/OS XML parser as above and allows the
feature flags to be reset as well.

Usage notes

This callable service is mapped to GXL1CTL (GXL4CTL). Refer to“Usage notes” on page 110 of GXL1CTL
(GXL4CTL) for usage information. For a list of properties and resources reset by the control functions, see
“Properties and resources reset by control functions” on page 52.

Properties and resources reset by control functions

When the control functions are utilized by a caller (the GXL1CTL (GXL4CTL) API is invoked), some of the
z/OS XML parser properties and resources are reset while others are not. The properties and resources
reset and by which control functions are shown in the following table. Properties and resources not reset
by a particular control function may need to be explicitly restored by a PAB copy.

Table 24. z/OS XML parser properties and resources reset by control functions

Properties and resources Control functions that reset

Loaded OSRs, XML fragment contexts, and allowable
root names

None

The following control and initialization settings (listed
by features) XEC_FEAT_STRIP_COMMENTS,
XEC_FEAT_TOKENIZE_WHITESPACE ,
XEC_FEAT_CDATA_AS_CHARDATA,
XEC_FEAT_SOURCE_OFFSETS, XEC_FEAT_FULL_END,
XEC_FEAT_WHITESPACE_CHARDATA

XEC_CTL_FIN

Entity resources XEC_CTL_FIN

The following system level resources: recovery status,
JST owns storage, z/OS XML System Services exit
routines

None

Parser types (validating and nonvalidating) None

Fragment mode XEC_CTL_FIN. XEC_CTL_FEAT,
XEC_CTL_LOAD_OSR,
XEC_CTL_ENTS_AND_REFS,
XEC_CTL_ERROR_HANDLING

Start of the XML document XEC_CTL_FIN. XEC_CTL_FEAT,
XEC_CTL_LOAD_OSR,
XEC_CTL_ENTS_AND_REFS,
XEC_CTL_ERROR_HANDLING,
XEC_CTL_RESET

Error state XEC_CTL_FIN. XEC_CTL_FEAT,
XEC_CTL_LOAD_OSR,
XEC_CTL_ENTS_AND_REFS,
XEC_CTL_ERROR_HANDLING, XEC_
CTL_QUERY_MIN_OUTBUF (only when RC=8,
RSN= XRSN_BUFFER_OUTBUF_SMALL),
XEC_CTL_RESET

gxlpControl

52 z/OS: XML System Services User's Guide and Reference

gxlpControl features and functions

GXLHXEC_CTL_FIN

Description

This indicates that the caller wishes to end the current parse at the current position in the XML document.
The PIMA is re-initialized to allow it to be used on a new parse request. To free up all resources
associated with the parse instance, the caller should use the termination service. If the caller issues this
control operation after document fragment parsing is enabled, then this control operation will disable
document fragment parsing and re-initialize the PIMA for a new parse request. The loaded fragment
context will remain in storage and become active when fragment mode is enabled.

Syntax

int gxlpControl (void * PIMA,
 int ctl_operation,
 void * ctl_data_p,
 int * rc_p,
 int * rsn_p);

Parameters
PIMA

Supplied parameter
Type:

void *

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_operation
Supplied parameter
Type:

int

The name of the parameter containing an integer value initialized to GXLHXEC_CTL_FIN.

ctl_data_p
Supplied and returned parameter
Type:

void *

The name of the parameter that contains the address where the service will store the address of the
diagnostic area, which is mapped by header file gxlhxd.h . This provides additional information that
can be used to debug problems in data passed to the z/OS XML parser. The diagnostic area resides
within the PIMA, and will be overlaid on the next call to the z/OS XML parser. If the caller does not
wish receive diagnostic information, the NULL value is used in place of the address of the diagnostic
area.

rc_p
Returned parameter
Type:

int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter

GXLHXEC_CTL_FIN

z/OS XML parser API: C/C++ 53

Type:
int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Example

void *PIMA;
GXLHXD *ctlDiagArea = NULL;
void *CTL_dataArea = ctlDiagArea;
int lastRetVal, lastRC, lastRSN;
lastRetVal = gxlpControl(PIMA,
 GXLHXEC_CTL_FIN,
 &CTL_dataArea,
 &lastRC,
 &lastRSN);

GXLHXEC_CTL_FEAT

Description

This indicates that the caller wishes to re-initialize the z/OS XML parser, as with the reset-and-finish
function above, and in addition, that the caller wishes to reset some of the feature flags used during the
parse.

Note: The following feature flags are not supported by this service:

• GXLHXEC_FEAT_JST_OWNS_STORAGE
• GXLHXEC_FEAT_RECOVERY
• GXLHXEC_FEAT_VALIDATE
• GXLHXEC_FEAT_SCHEMA_DISCOVERY
• GXLHXEC_FEAT_XDBX_INPUT

Make sure that these feature flags are turned to the OFF state before calling this service to set the feature
flags. If these features need to be changed (for example, if switching between validating and non-
validating parses), the parse instance must be terminated and re-initialized with the required feature
settings.

Syntax

int gxlpControl (void * PIMA,
 int ctl_operation,
 void * ctl_data_p,
 int * rc_p,
 int * rsn_p);

Parameters
PIMA

Supplied parameter
Type:

void *

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_operation
Supplied parameter

GXLHXEC_CTL_FEAT

54 z/OS: XML System Services User's Guide and Reference

Type:
int

The name of the parameter containing an integer value initialized to GXLHXEC_CTL_FEAT.

ctl_data_p
Supplied and returned parameter
Type:

void *

This parameter must contain the address of a fullword (doubleword), which is mapped by header file
gxlhxft.h. See “gxlhxft.h (GXLYXFT) - mapping of the control feature input output area” on page 210
for more information on this header file.

The GXLHXFT_FEAT_FLAGS parameter is an input parameter to the API and contains the value of
feature flags to be used in the subsequent parse. It is defined as follows:
GXLHXEC_FEAT_STRIP_COMMENTS

This effectively strips comments from the document by not returning any comments in the parsed
data stream. Default: off.

GXLHXEC_FEAT_TOKENIZE_WHITESPACE
This sets the default token value for white space preceding markup in the root element to an
explicit white space value. Default: off – white space is returned as character data.

GXLHXEC_FEAT_CDATA_AS_CHARDATA
This returns CDATA in records with a CHARDATA token type. The content of these records may
contain text that would normally have to be escaped to avoid being handled as markup. Default:
off.

GXLHXEC_FEAT_SOURCE_OFFSETS
This feature is used to include records in the parsed data stream which contain offsets to the
corresponding structures in the input document. Default: off.

GXLHXEC_FEAT_FULL_END
This feature is used to expand the end tags to include the local name, prefix and URI
corresponding to the qname on the end tag. Default: off.

If none of the features are required, pass the name of a fullword field containing zero. Do not
construct a parameter list with a zero pointer in it.

rc_p
Returned parameter
Type:

int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Example

void *PIMA;
int lastRetVal, lastRC, lastRSN;
GXLHXFT ft;
ft.XFT_FEAT_FLAGS=0;
void *pft = &ft;
lastRetVal = gxlpControl(PIMA,

GXLHXEC_CTL_FEAT

z/OS XML parser API: C/C++ 55

 GXLHXEC_CTL_FEAT,
 &pft,
 &lastRC,
 &lastRSN);

GXLHXEC_CTL_LOAD_OSR

Description

This indicates that the caller wants to load and use a given Optimized Schema Representation (OSR)
during a validating parse. If the parse prior to invoking this operation returned a GXLHXRSN_NEED_OSR,
this operation will not perform reset and finish processing.

Syntax

int gxlpControl (void * PIMA,
 int ctl_operation,
 void * ctl_data_p,
 int * rc_p,
 int * rsn_p);

Parameters
PIMA

Supplied parameter
Type:

void *

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_operation
Supplied parameter
Type:

int

The name of the parameter containing an integer value initialized to GXLHXEC_CTL_LOAD_OSR.

ctl_data_p
Supplied and returned parameter
Type:

void *

This indicates that the caller wants to load and use a given Optimized Schema Representation (OSR)
during a validating parse. Once an OSR has been loaded, it remains in use for all validating parse
requests until a different OSR is provided by calling this service again.

This parameter must contain the address of an area containing information about the OSR to load.
This area is mapped by gxlhxosr.h. See “gxlhxosr.h (GXLYXOSR) - mapping of the OSR control area” on
page 210 for more information on the structures in this header.

rc_p
Returned parameter
Type:

int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter

GXLHXEC_CTL_LOAD_OSR

56 z/OS: XML System Services User's Guide and Reference

Type:
int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Example

void *PIMA;
GXLHXOSR *ctlData;
int lastRetVal, lastRC, lastRSN;
lastRetVal = gxlpControl(PIMA,
 GXLHXEC_CTL_LOAD_OSR,
 (void *)&ctlData,
 &lastRC,
 &lastRSN);

GXLHXEC_CTL_QUERY_MIN_OUTBUF

Description

This indicates that the caller is requesting the control service to return the minimum output buffer size
required for subsequent parse to complete without returning an GXLHXRSN_BUFFER_OUTBUF_SMALL
reason code. This value is returned in the XD control block.

Syntax

int gxlpControl (void * PIMA,
 int ctl_operation,
 void * ctl_data_p,
 int * rc_p,
 int * rsn_p);

Parameters
PIMA

Supplied parameter
Type:

void *

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_operation
Supplied parameter
Type:

int

The name of the parameter containing an integer value initialized to
GXLHXEC_CTL_QUERY_MIN_OUTBUF.

ctl_data_p
Supplied and returned parameter
Type:

void *

This parameter must contain the address of a fullword (doubleword) where the service will store the
address of the diagnostic area, which is mapped by header file gxlhxd.h. The field XD_MIN_OB
contains the minimum output buffer size required on the next parse. If some failure other than

GXLHXEC_CTL_QUERY_MIN_OUTBUF

z/OS XML parser API: C/C++ 57

GXLHXRSN_BUFFER_OUTBUF_SMALL occurred prior to this call,
GXLHXRSN_CTL_SEQUENCE_INCORRECT will be returned. The XD area will not be returned.

The diagnostic area resides within the PIMA, and will be overlaid on the next call to the z/OS XML
parser.

rc_p
Returned parameter
Type:

int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

GXLHXEC_CTL_ENTS_AND_REFS

Description

This indicates that the caller is requesting additional flexibility when processing character or entity
references. When this option is specified, the ctl_data_p parameter must also be utilized to specify the
specific enhancement being requested. See the ctl_data_p section below for more information.

Syntax

int gxlpControl (void * PIMA,
 int ctl_operation,
 void * ctl_data_p,
 int * rc_p,
 int * rsn_p);

Parameters
PIMA

Supplied parameter
Type:

void *

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_operation
Supplied parameter
Type:

int

The name of the parameter containing an integer value initialized to GXLHXEC_CTL_ENTS_AND_REFS.

ctl_data_p
Supplied and returned parameter
Type:

void *

GXLHXEC_CTL_ENTS_AND_REFS

58 z/OS: XML System Services User's Guide and Reference

This parameter must contain the address of an area that contains information about what reference
operations are to be processed. This area is mapped by the XEAR data structure in file gxlhctl.h.

rc_p
Returned parameter
Type:

int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Example

void *PIMA;
GXLHXEAR ear;
ear.XEAR_VERSION=1;
void *CTL_ear_p = &ear;
int lastRetVal, lastRC, lastRSN;
lastRetVal = gxlpControl(PIMA,
 GXLHXEC_CTL_ENTS_AND_REFS,
 &CTL_ear_p,
 &lastRC,
 &lastRSN);

GXLHXEC_CTL_LOAD_FRAG_CONTEXT

Description

This indicates that the caller wants to load fragment context into the z/OS XML parser. This service allows
the caller to load namespace binding information and fragment paths for document fragment parsing.
Namespace binding information is optional. Fragment path is required . This service must be issued prior
to a GXLHXEC_CTL_FRAGMENT_PARSE control operation that enables document fragment parsing. If
fragment context is already loaded from a prior GXLHXEC_CTL_LOAD_FRAG_CONTEXT control operation
and this service is called again, the new fragment context will overlay the previously loaded context. This
control operation will not cause finish/reset processing to take place.

Syntax

int gxlpControl (void * PIMA,
 int ctl_operation,
 void * ctl_data_p,
 int * rc_p,
 int * rsn_p);

Parameters
PIMA

Supplied parameter
Type:

void *

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

GXLHXEC_CTL_LOAD_FRAG_CONTEXT

z/OS XML parser API: C/C++ 59

ctl_operation
Supplied parameter
Type:

int

The name of the parameter containing an integer value initialized to
GXLHXEC_CTL_LOAD_FRAG_CONTEXT.

ctl_data_p
Supplied and returned parameter
Type:

void *

This parameter must contain a pointer to where the service will locate the address of the document
fragment context structure, which is mapped by the header gxlhctl.h. The name of the data structure
is GXLHXFC. This structure allows the caller to provide the fragment path and namespace binding
information to assist document fragment parsing.

To validate an element during document fragment parsing, the fragment path represents the path
from the root element of the complete document to the root element of the fragment, which consists
of prefixes and localnames. To validate an attribute during fragment parsing, the fragment path
represents the path from the root element of the complete document to the desired attribute name.
The fragment path is required in order to perform validation in fragment parsing.

The fragment path syntax is defined below:

FragmentPath ::= ('/' ElementName)* FragmentData
FragmentData ::= '/' ElementName ('/@' AttributeName)?
ElementName ::= QName
AttributeName ::= QName

Namespaces bindings allow unique strings of text that identify a given space of names to be
represented by a prefix. This allows references to elements with the same name to be differentiated,
based on the namespace to which they belong. These bindings may not be present in the document
fragment, and often these bindings exist in the ancestor elements’ start tag that is not part of the
document fragment. The caller can provide a complete context containing multiple namespace
bindings in the GXLHXFC structure. The namespace binding is optional information.

However, if there is an XML instance document that uses a default namespace, the caller must still
specify a prefix on the element names in the fragment path. The caller must also specify this prefix
along with the namespace URI in the namespace binding information. The actual prefix does not
matter; only the namespace URI matters, but the prefix will associate each element in the fragment
path with the correct namespace.

Note:

1. All the strings for fragment path and namespace binding passed into the
GXLHXEC_CTL_LOAD_FRAG_CONTEXT control call needs to be in the encoding of the z/OS XML
parser configured at initialization time.

2. If the caller disables document fragment parsing, the namespace contexts loaded through the
GXLHXEC_CTL_LOAD_FRAG_CONTEXT control call will be removed and will not be available during
the non-fragment parsing mode.

3. When the caller issues a GXLHXEC_CTL_LOAD_FRAG_CONTEXT control call to load namespace
contexts, the namespace contexts will be available when the z/OS XML parser switches into
fragment parsing mode. The namespace contexts will only get unloaded and replaced if the caller
terminates the parser or issues GXLHXEC_CTL_LOAD_FRAG_CONTEXT control call again to load
new namespace contexts.

rc_p
Returned parameter

GXLHXEC_CTL_LOAD_FRAG_CONTEXT

60 z/OS: XML System Services User's Guide and Reference

Type:
int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Example

void * PIMA;
void * fragContext;
void * fragParse;
void * ctl_data_p;
int * option_flags;
void * fragbuf; int fragbuf_left;
void * outbuf; int outbuf_left;
GXLHXFP xfp;
GXLHXFC xfc;
GXLHXFC_ENTRY xfc_entry[1];
char * nspfx_str; char * nsuri_str;
char * fragPath;
int rc, rsn;
/* Perform necessary setup */
nspfx_str = "ibm";
nsuri_str = "http://w3.ibm.com";
fragPath = "/ibm:root/ibm:person";
/* Perform a reset */
gxlpControl(PIMA,
 GXLHXEC_CTL_FIN,
 &ctl_data_p,
 rc,
 rsn);
/* setup the GXLHXFC structure with namespace binding information */
memset(&xfc,0,sizeof(GXLHXFC));
xfc.XFC_ENTRY_NSCOUNT = 1;
xfc_entry[0].XFC_ENTRY_NSPFX_LEN = strlen(nspfx_str);
xfc_entry[0].XFC_ENTRY_NSPFX_PTR = nspfx_str;
xfc_entry[0].XFC_ENTRY_NSURI_LEN = strlen(nsuri_str);
xfc_entry[0].XFC_ENTRY_NSURI_PTR = nsuri_str;
xfc.XFC_ENTRY_NS_PTR = &xfc_entry
xfc.XFC_FRAGPATH_PTR = fragPath;
xfc.XFC_FRAGPATH_LEN = strlen(fragPath);
fragContext = (void*)&xfc
/* initialize the GXLHXFP structure with zero and set the enable flag */
memset(&xfp,0,sizeof(GXLHXFP));
xfp.XFP_FLAGS = XFP_FLAGS_FRAGMENT_MODE;
fragParse = (void*)&xfp
/* Load the fragment parsing contexts */
gxlpControl(PIMA,
 GXLHXEC_CTL_LOAD_FRAG_CONTEXT,
 &fragContext,
 rc,
 rsn);

GXLHXEC_CTL_FRAGMENT_PARSE

Description

This indicates that the caller wants to either enable or disable document fragment parsing. This service
will decide whether to enable or disable document fragment parsing based on the
XFP_FLAGS_FRAGMENT_MODE bit set in the ctl_data_p parameter. Document fragment parsing is
disabled by default. This control operation will not cause finish/reset processing to take place. If the caller
wants to parse a new complete XML document, a GXLHXEC_CTL_FIN control operation must be called
prior to a new parse request. If any error with return code greater than 4 has occurred during document

GXLHXEC_CTL_FRAGMENT_PARSE

z/OS XML parser API: C/C++ 61

fragment parsing, a GXLHXEC_CTL_FIN control operation must be issued in order to resume parsing.
Calling the GXLHXEC_CTL_FIN control operation will disable the document fragment parsing and unload
all fragment contexts.

Note:

1. Document fragment parsing can only be enabled once before disabling. Likewise, document fragment
parsing can only be disabled once before enabling.

2. If the caller disables document fragment parsing, the parse will end and the caller is allowed to parse
a new document.

Syntax

int gxlpControl (void * PIMA,
 int ctl_operation,
 void * ctl_data_p,
 int * rc_p,
 int * rsn_p);

Parameters
PIMA

Supplied parameter
Type:

void *

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_operation
Supplied parameter
Type:

int

The name of the parameter containing an integer value initialized to
GXLHXEC_CTL_FRAGMENT_PARSE.

ctl_data_p
Supplied and returned parameter
Type:

void *

This parameter must contain a pointer to where the service will locate the address of the document
fragment parsing structure, which is mapped by the header gxlhctl.h. The name of the data structure
is GXLHXFP. This structure allows the caller to specify whether to enable or disable document
fragment parsing through the XFP_FLAGS_FRAGMENT_MODE bit set in the XFP_FLAGS field.
Document fragment parsing is disabled by default.

The XFP_XD_PTR is where the service will store the address of the diagnostic area, which is mapped
by macro GXLYXD. This provides additional information that can be used to debug problems in data
passed to the z/OS XML parser. The diagnostic area resides within the PIMA, and will be overlaid on
the next call to the z/OS XML parser.

Tips:

• To enable document fragment parsing, set the XFP_FLAGS_FRAGMENT_MODE bit to on.
• To disable document fragment parsing, set the XFP_FLAGS_FRAGMENT_MODE bit to off.

Note:

1. When the caller validates an attribute during fragment parsing, the document fragment passed to
the parser should contain only the desired attribute’s value.

GXLHXEC_CTL_FRAGMENT_PARSE

62 z/OS: XML System Services User's Guide and Reference

2. When the caller re-enables document fragment parsing after it has been disabled, and without
calling load fragment context again, the previous loaded fragment context will be utilized in this
new fragment parse. This includes the fragment path and any namespace binding information.

3. The OSR must be loaded by way of the XEC_CTL_LOAD_OSR control call prior to enabling fragment
parsing.

rc_p
Returned parameter
Type:

int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Example

void * PIMA
void * fragContext;
void * fragParse;
void * ctl_data_p;
int * option_flags;
void * fragbuf; int fragbuf_left;
void * outbuf; int outbuf_left;
GXLHXFP xfp;
GXLHXFC xfc;
GXLHXFC_ENTRY xfc_entry[1];
char * nspfx_str; char * nsuri_str;
char * fragPath;
int rc, rsn;
/* Perform necessary setup */
nspfx_str = "ibm";
nsuri_str = "http://w3.ibm.com";
fragPath = "/ibm:root/ibm:person";
/* Perform a reset */
gxlpControl(PIMA,
 GXLHXEC_CTL_FIN,
 &ctl_data_p,
 rc,
 rsn);
/* setup the GXLHXFC structure with namespace binding information */
memset(&xfc,0,sizeof(GXLHXFC));
xfc.XFC_ENTRY_NSCOUNT = 1;
xfc_entry[0].XFC_ENTRY_NSPFX_LEN = strlen(nspfx_str);
xfc_entry[0].XFC_ENTRY_NSPFX_PTR = nspfx_str;
xfc_entry[0].XFC_ENTRY_NSURI_LEN = strlen(nsuri_str);
xfc_entry[0].XFC_ENTRY_NSURI_PTR = nsuri_str;
xfc.XFC_ENTRY_NS_PTR = &xfc_entry
xfc.XFC_FRAGPATH_PTR = fragPath;
xfc.XFC_FRAGPATH_LEN = strlen(fragPath);
fragContext = (void*)&xfc
/* initialize the GXLHXFP structure with zero and set the enable flag */
memset(&xfp,0,sizeof(GXLHXFP));
xfp.XFP_FLAGS = XFP_FLAGS_FRAGMENT_MODE;
fragParse = (void*)&xfp
/* Load the fragment parsing contexts */
gxlpControl(PIMA,
 GXLHXEC_CTL_LOAD_FRAG_CONTEXT,
 &fragContext,
 rc,
 rsn);
/* Note: the OSR must be loaded at this point */
/* Enable document fragment parsing */
gxlpControl(PIMA,
 GXLHXEC_CTL_FRAGMENT_PARSE,

GXLHXEC_CTL_FRAGMENT_PARSE

z/OS XML parser API: C/C++ 63

 &fragParse,
 &rc,
 &rsn);
/* Parse the desired document fragments */
gxlpParse(PIMA,
 option_flags,
 &fragbuf,
 &fragbuf_left,
 &outbuf,
 &outbuf_left,
 &rc,
 &rsn);
/* Disable document fragment parsing */
xfp.XFP_FLAGS = 0;
gxlpControl(PIMA,
 GXLHXEC_CTL_FRAGMENT_PARSE,
 &fragParse,
 &rc,
 &rsn);

GXLHXEC_CTL_RESTRICT_ROOT

Description

This operation indicates that the caller wishes to restrict the root element name on the next parse. If the
root element name is not any of those listed in the GXLHXRR data area, this call will cause the parse to
stop. This operation will reset the PIMA.

Syntax

int gxlpControl (void * PIMA,
 int ctl_operation,
 void * ctl_data_p,
 int * rc_p,
 int * rsn_p);

Parameters
PIMA

Supplied parameter
Type:

void *

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_operation
Supplied parameter
Type:

int

The name of the parameter containing an integer value initialized to GXLHXEC_CTL_RESTRICT_ROOT.

ctl_data_p
Supplied and returned parameter
Type:

void *

This parameter contains the address of an area with information about the restricted root element.
This area is mapped by the header file gxlhxrr.h. This provides a list of names that must contain the
name of the root element in order for the validating parse to succeed.

rc_p
Returned parameter

GXLHXEC_CTL_RESTRICT_ROOT

64 z/OS: XML System Services User's Guide and Reference

Type:
int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Example

void * PIMA;
void * ctl_data_p;
void * rootTable;
void * inbuf; int inbuf_left;
void * outbuf; int outbuf_left;
GXLHXRR_ENTRY *entry;
int * option_flags;
GXLHXRR xrr;
char * root_str; char * rootnsuri_str;
int rc, rsn;
/* Perform necessary setup */
root_str = "personal";
rootnsuri_str = "http://w3.ibm.com";
/* Perform a reset */
gxlpControl(PIMA,
 GXLHXEC_CTL_FIN,
 &ctl_data_p,
 rc,
 rsn);
/* setup the GXLHXRR structure with namespace binding information */
memset(&xrr,0,sizeof(GXLHXRR));
xrr.XRR_ENTRY_COUNT = 1;
entry.XRR_ENTRY_ROOT_LEN = strlen(root_str);
entry.XRR_ENTRY_ROOT_PTR = root_str;
entry.XRR_ENTRY_NSURI_LEN = strlen(rootnsuri_str);
entry.XRR_ENTRY_NSURI_PTR = rootnsuri_str;
xrr.XRR_ENTRY = entry;
rootTable = (void*)&xrr
/* Enable Root Restriction */
gxlpControl(PIMA,
 GXLHXEC_CTL_RESTRICT_ROOT,
 &rootTable,
 rc,
 rsn);
/* Parse the desired document fragments */
gxlpParse(PIMA,
 option_flags,
 &inbuf,
 &inbuf_left,
 &outbuf,
 &outbuf_left,
 &rc,
 &rsn);
/* Disable document fragment parsing */
xrr.XRR_ENTRY_COUNT = 0;
gxlpControl(PIMA,
 GXLHXEC_CTL_RESTRICT_ROOT,
 &rootTable,
 &rc,
 &rsn);

GXLHXEC_CTL_ERROR_HANDLING

Description

With this control operation, the caller can do the following for a validating parse:

GXLHXEC_CTL_ERROR_HANDLING

z/OS XML parser API: C/C++ 65

• Enable the creation of auxiliary records which can include the location of an error in the XML document,
the string which is in error, and also a possible expected string.

• Enable position indexes to be present in the error location path in order to facilitate locating the error.

For a non-validating parse, it can be used to:

• Enable the ability to continue parsing when an undefined prefix is encountered on an element or
attribute. The "prefix:local name" will be treated as the local name.

• Request an auxiliary information record that contains the tolerated return and reason codes and the
error offset.

Syntax

int gxlpControl (void * PIMA,
 int ctl_operation,
 void * ctl_data_p,
 int * rc_p,
 int * rsn_p);

Parameters
PIMA

Supplied parameter
Type:

void *

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_operation
Supplied parameter
Type:

int

The name of the parameter containing an integer value initialized to
GXLHXEC_CTL_ERROR_HANDLING.

ctl_data_p
Supplied and returned parameter
Type:

void *

This parameter contains the address of an area with information about the error string. This is the
XERR data structure which is mapped by GXLHERR in the header file gxlhctl.h.

rc_p
Returned parameter
Type:

int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

GXLHXEC_CTL_ERROR_HANDLING

66 z/OS: XML System Services User's Guide and Reference

The enhanced error information for a validating parse is returned by way of the XERR_XD_PTR and is
where the service will store the address of the diagnostic area, which is in gxlhxd.h file. The
XD_LastOutput field is a pointer to the data area containing these records. This data area is within the
PIMA and is formatted in the same manner as a normal output buffer.

The XEC_TOLERATED_ERROR auxiliary info record for a non-validating parse is returned in the output
buffer. In the event that source offset auxiliary records are also being returned, this record will
immediately follow those records for the element or attribute in the output buffer.

In addition to enabling or disabling the enhanced error features, this control option will perform a reset
function. The following properties and resources will be reset by this control option:

• Fragment mode (validating parse only)
• Start of the XML document
• Error state

GXLHXEC_CTL_RESET

Description

This indicates that the caller wants to reset the start of the XML document and error state. The PIMA is re-
initialized to allow it to be used on a new parse request. To free up all resources associated with the parse
instance, the caller should use the termination service.

Syntax

int gxlpControl (void * PIMA,
 int ctl_operation,
 void * ctl_data_p,
 int * rc_p,
 int * rsn_p);

Parameters
PIMA

Supplied parameter
Type:

void *

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_operation
Supplied parameter
Type:

int

The name of the parameter containing an integer value initialized to GXLHXEC_CTL_RESET.

ctl_data_p
Supplied and returned parameter
Type:

void *

The name of the parameter that contains the address where the service will store the address of the
diagnostic area, which is mapped by header file gxlhxd.h . This provides additional information that
can be used to debug problems in data passed to the z/OS XML parser. The diagnostic area resides
within the PIMA, and will be overlaid on the next call to the z/OS XML parser. If the caller does not
wish receive diagnostic information, the NULL value is used in place of the address of the diagnostic
area.

GXLHXEC_CTL_RESET

z/OS XML parser API: C/C++ 67

rc_p
Returned parameter
Type:

int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Example

void *PIMA;
GXLHXD *ctlDiagArea = NULL;
void *CTL_dataArea = ctlDiagArea;
int lastRetVal, lastRC, lastRSN;
lastRetVal = gxlpControl(PIMA,
 GXLHXEC_CTL_RESET,
 &CTL_dataArea,
 &lastRC,
 &lastRSN);

GXLHXEC_CTL_SPLIT_RECORD_THRESHOLD

Description

This indicates that the caller wants to set the threshold for splittable record size.

The following record types can be split: GXLHXEC_TOK_ATTR_VALUE, GXLHXEC_TOK_CHAR_DATA,
GXLHXEC_TOK_WHITESPACE, GXLHXEC_TOK_PI, and GXLHXEC_TOK_COMMENT.

Syntax

int gxlpControl (void * PIMA,
 int ctl_operation,
 void * ctl_data_p,
 int * rc_p,
 int * rsn_p);

Parameters
PIMA

Supplied parameter
Type:

void *

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_operation
Supplied parameter
Type:

int

GXLHXEC_CTL_SPLIT_RECORD_THRESHOLD

68 z/OS: XML System Services User's Guide and Reference

The name of the parameter containing an integer value initialized to
GXLHXEC_CTL_SPLIT_RECORD_THRESHOLD.

ctl_data_p
Supplied and returned parameter
Type:

void *

XSR_THRESHOLD
The threshold size of the minimum value of split record. It can be 0 -2 gigabytes.

rc_p
Returned parameter
Type:

int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Example

void *PIMA;
GXLHXD *ctlDiagArea = NULL;
void *CTL_dataArea = ctlDiagArea;
int lastRetVal, lastRC, lastRSN;
lastRetVal = gxlpControl(PIMA,
 GXLHXEC_CTL_SPLIT_RECORD_THRESHOLD,
 &CTL_dataArea,
 &lastRC,
 &lastRSN);

gxlpInit — initialize the z/OS XML parser

Description

The gxlpInit callable service initializes the PIMA and records the addresses of the caller's system service
routines (if any). The PIMA storage is divided into the areas that will be used by the z/OS XML parser to
process the input buffer and produce the parsed data stream.

Performance Implications

The initialization of structures used by the z/OS XML parser in the PIMA is only done once per parse and is
therefore unlikely to affect performance. The caller may choose to reuse the PIMA after each parse to
eliminate the overhead of storage allocation and the page faults that occur when referencing new storage.
In this case, a control operation is required to reset the necessary fields in the PIMA before parsing can
continue. For more information on the control operation, see “gxlpControl — perform a parser control
function” on page 50.

gxlpInit

z/OS XML parser API: C/C++ 69

Syntax

int gxlpInit (void * PIMA,
 long PIMA_LEN,
 int ccsid,
 int feature_flags,
 GXLHXSV sys_svc_vector,
 void * sys_svc_parm,
 int * rc_p,
 int * rsn_p);

Parameters
PIMA

Pointer to Parse Instance Memory Area (PIMA).
Type:

void *
PIMA_Len

Length of PIMA
Type:

long

The name of an area containing the length of the Parse Instance Memory Area. This service validates
the length of this area against a minimum length value. The minimum length of the PIMA depends on
whether or not validation will be performed during the parse:

• GXLHXEC_NVPARSE_MIN_PIMA_SIZE (non-validating)
• GXLHXEC_VPARSE_MIN_PIMA_SIZE (validating)

ccsid
Supplied parameter
Type:

Integer

The Coded Character Set IDentifier (CCSID) that identifies the document’s character set. The CCSID
value in this parameter will override any character set or encoding information contained in the XML
declaration of the document. A set of CCSID constants for supported encodings has been declared in
GXLYXEC. See Appendix I, “Supported encodings,” on page 231 for a full list of supported encodings.

feature_flags
Supplied parameter
Type:

Integer

The name of the area that contains an integer value representing one or more of the following z/OS
XML parser features. OR these flags together as needed to enable features. Choose any of the
following:

• GXLHXEC_FEAT_CDATA_AS_CHARDATA - return CDATA in records with a CHARDATA token type.
The content of these records may contain text that would normally have to be escaped to avoid
being handled as markup.

• GXLHXEC_FEAT_FULL_END - expand the end tags to include the local name, prefix and URI
corresponding to the qname on the end tag.

• GXLHXEC_FEAT_JST_OWNS_STORAGE - allocate storage as Job Step Task (JST) related instead of
task related. See the “Usage notes” on page 128 below for more information.

• GXLHXEC_FEAT_RECOVERY - this option is used to turn on the recovery routine.

Note: Because the recovery routine is automatically enabled for Language Environment-C, this
option is only meaningful when using the Metal C compiler option.

gxlpInit

70 z/OS: XML System Services User's Guide and Reference

• GXLHXEC_FEAT_SOURCE_OFFSETS - include records in the parsed data stream which contain
offsets to the corresponding structures in the input document.

• GXLHXEC_FEAT_STRIP_COMMENTS - effectively strip comments from the document by not
returning any comments in the parsed data stream.

• GXLHXEC_FEAT_TOKENIZE_WHITESPACE - set the default token value for white space preceeding
markup within the context of the root element to an explicit white space value. Use this value in
conjunction with the special xml:space attribute to determine how such white space gets classified.

• GXLHXEC_FEAT_VALIDATE - perform validation while parsing. See “Usage notes” on page 128 for
details of parsing with validation.

• GXLHXEC_FEAT_SCHEMA_DISCOVERY - report schema location information and allow for an OSR to
be loaded once the information has been reported. GXLHXEC_FEAT_VALIDATE must also be
enabled, otherwise gxlpInit will return an error. See “Usage notes” on page 76 for more
information on schema discovery. Default: off.

• GXLHXEC_FEAT_XDBX_INPUT - indicates that the data presented to z/OS XML in the input buffer is
in XDBX binary XML form, rather than conventional text. This feature requires that
GXLHXEC_FEAT_VALIDATE is also set, and that the encoding specified in the CCSID parameter is
UTF-8. See “Usage notes” on page 128 for more information on XDBX input streams. Default: off.

• GXLHXEC_FEAT_ALLOW_VECTOR - this enables the parser to use vector instructions. Default: off.

Note: By using the values of off (zero), W3C XML compliant output is generated. Turning on options
GXLHXEC_FEAT_STRIP_COMMENTS and GXLHXEC_FEAT_CDATA_AS_CHARDATA will cause the output
to vary from standard compliance.

If none of the features are required, pass the name of a fullword field containing zero. Do not
construct a parameter list with a zero pointer in it.

sys_svc_vector
Supplied parameter
Type:

GXLHXSV

The name of a structure containing a count of entries that follow and then a list of 31 (64) bit pointers
to system service routines. The GXLHXSV member XSV_COUNT must have a value of 0 if no services
are provided. For more details on usage, see “Usage notes” on page 72. For more information on exit
routines, see the Chapter 8, “z/OS XML System Services exit interface,” on page 139 chapter.

sys_svc_parm
Supplied parameter
Type:

void *

The name of the area which is passed to all system service exits. This provides for communication
between the z/OS XML parser caller and its exit routines. Specify the name of a location containing 0 if
no parameter is required for communication.

rc_p
Returned parameter
Type:

int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

gxlpInit

z/OS XML parser API: C/C++ 71

All parameters in the parameter list are required.

Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The return and reason code
are both also set as output parameters. The value of the reason code is undefined when the return code
has no associated reasons. Return and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h
(GXLYXR) - defines the return codes and reason codes” on page 209). For reason code descriptions, also
see Appendix B, “Reason codes listed by value,” on page 155.

Example

#include <stdlib.h>
#include <gxlhxec.h>

void * pima_p;
long pima_l;
GXLHXSV sysServiceVec;
int rc, rsn;

if (pima_p = malloc(GXLHXEC_MIN_PIMA_SIZE))
 { /* pima malloc succeeded */
 pima_l = GXLHXEC_MIN_PIMA_SIZE;
 sysServiceVec.XSV_COUNT = 0;

gxlpInit(pima_p, pima_l,
 GXLHXEC_ENC_UTF_8,
 GXLHXEC_FEAT_STRIP_COMMENTS,
 sysServiceVec,
 NULL,
 &rc, &rsn);

 } /* pima malloc succeeded */

Usage notes

System service exit routines cannot get control in the C/C++ environment. Instead, they must be coded to
the assembler interface.

Addresses passed in the system_service_vec parameter must point to the entry point of the exit being
supplied. To obtain the entry point address of a function in 31-bit NOXPLINK DLL compiled module, refer
to the FDCB structure in z/OS Language Environment Vendor Interfaces, SA22-7568. Otherwise, taking the
address of the function will return the entry point address.

This callable service is a direct map to the callable service GXL1INI (GXL4INI). Refer to “Usage notes” on
page 128 of GXL1INI (GXL4INI) for additional usage information.

gxlpLoad — load a z/OS XML function

Description

Load a module that implements a z/OS XML function into storage.

Performance Implications

There are no performance implications.

Syntax

int gxlpLoad (int function_code,
 void * function_data,
 int * rc_p,
 int * rsn_p)

gxlpLoad

72 z/OS: XML System Services User's Guide and Reference

Parameters
function_code

Supplied parameter
Type:

int

This parameter identifies the z/OS XML function to load. It is the name of an integer value
representing the following function:
XEC_LOD_VPARSE

The validating parse function
See gxlhxec.h for the list of function code constants.

function_data
Returned parameter
Type:

void *

Specify a word of zeroes for this parameter.

rc_p
Returned parameter
Type:

int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The return and reason code
are both also set as output parameters. The value of the reason code is undefined when the return code
has no associated reasons. Return and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h
(GXLYXR) - defines the return codes and reason codes” on page 209). For reason code descriptions, also
see Appendix B, “Reason codes listed by value,” on page 155.

Example

None.

Usage notes

This load step is not required for performing non-validating parsing. This operation is only required when
using the validating parser. The caller does have the option of loading the load module for the specified
function without using this service - either through the z/OS LOAD macro (assembler interface), or by
putting it in LPA or the extended LPA. Both the LOAD macro and calls to this service are not allowed when
running in an SRB. The use of either interface must be performed in the task before entering SRB mode.

If the required z/OS XML function is made available, either by LOADing the executable load module for it
or putting the load module in LPA, this service is not required. Documentation on the LOAD macro can be
found in z/OS MVS Programming: Assembler Services Reference IAR-XCT, and information on how to load
modules into LPA can be found in z/OS MVS Initialization and Tuning Guide.

gxlpLoad

z/OS XML parser API: C/C++ 73

The load module associated with the function is as follows:

Table 25. Load module for C/C++ parser

Function code Function performed Load module name

XEC_LOD_VPARSE Validating parser function GXLIMODV

There is no unload service to perform the converse of this function, and none of the other z/OS XML
System Services cause the z/OS XML parser to be unloaded. The z/OS XML parser load module will remain
in the caller's address space even if the parser is terminated or reset. If multiple parse requests are to be
performed in the same address space, make sure to load the z/OS XML parser only once, regardless of
whether those parse requests are performed using the same parse instance (PIMA) or not.

gxlpParse — parse a buffer of XML text

Description

The gxlpParse callable service parses a buffer of XML text and places the result in an output buffer.

Performance Implications

Ideal performance will be obtained when the PIMA is sufficiently large to contain all the needed data
structures, and the input and output buffers are large enough to process the entire XML document. During
the parsing process, the z/OS XML parser constructs persistent information in the PIMA that can be
reused within a parse instance. If the caller is going to process multiple documents that contain similar
sets of symbols (namespaces and local element and attribute names in particular), then reusing the PIMA
will improve performance during the processing of subsequent documents. If this behavior is not
required, the PIMA should be cleaned up by calling the termination service and reinitialized by calling the
initialization service before using the PIMA for another parse request.

Syntax

int gxlpParse(void * PIMA,
 int * option_flags,
 void ** input_buffer_addr,
 long * input_buffer_bytes_left,
 void ** output_buffer_addr,
 long * output_buffer_bytes_left,
 int * rc_p,
 int * rsn_p);

Parameters
PIMA

Supplied parameter
Type:

void *

The name of the Parse Instance Memory Area (PIMA which has been previously initialized with a call
to the initialization service.

option_flags
Supplied parameter
Type:

int *

This parameter must point to a word with the value 0.

input_buffer_addr
Supplied and returned parameter

gxlpParse

74 z/OS: XML System Services User's Guide and Reference

Type:
void **

The name of the area that contains the address of the buffer with the XML text to parse. The z/OS XML
parser updates this parameter to provide important return information when control returns to the
caller. See the “Usage notes” on page 131 for details.

input_buffer_bytes_left
Supplied and returned parameter
Type:

long *

The name of the area that contains the number of bytes in the input buffer that have not yet been
processed. The z/OS XML parser updates this parameter to provide important return information
when control returns to the caller. See the “Usage notes” on page 131 for details.

output_buffer_addr
Supplied and returned parameter
Type:

void **

The name of the area that contains the address of the buffer where the z/OS XML parser should place
the parsed data stream. The z/OS XML parser updates this parameter to provide important return
information when control returns to the caller. See the “Usage notes” on page 131 for details.

output_buffer_bytes_left
Supplied and returned parameter
Type:

long *

The name of the area that contains the number of available bytes in the output buffer. When the z/OS
XML parser returns control to the caller, this parameter will be updated to indicate the number of
unused bytes in the output buffer. This buffer must always contain at least a minimum number of
bytes as defined by the GXLHXEC_MIN_OUTBUF_SIZE constant, declared in header file gxlhxec.h.
This service will validate the length of this area against this minimum length value.

rc_p
Returned parameter
Type:

int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The return and reason code
are both also set as output parameters. The value of the reason code is undefined when the return code
has no associated reasons. Return and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h
(GXLYXR) - defines the return codes and reason codes” on page 209). For reason code descriptions, also
see Appendix B, “Reason codes listed by value,” on page 155.

gxlpParse

z/OS XML parser API: C/C++ 75

Example

void * PIMA;

int * option_flags;

void * input_buffer_addr; long input_buffer_bytes_left;

void * output_buffer_addr; long output_buffer_bytes_left;

int rc, rsn;

gxlpParse(PIMA,
 option_flags,
 &input_buffer_addr, &input_buffer_bytes_left,
 &output_buffer_addr, &output_buffer_bytes_left,
 &rc, &rsn);

Usage notes

This callable service is a direct map to GXL1PRS (GXL4PRS). Refer to “Usage notes” on page 131 of
GXL1PRS (GXL4PRS) for usage information.

gxlpQuery — query an XML document

Description

This service allows a caller to obtain the XML characteristics of a document. The XML characteristics are
either the default values, the values contained in an XML declaration or a combination of both.

Performance Implications

There are no performance implications.

Syntax

int gxlpQuery (void * work_area,
 long work_area_length,
 void * input_buffer,
 long input_buffer_length,
 GXLHQXD ** return_data,
 int * rc_p,
 int * rsn_p);

Parameters
work_area

Supplied parameter
Type:

void *

The name of a work area. The work area must be aligned on a doubleword boundary. If not on a
doubleword boundary, results are unpredictable. See the “Usage notes” on page 134 for additional
details on the use of this area.

work_area_length
Supplied parameter
Type:

long

gxlpQuery

76 z/OS: XML System Services User's Guide and Reference

The name of an area containing the length of the work area. The minimum length of this area is
declared as a constant GXLHXEC_MIN_QXDWORK_SIZE in header file gxlhxec.h . This service validates
the length of this area against this minimum length value.

input_buffer
Supplied parameter
Type:

void *

The name of an input buffer containing the beginning of the XML document to process. See the “Usage
notes” on page 134 for details.

input_buffer_length
Supplied parameter
Type:

long

The name of an area containing the length of the input buffer.

return_data
Returned parameter
Type:

GXLHQXD **

The pointer to where the service will return the address of the data which describes the XML
document characteristics. This return information will contain values that are either extracted from
the XML declaration or defaulted according to the XML standard. This return area is mapped by the
header file gxlhqxd.h (see “gxlhqxd.h (GXLYQXD) - mapping of the output from the query XML
declaration service” on page 208), and is located within the work area specified by the work_area
parameter. The caller must not free the work_area until it is done referencing the data returned from
this service.

rc_p
Returned parameter
Type:

int *

The name of the area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The return and reason code
are both set as output parameters. The value of the reason code is undefined when the return code has no
associated reasons. Return and reason codes are defined in header file gxlhxr.h (see “gxlhxr.h (GXLYXR) -
defines the return codes and reason codes” on page 209). For reason code descriptions, also see
Appendix B, “Reason codes listed by value,” on page 155.

Example

void * work_area;
long work_area_length = XEC_MEM_QIMA_SIZE;
void * input_buffer;
long input_buffer_length;

gxlpQuery

z/OS XML parser API: C/C++ 77

GXLHQXD * return_data;
int rc, rsn;
gxlpQuery(work_area, work_area_length, input_buffer,
 input_buffer_length, &return_data, &rc, &rsn);

Usage notes

This callable service is a direct map to GXL1QXD (GXL4QXD). Refer to “Usage notes” on page 134 of
GXL1QXD (GXL4QXD) for usage information.

gxlpTerminate — terminate a parse instance

Description

The gxlpTerminate callable service releases all resources obtained (including storage) by the z/OS XML
parser and resets the PIMA so that it can be re-initialized or freed.

Performance Implications

There are no performance implications.

Syntax

int gxlpTerminate (void * PIMA,
 int * rc,
 int * rsn);

Parameters
PIMA

Supplied parameter
Type:

void *

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

rc
Returned parameter
Type:

int *

The name of the area where the service stores the return code.

rsn
Returned parameter
Type:

int *

The name of the area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The return and reason code
are both also set as output parameters. The value of the reason code is undefined when the return code
has no associated reasons. Return and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h

gxlpTerminate

78 z/OS: XML System Services User's Guide and Reference

(GXLYXR) - defines the return codes and reason codes” on page 209). For reason code descriptions, also
see Appendix B, “Reason codes listed by value,” on page 155.

Example

void * PIMA;

int rc, rsn;

gxlpTerminate (PIMA, &rc, &rsn);

Usage notes

This callable service is a direct map to GXL1TRM (GXL4TRM). Refer to “Usage notes” on page 135 of
GXL1TRM (GXL4TRM) for usage information.

OSR generator API

gxluInitOSRG — initialize an OSR generator instance

Description

Initialize an OSR generator instance. This establishes a context within which the OSR generator performs
operations on schemas, Optimized Schema Representations (OSRs), and StringID tables. This context is
defined by the OSR generator Instance Memory Area (OIMA).

Performance Implications

The OIMA must be initialized before any OSR generation operations are performed. If operations are to be
performed on different OSRs, the caller may enhance performance by resetting the OIMA through a
control operation (see gxluControlOSRG), rather than terminating the generator instance and re-
initializing. There are implications for memory consumption that must be considered when multiple OSRs
are created from the same generator instance. See the usage notes below.

Syntax

int gxluInitOSRG (void * oima_p,
 unsigned long oima_l,
 int feature_flags,
 void * sys_svc_parm_p,
 int * rc_p,
 int * rsn_p)

Parameters
oima_p

Supplied and returned parameter
Type:

void *

A pointer to an OSR generator Instance Memory Area (OIMA). This area must be at least
GXLHXEC_MIN_OIMA_SIZE bytes long. It is used as the work area for the OSR generator.

oima_l
Supplied parameter
Type:

unsigned long

gxluInitOSRG

z/OS XML parser API: C/C++ 79

The length of the OSR generator Instance Memory Area (OIMA) pointed to by the oima_p parameter.

feature_flags
Supplied parameter
Type:

int
The name of the area that contains an integer value representing the OSR generator feature.

sys_svc_parm_p
Supplied parameter
Type:

void *

A pointer to an area which is passed to all system service exits, handlers, and resolvers. This provides
for communication between the caller of the z/OS XML OSR generator and its exit routines. Specify the
NULL pointer if no parameter is required for communication.

rc_p
Returned parameter
Type:

int *

A pointer to an area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

A pointer to an area where the utility stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this utility is return code (see below).

Return and Reason Codes:

On return from a call to this utility, register 15 will contain the return code. The return and reason code are
both also set as output parameters. The value of the reason code is undefined when the return code has
no associated reasons. Return and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h
(GXLYXR) - defines the return codes and reason codes” on page 209). For reason code descriptions, also
see Appendix B, “Reason codes listed by value,” on page 155.

Example

#include <stdlib.h>
#include <gxlhosrg.h>
#include <gxlhxec.h>

void * oima_p;
unsigned long oima_l;
char handler_parms[128];
int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))
 { /* oima malloc succeeded */
 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,
 0,
 (void *)handler_parms,
 &rc, &rsn);

gxluInitOSRG

80 z/OS: XML System Services User's Guide and Reference

 /* Use the OSR generation instance to perform schema operations … */
 } /* oima malloc succeeded */

Usage notes

When creating multiple OSRs, the best practice will usually be to initialize one generator instance, and use
it for all of the generation operations, with control requests to reset the generator between OSRs. This will
consume fewer CPU cycles, and provide better overall performance than initializing and terminating a
generator instance for each OSR being created or operated upon. However, all generated OSRs will remain
in memory for the duration of the generator instance. If memory constraints are a concern, or you plan to
generate OSRs for either a large number of schemas, or for schemas that are very large, you may need to
terminate and re-initialize the OSR generator.

gxluControlOSRG — perform an OSR generator control operation

Description

This is a general purpose utility which provides operations for controlling the z/OS XML OSR generator.
The operation performed is selected by setting the ctl_option parameter using the constants defined in
gxlhxoc.h and gxlhxec.h. These functions include:
GXLHXEC_OSR_CTL_FIN

The caller has finished working with a particular OSR. Reset the necessary structures so that the
OIMA can be reused for subsequent generator operations on a different OSR. Receive extended
diagnostic information about the current context of the OSR generator.

GXLHXEC_OSR_CTL_DIAG
The caller has finished working with a particular OSR. Receive extended diagnostic information about
the current context of the OSR generator.

Performance Implications

The finish-and-reset function allows the caller to re-initialize the OIMA to make it ready to handle a new
OSR. This re-initialization path enables the z/OS XML OSR generator to avoid one-time initialization
pathlength that’s performed by the initialization service.

Syntax

int gxluControlOSRG(void * oima_p,
 int ctl_operation,
 void * ctl_data_p,
 int * rc_p,
 int * rsn_p)

Parameters
oima_p

Supplied parameter
Type:

void *

A pointer to an OSR generator Instance Memory Area (OIMA).

ctl_operation
Supplied parameter
Type:

int

The name of the parameter containing an integer value representing one of the following operations:

z/OS XML parser API: C/C++ 81

GXLHXEC_OSR_CTL_FIN
This indicates that the caller wants to end processing on the current OSR. The OIMA is re-
initialized to allow it to be used to process a new, different OSR. This operation will also return the
extended diagnostic information area that is mapped by the gxlhosrd.h header. This includes
problem determination information relevant to the current context of the OSR generator.

GXLHXEC_OSR_CTL_DIAG
This indicates that the caller wants to end processing on the current OSR. This operation will
return the extended diagnostic information area that is mapped by the gxlhosrd.h header. This
includes problem determination information relevant to the current context of the OSR generator.

ctl_data_p
Supplied and returned parameter
Type:

void *

A pointer to an area that will be used for a purpose that depends on the control operation being
performed:
GXLHXEC_OSR_CTL_FIN

A pointer to an area that will receive the address of the extended diagnostic area mapped by
gxlhosrd.h. If NULL is specified for this parameter, no extended diagnostic information will be
returned. See the usage notes for more about how to use this area.

GXLHXEC_OSR_CTL_DIAG
A pointer to an area that will receive the address of the extended diagnostic area mapped by
gxlhosrd.h. If NULL is specified for this parameter, no extended diagnostic information will be
returned. See the usage notes for more about how to use this area.

rc_p
Returned parameter
Type:

int *

A pointer to an area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

A pointer to an area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this service is return code (see below).

Return and Reason Codes:

On return from a call to this utility, register 15 will contain the return code. The return and reason code are
both also set as output parameters. The value of the reason code is undefined when the return code has
no associated reasons. Return and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h
(GXLYXR) - defines the return codes and reason codes” on page 209). For reason code descriptions, also
see Appendix B, “Reason codes listed by value,” on page 155.

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxlhosrg.h>
#include <gxlhxec.h>

82 z/OS: XML System Services User's Guide and Reference

void * oima_p;
unsigned long oima_l;
char handler_parms[128];
GXLHOSRD * XDArea_p;
int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))
 { /* oima malloc succeeded */
 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,
 0,
 (void *)handler_parms,
 &rc, &rsn);
 } /* oima malloc succeeded */

/* Now perform operations using the generator instance. */

if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))

 { /* generator ininitialized */

/* generate or load an OSR, generate a StringID table, etc */

 gxluControlOSRG(oima_p,
 GXLHXEC_OSR_CTL_FIN,
 (void *)&XDArea_p,
 &rc, &rsn);

if (rc == GXLHXRC_SUCCESS)
 { /* reset succeeded */

if (XDArea_p->strID_RC != 0)
 { /* StringID exit failure */
 fprintf(stderr,”StringID exit failure: %08x\n”,
 XDArea_p->strID_RC);
 ...
 } /* StringID exit failure */

 } /* reset succeeded */

 ...

 } /* generator ininitialized */

Usage notes

The purpose of the finish-and-reset operation of this service is to reset the necessary structures and
fields within the OIMA to prepare the generator instance for reuse without the overhead of full
initialization. This reset operation uses fewer CPU cycles than terminating and re-initializing from scratch.
However, all schemas that are loaded, and all OSRs and StringID tables that are generated, remain in
memory for the duration of the OSR generation instance. If you have a large number of schemas to
process, or if the schemas are very large in size, memory constraints may become an issue. In this case, it
will be necessary to terminate and re-initialize the OSR generator instance.

The extended diagnostic area returned by the GXLHXEC_OSR_CTL_FIN and GXLHXEC_OSR_CTL_DIAG
operations are mapped by gxlhosrd.h. The structure in this header contains assorted diagnostic
information about the particular phase of OSR generation that may have failed. The fields of this structure
may be used for the duration of the OSR generator instance, but must not be referenced after the instance
is terminated. Doing so may result in unpredictable results.

gxluTermOSRG — terminate an OSR generator instance

Description

The gxlpTermOSRG utility releases all resources obtained by the z/OS XML OSR generator. It also sets the
eyecatcher in the OIMA to prevent it from being reused by other OSR API functions, with the exception of
re-initialilization by gxluInitOSRG.

z/OS XML parser API: C/C++ 83

Performance Implications

There are no performance implications.

Syntax

int gxluTermOSRG(void * oima_p,
 int * rc_p,
 int * rsn_p)

Parameters
oima_p

Supplied parameter
Type:

void *

A pointer to an OSR generator Instance Memory Area (OIMA).

rc_p
Returned parameter
Type:

int *

A pointer to an area where the service stores the return code.

rsn_p
Returned parameter
Type:

int *

A pointer to an area where the service stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this service is return code (see below).

Return and Reason Codes:

On return from a call to this utility, register 15 will contain the return code. The return and reason code are
both also set as output parameters. The value of the reason code is undefined when the return code has
no associated reasons. Return and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h
(GXLYXR) - defines the return codes and reason codes” on page 209). For reason code descriptions, also
see Appendix B, “Reason codes listed by value,” on page 155.

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxlhosrg.h>
#include <gxlhxec.h>

void * oima_p;
unsigned long oima_l;
char handler_parms[128];
int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))
 { /* oima malloc succeeded */
 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,
 0,

84 z/OS: XML System Services User's Guide and Reference

 (void *)handler_parms,
 &rc, &rsn);
 } /* oima malloc succeeded */

/* Now perform operations using the generator instance. */
if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))
 { /* generator ininitialized */

 /* generate or load an OSR, generate a StringID table, etc */

 gxluTermOSRG(oima_p,
 &rc, &rsn);
 /* Do not use any resources that the OSR generator */
 /* has allocated from here on. */

 } /* generator ininitialized */

Usage notes

This utility does not free the OSR Generator Instance Memory Area (OIMA). It is up to the caller to free the
OIMA after termination completes. gxluTermOSRG will, however, free any binary OSR buffers, StringID
tables, and extended diagnostic areas that may have been allocated during the OSR generator instance.
Once termination has completed, you must not reference any of these areas, or any extended diagnostic
areas that may have been created during the generator instance. It is the caller's responsibility to create
persistent copies of these structures as needed while the generator instance is active.

gxluLoadSchema — load a schema into the OSR generator

Description

This utility is used to load text schemas into the OSR generator. It is called once for each schema that will
be processed to create an Optimized Schema Representation.

Performance Implications

There are no performance implications.

Syntax

int gxluLoadSchema(void * oima_p,
 char * schema_resource_p,
 int * rc_p,
 int * rsn_p)

Parameters
oima_p

Supplied parameter
Type:

void *

A pointer to an OSR generator Instance Memory Area (OIMA).

schema_resource_p
Supplied parameter
Type:

char *

A pointer to the schema resource to process. This parameter must contain a NULL terminated,
IBM-1047 text string representing one of the following:

• The pathname of a file in the z/OS UNIX file system containing the schema in text form.

z/OS XML parser API: C/C++ 85

• URI specifying the location of the schema text to load. URIs are indicated by a scheme name,
followed by a colon, followed by a relative URI reference. See RFC 3986 (tools.ietf.org/html/
rfc3986) for a complete description of URIs.

Whether the resource passed is a URI or a pathname to a file, the name must represent an absolute
path. Relative paths cannot be processed.

rc_p
Returned parameter
Type:

int *

A pointer to an area where the utility stores the return code.

rsn_p
Returned parameter
Type:

int *

A pointer to an area where the utility stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this service is return code (see below).

Return and Reason Codes:

On return from a call to this utility, register 15 will contain the return code. The return and reason code are
both also set as output parameters. The value of the reason code is undefined when the return code has
no associated reasons. Return and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h
(GXLYXR) - defines the return codes and reason codes” on page 209). For reason code descriptions, also
see Appendix B, “Reason codes listed by value,” on page 155.

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxlhosrg.h>
#include <gxlhxec.h>

void * oima_p;
unsigned long oima_l;
char handler_parms[128];
char schema_uri[URI_LEN] = “file:///u/user01/myschema.xsd”;
int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))
 { /* oima malloc succeeded */
 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,
 0,
 (void *)handler_parms,
 &rc, &rsn);
 } /* oima malloc succeeded */

/* Now perform operations using the generator instance. */
if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))
 { /* generator initialized */

 gxluLoadSchema(oima_p,
 schema_uri,
 &rc, &rsn);

 if (rc == GXLHXRC_SUCCESS)
 {/* schema load succeeded */

 /*generate an OSR from the loaded schema*/

86 z/OS: XML System Services User's Guide and Reference

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986

 ...
 } /* schema load succeeded */

 ...
 } /* generator initialized */

Usage notes

Call this service iteratively to load one or more schemas that will be processed to create an OSR. Once a
schema has been loaded, the schema text buffer specified by the schema_resource_p parameter may be
re-used for other purposes.

gxluSetStrIDHandler — specify the StringID handler for OSR generation

Description

This utility allows the caller to specify a StringID handler service to the OSR generator. The StringID
handler utility allows the caller to avoid making StringID calls at parse time for a number of symbols. This
handler must be written in C.

Performance Implications

There are no performance implications.

Syntax

int gxluSetStrIDHandler(void * oima_p,
 char * dll_name_p,
 char * func_name_p,
 int * rc_p,
 int * rsn_p)

Parameters
oima_p

Supplied parameter
Type:

void *

A pointer to an OSR generator Instance Memory Area (OIMA).

dll_name_p
Supplied parameter
Type:

char *

A pointer to the NULL terminated name of the DLL containing the StringID handler executable. This
string must be in the IBM-1047 code page. A NULL string indicates that the current StringID handler
should be unset, and StringIDs no longer used during the creation of OSRs.

func_name_p
Supplied parameter
Type:

char *

A pointer to the NULL terminated name of the StringID handler within the DLL. This string must be in
the IBM-1047 code page. If the dll_name_p parameter above is NULL, this function name is ignored.

rc_p
Returned parameter

z/OS XML parser API: C/C++ 87

Type:
int *

A pointer to an area where the utility stores the return code.

rsn_p
Returned parameter
Type:

int *

A pointer to an area where the utility stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this service is return code (see below).

Return and Reason Codes:

On return from a call to this utility, register 15 will contain the return code. The return and reason code are
both also set as output parameters. The value of the reason code is undefined when the return code has
no associated reasons. Return and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h
(GXLYXR) - defines the return codes and reason codes” on page 209). For reason code descriptions, also
see Appendix B, “Reason codes listed by value,” on page 155.

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxlhosrg.h>
#include <gxlhxec.h>

void * oima_p;
unsigned long oima_l;
char handler_parms[128];
char dll_name[SIZE] = "dllpath/dllname.so";
char func_name[SIZE] = "strIDHandler";
int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))
 { /* oima malloc succeeded */
 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,
 0,
 (void *)handler_parms,
 &rc, &rsn);
 } /* oima malloc succeeded */

/* Now set a StringID handler that will be used to */
/* create StringIDs when OSRs are generated. */

if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))
 { /* generator initialized */
 gxluSetStrIDHandler (oima_p,
 dll_name, func_name,
 &rc, &rsn);

 if (rc == GXLHXRC_SUCCESS)
 { /* set handler succeeded */

 <continue processing using the StringID handler>

 ...
 } /* set handler succeeded */

 ...
 } /* generator initialized */

88 z/OS: XML System Services User's Guide and Reference

Usage notes

This handler differs from the other handlers and resolvers provided to the OSR generator in that it must be
written in C. Both the validating z/OS XML parser and the OSR generator allow the caller to specify a
StringID handler, and by implementing this handler as a C DLL, the same source may be used in both
environments. A key difference is that this handler must be compiled and linked with conventional C and
Language Environment capabilities for the OSR generator environment, while it must be built using Metal
C for the parser.

The DLL containing the StringID handler will be loaded in order to obtain a function pointer to it. The
function pointer will be kept within the OIMA until a StringID is needed during OSR generation. The DLL
path must reside in one of the paths specified in the LIBPATH environment variable.

This routine may be called more than once during an OSR generation instance to change the StringID
handler that the generator uses.

gxluSetEntityResolver — specify the entity resolver for OSR generation

Description

This utility allows the caller to specify an entity resolver to the OSR generator. This resolver must be
written in Java.

Performance Implications

There are no performance implications.

Syntax

int gxluSetEntityResolver(void * oima_p,
 char * class_name_p,
 int * rc_p,
 int * rsn_p)

Parameters
oima_p

Supplied parameter
Type:

void *

A pointer to an OSR generator Instance Memory Area (OIMA).

class_name_p
Supplied parameter
Type:

char *

A pointer to the NULL terminated name of a Java class that implements the XMLEntityResolver
interface of the XML4J parser (see the usage notes below). This string must be in the IBM-1047 code
page. A NULL string indicates that the current entity resolver should be unset, and the default resolver
used during the creation of the OSR.

rc_p
Returned parameter
Type:

int *

A pointer to an area where the utility stores the return code.

z/OS XML parser API: C/C++ 89

rsn_p
Returned parameter
Type:

int *

A pointer to an area where the utility stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this service is return code (see below).

Return and Reason Codes:

On return from a call to this utility, register 15 will contain the return code. The return and reason code are
both also set as output parameters. The value of the reason code is undefined when the return code has
no associated reasons. Return and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h
(GXLYXR) - defines the return codes and reason codes” on page 209). For reason code descriptions, also
see Appendix B, “Reason codes listed by value,” on page 155.

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxlhosrg.h>
#include <gxlhxec.h>

void * oima_p;
unsigned long oima_l;
char handler_parms[128];
char class_name[SIZE] = "xml/appl/handlers/EntityResolver";
int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))
 { /* oima malloc succeeded */
 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,
 0,
 (void *)handler_parms,
 &rc, &rsn);
 } /* oima malloc succeeded */

/* Now set an entity resolver that will be used during */
/* OSR generation. */

if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))
 { /* generator initialized */
 gxluSetEntityResolver(oima_p,
 class_name,
 &rc, &rsn);

 if (rc == GXLHXRC_SUCCESS)
 { /* set resolver succeeded */

 <continue processing using the entity resolver>

 ...
 } /* set resolver succeeded */

 ...
 } /* generator initialized */

Usage notes

Although this is a C interface, the entity resolver must be implemented in Java. This resolver will be
provided to the XML4J parser, which is used during the OSR generation process. The resolver must
implement the XMLEntityResolver interface of the Xerces Native Interface (XNI), including the return of

90 z/OS: XML System Services User's Guide and Reference

an XMLInputSource object. See the XMLEntityResolver documentation in the Xerces Native Interface
(xerces.apache.org/xerces2-j/javadocs/xni/index.html).

This routine may be called more than once during an OSR generation instance to change the entity
resolver that the generator uses.

gxluLoadOSR — load an OSR into the OSR generator

Description

This utility is used to load an Optimized Schema Representation into the OSR generator. Once loaded, the
OSR may be processed using one of the OSR generator operations.

Performance Implications

There are no performance implications.

Syntax

int gxluLoadOSR(void * oima_p,
 void * osr_p,
 int osr_l,
 int * rc_p,
 int * rsn_p)

Parameters
oima_p

Supplied parameter
Type:

void *

A pointer to an OSR generator Instance Memory Area (OIMA).

osr_p
Supplied parameter
Type:

void *

A pointer to a buffer containing an OSR.

osr_l
Supplied parameter
Type:

int

The length of a buffer containing an OSR.

rc_p
Returned parameter
Type:

int *

A pointer to an area where the utility stores the return code.

rsn_p
Returned parameter
Type:

int *

z/OS XML parser API: C/C++ 91

http://xerces.apache.org/xerces2-j/javadocs/xni/index.html
http://xerces.apache.org/xerces2-j/javadocs/xni/index.html

A pointer to an area where the utility stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this service is return code (see below).

Return and Reason Codes:

On return from a call to this utility, register 15 will contain the return code. The return and reason code are
both also set as output parameters. The value of the reason code is undefined when the return code has
no associated reasons. Return and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h
(GXLYXR) - defines the return codes and reason codes” on page 209). For reason code descriptions, also
see Appendix B, “Reason codes listed by value,” on page 155.

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxlhosrg.h>
#include <gxlhxec.h>

void * oima_p;
unsigned long oima_l;
char handler_parms[128];
char osrbuf[OSR_BUFFER_LEN];
int osrbuf_l;
int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))
 { /* oima malloc succeeded */
 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,
 0,
 (void *)handler_parms,
 &rc, &rsn);
 } /* oima malloc succeeded */

<acquire the OSR from a persistent location like a file …>
/* Load an OSR to be processed. */

if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))
 { /* generator initialized */
 gxluLoadOSR(oima_p,
 (void *)osrbuf
 osrbuf_l,
 &rc, &rsn);

 if (rc == GXLHXRC_SUCCESS)
 { /* OSR load succeeded */

 <process the loaded OSR>

 ...
 } /* OSR load succeeded */

 ...
 } /* generator initialized */

Usage notes

Use this utility when you need to query an OSR that has already been created from one or more human-
readable schemas. This is useful, for instance, when a caller needs access to a StringID table from an
existing OSR. This allows the StringID table to be used by the validating parser at parse time.

92 z/OS: XML System Services User's Guide and Reference

gxluGenOSR — generate an Optimized Schema Representation (OSR)

Description

This utility generates an optimized representation of one or more XML schemas.

Performance Implications

There are no performance implications.

Syntax

unsigned int gxluGenOSR(void * oima_p,
 void ** schema_osr_p_p,
 int * rc_p,
 int * rsn_p)

Parameters
oima_p

Supplied parameter
Type:

void *

A pointer to an OSR generator Instance Memory Area (OIMA).

schema_osr_p_p
Returned parameter
Type:

void **

A pointer to an area to receive the address of the optimized schema representation generated by this
utility. See the usage notes below for important details about this parameter.

rc_p
Returned parameter
Type:

int *

A pointer to an area where the utility stores the return code.

rsn_p
Returned parameter
Type:

int *

A pointer to an area where the utility stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this utility is the length of the OSR buffer returned to the caller through the
schema_osr_p parameter. If there is a problem during the generation of the OSR, the value returned will
be zero. See the usage notes below for more information about this value and the OSR buffer returned.

Return and Reason Codes:

Register 15 will contain the return value of this utility. The return and reason code are both set as output
parameters. The value of the reason code is undefined when the return code has no associated reasons.
Return and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) - defines the

z/OS XML parser API: C/C++ 93

return codes and reason codes” on page 209). For reason code descriptions, also see Appendix B,
“Reason codes listed by value,” on page 155.

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxlhosrg.h>
#include <gxlhxec.h>

void * oima_p;
unsigned long oima_l;
char handler_parms[128];
char schema_uri[URI_LEN] = “file:///u/user01/myschema.xsd”;
void * osr_p;
int osr_l;
int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))
 { /* oima malloc succeeded */
 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,
 0,
 (void *)handler_parms,
 &rc, &rsn);
 } /* oima malloc succeeded */

/* Load a schema and create an OSR from it. */

if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))
 { /* generator initialized */
 gxluLoadSchema(oima_p,
 schema_uri,
 &rc, &rsn);

 if (rc == GXLHXRC_SUCCESS)
 { /* schema load succeeded */

 /* Generate the OSR */
 osr_l = gxluGenOSR(oima_p,
 &osr_p,
 &rc, &rsn);

 if (osr_l > 0) then
 { /* OSR generate succeeded */

 <write the OSR out to a persistent repository>
 <like a file or a database so that it can be>
 <used later for parsing a document>

 ...
 } /* OSR generate succeeded */
 ...
 } /* schema load succeeded */

 ...
 } /* generator initialized */

Usage notes

This utility generates Optimized Schema Representations in a manner similar to the xsdosrg command
(see Appendix C, “xsdosrg command reference,” on page 205). It provides additional flexibility and
control by allowing the caller to use the following handlers to augment the default generator behavior:
StringID handler

This handler generates and/or returns an integer identifier that serves as a handle for a given string.
These strings are most often the components of qualified names that are encountered in the schema
text during processing. This must be implemented as a C routine, and built for the C Language
Environment. If no StringID handler is specified, then StringIDs will not be used during the generation
of the OSR. All qualified names and other strings for which IDs could be used will instead be present

94 z/OS: XML System Services User's Guide and Reference

in the OSR in their text form. The same handler may be used by the validating parser when built for
the Metal C environment.

entity resolver
A Java routine that receives control when a reference to an external entity is made from one schema
to another through an include, import, or redefine XML Schema construct. It acquires the external
schema from an appropriate source, and returns it to the OSR generator for further processing. If no
entity resolver is specified, the default entity resolver from the XML4J parser is used.

One or both of these routines may be specified to the OSR generator through the gxluSetStringID
(“gxluSetStrIDHandler — specify the StringID handler for OSR generation” on page 87) and
gxluSetEntityResolver (“gxluSetEntityResolver — specify the entity resolver for OSR generation” on page
89) utilities. Once set, the generator will make use of them until they are changed to a different value.

This utility will allocate the buffer used to receive the generated OSR, and will return the length of the
buffer as its return value. The maximum length of an OSR that will be returned is 2 GB. The buffer remains
allocated for the duration of the OSR generator instance, and gets freed when the instance is terminated.
The caller may use or copy the OSR to another location as long as the instance is active. Referencing the
OSR buffer after the generator instance has been terminated may result in unpredictable results. This
buffer may also be written to a permanent location, such as a z/OS UNIX file or an MVS data set, so that it
can be used again at some point in the future.

gxluGenStrIDTable — generate StringID table from an OSR

Description

This utility will extract generate and return the StringID table associated with the current OSR for this
generator instance. See the usage notes for a description of how to make an OSR current.

Performance Implications

There are no performance implications.

Syntax

int gxluGenStrIDTable(void * oima_p,
 GXLHXSTR ** strid_tbl_p_p,
 int * rc_p,
 int * rsn_p)

Parameters
oima_p

Supplied parameter
Type:

void *

A pointer to an OSR generator Instance Memory Area (OIMA).

strid_tbl_p_p
Supplied and returned parameter
Type:

GXLHXSTR **

A pointer to an area that will receive the address of a table of containing the StringIDs that are
generated from the current OSR. See the usage notes below for more details.

rc_p
Returned parameter

z/OS XML parser API: C/C++ 95

Type:
int *

A pointer to an area where the utility stores the return code.

rsn_p
Returned parameter
Type:

int *

A pointer to an area where the utility stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this utility is the length of the StringID table returned to the caller through the
strid_tbl_p_p parameter. If StringIDs were not in use when the current OSR was originally generated, the
return value will be zero, and the pointer specified by strid_tbl_p will remain unchanged. If there is a
problem during the generation of the StringID table, the value returned will be -1. See the usage notes
below for more information about this value, and the StringID table returned.

Return and Reason Codes:

Register 15 will contain the return value of this utility (see above). The return and reason code are both
set as output parameters. The value of the reason code is undefined when the return code has no
associated reasons. Return and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h
(GXLYXR) - defines the return codes and reason codes” on page 209). For reason code descriptions, also
see Appendix B, “Reason codes listed by value,” on page 155.

Example

#include <stdlib.h>
#include <stdio.h>
#include <gxlhosrg.h>
#include <gxlhxec.h>

void * oima_p;
unsigned long oima_l;
char handler_parms[128];
char osrbuf[OSR_BUFFER_LEN];
int osrbuf_l;
GXLHXSTR * strIDTbl_p;
int strIDTbl_l;
int osr_l;
int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))
 { /* oima malloc succeeded */
 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,
 0,
 (void *)handler_parms,
 &rc, &rsn);
 } /* oima malloc succeeded */

<acquire the OSR from a persistent location like a file>

/* Load the OSR to operate on. */

if ((oima_p > 0) && (rc == GXLHXRC_SUCCESS))
 { /* generator initialized */
 gxluLoadOSR(oima_p,
 (void *)osrbuf,
 osrbuf_l,,
 &rc, &rsn);

 if (rc == GXLHXRC_SUCCESS)
 { /* OSR load succeeded */

 /* Generate the OSR */

96 z/OS: XML System Services User's Guide and Reference

 strIDTbl_l = gxluGenSTRIDTable(oima_p,
 &strIDTbl_p,
 &rc, &rsn);

 if (strIDTbl_l > 0) then
 { /* strID table generated */

 <write the StringID table out to a persistent>
 <repository like a file or a database so that>
 <it can be used later when parsing a document>

 ...
 } /* strID table generated */
 ...
 } /* OSR load succeeded */

 ...
 } /* generator initialized */

Usage notes

The StringID table is generated from the OSR that has been made current through either a gxluGenOSR or
a gxluLoadOSR request. The actual length of the StringID table is calculated during table generation, and
cannot be known ahead of time. For this reason, the gxluGenStrIDTable service will return the address
and length of the generated table on success. The table remains allocated for the duration of the OSR
generator instance, and gets freed when the instance is terminated. The caller may use or copy the
StringID table to another location as long as the instance is active. Referencing the StringID table after the
generator instance has been terminated may result in unpredictable results.

StringID tables may be generated from OSRs that were created either with or without StringIDs. If no
StringIDs were used when the OSR was originally generated, this service will assign the StringID values to
return in the table. Callers who wish to control the values of StringIDs must use the StringID handler
interface at OSR generation time.

The format of the StringID table that the OSR generator creates is defined by the gxlhxstr.h header file.
See the definition of this header file below for more details.

gxluGetStringIDs — generate StringID table from an OSR

Description

This utility will generate and return the StringID table associated with the supplied OSR.

Performance Implications

There are no performance implications.

Syntax

GXLHXSTR * gxluGetStringIDs(const void *OSR_p,
 int *rc_p,
 int *rsn_p)

Parameters
OSR_p

Supplied parameter
Type:

void *

A pointer to an OSR.

rc_p
Returned parameter

z/OS XML parser API: C/C++ 97

Type:
int *

A pointer to an area where the utility stores the return code.

rsn_p
Returned parameter
Type:

int *

A pointer to an area where the utility stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this utility is the address of the generated StringID table. Once this table is no
longer needed, it must be freed by a call to gxluFreeStringIDs. If there is a problem during the generation
of the StringID table, the value returned will be NULL. See the usage notes for gxluFreeStringIDs for more
information about the StringID table returned.

Return and Reason Codes:

The return and reason code are both set as output parameters. The value of the reason code is undefined
when the return code has no associated reasons. Return and reason codes are defined in the header file
gxlhxr.h (see “gxlhxr.h (GXLYXR) - defines the return codes and reason codes” on page 209). For reason
code descriptions, also see Appendix B, “Reason codes listed by value,” on page 155.

gxluFreeStringIDs — free a StringID table

Description

This utility will free a StringID table that was returned from a call to gxluGetStringIDs

Performance Implications

There are no performance implications.

Syntax

void gxluFreeStringIDs(GXLHXSTR *table_p)

Parameters
table_p

Supplied parameter
Type:

GXLHXSTR *

The StringID table to be freed.

All parameters in the parameter list are required.

Return Value:

There are no return values.

Return and Reason Codes:

There are no return and reason codes.

98 z/OS: XML System Services User's Guide and Reference

Usage notes

The StringID table that is to be freed must have been generated by a call to gxluGetStringIDs, and not
gxluGenStrIDTable. Attempting to free a string ID table that was not generated by gxluGetStringIDs will
have no effect.

gxluGetRootElements — retrieve the root elements from an OSR

Description

This utility allows the caller to query the OSR generator for a set of all possible root elements that may be
used with this OSR.

Performance Implications

There are no performance implications.

Syntax

const GXLHXRE* gxluGetRootElements(void * osr_p,
 int * rc_p,
 int * rsn_p)

Parameters
osr_p

Supplied parameter
Type:

void *

A pointer to the OSR from which information is to be extracted.

rc_p
Returned parameter
Type:

int *

The name of the area where the utility stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of an area where the utility stores the reason code. The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this utility is a pointer to a GXLHXRE structure containing all of the root elements
within the OSR. This structure must be freed by gxluFreeRootElements.

Return and Reason Codes:

The value of the reason code is undefined when the return code has no associated reasons. Return and
reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) - defines the return codes and
reason codes” on page 209). For reason code descriptions, also see Appendix B, “Reason codes listed by
value,” on page 155.

z/OS XML parser API: C/C++ 99

gxluFreeRootElements — free a root element structure

Description

This utility will free a root element structure that was returned from a call to gxluGetRootElements.

Performance Implications

There are no performance implications.

Syntax

void gxluFreeRootElements(GXLHXRE *table_p)

Parameters
table_p

Supplied parameter
Type:

GXLHXRE *

The root element structure to free.

All parameters in the parameter list are required.

Return Value:

There are no return values.

Return and Reason Codes:

There are no return and reason codes.

gxluGetTargetNamespaces — retrieve the target namespaces from an OSR

Description

This utility allows the caller to query the OSR generator for all target namespaces that are associated with
this OSR.

Performance Implications

There are no performance implications.

Syntax

const GXLHXTN* gxluGetTargetNamespaces(void * osr_p,
 int * rc_p,
 int * rsn_p)

Parameters
osr_p

Supplied parameter
Type:

void *

A pointer to an OSR from which information is to be extracted.

100 z/OS: XML System Services User's Guide and Reference

rc_p
Returned parameter
Type:

int *

The name of the area where the utility stores the return code.

rsn_p
Returned parameter
Type:

int *

The name of an area where the utility stores the reason code .The reason code is only relevant if the
return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return Value:

The value returned by this utility is a pointer to a GXLHXTN structure containing all of the target
namespaces associated with the OSR. This structure must be freed by a call to gxluFreeNamespaces. A
schema without a target namespace will be represented by a URI in the GXLHXTN structure with 0-length.

Return and Reason Codes:

The value of the reason code is undefined when the return code has no associated reasons. Return and
reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) - defines the return codes and
reason codes” on page 209). For reason code descriptions, also see Appendix B, “Reason codes listed by
value,” on page 155.

Usage notes

If the OSR being queried is an OSR generated from a release prior to z/OS V1R12, the returned list of
targetNamespaces will only include namespaces found from the possible root elements.

gxluFreeNamespaces — free a namespace structure

Description

This utility will free a namespace structure that was returned from a call to gxluGetTargetNamespaces.

Performance Implications

There are no performance implications.

Syntax

void gxluFreeTargetNamespaces(GXLHXTN *table_p)

Parameters
oima_p

Supplied parameter
Type:

GXLHXTN *

The namespace structure to be freed.

All parameters in the parameter list are required.

Return Value:

z/OS XML parser API: C/C++ 101

There are no return values.

Return and Reason Codes:

There are no return and reason codes.

GXLPSYM31 (GXLPSYM64) — StringID handler

Description

This handler accepts an input string and performs a lookup for its corresponding symbol, which is
identical to the string itself. If the symbol has been located, the exit returns the StringID associated with
the symbol. If the string does not have a defined symbol, a symbol is created for the string and a StringID
is assigned to it.

Performance Implications

There are no performance implications.

Syntax

int gxlpSym31(void ** sys_svc_p,
 char * string_p,
 int string_l,
 unsigned int * string_id_p,
 int ccsid,
 int * handler_diag_p,
 int * rc_p)

Parameters
sys_svc_p

Supplied parameter
Type:

void **

A pointer to the system service parameter that was passed to the z/OS XML OSR generator at
initialization time.

string_p
Supplied parameter
Type:

char *

The string to return an ID for. The length of the string is variable, and is specified by the string_l
parameter.

string_l
Supplied parameter
Type:

int

An integer containing the length of the string pointed to by the string parameter.

string_id_p
Returned parameter
Type:

unsigned int *

A pointer to an integer where the handler stores the numeric identifier for the string. The range of
valid values is 1 to 2 GB - 1.

GXLPSYM31 (GXLPSYM64)

102 z/OS: XML System Services User's Guide and Reference

ccsid
Supplied parameter
Type:

int

The Coded Character Set IDentifier (CCSID) that identifies the character set of the string. The z/OS
XML parser will provide the same CCSID in this parameter that the caller of the parser specified at
parser initialization time.

handler_diag_p
Returned parameter
Type:

int *

A pointer to an integer where the handler can store any diagnostic information (usually a reason
code). This will be stored in the diagnostic area and made available on the gxluControlOSRG call.

rc_p
Returned parameter
Type:

int *

A pointer to an integer where the handler can store a return code. A return code value of zero means
success; any nonzero return code indicates failure.

Return Codes:

The z/OS XML OSR generator uses the convention that the handler will provide a return code value of zero
when successful. Any nonzero value indicates failure. If a nonzero return code is provided by the exit, the
z/OS XML OSR generator saves it in the extended diagnostic area so that the caller of the parser has
access to it by calling gxluControlOSRG.

Example

None.

Default Implementation

There is no default implementation. If this handler is not specified by the caller, StringIDs are not used by
the z/OS XML OSR Generator.

GXLPSYM31 (GXLPSYM64)

z/OS XML parser API: C/C++ 103

GXLPSYM31 (GXLPSYM64)

104 z/OS: XML System Services User's Guide and Reference

Chapter 7. z/OS XML parser API: Assembler

How to invoke the z/OS XML System Services assembler API
This section provides information on how to invoke the z/OS XML System Services assembler API.

Callers written in assembler can invoke the z/OS XML System Services assembler API by binding the z/OS
XML parser's callable service stubs to their module. The callable service stubs can be found in
SYS1.CSSLIB. Alternatively, the addresses of the APIs can be obtained from system control blocks. The
following is a list of offsets for the callable services first and second tables (all offsets are in hex):

1. +10 — Pointer to CVT (field FLCCVT in IHAPSA)
2. +220 — Pointer to the callable services first table (field CVTCSRT in CVT)
3. +48 — Pointer to the z/OS XML parser callable services second table (entry 19)

Note: Prior to z/OS V1R7, this field will point to the address of an undefined callable service. In z/OS
V1R7 and later releases, this field is zero until the z/OS XML parser initialization routine fills it in. To
avoid calling z/OS XML System Services when it is not present, the caller first needs to verify that it is
running on V1R7 or later, and that this field in the callable services first table is non-zero.

4. +nn — The offset for each callable service in hex is listed below.

The following stubs are provided for 31- and 64-bit mode callers:

Table 26. Caller stubs and associated offsets

Stub Second Table offset (hex)

GXL1INI — 31-bit parser initialization 10

GXL1PRS — 31-bit parse 14

GXL1TRM — 31-bit parser termination 18

GXL1CTL — 31-bit parser control operation 1C

GXL1QXD — 31-bit query XML document 20

GXL1LOD — 31-bit load a function 24

GXL4INI — 64-bit parser initialization 28

GXL4PRS — 64-bit parse 30

GXL4TRM — 64-bit parser termination 38

GXL4CTL — 64-bit parser control operation 40

GXL4QXD — 64-bit query XML document 48

GXL4LOD — 64-bit load a function 50

Note: The 64-bit stubs are defined with 8 byte pointers.

Following the offsets to the caller stubs, at offset 78 (hex) from the start of the second table, is an 8 byte
field of bits. These bits indicate the presence of a particular z/OS XML capability. Callers may reference
these bits to determine if the function or feature that they intend to use is supported by the installed
version of z/OS XML.

The following table lists the bits that are defined, along with their descriptions:

© Copyright IBM Corp. 2006, 2019 105

Table 27. Capability bits

Capability bit Description

'0000000000000001'X XDBX validation is available

The following assembler code is an example of how to call a z/OS XML parser service. The example
assumes the caller uses the CVT field names instead of hard coding those offsets.

LLGT 15,CVTPTR R15L -> CVT, R15H = 0
L 15,CVTCSRT-CVT(15) Get the CSRTABLE
L 15,72(15) Get CSR slot 19 (zero based) for XML parser
L 15,16(15) Get address of GXL1INI from XML second table.
BALR 14,15 Branch to XML service.

z/OS XML parser Assembler API
This section lists the assembler callable services interface used for the z/OS XML parser. The following
rules apply to some or all of the callable services listed below:

• The 31- and 64-bit versions of the services were designed to work independently of one another. For
example, the following sequence of calls would not work: GXL1INI (31-bit service) followed by
GXL4PRS (64-bit service).

• The 31- and 64-bit versions of the services are documented together with any differences for 64- bit
shown in parenthesis, after its corresponding 31-bit description.

• In AMODE 31, all address and length parameters of the z/OS XML parser API are 4 bytes long. In
AMODE 64, these fields are 8 bytes long.

• In AMODE 31, the parsed data stream produced by the z/OS XML parser contains length fields that are
all 31 bits (4 bytes) long. In AMODE 64, the field in the buffer header representing the length of the
output buffer used is 64-bits (8 bytes) long, while all record length fields in the data stream are 31-bit
(4 byte) values.

API entry points
The z/OS XML parser API contains 5 entry points for each addressing mode (AMODE) type (31- or 64-bit):

• GXL1CTL (GXL4CTL) — perform a parser control operation
• GXL1INI (GXL4INI) — initialize a parse instance
• GXL1PRS (GXL4PRS) — parse an input stream
• GXL1QXD (GXL4QXD) — query an XML document
• GXL1TRM (GXL4TRM) — terminate a parse instance
• GXL1LOD (GXL4LOD) — load a function

Common register conventions
The following sections describe common register conventions used for all of the z/OS XML parser's
callable services.

Input registers

When a caller invokes the z/OS XML parser, these registers have the following meaning:

Table 28. Input register conventions

Register Contents

1 Address of a standard parameter list containing 31 (64) bit addresses.

14 Return address.

106 z/OS: XML System Services User's Guide and Reference

Output registers

When the z/OS XML parser returns to the caller, these registers have the following meaning:

Table 29. Output register conventions

Register Contents

0-1 Unpredictable

2-13 Unchanged

14 Unpredictable

15 Return code (return code is also a parameter)

Table 30. Output access register conventions

Access Register Contents

0-1 Unpredictable

2-13 Unchanged

14-15 Unpredictable

Table 31. Output vector register conventions

Vector Register Contents

0-7 Unpredictable

8-15 (bytes 0-7) Unchanged

8-15 (bytes 8-15) Unpredictable

16-23 Unchanged

24 - 31 Unpredictable

Environmental requirements

The following are environmental requirements for the caller of any z/OS XML parser service:
Minimum authorization

any state and any PSW key
Dispatchable unit mode

Task or SRB

Note: GXL1LOD (GXL4LOD) can only operate in Task mode.

Cross memory mode
PASN=HASN=SASN or PASN^=HASN^=SASN

AMODE
31-bit (64-bit)

ASC mode
primary

Interrupt status
enabled for I/O and external interrupts

Locks
no locks held

Control parameters
Control parameters and all data areas the parameter list points to must be addressable from the
current primary address space.

z/OS XML parser API: Assembler 107

Using the recovery routine
z/OS XML provides an ARR recovery routine to assist with problem determination and diagnostics. This is
an optional routine and can be turned on and off as desired. See“ARR recovery routine” on page 152 for
more information.

Restriction: When running in either SRB mode or under an existing FRR routine, the ARR recovery routine
cannot be used.

GXL1CTL (GXL4CTL) — perform a parser control function

Description

This is a general purpose service which provides control functions for interacting with the z/OS XML
parser. The function performed is selected by setting the ctl_option parameter using the constants
defined in GXLYXEC. These functions include:
XEC_CTL_FIN

The caller has finished parsing the document. Reset the necessary structures so that the PIMA can be
reused on a subsequent parse, and return any useful information about the current parse. For more
information on this function, see “XEC_CTL_FIN” on page 110.

XEC_CTL_FEAT
The caller wants to change the feature flags. A XEC_CTL_FIN function will be done implicitly.

Note: Some feature flags are not supported on GXL1CTL (GXL4CTL). See “XEC_CTL_FEAT” on page
112 for information on which feature flags are not supported.

For more information on this function, see “XEC_CTL_FEAT” on page 112.
XEC_CTL_LOAD_OSR

The caller wants to load and use an Optimized Schema Representation (OSR) for a validating parse.
For more information on this function, see “XEC_CTL_LOAD_OSR” on page 114.

XEC_ CTL_QUERY_MIN_OUTBUF
The caller is requesting the minimum output buffer size required on a subsequent parse. This function
will also enable the parse to be continued after a XRSN_BUFFER_OUTBUF_SMALL reason code has
been received from GXL1PRS(GXL4PRS).

Note: Finish and reset processing is performed by all operations available through this control service,
except XEC_CTL_QUERY_MIN_OUTBUF and XEC_CTL_LOAD_OSR. See the descriptions of these
operations under ctl_option for more information.

For more information on this function, see “XEC_CTL_QUERY_MIN_OUTBUF” on page 115.
XEC_CTL_ENTS_AND_REFS

The caller can request additional flexibility when processing character and entity references as
follows:

• When an unresolved entity reference is encountered, the caller can request that the parser stop
processing and return an error record.

• When a character reference which cannot be represented in the current code page is encountered,
z/OS XML System Services places a dash (-) in the output stream for that character. The caller may
specify, with this control call, to output a character other than dash (-) in the output stream.

• When a character reference which cannot be represented in the current code page is encountered,
the caller can request, using this control call, an additional output record to be generated in the
output stream that contains information about this character reference.

Note:

1. Finish and reset processing is performed for this control operation. See “Usage notes” on page 110
for more information.

2. If the parse instance has been initialized to process XDBX binary XML streams, then the input
stream will never have any entity references to resolve. Performing the XEC_CTL_ENTS_AND_REFS

GXL1CTL (GXL4CTL)

108 z/OS: XML System Services User's Guide and Reference

operation will have no effect on the output of the parser. In order to prevent accidental attempted
use of this operation in this environment, the parser will return a failure.

For more information on this function, see “XEC_CTL_ENTS_AND_REFS” on page 116.
XEC_CTL_LOAD_FRAG_CONTEXT

The caller wants to load fragment context including fragment path and namespace binding
information for document fragment parsing.

Note:

1. This control operation does not perform finish and reset processing through the control service.
See the description in ctl_option for more information.

2. Fragment parsing is not supported for XDBX input. For this reason, attempting to load a fragment
context for parse instances initialized to handle XDBX streams will fail.

For more information on this function, see “XEC_CTL_LOAD_FRAG_CONTEXT” on page 117.
XEC_CTL_FRAGMENT_PARSE

The caller wants to enable or disable document fragment parsing.

Note:

1. This control operation does not perform finish and reset processing through the control service.
See the description in ctl_option for more information.

2. Fragment parsing is not supported for XDBX input. For this reason, attempting to enable document
fragment parsing for parse instances initialized to handle XDBX streams will fail.

For more information on this function, see “XEC_CTL_FRAGMENT_PARSE” on page 119.
XEC_CTL_RESTRICT_ROOT

The caller can restrict the root element name on the next parse. This operation is only valid if the
PIMA has been configured for validation and schema information is requested. For more information
on this function, see “XEC_CTL_RESTRICT_ROOT” on page 121.

XEC_CTL_ERROR_HANDLING
With this control operation, the caller can do the following:

• Enable the creation of auxiliary records which can include the location of an error in the XML
document, the string which is in error, and also a possible expected string.

• Enable position indexes to be present in the error location path in order to facilitate locating the
error.

For more information on this function, see “XEC_CTL_ERROR_HANDLING” on page 122.
XEC_CTL_RESET

With this control operation, the caller can reset the error and document state. For more information on
this function, see “XEC_CTL_RESET” on page 124.

XEC_CTL_SPLIT_RECORD_THRESHOLD
With this control operation, the caller can set the threshold for splittable record size.

Performance Implications

The finish/reset function allows the caller to re-initialize the PIMA to make it ready to handle a new XML
document. This re-initialization path enables the z/OS XML parser to preserve its existing symbol table,
and avoid other initialization pathlength that's performed by calling GXL1INI (GXL4INI).

Example

For an AMODE 31 example using this callable service, see “GXL1CTL example” on page 213. For an
AMODE 64 example using this callable service, see “GXL4CTL example” on page 217.

GXL1CTL (GXL4CTL)

z/OS XML parser API: Assembler 109

Usage notes

The purpose of the finish/reset function of the GXL1CTL (GXL4CTL) service is to perform the following:

• Reset the necessary structures and fields within the PIMA to effect a re-initialization so that it can be
reused without the overhead of full initialization. See the table below for list of structures and fields
reset by each control function.

• Allow the z/OS XML parser to return extended diagnostic information to the caller in the event of a
failure. This allows the caller to identify certain problems that can be corrected.

• The "finish and reset" operation can be thought of as the most basic control operation that is a
functional subset of all control operations. It resets the state of the parser to the original state
immediately after the parse instance was first initialized. This state includes the feature flags. If the
caller initializes a parse instance, then changes the feature settings with a feature control operation, and
still later performs a "finish and reset" control operation, the feature flags will revert back to those
settings at the time the parse instance was originally initialized. If the caller wishes to retain the current
feature settings during a parser reset, they should simply perform another feature control operation
with the current feature set.

• The OSR load operation allows the caller to specify an OSR for the parser to use, and to bind a handle to
associate with to it. The GXLYXOSR macro provides the interface for passing information to the parser
about the OSR. See Appendix D, “C/C++ header files and assembler macros,” on page 207 for more
details about how it is used. As mentioned above, "finish and reset" processing will occur as a part of
this load operation. However, the reset will occur through a feature control operation, using the current
feature set. In this way, the current feature flags for the parse instance are not altered by the OSR load
control operation.

• The entities and references operation allows the caller to specify additional processing with regard to
entity and character references. The GXLYCTL macro provides the interface for passing the information
to the control function. As mentioned above, "finish and reset" processing will occur as part of this
control operation. However, the reset will occur through a feature control operation, using the current
feature set. In this way, the current feature flags for the parse instance are not altered by the entities
and references control operation.

• When document fragment parsing operation is enabled, the z/OS XML parser will no longer accept non-
fragmented documents. If the caller wants to parse a complete document after enabling document
fragment parsing, this service must be called again to disable document fragment parsing.

• When document fragment parsing is enabled, the well-formedness checking in the subsequent parsing
will be confined to the scope of the document fragment. Well-formedness checking is performed again
on the whole document when document fragment parsing is disabled.

• When document fragment parsing is enabled, a whitespace token will be placed into the output buffer
when whitespace is parsed at the end of the input buffer for each document fragment.

• The OSR context is unaffected by document fragment parsing. Any OSR that is loaded when document
fragment parsing is enabled will still be loaded for the parse of the fragment, and will remain loaded if
fragment parsing is disabled.

For a list of properties and resources reset by the control functions, see “Properties and resources reset
by control functions” on page 52.

GXL1CTL (GXL4CTL) features and functions

XEC_CTL_FIN

Description

This indicates that the caller wishes to end the current parse at the current position in the XML document.
The PIMA is re-initialized to allow it to be used on a new parse request. To free up all resources
associated with the parse instance, the caller should use the termination service. If the caller issues this
control operation after document fragment parsing is enabled, then this control operation will disable

XEC_CTL_FIN

110 z/OS: XML System Services User's Guide and Reference

document fragment parsing and re-initialize the PIMA for a new parse request. The loaded fragment
context will remain in storage and become active when fragment mode is enabled.

Syntax

call gxl1ctl,(PIMA,
 ctl_option,
 ctl_data,
 return_code,
 reason_code);

Parameters
PIMA

Supplied parameter
Type:

Character string
Length:

Variable

The name of the Parse Instance Memory Area (PIMA which has been previously initialized with a call
to GXL1INI (GXL4INI)).

ctl_option
Supplied parameter
Type:

Integer
Length:

Fullword

The name of a fullword that contains an integer value initialized to XEC_CTL_FRAGMENT_PARSE.

ctl_data
Supplied and returned parameter
Type:

Address
Length:

Fullword (Doubleword)

This parameter must contain the address of a fullword (doubleword) where the service will store the
address of the diagnostic area, which is mapped by macro GXLYXD. This provides additional
information that can be used to debug problems in data passed to the z/OS XML parser. The
diagnostic area resides within the PIMA, and will be overlaid on the next call to the z/OS XML parser.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the service stores the return code.

reason_code
Returned parameter
Type:

Integer

XEC_CTL_FIN

z/OS XML parser API: Assembler 111

Length:
Fullword

The name of a fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS

All parameters in the parameter list are required.

XEC_CTL_FEAT

Description

This indicates that the caller wishes to re-initialize the z/OS XML parser, as with the reset-and-finish
function above, and in addition, that the caller wishes to reset some of the feature flags used during the
parse.

Note: The following feature flags are not supported by this service:

• XEC_FEAT_JST_OWNS_STORAGE
• XEC_FEAT_RECOVERY
• XEC_FEAT_VALIDATE
• XEC_FEAT_SCHEMA_DISCOVERY
• GXLHXEC_FEAT_XDBX_INPUT

Make sure that these feature flags are turned to the OFF state before calling this service to set the feature
flags. If these features need to be changed (for example, if switching between validating and non-
validating parses), the parse instance must be terminated and re-initialized with the required feature
settings.

Syntax

call gxl1ctl,(PIMA,
 ctl_option,
 ctl_data,
 return_code,
 reason_code);

Parameters
PIMA

Supplied parameter
Type:

Character string
Length:

Variable

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_option
Supplied parameter
Type:

Integer
Length:

Fullword

The name of a fullword containing an integer value initialized to XEC_CTL_FEAT.

ctl_data
Supplied and returned parameter

XEC_CTL_FEAT

112 z/OS: XML System Services User's Guide and Reference

Type:
Address

Type:
Fullword (Doubleword)

This parameter must contain the address of a fullword (doubleword), which is mapped by macro
GXLYXFT. See “gxlhxft.h (GXLYXFT) - mapping of the control feature input output area” on page 210
for more information on this macro.

The XFT_FEAT_FLAGS parameter is an input parameter to the API and contains the value of feature
flags to be used in the subsequent parse. It is defined as follows:
XEC_FEAT_STRIP_COMMENTS

This effectively strips comments from the document by not returning any comments in the parsed
data stream. Default: off.

XEC_FEAT_TOKENIZE_WHITESPACE
This sets the default token value for white space preceding markup in the root element to an
explicit white space value. Default: off – white space is returned as character data.

XEC_FEAT_CDATA_AS_CHARDATA
This returns CDATA in records with a CHARDATA token type. The content of these records may
contain text that would normally have to be escaped to avoid being handled as markup. Default:
off.

XEC_FEAT_SOURCE_OFFSETS
This feature is used to include records in the parsed data stream which contain offsets to the
corresponding structures in the input document. Default: off.

XEC_FEAT_FULL_END
This feature is used to expand the end tags to include the local name, prefix and URI
corresponding to the qname on the end tag. Default: off.

XEC_FEAT_WHITESPACE_AS_CHARDATA
This returns a CHARDATA token type instead of a WS token for all whitespace element content
when the xs:minLegth>0 or xs:Length>0 for xs:string is set in schema for this element
content. This feature requires XEC_FEAT_VALIDATE and XEC_FEAT_TOKENIZE_WHITESPACE
feature to also be set. Default:off.

If none of the features are required, pass the name of a fullword field containing zero. Do not
construct a parameter list with a zero pointer in it.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

XEC_CTL_FEAT

z/OS XML parser API: Assembler 113

XEC_CTL_LOAD_OSR

Description

This indicates that the caller wants to load and use a given Optimized Schema Representation (OSR)
during a validating parse. If the parse prior to invoking this operation returned a XRSN_NEED_OSR, this
operation will not perform reset and finish processing.

Syntax

call gxl1ctl,(PIMA,
 ctl_option,
 ctl_data,
 return_code,
 reason_code);

Parameters
PIMA

Supplied parameter
Type:

Character string
Length:

Variable

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_option
Supplied parameter
Type:

Integer
Length:

Fullword

The name of fullword containing an integer value initialized to XEC_CTL_LOAD_OSR.

ctl_data
Supplied and returned parameter
Type:

Address
Length:

Fullword (Doubleword)

This indicates that the caller wants to load and use a given Optimized Schema Representation (OSR)
during a validating parse. Once an OSR has been loaded, it remains in use for all validating parse
requests until a different OSR is provided by calling this service again.

This parameter must contain the address of an area containing information about the OSR to load.
This area is mapped by GXLYXOSR. See “gxlhxosr.h (GXLYXOSR) - mapping of the OSR control area”
on page 210 for more information about the macro.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

XEC_CTL_LOAD_OSR

114 z/OS: XML System Services User's Guide and Reference

The name of a fullword where the service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

XEC_CTL_QUERY_MIN_OUTBUF

Description

This indicates that the caller is requesting the control service to return the minimum output buffer size
required for subsequent parse to complete without returning an XRSN_BUFFER_OUTBUF_SMALL reason
code. This value is returned in the XD control block.

Syntax

call gxl1ctl,(PIMA,
 ctl_option,
 ctl_data,
 return_code,
 reason_code);

Parameters
PIMA

Supplied parameter
Type:

Character string
Length:

Variable

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_option
Supplied parameter
Type:

Integer
Length:

Fullword

The name of a fullword containing an integer value initialized to XEC_CTL_QUERY_MIN_OUTBUF.

ctl_data
Supplied and returned parameter
Type:

Address
Length:

Fullword (Doubleword)

XEC_CTL_QUERY_MIN_OUTBUF

z/OS XML parser API: Assembler 115

This parameter must contain the address of a fullword (doubleword) where the service will store the
address of the diagnostic area, which is mapped by macro GXLYXD. The field XD_MIN_OB contains the
minimum output buffer size required on the next parse. If some failure other than
XRSN_BUFFER_OUTBUF_SMALL occurred prior to this call, XRSN_CTL_SEQUENCE_INCORRECT will
be returned. The XD area will not be returned.

The diagnostic area resides within the PIMA, and will be overlaid on the next call to the z/OS XML
parser.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of the fullword where the service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of the fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

XEC_CTL_ENTS_AND_REFS

Description

This indicates that the caller is requesting additional flexibility when processing character or entity
references. When this option is specified, the ctl_data parameter must also be utilized to specify the
specific enhancement being requested. See the ctl_data section below for more information.

Syntax

call gxl1ctl,(PIMA,
 ctl_option,
 ctl_data,
 return_code,
 reason_code);

Parameters
PIMA

Supplied parameter
Type:

Character string
Length:

Variable

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_option
Supplied parameter

XEC_CTL_ENTS_AND_REFS

116 z/OS: XML System Services User's Guide and Reference

Type:
Integer

Length:
Fullword

The name of a fullword containing an integer value initialized to XEC_CTL_ENTS_AND_REFS.

ctl_data
Supplied and returned parameter
Type:

Address
Length:

Fullword (Doubleword)

This parameter must contain the address of an area that contains information about what reference
operations are to be processed. This area is mapped by the XEAR data structure in file GXLYCTL.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of the fullword where the service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of the fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

XEC_CTL_LOAD_FRAG_CONTEXT

Description

This indicates that the caller wants to load fragment context into the z/OS XML parser. This service allows
the caller to load namespace binding information and fragment paths for document fragment parsing.
Namespace binding information is optional. Fragment path is required . This service must be issued prior
to a XEC_CTL_FRAGMENT_PARSE control operation that enables document fragment parsing. If fragment
context is already loaded from a prior XEC_CTL_LOAD_FRAG_CONTEXT control operation and this service
is called again, the new fragment context will overlay the previously loaded context. This control
operation will not cause finish/reset processing to take place.

Syntax

call gxl1ctl,(PIMA,
 ctl_option,
 ctl_data,
 return_code,
 reason_code);

XEC_CTL_LOAD_FRAG_CONTEXT

z/OS XML parser API: Assembler 117

Parameters
PIMA

Supplied parameter
Type:

Character string
Length:

Variable

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_option
Supplied parameter
Type:

Integer
Length:

Fullword

The name of a fullword containing an integer value initialized to XEC_CTL_LOAD_FRAG_CONTEXT.

ctl_data
Supplied and returned parameter
Type:

Address
Length:

Fullword (Doubleword)

This parameter must contain a pointer to where the service will locate the address of the document
fragment context structure, which is mapped by the macro GXL1CTL (GXL4CTL). The name of the data
structure is GXLXFC. This structure allows the caller to provide the fragment path and namespace
binding information to assist document fragment parsing.

To validate an element during document fragment parsing, the fragment path represents the path
from the root element of the complete document to the root element of the fragment, which consists
of prefixes and localnames. To validate an attribute during fragment parsing, the fragment path
represents the path from the root element of the complete document to the desired attribute name.
The fragment path is required in order to perform validation in fragment parsing.

The fragment path syntax is defined below:

FragmentPath ::= ('/' ElementName)* FragmentData
FragmentData ::= '/' ElementName ('/@' AttributeName)?
ElementName ::= QName
AttributeName ::= QName

Namespaces bindings allow unique strings of text that identify a given space of names to be
represented by a prefix. This allows references to elements with the same name to be differentiated,
based on the namespace to which they belong. These bindings may not be present in the document
fragment, and often these bindings exist in the ancestor elements’ start tag that is not part of the
document fragment. The caller can provide a complete context containing multiple namespace
bindings in the GXLXFC structure. The namespace binding is optional information.

However, if there is an XML instance document that uses a default namespace, the caller must still
specify a prefix on the element names in the fragment path. The caller must also specify this prefix
along with the namespace URI in the namespace binding information. The actual prefix does not
matter; only the namespace URI matters, but the prefix will associate each element in the fragment
path with the correct namespace.

Note:

XEC_CTL_LOAD_FRAG_CONTEXT

118 z/OS: XML System Services User's Guide and Reference

1. All the strings for fragment path and namespace binding passed into the
XEC_CTL_LOAD_FRAG_CONTEXT control call needs to be in the encoding of the z/OS XML parser
configured at initialization time.

2. If the caller disables document fragment parsing, the namespace contexts loaded through the
XEC_CTL_LOAD_FRAG_CONTEXT control call will be removed and will not be available during the
non-fragment parsing mode.

3. When the caller issues a XEC_CTL_LOAD_FRAG_CONTEXT control call to load namespace contexts,
the namespace contexts will be available when the z/OS XML parser switches into fragment
parsing mode. The namespace contexts will only get unloaded and replaced if the caller terminates
the parser or issues XEC_CTL_LOAD_FRAG_CONTEXT control call again to load new namespace
contexts.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of the fullword where the service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of the fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

XEC_CTL_FRAGMENT_PARSE

Description

This indicates that the caller wants to either enable or disable document fragment parsing. This service
will decide whether to enable or disable document fragment parsing based on the
XFP_FLAGS_FRAGMENT_MODE bit set in the ctl_data parameter. Document fragment parsing is disabled
by default. This control operation will not cause finish/reset processing to take place. If the caller wants to
parse a new complete XML document, a XEC_CTL_FIN control operation must be called prior to a new
parse request. If any error with return code greater than 4 has occurred during document fragment
parsing, a XEC_CTL_FIN control operation must be issued in order to resume parsing. Calling the
XEC_CTL_FIN control operation will disable the document fragment parsing and unload all fragment
contexts.

Note:

1. Document fragment parsing can only be enabled once before disabling. Likewise, document fragment
parsing can only be disabled once before enabling.

2. If the caller disables document fragment parsing, the parse will end and the caller is allowed to parse
a new document.

XEC_CTL_FRAGMENT_PARSE

z/OS XML parser API: Assembler 119

Syntax

call gxl1ctl,(PIMA,
 ctl_option,
 ctl_data,
 return_code,
 reason_code);

Parameters
PIMA

Supplied parameter
Type:

Character string
Length:

Variable

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_option
Supplied parameter
Type:

Integer
Length:

Fullword

The name of a fullword containing an integer value initialized to XEC_CTL_FRAGMENT_PARSE.

ctl_data
Supplied and returned parameter
Type:

Address
Length:

Fullword (Doubleword)

This parameter must contain a pointer to where the service will locate the address of the document
fragment parsing structure, which is mapped by the macro GXLCTL. The name of the data structure is
GXLXFP. This structure allows the caller to specify whether to enable or disable document fragment
parsing through the XFP_FLAGS_FRAGMENT_MODE bit set in the XFP_FLAGS field. Document
fragment parsing is disabled by default.

The XFP_XD_PTR is where the service will store the address of the diagnostic area, which is mapped
by macro GXLYXD. This provides additional information that can be used to debug problems in data
passed to the z/OS XML parser. The diagnostic area resides within the PIMA, and will be overlaid on
the next call to the z/OS XML parser.

Tips:

• To enable document fragment parsing, set the XFP_FLAGS_FRAGMENT_MODE bit to on.
• To disable document fragment parsing, set the XFP_FLAGS_FRAGMENT_MODE bit to off.

Note:

1. When the caller validates an attribute during fragment parsing, the document fragment passed to
the parser should contain only the desired attribute’s value.

2. When the caller re-enables document fragment parsing after it has been disabled, and without
calling load fragment context again, the previous loaded fragment context will be utilized in this
new fragment parse. This includes the fragment path and any namespace binding information.

XEC_CTL_FRAGMENT_PARSE

120 z/OS: XML System Services User's Guide and Reference

3. The OSR must be loaded by way of the XEC_CTL_LOD_OSR control call prior to enabling fragment
parsing.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of the fullword where the service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of the fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

XEC_CTL_RESTRICT_ROOT

Description

This operation indicates that the caller wishes to restrict the root element name on the next parse. If the
root element name is not any of those listed in the GXLXRR data area, this call will cause the parse to
stop. This operation will reset the PIMA.

Syntax

call gxl1ctl,(PIMA,
 ctl_option,
 ctl_data,
 return_code,
 reason_code);

Parameters
PIMA

Supplied parameter
Type:

Character string
Length:

Variable

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_option
Supplied parameter
Type:

Integer
Length:

Fullword

XEC_CTL_RESTRICT_ROOT

z/OS XML parser API: Assembler 121

The name of the fullword containing an integer value initialized to XEC_CTL_RESTRICT_ROOT.

ctl_data
Supplied and returned parameter
Type:

Address
Length:

Fullword

This parameter contains the address of an area with information about the restricted root element.
This area is mapped by macro GXLXRR. This provides a list of names that must contain the name of
the root element in order for the validating parse to succeed.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of the fullword where the service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of the fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

XEC_CTL_ERROR_HANDLING

Description

With this control operation, the caller can do the following for a validating parse:

• Enable the creation of auxiliary records which can include the location of an error in the XML document,
the string which is in error, and also a possible expected string.

• Enable position indexes to be present in the error location path in order to facilitate locating the error.

For a non-validating parse, it can be used to:

• Enable the ability to continue parsing when an undefined prefix is encountered on an element or
attribute. The "prefix:local name" will be treated as the local name.

• Request an auxiliary information record that contains the tolerated return and reason codes and the
error offset.

Syntax

call gxl1ctl,(PIMA,
 ctl_option,
 ctl_data,
 return_code,
 reason_code);

XEC_CTL_ERROR_HANDLING

122 z/OS: XML System Services User's Guide and Reference

Parameters
PIMA

Supplied parameter
Type:

Character string
Length:

Variable

The name of the Parse Instance Memory Area (PIMA) which has been previously initialized with a call
to the initialization service.

ctl_option
Supplied parameter
Type:

Integer
Length:

Fullword

The name of the fullword containing an integer value initialized to XEC_CTL_ERROR_HANDLING.

ctl_data
Supplied and returned parameter
Type:

Address
Length:

Fullword

This parameter contains the address of an area with information about the error string. This is the
XERR data structure mapped by macro GXLXRR.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of the fullword where the service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of the fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

The enhanced error information for a validating parse is returned by way of the XERR_XD_PTR and is
where the service will store the address of the diagnostic area, which is in the macro GXLXRR. The
XD_LastOutput field is a pointer to the data area containing these records. This data area is within the
PIMA and is formatted in the same manner as a normal output buffer.

The XEC_TOLERATED_ERROR auxiliary info record for a non-validating parse is returned in the output
buffer. In the event that source offset auxiliary records are also being returned, this record will
immediately follow those records for the element or attribute in the output buffer.

XEC_CTL_ERROR_HANDLING

z/OS XML parser API: Assembler 123

In addition to enabling or disabling the enhanced error features, this control option will perform a reset
function. The following properties and resources will be reset by this control option:

• Fragment mode (validating parse only)
• Start of the XML document
• Error state

XEC_CTL_RESET

Description

This indicates that the caller wants to reset the start of the XML document and error state. The PIMA is re-
initialized to allow it to be used on a new parse request. To free up all resources associated with the parse
instance, the caller should use the termination service.

Syntax

call gxl1ctl,(PIMA,
 ctl_option,
 ctl_data,
 return_code,
 reason_code);

Parameters
PIMA

Supplied parameter
Type:

Character string
Length:

Variable

The name of the Parse Instance Memory Area (PIMA which has been previously initialized with a call
to GXL1INI (GXL4INI)).

ctl_option
Supplied parameter
Type:

Integer
Length:

Fullword

The name of a fullword that contains an integer value initialized to XEC_CTL_FRAGMENT_PARSE.

ctl_data
Supplied and returned parameter
Type:

Address
Length:

Fullword (Doubleword)

This parameter must contain the address of a fullword (doubleword) where the service will store the
address of the diagnostic area, which is mapped by macro GXLYXD. This provides additional
information that can be used to debug problems in data passed to the z/OS XML parser. The
diagnostic area resides within the PIMA, and will be overlaid on the next call to the z/OS XML parser.

return_code
Returned parameter

XEC_CTL_RESET

124 z/OS: XML System Services User's Guide and Reference

Type:
Integer

Length:
Fullword

The name of a fullword where the service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS

All parameters in the parameter list are required.

GXL1INI (GXL4INI) — initialize a parse instance

Description

The GXL1INI (GXL4INI) callable service initializes the PIMA and records the addresses of the caller's
system service routines (if any). The PIMA storage is divided into the areas that will be used by the z/OS
XML parser to process the input buffer and produce the parsed data stream.

Performance Implications

The initialization of structures used by the z/OS XML parser in the PIMA is only done once per parse and is
therefore unlikely to affect performance. The caller may choose to reuse the PIMA after each parse to
eliminate the overhead of storage allocation and the page faults that occur when referencing new storage.
In this case, a control operation is required to reset the necessary fields in the PIMA before parsing can
continue.

Syntax

call gxl1ini,(PIMA,
 PIMA_len,
 ccsid,
 feature_flags,
 sys_svc_vector,
 sys_svc_parm,
 return_code,
 reason_code)

Parameters
PIMA

Supplied parameter
Type:

Character string
Length:

determined by the PIMA_len parameter

The name of the Parse Instance Memory Area (PIMA). The PIMA must be aligned on a doubleword
boundary, otherwise, results are unpredictable. See the “Usage notes” on page 128 below for
additional details on the use of this area.

GXL1INI (GXL4INI)

z/OS XML parser API: Assembler 125

PIMA_len
Supplied parameter
Type:

Integer
Length:

Fullword (Doubleword)

The name of an area containing the length of the Parse Instance Memory Area. This service validates
the length of this area against a minimum length value. The minimum length of the PIMA depends on
whether or not validation will be performed during the parse. This minimum length value can be found
in:

• XEC_NVPARSE_MIN_PIMA_SIZE (non-validating parse)
• XEC_VPARSE_MIN_PIMA_SIZE (validating parse)

ccsid
Supplied parameter
Type:

Integer
Length:

Fullword

The Coded Character Set IDentifier (CCSID) that identifies the document’s character set. The CCSID
value in this parameter will override any character set or encoding information contained in the XML
declaration of the document. A set of CCSID constants for supported encodings has been declared in
GXLYXEC. See Appendix I, “Supported encodings,” on page 231 for a full list of supported encodings.

feature_flags
Supplied parameter
Type:

Integer
Length:

Fullword

The name of a fullword that contains an integer value representing one or more of the following z/OS
XML parser features. OR these flags together as needed to enable features. Choose any of the
following:

• XEC_FEAT_STRIP_COMMENTS - effectively strip comments from the document by not returning any
comments in the parsed data stream.

• XEC_FEAT_TOKENIZE_WHITESPACE - set the default token value for white space preceeding
markup within the context of the root element to an explicit white space value. Use this value in
conjunction with the special xml:space attribute to determine how such white space gets classified.

• XEC_FEAT_CDATA_AS_CHARDATA - return CDATA in records with a CHARDATA token type. The
content of these records may contain text that would normally have to be escaped to avoid being
handled as markup.

• XEC_FEAT_JST_OWNS_STORAGE - allocate storage as Job Step Task (JST) related instead of task
related. See the “Usage notes” on page 128 below for more information.

• XEC_FEAT_RECOVERY - this turns on the recovery routine.

Note: The following only applies when the feature flag is ON:

– If running in SRB mode, an error message will be returned to the caller.
– If a parse request is made in SRB mode, the parse will fail.
– If there is an FRR, an error message will be returned to the caller during the parse step.

• XEC_FEAT_SOURCE_OFFSETS - this includes records in the parsed data stream which contain
offsets to the corresponding structures in the input document.

GXL1INI (GXL4INI)

126 z/OS: XML System Services User's Guide and Reference

• XEC_FEAT_FULL_END - this expands the end tags to include the local name, prefix and URI
corresponding to the qname on the end tag.

• XEC_FEAT_FULL_END - this expands the end tags to include the local name, prefix and URI
corresponding to the qname on the end tag.

• XEC_FEAT_WHITESPACE_AS_CHARDATA - this returns a CHARDATA token type instead of a WS
token for all whitespace element content when the xs:minLegth>0 or xs:Length>0 for
xs:string is set in schema for this element content. This feature requires XEC_FEAT_VALIDATE
and XEC_FEAT_TOKENIZE_WHITESPACE feature to also be set.

• XEC_FEAT_SCHEMA_DISCOVERY – report schema location information and allow for an OSR to be
loaded once the information has been reported. XEC_FEAT_VALIDATE must also be enabled,
otherwise GXL1INI (GXL4INI) will return an error. See “Usage notes” on page 131 for more
information on schema discovery. Default: off

• XEC_FEAT_XDBX_INPUT - indicates that the data presented to z/OS XML in the input buffer is in
XDBX binary XML form, rather than conventional text. This feature requires that
XEC_FEAT_VALIDATE is also set, and that the encoding specified in the CCSID parameter is UTF-8.
See “Usage notes” on page 128 for more information on XDBX input streams. Default: off.

• XEC_FEAT_ALLOW_VECTOR - this allows the parser to use vector instructions. Default: off.

Note: By using the values of off (zero), W3C XML compliant output is generated. Turning on options
XEC_FEAT_STRIP_COMMENTS, XEC_FEAT_TOKENIZE_WHITESPACE and
XEC_FEAT_CDATA_AS_CHARDATA will cause the output to vary from standard compliance.

If none of the features are required, pass the name of a fullword field containing zero. Do not
construct a parameter list with a zero pointer in it.

sys_svc_vector
Supplied parameter
Type:

Structure
Length:

Variable

The name of a structure containing a count of entries that follow and then a list of 31 (64) bit pointers
to system service routines. Specify the name of a word containing 0 if no services are provided. See
the Chapter 8, “z/OS XML System Services exit interface,” on page 139 chapter for more details.

sys_svc_parm
Supplied parameter
Type:

Address
Length:

Fullword (Doubleword)

The name of a parameter which is passed to all system service exits. This provides for communication
between the z/OS XML parser caller and its exit routines. Specify the name of a location containing 0 if
no parameter is required for communication.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the service stores the return code.

reason_code
Returned parameter

GXL1INI (GXL4INI)

z/OS XML parser API: Assembler 127

Type:
Integer

Length:
Fullword

The name of a fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The return and reason code
are both also set as output parameters. The value of the reason code is undefined when the return code
has no associated reasons. Return and reason codes are defined in macro GXLYXR. For reason code
descriptions, also see Appendix B, “Reason codes listed by value,” on page 155.

Example

For an AMODE 31 example using this callable service, see “GXL1INI example” on page 214. For an
AMODE 64 example using this callable service, see “GXL4INI example” on page 218.

Usage notes

• The z/OS XML parser creates a variety of control blocks, tables, stacks, and other structures in the Parse
Instance Memory Area. The caller must provide an area that is at least as large as constant
XEC_MIN_PIMA_SIZE. In the event that this area is not large enough to parse the input document, the
z/OS XML parser will allocate additional memory using either the default memory allocation mechanism
or the memory allocation exit that the caller has provided.

• When the PIMA is reused for subsequent parses, the same features, ccsid and service exits will apply. If
any of these values need to change, you should terminate the parse instance (call GXL1TRM
(GXL4TRM)) and call GXL1INI (GXL4INI) again with the options you require.

• When the XEC_FEAT_TOKENIZE_WHITESPACE feature is set, the default classification for white space
that precedes markup within the context of the root element will be XEC_TOK_WHITESPACE. This token
type is returned if either the white space being parsed does not have an xml:space context, or if the
xml:space setting is 'default'. When the tokenize white space feature is not enabled, or if the white
space does not precede markup, this white space will be returned in the parsed data stream containing
character data with a token type of XEC_TOK_CHAR_DATA.

• The XEC_FEAT_JST_OWNS_STORAGE feature only applies to callers running in non-cross memory task
mode who take the option of allowing the z/OS XML parser to allocate additional storage as needed.
This feature should be specified when PIMAs are used on multiple tasks in order to prevent task
termination from causing storage extents to be freed before the z/OS XML parser is done using them.

• Before requesting the initialization of a validating parse instance, the validation function must be loaded
– either through one of the methods that the system provides, or by the z/OS XML load service. Failure
to do so will result in an error indicating that the function is not available. See the description of
“GXL1LOD (GXL4LOD) — load a z/OS XML function” on page 135 for more information.

• Be sure that the size of the PIMA provided is large enough for the XML processing function, either
validating or non-validating parse, that will be performed. Also, make sure that there is an appropriate
minimum PIMA size constant defined for each in GXLYXEC.

• The performance of a validating parse will be best when the parsed document is in the UTF-8 encoding.
The other encodings supported by z/OS XML System Services are also supported during a validating
parse, but there is significant additional overhead that will impact performance.

• For usage notes on parsing XDBX input streams, see “Parsing XDBX input streams” on page 42.

GXL1INI (GXL4INI)

128 z/OS: XML System Services User's Guide and Reference

GXL1PRS (GXL4PRS) — parse a buffer of XML text

Description

The GXL1PRS callable service parses a buffer of XML text and places the result in an output buffer.

Performance Implications

Ideal performance will be obtained when the PIMA is sufficiently large to contain all the needed data
structures, and the input and output buffers are large enough to process the entire XML document. During
the parsing process, the z/OS XML parser constructs persistent information in the PIMA that can be
reused within a parse instance. If the caller is going to process multiple documents that contain similar
sets of symbols (namespaces and local element and attribute names in particular), then reusing the PIMA
will improve performance during the processing of subsequent documents. If this behavior is not
required, the PIMA should be cleaned up by calling GXL1TRM (GXL4TRM) and reinitialized by calling
GXL1INI (GXL4INI) before using the PIMA for another parse request.

Syntax

call gxl1prs,(PIMA,
 option_flags,
 input_buffer_addr,
 input_buffer_bytes_left,
 output_buffer_addr,
 output_buffer_bytes_left,
 return_code,
 reason_code)

Parameters
PIMA

Supplied parameter
Type:

Character string
Length:

Variable

The name of the Parse Instance Memory Area (PIMA which has been previously initialized with a call
to GXL1INI (GXL4INI)).

option_flags
Supplied parameter
Type:

Integer
Length:

Fullword

Specify a word of zeroes for this parameter. In the future, this field will allow options to be compatibly
added to the service.

input_buffer_addr
Supplied and returned parameter
Type:

Address
Length:

Fullword (Doubleword)

GXL1PRS (GXL4PRS)

z/OS XML parser API: Assembler 129

The name of a fullword (doubleword) that contains the address of the buffer with the XML text to
parse. The z/OS XML parser updates this parameter to provide important return information when
control returns to the caller. See the “Usage notes” on page 131 below for details.

input_buffer_bytes_left
Supplied and returned parameter
Type:

Integer
Length:

Fullword (Doubleword)

The name of a fullword (doubleword) that contains the number of bytes in the input buffer that have
not yet been processed. The z/OS XML parser updates this parameter to provide important return
information when control returns to the caller. See the “Usage notes” on page 131 for details.

output_buffer_addr
Supplied and returned parameter
Type:

Address
Length:

Fullword (Doubleword)

The name of a fullword (doubleword) that contains the address of the buffer where the z/OS XML
parser should place the parsed data stream. The z/OS XML parser updates this parameter to provide
important return information when control returns to the caller. See the “Usage notes” on page 131
for details.

output_buffer_bytes_left
Supplied and returned parameter
Type:

Integer
Length:

Fullword (Doubleword)

The name of a fullword (doubleword) that contains the number of available bytes in the output buffer.
When the z/OS XML parser returns control to the caller, this parameter will be updated to indicate the
number of unused bytes in the output buffer. This buffer must always contain at least a minimum
number of bytes as defined by the XEC_MIN_OUTBUF_SIZE constant, declared in macro GXLYXEC.
This service will validate the length of this area against this minimum length value.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS.

GXL1PRS (GXL4PRS)

130 z/OS: XML System Services User's Guide and Reference

All parameters in the parameter list are required.

Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The return and reason code
are both also set as output parameters. The value of the reason code is undefined when the return code
has no associated reasons. Return and reason codes are defined in macro GXLYXR. For reason code
descriptions, also see Appendix B, “Reason codes listed by value,” on page 155.

Example

For an AMODE 31 example using this callable service, see “GXL1PRS example” on page 215. For an
AMODE 64 example using this callable service, see “GXL4PRS example” on page 219.

Usage notes

• When the z/OS XML parser returns successfully to the caller, the input and output buffer addresses will
be updated to point to the byte after the last byte successfully processed. The input_buffer_bytes_left
and output_buffer_bytes_left parameters will also be updated to indicate the number of bytes remaining
in their respective buffers. In the event of an error caused by a problem with the document being
parsed, the input buffer address will point to the byte of the input stream where the problem was
detected, and the associated bytesleft value will indicate the same position in the buffer. An error
record will be written to the parsed data stream indicating the nature of the problem, and the output
buffer address and bytesleft fields will point to the next available byte, as in the success case. See
Chapter 4, “Parsing XML documents,” on page 11 for more information about how input and output
buffers are managed between the caller and z/OS XML parser.

• In cases where parsing terminates because of an error, the z/OS XML parser will often have partially
processed an item from the input document before returning to the caller. The caller has the option of
retrieving the address of the diagnostic area using the GXL1CTL (GXL4CTL) service. The XD_LastRC/
XD_LastRsn return/reason code combination will contain an indication of the item being parsed.
Retrieving the reason code in this manner is an example of the indirect method for obtaining a specific
reason code.

• The z/OS XML parser will always check that the output buffer length passed to it is greater than the
required minimum (XEC_MIN_OUTBUF_SIZE). If this minimum length requirement is not met, the z/OS
XML parser will return with a return/reason code of XRC_FAILURE/XRSN_BUFFER_OUTBUF_SMALL.
Output buffer spanning will only occur if the caller meets the minimum output buffer length requirement
when the z/OS XML parser is invoked. Once parsing begins, and the buffer info record has been written
to the output buffer, buffer spanning is enabled. The caller will then receive an end-of-output-buffer
indication when the end of the output buffer is reached. In addition, many non-splittable records will be
larger than the minimum output buffer size. If there is not enough space in the output buffer for the first
record, then XRC_FAILURE/XRSN_BUFFER_OUTBUF_SMALL will be returned. Therefore, it's
recommended that the output buffer sizes should be large enough to fit the largest record that is
expected to be encountered.

• When schema discovery is enabled, XRSN_NEED_OSR may be returned from a parse request. This
signifies that the parser has finished parsing the root element start tag and has returned enough
information to identify a schema. At this point, a load OSR operation may be performed without the
operation resetting the parser. If a reset is intended, then an explicit call to GXL1CTL (GXL4CTL) with
the XEC_CTL_FIN option must be made prior to the next parse.

• When the z/OS XML parser returns a failure to the caller, GXL1CTL (GXL4CTL) must issue the control
option XEC_CTL_FIN in order to continue document fragment parsing or non-fragment parsing.

• When the z/OS XML parser returns successfully to the caller, it indicates the end of the provided input
buffer was reached and the parsed XML data is well-formed. When document fragment parsing is
enabled, this service will confine well-formedness checking to the scope of the document fragment.
This behavior is enabled and disabled through use of the XEC_CTL_FRAGMENT_PARSE control
operation.

GXL1PRS (GXL4PRS)

z/OS XML parser API: Assembler 131

• If the caller disables fragment parsing by calling GXL1CTL (GXL4CTL) with the control option
XEC_CTL_FRAGMENT_PARSE, and the z/OS XML parser returns to the input or output buffer during
document fragment parsing, an error will occur.

• If the caller performs validation in fragment parsing, the input buffer must be restricted to a single
element and its descendants, optionally followed by comments and processing instructions.

• If the caller performs document fragment parsing on an attribute, the input buffer should only contain
the desired attribute’s value. See the following example:

XML Document: <root> <pfx:ln attr="attributeValue"/> </root>
Fragment Path = /root/pfx:ln/@attr
Input Buffer = attributeValue

GXL1QXD (GXL4QXD) — query an XML document

Description

This service allows a caller to obtain the XML characteristics of a document. The XML characteristics are
either the default values, the values contained in an XML declaration or a combination of both.

Performance Implications

There are no performance implications.

Syntax

call gxl1qxd,(work_area,
 work_area_length,
 input_buffer,
 input_buffer_length,
 return_data,
 return_code,
 reason_code)

Parameters
work_area

Supplied parameter
Type:

Character string
Length:

Variable

The name of a work area. The work area must be aligned on a doubleword boundary. If not on a
doubleword boundary, results are unpredictable. See the “Usage notes” on page 134 below for
additional details on the use of this area.

work_area_len
Supplied parameter
Type:

Integer
Length:

Fullword (Doubleword)

The name of an area containing the length of the work area. The minimum length of this area is
declared as a constant XEC_MIN_QXDWORK_SIZE in macro GXLYXEC. This service validates the
length of this area against this minimum length value.

input_buffer
Supplied parameter

GXL1QXD (GXL4QXD)

132 z/OS: XML System Services User's Guide and Reference

Type:
Character string

Length:
Variable

The name of an input buffer containing the beginning of the XML document to process. See the “Usage
notes” on page 134 below for details.

input_buffer_length
Supplied parameter
Type:

Integer
Length:

Fullword (Doubleword)

The name of an area containing the length of the input buffer.

return_data
Returned parameter
Type:

Address
Length:

Fullword (Doubleword)

The name of a fullword (doubleword) where the service will return the address of the data which
describes the XML document characteristics. This return information will contain values that are
either extracted from the XML declaration or defaulted according to the XML standard. This return
area is mapped by macro GXLYQXD (see “gxlhqxd.h (GXLYQXD) - mapping of the output from the
query XML declaration service” on page 208), and is located within the work area specified by the
work_area parameter. The caller must not free the work_area until it is done referencing the data
returned from this service.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The return and reason code
are both set as output parameters. The value of the reason code is undefined when the return code has no
associated reasons. Return and reason codes are defined in macro GXLYXR (see “gxlhxr.h (GXLYXR) -
defines the return codes and reason codes” on page 209). For reason code descriptions, also see
Appendix B, “Reason codes listed by value,” on page 155.

GXL1QXD (GXL4QXD)

z/OS XML parser API: Assembler 133

Example

Usage notes

• The input buffer passed to this service must contain the beginning of the XML document to process. This
service will look for any XML declaration that is present and extract the version, encoding, and
standalone value that are present. In the event that the document does not contain an XML declaration,
or a given value is missing from the declaration, this service will return an appropriate default, as
specified by the XML standard. On success, the return data address for this service will contain a pointer
into the work area where the return data has been collected.

• Unlike the GXL1PRS (GXL4PRS) or GXL1CTL (GXL4CTL) services that must be performed within a parse
instance, this service does not require any of the internal resources that the z/OS XML parser creates in
the PIMA during initialization. It does not advance the input pointer or modify the state of the parse in
any way. It is a simple standalone service that allows a caller to query important information about the
document before establishing a parse instance and performing the parse.

• Buffer spanning is not supported by this service, as it is by GXL1PRS (GXL4PRS). If either the input
buffer or the work area are too small, this service will terminate with an appropriate return/reason code.

• This service is useful for checking to see if a conversion to one of the supported encodings is required
before parsing the document.

• Encoding names supported include the IANA recommended names which have corresponding IBM
CCSID values.

• This service does not provide full well-formedness checking of the input it processes.

GXL1TRM (GXL4TRM) — terminate a parse instance

Description

The GXL1TRM callable service releases all resources obtained (including storage) by the z/OS XML parser
and resets the PIMA so that it can be re-initialized or freed.

Performance Implications

There are no performance implications.

Syntax

call gxl1trm,(PIMA,
 return_code,
 reason_code)

Parameters
PIMA

Supplied parameter
Type:

Character string
Length:

Variable

The name of the Parse Instance Memory Area (PIMA which has been previously initialized with a call
to GXL1INI (GXL4INI)).

return_code
Returned parameter

GXL1TRM (GXL4TRM)

134 z/OS: XML System Services User's Guide and Reference

Type:
Integer

Length:
Fullword

The name of a fullword where the service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The return and reason code
are both also set as output parameters. The value of the reason code is undefined when the return code
has no associated reasons. Return and reason codes are defined in macro GXLYXR. For reason code
descriptions, also see Appendix B, “Reason codes listed by value,” on page 155.

Example

For an AMODE 31 example using this callable service, see “GXL1TRM example” on page 215. For an
AMODE 64 example using this callable service, see “GXL4TRM example” on page 219.

Usage notes

Termination can be requested any time the caller gets control back from the z/OS XML parser. This service
does not free the Parse Instance Memory Area (PIMA) as a part of termination. If the caller's recovery
gets control while a parse is still in progress, the caller should invoke this termination service to clean up
resources.

GXL1LOD (GXL4LOD) — load a z/OS XML function

Description

Load a module that implements a z/OS XML function into storage.

Performance Implications

None.

Syntax

call gxl1lod(function_code,
 function_data,
 return_code,
 reason_code)

Parameters
function_code

Supplied parameter

GXL1LOD (GXL4LOD)

z/OS XML parser API: Assembler 135

Type:
Integer

Length:
Fullword

This parameter identifies the z/OS XML function to load. It is the name of a fullword that contains an
integer value representing one of the following functions:
XEC_LOD_VPARSE

The validating parse function.
See the GXLYXEC macro for the list of function code constants.

function_data
Supplied parameter
Type:

Address
Length:

Fullword (doubleword)

Specify a word of zeroes for this parameter.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the service stores the reason code. The reason code is only relevant if
the return code is not XRC_SUCCESS.

All parameters in the parameter list are required.

Return and Reason Codes:

On return from a call to this service, register 15 will contain the return code. The return and reason code
are both set as output parameters. The value of the reason code is undefined when the return code is 0
(XRC_SUCCESS). Return and reason codes are defined in macro GXLYXR, and are dependent on the
control function specified by the caller. For reason code descriptions, also see Appendix B, “Reason codes
listed by value,” on page 155.

Usage notes

This load step is not required when performing a non-validating parse. This operation is only required
when using the validating parser. The caller does have the option of loading the load module for the
specified function without using this service - either through the z/OS LOAD macro, or by putting it in LPA
or the extended LPA. Both the LOAD macro and calls to this service are not allowed when running in an
SRB. The use of either interface must be performed in the task before entering SRB mode.

GXL1LOD (GXL4LOD)

136 z/OS: XML System Services User's Guide and Reference

If the required z/OS XML function is made available, either by LOADing the executable load module for it
or putting the load module in LPA, this service is not required. Documentation on the LOAD macro can be
found in z/OS MVS Programming: Assembler Services Reference IAR-XCT, and information on how to load
modules into LPA can be found in z/OS MVS Initialization and Tuning Guide.

The load modules associated with each function are as follows:

Table 32. Load modules

Function code Function performed Load module name

XEC_LOD_VPARSE validating parser function GXLIMODV

There is no unload service to perform the converse of this function, and none of the other z/OS XML
System Services cause the z/OS XML parser to be unloaded. The z/OS XML parser load module will remain
in the caller's address space even if the parser is terminated or reset. If multiple parse requests are to be
performed in the same address space, make sure to load the z/OS XML parser only once, regardless of
whether those parse requests are performed using the same parse instance (PIMA) or not.

GXL1LOD (GXL4LOD)

z/OS XML parser API: Assembler 137

GXL1LOD (GXL4LOD)

138 z/OS: XML System Services User's Guide and Reference

Chapter 8. z/OS XML System Services exit interface

The system services exit interface defines a series of exits that give the original caller of the GXL1PRS
(GXL4PRS) service control over the way the z/OS XML parser acquires/releases resources, and over
certain parser operations. The interface is implemented as a vector of addresses to routines that perform
these operations. The first word in the vector is a count of the number of addresses which follow — both
NULL addresses indicating that a specific exit is not present, and non–NULL addresses. If this count is
zero, then the z/OS XML parser will use default services. Similarly, an entry in the system service vector
may be left NULL, and the default service that corresponds to that entry will be used. For the storage
allocation and deallocation exits, either both or neither exit must be specified. The addresses of the
routines are 4 bytes when in AMODE 31 and 8 bytes when in AMODE 64. The mapping macro GXLYXSV
(see “gxlhxsv.h (GXLYXSV) - mapping of the system service vector” on page 209) is available to help set
up this structure.

Exit functions
The system services exit interface contains exits to perform the following functions:

• Allocate memory
• Free memory
• String identifier service — this is used to create a unique 4 byte numerical value (StringID) that

corresponds to a string parsed from the document. This exit allows the caller to control the individual
StringID values that the z/OS XML parser uses and serves as an efficient mechanism to communicate
these values between caller and parser. If no StringID service is specified, StringIDs are not exploited
by the z/OS XML parser and the parsed data stream will contain only length/value pairs for all parsed
strings.

These exits are all passed the address of a system service work area. This work area is storage that was
obtained by the caller and can be used to store any information which may make communication between
the caller and the exits easier.

Common register conventions
The following are common register conventions for all of the system service interface exits:

Input registers
When the z/OS XML parser invokes an exit, these registers have the following meaning:

Table 33. System services input register conventions

Register Contents

1 Address of a standard parameter list containing 31 (64) bit addresses.

13 Address of a 72 (144) byte save area.

14 Return address

Table 34. System services input access register conventions

Access Register Contents

0-15 Unpredictable

© Copyright IBM Corp. 2006, 2019 139

Output registers
When an exit returns to the z/OS XML parser, these registers have the following meaning:

Table 35. System services output register conventions

Register Contents

0-1 Unpredictable

2-13 Unpredictable

14 Return address

15 Unpredictable

Table 36. System services output access register conventions

Register Contents

0-15 Unpredictable

Table 37. System services output vector register conventions

Register Contents

0-7 Unpredictable

8-23 If the exit uses any of these registers, they must be saved and restored.

24-31 Unpredictable

The z/OS XML parser saves all general purpose and access registers prior to calling the user exit. The user
exit must simply return to the address in register 14. The save area provided can be used for any needs of
the exit.

Environmental requirements
The system services exit interface exits are called in the same environment in which the z/OS XML parser
was invoked. This means the following:
Minimum authorization

any state and any PSW key
Dispatchable unit mode

Task or SRB
Cross memory mode

Any PASN, any HASN, any SASN
AMODE

31-bit (64-bit)
ASC mode

primary
Interrupt status

enabled for I/O and external interrupts
Locks

no locks held
Control parameters

Control parameters and all data areas the parameter list points to are addressable from the current
primary address space.

140 z/OS: XML System Services User's Guide and Reference

Restrictions
These exit routines must not call any of the services provided in the z/OS XML parser API, either directly
or indirectly.

These exit routines are required to use linkage OS. As a result, they will need to be written in assembler
and not C or C++.

The two storage exits, “GXLGST31 (GXLGST64) — get memory” on page 141 and “GXLFST31 (GXLFST64)
— free memory” on page 143, must be called together. They cannot be called independently of one
another.

Although the actual name of the entry points to each of these exit services may be anything the caller
wishes, the z/OS XML parser will call these services as if they had the interfaces listed below.

GXLGST31 (GXLGST64) — get memory

Description

This service allocates an area of memory of the size requested by the z/OS XML parser. The z/OS XML
parser requests memory in large quantities and manages sub-allocations of this memory within the
parser.

Performance Implications

There are no performance implications.

Syntax

call gxlgst31,(sys_svc_parm,
 memory_addr,
 memory_len,
 exit_diag_code,
 return_code,
 reason_code)

Parameters
sys_svc_parm

Supplied parameter
Type:

Address
Length:

Fullword (Doubleword)

The address of the system service parameter (or zero) that was passed to the z/OS XML parser at
initialization time.

memory_addr
Returned parameter
Type:

Address
Length:

Fullword (Doubleword)

The address of a fullword (doubleword) where the memory allocation exit should store the address of
the allocated memory. If the caller wants to terminate the parse, then it should set a nonzero return
code.

GXLGST31 (GXLGST64)

z/OS XML System Services exit interface 141

memory_len
Supplied and Returned parameter
Type:

Integer
Length:

Fullword (Doubleword)

A fullword that contains the length of the memory area requested by the z/OS XML parser. The exit is
allowed to return an area of greater size and set this parameter to the length returned.

exit_diag_code
Returned parameter
Type:

Integer
Length:

Fullword (Fullword)

The name of a fullword where the exit stores any diagnostic information (usually a reason code). This
is stored in the diagnostic area and made available on the GXL1CTL (GXL4CTL) call.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the exit service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the exit service stores the reason code.

Return and Reason Codes:

The z/OS XML parser uses the convention that the exit will provide a return code value of zero when
successful. Any nonzero value indicates failure. If a nonzero return code is provided by the exit, the z/OS
XML parser does not look at the reason code. Instead, the z/OS XML parser saves the reason code, along
with the return code and the diagnostic code, in the extended diagnostic area so that the caller of the z/OS
XML parser has access to it by calling GXL1CTL (GXL4CTL). The z/OS XML parser will provide return and
reason codes to the caller in the event of a failure by the exit, or if the parser detects a problem with the
storage returned from the exit.

For reason code descriptions, see Appendix B, “Reason codes listed by value,” on page 155.

Example

For an example using this exit service, see “GXLEGTM (GXLGST example)” on page 222. These examples
are located in SYS1.SAMPLIB .

Default Implementation

If the exit is not provided, then the subpool used will be as follows:

GXLGST31 (GXLGST64)

142 z/OS: XML System Services User's Guide and Reference

• If running in SRB or cross memory mode, subpool 129 will be used. This is JST related and cannot be
freed by unauthorized callers. The key will be the same as the key at the time the z/OS XML parser is
invoked.

• If running in task mode (PSATOLD not zero), with PRIMARY=SECONDARY=HOME, then the subpool
chosen will depend on the authorization state of the caller and on the specification of the
XEC_FEAT_JST_OWNS_STORAGE feature on the GXL1INI (GXL4INI) call. If the caller is running in key
0-7 or supervisor state, they will be considered authorized.

– Authorized and JST requested — subpool 129
– Authorized and JST not requested — subpool 229
– Unauthorized and JST requested — subpool 131
– Unauthorized and JST not requested — subpool 0

Note: If running on a subtask which is sharing subpool 0, then this storage will be owned by the task
that owns subpool 0.

These choices of subpool will eliminate the possibility of the z/OS XML parser running in an authorized
state while using problem key storage which could be freed and reallocated.

The CONTROL setting will be AUTH for authorized callers. This prevents the storage from being
unallocated by an unauthorized caller in the same address space. The storage will be allocated in the
caller's key.

GXLFST31 (GXLFST64) — free memory

Description

This service frees an area of memory previously obtained by the GXLGST31 (GXLGST64) service.

Performance Implications

There are no performance implications.

Syntax

call gxlfst31,(sys_svc_parm,
 memory_addr,
 memory_len,
 exit_diag_code,
 return_code
 reason_code)

Parameters
sys_svc_parm

Supplied parameter
Type:

Address
Length:

Fullword (Doubleword)

The address of the system service parameter that was passed to the z/OS XML parser at initialization
time.

memory_addr
Supplied parameter
Type:

Address

GXLFST31 (GXLFST64)

z/OS XML System Services exit interface 143

Length:
Fullword (Doubleword)

The address of a fullword (doubleword) that contains the address of the memory to be freed.

memory_len
Supplied parameter
Type:

Integer
Length:

Fullword (Doubleword)

A fullword (doubleword) that contains the length of the memory to be freed. Memory will always be
freed in the same quantities under which it was allocated.

exit_diag_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the exit can store any diagnostic information (usually a reason code).

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the exit service stores the return code.

reason_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the exit service stores the reason code.

Return and Reason Codes:

The z/OS XML parser uses the convention that the exit will provide a return code value of zero when
successful. Any nonzero value indicates failure.

For reason code descriptions, see Appendix B, “Reason codes listed by value,” on page 155.

Example

For an example using this exit service, see “GXLEFRM (GXLFST example)” on page 221. These examples
are located in SYS1.SAMPLIB .

Default Implementation

The z/OS XML parser will free all memory obtained. Memory is freed in the same quantities under which it
was allocated. See the MVS assembler services reference (SA22-7606) for more details on the STORAGE
macro.

GXLFST31 (GXLFST64)

144 z/OS: XML System Services User's Guide and Reference

GXLSYM31 (GXLSYM64) — StringID service

Description

This service accepts an input string and performs a lookup for its corresponding symbol, which is identical
to the string itself. If the symbol has been located, the exit returns the StringID associated with the
symbol. If the string does not have a defined symbol, a symbol is created for the string and a StringID is
assigned to it. The StringID is then returned to the z/OS XML parser.

Performance Implications

There are no performance implications.

Syntax

call gxlsym31,(sys_svc_parm,
 string,
 string_len,
 string_id,
 ccsid,
 exit_diag_code,
 return_code)

Parameters
sys_svc_parm

Supplied parameter
Type:

Address
Length:

Fullword (Doubleword)

The address of the system service parameter that was passed to the z/OS XML parser at initialization
time.

string
Supplied parameter
Type:

Character string
Length:

determined by the string_len parameter

The string to return an ID for. The length of the string is variable, and is specified by the string_len
parameter.

string_len
Supplied parameter
Type:

Integer
Length:

Fullword

A fullword that contains the length of the string pointed to by the string parameter.

string_id
Returned parameter
Type:

Unsigned integer

GXLSYM31 (GXLSYM64)

z/OS XML System Services exit interface 145

Length:
Fullword

The numeric identifier for the string. The range of valid values is 1 to 2 GB - 1. The value zero is
reserved for use by the z/OS XML parser.

ccsid
Supplied parameter
Type:

Integer
Length:

Fullword

The Coded Character Set IDentifier (CCSID) that identifies the character set of the string. The z/OS
XML parser will provide the same CCSID in this parameter that the caller of the parser specified at
parser initialization time.

exit_diag_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword where the exit can store any diagnostic information (usually a reason code).
This will be stored in the diagnostic area and made available on the GXL1CTL (GXL4CTL) call.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The name of a fullword containing the return code. A return code value of zero means success; any
nonzero return code indicates failure.

Return Codes:

The z/OS XML parser uses the convention that the exit will provide a return code value of zero when
successful. Any nonzero value indicates failure. If a nonzero return code is provided by the exit, the z/OS
XML parser saves it in the extended diagnostic area so that the caller of the parser has access to it by
calling GXL1CTL (GXL4CTL).

Example

For an example of using this exit service, see “GXLSYM example” on page 222. These examples are
located in SYS1.SAMPLIB .

Default Implementation

There is no default implementation. If this exit is not specified by the caller, StringIDs are not used by the
z/OS XML parser. Length/value pairs representing all strings from the XML text are passed through to the
parsed data stream for return to the caller. See “String Identifiers” on page 34 for more details about
length/value pairs and StringIDs in the parsed data stream.

GXLSYM31 (GXLSYM64)

146 z/OS: XML System Services User's Guide and Reference

GXLSTRI — StringID service for Language Environment and Metal C

Description

This service provides a combination Language Environment and Metal C StringID service exit for the z/OS
XML parser and the OSR generator.

Performance Implications

There are no performance implications.

Syntax

call gxlstri,(sys_svc_parm,
 string,
 str_len,
 stringID,
 ccsid,
 diag_code,
 return_code)

Parameters
sys_svc_parm

Supplied parameter
Type:

Address
Length:

Fullword (Doubleword)

A pointer to the address of the storage to be used for this exit.

string
Supplied parameter
Type:

Character string
Length:

determined by the str_len parameter

The string passed in from the OSR generator.

str_len
Supplied parameter
Type:

Integer
Length:

Fullword

The value of the string length passed in from the OSR generator.

stringID
Returned parameter
Type:

Unsigned integer
Length:

Fullword

The value of the StringID set by this exit.

GXLSTRI

z/OS XML System Services exit interface 147

ccsid
Supplied parameter
Type:

Integer
Length:

Fullword

The Coded Character Set Identifier passed in from the OSR generator.

diag_code
Returned parameter
Type:

Integer
Length:

Fullword

The diagnostic code set by this exit.

return_code
Returned parameter
Type:

Integer
Length:

Fullword

The return code set by this exit.

Return Codes:

The z/OS XML parser uses the convention that the exit will provide a return code value of zero when
successful. Any nonzero value indicates failure. If a nonzero return code is provided by the exit, the z/OS
XML parser saves it in the extended diagnostic area so that the caller of the parser has access to it by
calling GXL1CTL (GXL4CTL).

Example

For an example of using this exit service, see “GXLESTRI” on page 225.

Default Implementation

There is no default implementation.

GXLSTRI

148 z/OS: XML System Services User's Guide and Reference

Chapter 9. Diagnosis and problem determination

The diagnostic facilities of this z/OS XML parser can be used to debug both the operation of the z/OS XML
parser itself and the input XML document. Since well-formedness checking is an integral part of the
parsing process, and since the complexity of XML documents can be very high, the opportunity for
encountering a flaw in the input stream that is difficult to diagnose is significant. To assist in diagnosis, the
z/OS XML parser provides the following support:

• XMLDATA IPCS subcommand
• Diagnostic Area
• SLIP trap for reason codes from z/OS XML parser
• ARR recovery routine

XMLDATA IPCS subcommand
To make it easier to analyze z/OS XML System Services dumps, the XMLDATA subcommand is provided for
use with the IPCS formatter. To use the subcommand, input the following under IPCS option 6:

COMMAND: XMLDATA address option

The address parameter is the address of the z/OS XML parser’s Parser Anchor Block (PAB); this is a
required parameter. The address parameter accepts both 31- and 64-bit addresses. If you do not know
the value for the address parameter, you can place a '0' in the address field, and XMLDATA will try to
locate the value for you, for example: XMLDATA 0 TRACE. Although this method is not guaranteed to
work, it is still an available option.

The option parameter allows you to select what information you want to review within the provided dump
(see Table 38 on page 149 for a list of options and their descriptions). If nothing is provided for the option
parameter, XMLDATA will use the default option BASIC. The following table lists the options available for
XMLDATA:

Table 38. XMLDATA options

Option Description

BASIC Displays to the screen widely used dump information. Such
information includes the following: the PSW and any general
information during the abend; the value of the registers; an API
trace; a user input parameter list; feature flags, return code and
reason codes; and the last 64 bytes of the input and output
buffers.

PARAM Displays the parameter list values for the GXL1PRS or GXL4PRS
entry points.

© Copyright IBM Corp. 2006, 2019 149

Table 38. XMLDATA options (continued)

Option Description

BUFFER (inlen, outlen, fraglen) Displays the last inlen bytes of the input buffer ending at where the
parser abends, displays the last outlen bytes of the output buffer
and displays the first fraglen bytes of the fragment buffer. The
fragment buffer option is only available for a non-validating dump.
For a validating dump, the input buffer option will not display the
most current bytes of data at where the z/OS XML parser abends,
but instead the input buffer option will display from the beginning
of the input buffer for inlen bytes that has been loaded for parsing
within the validating z/OS XML parser. If the length value of zero is
provided for a specific buffer type, that specific buffer information
will be skipped. The inlen, outlen, and fraglen parameters are all
optional. For any that are not specified, the default is 128 bytes.

EXTENT Displays all available free and external extents’ information.

MISC Displays the status of each feature flag, input document encoding,
exit services, return code and reason codes.

TRACE (option) Displays the trace of the API calls. The option parameter is
optional. Providing ‘ADV’ in the option parameter displays a more
advanced API trace. Otherwise, a simple API trace will be
displayed. (Default is to display a simple API trace).

PAB Displays all the defined fields in the PAB.

STRUCT (option, address) Displays the formatted control blocks including the z/OS XML
parser diagnostic area, element stack, default attribute record,
local name tree, prefix tree, namespace tree and data buffer. The
data buffer option is only available if the dump is taken with the
validation feature flag turned on. The option parameter is required,
otherwise no control block will be displayed. The options include
the following: XD, XELE, XATT, LN, PFX, URI, DBUF, respectively.
The address parameter is optional and is only available for local
name, prefix, namespace tree and data buffer option. For local
name, prefix, and namespace trees, if you do not want to display
the tree from the root node, then provide a child node address for
the tree to use as the root node. For data buffer, if you want to
display the details of a specific internal input buffer, then provide a
data buffer address. (For the address parameter, the default for
the trees is the tree root node address.) If no options or addresses
are selected, a menu of all available options will be displayed.

MARKED Displays data that was parsed by the z/OS XML parser, but has not
yet been placed in the output buffer, due to the interruption of an
abend. This option is only available if the dump is taken with the
validation feature flag turned off.

PMM Displays the formatted Module Map: PMM, Secondary Table: PST,
and System Control: PSC.

HELP Displays all available options and their descriptions.

The following is an example of the XMLDATA subcommand:

XMLDATA 00002940121498028 PAB

150 z/OS: XML System Services User's Guide and Reference

Diagnostic Area
On the GXL1CTL (GXL4CTL) call, there is a diagnostic area where the z/OS XML parser places information
that can be useful when debugging a failure or incorrect behavior in the parser. This area is mapped by
macro GXLYXD. The diagnostic area contains the following fields:
XD_Eye

Eyecatcher GXLYXD
XD_Version

The z/OS XML parser version number.
XD_PAB

Address of Parser Anchor Block for this parse instance.
XD_InBuff

Address of current input buffer.
XD_InBuffOffset

Offset into input buffer where the z/OS XML parser stopped.
XD_OutBuff

Address of current output buffer.
XD_OutBuffOffset

Offset into output buffer where the last valid entry can be found.
XD_StorageRequested

Amount of storage that requested for request that failed.
XD_LastRC

Return code from the last call to GXP1PRS (GXP4PRS).
XD_LastRSN

Reason code from the last call to GXP1PRS (GXP4PRS).
XD_StorageRC

Return code from call to STORAGE.
XD_StorageRsn

Reason code from call to STORAGE.
XD_Iarv64Rc

Return code from call to IARV64.
XD_Iarv64Rsn

Reason code from call to IARV64.
XD_StorExitRc

Return code from storage exit.
XD_StorExitRsn

Reason code from storage exit.
XD_StorExitDiag

The diagnostic code from the storage exit.
XD_SymExitRc

Return code from symbol exit.
XD_SymExitDiag

The diagnostic code from symbol exit.
XD_SymbolLength

Length of the symbol which was rejected by the user symbol exit routine.
XD_IFA_RC

The return code from the request to run on a zAAP.
XD_EndOfDocRC

Return code from a finished parse.

Diagnosis and problem determination 151

XD_EndOfDocRSN
Reason code from a finished parse.

XD_MIN_OB
Minimum output buffer size required on next parser call.

XD_LastOutput
Output buffer area in PIMA containing enhanced error records.

XD_TOL_ERROR_COUNT
The total count of errors which have been tolerated.

SLIP trap for return codes from the z/OS XML parser
To obtain a dump on a specific reason code from any of the z/OS XML parser callable services, use the
release appropriate SLIP example in the following table:

Table 39. SLIP examples by release

z/OS release SLIP example

V1.11 or higher SLIP SET,IF,A=SYNCSVCD,RANGE=(10?+220?+48?+8?+E),
DATA=(4G!+F0!+b2,EQ,xxxx),
SDATA=(CSA,LPA,TRT,SQA,RGN,SUM),j=jobname,END

where xxxx is one of the 4 digit (2 byte) reason codes listed in Appendix B, “Reason codes listed by
value,” on page 155 that is to be trapped and j=jobname is the optional jobname that is expected to
issue the error (for example, j=IBMUSER).

ARR recovery routine
z/OS XML provides an ARR recovery routine to assist with problem determination and diagnostics. This
recovery routine can be turned on through an initialization option when invoked through the assembler
API. For callers of the C/C++ parser API (gxlpParse), when running in Language Environment, the ARR
recovery routine is provided by default in most cases. For C or C++ callers who are running in either SRB
mode or under an existing FRR routine, the z/OS XML ARR will not be provided, as it would not work
properly in those environments.

If the z/OS XML parser abends, the z/OS XML ARR routine will get control and will collect dumps and
return to the caller with a XRC_FATAL return code. For unauthorized callers, an IEATDUMP will be taken in
data set userid.GXLSCXML.DYYMMDD.THHMMSS.DUMP, where DYYMMDD is the date and THHMMSS is
the time the dump was taken. The task level ACEE is used to obtain the userid. If there is no task level
ACEE, the address space level ACEE is used. If there is no address space level ACEE, a dump is not taken.
For authorized callers, an SDUMPX will be taken into a system dump data set.

If the user would like to continue parsing, he must terminate and re-initialize a PIMA following any abend
in the z/OS XML parser.

152 z/OS: XML System Services User's Guide and Reference

Appendix A. Return codes listed by value

This section lists return codes by value and describes them.

Hex Value Return Code Description

0000 XRC_SUCCESS The z/OS XML parser service was successful.

0004 XRC_WARNING The z/OS XML parser service has partial success.

0008 XRC_FAILURE Processing failed. Returned data areas and parms
valid.

000C XRC_NOT_WELL_FORMED The document is not-well-formed.

0010 XRC_FATAL Processing failed. Returned data areas or output
parameters cannot be relied on to contain valid data.

0014 XRC_LOAD_FAILED The load of the specified service failed. The return
code from the LOAD macro is returned in the reason
code field.

0018 XRC_NOT_VALID The document is not valid according to the specified
schema.

© Copyright IBM Corp. 2006, 2019 153

154 z/OS: XML System Services User's Guide and Reference

Appendix B. Reason codes listed by value

This section describes reason codes, listing them by hexadecimal value and describing actions to correct
the error.

Reason code value

0000 XRSN_SUCCESS

The z/OS XML parser service was successful.

Action: None

1000 XRSN_PIMA_NOT_INITIALIZED

The PIMA passed to a z/OS XML parser service is unusable.

Action: The PIMA passed has not been initialized with a call to the z/OS XML
parser initialization service GXL1INI or GXL4INI or the PIMA address is incorrect.

1001 XRSN_PIMA_SMALL

The length of the PIMA is too small.

Action: The size of the PIMA passed on GXL1INI or GXL4INI must be at least the
minimum required size for the requested features. Refer to the z/OS XML User's
Guide for the correct minimum value.

1002 XRSN_PIMA_RESIDUAL_DATA

Initialization has already been done on this PIMA.

Action: The GXL1INI or GXL4INI service has been called to initialize the PIMA,
but the PIMA storage has already been initialized. You must call GXL1TRM or
GXL4TRM before the PIMA can be reinitialized to guarantee that all resources
have been cleaned up.

1004 XRSN_PIMA_INCONSISTENT_STATE

The z/OS XML parser exited without cleaning up.

Action: Attempt to collect a dump of the problem. The joblog for the address
space should contain a symptom dump which identifies the abend code. If
running from a user address space, allocate a SYSMDUMP DD and recreate the
problem. If running in some system address space, use SLIP to get a dump of the
abend. Contact your system administrator for help in getting the dump and
possibly contacting IBM.

1005 XRSN_CTL_DATA_PARM_INVALID

The CTL_DATA parm is invalid.

Action: It is null, but is a required input parmameter for this feature flag. Call the
ctl function again, passing in the required parameter.

1006 XRSN_IMODV_NOT_LOADED

The validating parser has not been loaded.

Action: Invoke the GXL1LOD or GXL4LOD to load the validating parser. Call
initialization again, after a successful load.

© Copyright IBM Corp. 2006, 2019 155

Reason code value

1007 XRSN_CTL_DATA_VERSION_INVALID

The input control block version is invalid.

Action: The version field in the input control block is set to an invalid value.

1008 XRSN_CTL_XEAR_RC_INVALID

The XEAR_REPLACEMENT_CHAR_LENGTH is invalid.

Action: The XEAR_REPLACEMENT_CHAR_LENGTH field is set to an invalid value.
It must be set to one.

1100 XRSN_STORAGE_31_GET_ERROR

Unable to allocate memory.

Action: If your application does not already call GXL1CTL after the parse, add a
call to GXL1CTL. The address returned by GXL1CTL points to an area mapped by
GXLYXD. Extract the return and reason code from the XD area, pertaining to
storage access failures that occurred using the STORAGE macro. Contact your
system administrator for help in interpreting these values.

1101 XRSN_STORAGE_64_GET_ERROR

Unable to allocate memory.

Action: If your application does not already call GXL1CTL after the parse, add a
call to GXL1CTL. The address returned by GXL1CTL points to an area mapped by
GXLYXD. Extract the return and reason code from the XD area, pertaining to
storage access failures using the IARV64 service. Contact your system
administrator for help in interpreting these values.

1140 XRSN_STORAGE_GET_EXIT_TOO_SMALL

The storage returned from get storage exit is too small.

Action: If your application does not already call GXL1CTL after the parse, add a
call to GXL1CTL. The address returned by GXL1CTL points to an area mapped by
GXLYXD. Extract the return and reason code from the XD area, pertaining to
storage exit failure. Contact your system administrator for help in interpreting
these values.

1143 XRSN_STORAGE_31_SFREE_ERROR

Single failure when attempting to free storage.

Action: Contact your system administrator.

1144 XRSN_STORAGE_31_MFREE_ERROR

Multiple failures when attempting to free storage.

Action: Contact your system administrator.

1145 XRSN_STORAGE_64_SFREE_ERROR

Single failure when attempting to free storage.

Action: Contact your system administrator.

156 z/OS: XML System Services User's Guide and Reference

Reason code value

1146 XRSN_STORAGE_64_MFREE_ERROR

Multiple failures when attempting to free storage.

Action: Contact your system administrator.

1147 XRSN_STORAGE_CORRUPTED_ERROR

Storage header has been corrupted.

Action: Contact your system administrator.

1148 XRSN_INPUT_BUFFER_ACCESS_ERROR

The user abended when trying to access the input buffer.

Action: Check the input buffer parameter and length passed into the parser to be
sure they are correct. If the input parameters are correct, Contact your system
administrator. .

1149 XRSN_INPUT_BUFFER_ACCESS_ERROR_ND

The user abended when trying to access the input buffer. No dump was taken.

Action: Check the input buffer parameter and length passed into the parser to be
sure they are correct. If the input parameters are correct, Contact your system
administrator. .

1150 XRSN_OUTPUT_BUFFER_ACCESS_ERROR

The user abended when trying to access the output buffer.

Action: Check the output buffer parameter and length passed into the parser to
be sure they are correct. If the output parameters are correct, Contact your
system administrator. .

1151 XRSN_OUTPUT_BUFFER_ACCESS_ERROR_ND

The user abended when trying to access the output buffer. No dump was taken.

Action: Check the output buffer parameter and length passed into the parser to
be sure they are correct. If the output parameters are correct, Contact your
system administrator. .

1152 XRSN_PIMA_ACCESS_ERROR

The user abended when trying to access the PIMA.

Action: Check the PIMA parameter and length passed into the parser to be sure
they are correct. If the PIMA parameters are correct, Contact your system
administrator. .

1153 XRSN_PIMA_ACCESS_ERROR_ND

The user abended when trying to access the PIMA. No dump was taken.

Action: Check the PIMA parameter and length passed into the parser to be sure
they are correct. If the PIMA parameters are correct, Contact your system
administrator. .

1154 XRSN_UNKNOWN_ERROR

An unknown abend occurred.

Action: Contact your system administrator.

Reason codes listed by value 157

Reason code value

1155 XRSN_UNKNOWN_ERROR_ND

Unknown abend occurred and no dump was taken.

Action: Contact your system administrator.

1156 XRSN_STORAGE_OBTAIN_FAILED

A storage obtain request failed

Action: Contact your system administrator.

1157 XRSN_STORAGE_OBTAIN_FAILED_ND

A storage obtain request failed, no dump taken

Action: Contact your system administrator.

1201 XRSN_PARM_ENCODING_SPEC_INVALID

The ccsid passed is not supported.

Action: The CCSID parameter on the call to GXL1INI or GXL4INI is not one of the
supported character encodings. Pass only permitted CCSID parameters. See the
documentation of the GXL1INI service for supported ccsid constants.

1202 XRSN_PARM_FEATURE_FLAG_INVALID

Undefined feature flag is set

Action: The feature flag parameter passed to GXL1INI or GXL4INI or GXL1CTL or
GXL4CTL has an undefined bit set or a bit that is invalid for this api set. You can
only set features that are defined or supported on the api.

1203 XRSN_PARM_UNSUPPORT_ENCODING

XML encoding string is not supported.

Action: The encoding string in the XML declaration is not supported. Use only the
supported encoding names.

1204 XRSN_OPERATION_FLAG_INVALID

Undefined operation flag is set.

Action: The operation flag is set to an invalid value.

1300 XRSN_BUFFER_INBUF_SMALL

The input buffer size is too small.

Action: The query service was not able to parse a complete XML declaration. The
caller needs to pass more of the document to the service.

1301 XRSN_BUFFER_INBUF_END

The end of the input buffer has been reached.

Action: This is a normal reason code for spanning buffers.

1302 XRSN_BUFFER_OUTBUF_SMALL

The output buffer was too small to contain the next item.

Action: The caller must reset the parser, then parse the document again from the
beginning, passing in a larger output buffer.

158 z/OS: XML System Services User's Guide and Reference

Reason code value

1303 XRSN_BUFFER_OUTBUF_END

The end of the output buffer has been reached

Action: This is a normal reason code for spanning buffers.

1304 XRSN_BUFFER_INOUTBUF_END

The end of both buffers have been reached

Action: This is a normal reason code for spanning buffers.

1305 XRSN_STORAGE_GET_EXIT_ERROR

Application storage exit unable to allocate memory.

Action: If your application does not already call GXL1CTL after the parse, add a
call to GXL1CTL. The address returned by GXL1CTL points to an area mapped by
GXLYXD. Extract the return and reason code from the XD area, pertaining to
storage access failures. Contact your system administrator for help in interpreting
these values.

1307 XRSN_STORAGE_SFREE_EXIT_ERROR

User free storage exit has one failure.

Action: Contact your system administrator.

1308 XRSN_STORAGE_MFREE_EXIT_ERROR

User free storage exit has multiple failures.

Action: Contact your system administrator.

1309 XRSN_DYNAMIC_CODE_CHANGE

z/OS XML parser was re-installed.

Action: Caller needs to terminate the parser and restart with parser initialization.

1310 XRSN_SYM_EXIT_ERROR

The symbol exit returned an error.

Action: Contact the owner of the symbol exit and have them debug the problem.

1400 XRSN_DEALLOC_EXIT_MISSING

Allocation exit specified without deallocation exit

Action: The service exit specification on a call to GXL1INI or GXL4INI contains an
exit to allocate storage, but no exit to deallocate storage. Either both or neither is
required.

1401 XRSN_ALLOC_EXIT_MISSING

Deallocation exit specified without allocation exit

Action: The service exit specification on a call to GXL1INI or GXL4INI contains an
exit to deallocate storage, but no exit to allocate storage. Either both or neither is
required.

Reason codes listed by value 159

Reason code value

1403 XRSN_OPTN_UNKNOWN

Unsupported value set on the options parameter.

Action: Refer to the API documentation for the correct values to pass to this
service.

1404 XRSN_QXDWORK_AREA_SMALL

Query service work area length is too small.

Action: Pass a bigger area.

1405 XRSN_INTERNAL_ERROR

Internal error in the z/OS XML parser.

Action: Contact your system administrator.

1407 XRSN_FEATURE_FLAG_INVALID_IN_ENV

The recovery feature flag is on, but the program either has an existing FRR or is in
SRB mode. This feature is not valid in these environments.

Action: Reinitialize the parse with the recovery feature flag turned off.

1408 XRSN_INVALID_OPTION

The operation being performed is not valid for this service.

Action: Refer to the API documentation to determine which parsing services this
option is valid for.

1500 XRSN_SVC_UNKNOWN

The code specified for the svc_code parameter is invalid.

Action: Refer to the API documentation for the correct values for the svc_code
parameter.

1501 XRSN_NO_OSR_SPECIFIED

No OSR has been loaded via a CTL call.

Action: Perform a CTL_LOAD_OSR operation via CTL with a nonzero
XOSR_OSR_PTR.

1502 XRSN_NO_SCHEMAS_SPECIFIED

Either the schema vector parameter passed was NULL, or the number of
schemas specified in the vector was zero.

Action: Pass in a valid schema vector that contains one or more text. schemas to
process.

1503 XRSN_NO_OSR_BUFFER_SPECIFIED

No OSR buffer was for generation.

Action: Pass in the address of a buffer to receive a generated OSR.

1504 XRSN_OSR_INVALID

The data within the OSR is invalid.

Action: Ensure that the correct address of the OSR is being passed.

160 z/OS: XML System Services User's Guide and Reference

Reason code value

1505 XRSN_NEED_OSR

All schema location information has been returned from the instance document.
A LOAD_OSR operation may be necessary to validate this document.

Action: If an OSR has been loaded and can be used to validate the instance
document, no special action is necessary. Otherwise, load an OSR to validate this
document.

1506 XRSN_NO_FRAGPATH_SPECIFIED

No fragment path has been loaded via a CTL call.

Action: Perform a load fragment context operation via CTL with a fragment path.

1508 XRSN_CTL_FRAGPATH_INCORRECT

The provided fragment path is incorrect.

Action: Change the Fragment Path to correct the error and retry.

1509 XRSN_OSR_INCOMPATIBLE

The OSR is incompatible with the specified feature

Action: Change the document or schema to correct and retry.

1510 XRSN_XRR_INVALID

The data within the XRR is invalid.

Action: Ensure that the correct address of the XRR is being passed.

1511 XRSN_CTL_FRAG_PREV_ENABLED

Document fragment parsing is already enabled. Issuing this control call is not
allowed.

Action: Please disable fragment parsing and retry.

1512 XRSN_CTL_FRAG_PREV_DISABLED

Document fragment parsing is already disabled. Issuing this control call is not
allowed.

Action: Please enable fragment parsing and retry.

1513 XRSN_CTL_SEQUENCE_INCORRECT

This control call cannot be issued under the present parse conditions.

Action: Correct the sequence of calls and retry.

1514 XRSN_CTL_FRAG_NSCONTEXT_INCORRECT

The provided fragment NS context is incorrect.

Action: Change the Fragment namespace context to correct the error and retry.

1515 XRSN_CTL_FRAGPATH_ROOT_RESTRICTED

The fragment path root element is invalid.

Action: The provided fragment path's root element does not match with the
Restricted Root Elements. Correct the error and retry.

Reason codes listed by value 161

Reason code value

1516 XRSN_CTL_XDBX_NO_ENTITIES

No entities are present in XDBX streams.

Action: XDBX input streams will not contain any entity references. The entities-
and-references operation has no effect in this case.

2000 XRSN_COMMENT_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within comment markup.

Action: Change the document to correct the error and retry.

2001 XRSN_CDATA_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within CDATA markup.

Action: Change the document to correct the error and retry.

2002 XRSN_PI_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within processing instruction
markup.

Action: Change the document to correct the error and retry.

2003 XRSN_ATTR_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within attribute markup.

Action: Change the document to correct the error and retry.

2004 XRSN_ENDTAG_NOT_REACHED

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended without reaching the
document element end tag.

Action: Change the document to correct the error and retry.

2006 XRSN_TAG_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within an element start tag.

Action: Change the document to correct the error and retry.

2007 XRSN_NS_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within namespace
declaration markup.

Action: Change the document to correct the error and retry.

2008 XRSN_XML_DECL_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within the XML declaration.

Action: Change the document to correct the error and retry.

162 z/OS: XML System Services User's Guide and Reference

Reason code value

2009 XRSN_DTD_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within doctype declaration
markup.

Action: Change the document to correct the error and retry.

2010 XRSN_SUBSET_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within internal subset
markup.

Action: Change the document to correct the error and retry.

2011 XRSN_SUBSET_ELEM_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within an element
declaration.

Action: Change the document to correct the error and retry.

2012 XRSN_SUBSET_NOTATION_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within a notation declaration.

Action: Change the document to correct the error and retry.

2013 XRSN_SUBSET_COMMENT_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within comment markup.

Action: Change the document to correct the error and retry.

2015 XRSN_SUBSET_PEREF_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within a parameter entity
reference.

Action: Change the document to correct the error and retry.

2016 XRSN_SUBSET_ENTITY_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within an entity declaration.

Action: Change the document to correct the error and retry.

2017 XRSN_SUBSET_ATTL_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within an attribute list
declaration.

Action: Change the document to correct the error and retry.

Reason codes listed by value 163

Reason code value

2018 XRSN_MARKUP_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended within markup.

Action: Change the document to correct the error and retry.

2019 XRSN_DOC_ELEM_NOT_FOUND

The GXL1CTL (GXL4CTL) API was called with the finish option and the input
document was not complete. The document ended without finding the document
element.

Action: Change the document to correct the error and retry.

2020 XRSN_LENGTH_VALUE_INVALID

The length value is incorrect because the upper most bit of a length variable's
value is not zero, and the variable type is defined as 31 bit.

Action: Correct the length value and retry.

2021 XRSN_FRAGMENT_INVALID

The parsed document fragment is incorrect.

Action: Change the document fragment to correct the error and retry.

2022 XRSN_DOCUMENT_INVALID

The parsed document is incorrect.

Action: Change the document to correct the error and retry.

2024 XRSN_PREV_OUTBUF_PENDING

The parsed data is pending for output.

Action: Parse the document again with the neccessary output buffer.

3000 XRSN_ATTR_DUPLICATE

Duplicate attributes were found.

Action: Change the document to correct the error and retry.

3001 XRSN_NS_DUPLICATE

Duplicate namespace declaration found.

Action: Change the document to correct the error and retry.

3002 XRSN_NS_ATTR_PREFIX_NOT_DECL

Namespace prefix on attribute not declared.

Action: Change the document to correct the error and retry.

3003 XRSN_NS_ELEM_PREFIX_NOT_DECL

Namespace prefix on element tag not declared.

Action: Change the document to correct the error and retry.

164 z/OS: XML System Services User's Guide and Reference

Reason code value

3004 XRSN_ENC_DETECTED_INVALID

Encoding detected during query is unsupported.

Action: During the query service, an unsupported byte sequence is found at the
beginning of the document.

3006 XRSN_CHAR_ERROR

Incorrectly encoded character found in the input stream.

Action: Contact your system administrator.

3007 XRSN_COMMENT_DASH_MISSING

Comment without starting dash found.

Action: Check the document for a comment markup missing a dash in the
beginning and correct the document.

3008 XRSN_COMMENT_CHAR_INVALID

Comment markup contains incorrect character.

Action: Change the document to correct the error and retry.

3009 XRSN_COMMENT_RIGHT_ANGLE_MISSING

Comment is missing the ending angle bracket at the end of the markup.

Action: Change the document to correct the error and retry.

3010 XRSN_CDATA_KEYWORD_INVALID

CDATA keyword expected but not found.

Action: Change the document to correct the error and retry.

3011 XRSN_CDATA_LEFT_BRACKET_MISSING

Left square bracket expected in CDATA markup.

Action: Change the document to correct the error and retry.

3013 XRSN_CDATA_CHAR_INVALID

A character was found that is not allowed within a CDATA section.

Action: Change the document to correct the error and retry.

3017 XRSN_PI_CHAR_INVALID

A character was found that is not allowed within a Processing Instruction.

Action: Change the document to correct the error and retry.

3018 XRSN_ATTR_NAME_CHAR_INVALID

A character was found that is not allowed within an attribute name.

Action: Change the document to correct the error and retry.

3019 XRSN_ATTR_LNAME_CHAR_INVALID

A character was found that is not allowed within an attribute local name.

Action: Change the document to correct the error and retry.

Reason codes listed by value 165

Reason code value

3020 XRSN_ATTR_EQUAL_MISSING

An incorrect character was found after the attribute name, and the only character
allowed is "=".

Action: Change the document to correct the error and retry.

3021 XRSN_ATTR_QUOTE_MISSING

An incorrect character was found after the attribute "=" character, and the only
characters allowed here is either white space, or a single or double quote.

Action: Change the document to correct the error and retry.

3022 XRSN_ATTR_VALUE_CHAR_INVALID

An incorrect character was found in an attribute value.

Action: Change the document to correct the error and retry.

3023 XRSN_ATTR_REF_CHAR_INVALID

An incorrect character was found in entity reference in an attribute value.

Action: Change the document to correct the error and retry.

3024 XRSN_ATTR_REF_NAME_CHAR_INVALID

An incorrect character was found in entity reference in an attribute value.

Action: Change the document to correct the error and retry.

3025 XRSN_ATTR_REF_VALUE_INVALID

Incorrect character found in character entity reference in an attribute value.

Action: Change the document to correct the error and retry.

3026 XRSN_CONTNT_REF_CHAR_INVALID

An incorrect character was found in entity reference in element content.

Action: Change the document to correct the error and retry.

3027 XRSN_CONTNT_REF_NAME_INVALID

An incorrect character was found in entity reference in element content.

Action: Change the document to correct the error and retry.

3028 XRSN_CONTNT_REF_VALUE_INVALID

An incorrect character was found in character entity reference in element
content.

Action: Change the document to correct the error and retry.

3029 XRSN_MARKUP_INVALID

An incorrect character is found within markup.

Action: Change the document to correct the error and retry.

3030 XRSN_CONTNT_CHAR_INVALID

An incorrect character is found in element content

Action: Change the document to correct the error and retry.

166 z/OS: XML System Services User's Guide and Reference

Reason code value

3031 XRSN_TAG_ELEMNAME_INVALID

An incorrect character is found in an element tag name

Action: Change the document to correct the error and retry.

3032 XRSN_TAG_LNAME_INVALID

An incorrect character is found in an element tag name.

Action: Change the document to correct the error and retry.

3033 XRSN_TAG_CHAR_INVALID

An incorrect character is found in an element start tag.

Action: Change the document to correct the error and retry.

3034 XRSN_TAG_EMPTY_INVALID

An incorrect character is found after the "/" character to end the element tag. The
only character allowed is a greater than symbol to end the empty element tag.

Action: Change the document to correct the error and retry.

3035 XRSN_ENDTAG_NAME_MISMATCH

At the element end tag, a mis-match element name is found compared to the
name of the start element

Action: Change the document to correct the error and retry.

3036 XRSN_ENDTAG_EMPTY_TAG_INVALID

An incorrect character is found in the element end tag after the element name.
The only characters allowed after the name is white space or the greater than
symbol.

Action: Change the document to correct the error and retry.

3038 XRSN_NS_CHAR_INVALID

Incorrect character found in namespace URI.

Action: Change the document to correct the error and retry.

3039 XRSN_NS_WHITESPACE_CHAR_INVALID

Incorrect character in namespace declaration. Expecting either white space or
"=".

Action: Change the document to correct the error and retry.

3040 XRSN_NS_PFX_NAME_INVALID

An incorrect character is found in the prefix name portion of a namespace
declaration.

Action: Change the document to correct the error and retry.

3041 XRSN_NS_QUOTE_MISSING

Incorrect character in namespace declaration after the "=" character. Expected a
single or double quote or a white space character.

Action: Change the document to correct the error and retry.

Reason codes listed by value 167

Reason code value

3042 XRSN_NS_REF_CHAR_INVALID

An incorrect character was found in entity reference in a namespace declaration.

Action: Change the document to correct the error and retry.

3043 XRSN_NS_REF_NAME_CHAR_INVALID

An incorrect character was found in entity reference in a namespace declaration.

Action: Change the document to correct the error and retry.

3044 XRSN_NS_REF_VALUE_INVALID

Incorrect character found in character entity reference in a namespace
declaration.

Action: Change the document to correct the error and retry.

3045 XRSN_DTD_DOCTYPE_INVALID

Incorrect character found while parsing DOCTYPE keyword.

Action: Change the document to correct the error and retry.

3046 XRSN_XML_VER_VALUE_INVALID

An incorrect XML version number was specified. The only allowed values are
"1.0" or "1.1".

Action: Change the document to correct the error and retry.

3047 XRSN_XML_VER_KEYWORD_INVALID

The characters do not match the word "version"

Action: Change the document to correct the error and retry.

3048 XRSN_XML_VER_EQUAL_MISSING

Expected white space or "=" character after "version".

Action: Change the document to correct the error and retry.

3049 XRSN_XML_VER_QUOTE_MISSING

An incorrect character is detected after the "=" where it is expected to be a single
quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

3050 XRSN_XML_CHAR_INVALID

In the XML Declaration after the close of the version value, an incorrect character
is detected.

Action: Change the document to correct the error and retry.

3051 XRSN_XML_NAME_CHAR_INVALID

Incorrect character in XML Declaration. Expected either "s" for standalone, "e"
for encoding, white space or "?".

Action: Change the document to correct the error and retry.

168 z/OS: XML System Services User's Guide and Reference

Reason code value

3052 XRSN_XML_ENC_KEYWORD_INVALID

The characters do not match the word "encoding".

Action: Change the document to correct the error and retry.

3053 XRSN_XML_ENC_EQUAL_MISSING

Expected white space or "=" character after "encoding".

Action: Change the document to correct the error and retry.

3054 XRSN_XML_ENC_QUOTE_MISSING

An incorrect character is detected after the "=" where it is expected to be a single
quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

3055 XRSN_XML_ENC_CHAR_INVALID

An incorrect character is detected in the XML Declaration encoding value.

Action: Change the document to correct the error and retry.

3056 XRSN_XML_STD_KEYWORD_INVALID

The characters do not match the word "standalone"

Action: Change the document to correct the error and retry.

3057 XRSN_XML_STD_VALUE_INVALID

An incorrect value for standalone was specified. The only allowed values are
"yes" or "no".

Action: Change the document to correct the error and retry.

3058 XRSN_XML_STD_EQUAL_MISSING

Expected white space or "=" character after "standalone".

Action: Change the document to correct the error and retry.

3059 XRSN_XML_STD_QUOTE_MISSING

An incorrect character is detected after the "=" where it is expected to be a single
quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

3060 XRSN_XML_END_CHAR_INVALID

An incorrect character is detected at the end of the XML declaration, where "?>"
is expected.

Action: Change the document to correct the error and retry.

3061 XRSN_ENTITY_NOT_DEFINED

Entity not defined or not defined correctly.

Action: Change the document to correct the error and retry.

Reason codes listed by value 169

Reason code value

3062 XRSN_CHAR_INVALID

An incorrect character was detected in the document. Either white space or "<"
was expected.

Action: Change the document to correct the error and retry.

3063 XRSN_PROLOGUE_CHAR_INVALID

The initial character in the document was incorrect. Either white space or "<" was
expected. Possibly the document encoding does not match the parser encoding
specified during initialization.

Action: Change the document to correct the error and retry.

3064 XRSN_XML_DECL_NOT_ALLOWED

Any Characters other than the Byte Order Mark (BOM) are not allowed before the
XML declaration in the XML document.

Action: Change the document to correct the error and retry.

3065 XRSN_MULTIPLE_DOC_ELEMENTS

Multiple elements were found at the document level. Only one is allowed.

Action: Change the document to correct the error and retry.

3066 XRSN_ENTITY_LOOP_REF

An entity refers directly, or indirectly to itself. Recursion is not allowed.

Action: Change the document to correct the error and retry.

3067 XRSN_NS_URI_EMPTY

A non-default namespace declaration contains a URI value of zero length and the
XML version is 1.0.

Action: Change the document to correct the error and retry.

3068 XRSN_INVALID_CHAR_SEQ

An invalid character sequence found in the content portion of the document.

Action: Change the document to correct the error and retry.

3069 XRSN_ENTITY_MARKUP_INCOMPLETE

Incomplete markup in entity.

Action: Change the document to correct the error and retry.

3070 XRSN_TEXT_DECL_INCOMPLETE

The text declaration markup is not well-formed. The document ended within the
text declaration.

Action: Change the document to correct the error and retry.

3071 XRSN_TEXT_VER_VALUE_INVALID

An incorrect version number was specified in the text declaration. The only
allowed values are "1.0" or "1.1".

Action: Change the document to correct the error and retry.

170 z/OS: XML System Services User's Guide and Reference

Reason code value

3072 XRSN_TEXT_VER_KEYWORD_INVALID

The characters do not match the word "version"

Action: Change the document to correct the error and retry.

3073 XRSN_TEXT_VER_EQUAL_MISSING

Expected white space or "=" character after "version"

Action: Change the document to correct the error and retry.

3074 XRSN_TEXT_VER_QUOTE_MISSING

An incorrect character is detected after the "=" where it is expected to be a single
quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

3075 XRSN_TEXT_CHAR_INVALID

Incorrect character detected after the close of the version value in the text
declaration.

Action: Change the document to correct the error and retry.

3076 XRSN_TEXT_NAME_CHAR_INVALID

Incorrect character in text declaration. Expected either "e" for encoding, white
space or "?".

Action: Change the document to correct the error and retry.

3077 XRSN_TEXT_ENC_KEYWORD_INVALID

The characters do not match the word "encoding".

Action: Change the document to correct the error and retry.

3078 XRSN_TEXT_ENC_EQUAL_MISSING

Expected white space or "=" character after "encoding".

Action: Change the document to correct the error and retry.

3079 XRSN_TEXT_ENC_QUOTE_MISSING

An incorrect character is detected after the "=" where it is expected to be a single
quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

3080 XRSN_TEXT_ENC_CHAR_INVALID

An incorrect character is detected in the text declaration encoding value.

Action: Change the document to correct the error and retry.

3081 XRSN_TEXT_END_CHAR_INVALID

An incorrect character is detected at the end of the text declaration, where "?>"
is expected.

Action: Change the document to correct the error and retry.

Reason codes listed by value 171

Reason code value

3082 XRSN_TEXT_DECL_NOT_ALLOWED

text declaration is only allowed in the beginning of each fragment scope defined
by start and end fragment control operation.

Action: Change the document to correct the error and retry.

3085 XRSN_ENTITY_UNRESOLVABLE

Entity references in document fragment cannot be resolved.

Action: Provide the necessary entities and retry.

5000 XRSN_DTD_NAME_CHAR_INVALID

An incorrect character is detected after the root element name of the document
type declaration where only "SYSTEM", "PUBLIC", square bracket, or greater than
characters are allowed.

Action: Change the document to correct the error and retry.

5001 XRSN_DTD_CHAR_INVALID

Incorrect character found in document type declaration.

Action: Change the document to correct the error and retry.

5002 XRSN_DTD_EXTERNALID_INVALID

The external ID keyword does not match the word "SYSTEM" or "PUBLIC".

Action: Change the document to correct the error and retry.

5003 XRSN_DTD_QUOTE_MISSING

Incorrect quotation delimiter after external identifier. It is expected to be a single
quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

5004 XRSN_DTD_FILENAME_INVALID

Incorrect character in external identifier filename.

Action: Change the document to correct the error and retry.

5005 XRSN_SUBSET_CHAR_INVALID

Incorrect character in internal subset of the DTD.

Action: Change the document to correct the error and retry.

5006 XRSN_SUBSET_MARKUP_INVALID

An incorrect character is detected within the markup keyword in the internal
subset of the doctype declaration.

Action: Change the document to correct the error and retry.

5007 XRSN_ELEM_CONTNT_CHAR_INVALID

An incorrect character is found in the element content portion of the element
type declaration located in the internal subset of the doctype declaration.

Action: Change the document to correct the error and retry.

172 z/OS: XML System Services User's Guide and Reference

Reason code value

5008 XRSN_ELEM_CHAR_INVALID

Incorrect character in element declaration in DTD.

Action: Change the document to correct the error and retry.

5009 XRSN_ELEM_LNAME_INVALID

An incorrect character is found in the element name portion of an element
declaration.

Action: Change the document to correct the error and retry.

5010 XRSN_ELEM_ELEMNAME_INVALID

An incorrect character is found in the element name portion of an element
declaration.

Action: Change the document to correct the error and retry.

5011 XRSN_NTTN_CHAR_INVALID

Incorrect character in notation declaration in DTD.

Action: Change the document to correct the error and retry.

5012 XRSN_NTTN_NAME_INVALID

An incorrect character is found in the notation declaration name.

Action: Change the document to correct the error and retry.

5013 XRSN_NTTN_ID_INVALID

The external or public identifier string in the notation declaration does not match
with the word "SYSTEM" or "PUBLIC".

Action: Change the document to correct the error and retry.

5014 XRSN_NTTN_QUOTE_MISSING

Incorrect quotation delimiter after external identifier. It is expected to be a single
quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

5015 XRSN_NTTN_FILENAME_INVALID

Incorrect character in notation identifier literal.

Action: Change the document to correct the error and retry.

5020 XRSN_PEREF_NAME_CHAR_INVALID

Incorrect character in parameter entity reference in DTD.

Action: Change the document to correct the error and retry.

5021 XRSN_ENTY_NAME_CHAR_INVALID

Incorrect character in entity declaration name in DTD.

Action: Change the document to correct the error and retry.

Reason codes listed by value 173

Reason code value

5022 XRSN_ENTY_CHAR_INVALID

Incorrect character in entity declaration in DTD.

Action: Change the document to correct the error and retry.

5023 XRSN_ENTY_VALUE_INVALID

Incorrect character in entity declaration value in DTD.

Action: Change the document to correct the error and retry.

5024 XRSN_ENTY_REF_CHAR_INVALID

An incorrect character was found in entity reference in an entity declaration.

Action: Change the document to correct the error and retry.

5025 XRSN_ENTY_REF_NAME_INVALID

Incorrect character was found in entity reference in an entity declaration.

Action: Change the document to correct the error and retry.

5026 XRSN_ENTY_REF_VALUE_INVALID

Incorrect character found in character entity reference in an entity declaration.

Action: Change the document to correct the error and retry.

5027 XRSN_ENTY_QUOTE_MISSING

Incorrect quotation delimiter in entity declaration in DTD. It is expected to be a
single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

5028 XRSN_ENTY_EXTERNALID_INVALID

The external or public identifier string in the entity declaration does not match
with the word "SYSTEM" or "PUBLIC".

Action: Change the document to correct the error and retry.

5029 XRSN_ENTY_FILENAME_INVALID

Incorrect character in entity identifier value.

Action: Change the document to correct the error and retry.

5030 XRSN_ENTY_NDATA_INVALID

Incorrect character in entity NDATA declaration in DTD.

Action: Change the document to correct the error and retry.

5031 XRSN_ENTY_NDATA_NAME_INVALID

An incorrect character is found in the entity NDATA declaration name.

Action: Change the document to correct the error and retry.

5040 XRSN_ATTL_ELEMNAME_INVALID

An incorrect character is found in the attribute list declaration element name in
the DTD.

Action: Change the document to correct the error and retry.

174 z/OS: XML System Services User's Guide and Reference

Reason code value

5041 XRSN_ATTL_CHAR_INVALID

An incorrect character is found in the attribute list declaration in the DTD.

Action: Change the document to correct the error and retry.

5042 XRSN_ATTL_NAME_CHAR_INVALID

An incorrect character is found in the attribute list declaration attribute name in
the DTD.

Action: Change the document to correct the error and retry.

5043 XRSN_ATTL_LNAME_CHAR_INVALID

An incorrect character is found in the attribute list declaration attribute name in
the DTD.

Action: Change the document to correct the error and retry.

5044 XRSN_ATTL_TYPE_INVALID

Incorrect character in attribute list declaration type. The type must match one of
these strings: "ID","IDREF","IDREFS","ENTITY","ENTITIES",
"CDATA","NMTOKEN","NMTOKENS" or "NOTATION".

Action: Change the document to correct the error and retry.

5045 XRSN_ATTL_ENUMLIST_CHAR_INVALID

Incorrect character is found in the attribute list declaration enumerated list.

Action: Change the document to correct the error and retry.

5046 XRSN_ATTL_DEFVALUE_CHAR_INVALID

Incorrect character is found in attribute list declaration default. Expected white
space, "#", or a single or double quote

Action: Change the document to correct the error and retry.

5047 XRSN_ATTL_DEF_VALUE_INVALID

Incorrect character is found in attribute list declaration default value. Expected
"REQUIRED", "IMPLIED", or "FIXED".

Action: Change the document to correct the error and retry.

5048 XRSN_ATTL_QUOTE_MISSING

Incorrect character is found in attribute list declaration default value. Expected
single quote, double quote or white space.

Action: Change the document to correct the error and retry.

5049 XRSN_ATTL_REF_CHAR_INVALID

An incorrect character was found in entity reference in an attribute list
declaration.

Action: Change the document to correct the error and retry.

Reason codes listed by value 175

Reason code value

5050 XRSN_ATTL_REF_NAME_INVALID

An incorrect character was found in entity reference in an attribute list
declaration.

Action: Change the document to correct the error and retry.

5051 XRSN_ATTL_REF_VALUE_INVALID

Incorrect character found in character entity reference in an attribute list
declaration.

Action: Change the document to correct the error and retry.

7001 XRSN_OIMA_NOT_INITIALIZED

The OIMA provided is unusable.

Action: Change the schema and retry.

7002 XRSN_OIMA_NOT_USABLE

The OIMA provided is unusable because a previous reset failed.

Action: Change the schema and retry.

7003 XRSN_OIMA_SMALL

The OIMA provided is too small.

Action: Change the schema and retry.

7005 XRSN_OIMA_RESIDUAL_DATA

The OIMA is already initialized.

Action: Change the schema and retry.

7007 XRSN_JVM_START_FAILED

The Java Virtual Machine failed to start.

Action: Change the schema and retry.

7008 XRSN_JVM_STOP_FAILED

The Java Virtual Machine failed to stop.

Action: Change the schema and retry.

7009 XRSN_CTLOPTN_UNSUPPORTED

The operation specified for the control parameter is unsupported.

Action: Ensure that the control options specified are valid when specified
together.

7010 XRSN_ALTOSR_NOTLOADED

The Alternate OSR code is not loaded.

Action: Change the schema and retry.

7011 XRSN_JAVACLASS_NOT_FOUND

Java class not found by the ClassLoader.

Action: Change the schema and retry.

176 z/OS: XML System Services User's Guide and Reference

Reason code value

7019 XRSN_FUNC_NAME_NULL

The specified function name is null.

Action: Change the schema and retry.

7021 XRSN_DLL_OPEN_FAILED

Open for the specified DLL failed.

Action: Change the schema and retry.

7023 XRSN_FUNC_RETRIEVE_FAILED

Retrieve for the specified DLL function failed.

Action: Change the schema and retry.

7027 XRSN_JAVA_METHOD_NOT_FOUND

The Java method cannot be found in the class. See the diagnostic area for the
method name.

Action: Change the schema and retry.

7029 XRSN_JAVA_METHOD_CALL_FAILED

A Java method call failed.

Action: Change the schema and retry.

7031 XRSN_DLL_CLOSE_FAILED

Close for the specified DLL failed.

Action: Change the schema and retry.

7033 XRSN_JNI_METHOD_FAILED

A JNI method returned with an exception.

Action: Change the schema and retry.

7035 XRSN_OBJECT_NOT_CREATED

Failed to create a new Java object.

Action: Change the schema and retry.

7037 XRSN_SCHEMA_NOT_LOADED

No schemas have been loaded into the OSR generator.

Action: Change the schema and retry.

7039 XRSN_OIMAPTR_NOT_PROVIDED

No OIMA pointer has been specified.

Action: Change the schema and retry.

7043 XRSN_GEN_OSR_ASM_FAILED

OSR generation failed in the assemble phase.

Action: Change the schema and retry.

Reason codes listed by value 177

Reason code value

7045 XRSN_GEN_OSR_COMP_FAILED

OSR generation failed in the compile phase.

Action: Change the schema and retry.

7046 XRSN_GEN_OSR_FAILED

OSR generation failed.

Action: Change the schema and retry.

7049 XRSN_OSR_NOT_VALID

The OSR to load is not valid.

Action: Change the schema and retry.

7050 XRSN_OSR_MALLOC_FAILED

The OSR generator could not allocate memory.

Action: Change the schema and retry.

7051 XRSN_OSR_MFREE_FAILED

The OSR generator could not free memory.

Action: Change the schema and retry.

7055 XRSN_JAVAEXCEPTION_DIAG_FAILED

Could not save the Java exception in the diagnostic area.

Action: Change the schema and retry.

7057 XRSN_JAVAEXCEPTION_INCOMPLETE

The Java exception saved in the diagnostic area is incomplete.

Action: Change the schema and retry.

7059 XRSN_JAVARSNCODE_NOT_FOUND

Unable to obtain the reason code set by the Java exception.

Action: Change the schema and retry.

7061 XRSN_INCORRECT_SCHEMA_URI

The URI specified is incorrect.

Action: Change the schema and retry.

7063 XRSN_JAVARSNCODE_UNKNOWN

No specific reason code was set by Java.

Action: Change the schema and retry.

7065 XRSN_SCHEMA_URI_NOT_FOUND

The schema identified by the specified URI is not found.

Action: Change the schema and retry.

178 z/OS: XML System Services User's Guide and Reference

Reason code value

7067 XRSN_SCHEMA_LOAD_FAILED

Unable to load the specified schema.

Action: Change the schema and retry.

7069 XRSN_OSR_URI_NOT_FOUND

The OSR identified by the specified URI is not found.

Action: Change the schema and retry.

7071 XRSN_STRINGID_SYSSVC_NULL

The system service parameter specified is null.

Action: Change the schema and retry.

7079 XRSN_JAVAERRORMESSAGE_INCOMPLETE

The Java error information saved in the diagnostic area is incomplete.

Action: Change the schema and retry.

7081 XRSN_SCHEMA_INCORRECT

The specified schema contains an error that caused an exception.

Action: Change the schema and retry.

7082 XRSN_SCHEMA_WARNING

The specified schema contains an error that caused a warning.

Action: Change the schema and retry.

7083 XRSN_JAVAERRORMESSAGE_DIAG_FAILED

The Java error information saved in the diagnostic area is not valid.

Action: Change the schema and retry.

7087 XRSN_OSR_UNSUPPORTED_FEATURE

An unsupported feature flag was specified.

Action: Change the schema and retry.

7089 XRSN_OSR_PARM_NOT_SPECIFIED

No OSR parameter was specified.

Action: Change the schema and retry.

7091 XRSN_SCHEMA_PARM_NOT_SPECIFIED

No schema parameter was specified.

Action: Change the schema and retry.

7093 XRSN_STRIDTBL_PARM_NOT_SPECIFIED

No stringID table parameter was specified.

Action: Change the document to correct the error and retry.

Reason codes listed by value 179

Reason code value

7095 XRSN_JAVAPROPERTY_MALFORMED_URL

A well-formed URL could not be constructed for the specified class.

Action: Contact your system administrator.

7096 XRSN_ENTITY_RESOLVER_NOTFOUND

The entity resolver could not be found.

Action: Change the schema and retry.

7097 XRSN_JAVAPROPERTY_CLASS_NOTFOUND

The OSR generator classes could not be found.

Action: Contact your system administrator.

7099 XRSN_CLSLOADER_ACCESS_FAILED

The OSR generator classes could not be loaded.

Action: Contact your system administrator.

7101 XRSN_CLSLOADER_INSTANTIATION_FAILED

The OSR generator classes could not be instantiated.

Action: Contact your system administrator.

7103 XRSN_OSR_NOT_LOADED

No OSRs have been loaded into the OSR generator.

Action: Change the schema and retry.

7107 XRSN_JVM_OUT_OF_MEMORY

The Java Virtual Machine is out of memory.

Action: Contact your system administrator.

7109 XRSN_JVM_STACK_OVERFLOW

The Java Virtual Machine stack overflow occurs.

Action: Contact your system administrator.

7111 XRSN_JVM_INTERNAL_ERROR

Internal error has occurred in the Java Virtual Machine.

Action: Contact your system administrator.

7113 XRSN_JVM_UNKNOWN_ERROR

An unknown and serious exception has occurred in the JVM.

Action: Contact your system administrator.

8000 XRSN_XML_QUOTEREQUIREDINENTITYVALUE

An entity value must begin with a single or double quote.

Action: Change the document or schema to correct and retry.

180 z/OS: XML System Services User's Guide and Reference

Reason code value

8001 XRSN_XML_INVCHARINENTITYVALUE

An invalid XML character was found in the literal entity value.

Action: Change the document or schema to correct and retry.

8002 XRSN_XML_INVCHARINSYSTEMID

An invalid XML character was found in a system identifier.

Action: Change the document or schema to correct and retry.

8003 XRSN_XML_INVCHARINPUBLICID

An invalid XML character was found in a public identifier.

Action: Change the document or schema to correct and retry.

8004 XRSN_XML_INVCHARINDOCTYPEDECL

An invalid XML character was found in a document declaration.

Action: Change the document or schema to correct and retry.

8005 XRSN_XML_INVCHARININTERNALSUBSET

An invalid XML character found in the internal subset of the DTD.

Action: Change the document or schema to correct and retry.

8006 XRSN_XML_INVCHARINEXTERNALSUBSET

An invalid XML character found in the external subset of the DTD.

Action: Change the document or schema to correct and retry.

8007 XRSN_XML_INVCHARINIGNORESECT

An invalid XML character was found in the excluded conditional section.

Action: Change the document or schema to correct and retry.

8008 XRSN_XML_QUOTEREQUIREDINSYSTEMID

A system identifier must begin with either a single or double quote.

Action: Change the document or schema to correct and retry.

8009 XRSN_XML_SYSTEMIDUNTERMINATED

A system identifier must end with a matching quote.

Action: Change the document or schema to correct and retry.

8010 XRSN_XML_QUOTEREQUIREDINPUBLICID

A public identifier must begin with a single or double quote.

Action: Change the document or schema to correct and retry.

8011 XRSN_XML_PUBLICIDUNTERMINATED

A public identifier must end with a matching quote.

Action: Change the document or schema to correct and retry.

Reason codes listed by value 181

Reason code value

8012 XRSN_XML_PUBIDCHARILLEGAL

A public identifier character is not permitted.

Action: Change the document or schema to correct and retry.

8013 XRSN_XML_ENTITYVALUEUNTERMINATED

The literal value for the entity must end with a matching quote.

Action: Change the document or schema to correct and retry.

8014 XRSN_XML_SPACEREQDINDECL

White space is required after DOCTYPE in the document type declaration.

Action: Change the document or schema to correct and retry.

8015 XRSN_XML_ROOTELEMENTTYPEREQUIRED

A root element type must appear after DOCTYPE in the document type
declaration.

Action: Change the document or schema to correct and retry.

8016 XRSN_XML_DOCTYPEDECLUNTERMINATED

A document type declaration for the root element type must end with a ">".

Action: Change the document or schema to correct and retry.

8017 XRSN_XML_PEREFERENCEWITHINMARKUP

A parameter entity reference cannot occur within markup in the internal subset
of the DTD.

Action: Change the document or schema to correct and retry.

8018 XRSN_XML_PEREFINCOMPLETEMARKUP

A parameter entity reference cannot occur within the internal subset of the DTD.

Action: Change the document or schema to correct and retry.

8019 XRSN_XML_MARKUPNORECOGNIZEDINDTD

The markup declarations contained or pointed to by the document type
declaration must be well-formed.

Action: Change the document or schema to correct and retry.

8020 XRSN_XML_XMLSPACEDECLARATIONILLEGAL

The attribute declaration for xml:space must be given an enumerated type whose
only possible values are default and preserve.

Action: Change the document or schema to correct and retry.

8021 XRSN_XML_SPACEREQDETYPEINEDECL

A space is required before an element type.

Action: Change the document or schema to correct and retry.

182 z/OS: XML System Services User's Guide and Reference

Reason code value

8022 XRSN_XML_ETYPEREQDINELEMENTDECL

An element type is required in an element declaration.

Action: Change the document or schema to correct and retry.

8023 XRSN_XML_SPACEREQDINELEMENTDEC

White space is required after the element type in the element type declaration.

Action: Change the document or schema to correct and retry.

8024 XRSN_XML_CONTENTSPECREQDINEDECL

A constraint is required after the element type in the element type declaration.

Action: Change the document or schema to correct and retry.

8025 XRSN_XML_ELEMENTDECLUNTERMINATED

The declaration for an element must end with ">".

Action: Change the document or schema to correct and retry.

8026 XRSN_XML_OPENPARENORELEREQDINCHIL

A "(" or an element type is required in the declaration of an element.

Action: Change the document or schema to correct and retry.

8027 XRSN_XML_CLOSEDPARENREQDINCHIL

A ")" is required in the declaration.

Action: Change the document or schema to correct and retry.

8028 XRSN_XML_ELEMTYPEREQDINMIXEDCON

An element type is required in mixed content.

Action: Change the document or schema to correct and retry.

8029 XRSN_XML_CLOSEPARENTREQDINMIXEDCON

A ")" is required in the declaration of an element.

Action: Change the document or schema to correct and retry.

8030 XRSN_XML_MIXEDCONTENTUNTERMINATED

The mixed content model must end with ")*" when the types of child elements
are constrained.

Action: Change the document or schema to correct and retry.

8031 XRSN_XML_SPACEREQDINATTLISTDECL

White space is required after !ATTLIST in an attribute list declaration.

Action: Change the document or schema to correct and retry.

8032 XRSN_XML_ELEMTYPEREQDINATTLISTDECL

An element type is required in an attribute list declaration.

Action: Change the document or schema to correct and retry.

Reason codes listed by value 183

Reason code value

8033 XRSN_XML_SPACEREQDINATTDEF

White space is required after !ATTLIST in an attribute list declaration.

Action: Change the document or schema to correct and retry.

8034 XRSN_XML_ATTRNAMEREQDINATTDEF

The attribute name must be specified in the attribute list declaration for the
element.

Action: Change the document or schema to correct and retry.

8035 XRSN_XML_SPACEREQDBATINATTDEF

White space is required before an attribute type in an attribute list declaration.

Action: Change the document or schema to correct and retry.

8036 XRSN_XML_ATTTYPEREQDINATTDEF

The attribute type is required in the declaration of the attribute for the element.

Action: Change the document or schema to correct and retry.

8037 XRSN_XML_SPACEREQDBDDINATTDEF

White space is required before the default declaration in an attribute list
declaration.

Action: Change the document or schema to correct and retry.

8038 XRSN_XML_DEFDECLREQDINATTDEF

The attribute default is required in the declaration in an attribute list declaration.

Action: Change the document or schema to correct and retry.

8039 XRSN_XML_SPACEREQDANOTINNOTTYPE

White space must follow NOTATION in the attribute declaration.

Action: Change the document or schema to correct and retry.

8040 XRSN_XML_OPENPARENREQDINNOTTYPE

The "(" character must follow NOTATION in the attribute declaration.

Action: Change the document or schema to correct and retry.

8041 XRSN_XML_NAMEREQDINNOTTYPE

The notation name is required in the notation type list for the attribute
declaration.

Action: Change the document or schema to correct and retry.

8042 XRSN_XML_NOTTYPEUNTERMINATED

The notation type list must end with a ")" in the attribute declaration.

Action: Change the document or schema to correct and retry.

184 z/OS: XML System Services User's Guide and Reference

Reason code value

8043 XRSN_XML_NMTOKREQDINENUM

The name token is required in the enumerated type list for the attribute
declaration.

Action: Change the document or schema to correct and retry.

8044 XRSN_XML_ENUMUNTERMINATED

The enumerated type list must end with ")" in the attribute declaration.

Action: Change the document or schema to correct and retry.

8045 XRSN_XML_SPACEREQDINDEFDECL

White space must appear after FIXED in the attribute declaration.

Action: Change the document or schema to correct and retry.

8046 XRSN_XML_INCLUDESECTUNTERMINATED

The included conditional section must end with "".

Action: Change the document or schema to correct and retry.

8047 XRSN_XML_IGNORESECTUNTERMINATED

The excluded conditional section must end with "".

Action: Change the document or schema to correct and retry.

8048 XRSN_XML_NAMEREQDINPEREF

The entity name must immediately follow the "%" in the parameter entity
reference.

Action: Change the document or schema to correct and retry.

8049 XRSN_XML_SEMICOLONREQDINPEREF

The parameter entity reference must end with the semicolon delimiter.

Action: Change the document or schema to correct and retry.

8050 XRSN_XML_SPACEREQDBENINENTITYDECL

White space is required before the entity name in the entity declaration.

Action: Change the document or schema to correct and retry.

8051 XRSN_XML_SPACEREQDBPINPEDECL

White space is required before the percent sign in the parameter entity
declaration.

Action: Change the document or schema to correct and retry.

8052 XRSN_XML_SPACEREQDBEINPEDECL

White space is required between the "%" and the entity name in the parameter
entity declaration.

Action: Change the document or schema to correct and retry.

Reason codes listed by value 185

Reason code value

8053 XRSN_XML_ENTITYNAMEREQINEDECL

The name of the entity is required in the entity declaration.

Action: Change the document or schema to correct and retry.

8054 XRSN_XML_SPACEREQDAENAMEINEDECL

White space is required between the entity name and the definition in the entity
declaration.

Action: Change the document or schema to correct and retry.

8055 XRSN_XML_SPACEREQDBNDATAINUEDECL

White space is required before NDATA in the declaration for the entity.

Action: Change the document or schema to correct and retry.

8056 XRSN_XML_SPACEREQDBNNAMEINUEDECL

White space is required between "NDATA" and the notation name in the
declaration for the entity.

Action: Change the document or schema to correct and retry.

8057 XRSN_XML_NOTATIONNAMEREQDINUEDECL

The notation name is required after NDATA in the declaration for the entity.

Action: Change the document or schema to correct and retry.

8058 XRSN_XML_ENTITYDECLUNTERMINATED

The declaration for the entity must end with ">".

Action: Change the document or schema to correct and retry.

8059 XRSN_XML_EXTERNALIDREQD

The external entity declaration must begin with either SYSTEM or PUBLIC.

Action: Change the document or schema to correct and retry.

8060 XRSN_XML_SPACEREQDBPLINEXTERNALID

White space is required between PUBLIC and the public identifier.

Action: Change the document or schema to correct and retry.

8061 XRSN_XML_SPACEREQDAPLINEXTERNALID

White space is required between the public identifier and the system identifier.

Action: Change the document or schema to correct and retry.

8062 XRSN_XML_SPACEREQDBSLINEXTERNALID

White space is required between SYSTEM and the system identifier.

Action: Change the document or schema to correct and retry.

8063 XRSN_XML_URIFRAGINSYSTEMID

The fragment identifier should not be specified as part of the system identifier.

Action: Change the document or schema to correct and retry.

186 z/OS: XML System Services User's Guide and Reference

Reason code value

8064 XRSN_XML_SPACEREQDBNNINNOTATIONDECL

White space is required before the notation name in the notation declaration.

Action: Change the document or schema to correct and retry.

8065 XRSN_XML_NOTATIONNAMEREQDINNOTDECL

The name of the notation is required in the notation declaration.

Action: Change the document or schema to correct and retry.

8066 XRSN_XML_SPACEREQDANNINNOTATIONDECL

White space is required after the notation name in the notation declaration.

Action: Change the document or schema to correct and retry.

8067 XRSN_XML_NOTATIONDECLUNTERMINATED

The declaration for the notation must end with a ">".

Action: Change the document or schema to correct and retry.

8068 XRSN_XML_UNDECLAREDELEMINCONTSPEC

The content model of the element refers to the undeclared element.

Action: Change the document or schema to correct and retry.

8069 XRSN_XML_DUPLICATEATTDEF

There is a duplicate attribute definition found.

Action: Change the document or schema to correct and retry.

8070 XRSN_XML_ROOTELEMTMUSTMATCHDOCTDECL

The root element type must match the document type declaration.

Action: Change the document or schema to correct and retry.

8071 XRSN_XML_IMPROPERDECLNESTING

The replacement text of a parameter entity must include properly nested
declarations.

Action: Change the document or schema to correct and retry.

8072 XRSN_XML_WSINELEMCONTENTWHENSA

White space must not occur between elements declared in an external parsed
entity with element content in a standalone document.

Action: Change the document or schema to correct and retry.

8073 XRSN_XML_REFTOEXTDECLAREDENTWHENSA

The reference to an entity declared in an external parsed entity is not permitted
in a standalone document.

Action: Change the document or schema to correct and retry.

8074 XRSN_XML_EXTENTITYNOTPERMITED

The reference to an external entity is not permitted in a standalone document.

Action: Change the document or schema to correct and retry.

Reason codes listed by value 187

Reason code value

8075 XRSN_XML_ATTVALCHANGEDDURNORMWHENSA

The value of an attribute must not be changed by normalization in a standalone
document.

Action: Change the document or schema to correct and retry.

8076 XRSN_XML_DEFATTNOTSPECIFIED

An attribute has a default value and must be specified in a standalone document.

Action: Change the document or schema to correct and retry.

8077 XRSN_XML_CONTENTINCOMPLETE

The content of an element type is incomplete.

Action: Change the document or schema to correct and retry.

8078 XRSN_XML_CONTENTINVALID

The content is invalid.

Action: Change the document or schema to correct and retry.

8079 XRSN_XML_ELEMENTNOTDECLARED

An element must be declared.

Action: Change the document or schema to correct and retry.

8080 XRSN_XML_ATTRIBUTENOTDECLARED

An attribute must be declared.

Action: Change the document or schema to correct and retry.

8081 XRSN_XML_ELEMENTALREADYDECLARED

An element type must not be declared more than once.

Action: Change the document or schema to correct and retry.

8082 XRSN_XML_IMPROPERGROUPNESTING

The replacement text of a parameter entity must include properly nested pairs of
parentheses.

Action: Change the document or schema to correct and retry.

8083 XRSN_XML_DUPTYPEINMIXEDCONTENT

A duplicate type found in a mixed content declaration.

Action: Change the document or schema to correct and retry.

8084 XRSN_XML_NOTATIONONEMPTYELEMENT

For compatibility, an attribute of type NOTATION must not be declared on an
element declared EMPTY.

Action: Change the document or schema to correct and retry.

188 z/OS: XML System Services User's Guide and Reference

Reason code value

8085 XRSN_XML_ENTITIESINVALID

Attribute value of type ENTITIES must be the name of one or more unparsed
entities.

Action: Change the document or schema to correct and retry.

8086 XRSN_XML_ENTITYINVALID

An attribute value of type ENTITY must be the name of an unparsed entity.

Action: Change the document or schema to correct and retry.

8087 XRSN_XML_IDDEFTYPEINVALID

An ID attribute must have a declared default of #IMPLIED or #REQUIRED.

Action: Change the document or schema to correct and retry.

8088 XRSN_XML_IDINVALID

An attribute value of type ID must be a name.

Action: Change the document or schema to correct and retry.

8089 XRSN_XML_IDNOTUNIQUE

An attribute value of type ID must be unique within the document.

Action: Change the document or schema to correct and retry.

8090 XRSN_XML_IDREFINVALID

An attribute value of type IDREF must be a name.

Action: Change the document or schema to correct and retry.

8091 XRSN_XML_IDREFSINVALID

An attribute value of type IDREFS must be one or more names.

Action: Change the document or schema to correct and retry.

8092 XRSN_XML_ATTVALUENOTINLIST

An attribute value is not in the list.

Action: Change the document or schema to correct and retry.

8093 XRSN_XML_NMTOKENINVALID

An attribute value of type NMTOKENS must be a name token.

Action: Change the document or schema to correct and retry.

8094 XRSN_XML_NMTOKENSINVALID

An attribute value for type NMTOKENS must be one or more name tokens.

Action: Change the document or schema to correct and retry.

8095 XRSN_XML_ELEMWITHIDREQD

An element with an ID is required.

Action: Change the document or schema to correct and retry.

Reason codes listed by value 189

Reason code value

8096 XRSN_XML_MORETHANONEIDATTR

A second attribute of type ID is not permitted.

Action: Change the document or schema to correct and retry.

8097 XRSN_XML_MORETHANONENOTATTR

A second attribute of type NOTATION is not permitted.

Action: Change the document or schema to correct and retry.

8098 XRSN_XML_DUPTOKENINLIST

The enumerated type list must not contain duplicate tokens.

Action: Change the document or schema to correct and retry.

8099 XRSN_XML_FIXATTVALUEINVALID

A FIXED attribute value is invalid.

Action: Change the document or schema to correct and retry.

8100 XRSN_XML_REQDATTNOTSPECIFIED

An attribute is required and must be specific for the element type.

Action: Change the document or schema to correct and retry.

8101 XRSN_XML_ATTDEFINVALID

The default value must meet the lexical type constraints declared for the
attribute.

Action: Change the document or schema to correct and retry.

8102 XRSN_XML_IMPROPERCONDSECTNESTING

The replacement text of the parameter entity must include properly nested
conditional sections.

Action: Change the document or schema to correct and retry.

8103 XRSN_XML_NOTATIONNOTDECLFORNOTTATT

The notation must be declared when referenced in the notation type list for the
attribute.

Action: Change the document or schema to correct and retry.

8104 XRSN_XML_NOTATIONNOTDECLFORUPEDECL

The notation must be declared when referenced in the unparsed entity
declaration.

Action: Change the document or schema to correct and retry.

8105 XRSN_XML_UNIQUENOTNAME

Only one notation declaration can declare a given name.

Action: Change the document or schema to correct and retry.

190 z/OS: XML System Services User's Guide and Reference

Reason code value

8106 XRSN_XML_REFTOEXTENTITY

The external entity reference is not permitted in an attribute value.

Action: Change the document or schema to correct and retry.

8107 XRSN_XML_PENOTDECLARED

The parameter entity was referenced but not declared.

Action: Change the document or schema to correct and retry.

8108 XRSN_XML_REFTOUNPENTITY

The unparsed reference is not permitted.

Action: Change the document or schema to correct and retry.

8109 XRSN_XML_RECURSIVEREFERENCE

A recursive reference was found.

Action: Change the document or schema to correct and retry.

8110 XRSN_XML_RECURSIVEPEREFERENCE

A recursive PE reference was found.

Action: Change the document or schema to correct and retry.

8111 XRSN_XML_ENCODINGNOTSUPPORTED

The encoding is not supported in the entity.

Action: Change the document or schema to correct and retry.

8112 XRSN_XML_ENCODINGREQD

A parsed entity not encoded in either UTF-8 or UTF-16 must contain an encoding
declaration.

Action: Change the document or schema to correct and retry.

8200 XRSN_IMP_UNABLETOCONVERTCHAR

Unable to convert an out of range unicode character.

Action: Change the document or schema to correct and retry.

8201 XRSN_IMP_INSUFFINPUTTODECCHAR

There is insufficient input to decode the character.

Action: Change the document or schema to correct and retry.

8202 XRSN_IMP_MISSING2NDHALFOFPAIR

A surrogate pair is missing its second half for a unicode character.

Action: Change the document or schema to correct and retry.

8203 XRSN_IMP_INVAL2NDHALFOFPAIR

An invalid second half of a surrogate pair for a unicode character was found.

Action: Change the document or schema to correct and retry.

Reason codes listed by value 191

Reason code value

8204 XRSN_IMP_INVAL1STHALFOFPAIR

An invalid first half of a surrogate pair for a unicode character was found.

Action: Change the document or schema to correct and retry.

8205 XRSN_IMP_BOMREQD

A byte order mark is required.

Action: Change the document or schema to correct and retry.

8206 XRSN_IMP_INVUTF8SURENCODING

An invalid UTF-8 surrogate encoding found.

Action: Change the document or schema to correct and retry.

8207 XRSN_IMP_PARTIALMPCHARSEQ

A partial multipart character sequence found.

Action: Change the document or schema to correct and retry.

8208 XRSN_IMP_INCONSISTENTENC

An encoding name and byte stream contents are inconsistent.

Action: Change the document or schema to correct and retry.

8209 XRSN_IMP_INVUTF8CHARENC

An invalid UTF-8 character encoding was found.

Action: Change the document or schema to correct and retry.

8210 XRSN_IMP_RUNTIMEIOERROR

A runtime IO error has occurred.

Action: Change the document or schema to correct and retry.

8212 XRSN_MULTIFRAGMENT_NOT_ALLOWED

Multiple elements values are not allowed in the document fragment for validation
in fragment parsing.

Action: Change the document fragment with a single element and retry.

8400 XRSN_DEM_ROOTELEMENTREQD

The root element is required in a well-formed document.

Action: Change the document or schema to correct and retry.

8401 XRSN_DEM_INVCHARINCDSECT

An invalid XML character was found in the CDATA section of the document.

Action: Change the document or schema to correct and retry.

8402 XRSN_DEM_INVCHARINCONTENT

An invalid XML character was found in the element content of the document.

Action: Change the document or schema to correct and retry.

192 z/OS: XML System Services User's Guide and Reference

Reason code value

8403 XRSN_DEM_INVCHARINMISC

An invalid XML character was found in the markup after the end of the element
content.

Action: Change the document or schema to correct and retry.

8404 XRSN_DEM_INVCHARINPROLOG

An invalid XML character was found in the prolog of a document.

Action: Change the document or schema to correct and retry.

8405 XRSN_DEM_CDENDINCONTENT

The character sequence must not appear in content unless used to mark the end
of a CDATA section.

Action: Change the document or schema to correct and retry.

8406 XRSN_DEM_CDSECTUNTERMINATED

The CDATA section must end with]]>.

Action: Change the document or schema to correct and retry.

8407 XRSN_DEM_EQREQDINXMLDECL

The equal character must follow the keyword in the XML declaration.

Action: Change the document or schema to correct and retry.

8408 XRSN_DEM_QUOTEREQDINXMLDECL

This value in the XML declaration must be a quoted string.

Action: Change the document or schema to correct and retry.

8409 XRSN_DEM_XMLDECLUNTERMINATED

The XML declaration must end with ?>.

Action: Change the document or schema to correct and retry.

8410 XRSN_DEM_VERSIONINFOREQD

The version is required in the XML declaration.

Action: Change the document or schema to correct and retry.

8411 XRSN_DEM_MARKUPNOTRECINPROLOG

The markup in the document preceding the root element must be well-formed.

Action: Change the document or schema to correct and retry.

8412 XRSN_DEM_MARKUPNORECINMISC

The markup in the document following the root element must be well-formed.

Action: Change the document or schema to correct and retry.

8413 XRSN_DEM_SDDECLINVALID

The standalone document declaration must be yes or no.

Action: Change the document or schema to correct and retry.

Reason codes listed by value 193

Reason code value

8414 XRSN_DEM_ETAGREQD

End-tag is required.

Action: Change the document or schema to correct and retry.

8415 XRSN_DEM_ELEMUNTERMINATED

The element must be followed by either attribute specifications, > or />.

Action: Change the document or schema to correct and retry.

8416 XRSN_DEM_EQREQDINATTR

The attribute name must be followed by the = character.

Action: Change the document or schema to correct and retry.

8417 XRSN_DEM_ATTRNOTUNQ

The attribute was already specified for the element.

Action: Change the document or schema to correct and retry.

8418 XRSN_DEM_ETAGUNTERM

The end-tag for the element must end with a > delimiter.

Action: Change the document or schema to correct and retry.

8419 XRSN_DEM_MARKUPNORECINCONT

The content of elements must consist of well-formed character data or markup.

Action: Change the document or schema to correct and retry.

8420 XRSN_DEM_ELEMENTMISMATCH

The element must start and end within the same entity.

Action: Change the document or schema to correct and retry.

8421 XRSN_DEM_INVALCHARINATTRVAL

An invalid XML character was found in the attribute value.

Action: Change the document or schema to correct and retry.

8422 XRSN_DEM_INVALCHARINCOMM

An invalid XML character was found in the comment.

Action: Change the document or schema to correct and retry.

8423 XRSN_DEM_INVALCHARINPI

An invalid XML character was found in the processing instruction.

Action: Change the document or schema to correct and retry.

8424 XRSN_DEM_QUOTEREQDINATTRVAL

The value of an attribute must begin with either a single or double quote
character.

Action: Change the document or schema to correct and retry.

194 z/OS: XML System Services User's Guide and Reference

Reason code value

8425 XRSN_DEM_LESSTHANINATTRVAL

The value of the attribute must not contain the < character.

Action: Change the document or schema to correct and retry.

8426 XRSN_DEM_ATTRVALUNTERM

The attribute value must end with the matching quote character.

Action: Change the document or schema to correct and retry.

8427 XRSN_DEM_INVALCOMMSTART

The comment must begin with a comment start sequence.

Action: Change the document or schema to correct and retry.

8428 XRSN_DEM_DASHDASHINCOMM

A double hyphen is not allowed in a comment.

Action: Change the document or schema to correct and retry.

8429 XRSN_DEM_COMMENTUNTERM

The comment must end with a comment ending sequence.

Action: Change the document or schema to correct and retry.

8430 XRSN_DEM_PITARGETREQD

The processing instruction must begin with the name of the target.

Action: Change the document or schema to correct and retry.

8431 XRSN_DEM_SPACEREQDINPI

A white space character is required between the processing instruction target
and the data.

Action: Change the document or schema to correct and retry.

8432 XRSN_DEM_PIUNTERMINATED

The processing instruction must end with ?>.

Action: Change the document or schema to correct and retry.

8433 XRSN_DEM_RESERVEDPITARGET

The processing instruction target matching [xX][mM][lL] is not allowed.

Action: Change the document or schema to correct and retry.

8434 XRSN_DEM_VERNOTSUPPORTED

The XML version specified is not supported.

Action: Change the document or schema to correct and retry.

8435 XRSN_DEM_DIGREQDINCHARREF

A decimal representation must immediately follow the &# in the character
reference.

Action: Change the document or schema to correct and retry.

Reason codes listed by value 195

Reason code value

8436 XRSN_DEM_HEXREQDINCHARREF

A hexadecimal representation must immediately follow the &#x in the character
reference.

Action: Change the document or schema to correct and retry.

8437 XRSN_DEM_SEMICOLONREQDINCHARREF

The character reference must end with a semicolon delimiter.

Action: Change the document or schema to correct and retry.

8438 XRSN_DEM_INVCHARREF

The character reference contains an invalid character.

Action: Change the document or schema to correct and retry.

8439 XRSN_DEM_NAMEREQDINREF

The entity name must immediately follow the & in the entity reference.

Action: Change the document or schema to correct and retry.

8440 XRSN_DEM_SEMICOLONREQDINREF

The reference to the entity must end with a semicolon delimiter.

Action: Change the document or schema to correct and retry.

8441 XRSN_DEM_EQREQDINTDECL

The = character is required in the text declaration.

Action: Change the document or schema to correct and retry.

8442 XRSN_DEM_QUOTEREQDINTDECL

The value in the text declaration must be a quoted string.

Action: Change the document or schema to correct and retry.

8443 XRSN_DEM_SPACEREQDINTDECL

White space is required between the version and the encoding declaration.

Action: Change the document or schema to correct and retry.

8444 XRSN_DEM_TEXTDECLUNTERM

The text declaration must end with ?>.

Action: Change the document or schema to correct and retry.

8445 XRSN_DEM_ENCDECLREQD

The encoding is required in the text declaration.

Action: Change the document or schema to correct and retry.

8446 XRSN_DEM_ENCDECLINV

The encoding name is invalid.

Action: Change the document or schema to correct and retry.

196 z/OS: XML System Services User's Guide and Reference

Reason code value

8447 XRSN_DEM_ENTNOTDECL

A general entity was referenced but not declared.

Action: Change the document or schema to correct and retry.

8448 XRSN_DEM_COLONINNAME

Namespaces disallow a colon character except in element types or attribute
names.

Action: Change the document or schema to correct and retry.

8449 XRSN_DEM_TWOCOLONSQN

Namespaces allows only one colon character in element types or attribute
names.

Action: Change the document or schema to correct and retry.

8450 XRSN_DEM_PREFDECL

The namespace prefix was not declared.

Action: Change the document or schema to correct and retry.

8451 XRSN_DEM_PREFLEGAL

The namespace name for prefix xml is not bound to a legal namespace name.

Action: Change the document or schema to correct and retry.

8452 XRSN_DEM_NSNAMEEMPTY

The namespace name declared for the prefix may not be empty.

Action: Change the document or schema to correct and retry.

8453 XRSN_DEM_NSRSRD

The namespace prefix is bound to the reserved namespace name.

Action: Change the document or schema to correct and retry.

8454 XRSN_DEM_NSPREFRSRD

The namespace prefix "xmlns" must not be declared.

Action: Change the document or schema to correct and retry.

8500 XRSN_XDBX_DOCID_INCORRECT

The document identifier for the XDBX stream must be "#xCA #x3B".

Action: Change the document to correct the error and retry.

8501 XRSN_XDBX_HDRLEN_INCORRECT

The length of the XDBX document header is a one byte value. This value does not
including the magic number or the length byte itself. The value must be at least
"#x5" for the XDBX major version 1.

Action: Change the document to correct the error and retry.

Reason codes listed by value 197

Reason code value

8502 XRSN_XDBX_VERSION_NOT_SUPPORTED

This version of the XDBX document encoder is not supported.

Action: Change the document to correct the error and retry.

8503 XRSN_XDBX_STRIDS_NOT_USED

The stringID encoding flag is missing from the header of the XDBX stream.

Action: Change the document to correct the error and retry.

8504 XRSN_XDBX_STRID_NOT_FOUND

An attempt was made to resolve a stringID that has not been specified.

Action: Change the document to correct the error and retry.

8505 XRSN_XDBX_STREAM_INCORRECT

One or more bytes from the XDBX input stream are incorrect.

Action: Change the document to correct the error and retry.

8506 XRSN_XDBX_TAG_UNEXPECTED

The current tag in the XDBX stream is not expected.

Action: Change the document to correct the error and retry.

8507 XRSN_XDBX_SEQ_UNSUPPORTED

Sequences of XDBX items are not supported.

Action: Change the document to correct the error and retry.

8508 XRSN_XDBX_STRID_INCORRECT

The value of the StringID is not a legitimate positive number.

Action: Change the document to correct the error and retry.

8509 XRSN_XDBX_STANDALONE_INCORRECT

The standalone value is incorrect. The only recognized values are 0 (FALSE) or 1
(TRUE).

Action: Change the document to correct the error and retry.

8510 XRSN_XDBX_MISSING_ROOT_ELEMENT

The XDBX stream requires at least one element and none were found.

Action: Change the document to correct the error and retry.

8511 XRSN_XDBX_DUPLICATE_STRID

The StringID value is duplicate of one of the previous ones.

Action: Change the document to correct the error and retry.

8600 XRSN_VME_INVATTVALUE

The attribute value is not valid with respect to its type.

Action: Change the document or schema to correct and retry.

198 z/OS: XML System Services User's Guide and Reference

Reason code value

8601 XRSN_VME_INVATTVALUEFORFIXED

The attribute value is not valid with respect to its fixed value constraint.

Action: Change the document or schema to correct and retry.

8602 XRSN_VME_CONTENTFOREMPTYELEM

The element may not contain any character data or child elements because the
element type is EMPTY.

Action: Change the document or schema to correct and retry.

8603 XRSN_VME_NONWSCHARINELEMONLYCONT

The element cannot have non-white space character data because the type's
content type is element-only.

Action: Change the document or schema to correct and retry.

8604 XRSN_VME_EXPELEMNOMATCH

An expected element match was not found.

Action: Change the document or schema to correct and retry.

8605 XRSN_VME_REQDELEMMISSING

The required element or one of its substitutions is required.

Action: Change the document or schema to correct and retry.

8606 XRSN_VME_STRICTWCREQTDECL

The matching wildcard is strict, but no declaration can be found for the element.

Action: Change the document or schema to correct and retry.

8607 XRSN_VME_EXPECTENDTAG

An end tag is expected. Invalid content is found. No child element is expected at
this point.

Action: Change the document or schema to correct and retry.

8608 XRSN_VME_ELEMNOTINCHOICE

An unexpected element was found. The element was not one of the choices.

Action: Change the document or schema to correct and retry.

8609 XRSN_VME_ELEMDUP

A duplicate element or one of its substitutions was found.

Action: Change the document or schema to correct and retry.

8610 XRSN_VME_EMPTYTABINCOMPCONT

An empty element tag is not expected. The content of the element is not
complete.

Action: Change the document or schema to correct and retry.

Reason codes listed by value 199

Reason code value

8611 XRSN_VME_UNEXPECTEDENDELEM

An unexpected end element event is found. The content of the element is
incomplete.

Action: Change the document or schema to correct and retry.

8612 XRSN_VME_UNDECLATT

The attribute found is not allowed to appear in the element.

Action: Change the document or schema to correct and retry.

8613 XRSN_VME_REQDATTMISSING

The attribute must appear on the element.

Action: Change the document or schema to correct and retry.

8614 XRSN_VME_MULTIWILDIDS

ID values must be unique.

Action: Change the document or schema to correct and retry.

8615 XRSN_VME_WILDIDFORBID

The attribute is a wildcard ID. But there is already an attribute derived from the
ID among the attribute uses.

Action: Change the document or schema to correct and retry.

8616 XRSN_VME_NONNILLELEM

Attribute "xsi:nil" must not appear on the element, because the nillable property
is false.

Action: Change the document or schema to correct and retry.

8617 XRSN_VME_NILFORBIDWFIXEDVC

There must be no fixed value constraint for the element because "xsi:nil" is
specified.

Action: Change the document or schema to correct and retry.

8618 XRSN_VME_XSITVALINV

The attribute value "xsi:type" of the element is not a valid QName.

Action: Change the document or schema to correct and retry.

8619 XRSN_VME_XSITVALDOESNOTEXIST

The value cannot be resolved to a type definition for the element.

Action: Change the document or schema to correct and retry.

8620 XRSN_VME_XSITYPEVALNOTALLOWED

The type is not validly derived from the type definition of the element.

Action: Change the document or schema to correct and retry.

200 z/OS: XML System Services User's Guide and Reference

Reason code value

8621 XRSN_VME_VCINVFORCURTYPE

The value constraint of the element is not a valid default value for the type.

Action: Change the document or schema to correct and retry.

8622 XRSN_VME_FIXEDVCFAILURE

The value does not match the fixed value constraint value for the element.

Action: Change the document or schema to correct and retry.

8623 XRSN_VME_IDREFMISSINGID

There is no ID/IDREF binding for IDREF.

Action: Change the document or schema to correct and retry.

8624 XRSN_VME_ELEMHASABSTYPE

The type definition cannot be abstract for the element.

Action: Change the document or schema to correct and retry.

8625 XRSN_VME_INVSIMPLECONT

Invalid value of element.

Action: Change the document or schema to correct and retry.

8626 XRSN_VME_DUPKEY

A duplicate key value was declared for an identity constraint.

Action: Change the document or schema to correct and retry.

8627 XRSN_VME_DUPUNIQUE

A duplicate unique value was declared for an identity constraint.

Action: Change the document or schema to correct and retry.

8628 XRSN_VME_FIELDMULTMATCH

A field matches more than one value within the scope of its selector. The fields
must match unique values.

Action: Change the document or schema to correct and retry.

8629 XRSN_VME_KEYNOTENOUGHVALS

Not enough values were specified for a key identity constraint.

Action: Change the document or schema to correct and retry.

8630 XRSN_VME_IDCKEYREFMISSINGKEY

A keyref is missing a corresponding key.

Action: Change the document or schema to correct and retry.

8631 XRSN_VME_ABSELEMERROR

The abstract element cannot be used to validate the element content.

Action: Change the document or schema to correct and retry.

Reason codes listed by value 201

Reason code value

8632 XRSN_VME_UNEXPECTEDROOT

The root element is not defined in the schema.

Action: Change the document or schema to correct and retry.

8800 XRSN_DVE_SIMPLETYPEINVVAL

Simple type is invalid.

Action: Change the document or schema to correct and retry.

8801 XRSN_DVE_IDMULTVAL

There are multiple occurrences of the ID value.

Action: Change the document or schema to correct and retry.

8802 XRSN_DVE_FACETLENVAL

The value is not facet-valid with respect to the length for this type.

Action: Change the document or schema to correct and retry.

8803 XRSN_DVE_FACETMAXEXCVAL

The value is not facet-valid with respect to maxExclusive for this type.

Action: Change the document or schema to correct and retry.

8804 XRSN_DVE_FACETMAXINCVAL

The value is not facet-valid with respect to maxInclusive for this type.

Action: Change the document or schema to correct and retry.

8805 XRSN_DVE_FACETMAXLENVAL

The value is not facet-valid with respect to maxLength for this type.

Action: Change the document or schema to correct and retry.

8806 XRSN_DVE_FACETMINEXCVAL

The value is not facet-valid with respect to minExclusive for this type.

Action: Change the document or schema to correct and retry.

8807 XRSN_DVE_FACETMININCVAL

The value is not facet-valid with respect to minInclusive for this type.

Action: Change the document or schema to correct and retry.

8808 XRSN_DVE_FACETMINLENVAL

The value is not facet-valid with respect to minLength for this type.

Action: Change the document or schema to correct and retry.

8809 XRSN_DVE_FACETPATTERNVAL

The value is not facet-valid with respect to the pattern for this type.

Action: Change the document or schema to correct and retry.

202 z/OS: XML System Services User's Guide and Reference

Reason code value

8810 XRSN_DVE_FACETTOTDIGVAL

The value has a mismatch in total number of digits for the type.

Action: Change the document or schema to correct and retry.

8811 XRSN_DVE_FACETFRACTDIGVAL

The value has a mismatch in fraction digits for this type.

Action: Change the document or schema to correct and retry.

8812 XRSN_DVE_FACETENUMVAL

The value is not facet-valid with respect to the enumeration for this type. It must
be a value from the enumeration.

Action: Change the document or schema to correct and retry.

8900 XRSN_FRAG_FRAGPATH_ERROR

For each element in the fragment path, a forward slash must be included
following by a valid Qname.

Action: Change the document or schema to correct and retry.

8901 XRSN_FRAG_INFO_NOTFOUND

The generated OSR must have fragment parsing information inorder to perform a
fragment parse.

Action: Change the document or schema to correct and retry.

8902 XRSN_FRAG_SLASH_AFTER_ATTR

The attribute name must be the last thing in the fragment path.

Action: Change the document or schema to correct and retry.

8903 XRSN_FRAG_ELEMATTR_NOTFOUND

The element or the attribute name in the fragment path cannot be found in the
OSR.

Action: Change the document or schema to correct and retry.

8904 XRSN_FRAG_INVALID_TYPE

The declared type in the OSR is invalid.

Action: Change the document or schema to correct and retry.

8905 XRSN_FRAG_ATTR_INVALID

During the validation of the attribute value with the = OSR shows the attribute
value is invalid.

Action: Change the document or schema to correct and retry.

8906 XRSN_FRAG_ATTR_ERROR

Error parsing an attribute fragment.

Action: Change the document or schema to correct and retry.

Reason codes listed by value 203

Reason code value

8907 XRSN_FRAG_ATTR_QUOTE_MISSING

A matching single/double quotes are required for the attribute value passed in as
the fragment.

Action: Change the document or schema to correct and retry.

8908 XRSN_FRAG_ATTR_UNTERMINATED

A matching single/double quotes are required for the attribute value passed in as
the fragment.

Action: Change the document or schema to correct and retry.

8909 XRSN_FRAG_ATTR_QUOTE_INCORRECT

The attribute value must be contained within a matching single/double quote,
and no characters are allowed after the ending quote except whitespaces.

Action: Change the document or schema to correct and retry.

8910 XRSN_CTL_RESET_REQUIRED

A Control Reset call is required.

Action: Prior parse has detected, issue control reset the parser and retry.

204 z/OS: XML System Services User's Guide and Reference

Appendix C. xsdosrg command reference

Name
xsdosrg - generate an optimized schema representation (OSR) file

Synopsis
xsdosrg [-v] [-o output_file] [-l list_file] | (input_file [input_file …])

Note: The l option signifies a lower case L, not an upper case I. The option signifies lower case O, not zero.

Description

A z/OS UNIX shell command that creates an optimized schema representation (OSR) from one or more
schemas which can be used by the z/OS XML System Services validating parser.

Options
xsdosrg accepts the following command line switches:

-v
This option produces verbose output during the generation of the OSR. This is for problem
determination purposes only.

-o
This option identifies the name of the output file that will contain the generated OSR.

-l
This option identifies the list of file names containing the text schemas to process.

Operands
xsdosrg contains the following operands:

input_file
The name of the file containing the text version of an XML schema. At least one input file must be
specified, either with this operand, or through the file list operand.

list_file
A list of schema names in text form that will be used to create the optimized schema representation.
The text in this file must be in the current local codepage so that the command can open each file in
the list.

output_file
The output_file operand is the name of the file that will contain the optimized schema representation.
This file name defaults to out.osr if no name is specified.

xsdosrg

© Copyright IBM Corp. 2006, 2019 205

Example
xsdosrg -o myschema.osr myschema.xsd

Environment variables
See “Setting up the environment” on page 14 for information on setting and using environment variables.

Usage notes
One or more schemas may be processed by the xsdosrg command into a single optimized schema
representation. Multiple schema names may be specified either directly on the command line or using the
file list operand with the -l option. Use either the input file operand or the list option to specify a list of
schemas to process. Do not use both methods on the same command invocation.

This command provides a simplified interface to the OSR generation utility. See “gxluGenOSR — generate
an Optimized Schema Representation (OSR)” on page 93, which allows greater control over the behavior
of the generation process and the characteristics of the generated OSR.

The codepage of the text contained in the list file for the -l option is managed in the same way as any
other z/OS UNIX System Services command (for example, cp). The localization variables above and file
tags may be used to set the proper code page so that file names can be handled properly.

This command is for 31 bit only. For 64 bit, use “gxluInitOSRG — initialize an OSR generator instance” on
page 79.

Exit values
The following list contains the exit values generated by this command:
0

Success
4

No schema specified
16

OSR creation failed

Related information
gxluGenOSR is a C routine that also invokes the OSR generator. It provides greater control over the
behavior of the generation process and the characteristics of the generated OSR. See “gxluGenOSR —
generate an Optimized Schema Representation (OSR)” on page 93 for more information.

gxlOSRGenerator is a Java method that can be used to invoke the OSR generator. Information on this
method can be found in the Java API.

xsdosrg

206 z/OS: XML System Services User's Guide and Reference

Appendix D. C/C++ header files and assembler
macros

The z/OS XML System Services API includes several sets of structures, variables and constants that the
caller uses to provide input to and receive output from the assorted processing services of the API. These
definitions are contained in parallel sets of C/C++ header files and assembler macros. The header files are
named gxlh*.h, and are found in the /usr/include directory. The assembler macros are named GXLY*
and are installed in SYS1.MACLIB.

The names of the C/C++ and assembler macros are similar. For example, the output buffer record
mapping is contained in /usr/include/gxlhxeh.h, while the assembler version of the same mapping
is in SYS1.MACLIB(GXLYXEH). In addition to the parallel nature of these headers and macros, the C/C+
headers come in regular Language Environment run-time and Metal C versions. Both versions have the
same file names, but the Language Environment run-time versions are in /usr/include, while the Metal
C versions are in /usr/include/metal. See “z/OS XML XL C/C++ API” on page 50 for more details
about these differences.

All of the core parser services have C/C++ interfaces (both Language Environment C and Metal C) and
assembler interfaces. In addition, there are a set of utility services to generate Optimized Schema
Representations (OSRs) from text schemas. These utility services are implemented in Language
Environment C/C++ and Java. As a result, there are Language Environment C/C++ headers that have no
corresponding assembler macro or Metal C version.

These are the header files and assembler macros of the z/OS XML processing API. The header file names
are listed first, followed by the assembler macro names in parentheses (if there is a corresponding
macro).

gxlhxml.h - main z/OS XML header file
This is the main z/OS XML C/C++ header file that a caller should include in order to use the z/OS XML C/C+
+ API. It contains prototypes for all of the API entry points, as well as include statements for all of the
other header files that are required for the API. The Metal C version of this header also includes logic to
call either the 31 or 64 bit version of the requested API, depending on the addressing mode of the caller.

There is no corresponding assembler version of this header file.

gxlhxeh.h (GXLYXEH) - mapping of the output buffer record
This mapping describes the form of the parsed data stream returned from the z/OS XML parser. It
contains the following:

• A structure describing the fixed portion of a record in the data stream. This includes the record type and
assorted flags describing the characteristics of the record.

• A structure to map the length value pairs (if there are any) that make up the variable portion of the
record.

• A structure describing the format of string identifiers (StringIDs) used to represent the strings
associated with a record when the StringIDs feature is enabled.

• Structures to map the special records that represent buffer information (data stream metadata), error
information, and auxiliary information.

The items defined in this mapping provide a complete interface for the caller to make use of the parsed
data stream returned from a parse request. See Chapter 4, “Parsing XML documents,” on page 11for more
a more detailed explanation of the z/OS XML parsed data stream.

© Copyright IBM Corp. 2006, 2019 207

gxlhxec.h (GXLYXEC) - constants definitions
This header and assembler macro contain constant values that are a key part of the z/OS XML API. They
include the following:

• Record/token types. These identify the semantic meaning of a record in the parsed data stream.
• Feature flags. These are the z/OS XML parser features that the caller enables when making an

initialization or control request.
• Minimum work area sizes for the z/OS XML parser and query XML declaration services. There are unique

minimum work area sizes for the z/OS XML parser, depending on whether or not validation is required.
• The minimum output buffer size.
• The allowable option flag values for the control function service.
• Assorted OSR generator constants.
• CCSID constants for all of the encodings that z/OS XML supports.
• Type identifiers for the data contained in source offset information records.

This is the header (macro) that contains all of the well known and required values for the z/OS XML API.

gxlhqxd.h (GXLYQXD) - mapping of the output from the query XML
declaration service

This header (macro) contains the structure that describes the information returned from the Query XML
Declaration (QXD) service. It also contains constants that enumerate the allowable values for certain
fields of the structure. The types of data returned in this area include the following:

• The type of encoding that the service was able to auto-detect. This is not a CCSID, but an indication as
to whether the document is in UCS, UTF, or EBCDIC form. It also gives an indication of whether the
document is big-endian or little-endian for certain encoding types.

• The CCSID of the document that the service was able to auto-detect. This value is suitable to pass to
the z/OS XML parser initialization service to let the z/OS XML parser know the encoding of the
document.

Note: The QXD service is capable of detecting CCSIDs that are not supported by the z/OS XML parser.
• The version and release number from the "version" keyword value in the XML declaration.
• The CCSID from the "encoding" keyword value in the XML declaration. It may be the case that the

detected encoding does not match the CCSID from the XML declaration. This could happen if the
document has been transcoded from the original encoding to the detected encoding. If this is the case,
the auto-detected value is the CCSID that should be used when initializing the parser.

• Flags indicating which keyword values in the XML declaration were actually present.
• A flag to indicate how the auto-detected encoding value was determined. In certain cases, it's not

possible to actually detect the encoding based on the bytes examined. In this case, the XML spec
requires a parser to treat the document as if it were UTF-8 encoded, and this is what the QXD service
will provide in the auto-detect value. A flag will be set in the flags field to indicate that the encoding was
actually undetected, and that the encoding returned is the default UTF-8 value.

• The overall length of the XML declaration.

See “gxlpQuery — query an XML document” on page 76 or “GXL1QXD (GXL4QXD) — query an XML
document” on page 132 for more details about how to acquire and use this data area.

208 z/OS: XML System Services User's Guide and Reference

gxlhxd.h (GXLYXD) - mapping of extended diagnostic area
This header (macro) contains the structure describing the extended diagnostic area that is returned when
there is a failure in the z/OS XML parser. It is returned whenever the caller requests a control operation
through the gxlpControl (GXL1CTL/GXL4CTL) service. The particular area that it is used to map depends
on the control operation performed:

• *XEC_CTL_FIN (finish, and reset the parser) – this header (macro) maps the area pointed to directly by
the ctl_data_p parameter of the gxlpControl (GXL1CTL/GXL4CTL) service.

• *XEC_CTL_FEAT (reset the parser with different features) – this header (macro) maps the area pointed
to by the XFT_XD_PTR field of the GXLHXFT (GXLYXFT) structure.

• *XEC_CTL_LOAD_OSR (reset the parser and load an OSR for validation) – this header (macro) maps the
area pointed to by the XOSR_XD_PTR field of the GXLHXOSR (GXLYXOSR) structure.

This mapping contains several types of key information that are of use for problem determination. Some
of the more useful fields include the following:

• The address of the main parser anchor block. This is not generally useful for a caller, but is important for
IBM service purposes.

• The input and output buffer addresses, and the current offsets into each. This shows which data the
z/OS XML parser was processing at the time of the error.

• The size of the last memory allocation request made by the z/OS XML parser.
• Return and reason codes from the last memory allocation request made by the z/OS XML parser.
• Return and reason codes from system service exits (if exits are provided by the caller).
• Return code from the last request to switch to a specialty engine.
• A pointer to an area in the PIMA that is in the format of an output buffer, that contains enhanced error

information for a validating parse when this information is requested.

gxlhxr.h (GXLYXR) - defines the return codes and reason codes
This contains all of the return and reason codes returned by z/OS XML. Each return and reason code has a
descriptive comment. Also included is a reason code mask - *XRSN_REASON_MASK that is used to
facilitate access to the low order 2 bytes of the reason code full word.

gxlhxsv.h (GXLYXSV) - mapping of the system service vector
Maps the area used to make assorted exit routines available to the z/OS XML parser. A complete
description of the exits that can be specified and how to provide them can be found in Chapter 8, “z/OS
XML System Services exit interface,” on page 139.

gxlhctl.h (GXLYCTL) - mapping of the control input parameters area

This header file and macro contain the various structures that are used in the gxlpControl (GXL1CTL/
GXL4CTL) service. Each structure is used for a specific control call and passed to the control service on
the ctl_data_p parameter. See the description of the ctl_data_p parameter in “gxlpControl — perform a
parser control function” on page 50, or the ctl_data parameter in “GXL1CTL (GXL4CTL) — perform a
parser control function” on page 108 for more details about the use of this structure.

C/C++ header files and assembler macros 209

gxlhxft.h (GXLYXFT) - mapping of the control feature input output area
This structure describes the area that is passed in to and back from the gxlpControl (GXL1CTL/GXL4CTL)
service through the ctl_data_p (ctl_data) parameter. It is used to map this area when the caller is
changing the parser feature settings by specifying the *XEC_CTL_FEAT value for the ctl_operation
(ctl_option) parameter.

This structure includes an integer (fullword) value that contains the required features to reset. There are
some features that cannot be reset, and which require that the parse instance to be terminated and re-
initialized. This structure also contains the address of a fullword area in which the z/OS XML parser will
place a pointer to the extended diagnostic area. This is the area that is mapped by gxlhxd.h (GXLYXD).

See the description of the ctl_data_p parameter in “gxlpControl — perform a parser control function” on
page 50, or the ctl_data parameter in “GXL1CTL (GXL4CTL) — perform a parser control function” on page
108 for more details about the use of this structure.

gxlhxosr.h (GXLYXOSR) - mapping of the OSR control area
This structure describes the area that is passed in to and back from the gxlpControl (GXL1CTL/GXL4CTL)
service through the ctl_data_p parameter. It should be used to map this area when the caller is loading an
OSR for a validating parse by specifying the *XEC_CTL_LOAD_OSR value for the ctl_operation (ctl_option)
parameter.

This structure holds the address of a buffer that contains the OSR, plus an optional name string that will
be associated with the OSR. This name is currently optional, but it is recommended that every different
OSR loaded be given a unique name. This can be useful for problem determination purposes in the event
of an error. This structure also contains the address of a fullword area in which the parser will place a
pointer to the extended diagnostic area. This is the area that is mapped by gxlhxd.h (GXLYXD).

See the description of the ctl_data_p parameter in “gxlpControl — perform a parser control function” on
page 50, or the ctl_data parameter in “GXL1CTL (GXL4CTL) — perform a parser control function” on page
108 for more details about the use of this structure.

gxlhosrg.h - OSR generator prototypes
This header contains includes for all of the OSR generator utility services, as well as the prototypes for
those services. There are no Metal C or assembler macro versions of this header file.

gxlhosrd.h - mapping of the OSR generator diagnostic area
This header contains the structure that maps the extended diagnostic area returned from the OSR
generator utility – similar to the way that gxlhxd.h (GXLYXD) describes the extended diagnostic area
returned by the z/OS XML parser. Some of the more useful fields include the following:

• The address of the OSR generator Instance Memory Area (OIMA).
• The last return and reason code issued by the OSR generator.
• The last return and reason code issued by the StringID exit.
• An area containing a Java exception that may have been the cause of the failure. Some of the OSR

generator is implemented in Java, so this area will contain the exception information when an error
occurs in the Java code.

There are no Metal C or assembler macro versions of this header file.

210 z/OS: XML System Services User's Guide and Reference

gxlhxstr.h - StringID table
StringIDs are numeric values that are substituted for certain character strings that are encountered during
the parse process. They can save space in the parsed data stream, and possibly improve performance if
there are large numbers of repeated strings in the XML document being parsed. This can be the case with
documents that make heavy use of namespaces with long URIs.

A caller may specify a StringID exit for the OSR generator to use, such that when a string is encountered, it
will call the exit to either generate a new ID, if the string hasn't been seen before, or return an existing ID
for strings which have been previously encountered. As the generator acquires these StringIDs, it saves
them away in a table, and substitutes them for the strings that they represent within the OSR. The z/OS
XML parser implements a similar behavior when it parses an XML document using StringIDs.

It will often be the case that the caller needs to use the same set of StringIDs at OSR generation time, and
when a validating parse is performed with that OSR. The OSR generator API contains the
gxluGenStrIDTable service that allows the caller to extract the StringID table from the OSR so that the
table can be imported by the StringID exit used during the parse process. See “gxluGenStrIDTable —
generate StringID table from an OSR” on page 95 for more details about how this service works.

This header file contains the structure definitions that describe the format of the StringID table that is
exported from the OSR generator. The table is broken down into a fixed portion that contains information
about the table, and a variable length portion containing the individual entries of the table. These are the
structures that the StringID exit service can use to import the StringID table in preparation for a validating
parse.

There are no Metal C or assembler macro versions of this header file.

C/C++ header files and assembler macros 211

212 z/OS: XML System Services User's Guide and Reference

Appendix E. Callable services examples - AMODE 31

GXL1CTL example

The following code calls the GXL1CTL service to change the feature bits for the z/OS XML parser. For the
callable service, see “GXL1CTL (GXL4CTL) — perform a parser control function” on page 108. AMODE 64
callers use “GXL4CTL example” on page 217.

**
* Setup parameter list to call GXL1CTL. *
* Then call GXL1CTL. *
**
* Call GXL1CTL(PIMA, (00)
* CTL_Option, (04)
* CTL_Data, (08)
* Return_Code, (12)
* Reason_Code) (16)
*
 LA R9,SAMPLE_PIMA_PTR
 L R9,0(R9)
 ST R9,Parser_Parm
 SLR R4,R4
 LA R10,SAMPLE_CTL_OPTION
 ST R10,Parser_Parm+4
 LA R10,SAMPLE_CTL_DATA
 ST R10,Parser_Parm+8
 LA R10,SAMPLE_CTL_RC
 ST R10,Parser_Parm+12
 LA R10,SAMPLE_CTL_RSN
 ST R10,Parser_Parm+16

 LLGT R15,CVTPTR
 L R15,CVTCSRT-CVT(R15)
 L R15,72(R15)
 L R15,28(R15)
 LA R1,Parser_Parm
 BALR R14,R15
 :
**
* Description of the SAMPLE Structure:
* **
SAMPLE DSECT Memory storage area
SAMPLE_HEADER DS 0D
SAMPLE_EYE_CATCHER DS CL8 eye-catcher string
SAMPLE_RETCODE DS 1F
SAMPLE_RSNCODE DS 1F
SAMPLE_PIMA_PTR DS 1F
SAMPLE_PIMA_LEN DS 1F
SAMPLE_INIT_FEAT DS 1F
SAMPLE_INIT_RC DS 1F
SAMPLE_INIT_RSN DS 1F
SAMPLE_CTL_OPTION DS 1F
SAMPLE_CTL_DATA DS 1F
SAMPLE_CTL_RC DS 1F
SAMPLE_CTL_RSN DS 1F
SAMPLE_TERM_RC DS 1F
SAMPLE_TERM_RSN DS 1F
SAMPLE_FLAGS1 DS 1F
SAMPLE_FLAGS2 DS 1F
SAMPLE_END DS 0X
**
NULL_Value DC 1D’0’
CCSID DS 1F
PARSER_PARM DS 8A

GXL1CTL example

© Copyright IBM Corp. 2006, 2019 213

GXL1INI example

The following code initializes the PIMA and records the addresses of the caller’s system service routines
(if any). For the callable service, see “GXL1INI (GXL4INI) — initialize a parse instance” on page 125.
AMODE 64 callers use “GXL4INI example” on page 218.

**
* Setup parameter list to call GXL1INI. *
* Then call GXL1INI. *
**
* Call GXL1INI(PIMA, (00)
* PIMA_LEN, (04)
* CCSID, (08)
* Feature_Flags, (12)
* Sys_SVC_Vector, (16) Will be set to NULL
* Sys_SVC_parm, (20) Will be set to NULL
* Return_Code, (24)
* Reason_Code) (28)
*
 LA R9,SAMPLE_PIMA_PTR
 L R9,0(R9)
 ST R9,Parser_Parm
 LA R10,SAMPLE_PIMA_LEN
 ST R10,Parser_Parm+4
 SLR R4,R4
 LA R10,XEC_ENC_IBM_037(R4)
 ST R10,CCSID
 LA R10,CCSID
 ST R10,Parser_Parm+8
 LA R10,SAMPLE_INIT_FEAT
 ST R10,Parser_Parm+12
 LA R10,NULL_Value
 ST R10,Parser_Parm+16
 ST R10,Parser_Parm+20
 LA R10,SAMPLE_INIT_RC
 ST R10,Parser_Parm+24
 LA R10,SAMPLE_INIT_RSN
 ST R10,Parser_Parm+28

 LLGT R15,CVTPTR
 L R15,CVTCSRT-CVT(R15)
 L R15,72(R15)
 L R15,16(R15)
 LA R1,Parser_Parm
 BALR R14,R15
 :
**
* Description of the SAMPLE Structure:
* **
SAMPLE DSECT Memory storage area
SAMPLE_HEADER DS 0D
SAMPLE_EYE_CATCHER DS CL8 eye-catcher string
SAMPLE_RETCODE DS 1F
SAMPLE_RSNCODE DS 1F
SAMPLE_PIMA_PTR DS 1F
SAMPLE_PIMA_LEN DS 1F
SAMPLE_INIT_FEAT DS 1F
SAMPLE_INIT_RC DS 1F
SAMPLE_INIT_RSN DS 1F
SAMPLE_CTL_OPTION DS 1F
SAMPLE_CTL_DATA DS 1F
SAMPLE_CTL_RC DS 1F
SAMPLE_CTL_RSN DS 1F
SAMPLE_TERM_RC DS 1F
SAMPLE_TERM_RSN DS 1F
SAMPLE_FLAGS1 DS 1F
SAMPLE_FLAGS2 DS 1F
SAMPLE_END DS 0X
**
NULL_Value DC 1D’0’
CCSID DS 1F
PARSER_PARM DS 8A

GXL1INI example

214 z/OS: XML System Services User's Guide and Reference

GXL1PRS example

The following code parses a buffer of XML text and places the result in an output buffer. For the callable
service, see “GXL1PRS (GXL4PRS) — parse a buffer of XML text” on page 129. AMODE 64 callers use
“GXL4PRS example” on page 219.

*/**
*/ PARSE
*/**
* CALL GXL1PRS(PIMA,OPTION_FLAGS,INBUF_PTR,INBUF_LEN,OUTBUF_PTR,
* OUTBUF_LEN,RC,RSN);
 L @02,PARM_PTR(,@03_PARM_PTR_PTR)
 L @10,PIMA_PTR(,@02)
 ST @10,@AL00001
 LA @10,OPTION_FLAGS(,@02)
 ST @10,@AL00001+4
 LA @10,INBUF_PTR(,@02)
 ST @10,@AL00001+8
 LA @10,INBUF_LEN(,@02)
 ST @10,@AL00001+12
 LA @10,OUTBUF_PTR(,@02)
 ST @10,@AL00001+16
 LA @02,OUTBUF_LEN(,@02)
 ST @02,@AL00001+20
 LA @10,RC
 ST @10,@AL00001+24
 LA @02,RSN
 ST @02,@AL00001+28
 OI @AL00001+28,X'80'
 L @10,CS$CVT
 L @02,CS$CSRT+544(,@10)
 L @10,CS$CSRFT+72(,@02)
 L @15,GXLST31+20(,@10)
 LA @01,@AL00001
 BALR @14,@15
* PARSE_RC = RC;
 L @02,PARM_PTR(,@03_PARM_PTR_PTR)
 L @10,RC
 ST @10,PARSE_RC(,@02)
* PARSE_RSN = RSN;
 L @10,RSN
 ST @10,PARSE_RSN(,@02)
* END DO_PARSE;
*

GXL1TRM example

The following code releases all resources obtained (including storage) by the z/OS XML parser and resets
the PIMA so that it can be re-initialized. For the callable service, see “GXL1TRM (GXL4TRM) — terminate a
parse instance” on page 134. AMODE 64 callers use “GXL4TRM example” on page 219.

**
* Setup parameter list to call GXL1TRM. *
* Then call GXL1TRM. *
**
* Call GXL1TRM(PIMA, (00)
* Return_Code, (04)
* Reason_Code) (08)
*
 LA R10,SAMPLE_PIMA_PTR
 L R10,0(R10)
 ST R10,Parser_Parm
 LA R10,SAMPLE_TERM_RC
 ST R10,Parser_Parm+4
 LA R10,SAMPLE_TERM_RSN
 ST R10,Parser_Parm+8

 LLGT R15,CVTPTR

GXL1PRS example

Callable services examples - AMODE 31 215

 L R15,CVTCSRT-CVT(R15)
 L R15,72(R15)
 L R15,24(R15)
 LA R1,Parser_Parm
 BALR R14,R15
 :
**
* Description of the SAMPLE Structure:
* **
SAMPLE DSECT Memory storage area
SAMPLE_HEADER DS 0D
SAMPLE_EYE_CATCHER DS CL8 eye-catcher string
SAMPLE_RETCODE DS 1F
SAMPLE_RSNCODE DS 1F
SAMPLE_PIMA_PTR DS 1F
SAMPLE_PIMA_LEN DS 1F
SAMPLE_INIT_FEAT DS 1F
SAMPLE_INIT_RC DS 1F
SAMPLE_INIT_RSN DS 1F
SAMPLE_CTL_OPTION DS 1F
SAMPLE_CTL_DATA DS 1F
SAMPLE_CTL_RC DS 1F
SAMPLE_CTL_RSN DS 1F
SAMPLE_TERM_RC DS 1F
SAMPLE_TERM_RSN DS 1F
SAMPLE_FLAGS1 DS 1F
SAMPLE_FLAGS2 DS 1F
SAMPLE_END DS 0X
**
NULL_Value DC 1D’0’
CCSID DS 1F
PARSER_PARM DS 8A

GXL1TRM example

216 z/OS: XML System Services User's Guide and Reference

Appendix F. Callable services examples - AMODE 64

GXL4CTL example

The following code calls the GXL4CTL service to change the feature bits for the z/OS XML parser. For the
callable service, see “GXL1CTL (GXL4CTL) — perform a parser control function” on page 108. AMODE 31
callers use “GXL1CTL example” on page 213.

**
* Setup parameter list to call GXL4CTL. *
* Then call GXL4CTL. *
**
* Call GXL4CTL(PIMA, (00)
* CTL_Option, (08)
* CTL_Data, (16)
* Return_Code, (24)
* Reason_Code) (32)
*
 LA R9,SAMPLE_PIMA_PTR
 LG R9,0(R9)
 STG R9,Parser_Parm
 SLGR R4,R4
 LA R10,SAMPLE_CTL_OPTION
 STG R10,Parser_Parm+8
 LA R10,SAMPLE_CTL_DATA
 STG R10,Parser_Parm+16
 LA R10,SAMPLE_CTL_RC
 STG R10,Parser_Parm+24
 LA R10,SAMPLE_CTL_RSN
 STG R10,Parser_Parm+32

 LLGT R15,CVTPTR
 L R15,CVTCSRT-CVT(R15)
 L R15,72(R15)
 LG R15,64(R15)
 LA R1,Parser_Parm
 BALR R14,R15
 :
**
* Description of the SAMPLE Structure:
* **
SAMPLE DSECT Memory storage area
SAMPLE_HEADER DS 0D
SAMPLE_EYE_CATCHER DS CL8 eye-catcher string
SAMPLE_RETCODE DS 1F
SAMPLE_RSNCODE DS 1F
SAMPLE_PIMA_PTR DS 1D
SAMPLE_PIMA_LEN DS 1F
SAMPLE_INIT_FEAT DS 1F
SAMPLE_INIT_RC DS 1F
SAMPLE_INIT_RSN DS 1F
SAMPLE_CTL_OPTION DS 1F
SAMPLE_CTL_DATA DS 1F
SAMPLE_CTL_RC DS 1F
SAMPLE_CTL_RSN DS 1F
SAMPLE_TERM_RC DS 1F
SAMPLE_TERM_RSN DS 1F
SAMPLE_FLAGS1 DS 1F
SAMPLE_FLAGS2 DS 1F
SAMPLE_END DS 0X
**
NULL_Value DC 1D’0’
CCSID DS 1F
PARSER_PARM DS 16A

GXL4CTL example

© Copyright IBM Corp. 2006, 2019 217

GXL4INI example

The following code initializes the PIMA and records the addresses of the caller’s system service routines
(if any). For the callable service, see “GXL1INI (GXL4INI) — initialize a parse instance” on page 125.
AMODE 31 callers use “GXL1INI example” on page 214.

**
* Setup parameter list to call GXL4INI. *
* Then call GXL4INI. *
**
* Call GXL4INI(PIMA, (00)
* PIMA_LEN, (08)
* CCSID, (16)
* Feature_Flags, (24)
* Sys_SVC_Vector, (32) Will be set to NULL
* Sys_SVC_parm, (40) Will be set to NULL
* Return_Code, (48)
* Reason_Code) (56)
*
 LA R9,SAMPLE_PIMA_PTR
 LG R9,0(R9)
 STG R9,Parser_Parm
 LA R10,SAMPLE_PIMA_LEN
 STG R10,Parser_Parm+8
 SLGR R4,R4
 LA R10,XEC_ENC_IBM_037(R4)
 ST R10,CCSID
 LA R10,CCSID
 STG R10,Parser_Parm+16
 LA R10,SAMPLE_INIT_FEAT
 STG R10,Parser_Parm+24
 LA R10,NULL_Value
 STG R10,Parser_Parm+32
 STG R10,Parser_Parm+40
 LA R10,SAMPLE_INIT_RC
 STG R10,Parser_Parm+48
 LA R10,SAMPLE_INIT_RSN
 STG R10,Parser_Parm+56

 LLGT R15,CVTPTR
 L R15,CVTCSRT-CVT(R15)
 L R15,72(R15)
 LG R15,40(R15)
 LA R1,Parser_Parm
 BALR R14,R15
 :
**
* Description of the SAMPLE Structure:
* **
SAMPLE DSECT Memory storage area
SAMPLE_HEADER DS 0D
SAMPLE_EYE_CATCHER DS CL8 eye-catcher string
SAMPLE_RETCODE DS 1F
SAMPLE_RSNCODE DS 1F
SAMPLE_PIMA_PTR DS 1D
SAMPLE_PIMA_LEN DS 1F
SAMPLE_INIT_FEAT DS 1F
SAMPLE_INIT_RC DS 1F
SAMPLE_INIT_RSN DS 1F
SAMPLE_CTL_OPTION DS 1F
SAMPLE_CTL_DATA DS 1F
SAMPLE_CTL_RC DS 1F
SAMPLE_CTL_RSN DS 1F
SAMPLE_TERM_RC DS 1F
SAMPLE_TERM_RSN DS 1F
SAMPLE_FLAGS1 DS 1F
SAMPLE_FLAGS2 DS 1F
SAMPLE_END DS 0X
**
NULL_Value DC 1D’0’
CCSID DS 1F
PARSER_PARM DS 16A

GXL4INI example

218 z/OS: XML System Services User's Guide and Reference

GXL4PRS example

The following code parses a buffer of XML text and places the result in an output buffer. For the callable
service, see “GXL1PRS (GXL4PRS) — parse a buffer of XML text” on page 129. AMODE 31 callers use
“GXL1PRS example” on page 215.

*/*** */
/ DO_PARSE */
*/*** */
*
*DO_PARSE:
* PROCEDURE;
DO_PARSE STM @14,@12,@SA00004
 STMH @14,@12,@SH00004
* CALL GXL4PRS(PIMA,OPTION_FLAGS,INBUF_PTR,INBUF_LEN,OUTBUF_PTR,
* OUTBUF_LEN,RC,RSN);
 LG @02,PARM_PTR(,@03_PARM_PTR_PTR)
 LG @10,PIMA_PTR(,@02)
 STG @10,@AX00001
 LA @10,OPTION_FLAGS(,@02)
 STG @10,@AX00001+8
 LA @10,INBUF_PTR(,@02)
 STG @10,@AX00001+16
 LA @10,INBUF_LEN(,@02)
 STG @10,@AX00001+24
 LA @10,OUTBUF_PTR(,@02)
 STG @10,@AX00001+32
 LA @02,OUTBUF_LEN(,@02)
 STG @02,@AX00001+40
 LA @10,RC
 STG @10,@AX00001+48
 LA @02,RSN
 STG @02,@AX00001+56
 L @10,CS$CVT
 LLGTR @10,@10
 L @02,CS$CSRT+544(,@10)
 LLGTR @02,@02
 L @10,CS$CSRFT+72(,@02)
 LLGTR @10,@10
 LG @15,GXLST64+48(,@10)
 LA @01,@AX00001
 BASR @14,@15
* PARSE_RC = RC;
 LG @02,PARM_PTR(,@03_PARM_PTR_PTR)
 L @10,RC
 ST @10,PARSE_RC(,@02)
* PARSE_RSN = RSN;
 L @10,RSN
 ST @10,PARSE_RSN(,@02)
* END DO_PARSE;
*
@EL00004 DS 0H
@EF00004 DS 0H
@ER00004 LMH @14,@12,@SH00004
 LM @14,@12,@SA00004
 BR @14

GXL4TRM example

The following code releases all resources obtained (including storage) by the z/OS XML parser and resets
the PIMA so that it can be re-initialized. For the callable service, see “GXL1TRM (GXL4TRM) — terminate a
parse instance” on page 134. AMODE 31 callers use “GXL1TRM example” on page 215.

**
* Setup paramter list to call GXL4TRM. *
* Then call GXL4TRM. *
**
* Call GXL4TRM(PIMA, (00)

GXL4PRS example

Callable services examples - AMODE 64 219

* Return_Code, (08)
* Reason_Code) (16)
*
 LA R10,SAMPLE_PIMA_PTR
 LG R10,0(R10)
 STG R10,Parser_Parm
 LA R10,SAMPLE_TERM_RC
 STG R10,Parser_Parm+8
 LA R10,SAMPLE_TERM_RSN
 STG R10,Parser_Parm+16

 LLGT R15,CVTPTR
 L R15,CVTCSRT-CVT(R15)
 L R15,72(R15)
 LG R15,56(R15)
 LA R1,Parser_Parm
 BALR R14,R15

 :
**
* Description of the SAMPLE Structure:
* **
SAMPLE DSECT Memory storage area
SAMPLE_HEADER DS 0D
SAMPLE_EYE_CATCHER DS CL8 eye-catcher string
SAMPLE_RETCODE DS 1F
SAMPLE_RSNCODE DS 1F
SAMPLE_PIMA_PTR DS 1D
SAMPLE_PIMA_LEN DS 1F
SAMPLE_INIT_FEAT DS 1F
SAMPLE_INIT_RC DS 1F
SAMPLE_INIT_RSN DS 1F
SAMPLE_CTL_OPTION DS 1F
SAMPLE_CTL_DATA DS 1F
SAMPLE_CTL_RC DS 1F
SAMPLE_CTL_RSN DS 1F
SAMPLE_TERM_RC DS 1F
SAMPLE_TERM_RSN DS 1F
SAMPLE_FLAGS1 DS 1F
SAMPLE_FLAGS2 DS 1F
SAMPLE_END DS 0X
**
NULL_Value DC 1D’0’
CCSID DS 1F
PARSER_PARM DS 16A

GXL4TRM example

220 z/OS: XML System Services User's Guide and Reference

Appendix G. Exit examples

GXLEFRM (GXLFST example)

Restrictions: The following restrictions apply to this example:

• This sample was designed to be a basic example of a memory service exit, and was not designed with
other system considerations in mind, such as the z/OS XML parser running in cross memory mode, SRB
mode, or in a different key, for instance.

• This sample is not designed to work with any other service exits. The exit workarea is assumed to be
used by this memory service exit only. (Note that both GXLGST and GXLFST services are considered as
one service exit). As a result, this memory service exit can only work independently, with no other
service exits running.

This sample frees an area of memory passed by the z/OS XML parser. For the exit service, see “GXLFST31
(GXLFST64) — free memory” on page 143. AMODE 31 callers use GXLE1FRM. AMODE 64 callers use
GXLE4FRM.

Register 14 is used to store the return address, which must be kept intact in order to exit this subroutine
correctly.

This example assumes register one, which is passed in from the caller, contains the address of the
parameter list. The following input variables are used in the example:
SYS_SVC_PARM

Address of storage area that the caller of the z/OS XML parser wants to pass on to the exit.
MEMORY_LEN

Contain the length of the memory area requested to be free.
The following output variables are used in the example:
MEMORY_ADDR

The address of the memory to be freed.
EXIT_DIAG_CODE

Contains diagnostic information.
XSM_DC_INVALID_EYECATCHER_STR

Eye catcher is incorrect.
XSM_DC_FAIL_FREE_MEM31

Fail to release storage memory.
RETCODE

XSM_RC_FAILURE
Unable to free memory

XSM_RC_SUCCESS
The storage macro released the allocated memory successfully (greater than zero if deallocation
failed).

EXIT_DIAG_CODE
XSM_DC_INVALID_EYECATCHER_STR

Eye catcher is incorrect.
XSM_DC_FAIL_FREE_MEM31

Fail to release storage memory.

GXLEFRM (GXLFST example)

© Copyright IBM Corp. 2006, 2019 221

GXLEGTM (GXLGST example)

Restrictions: The following restrictions apply to this example:

• This sample was designed to be a basic example of a memory service exit, and was not designed with
other system considerations in mind, such as the z/OS XML parser running in cross memory mode, SRB
mode, or in a different key, for instance.

• This sample is not designed to work with any other service exits. The exit workarea is assumed to be
used by this memory service exit only. (Note that both GXLGST and GXLFST services are considered as
one service exit). As a result, this memory service exit can only work independently, with no other
service exits running.

This sample allocates an area of memory of the size requested by the z/OS XML parser. For the exit
service, see “GXLGST31 (GXLGST64) — get memory” on page 141. AMODE 31 callers use GXLE1GTM.
AMODE 64 callers use GXLE4GTM.

Register 14 is used to store the return address, which must be kept intact in order to exit this subroutine
correctly.

This example assumes register one, which is passed in from the caller, contains the address of the
parameter list. The following input variables are used in the example:
SYS_SVC_PARM

Address that was passed to the z/OS XML parser at initialization time.
MEMORY_LEN

Contains the length of the memory area requested by the z/OS XML parser.
The following output variables are used in the example:
MEMORY_ADDR

The address of the allocated memory.
EXIT_DIAG_CODE

Contains diagnostic information.
XSM_DC_INVALID_EYECATCHER_STR

Eye catcher is incorrect.
XSM_DC_INVALID_GET_MEM_LEN

Memory length is out of bound.
XSM_DC_FAIL_ALLOCATE_MEM31

Storage memory allocation failed.
RETCODE

XSM_RC_FAILURE
Unable to allocate memory.

XSM_RC_SUCCESS
The storage macro allocated the memory successfully (greater than zero if allocation failed).

GXLSYM example

Restrictions: The following restrictions apply to this example:

• This example was designed to be a basic example of a StringID service exit. It was not designed with
other system considerations in mind, such as the z/OS XML parser running in cross memory mode, SRB
mode, or in a different key, for instance.

GXLEGTM (GXLGST example)

222 z/OS: XML System Services User's Guide and Reference

• This example is not designed to work with any other service exits. The exit workarea is assumed to be
used by this StringID service exit only. As a result, this StringID service exit can only work
independently, with no other service exits running.

Note: This exit example is divided into the following 4 modules:

• “GXLEINI” on page 223
• “GXLEIDI (GXLSYM example module)” on page 223
• “GXLEIDR” on page 224

For the exit service, see “GXLSYM31 (GXLSYM64) — StringID service” on page 145. AMODE 31 callers use
GXLSYM31. AMODE 64 callers use GXLSYM64.

GXLEINI

This example module does the following:

• Validates the caller specification and determines whether to use user defined or default values for
storage size.

• Initializes all variables in XSI. (XSI is the data structure for the StringID sample exit).

Register 14 is used to store the return address, which must be kept intact in order to exit this subroutine
correctly.

This example module assumes register one, which is passed in from the caller, contains the address of the
parameter list. The following input variables are used in the example:
STRID_AREA_ADDR

Address of the XSI storage area.
STRID_AREA_LEN

Total length of the XSI Storage area.
STRID_MAX_NUM

The maximum number of StringIDs allowed.
SYM_MAX_SIZE

The maximum string length for each symbol.
The following output variables are used in this example module:
RETCODE

XSI_RC_FAILURE
If the storage area failed to initialize.

XSI_RC_SUCCESS
If the storage area successfully initialized.

DIAG_CODE
Contains diagnostic information.
XSI_DC_SYMBOL_STORAGE_TOO_SMALL

Storage size is too small.

GXLEIDI (GXLSYM example module)

This example module does the following:

• Search for an identical string in the tree.
• Inserts a string into a tree and returns a unique StringID. This is done as follows:

1. Check first to make sure the length of the string is within the maximum symbol buffer size.

GXLEINI

Exit examples 223

2. Inserts the string into the root if the tree is empty or searches down the tree to find the appropriate
empty leaf node.

3. When the insert node location is found, its address will be passed to the INSERT_STRING
subroutine. The subroutine will create a new leaf node and then insert the string.

4. Return the StringID if the string inserted successfully.

Note: This is the actual exit pointed to in the SYS_SVC_VECTOR table.

Register 14 is used to store the return address, which must be kept intact in order to exit this subroutine
correctly.

This example module assumes register one, which is passed in from the caller, contains the address of the
parameter list. The following input variables are used in the example module:
SYS_SVC_PARM

Address of storage area that the caller of the z/OS XML parser wants to pass to the exit. It also
contains the XSI structure information.

STR
The string that will be inserted into the tree.

STRLEN
Length of the current string needed to be inserted. Length is derived from the number of bytes of the
characters in the string.

CCSID
Identifier for the string's character set.

The following output variables are used in the example module:
STRID

The index of the inserted or found string.
EXIT_DIAG_CODE

Contains diagnostic information.
XSI_DC_INCORRECT_PARM_STRLEN

String length is out of bound.
XSI_DC_OUT_OF_STORAGE_SPACE

Allocated storage is full.
XSI_DC_INCORRECT_EYE_CATCHER

Eye catcher is incorrect.
XSI_DC_MAX_OUT_ID_LIST_ENTRIES

StringID list is full.
RETCODE

XRC_FAILURE
Failed to insert or search for STR.

XRC_SUCCESS
String was inserted or found.

GXLEIDR

This example module uses the input StringID to access a table and returns the address and length of the
string associated with the StringID. The string is saved in the storage pointed to by SYS_SVC_PARM during
the initialization of the parser (GXLINI) and in StringID processing (GXLEINI).

Register 14 is used to store the return address, which must be kept intact in order to exit this subroutine
correctly.

This example module assumes register one, which is passed in from the caller, contains the address of the
parameter list. The following input variables are used in the example module:

GXLEIDR

224 z/OS: XML System Services User's Guide and Reference

SYS_SVC_PARM
Address of storage area that the caller of the z/OS XML parser wants to pass to the exit. It also
contains the XSI structure information.

STRID
StringID used for indexing the list.

The following output variables are used in the example module:
STR_ADDR

Address of string from requested StringID.
STRLEN

The length of the string found by StringID.
DIAG_CODE

Contains diagnostic information.
XSI_DC_INCORRECT_StringID_OUTOFBOUND

STRID length is out of bound.
XSI_DC_INCORRECT_ID_LOCATION_ERROR

StringID does not match.
XSI_DC_INCORRECT_EYE_CATCHER

Eye catcher is incorrect.
RETCODE

XSI_RC_FAILURE
The string cannot be retrieved.

XSI_RC_SUCCESS
The string was retrieved successfully.

GXLESTRI

Restrictions: The following restrictions apply to this example:

• This sample was designed to be a basic example of a StringID service exit, and was not designed with
other system considerations in mind, such as the z/OS XML parser running in cross memory mode, SRB
mode, or in a different key, for instance.

• This sample is not designed to work with any other service exits. The exit workarea is assumed to be
used by this service exit only. As a result, this memory service exit can only work independently, with no
other service exits running.

This sample does the following:

• Initializes the structure (referred to herein as XSI).
• Searches for a string in the list and then returns its ID if the string is found.
• Inserts new strings.
• Validates memory requirements based on user input.
• Defines the default values.
• Initializes all variables in XSI.

The purpose of this StringID service exit routine is to demonstrate how a combination of Language
Environment/Metal C StringID service exits could be written for the z/OS XML parserand the OSR
generator.

Guidelines for using this exit with the z/OS XML parser: When this StringID service exit routine is used
as an exit to the z/OS XML parser, the following guidelines apply:

GXLESTRI

Exit examples 225

• A prolog and epilog are required. This is used to set up DSA linkage. More details are below.
• The work area must be large enough to accommodate a DSA at the head of the work area, along with

space for the stack frames. (This sample contains a main routine, a few local variables, and calls a
subroutine on the first call for initialization.)

• The work area and immediately following the DSA and the stack space contains the storage that will be
mapped to the XSI structure.

Guidelines for using this exit with the OSR generator: When this StringID service exit routine is used as
an exit to the OSR generator, the following guidelines apply:

• A prolog and epilog are NOT required.
• The main routine name must be exported.
• The entire work area is mapped to the XSI structure defined here and must be large enough to

accommodate this.

The user must pass in the value of available storage space for the XSI structure to this exit via the
storage_size member in the XSI structure. Here is an example, when using the exit for the z/OS XML
parser:

 // Allocate storage.
 stringIDArea = malloc(40960);
 // Clear storage.
 memset(stringIDArea,0,40960);
 // Adjust pointer past DSA/frame(s) to beginning
 // of storage available to the XSI structure.
 ptr_val = (unsigned long)(stringIDArea);
 ptr_val += XSI_DSA_SPACE;
 XSI xsi_ptr = (XSI)(ptr_val) ;
 // Set storage size and adjust for DSA/frame(s).
 xsi_ptr->storage_space = 40960;
 xsi_ptr->storage_space -= XSI_DSA_SPACE;

When using the exit for the OSR generator, use the following example:

 // Allocate storage.
 stringIDArea = malloc(40960);
 // Clear storage.
 memset(stringIDArea,0,40960);
 XSI xsi_ptr = (XSI)(stringIDArea) ;
 // Set storage size.
 xsi_ptr->storage_space = 40960;

Register 14 is used to store the return address, which must be kept intact in order to exit this subroutine
correctly.

This example assumes register one, which is passed in from the caller, contains the address of the
parameter list. The following variables are used in the example:
SYS_SVC_PARM

A pointer to the address of the storage to be used for this exit.
STRING

The string passed in from the OSR generator.
STR_LEN

The value of the string length passed in from the OSR generator.
STRINGID

The value of the string ID set by this exit.
CCSID

The Coded Character Set Identifier passed in from the OSR Generator.
DIAG_CODE

The diagnostic code set by this exit.
RETURN_CODE

The return code set by this exit.

GXLESTRI

226 z/OS: XML System Services User's Guide and Reference

A description of the XSI structure is provided below. The XSI structure includes the XSI header and
StringID array list.
EYE_CATCHER

The eye catcher for this structure. Used to confirm initialization.
VERSION

The version number for this exit.
STORAGE_SPACE

The value of the size of storage allocated for this exit.
DIAG_CODE

The diagnostic code set by the exit.
NEXT_ID

The next available value for the StringID.
INDEX

The index of the next XSI_NODE to update.
STRINGLIST

An array of XSI_NODE that is populated with the StringID, strings and their lengths.
A description of the prolog and epilog is provided below:

Prolog for AMODE 31, Changes for AMODE 64 are in parenthesis
 ST(G)M 14,12,12(13) Save entry regs in callers area
 L(G) 15,0(1) Load address of Users storage
 L(G) 15,0(15) Load the actual storage
 ST(G) 15,8(,13) Save caller DSA in prev
 ST(G) 13,4(,15) Save current DSA in callers
 LR(G) 13,15 Set start of storage to DSA
 MEND
Epilog for AMODE 31, Changes for AMODE 64 are in parenthesis
 L(G) 13,4(13) Load the previous DSA
 LM(G) 14,12,12(13) Restore the registers
 BR 14 Return
 MEND

GXLESTRI

Exit examples 227

GXLESTRI

228 z/OS: XML System Services User's Guide and Reference

Appendix H. CICS examples

The example below shows how to define GXLINPLT to the CICS CSD:

//GXLCSD JOB <your jobcard>
//***/
//* Function: */
//* */
//* This is the sample of the DFHCSDUP job to create the resource */
//* definitions required for XML System Services. */
//* It defines one resource group: */
//* GXLXMLCG contains definitions needed for XML system services */
//* The user must install group GXLXMLCG, it is recommended to */
//* add group GXLXMLCG to the current grouplist for the CICS */
//* region or add to grouplist GXLXMLCL as is shown below. */
//* Before using this sample job replace the default parameter */
//* values with the values of your CICS installation. */
//* */
//***/
//*- - SET SYMBOLIC PARAMETERS -*/
//*
//SETCID SET CID='CICS410.CICS' ! Qualifier for CICS library
//SETCSD SET CSD='TTCICS4.CICS' ! Qualifier for target CICS CSD
//DFHCSDUP EXEC PGM=DFHCSDUP,REGION=4M
//STEPLIB DD DISP=SHR,DSN=&CID..SDFHLOAD
//DFHCSD DD DISP=SHR,DSN=&CSD..DFHCSD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
*
* delete the group GXLXMLCG
*
DELETE GROUP(GXLXMLCG)
*
* Add the group to GRPLIST GXLXMLCL
*
*
ADD GROUP(GXLXMLCG) LIST(GXLXMLCL)
*
*
*
* Programs
* Define GXLINPLT as a program in group GXLXMLCG
*
 DEFINE PROGRAM(GXLINPLT) GROUP(GXLXMLCG) LANGUAGE(ASSEMBLER)
 DESCRIPTION(XML PLT Program required by XML System Services)
 CONCURRENCY(QUASIRENT) DATALOCATION(ANY) EXECKEY(USER)
*
* Note that CONCURRENCY(QUASIRENT) ensures that the program
* runs under the CICS QR TCB, which is what we
want.
/*
//

Below is a sample job to update the PLT table:

//SUIMGLQ JOB <JOBCARD>
//*
//TABLEASM EXEC DFHAUPLE
//ASSEM.SYSUT1 DD *
 TITLE 'DFHPLTI1 - ADD GXLINPLT TO PLT TABLE'

* *
* MODULE NAME = DFHPLTI1 *
* *
* DESCRIPTIVE NAME = LIST OF PROGRAMS TO BE EXECUTED DURING CICS *
* SYSTEM INITIALIZATION *
* *
* *
* FUNCTION = *
* *
* THIS LIST SPECIFIES THE GXLXMLCG GXLINPLT PROGRAM TO BE EXECUTED *
* DURING CICS TS SYSTEM INITIALIZATION SO GXLIMODV GETS LOADED *
* AT THE RIGHT LEVEL SO IT CAN BE USED BY TRANSACTION PROGRAMS. *
* THIS PROGRAM REQUIRED SYSTEM INITIALIZATION PARAMETER *
* PLTPI=I1. *

© Copyright IBM Corp. 2006, 2019 229

* *
*

*
 DFHPLT TYPE=INITIAL,SUFFIX=I1
*
*
* PROGRAMS SPECIFIED BEFORE THE DFHDELIM PROGRAM ARE RUN
* DURING SECOND INITIALIZATION STAGE.
* PROGRAMS SHOULD ALSO BE DEFINED TO CICS BY DFHCSDUP OR RDO
*
 DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
*
* PROGRAMS THAT SHOULD BE RUN IN THE THIRD INITIALIZATION
* PHASE (IF ANY) CAN BE SPECIFIED BELOW.
* PROGRAMS SHOULD ALSO BE DEFINED TO CICS BY DFHCSDUP OR RDO
*
 DFHPLT TYPE=ENTRY,PROGRAM=GXLINPLT
*
 DFHPLT TYPE=FINAL
*
END

230 z/OS: XML System Services User's Guide and Reference

Appendix I. Supported encodings

The following table displays the encodings supported by z/OS XML System Services. Displayed in the
table are the code page names, associated CCSID and equate names. Assembler callers use equate
names without the "GXLH" prefix.

Rule: If you require a different encoding, you must first convert to one of the below before invoking the
z/OS XML parser.

Table 40. Code page CCSID values

Code page CCSID Equate Names

UTF-8 1208 GXLHXEC_ENC_UTF_8

UTF-16 (big endian) 1200 GXLHXEC_ENC_UTF_16

EBCDIC/IBM-037 37 GXLHXEC_ENC_IBM_037

EBCDIC/IBM-273 273 GXLHXEC_ENC_IBM_273

EBCDIC/IBM-277 277 GXLHXEC_ENC_IBM_277

EBCDIC/IBM-278 278 GXLHXEC_ENC_IBM_278

EBCDIC/IBM-280 280 GXLHXEC_ENC_IBM_280

EBCDIC/IBM-284 284 GXLHXEC_ENC_IBM_284

EBCDIC/IBM-285 285 GXLHXEC_ENC_IBM_285

EBCDIC/IBM-297 297 GXLHXEC_ENC_IBM_297

EBCDIC/IBM-500 500 GXLHXEC_ENC_IBM_500

EBCDIC/IBM-871 871 GXLHXEC_ENC_IBM_871

EBCDIC/IBM-1047 1047 GXLHXEC_ENC_IBM_1047

EBCDIC/IBM-1140 1140 GXLHXEC_ENC_IBM_1140

EBCDIC/IBM-1141 1141 GXLHXEC_ENC_IBM_1141

EBCDIC/IBM-1142 1142 GXLHXEC_ENC_IBM_1142

EBCDIC/IBM-1143 1143 GXLHXEC_ENC_IBM_1143

EBCDIC/IBM-1144 1144 GXLHXEC_ENC_IBM_1144

EBCDIC/IBM-1145 1145 GXLHXEC_ENC_IBM_1145

EBCDIC/IBM-1146 1146 GXLHXEC_ENC_IBM_1146

EBCDIC/IBM-1147 1147 GXLHXEC_ENC_IBM_1147

EBCDIC/IBM-1148 1148 GXLHXEC_ENC_IBM_1148

EBCDIC/IBM-1149 1149 GXLHXEC_ENC_IBM_1149

© Copyright IBM Corp. 2006, 2019 231

232 z/OS: XML System Services User's Guide and Reference

Appendix J. Enabling z/OS V1R12 XML functionality
in z/OS V1R10 and z/OS V1R11

Functionality was added to z/OS XML System Services in z/OS 1.12 that is available in z/OS 1.10 and z/OS
1.11 with APAR OA32251; PTFs UA59081 and UA59082. This APAR includes support for schema
discovery, parsing of XML document fragments and restrict root support.

Schema discovery enhances the usability of the validating parser by allowing the caller to query the XML
document schema locations detailed in the “schemaLocation” and “noNamespaceSchemaLocation”
attributes, in addition to the root element namespace and local name. Following this, the caller will have
the opportunity to load an OSR without having to reset the parse. See “Obtaining information on schema
locations” on page 17for more information on schema discovery support.

Parsing of document fragments without obtaining and parsing an entire document is now supported when
parsing in z/OS XML System Services with schema validation. . See “Parsing XML document fragments
with validation” on page 15for more information on fragment parsing.

Restrict root support allows an z/OS XML System Services caller to restrict the root name against a given
root element name or a list of root element names when performing a validating parse. See “Restricting
the root element name” on page 15for more information on restrict root support.

To enable the support in z/OS 1.10 and z/OS 1.11 environments, the caller must complete the following
steps:

1. Load GXLIMOD2, the alternate validating parser into memory for use by the application.

• The alternate parser, GXLIMOD2, contains support for the z/OS 1.12 XML System Services functions.
To load the z/OS 1.12 version of the validating parser using the GXL1LOD(GXL4LOD) API, specify
XEC_LOD_VPARSE_ALT for the function_code. See “gxlpLoad — load a z/OS XML function” on page
72and “GXL1LOD (GXL4LOD) — load a z/OS XML function” on page 135for more information on
loading a validating parser.

2. Parse with an OSR that supports the full z/OS 1.12 functionality.

• An OSR generated on a z/OS 1.12 system can be used on a z/OS 1.10 or z/OS 1.11 system with APAR
OA32251 installed and GXLIMOD2 loaded. This OSR will fully support all the functions listed above.

• To generate an OSR on a z/OS 1.10 or z/OS 1.11 system that fully supports the z/OS 1.12
functionality listed above using the xsdosrg command, specify the –a option on the command.
OSRs that were generated on z/OS 1.10 and z/OS 1.11 systems without the –a option can be used
with the alternate parser, but will not fully support all the new functions listed above.

• To generate an OSR on a z/OS 1.10 or a z/OS 1.11 system that fully supports the z/OS 1.12
functionality listed above using the C interface, specify GXLHXEC_OSR_ALT for the feature_flags field
on the gxluInitOSRG interface.

• To generate an OSR that supports the full z/OS 1.12 functionality using the Java interface, specify
type=OSRINI_ALT on the newOSRGenerator method in the gxlOSRGenerator class, when
generating an OSR.

The following is a list of examples:

• C example of loading the alternate validating parser (GXLIMOD2)

int f_code = GXLHXEC_LOD_VPARSE_ALT;
int f_data = 0;
int lodRet = 0;
int lodRsn = 0;
/* load the alternalte parser */

gxlpLoad(f_code,
 f_data,

© Copyright IBM Corp. 2006, 2019 233

 &lodRet,
 &lodRsn);

• xsdosrg example of generating a z/OS 1.12 functional level OSR

xsdosrg -a -o test.osr test.xsd

• C example of generating a z/OS 1.12 functional level OSR

void * myOIMA = NULL; /* OSR generator instance memory area */
long myOIMALength = GXLHXEC_MIN_OIMA_SIZE; /* length of OIMA */
void * sysSvcWorkarea = NULL;
featureFlags = GXLHXEC_OSR_ALT; /* Alternate OSR requested */
int localRC = 0;
int localRSN = 0;

myOIMA = malloc(GXLHXEC_MIN_OIMA_SIZE);
localRetVal = gxluInitOSRG(myOIMA,
 myOIMALength,
 featureFlags,
 sysSvcWorkarea,
 &localRC,
 &localRSN);

• Java example of generating a z/OS 1.12 functional level OSR

/* When issuing newOSRGenerator, specify type =
gxlOSRGenerator(gxlOSRGenerator.OSRINI_ALT) */

/* This will tell subsequent calls to generate an alternate osr */

myOSRGen = gxlOSRGenerator.newOSRGenerator(gxlOSRGenerator.OSRINI_ALT);

234 z/OS: XML System Services User's Guide and Reference

Appendix K. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (www.ibm.com/
support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the
Contact z/OS web page (www.ibm.com/systems/z/os/zos/webqs.html) or use the following mailing
address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision
use software products successfully. The accessibility features in z/OS can help users do the following
tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with
a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or
more syntax elements are always present together (or always absent together), they can appear on the
same line because they are considered a single compound syntax element.

© Copyright IBM Corp. 2006, 2019 235

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)
are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax
element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax
element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if
you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax element can be used zero
or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data
area, you know that you can include one data area, more than one data area, or no data area. If you

236 z/OS: XML System Services User's Guide and Reference

hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Accessibility 237

238 z/OS: XML System Services User's Guide and Reference

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for the Knowledge Centers. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 2006, 2019 239

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or

240 z/OS: XML System Services User's Guide and Reference

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details in
the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease if
a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Notices 241

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

Adobe, Acrobat, and PostScript are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States, other countries, or both.

DB2® is a registered trademark of International Business Machines Corporation in the United States, other
countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

242 z/OS: XML System Services User's Guide and Reference

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Index

A
accessibility

contact IBM 235
features 235

address 39
AMODE 140
ARR recovery routine 45, 152
ASC mode 140
assembler API entry points 106
assembler API environment requirements 107
assistive technologies 235
attribute names 34
aux flags

AUX_ENTITY 26
XEH_AUX_LONG_VALUE 26

aux info record
-varied information- 26
aux flags

AUX_ENTITY 26
XEH_AUX_LONG_VALUE 26

information type
CHARREF_UNREP_REC 27
OFFSET_END_ATTRVALUE 26
OFFSET_END_CDATA 27
OFFSET_END_COMMENT 27
OFFSET_END_DTD 27
OFFSET_END_ENDTAG 27
OFFSET_END_NSVALUE 27
OFFSET_END_PI 27
OFFSET_END_STARTTAG 26
OFFSET_END_STARTTAGNAME 26
OFFSET_END_XMLDECL 27
OFFSET_ROOT_ELEMENT 27
OFFSET_START_ATTRVALUE 26
OFFSET_START_CDATA 27
OFFSET_START_COMMENT 27
OFFSET_START_DTD 27
OFFSET_START_ENDTAG 27
OFFSET_START_NSVALUE 27
OFFSET_START_PI 27
OFFSET_START_STARTTAG 26
OFFSET_START_XMLDECL 27

record header 26
TOK_AUX_INFO 26

Aux info record 31, 32
Aux info record, Error_Location 29
aux info record, ERROR_STRING 31
AUX_ENTITY 26

B
B2B 1
BASIC 149
BUFFER 149
buffer length used field 25
business-to-business 1

bytes_left 39

C
CCSID 45
CICS PLT program, running 20
CICS PLT program, setting up 20
CLASSPATH 14
code page

EBCDIC/IBM-037 45
EBCDIC/IBM-1047 45
UTF-16 (big endian) 45
UTF-8 45

common register conventions 106
compiler option, Metal C 49
contact

z/OS 235
control feature, CTL_ENTS_AND_REFS 58, 116
control feature, CTL_ERROR_HANDLING 65, 122
control feature, CTL_FEAT 54, 112
control feature, CTL_FRAGMENT_PARSE 61, 119
control feature, CTL_LOAD_FRAG_CONTEXT 59, 117
control feature, CTL_LOAD_OSR 56, 114
control feature, CTL_QUERY_MIN_OUTBUF 57, 115
control feature, CTL_RESTRICT_ROOT 64, 121
control feature, GXLHXEC_CTL_FIN 53
control feature, GXLHXEC_CTL_RESET 67
control feature, GXLHXEC_CTL_SPLIT_RECORD_THRESHOLD
68
control feature, XEC_CTL_FIN 110
control feature, XEC_CTL_RESET 124
control parameters 140
controlling OSR generator 81
controlling parser, assembler 108
controlling parser, C/C++ 50
cross memory mode 46, 140
CTL_ENTS_AND_REFS 50, 58, 116
CTL_ERROR_HANDLING 51, 122
CTL_FEAT 50, 54, 112
CTL_FIN 50, 53
CTL_FRAGMENT_PARSE 15, 51, 61, 119
CTL_LOAD_FRAG_CONTEXT 15, 51, 59, 117
CTL_LOAD_OSR 50, 56, 114
CTL_QUERY_MIN_OUTBUF 50, 57, 115
CTL_RESET 67
CTL_RESTRICT_ROOT 51, 64, 121
CTL_SPLIT_RECORD_THRESHOLD 68

D
data macros 9, 21
data model 22
defining GXLINPLT to the CICS CSD 229
diagnosis and problem determination

XMLDATA IPCS subcommand 149
diagnostic area 151
dispatchable unit mode 140

 243

DLLS, locating 49
document processing model, overview 5
Document Type Definition 1
DTD 1
DTDs

processing 41

E
earlier releases, enabling functionality 233
EBCDIC 46
EBCDIC encoding considerations 46
EBCDIC/IBM-037 45
EBCDIC/IBM-1047 45
element names 34
enabling functionality in earlier releases 233
enabling offloads to specialty engines, overview 7
ENC_IBM_037 45
ENC_IBM_1047 45
ENC_UTF_16 45
ENC_UTF_8 45
encoding support 45
entity references

resolving 41
entity resolver 95
entity resolver, OSR generator 89
ENTS_AND_REFS 50, 108
equate names

ENC_IBM_037 45
ENC_IBM_1047 45
ENC_UTF_16 45
ENC_UTF_8 45

error information, obtaining additional 18
error location 31
error location path 30
error record offset field 25
error toleration, support for 20
Error_Location, aux info record 29
ERROR_STRING, aux info record 31
examples

GXL1CTL 213
GXL1INI 214
GXL1PRS 215
GXL1TRM 215
GXL4CTL 217
GXL4INI 218
GXL4PRS 219
GXL4TRM 219
GXLESTRI 225
GXLFST 221
GXLGST 222
GXLSYM 222

exit service
GXLFST31(GXLFST64) 143
GXLGST31(GXLGST64) 141
GXLPSYM31 (GXLPSYM64) 102
GXLSTRI 147
GXLSYM31 (GXLSYM64) 145

EXPECTED_STRING 31
Extensible Dynamic Binary XML 42
EXTENT 149

F
FEAT_ALLOW_VECTOR 71
FEAT_CDATA_AS_CHARDATA 25, 70
FEAT_FULL_END 25, 32, 70
FEAT_JST_OWNS_STORAGE 70
FEAT_RECOVERY 70
FEAT_SCHEMA_DISCOVERY 17, 71
FEAT_SOURCE_OFFSETS 25, 71
FEAT_STRIP_COMMENTS 24, 71
FEAT_TOKENIZE_WHITESPACE 24, 71
FEAT_VALIDATE 25, 71
FEAT_XDBX_INPUT 71
features list 3
feedback xiii
fragment parsing 31
free a root element 100
free namespace structure 101
free StringID table 98
functions list 4

G
generating OSR 93
generating StringID table 95, 97
GXL*CTL 21
GXL*QXD 21
GXL*XD 21
GXL*XEC 21
GXL*XEH 21
GXL*XFT 21
GXL*XOSR 22
GXL*XR 21
GXL*XSV 21
GXL1CTL

example 213
GXL1CTL (GXL4CTL) 108, 146, 148, 151
GXL1INI

example 214
GXL1INI (GXL4INI) 125, 142
GXL1LOD (GXL4LOD) 135
GXL1PRS

example 215
GXL1PRS (GXL4PRS) 129, 139
GXL1QXD (GXL4QXD) 132
GXL1TRM

example 215
GXL1TRM (GXL4TRM) 45, 46, 134
GXL4CTL

example 217
GXL4INI

example 218
GXL4PRS

example 219
GXL4TRM

example 219
GXLESTRI

example 225
GXLFST

example 221
GXLFST31 (GXLFST64) 141
GXLGST

example 222
GXLGST31 (GXLGST64) 141

244

gxlhctl.h 21, 209
gxlhosrd.h 210
gxlhosrg.h 210
gxlhqxd.h 21, 208
gxlhxd.h 21, 209
GXLHXEC_CTL_ERROR_HANDLING 65
gxlhxec.h 21, 25, 208
gxlhxeh.h 21, 25, 207
gxlhxft.h 21, 210
gxlhxml.h 21, 207
gxlhxosr.h 22, 210
gxlhxr.h 21, 209
gxlhxstr.h 211
gxlhxsv.h 21, 209
gxlpControl 50
gxlpInit 69
gxlpLoad 72
gxlpParse 45, 74, 152
gxlpQuery 76
GXLPSYM31 (GXLPSYM64) 102
gxlpTerminate 78
GXLSYM

example 222
GXLSYM31 (GXLSYM64) 35
gxluControlOSRG 81
gxluFreeNamespaces 101
gxluFreeRootElements 100
gxluFreeStringIDs 98
gxluGenOSR 93
gxluGenStrIDTable 95
gxluGetRootElements 99
gxluGetStringIDs 97
gxluGetTargetNamespaces 100
gxluInitOSRG 79
gxluLoadOSR 91
gxluLoadSchema 85
gxluSetEntityResolver 89
gxluSetStrIDHandler 87
gxluTermOSRG 83
GXLYCTL 21, 209
GXLYQXD 21, 208
GXLYXD 21, 151, 209
GXLYXEC 21, 25, 208
GXLYXEH 21, 25, 33, 207
GXLYXFT 21, 210
GXLYXOSR 22, 210
GXLYXR 21, 47, 209
GXLYXSV 21, 209

H
header files 21
header files, locating 49
headers 9
HELP 149
HTML 1

I
info record

Aux info record 25
compatibility

31-bit 33

info record (continued)
compatibility (continued)

64-bit 33
content flag 33
default XML structures

attributes 28
content 28
end tags 28
namespace declarations 28
start tags 28

entities 28
error record 25
extended end element record 32
interactions with other features

FEAT_CDATA_AS_CHARDATA 29
FEAT_STRIP_COMMENTS 28
fragment parsing 29
validation 29

parsed data stream 24
XEH_DEFAULT 33

initializing OSR generator 79
initializing parser, assembler 125
initializing parser, C/C++ 69
input registers 106
interrupt status 140
invoking the z/OS XML System Services APIs 105
IPCS 4, 149

J
JST 142

K
keyboard

navigation 235
PF keys 235
shortcut keys 235

L
language, XML Path 19
length/value pairs 33
LIBPATH 14
list of features 3
list of functions 4
load function

assembler interface 135
C/C++ interface 72

loading OSR 91
loading parser, assembler 135
loading parser, C/C++ 72
loading schema 85
loading the validating parser code 12
locks 140
LOD_VPARSE 73

M
managing memory resources 46
MARKED 149
memory

free 143

 245

memory (continued)
get 141

memory management, overview 7
metadata records 24
MIN_OIMA_SIZE 79
MIN_QXDWORK_SIZE 77
minimum authorization 140
MISC 149
multithreaded environment

using the parser 42

N
namespace

declarations 41
namespace context 30
namespace declarations 34
namespaces 1
navigation

keyboard 235
non-representable characters 41
NVPARSE_MIN_PIMA_SIZE 70

O
OFFSET_END_ATTRVALUE 26
OFFSET_END_CDATA 27
OFFSET_END_COMMENT 27
OFFSET_END_DTD 27
OFFSET_END_ENDTAG 27
OFFSET_END_NSVALUE 27
OFFSET_END_PI 27
OFFSET_END_STARTTAG 26
OFFSET_END_STARTTAGNAME 26
OFFSET_END_XMLDECL 27
OFFSET_ROOT_ELEMENT 27
OFFSET_START_ATTRVALUE 26
OFFSET_START_CDATA 27
OFFSET_START_COMMENT 27
OFFSET_START_DTD 27
OFFSET_START_ENDTAG 27
OFFSET_START_NSVALUE 27
OFFSET_START_PI 27
OFFSET_START_STARTTAG 26
OFFSET_START_XMLDECL 27
OIMA 79
optimized schema representation, overview 7
Optimized Schema Representations 14
Optimized Schema Representations, tips for using 14
OSR generator

control operation
C/C++ interface 81

entity resolver
C/C++ interface 89

free a root element
C/C++ interface 100

free namespace structure
C/C++ interface 101

free StringID table
C/C++ interface 98

generate OSR
C/C++ interface 93

generate StringID table

OSR generator (continued)
generate StringID table (continued)

C/C++ interface 95, 97, 99
load OSR

C/C++ interface 91
load schema

C/C++ interface 85
retrieving target namespaces

C/C++ interface 100
StringID handling

C/C++ interface 87
OSR generator instance

initialize
C/C++ interface 79

terminate
C/C++ interface 83

OSR_CTL_DIAG 81, 82
OSR_CTL_FIN 81, 82
OSRs 14
OSRs, tips for using 14
output buffer 22
output buffer format, overview 6
output registers 107
overview of z/OS XML System Services 3

P
PAB 149
PARAM 149
parse instance

initialize
assembler interface 125

terminate
assembler interface 134
C/C++ interface 78

parse status field 25
parser

initialize
C/C++ interface 69

parser control function
perform

assembler interface 108
C/C++ interface 50

parsing
restricting root element name 15

parsing with validation
xml document fragments 15

parsing with validation, overview 4
parsing with validation, steps 13
parsing without validation, overview 4
parsing without validation, steps 12
parsing XDBX input streams 42
parsing XDBX input streams, overview 5
parsing XML document fragments with validation, overview 5
parsing XML documents 11
PMM 149

Q
query function, C/C++ 76
querying function, assembler 132
querying function, description 9
querying function, overview 4

246

querying service, description 9
querying XML documents 9

R
reason code

reason code
obtaining a dump 152

reason codes
listed by value 155

record flag bits 22
record forms

0 35
1 35
2 35
3 36

record header 22
record type

values 37
record types

TOK_ATTR_NAME 23
TOK_ATTR_VALUE 23
TOK_AUX_INFO 23
TOK_BUFFER_INFO 23
TOK_CHAR_DATA 23
TOK_COMMENT 23
TOK_DTD_DATA 23
TOK_END_CDATA 23
TOK_END_ELEM 23
TOK_ERROR 23
TOK_NS_DECL 23
TOK_PI 23
TOK_START_CDATA 23
TOK_START_ELEM 23
TOK_UNRESOLVED_REF 23
TOK_WHITESPACE 23
TOK_XML_DECL 23

recovery considerations 45
recovery routine 152
recovery routine, C/C++ 49
restricting root element name

parsing 15
retrieving target namespaces 100
return codes

listed by value 153
root elements, retrieving 99
running CICS PLT program 20
runtime option, XPLINK 49

S
schema locations 17
Schema, XML 1
sending to IBM

reader comments xiii
setting up CICS PLT program 20
setting up OSR environment 14
shortcut keys 235
side decks, locating 49
SLIP trap 152
spanning buffers 39
splitting multibyte characters 40
splitting records 39

splitting records, XDBX streams 40
SRB 46, 142
string identifiers 34
string identifiers, overview 7
string representation

default 33
StringID handler 94
StringID handler, exit service 102
StringID handler, OSR generator 87
StringID service 145, 147
STRUCT 149
summary of changes

z/OS XML System Services xv
supported encodings 231
System Services Exit Interface

common register conventions
input registers 139
output registers 140

environmental requirements 140
exit functions

allocate memory 139
free memory 139
string identifier service 139

restrictions 141

T
task mode 46
tasks

parsing with validation
steps 13

parsing without validation
steps 12

terminating OSR generator 83
terminating parser, assembler 134
terminating parser, C/C++ 78
TOK_ATTR_NAME 37
TOK_ATTR_VALUE 26, 37
TOK_AUX_INFO 26, 37
TOK_BUFFER_INFO 37
TOK_CHAR_DATA 37
TOK_COMMENT 27, 37
TOK_DTD_DATA 27, 37
TOK_END_CDATA 27, 37
TOK_END_ELEM 27, 32, 37
TOK_ERROR 37
TOK_NS_DECL 27, 37
TOK_PI 27, 37
TOK_ROOT_ELEMENT 37
TOK_SCHEMA_LOCATION 37
TOK_START_CDATA 27, 37
TOK_START_ELEM 26, 37
TOK_UNREP_CHARREF 27
TOK_UNRESOLVED_REF 37, 41
TOK_WHITESPACE 37
TOK_XML_DECL 27, 37
TOLERATED_ERROR 32
TRACE 149

U
updating PLT table, sample job 229
user interface

 247

user interface (continued)
ISPF 235
TSO/E 235

using the recovery routine 108
UTF-16 (big endian) 45
UTF-8 45

V
VPARSE_MIN_PIMA_SIZE 70

W
W3C 1
World Wide Web Consortium 1

X
XD_Eye 151
XD_Iarv64Rc 151
XD_Iarv64Rsn 151
XD_IFA_RC 151
XD_InBuff 151
XD_InBuffOffset 151
XD_LastRC 151
XD_LastRSN 151
XD_OutBuff 151
XD_OutBuffOffset 151
XD_PAB 151
XD_StorageRC 151
XD_StorageRsn 151
XD_StorExitDiag 151
XD_StorExitRc 151
XD_StorExitRsn 151
XD_SymbolLength 151
XD_Version 151
XDBX input streams

parsing 42
XDBX input streams, parsing 42
XEAR_ENTREF_STOP_UNRESOLVED 41
XEC_ CTL_QUERY_MIN_OUTBUF 108
XEC_CTL_ENTS_AND_REFS 108
XEC_CTL_ERROR_HANDLING 109
XEC_CTL_FEAT 108
XEC_CTL_FIN 108, 110
XEC_CTL_FRAGMENT_PARSE 109
XEC_CTL_LOAD_FRAG_CONTEXT 109
XEC_CTL_LOAD_OSR 108
XEC_CTL_RESET 109, 124
XEC_CTL_RESTRICT_ROOT 109
XEC_CTL_SPLIT_RECORD_THRESHOLD 109
XEC_FEAT_ALLOW_VECTOR 127
XEC_FEAT_CDATA_AS_CHARDATA 126
XEC_FEAT_FULL_END 127
XEC_FEAT_JST_OWNS_STORAGE 126, 142
XEC_FEAT_RECOVERY 126
XEC_FEAT_SCHEMA_DISCOVERY 127
XEC_FEAT_SOURCE_OFFSETS 126
XEC_FEAT_STRIP_COMMENTS 126
XEC_FEAT_TOKENIZE_WHITESPACE 126
XEC_FEAT_WHITESPACE_AS_CHARDATA 127
XEC_FEAT_XDBX_INPUT 127
XEC_LOD_VPARSE 136

XEC_MIN_OUTBUF_SIZE 130
XEC_MIN_QXDWORK_SIZE 132
XEC_NVPARSE_MIN_PIMA_SIZE 126
XEC_VPARSE_MIN_PIMA_SIZE 126
XEH_AUX_LONG_VALUE 26
XEH_Default 22
XEH_No_Escapes flag 22
XFP_FLAGS_FRAGMENT_MODE 15
XML 1.0 46
XML 1.1 46
XML document

query
assembler interface 132
C/C++ interface 76

xml document fragments
parsing with validation 15

XML Path language 19
XML Schema 1
XMLDATA IPCS subcommand 149
XMLDATA IPCS subcommand options

BASIC 149
BUFFER 149
EXTENT 149
HELP 149
MARKED 149
MISC 149
PAB 149
PARAM 149
PMM 149
STRUCT 149
TRACE 149

XRC_FAILURE 39, 47
XRC_FATAL 47
XRC_NOT_VALID 47
XRC_NOT_WELL_FORMED 47
XRC_SUCCESS 47
XRC_WARNING 39, 47
XRSN_BUFFER_OUTBUF_SMALL 39
XRSN_REASON_MASK 47
xsdosrg

command description 205
xsdosrg command 205

Z
z/OS XML parser 1
z/OS XML System Services

summary of changes xv
z/OS XML System Services features list 3
z/OS XML System Services functions list 4
z/OS XML System Services, overview 3

248

IBM®

SA38-0681-40

	Contents
	Tables
	About this document
	Who should use this document
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS XML System Services User's Guide and Reference for Version 2 Release 4 (V2R4)
	Summary of changes
	Summary of changes

	Chapter 1. Introduction
	What is XML?
	z/OS XML System Services

	Chapter 2. Overview of z/OS XML System Services
	z/OS XML System Services features
	z/OS XML System Services functions
	Querying XML documents
	Parsing XML documents without validation
	Parsing XML documents with validation
	Parsing XML document fragments with validation
	Parsing XDBX input streams

	Document processing model
	Output buffer format
	Optimized Schema Representation
	String Identifiers
	Memory management
	Enable offload to specialty engines

	Chapter 3. Querying XML documents
	Header files and data macros

	Chapter 4. Parsing XML documents
	Steps for parsing XML documents without validation
	Loading the validating parser code
	Steps for parsing XML documents with validation
	Using Optimized Schema Representations
	Setting up the environment
	Usage tips

	Restricting the root element name
	Parsing XML document fragments with validation
	Obtaining information on schema locations
	Obtaining additional error information
	XML Path language
	Setting up and running the CICS PLT program

	Support for error toleration
	Header files and data macros
	Parsed data model
	Common record header
	Record (token) types

	Metadata records
	Buffer info record
	Error info record
	Aux info record
	Entities and default XML structures
	Interactions with other features

	Aux info record - Error_Location
	Error location path and namespace context
	Error location and fragment parsing

	Aux info record - ERROR_STRING
	Aux info record - EXPECTED_STRING
	Aux info record - TOLERATED_ERROR
	Extended end element record
	Default content flag (XEH_DEFAULT)
	31- and 64-bit compatibility

	Length/Value pairs
	String Identifiers
	Record forms
	Record form 0
	Record form 1
	Record form 2
	Record form 3

	Field values by record type
	Spanning buffers
	Splitting records
	Splitting multibyte characters

	Processing DTDs
	Resolving entity references
	Non-representable characters
	Namespace declarations
	Using the z/OS XML parser in a multithreaded environment
	Parsing XDBX input streams

	Chapter 5. Additional usage considerations
	Recovery considerations
	Encoding support
	EBCDIC encoding considerations

	Managing memory resources
	Using return and reason codes

	Chapter 6. z/OS XML parser API: C/C++
	Setting the XPLINK(ON) Language Environment runtime option
	Support for the Metal C compiler option
	Where to find the header files, DLLs and side decks
	Using the recovery routine
	z/OS XML XL C/C++ API
	gxlpControl — perform a parser control function
	Properties and resources reset by control functions

	gxlpControl features and functions
	GXLHXEC_CTL_FIN
	GXLHXEC_CTL_FEAT
	GXLHXEC_CTL_LOAD_OSR
	GXLHXEC_CTL_QUERY_MIN_OUTBUF
	GXLHXEC_CTL_ENTS_AND_REFS
	GXLHXEC_CTL_LOAD_FRAG_CONTEXT
	GXLHXEC_CTL_FRAGMENT_PARSE
	GXLHXEC_CTL_RESTRICT_ROOT
	GXLHXEC_CTL_ERROR_HANDLING
	GXLHXEC_CTL_RESET
	GXLHXEC_CTL_SPLIT_RECORD_THRESHOLD

	gxlpInit — initialize the z/OS XML parser
	gxlpLoad — load a z/OS XML function
	gxlpParse — parse a buffer of XML text
	gxlpQuery — query an XML document
	gxlpTerminate — terminate a parse instance

	OSR generator API
	gxluInitOSRG — initialize an OSR generator instance
	gxluControlOSRG — perform an OSR generator control operation
	gxluTermOSRG — terminate an OSR generator instance
	gxluLoadSchema — load a schema into the OSR generator
	gxluSetStrIDHandler — specify the StringID handler for OSR generation
	gxluSetEntityResolver — specify the entity resolver for OSR generation
	gxluLoadOSR — load an OSR into the OSR generator
	gxluGenOSR — generate an Optimized Schema Representation (OSR)
	gxluGenStrIDTable — generate StringID table from an OSR
	gxluGetStringIDs — generate StringID table from an OSR
	gxluFreeStringIDs — free a StringID table
	gxluGetRootElements — retrieve the root elements from an OSR
	gxluFreeRootElements — free a root element structure
	gxluGetTargetNamespaces — retrieve the target namespaces from an OSR
	gxluFreeNamespaces — free a namespace structure
	GXLPSYM31 (GXLPSYM64) — StringID handler

	Chapter 7. z/OS XML parser API: Assembler
	How to invoke the z/OS XML System Services assembler API
	z/OS XML parser Assembler API
	API entry points
	Common register conventions
	Input registers
	Output registers
	Environmental requirements

	Using the recovery routine
	GXL1CTL (GXL4CTL) — perform a parser control function
	GXL1CTL (GXL4CTL) features and functions
	XEC_CTL_FIN
	XEC_CTL_FEAT
	XEC_CTL_LOAD_OSR
	XEC_CTL_QUERY_MIN_OUTBUF
	XEC_CTL_ENTS_AND_REFS
	XEC_CTL_LOAD_FRAG_CONTEXT
	XEC_CTL_FRAGMENT_PARSE
	XEC_CTL_RESTRICT_ROOT
	XEC_CTL_ERROR_HANDLING
	XEC_CTL_RESET

	GXL1INI (GXL4INI) — initialize a parse instance
	GXL1PRS (GXL4PRS) — parse a buffer of XML text
	GXL1QXD (GXL4QXD) — query an XML document
	GXL1TRM (GXL4TRM) — terminate a parse instance
	GXL1LOD (GXL4LOD) — load a z/OS XML function

	Chapter 8. z/OS XML System Services exit interface
	Exit functions
	Common register conventions
	Input registers
	Output registers
	Environmental requirements
	Restrictions

	GXLGST31 (GXLGST64) — get memory
	GXLFST31 (GXLFST64) — free memory
	GXLSYM31 (GXLSYM64) — StringID service
	GXLSTRI — StringID service for Language Environment and Metal C

	Chapter 9. Diagnosis and problem determination
	XMLDATA IPCS subcommand
	Diagnostic Area
	SLIP trap for return codes from the z/OS XML parser
	ARR recovery routine

	Appendix A. Return codes listed by value
	Appendix B. Reason codes listed by value
	Appendix C. xsdosrg command reference
	Name
	Synopsis
	Description
	Options
	Operands
	Example
	Environment variables
	Usage notes
	Exit values
	Related information

	Appendix D. C/C++ header files and assembler macros
	gxlhxml.h - main z/OS XML header file
	gxlhxeh.h (GXLYXEH) - mapping of the output buffer record
	gxlhxec.h (GXLYXEC) - constants definitions
	gxlhqxd.h (GXLYQXD) - mapping of the output from the query XML declaration service
	gxlhxd.h (GXLYXD) - mapping of extended diagnostic area
	gxlhxr.h (GXLYXR) - defines the return codes and reason codes
	gxlhxsv.h (GXLYXSV) - mapping of the system service vector
	gxlhctl.h (GXLYCTL) - mapping of the control input parameters area
	gxlhxft.h (GXLYXFT) - mapping of the control feature input output area
	gxlhxosr.h (GXLYXOSR) - mapping of the OSR control area
	gxlhosrg.h - OSR generator prototypes
	gxlhosrd.h - mapping of the OSR generator diagnostic area
	gxlhxstr.h - StringID table

	Appendix E. Callable services examples - AMODE 31
	GXL1CTL example
	GXL1INI example
	GXL1PRS example
	GXL1TRM example

	Appendix F. Callable services examples - AMODE 64
	GXL4CTL example
	GXL4INI example
	GXL4PRS example
	GXL4TRM example

	Appendix G. Exit examples
	GXLEFRM (GXLFST example)
	GXLEGTM (GXLGST example)
	GXLSYM example
	GXLEINI
	GXLEIDI (GXLSYM example module)
	GXLEIDR

	GXLESTRI

	Appendix H. CICS examples
	Appendix I. Supported encodings
	Appendix J. Enabling z/OS V1R12 XML functionality in z/OS V1R10 and z/OS V1R11
	Appendix K. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

