
z/OS

z/OS Batch Runtime:
Planning and User's Guide
Version 2 Release 1

SA23-1376-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 105.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . vii

Tables . ix

About this information . xi
Who should read Batch Runtime Planning and User's Guide xi
Where to find more information . xi

Internet sources . xii

How to send your comments to IBM. xiii
If you have a technical problem . xiii

z/OS Version 2 Release 1 summary of changes xv

Chapter 1. Overview and planning of z/OS Batch Runtime 1
Requirements for z/OS Batch Runtime . 2
Planning for z/OS Batch Runtime . 3

Chapter 2. Invoking z/OS Batch Runtime. 5
Configuring Java . 5

Improving Java start up time . 5
Java environment variables for z/OS Batch Runtime . 6

Main JCL statements needed for BCDBATCH . 6
JCL for the BCDBATCH job . 8

Sample BCDBATCH JCL . 8
Procedure for modifying the BCDBATCH job . 10

JCL for BCDIN configurations options . 12
Sample BCDIN File. 12
Procedure for modifying the BCDIN JCL . 14

Sample BCDPROC to invoke z/OS Batch Runtime . 15

Chapter 3. Defining connectivity for the database 17
Considerations for setting up z/OS Batch Runtime services for a database resource 17

DB2 Java Database Connectivity (JDBC) and z/OS Batch Runtime 17
Transaction management and global transactions . 17
Commit and rollback services of z/OS Batch Runtime . 18
End-of-job clean up processing . 18

Chapter 4. Application interfaces for z/OS Batch Runtime 19
Configuration options reference . 19

Configuration option types . 19
Configuration option names . 19
Program arguments . 22

Helper functions for z/OS Batch Runtime . 22
Java function for commit and rollback . 22

Support elements for JDBC and DB2 . 23
Language Environment restrictions for z/OS Batch Runtime 24
Completion codes for z/OS Batch Runtime . 24

Chapter 5. Application structure and build considerations for COBOL and Java 25
DLL considerations for COBOL and Java . 25

Example of a COBOL COMMIT wrapper . 25
Using the bcdcommit() and bcdrollback() helpers from COBOL 27

© Copyright IBM Corp. 2013 iii

Examples of program structures . 29
Building programs: compile and link JCL examples . 31
Code examples . 32

Example: Java code calling COBOL . 33
Example: C DLL calling COBOL from Java . 34
Example: COBOL code invoking Java. 35

Binding DB2 with Java JDBC and COBOL embedded SQL. 45
Commands for SQLJ program preparation . 46

Chapter 6. Application structure and build considerations for PL/I and Java 49
PL/I External Control JCL Statement . 49
PL/I Compile and Bind Considerations for PL/I Main Routines 50
Commit and Rollback Callbacks . 50

Sample PL/I Source to Invoke Commit Callback . 51
Sample Compile and Bind JCL . 54
Commit and Rollback Helpers . 54
PL/I Embedded SQL and Transactional VSAM Considerations 57
Calling PL/I from Java . 57

Chapter 7. Troubleshooting for z/OS Batch Runtime 59
Trace facilities for z/OS Batch Runtime . 59
Log facilities for z/OS Batch Runtime . 59
Signalling and exception handling by z/OS Batch Runtime 59

Appendix A. Common Batch Container . 61
Introduction . 61

Transactional batch programming model . 61
Developing a simple batch application . 62

Procedure . 62
Implementing batch data stream framework and patterns . 63

Using the batch data stream framework . 64
JDBCReaderPattern . 66
JDBCWriterPattern . 69
ByteReaderPattern . 71
ByteWriterPattern . 72
FileReaderPattern . 73
FileWriterPattern . 75
RecordOrientedDatasetReaderPattern . 76
RecordOrientedDatasetWriterPattern . 78
JPAReaderPattern . 80
JPAWriterPattern. 82

Common batch container jobs . 83
Creating batch job steps . 83
xJCL elements . 88
Batch job return codes explanations . 91
Job logs. 92
Output of a job log . 92
XML schema for a batch job . 93
xJCL sample for a batch job . 96

Implementing Checkpoint algorithms. 98
Time-based algorithm . 98
Record-based algorithm . 98
Applying a checkpoint algorithm to a batch step . 99

Implementing a Results algorithm . 99

Appendix B. Accessibility . 101
Accessibility features . 101
Using assistive technologies . 101
Keyboard navigation of the user interface . 101
Dotted decimal syntax diagrams . 101

iv z/OS V2R1.0 Batch Runtime Planning and User's Guide

Notices . 105
Policy for unsupported hardware. 106
Minimum supported hardware . 107
Minimum supported hardware . 107

Index . 109

Contents v

vi z/OS V2R1.0 Batch Runtime Planning and User's Guide

Figures

1. Overview of the z/OS Batch Runtime environment . 2
2. Example: BCDBATCH JCL procedure (Part 1 of 2) . 9
3. Example: BCDBATCH JCL procedure (Part 2 of 2) . 10
4. Example: JCL BCDIN configuration options (Part 1 of 2) 13
5. Example: JCL BCDIN configuration options (Part 2 of 2) 14
6. Example: BCDPROC statement . 16
7. Example: COBOL COMMIT wrapper . 26
8. Example: JCL used to compile COMMIT wrapper. 27
9. Sample COBOL Calling bcdcommit() and bcdrollback() Helpers 28

10. Sample COBOL Compile and Bind JCL for bcdcommit() and bcdrollback() Helpers 29
11. Example: COBOL program calling Java and unmodified COBOL. 30
12. Example: Java program using OOCOBOL to call COBOL 30
13. Example: JCL for COBOL DB2 phone program . 32
14. Example: Java code calling COBOL (Part 1 of 2) . 33
15. Example: Java code calling COBOL (Part 2 of 2) . 34
16. Example: C interface DLL for calling COBOL from Java 35
17. Example: COBOL DB2 phone application that invokes Java under z/OS Batch Runtime (Part 1 of 10) 36
18. Example: COBOL DB2 phone application that invokes Java under z/OS Batch Runtime (Part 2 of 10) 37
19. Example: COBOL DB2 phone application that invokes Java under z/OS Batch Runtime (Part 3 of 10) 38
20. Example: COBOL DB2 phone application that invokes Java under z/OS Batch Runtime (Part 4 of 10) 39
21. Example: COBOL DB2 phone application that invokes Java under z/OS Batch Runtime (Part 5 of 10) 40
22. Example: COBOL DB2 phone application that invokes Java under z/OS Batch Runtime (Part 6 of 10) 41
23. Example: COBOL DB2 phone application that invokes Java under z/OS Batch Runtime (Part 7 of 10) 42
24. Example: COBOL DB2 phone application that invokes Java under z/OS Batch Runtime (Part 8 of 10) 43
25. Example: COBOL DB2 phone application that invokes Java under z/OS Batch Runtime (Part 9 of 10) 44
26. Example: COBOL DB2 phone application that invokes Java under z/OS Batch Runtime (Part 10 of 10) 45
27. Example: JDBC-only case . 46
28. bcd.applicationLanguage Syntax . 50
29. PL/I Sample to Commit Transaction Using JNI . 52
30. Sample Compile and Bind JCL to Commit Transaction Using JNI 54
31. PL/I bcdcommit() Syntax . 55
32. PL/I bcdrollback() Syntax . 55
33. COBOL bcdcommit() Syntax . 55
34. COBOL bcdrollback() Syntax . 55
35. Sample PL/I Compile and Bind JCL for bcdcommit() and bcdrollback() Helpers 56
36. Sample PL/I Commit Transaction Using bcdcommit() and bcdrollback() 57
37. PL/I example to be called from Java . 58
38. Corresponding Java which calls the PL/I native method 58

© Copyright IBM Corp. 2013 vii

viii z/OS V2R1.0 Batch Runtime Planning and User's Guide

Tables

1. Summary of reference information for required programs 2
2. JCL summary for BCDBATCH job . 7
3. Configuration option types . 19
4. Completion codes for z/OS Batch Runtime . 24
5. bcdcommit() and bcdrollback() Return Codes . 55
6. Batch data stream patterns . 64
7. Required properties . 67
8. Optional properties . 67
9. Required properties . 69

10. Optional properties . 69
11. Required properties . 71
12. Optional properties . 71
13. Required properties . 72
14. Optional properties . 72
15. Required properties . 74
16. Optional properties . 74
17. Required properties . 75
18. Optional properties . 75
19. Required properties . 77
20. Optional properties . 77
21. Required properties . 78
22. Optional properties . 79
23. Required properties . 80
24. Optional properties . 80
25. Required properties . 82
26. Optional properties . 82
27. Required properties . 84
28. Optional properties . 84
29. Required properties . 85
30. Optional properties . 86
31. Optional properties . 87
32. Optional properties . 88
33. xJCL elements. 88
34. Return codes and explanations . 91

© Copyright IBM Corp. 2013 ix

x z/OS V2R1.0 Batch Runtime Planning and User's Guide

About this information

This publication describes the IBM® z/OS Batch Runtime component of z/OS®.
z/OS Batch Runtime provides the ability to update the DB2® database from PL/I,
COBOL, and Java™ in a single transaction.

This publication is organized as follows:
v Chapter 1, “Overview and planning of z/OS Batch Runtime,” on page 1. This

chapter describes overview information for z/OS Batch Runtime and how to
invoke the program.

v Chapter 2, “Invoking z/OS Batch Runtime,” on page 5. This chapter describes
how to invoke the z/OS Batch Runtime program through the job control
language (JCL).

v Chapter 3, “Defining connectivity for the database,” on page 17. This chapter
describes planning connectivity for z/OS Batch Runtime.

v Chapter 4, “Application interfaces for z/OS Batch Runtime,” on page 19. This
chapter describes application programming interfaces for z/OS Batch Runtime
including: options, support elements for the Java Database Connectivity (JDBC)
and DB2 programs, environment variables, completion codes, and any applicable
API.

v Chapter 5, “Application structure and build considerations for COBOL and
Java,” on page 25. This chapter describes application structuring and building
procedures for z/OS Batch Runtime.

v Chapter 6, “Application structure and build considerations for PL/I and Java,”
on page 49. This chapter describes using PL/I for z/OS Batch Runtime.

v Chapter 7, “Troubleshooting for z/OS Batch Runtime,” on page 59. This chapter
describes diagnostics and troubleshooting procedures for z/OS Batch Runtime.

Who should read Batch Runtime Planning and User's Guide
This publication is intended for experienced PL/I, COBOL, and Java programmers
who are familiar with DB2 and plan, develop, and test applications that run on
z/OS. It describes how to improve interoperability between PL/I, COBOL, and
Java applications by allowing you to share a local DB2 attachment in a single
hybrid Java COBOL application. Advanced knowledge of the Java Native Interface
(JNI), PL/I, COBOL, Java programming, and DB2 is required.

Note: All examples in this publication are for illustration purposes only. You must
replace any example or code parameters with the correct specifications for your
installation.

Where to find more information
When possible, this information uses cross-document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, see
z/OS Internet Library (http://www.ibm.com/systems/z/os/zos/bkserv/).

© Copyright IBM Corp. 2013 xi

http://www.ibm.com/systems/z/os/zos/bkserv/

Internet sources
The following resources are available through the Internet to provide additional
information about z/OS:
v Online library

To view and print online versions of the z/OS publications, use this address:
http://www.ibm.com/systems/z/os/zos/bkserv/

v Redbooks®

The documents known as IBM Redbooks that are produced by the International
Technical Support Organization (ITSO) are available at the following address:
http://www.redbooks.ibm.com

xii z/OS V2R1.0 Batch Runtime Planning and User's Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/redbooks

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the Contact z/OS.
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 Batch Runtime Planning and User's Guide
SA23-1376-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at IBM support portal.

© Copyright IBM Corp. 2013 xiii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/

xiv z/OS V2R1.0 Batch Runtime Planning and User's Guide

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 2013 xv

xvi z/OS V2R1.0 Batch Runtime Planning and User's Guide

Chapter 1. Overview and planning of z/OS Batch Runtime

In today's z/OS environment, many installations want to re-engineer their existing
native z/OS PL/I, COBOL, and Java applications to incorporate the Java language.
By doing so, they can keep their heritage of existing z/OS PL/I, COBOL, and Java
batch applications, while taking advantage of the larger developer skill base and
many language features of Java. As such, there is a requisite need to share a local
DB2 for z/OS attachment across the PL/I, COBOL, and Java language boundary.
This enables mixed language programs to process DB2 for z/OS requests in the
same unit of work (UOW). When these batch application suites are re-engineered
or updated, they should also allow transparent local DB2 for z/OS access from
PL/I, COBOL, and Java to the following programs:
v Embedded Structured Query Language (SQL) DB2 access, which is used in

Enterprise PL/I, COBOL, and Java
v Java Database Connectivity (JDBC) for Dynamic SQL
v Embedded Structured Query Language for Java (SQLJ)

z/OS Batch Runtime allows for this interoperability between PL/I, COBOL, and
Java applications that run on z/OS. It is a program designed to provide a managed
environment that enables shared access to a DB2 connection by PL/I, COBOL, and
Java programs. Updates to DB2 are committed in a single transaction. (Note that
updates to multiple databases are not supported.)

A new feature of z/OS Batch Runtime is support for the IBM Java Batch
Programming Model. It enables pure Java batch applications to be both data source
and sink neutral with an XML like definition and is fully described in Appendix A.
A new JCL statement, //BCDXJCL is added as the source for this descriptor along
with a new and special language type, XJCL.

Figure 1 on page 2 shows a high-level overview of the z/OS Batch Runtime
environment. The batch container performs the initialization that sets up the
environment for PL/I, COBOL, Java, and DB2 interoperability. This includes the
following tasks:
v Setting up the proper Language Environment® for the PL/I or COBOL programs

to run
v Setting up the job step under the umbrella of a Resource Recovery Services

(RRS)-managed global transaction
v Initiating the DB2 JDBC driver in this special “BatchContainer” mode
v Invoking the DB2 JDBC driver to create a DB2 connection and attachment thread
v Invoking the primary PL/I, COBOL or Java application after the environment is

properly initialized.

© Copyright IBM Corp. 2013 1

Requirements for z/OS Batch Runtime
z/OS Batch Runtime requires the following programs:
v IBM SDK for z/OS, Java Technology Edition, V6.0.1 or higher (5655-R31). (For

details, see “Configuring Java” on page 5.)
v Pure Java applications using IBM Java Batch Common Programming Model

Support: may use either 31-bit or 64-bit JVM
v IBM COBOL and PL/I interoperability functions: 31-bit JVM only
v IBM Enterprise PL/I and COBOL Version 4.2
v One of the following:

– DB2 V9 with PTF UK62190 for JDBC 3.0 specification level, or PTF UK62191
for JDBC 4.0 specification level

– DB2 V10 with PTF UK62141 for JDBC 3.0 specification level, or PTF UK62145
for JDBC 4.0 specification level

For more information about these required programs, see the appropriate reference
listed in Table 1.

Table 1. Summary of reference information for required programs

For information about Refer to

Java http://www.ibm.com/systems/z/os/zos/tools/java/

IBM Enterprise COBOL
Version 4 Release 2

http://www.ibm.com/software/awdtools/cobol/zos/library/

DB2 http://www.ibm.com/software/data/db2/zos/family/

z/OS Batch Runtime Topology

JES Single Step based

JES
BCDBATCH

Proc

Submit

JCL

JZOS JVM zOS Batch Container

Transaction

Service

Policy/logs

z/OS Batch

Container

Execution

Service

JDBC

Type 2

Local DB2

JAVA/Cobol App

//STEP EXEC PROC=BCDBATCH
//STEPLIB DD DSN=COBOL APPLIB
// DD DSN=DB2LIBS (or LNKLST)
// DD DSN=JZOSLIB (or LNKLST)
//BCDIN DD *

Language=JAVA | HLL
Name= JavaClassName | COBOLAppName
Args1= ‘the COBOL EXEC PARM=Parm String ‘
Args2= more optional for JAVA only
…
Argsn= “
SupportClass.1=T2zosBatchContainer..

//STDENV DD *
JAVA_HOME>=JAVA 6.0.1 31 bit
CLASSPATH=bcdjar, jdbcjars,appljars
LIBPATH=bcdlib, jdbclib,applib(s)
IBM_JAVA_OPTIONS= -X, -D options for JVM, JDBC

/*

Commit

Rollback

z/OS Plug-inz/OS Plug -in

Process

Job Step

Key inputs

RRS shared attach

Figure 1. Overview of the z/OS Batch Runtime environment

Overview

2 z/OS V2R1.0 Batch Runtime Planning and User's Guide

http://www.ibm.com/systems/z/os/zos/tools/java/
http://www-01.ibm.com/software/awdtools/cobol/zos/library/
http://www.ibm.com/software/data/db2/zos/family/

Table 1. Summary of reference information for required programs (continued)

For information about Refer to

PL/I http://www-01.ibm.com/software/awdtools/pli/plizos/
library/

Planning for z/OS Batch Runtime
When planning use of z/OS Batch Runtime, a good application to consider using
is a native procedural z/OS COBOL or PL/I application that you want to
functionally enhance with Java method calls. The entire application code must be
single threaded. Also, see Chapter 5, “Application structure and build
considerations for COBOL and Java,” on page 25 for more information.

Overview

Chapter 1. Overview and planning of z/OS Batch Runtime 3

http://www-01.ibm.com/software/awdtools/pli/plizos/library/
http://www-01.ibm.com/software/awdtools/pli/plizos/library/

4 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Chapter 2. Invoking z/OS Batch Runtime

The z/OS Batch Runtime is established by launching the Java program
com.ibm.zos.batch.container.BCDBatchContainer with the proper configuration
and environment settings that allows your PL/I, COBOL, and Java programs to be
invoked with the correct arguments. The JZOS launcher, a component of the IBM
JDK for z/OS, is used to establish the environment and pass control to z/OS Batch
Runtime which, in turn, will launch your PL/I, COBOL, or Java program and
provide necessary services. To facilitate the use of z/OS Batch Runtime, z/OS
includes:
v Environment tailoring shell scripts: bcdconfig.sh and bcdconfigend.sh in

/usr/lpp/bcp
v A JCL procedure to be invoked by batch jobs: BCDPROC in SYS1.PROCLIB
v A sample batch job to use BCDPROC: BCDBATCH in SYS1.SAMPLIB

Configuring Java
You must configure the CLASSPATH and LIBPATH variables with the list of Java
archive (JAR) files and dynamic link library (DLL) files that are required to run
both the z/OS Batch Runtime and the application. z/OS Batch Runtime is itself a
Java application and uses the JZOS toolkit to launch the JVM. You should tailor the
z/OS Batch Runtime sample BCDBATCH JCL and the environment variables it
provides.

Additionally, JZOS defines several environment variables that allow you to control
the Java options that JZOS uses when it creates the JVM and main method
program arguments. Find these options and complete information in JZOS Batch
Launcher and Toolkit function in IBM SDK for z/OS, at www.ibm.com/systems/z/os/
zos/tools/java/products/jzos/overview.html.

Note: Although JZOS also defines environment variables that allow you to control
the encoding of output, z/OS Batch Runtime only supports EBCDIC file encoding.

Improving Java start up time
For short-running jobs, improving Java start up time is important. This is
especially true when running numerous small Java batch jobs, as the Java start up
elapsed time and CPU time may affect performance. Using the following Java
options can make it possible to reduce the Java startup times for applications that
frequently start a new JVM :
v -Xquickstart Java option

Note: Quickstart may improve startup time for short running jobs, but it may
degrade performance of long running applications.

v Shared classes and AOT Java options

For more details about this topic as well as the latest considerations for using Java,
performance information, hints and tips, and information about developing and
running applications see:
http://www.ibm.com/systems/z/os/zos/tools/java

© Copyright IBM Corp. 2013 5

http://www-03.ibm.com/systems/z/os/zos/tools/java/products/jzos/overview.html
http://www-03.ibm.com/systems/z/os/zos/tools/java/products/jzos/overview.html
http://www-03.ibm.com/systems/z/os/zos/tools/java/faq/javafaq.html#jstart

Java environment variables for z/OS Batch Runtime
Java applications use the following environment variables for z/OS Batch Runtime
that are specified in the JCL:
v JAVA_HOME
v CLASSPATH
v LIBPATH
v IBM_JAVA_OPTIONS

See “Procedure for modifying the BCDBATCH job” on page 10 for examples of
how to specify these environment variables.

JAVA_HOME
The application must set the JAVA_HOME environment variable to a minimum
level of JAVA 6.0.1.

CLASSPATH
The application must set the CLASSPATH to include the .JAR files for z/OS Batch
Runtime, the DB2 driver for JDBC (DB2 JCC), and the application. To do so, use
the CLASSPATH environment variable specified in the BCDBATCH JCL procedure.

The configuration script automatically updates the CLASSPATH for z/OS Batch
Runtime .jar files, based on the exported BCD_HOME variable in the BCDBATCH
JCL procedure.

LIBPATH
In the BCDBATCH JCL procedure, the application must set LIBPATH to the
location of the DLLs for z/OS Batch Runtime, DB2 JCC, and any that are
associated with application. The configuration script performs the function.

IBM_JAVA_OPTIONS
This environment variable is a concatenation of the IBM JVM runtime options,
which are typically prefixed with -X, and any Java system properties, which are
prefixed with -D. This can include, for example, the JVM heap size runtime option
and the DB2 package list system property.

31-bit support
z/OS Batch Runtime for COBOL and PL/I interoperability supports only 31-bit
applications; you must use the 31-bit JVM.

64-bit support
IBM Java Batch Common Programming Model Support supports both 31-bit and
64-bit applications.

Main JCL statements needed for BCDBATCH
This section of the documentation uses reference keys, such as �1�, �2�, to match
the instructions with the sample JCL.

z/OS Batch Runtime supplies a sample BCDBATCH job which you modify to suit
your application. Table 2 on page 7 summarizes the main JCL statements for the
BCDBATCH job. “Procedure for modifying the BCDBATCH job” on page 10
contains complete steps to modifying the sample BCDBATCH job.

6 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Table 2. JCL summary for BCDBATCH job

JCL statement Explanation

�1�

//BCDBATCH JOB (1),’name’
//BATCH EXEC BCDPROC,REGION=0M,LOGLVL='+I'

The JCL that invokes z/OS Batch
Runtime. Throughout this
publication, the JCL used to
invoke the z/OS Batch Runtime is
referred to as the BCDBATCH job.
Use any job name that is
acceptable to your installation.

�2�

//*STEPLIB DD DSN=hlq.yourapp.loadlib,DISP=SHR
//* DD DSN=hlq.jzos.loadlib,DISP=SHR

Add any load libraries your
application requires to the
STEPLIB; for example, this could
be the data set containing your
PL/I or COBOL application load
modules. If the JZOS Java
launcher is not installed in the
LNKLST, add a STEPLIB for it.
For more information about
installing JZOS, see the JZOS Java
Launcher and Toolkit Overview at
www.ibm.com/systems/z/os/zos/
tools/java/.

Any COBOL application modules
must be in either the //STEPLIB
concatenation or added to a
STEPLIB environment variable in
//STDENV DD *. Do not use
LIBPATH for starting a COBOL
application.

�3�

//STDENV DD *

Specifies the environment
variables used for this run,
including JAVA_HOME,
CLASSPATH, and LIBPATH.

�4�

//BCDIN DD *

Specifies a file containing the
batch configuration options. Note
that some support elements
obtain their options from Java
system properties. See “JCL for
BCDIN configurations options”
on page 12 for more information.

�5�

//BCDXJCL

Names a file containing the xJCL
XML definition describing the
application to run. The syntax of
the xJCL is described in the
WebSphere® Compute Grid Info
Center. Compute Grid provides
some tooling to assist in the
development of XJCL, which is
part of the Modern Batch project
support in Rational® Application
Developer V8. This statement is
required when an xJCL
application is processed.

Chapter 2. Invoking z/OS Batch Runtime 7

http://www-03.ibm.com/systems/z/os/zos/tools/java/
http://www-03.ibm.com/systems/z/os/zos/tools/java/

Table 2. JCL summary for BCDBATCH job (continued)

JCL statement Explanation

�6�

//BCDXPROP

Names a file containing
substitution properties to be
applied the xJCL when the job is
submitted. The file is in
keyword=value format using the
same syntax rules as the
//BCDIN file. This statement is
optional.

JCL for the BCDBATCH job
A current sample of BCDBATCH job for z/OS Batch Runtime is in SYS1.SAMPLIB.
For convenience and planning purposes, this documentation contains the following
“Sample BCDBATCH JCL,” “Procedure for modifying the BCDBATCH job” on
page 10, and “Sample BCDPROC to invoke z/OS Batch Runtime” on page 15.

Note: All examples in this publication are for illustration purposes only. You must
replace any example or code parameters with the correct specifications for your
installation.

Sample BCDBATCH JCL
Figure 2 on page 9 is an example of JCL procedure for running the sample
BCDBATCH job.

8 z/OS V2R1.0 Batch Runtime Planning and User's Guide

�1�
//BCDBATCH JOB (1),’name’
//BATCH EXEC BCDPROC,REGION=0M,LOGLVL=’+I’
//*
//***
//* Update: Add the load libraries your application requires, *
//* such as the data set containing your COBOL *
//* application load modules to the STEPLIB. *
//* *
//* If the JZOS Java launcher has not been installed in *
//* the lnklst, add a steplib for it. *
//***
�2�
//*STEPLIB DD DSN=hlq.yourapp.loadlib,DISP=SHR
//* DD DSN=hlq.jzos.loadlib,DISP=SHR
//*
//*
�3�
//STDENV DD *
#
#--
UPDATE: Installation path for Batch Runtime.
Note: because the Batch Runtime is a component of z/OS,
the installation defaults to /usr/lpp/bcp
#--
export BCD_HOME=/usr/lpp/bcp
#�4�
#--
UPDATE: Installation path for Java.
#--
export JAVA_HOME=/usr/lpp/java/J6.0.1
#
#�5�
#--
The following runs the z/OS
Batch Runtime configuration script.
This script processes the exported environment variables that
were defined above.
#--
. $BCD_HOME/bcdconfig.sh
#
#�6�
#--
UPDATE: JDBC home directory, jar files, and DLLs.
#--
#JDBC_HOME=/usr/lpp/db2910_jdbc
#CLASSPATH="$CLASSPATH":$JDBC_HOME/classes/db2jcc.jar
#CLASSPATH="$CLASSPATH":$JDBC_HOME/classes/db2jcc_javax.jar
#export CLASSPATH="$CLASSPATH"
#
#LIBPATH="$LIBPATH":$JDBC_HOME/lib
#export LIBPATH="$LIBPATH"

Figure 2. Example: BCDBATCH JCL procedure (Part 1 of 2)

Chapter 2. Invoking z/OS Batch Runtime 9

Procedure for modifying the BCDBATCH job
The following JCL procedure summarizes the key statements to modify in the
BCDBATCH job (see Figure 2 on page 9) that invokes z/OS Batch Runtime.
v �1� Modify the JOB and EXEC statements to add any parameters required by

your installation.
For example in the following statement, BCDPROC is the batch container JCL
procedure.
//BATCH EXEC BCDPROC,REGION=0M

#
#�7�
#--
UPDATE: Add your application jar files to the CLASSPATH here.
#--
#CLASSPATH="$CLASSPATH":/your/extra/app.jar
#CLASSPATH="$CLASSPATH":/your/extra/app2.jar
#export CLASSPATH="$CLASSPATH"
#
#�8�
#--
UPDATE: Add your application libraries to the LIBPATH here.
The LIBPATH defines points to any application-defined DLLs,
which may include Java Native Interface (JNI) routines.
#--
#LIBPATH="$LIBPATH":/your/extra/lib
#LIBPATH="$LIBPATH":/your/extra/lib2
#export LIBPATH="$LIBPATH"
#
#�9�
#--
UPDATE: Uncomment to enable z/OS
Batch Runtime tracing for diagnosis.
#--
#IJO="$IJO -Dcom.ibm.zos.batch.container.BCDTraceConfig.trace=all"
#
#�10�
#--
UPDATE: Uncomment and add any additional JVM options here.
#--
#IJO="-Xms256m -Xmx512m"
#
#�11�
#--
UPDATE: Uncomment and add JDBC options here.
#--
#IJ0=$IJ0 -Ddb2.jcc.ssid=XXXX -Ddb2.jcc.pkList=NULLID.*,COBOLPKG.*"
#
#�12�
#--
Exports JVM options set above.
#--
export IBM_JAVA_OPTIONS="$IJO "
#
#�13�
#--
The following runs the z/OS
Batch Runtime configuration completion
script. This command must be last in the STDENV file.
#--
. $BCD_HOME/bcdconfigend.sh
#
//

Figure 3. Example: BCDBATCH JCL procedure (Part 2 of 2)

10 z/OS V2R1.0 Batch Runtime Planning and User's Guide

For details and options, including the symbolic to override defaults, see “Sample
BCDPROC to invoke z/OS Batch Runtime” on page 15.

v �2� For the STEPLIB statement, specify any load libraries that the application
requires (for example, the data set that contains your COBOL application load
modules) for DSN=, where hlq.yourapp.loadlib is the name:
//*STEPLIB DD DSN=hlq.yourapp.loadlib,DISP=SHR
// DD DSN=hlq.jzos.loadlib,DISP=SHR

This may include requisite DB2 and COBOL libraries that are not in LNKLST
but are loaded during program execution. Note that any COBOL modules that
are bound as DLLs should usually be found through the LIBPATH environment
variable.
The batch container uses the Java SDK JZOS launcher utility. If you installed the
Java SDK using SMP/E, JZOS is installed in the LNKLST. However, if you did
not use SMP/E, you must install the JZOS launcher into a data set, and add that
to your STEPLIB concatenation.
For more information about installing JZOS, see the JZOS Java Launcher and
Toolkit Overview at www.ibm.com/systems/z/os/zos/tools/java/

v �3� Update the installation paths for z/OS Batch Runtime. To tailor the runtime
environment, use the //STDENV DD statement in the BCDBATCH JCL to define a
shell script. The batch container processes the exported BCD_HOME environment
variable referenced by the script as the installation path for z/OS Batch Runtime
(default is /usr/lpp/bcp).

v �4� Update the installation path for Java to the correct level of Java:
export JAVA_HOME=/usr/lpp/java/J6.0.1

v �5� Run the z/OS Batch Runtime configuration shell script, bcdconfig, to process
the exported environment variables you just defined:
. $BCD_HOME/bcdconfig.sh

To set up the batch container, you must use the . (dot) command to invoke the
bcdconfig.sh.

v �6� Update the JDBC home directory, jar files, and DLLs:
JDBC_HOME=/usr/lpp/db2910_jdbc

v �7� Add additional application jar files to the CLASSPATH:
CLASSPATH="$CLASSPATH":/your/extra/app.jar
#CLASSPATH="$CLASSPATH":/your/extra/app2.jar
#export CLASSPATH="$CLASSPATH"

v �8� Add your application DLLs to the LIBPATH directories:
LIBPATH="$LIBPATH":/your/extra/lib
LIBPATH="$LIBPATH":/your/extra/lib2
export LIBPATH="$LIBPATH"

v �9� Enable tracing for z/OS Batch Runtime:
IJO="$IJO -Dcom.ibm.zos.batch.container.BCDTraceConfig.trace=all

v �10� Add any additional JVM options:
IJO="-Xms256m -Xmx512m"

You may add, for example, the -Xquickstart option or any other -D or -X JVM
runtime option you want to use.

v �11� Add any additional JDBC options for the DB2 subsystem:
IJO="$IJO -Ddb2.jcc.ssid=XXXX -Ddb2.jcc.pkList=NULLID.*,COBOLPKG.*"

For more information about the Java Database Connectivity (JDBC) options, see
DB2 Application Programming Guide and Reference for Java.
Do not specify -Dfile.encoding in the IBM_JAVA_OPTIONS string. z/OS Batch
Runtime only supports the default z/OS file.encoding of IBM-1047.

Chapter 2. Invoking z/OS Batch Runtime 11

http://www-03.ibm.com/systems/z/os/zos/tools/java/
http://publib.boulder.ibm.com/epubs/pdf/dsnjvm05.pdf

v �12� Export the JVM options:
export IBM_JAVA_OPTIONS="$IJO "

The IBM_JAVA_OPTIONS string must be set and exported before invoking the
bcdconifgend.sh script.

v �13� Run the following z/OS Batch Runtime completion script:
. $BCD_HOME/bcdconfigend.sh

Note: This script must always be run last in STDENV.

JCL for BCDIN configurations options
Use the //BCDIN JCL statement to control the z/OS Batch Runtime configuration
options. Some support elements obtain their options from Java system properties.

When creating a configuration options file, the following rules apply:
v Options must appear in the keyword=value format
v Options must be coded in columns 1 through 71 of the record. Long options can

be continued by coding a non-blank character in column 72 and continuing on
the next line.

v Comment lines contain a # in column one.
v Blank lines are ignored.
v Options are case sensitive.
v When you specify an option more than once, the last occurrence is used.

Sample BCDIN File
Figure 4 on page 13 shows an example file that contains additional details and
explanations. You can modify the sample as needed for individual jobs at your
installation.

12 z/OS V2R1.0 Batch Runtime Planning and User's Guide

//*
//***
//* *
//* Batch Runtime Options *
//* *
//* Syntax rules for specifying options: *
//* *
//* 1. Options are specified in keyword=value format. *
//* *
//* 2. Options are coded using columns 1-71. *
//* *
//* Long options may be continued by coding a non-blank *
//* character in column 72 and continuing on the next line. *
//* *
//* 3. Comment lines contain a # in column 1. *
//* *
//* 4. Blank lines are ignored. *
//* *
//* 5. Option names are case sensitive. *
//* *
//* 6. When the same option is specified more than once, *
//* the last occurrence of the option is used. *
//* *
//***
//*
//BCDIN DD *
#�1�
#---*
UPDATE: Uncomment the option corresponding to the language of
the application being launched
#---*
#bcd.applicationLanguage=COBOL
#bcd.applicationLanguage=JAVA
#
#�2�
#---*
UPDATE: The program name or fully qualified Java class name
of the application to be launched
#---*
bcd.applicationName=your.application.name

Figure 4. Example: JCL BCDIN configuration options (Part 1 of 2)

Chapter 2. Invoking z/OS Batch Runtime 13

Procedure for modifying the BCDIN JCL
The following list summarizes the BCDIN JCL statements to use for configuring the
Batch Runtime options:
v �1� Specify the option that corresponds to the language of the application.

For example, in PL/I or COBOL:
bcd.applicationLanguage=LE

For example, in Java:
bcd.applicationLanguage=JAVA

v �2� Specify the program name or fully qualified Java class name of the
application, where MYPGMNAM or yourpackagename is the name of the
application.
For example, in COBOL:
bcd.applicationName=MYPGMNAM

For example, in Java:
bcd.applicationName=com.xyz.yourpackagename.classname

#
#�3�
#---*
UPDATE: Arguments to be passed to the launched application.
#
For Java applications, any number of arguments can be used.
Each argument is passed as an element of the initial
args array passed to the main method.
#
For COBOL applications, a single argument with a maximum
length of 100 characters can be used.
#---*
#bcd.applicationArgs.1=Java argument element 1
#bcd.applicationArgs.2=Java argument element 2
#bcd.applicationArgs.3=Java argument element 3
#
#bcd.applicationArgs.1=COBOL single argument up to 100 characters
#
#�4�
#---*
REQUIRED UPDATE: Support class names used to manage transactions.
#
For the DB2 JDBC driver, replace with the correct statement
for your installation.
If your application uses DB2 for z/OS, you MUST uncomment
this statement.
#
NOTE: A bcd.supportClass.1=class_name must be specified.
If you use the one provided by DB2, the DB2-related .jar
files and executables must be on the CLASSPATH and LIBPATH,
respectively.
#---*
#bcd.supportClass.1=com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport
#
#�5�
#---*
UPDATE: Verbose mode for additional diagnostics (default is false).
#---*
#bcd.verbose=true
#
//

Figure 5. Example: JCL BCDIN configuration options (Part 2 of 2)

14 z/OS V2R1.0 Batch Runtime Planning and User's Guide

v �3� Specify the program arguments that you want to pass to the program. Java
and COBOL each have there own format.
For Java applications, you can use any number of arguments. Each argument is
passed as an element of the initial arguments array passed to the main method.
For example:
bcd.applicationArgs.1=java arg1
bcd.applicationArgs.2=java arg2
bcd.applicationArgs.3=java arg3

For COBOL applications, you can use a single argument with a maximum length
of 100 characters. For example:
bcd.applicationArgs.1=COBOL single argument up to 100 characters

The COBOL single argument... value corresponds to the PARM='string <=100
chars' value of an //EXECPGM EXEC PGM=Cobol_Main,PARM= JCL statement.

v �4� Specify the name of the support class used to manage the transaction. For
example, the following statement for the DB2 JDBC driver should be
uncommented from Figure 4 on page 13.
bcd.supportClass.1=com.ibm.db2.jcc.t2zos.T2zosBatchRuntimeSupport

v �5� Specify the verbose mode, using true or false.
If you want diagnostic information, use the following statement:
bcd.verbose=true

If you do not want verbose mode, use the following:
bcd.verbose=false

Sample BCDPROC to invoke z/OS Batch Runtime
Figure 4 on page 13 shows an example of a BCDPROC statement. You can use a
symbolic to override defaults on BCDPROC.

VERSION
Specifies the Java SDK version (default 61).

version 6 (Java 6.0.1)
version 70 (Java 7 31-bit) - Interoperable
version 76 (Java 7 64-bit) - IBM Java Batch Common Programming
Model Support

LOGLVL
Specifies the following JZOS trace level:

+I informational (default)

+T detail trace (used for additional diagnostics and debugging
//STDENV script)

LEPARM
Allows for additional Language Environment options to be specified by
providing by a //CEEDOPTS DD statement. For more information, see z/OS
Language Environment Programming Reference .

Note: z/OS Batch Runtime only supports EBCDIC file encoding.

Chapter 2. Invoking z/OS Batch Runtime 15

//BCDPROC PROC VERSION=’61’, JVMLDM version: 61 (Java 6.0.1 31bit)
// LOGLVL=’+I’, Debug level: +I(info) +T(trc)
// LEPARM=’’ Language Environment parms
//*
//***
//* *
//* Proprietary Statement: *
//* *
//* Licensed Materials - Property of IBM *
//* 5694-A01 *
//* Copyright IBM Corp. 2011. *
//* *
//* Status = HBB7780 *
//* *
//* Component = z/OS Batch Runtime (SC1BC) *
//* *
//* EXTERNAL CLASSIFICATION = OTHER *
//* END OF EXTERNAL CLASSIFICATION: *
//* *
//* Sample procedure JCL to invoke z/OS Batch Runtime *
//* *
//* Notes: *
//* *
//* 1. Override the VERSION symbolic parameter in your JCL *
//* to match the level of the Java SDK you are running. *
//* *
//* VERSION=61 Java SDK 6.0.1 (31 bit) *
//* *
//* 2. Override the LOGLVL symbolic parameter to control *
//* the messages issued by the jZOS Java launcher. *
//* *
//* Use the +T option when reporting problems to IBM or *
//* to diagnose problems in the STDENV script. *
//* *
//* 3. Override the LEPARM symbolic parameter to add any *
//* application specific language environment options *
//* needed. *
//* *
//* Change History = *
//* *
//* $L0=BATCH,HBB7780,100324,KDKJ: *
//* *
//* *
//***
//JAVA EXEC PGM=JVMLDM&VERSION,REGION=0M,
// PARM=’&LEPARM/&LOGLVL’
//*
//SYSPRINT DD SYSOUT=* System stdout
//SYSOUT DD SYSOUT=* System stderr
//STDOUT DD SYSOUT=* Java System.out
//STDERR DD SYSOUT=* Java System.err
//BCDOUT DD SYSOUT=* Batch container messages
//BCDTRACE DD SYSOUT=* Batch container trace
//*
//CEEDUMP DD SYSOUT=*
//*

Figure 6. Example: BCDPROC statement

16 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Chapter 3. Defining connectivity for the database

This chapter describes basic information about setting up the z/OS Batch Runtime
environment with the DB2 database and how the processing of transactions works
for requests from PL/I, COBOL or Java applications.

Considerations for setting up z/OS Batch Runtime services for a
database resource

For the DB2 or database resource that z/OS Batch Runtime uses to make
connections for interoperability functions, the database must do the following:
v Initialize the z/OS Batch Runtime environment processing
v End the z/OS Batch Runtime environment processing
v Obtain notification of the start of a global transaction
v Obtain notification of the completion of a global transaction.

DB2 Java Database Connectivity (JDBC) and z/OS Batch
Runtime

At startup, the z/OS Batch Runtime calls the Java Database Connectivity (JDBC)
driver for DB2 to establish a connection that can then be shared by the PL/I,
COBOL or Java applications. The DB2 JDBC detects the mode of z/OS Batch
Runtime and creates the single physical attachment for processing applications.
JDBC maintains this application attachment for any connection requests that an
application makes. The PL/I, COBOL, and Java applications use the same
"BatchRuntime" attachment to access the DB2 resources.

Establishing a connection to DB2 from a PL/I or COBOL application usually
requires three calls to the RRS Attach Facility (RRSAF):
v IDENTIFY
v SIGNON
v CREATE THREAD

Because the JDBC has created the DB2 resource attachment for the thread during
z/OS Batch Runtime initialization, the PL/I or COBOL application must not code
these RRSAF calls to initialize or end a DB2 connection; otherwise, RRSAF fails the
request. z/OS Batch Runtime performs resource clean up after processing ends for
the request.

Transaction management and global transactions
z/OS Batch Runtime performs basic transaction management functions for the
application through the Java Transaction API (JTA). It can manage the PL/I,
COBOL or Java application clients and can coordinate transaction management
between itself and the z/OS RRS transaction management services.

All transactions that run on z/OS Batch Runtime are considered global
transactions. z/OS Batch Runtime calls z/OS RRS to start a transaction to associate
the transaction with the calling thread before it invokes the PL/I, COBOL or Java
application. The JDBC provides the following methods to perform transaction
synchronization:

© Copyright IBM Corp. 2013 17

beforeCompletion
Invoked before the transaction process starts

afterCompletion
Invoked after the transaction is performed

The JDBC informs all of the active connections about the DB2 commit or rollback
events for consistency in processing database requests. You cannot initiate DB2
commit or rollback requests from the PL/I, COBOL or Java applications
themselves. For this release, support for multiple resource managers is not
available in z/OS Batch Runtime.

Commit and rollback services of z/OS Batch Runtime
PL/I and COBOL invokes Batch Runtime methods for commit and rollback. For
PL/I and COBOL applications, z/OS Batch Runtime offers callable procedures for
commit and rollback of a transaction. Before committing the unit of work, z/OS
Batch Runtime invokes the beforeCompletion method on the JDBC to indicate the
start of the commit. (This in turn invokes the z/OS RRS Commit_UR service to
commit the transaction.) After the commit transaction is committed, z/OS Batch
Runtime invokes the afterCompletion method on the JDBC to indicate the
completion of the commit.

Before processing the rollback transaction, z/OS Batch Runtime invokes the
beforeCompletion method on the JDBC to indicate the start of the rollback. (This in
turn invokes the z/OS RRS Backout_UR service to back out the transaction.) After
the rollback transaction is completed, z/OS Batch Runtime invokes the
afterCompletion method on the JDBC to indicate completion of the rollback

End-of-job clean up processing
If the applications complete with no issues, z/OS Batch Runtime commits any
outstanding transaction. z/OS Batch Runtime invokes the z/OS RRS
end_transaction service to clean up a global transaction. It rolls back any
outstanding global transaction and invokes the z/OS Resource Recovery Services
(RRS) end_transaction service to pass a rollback action. It also communicates the
start and completion of the transaction rollback process.

For additional information about RRS, see z/OS MVS Programming: Resource
Recovery for topics about:
v Using Resource Recovery Services
v Callable Resource Recovery Services.

Defining database connectivity

18 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Chapter 4. Application interfaces for z/OS Batch Runtime

This section describes the following interfaces, considerations, and samples for
z/OS Batch Runtime:
v Configuration options. See “Configuration options reference.”
v Helper functions including commit and rollback in Java. See “Helper functions

for z/OS Batch Runtime” on page 22.
v Support elements for JDBC and DB2 communications. See“Support elements for

JDBC and DB2” on page 23.
v Java environment variables. See “Java environment variables for z/OS Batch

Runtime” on page 6.
v Language Environment considerations and restrictions for COBOL and Java

applications. See “Language Environment restrictions for z/OS Batch Runtime”
on page 24.

v Completion codes. See “Completion codes for z/OS Batch Runtime” on page 24.
v Code examples. See “Example: Java code calling COBOL” on page 33.

Configuration options reference
You can control z/OS Batch Runtime by using configuration options that you
specify on the //BCDIN JCL statement. This section provides reference information
about the supported input parameters. These keyword=value pairs are prefixed with
'bcd'. For a description of the JCL conventions to specify options, see “JCL for
BCDIN configurations options” on page 12.

Configuration option types
As Table 3 shows, the syntax of a configuration option varies according to the
following types.

Table 3. Configuration option types

Type Description and Example Default

Keyword An option in keyword=value format. Values can contain embedded
blanks. Trailing blanks are removed.

bcd.applicationLanguage=COBOL

None

Stem An option you use to specify multiple values for the option. A
numeric suffix (the stem) is appended to the option name and
indicates the value number. A stem suffix must be numeric. Values
can be skipped and can appear in any order; however, z/OS Batch
Runtime processes the stem values in their numeric order.

bcd.supportClass.1=any.class.name

None

Configuration option names
The following options are read from the //BCDIN JCL file. The name, description,
and example of the option are provided.

bcd.applicationLanguage=language
Names the language of the application to be launched, where language is
one of the following values:

© Copyright IBM Corp. 2013 19

COBOL
indicates the program is written in COBOL; although this
parameter is supported, the LE parameter is recommended

JAVA indicates the program is written in Java

LE indicates the program is written in either COBOL or PL/I.

XJCL indicates the program is XJCL that is provided by the user; the
xJCL is read using the //BCDXJCL DD statement.

Default
None; the statement is required.

Example

bcd.applicationLanguage=JAVA

bcd.applicationName=application-name
Names the fully qualified PL/I, COBOL or Java class program name of the
application, where application-name is the name of the application.

For PL/I or COBOL applications, application-name is a 1-8 character module
name. The z/OS Batch Runtime uses the typical z/OS LNKLST/STEPLIB
search order for locating the COBOL application.

For Java applications, application-name is the fully qualified class name. The
z/OS Batch Runtime uses the CLASSPATH environment variable to locate
the main() method of the specified classname.

Default
None

Example

bcd.applicationName=XMPCOBJX

bcd.applicationArgs.n=argument
Names an argument to be passed to the application, where n=argument
specifies the suffix number of the argument position.

For Java applications, each argument is passed as an element of the
argument array that is passed to the main method.

For PL/I or COBOL applications, you can specify only one argument. The
argument can contain a maximum of 100 characters and is passed using
the same convention as the PARM= keyword of the // EXEC JCL statement.

Default
None

Example

bcd.applicationArgs.1=java arg1

bcd.supportClass.n=support-class-name
Names a support class to be used with z/OS Batch Runtime, where
n=support-class-name specifies a suffix number that indicates the order in
which the support class is invoked.

Default
None, but at least one support class is required.

Example

bcd.supportClass.1=com.ibm.db2.jcc.t2zos.T2zosBatchRuntimeSupport

Application interfaces

20 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Note: For DB2, the following support class is provided by the JDBC driver.
To use it, you must uncomment the following statement provided in the
sample BCDBATCH job.
com.ibm.db2.jcc.t2zos.T2zosBatchRuntimeSupport

bcd.verbose=value
Specifies the verbose mode for the batch runtime, where value is either
TRUE or FALSE. z/OS Batch Runtime generates additional diagnostics
when you specify TRUE for verbose mode and can affect performance.

Default
FALSE

Example
bcd.verbose=true

bcd.supportPropertiesDDName.n=ddname
References a ddname defining a properties file containing initialization
statements for the support class. The properties are in keyword=value
format suitable for a Java Properties object.

This statement maps one-to-one with the bcd.supportClass.n statements
that define the support class.

In the case of the DB2 JDBC driver, the properties read from this file are
the same as those referenced by the info parameter of the
DriverManager.getConnection method. Reading the properties from the file
is an alternative to specifying them as -D options when invoking Java.

This statement is optional. If not provided for a support class, an
initialization file is not read.

bcd.xJCLEncoding=encoding-name
where encoding-name names an encoding to be used when reading the
xJCL defined by the /BCDXJCL DD statement. This statement is optional
and defaults to the JVM file.encoding value.

bcd.xJCLRestartEnabled=boolean
Specifies whether the xJCL defined job is restartable. When restart is
enabled, the Batch Runtime will update its persistence files upon each
checkpoint. If the job subsequently abnormally terminates and is in the
restartable state, the job can be restarted and will use the state saved since
the last checkpoint. The state includes positioning information for each
batch data stream.

true When restart is enabled, the Batch Runtime creates checkpoint files
in the file system. By default, the files are created under the user
home directory. The directory can be changed using the
bcd.xJCLRestartHome option.

false When restart is not enabled, the job cannot be restarted using the
Batch Runtime restart facility if it abnormally terminates.

This statement is optional and defaults to false.

bcd.xJCLRestartHome=path
Names the home directory where restart control files will be placed in the
XJCL environment when restart is enabled.

The directory must exist. The files will be deleted when the job terminated
successfully.

Application interfaces

Chapter 4. Application interfaces for z/OS Batch Runtime 21

The default is the working directory for the job as returned by the Java
System.getProperty(“user.dir”) method.

bcd.xJCLRestartJobId=jobid
Names a previously failed xJCL defined job to be restarted. The job must
be in the restartable state.

When an xJCL job is submitted, the job Id assigned to the job is recorded
in message BCD0310I. Use this jobid as the value of the
bcd.xJCLRestartJobId statement when restarting the job.

Program arguments
You can pass program arguments to the PL/I, COBOL or Java main application
from z/OS Batch Runtime.

For PL/I or COBOL programs, you can pass a single argument in standard format
as it is specified on the PARM= keyword of the //EXEC JCL statement. The
following statement shows an example:
bcd.applicationArgs.1=This is PARM= main arg to Cobol

For Java programs, you can pass program arguments as a string array to the Java
main method, as shown in the following example; Java main methods accept this
as a variable length string array per the usual specified behavior:
bcd.applicationArgs.1=500
bcd.applicationArgs.2=string input 1
bcd.applicationArgs.3=My userid

You do not have to include a single quote (') in the string value you are passing.
Also, note that trailing blanks are not supported in the string.

Helper functions for z/OS Batch Runtime
As part of the interoperability commit and rollback database functions for PL/I,
COBOL, and Java applications, z/OS Batch Runtime provides helper functions to
simplify the processing.

For Java, methods for commit and rollback functions are available with the
following package:
com.ibm.batch.spi.UserControlledTransactionHelper

Java function for commit and rollback
The following class contains commit and rollback functions for Java applications:
com.ibm.batch.spi.UserControlledTransactionHelper

The class contains the following static methods that initiate the commit or rollback
process:

Commit
UserControlledTransactionHelper.commit()

Rollback
UserControlledTransactionHelper.rollback()

z/OS Batch Runtime uses z/OS Resource Recovery Services (RRS) to manage the
unit of work that is active across the PL/I, COBOL, and Java language boundary.
All commits and rollbacks must be managed by z/OS Batch Runtime; your
applications should not call commit and rollback directly. Rather, they should use

Application interfaces

22 z/OS V2R1.0 Batch Runtime Planning and User's Guide

helper functions to call the functions. When your Java application needs to
perform a commit or rollback, you must call these helper functions to perform the
function. For COBOL applications, you can use the COBOL INVOKE statement to
invoke these helper methods.

Direct use of JTA (Java transaction API) by Java programs is not allowed. Also, any
use of SQL COMMIT or ROLLBACK APIs by Java or COBOL will be rejected with
SQLSTATE = ’2D521 SQL COMMIT or ROLLBACK are invalid in the current
operating environment’. As such, Java programs should avoid setting the JDBC
autocommit connection option. See “Code examples” on page 32 for examples.

Support elements for JDBC and DB2
You can use a support element (also referred to as a support class) to allow z/OS
Batch Runtime to interoperate with a database or other resource manager.

For this release, the only support element is one that manages the JDBC driver that
communicates with DB2. The support element must implement the following
interface:
com.ibm.zos.zbatch.runtime.support.BCDBatchRuntimeSupport

This interface defines the following Java methods:

initializeBatchRuntimeEnv(Properties props)
Initializes z/OS Batch Runtime environment. Startup options are passed in
the properties object

terminateBatchRuntimeEnv()
Ends the z/OS Batch Runtime environment.

notifyNewGlobalTransaction(BCDTransaction transaction)
Informs the support element of a new global transaction. The support
element of this method calls the following, which z/OS Batch Runtime
implements:
transaction.registerSynchronization(BCDSynchronization sync)

getVersion()
Retrieves a string representation of the version of the support element for
diagnostic purposes. The content of the string is determined by the support
element.

Transaction and synchronization processing that are normally part of the J2EE
javax.transaction package are part of the following z/OS Batch Runtime package:
com.ibm.zos.batch.runtime.support.transaction

The classes for this package are called:
v BCDTransaction
v BCDSynchronization

In addition, a support element is required to implement a static getInstance()
method that returns an instance of the support element class. You must add any
.JAR files or DLLs to the CLASSPATH and LIBPATH in the BCDBATCH JCL. For
more details, see Chapter 2, “Invoking z/OS Batch Runtime,” on page 5.

Application interfaces

Chapter 4. Application interfaces for z/OS Batch Runtime 23

Language Environment restrictions for z/OS Batch Runtime
Certain restrictions apply to PL/I, COBOL, and Java applications that use the
Language Environment in the z/OS Batch Runtime environment.
v COBOL applications must not use the STOP RUN statement. Using the option in

COBOL programs prevents the z/OS Batch Runtime environment from receiving
control. Instead, use the GOBACK statement to end the COBOL application.

v COBOL will no longer be the first program entered. COBOL-specific runtime
options might be affected.

v Java applications must be single threaded and must not use the system.exit
method. Using the system.exit method ends the JVM and prevents the z/OS
Batch Runtime environment from receiving control. Instead, end the main Java
procedure with a simple return statement.

Completion codes for z/OS Batch Runtime
Upon completion, z/OS Batch Runtime processing returns the condition codes
shown in Table 4.

Table 4. Completion codes for z/OS Batch Runtime

Code Description

00 The processing has successfully completed.

08 The processing has launched the application, but the application has returned a
non-zero condition code. See the z/OS Batch Runtime messages in the job log
for errors.

12 An error occurred during z/OS Batch Runtime processing. See the z/OS Batch
Runtime messages in the job log for errors and z/OS MVS System Messages, Vol
3 (ASB-BPX) for more information.

Application interfaces

24 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Chapter 5. Application structure and build considerations for
COBOL and Java

The following sections describe considerations for structuring and building COBOL
and Java applications when using z/OS Batch Runtime.

DLL considerations for COBOL and Java
In effort to simplify, some information from Enterprise COBOL for z/OS, V4R2,
Programming Guide, SC23-8529 is repeated in this section of the documentation. For
complete details, see Enterprise COBOL for z/OS, V4R2, Programming Guide at
http://publibfp.boulder.ibm.com/epubs/pdf/igy3pg50.pdf

It is important to recognize the structural implications to COBOL source files when
they are calling out to Java. In particular, you need DLL and RECURSIVE on
COBOL classes and methods or on COBOL programs that invoke Java methods.

To compile COBOL source code that contains OO syntax, such as INVOKE
statements or class definitions, or that use Java services, you must use these
compiler options:
v RENT
v DLL
v THREAD

Any programs that you compile with the THREAD compiler option must be
recursive. You must specify the recursive clause in the PROGRAM-ID paragraph of
each OO COBOL client program. This can affect the overall COBOL program
structure because a program compiled with a DLL cannot make a traditional
COBOL dynamic call. It can, however, be statically linked with and call into
another COBOL program compiled dynamic. This separate but statically linked
program can then use a traditional dynamic call to other external COBOL modules
with built dynamic programs.

In general, DLL linkage built COBOL programs can only call out to other external
DLL linkage built programs. Similarly, dynamic call built COBOL programs can
only call out to other external dynamic call built programs. However, static linking
of objects with either two of these external program call mechanisms is allowed.
This provides the bridging between the DLL linkage that Java requires and the
traditional COBOL dynamic call.

For additional details, see the topic about "Using DLL linkage and dynamic calls
together " in Enterprise COBOL for z/OS, V4R2, Programming Guide.

Example of a COBOL COMMIT wrapper
Figure 7 on page 26 is a simple example of a COBOL COMMIT wrapper that,
while compiled with the DLL option required for Java, can be statically linked with
a main non-DLL application module. In this example, a procedural COBOL
program invokes a Java method. Only the non-DLL module objects that need to
call the new COMMIT function need to be recompiled. You can also perform a
similar function for ROLLBACK.

© Copyright IBM Corp. 2013 25

http://publibfp.boulder.ibm.com/epubs/pdf/igy3pg50.pdf

Figure 8 on page 27 shows an example of the JCL that would be needed to compile
the COMMIT wrapper shown in Figure 7.

*--
*
* Program Name : COBCOMIT
* Objective : Call RSS global commit via batch container
*
*--
IDENTIFICATION DIVISION.
PROGRAM-ID. "COBCOMIT" IS RECURSIVE.

/
ENVIRONMENT DIVISION.
*--------------------
CONFIGURATION SECTION.
REPOSITORY.

Class JavaException is "java.lang.Exception"
Class UserControlledTransaction is

"com.ibm.batch.spi.UserControlledTransactionHelper".
INPUT-OUTPUT SECTION.
FILE-CONTROL.

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.
01 ex object reference JavaException.

LINKAGE SECTION.
01 RETCODE PIC S9(9) USAGE IS BINARY.
COPY JNI.

PROCEDURE DIVISION RETURNING RETCODE.
*--
*
* Test batch cobol commit.
*
*--
PROGRAM-BEGIN.

SET ADDRESS OF JNIENV TO JNIENVPTR
SET ADDRESS OF JNINATIVEINTERFACE TO JNIENV
Display "Calling into Java commit"
Invoke UserControlledTransaction "commit"
Display "Returned from Java commit"
Perform ErrorCheck
Goback
.

PROGRAM-END.
GOBACK.

* need to perform exception check / stack trace at this point ?

ErrorCheck.
Compute RETCODE = 0
Call ExceptionOccurred

using by value JNIEnvPtr
returning ex

If ex not = null then
Call ExceptionClear using by value JNIEnvPtr
Display "Caught an unexpected exception"
Invoke ex "printStackTrace"
Compute RETCODE = 99

End-if
.

End program "COBCOMIT".

Figure 7. Example: COBOL COMMIT wrapper

26 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Using the bcdcommit() and bcdrollback() helpers from COBOL
The bcdcommit() and bcdrollback() helpers can be used from a COBOL application,
although there is not as much advantage as when called from PL/I. Since COBOL
supports the “invoke” statement, the batch container commit and rollback routines
can be called directly with this verb. However, this does a serve again as a simple
model for building any COBOL calling into the Java environment -- including
source, compile, and bind options.

Figure 9 on page 28 shows a COBOL application calling the bcdcommit() and
bcdrollback() helpers.

//COMPCMIT JOB ,’STEVE PROGRAM ’,
// NOTIFY=&SYSUID,
// MSGCLASS=X,
// CLASS=A,
// REGION=0M,
// TIME=120
//COMPILE EXEC IGYWC,LNGPRFX=’SYSPROG.MNT.COBOL42’,
// COND=(4,LT),
// PARM.COBOL=(NOSEQUENCE,RENT,LIB,THREAD,
// NODYNAM,DLL)
//COBOL.SYSLIB DD DSN=SUIMGJB.PRIVATE.JNI.COPY,
// DISP=SHR
//COBOL.SYSIN DD DSN=SUIMGJB.PRIVATE.DOCXMP.COBOL(COBCOMIT),
// DISP=SHR
//COBOL.SYSLIN DD DSN=SUIMGJB.PRIVATE.COBOL.OBJ(COBCOMIT),
// DISP=SHR
//

Figure 8. Example: JCL used to compile COMMIT wrapper

Chapter 5. Application structure and build considerations for COBOL and Java 27

Figure 10 on page 29 is sample JCL to compile the COBOL program in Figure 9.

PROGRAM-ID. ’COBHELP’ RECURSIVE.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.
77 RC PIC 9(4) USAGE IS BINARY.

LINKAGE SECTION.
PROCEDURE DIVISION.

PROGRAM-BEGIN.

DISPLAY ’Starting COBHELP ...’.

Display ’Calling bcdcommit ...’;
Call ’bcdcommit’ returning rc.
Display ’bcdcommit rc=’ rc.

Display ’Calling bcdrollback ...’;
Call ’bcdrollback’ returning rc.
Display ’bcdrollback rc=’ rc.

PROGRAM-END.
GOBACK.

Figure 9. Sample COBOL Calling bcdcommit() and bcdrollback() Helpers

28 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Examples of program structures
This section demonstrates several types of program structures and interaction
between COBOL Java, and z/OS Batch Runtime.

Figure 11 on page 30 shows an overview of a COBOL program that interacts with a
Java program. In this example, the program flow starts in COBOL and then flows
to a Java program and to another COBOL program. OOCOBOL methods are not
used; however, the programs use both COBOL JNI and user JNI.

//jobname JOB (1)
//*
//JCLLIB JCLLIB ORDER=COB.COBOL42.SIGYPROC
//*
//STEP1 EXEC IGYWCL,REGION=0M,
// LNGPRFX=’COB.COBOL42’,
// PARM.COBOL=(’OPTFILE’),
// PARM.LKED=(’OPTIONS=OPTS’)
//COBOL.SYSOPTF DD *
MAP,
NOOPT,
SZ(MAX),
DLL,
NODYNAM,
THREAD,
PGMNAME(LONGMIXED),
NOTERM,
DATA(31),
LIB,
LIST,
XREF,
SOURCE
//COBOL.SYSIN DD DSN=IBMUSER.BATCH.SOURCE(COBHELP),DISP=SHR
//*
//LKED.SYSLMOD DD DSN=IBMUSER.BATCH.LOAD,DISP=SHR
//LKED.OPTS DD *
MAP
RENT
DYNAM=DLL
CASE=MIXED
LIST=ALL
XREF
//LKED.SYSIN DD *
INCLUDE ’/usr/lpp/bcp/lib/libbcduser.x’
NAME COBHELP(R)

Figure 10. Sample COBOL Compile and Bind JCL for bcdcommit() and bcdrollback() Helpers

Chapter 5. Application structure and build considerations for COBOL and Java 29

In Figure 12, a Java program flows to a COBOL program. In this example, the Java
program uses an OOCOBOL factory wrapper to call COBOL.

z/OS Batch Runtime

Launch
COBOL Provided

JAVA JNI
Capabilities

COBOLA

“replace SQL Commit”
Sql1

Sql2
Sql3

Call COBOL C’

Call COBCMIT
Call COBOL B

COBOLB

invoke Java
Class D method1

COBOLC’

Call COBOL C

COBCOMIT

Invoke Java
TransactionHelper

Procedural

COBOLC
unmodified

Sql4

Sql5

Business Logic

Sql6

Go Back

Java

CLASSD

Method1
JDBC or SQLJ

getConnection(db2,default

..

Sql7

Sql8

Sql9

TransactionHelper

.commit()

z/OS Batch Runtime

JAVA Transaction Callbacks

COBOLA is
NoDynamic,NoDll

COBCOMIT

& COBOLB are
compiled DLL

COBOL C & C’ are

compiled Dynamic

COBOLA, B, C’
COBCOMIT

Linked as DLL module

COBOLC “asis”

Figure 11. Example: COBOL program calling Java and unmodified COBOL

z/OS Batch Runtime

Launch

OOCOBOL

CLASSB
DLL compiled

Factory

Method1

“wrapper”
Call COBOLC

Java

CLASSA
.

Method1
[main]

CLASSB.Method1

..

DB2 through jdbc/sqlj

TransactionHelper
Commit()

Procedural

COBOLC
Dynam compiled

Sql1

Sql2

Sql3
Call COBOLD

Binder static linkage

Procedural

COBOLD

“unmodified”

Sql4

Sql5

Sql6

Go back

Traditional Dynamic

Call

z/OS Batch Runtime
Java Transaction Helper

Callbacks

COBOL Provided
Java JNI

Capabilities

Figure 12. Example: Java program using OOCOBOL to call COBOL

30 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Building programs: compile and link JCL examples
For complete documentation about building COBOL applications, including Object
Oriented (OO) COBOL, see Enterprise COBOL for z/OS, V4R2, Programming Guide.

For compiling with JCL, IBM provides a set of cataloged procedures to reduce the
amount of JCL coding that you need to write. If the cataloged procedures do not
meet your needs, you can write your own JCL. Using JCL, you can compile a
single program or compile several programs as part of a batch job. See Chapter 2,
“Invoking z/OS Batch Runtime,” on page 5 for more information.

The compiler translates your COBOL program into language that the computer can
process (object code). The compiler also lists errors in your source statements and
provides supplementary information to help you debug and tune your program.
Use compiler-directing statements and compiler options to control your
compilation. After compiling your program, you need to review the results of the
compilation and correct any compiler-detected errors.

To build Java programs, use the javac command to create the classes and the jar
command for packaging. This documentation focuses on building a typical use
case that updates a traditional COBOL program to call out to Java methods in
which either or both can use DB2.

The JCL example shown in Figure 13 on page 32 is a modification of a sample
COBOL DB2 phone program that ships as part of IBM DB2 for z/OS. This
program is typically found in hlq.sdsnsamp(DSN8BC3) and is often used in the DB2
installation verification program (IVP). The COBOL source is modified to invoke a
simple Java "Hello World" method that also selects rows from the DB2 catalog
using the SYSIBM schema. The following are implications on the DB2 provided
COBOL build procedure to run in the z/OS Batch Runtime container:
v The Language Environment Runtime library CEE.SCEERUN must be in the

JOBLIB for the Java JNI support.
v The ATTACH(RRSAF) must be in the preprocessor portion of the catalogued

procedure. Although optional, this forces the generation of RRS attach entry
point at compile time. Omit this option for attach-neutral code generation. The
z/OS Batch Runtime requires the use of RRS attach to be bound at compile (as
in this example), link (include DSNRLI), or runtime (include DSNULI).

v The use of Java from COBOL source requires the compile options
RENT,DLL,THREAD.

v The long names required for the Java JNI imply use of PDSE libraries by the
binder (rather than traditional PDS load libraries).

v The input to the Binder requires both the Enterprise COBOL Java linkage and
JNI export (*.x) files.

Chapter 5. Application structure and build considerations for COBOL and Java 31

Code examples
This section contains the following code examples:
v “Example: Java code calling COBOL” on page 33
v “Example: C DLL calling COBOL from Java” on page 34
v “Example: COBOL code invoking Java” on page 35

//COBBUILD JOB (MOP,1458),’STEVE’,CLASS=A,REGION=0M,
// MSGLEVEL=(1,1),MSGCLASS=X,TIME=1440,NOTIFY=&SYSUID
//*
//**
//* NAME = DSNTEJ2C -- MODIFIED FOR RRS AND Java BATCH CONTAINER RUN *
//* BUILD ONLY WITH APP CALL TO JAVA *
//* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION W CALL TO JAVA *
//* PHASE 2 *
//* COBOL *
//* *
//* LICENSED MATERIALS - PROPERTY OF IBM *
//* 5635-DB2 *
//* (C) COPYRIGHT 1982, 2006 IBM CORP. *
//* *
//* STATUS = VERSION 9 *
//* *
//* FUNCTION = THIS JCL PERFORMS THE PHASE 2 COBOL SETUP FOR THE *
//* SAMPLE APPLICATIONS. IT PREPARES AND EXECUTES *
//* COBOL BATCH PROGRAMS. *
//* *
//* THIS JOB IS RUN AFTER PHASE 1. *
//* *
//* *
//* CHANGE ACTIVITY = *
//* *
//**
//JOBLIB DD DISP=SHR,DSN=DSN910.NEWFUNC.SDSNEXIT
// DD DISP=SHR,DSN=DSN910.SDSNLOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
//*
//* PREPARE COBOL PHONE PROGRAM
//PH02CS03 EXEC DSNHNCOB,MEM=XMPCOBJV,
// COND=(4,LT),
// PARM.PC=(’HOST(IBMCOB)’,APOST,APOSTSQL,SOURCE,
// NOXREF,’SQL(DB2)’,’DEC(31)’,’ATTACH(RRSAF)’),
// PARM.COB=(NOSEQUENCE,LIB,QUOTE,RENT,’PGMNAME(LONGUPPER)’,
// DLL,THREAD)
//PC.DBRMLIB DD DSN=DSN910.DBRMLIB.DATA(XMPCOBJV),
// DISP=SHR
//PC.SYSLIB DD DSN=SUIMGJB.PRIVATE.DSN910.SRCLIB.DATA,
// DISP=SHR
//PC.SYSIN DD DSN=SUIMGJB.PRIVATE.JCL.CNTL(XMPCOBJV),
// DISP=SHR
//COB.SYSLIB DD DSN=SUIMGJB.PRIVATE.JNI.COPY,
// DISP=SHR
//LKED.SYSLMOD DD DSN=SUIMGJB.PRIVATE.LIBRARY(XMPCOBJV),
// DISP=SHR
//LKED.RUNLIB DD DSN=DSN910.RUNLIB.LOAD,
// DISP=SHR
//LKED.SYSIN DD *

INCLUDE SYSLIB(DSNRLI)
INCLUDE RUNLIB(DSN8MCG)
INCLUDE ’/home/cob42/cobol/lib/igzcjava.x’
INCLUDE ’/usr/lpp/java/J6.0/lib/s390/j9vm/libjvm.x’

//

Figure 13. Example: JCL for COBOL DB2 phone program

32 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Example: Java code calling COBOL
Figure 14 shows an example of Java code calling COBOL.

package com.ibm.zos.batch.container.test;

import java.sql.*;
import com.ibm.batch.spi.UserControlledTransactionHelper;
import com.ibm.ws.gridcontainer.exceptions.TransactionManagementException;

public class Sample
{
//Native method declaration
private native int CallCOBOL();
//Load the library
static {
System.loadLibrary("c_to_cobol");

}

public static void main(String[] args)
{
Connection conn = DriverManager.getConnection(url);
String url = "jdbc:default:connection";

Statement stmt;
int maxRows = 25;
String pnumber = "";
int pnum = 0;
int rc = 0;
String formatted;

try
{
System.out.println ("Establishing Connection to URL: " + url);

conn = DriverManager.getConnection(url);
System.out.println (" successful connect");
stmt = conn.createStatement();
System.out.println (" Successful creation of Statement");
// Limit the number of rows to return
stmt.setMaxRows (maxRows);

Figure 14. Example: Java code calling COBOL (Part 1 of 2)

Chapter 5. Application structure and build considerations for COBOL and Java 33

Example: C DLL calling COBOL from Java
The example in Figure 16 on page 35 shows the C interface DLL to use when
calling COBOL.

// SELECT from an DB2 sample table
String sqlText =
"SELECT PHONENUMBER " +
"FROM DSN8910.VEMPLP " +
"WHERE EMPLOYEENUMBER = ’000260’";
ResultSet results = stmt.executeQuery (sqlText);
pnumber = results.getString ("PHONENUMBER");
pnum = Integer.parseInt(pnumber.trim());
pnum++;
pnum = pnum % 10000;
formatted = String.format("%04d", pnum);

sqlText =
"UPDATE DSN8910.VEMPLP " +
" SET PHONENUMBER = " + "’"+formatted+"’" +
" WHERE EMPLOYEENUMBER = ’000260’ ";
int updateCount = stmt.executeUpdate(sqlText);
System.out.println ("Successful execution of UPDATE. Rows updated= " + updateCount);

// close ResultSet and Statement
results.close();
// Call COBOL via a C DLL
Sample call_cobol = new Sample();
//Call native method
rc = call_cobol.CallCOBOL();
System.out.println ("Returned from COBOL with a rc: " + rc);

if (rc == 0)
{
try
{
UserControlledTransactionHelper.commit();

}
catch (TransactionManagementException e)
{
e.printStackTrace();

}
}

else
{
try
{

UserControlledTransactionHelper.rollback();
}
catch (TransactionManagementException e)
{
e.printStackTrace();

}
}

}
catch (SQLException ex)
{
System.out.println("SQLException information");
while(ex!=null) {
System.err.println ("Error msg: " + ex.getMessage());
System.err.println ("SQLSTATE: " + ex.getSQLState());
System.err.println ("Error code: " + ex.getErrorCode());
ex.printStackTrace();
ex = ex.getNextException();

}
}

}
}

Figure 15. Example: Java code calling COBOL (Part 2 of 2)

34 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Example: COBOL code invoking Java
Figure 17 on page 36 is an example of a modified DB2 sample phone application
that uses COBOL code to invoke the "sayHello" Java method. Descriptions for each
of the code blocks precede the example.

Figure 17 on page 36 includes changes that were made in the sample program to
provide an interface to Java. These changes are highlighted and are located in the
following areas of the example:

�A� Identification Division

�B� Environment Division

�C� Linkage Section

�D� Main Program Routine

�E� Updates Phone Numbers For Employees

�F� Perform Rollback

�G� Java Exception Check

Note: This sample was provided by DB2 , typically in hlq.sdsnsamp(DSN8BC3). For
more details, see http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/
topic/com.ibm.db29.doc/db2prodhome.htm

/ c99 -o libc_to_cobol.so -Wc,exportall -Wl,
dll -I/usr/lpp/java/J6.0.1/include

-I/usr/lpp/java/J6.0.1/include/zos c_to_cobol.c

#include <jni.h>
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include "com_ibm_zos_batch_container_test_Java_Calls_Cobol.h"

void (*fetch(const char *name))();
typedef void cfunc();

JNIEXPORT jint JNICALL
Java_com_ibm_zos_batch_container_test_Java_1Calls_1Cobol_CallCOBOL(JNIEnv * jenv, jobject jobj)
{
cfunc *cobfetch_ptr;
cobfetch_ptr = (cfunc *) fetch("XMPCOBJ3"); // loads fetched module
if (cobfetch_ptr == NULL){

printf("\tfetch failed\n");
}
else
{

printf("\tShould be going off to COBOL\n\n");
(*cobfetch_ptr)(); // sets up the proper linkage for the call

}

return(0);
}

Figure 16. Example: C interface DLL for calling COBOL from Java

Chapter 5. Application structure and build considerations for COBOL and Java 35

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc/db2prodhome.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc/db2prodhome.htm

IDENTIFICATION DIVISION.
*-----------------------

�A� PROGRAM-ID. DSN8BC3 RECURSIVE.

****** DSN8BC3 - DB2 SAMPLE PHONE APPLICATION - COBOL - BATCH ***
* *
* MODULE NAME = DSN8BC3 *
* *
* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION *
* PHONE APPLICATION *
* BATCH *
* COBOL *
* *
*LICENSED MATERIALS - PROPERTY OF IBM *
*5695-DB2 *
*(C) COPYRIGHT 1982, 1995 IBM CORP. *
* * *---*
/

ENVIRONMENT DIVISION.
*--------------------
CONFIGURATION SECTION.
SPECIAL-NAMES. C01 IS TO-TOP-OF-PAGE.
REPOSITORY.

�B� Class HelloJ is
"com.ibm.zos.batch.container.test.HelloJ"
Class JavaException is "java.lang.Exception"
Class BCDTranHelper is
"com.ibm.batch.spi.UserControlledTransactionHelper".
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARDIN
ASSIGN TO DA-S-CARDIN.
SELECT REPOUT
ASSIGN TO UT-S-REPORT.

DATA DIVISION.
*-------------
FILE SECTION.
FD CARDIN
RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 0 RECORDS
LABEL RECORDS ARE OMITTED.
01 CARDREC PIC X(80).

FD REPOUT
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS REPREC.
01 REPREC PIC X(120).

Figure 17. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 1 of 10)

36 z/OS V2R1.0 Batch Runtime Planning and User's Guide

/
WORKING-STORAGE SECTION.

* STRUCTURE FOR INPUT *

01 IOAREA.
02 ACTION PIC X(01).
02 LNAME PIC X(15).
02 FNAME PIC X(12).
02 ENO PIC X(06).
02 NEWNO PIC X(04).
02 FILLER PIC X(42).

01 ex object reference JavaException.

* REPORT HEADER STRUCTURE *

01 REPHDR1.
02 FILLER PIC X(29)
VALUE ’-----------------------------’.
02 FILLER PIC X(21)
VALUE ’ TELEPHONE DIRECTORY ’.
02 FILLER PIC X(29)
VALUE ’-----------------------------’.
01 REPHDR2.
02 FILLER PIC X(09) VALUE ’LAST NAME’.
02 FILLER PIC X(07) VALUE SPACES.
02 FILLER PIC X(10) VALUE ’FIRST NAME’.
02 FILLER PIC X(03) VALUE SPACES.
02 FILLER PIC X(08) VALUE ’INITIAL’.
02 FILLER PIC X(07) VALUE ’PHONE’.
02 FILLER PIC X(09) VALUE ’EMPLOYEE’.
02 FILLER PIC X(05) VALUE ’WORK’.
02 FILLER PIC X(04) VALUE ’WORK’.
01 REPHDR3.
02 FILLER PIC X(37) VALUE SPACES.
02 FILLER PIC X(07) VALUE ’NUMBER’.
02 FILLER PIC X(09) VALUE ’NUMBER’.
02 FILLER PIC X(05) VALUE ’DEPT’.
02 FILLER PIC X(05) VALUE ’DEPT’.
02 FILLER PIC X(04) VALUE ’NAME’.

* REPORT STRUCTURE *

01 REPDATA.
02 RLNAME PIC X(15).
02 FILLER PIC X(01) VALUE SPACES.
02 RFNAME PIC X(12).
02 FILLER PIC X(04) VALUE SPACES.
02 RMIDINIT PIC X(01).
02 FILLER PIC X(04) VALUE SPACES.
02 RPHONE PIC X(04).
02 FILLER PIC X(03) VALUE SPACES.
02 REMPNO PIC X(06).
02 FILLER PIC X(03) VALUE SPACES.
02 RDEPTNO PIC X(03).
02 FILLER PIC X(02) VALUE SPACES.
02 RDEPTNAME PIC X(36).

Figure 18. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 2 of 10)

Chapter 5. Application structure and build considerations for COBOL and Java 37

* WORKAREAS *

01 LNAME-WORK.
49 LNAME-WORKL PIC S9(4) COMP.
49 LNAME-WORKC PIC X(15).
01 FNAME-WORK.
49 FNAME-WORKL PIC S9(4) COMP.
49 FNAME-WORKC PIC X(12).
77 INPUT-SWITCH PIC X VALUE ’Y’.
88 NOMORE-INPUT VALUE ’N’.
77 NOT-FOUND PIC S9(9) COMP VALUE +100.

* VARIABLES FOR ERROR-HANDLING *

01 ERROR-MESSAGE.
02 ERROR-LEN PIC S9(4) COMP VALUE +960.
02 ERROR-TEXT PIC X(120) OCCURS 10 TIMES
INDEXED BY ERROR-INDEX.
77 ERROR-TEXT-LEN PIC S9(9) COMP VALUE +120.

77 W09-WAIT-TIME PIC S9(8) COMP VALUE 0005.
77 W09-RESPONSE PIC S9(8) COMP VALUE 0000.

* SQL INCLUDE FOR SQLCA *

EXEC SQL INCLUDE SQLCA END-EXEC.

* SQL DECLARATION FOR VIEW VPHONE *

EXEC SQL DECLARE DSN8910.VPHONE TABLE
(LASTNAME VARCHAR(15) NOT NULL,
FIRSTNAME VARCHAR(12) NOT NULL,
MIDDLEINITIAL CHAR(01) NOT NULL,
PHONENUMBER CHAR(04) ,
EMPLOYEENUMBER CHAR(06) NOT NULL,
DEPTNUMBER CHAR(03) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL)
END-EXEC.

* STRUCTURE FOR PHONE RECORD *

01 PPHONE.
02 LASTNAME.
49 LASTNAMEL PIC S9(4) COMP.
49 LASTNAMEC PIC X(15) VALUE SPACES.
02 FIRSTNAME.
49 FIRSTNAMEL PIC S9(4) COMP.
49 FIRSTNAMEC PIC X(12) VALUE SPACES.
02 MIDDLEINITIAL PIC X(01).
02 PHONENUMBER PIC X(04).
02 EMPLOYEENUMBER PIC X(06).
02 DEPTNUMBER PIC X(03).
02 DEPTNAME.
49 DEPTNAMEL PIC S9(4) COMP.
49 DEPTNAMEC PIC X(36) VALUE SPACES.
*
77 PERCENT-COUNTER PIC S9(4) COMP.

Figure 19. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 3 of 10)

38 z/OS V2R1.0 Batch Runtime Planning and User's Guide

* SQL DECLARATION FOR VIEW VEMPLP *

EXEC SQL DECLARE DSN8910.VEMPLP TABLE
(EMPLOYEENUMBER CHAR(06) NOT NULL,
PHONENUMBER CHAR(04))
END-EXEC.

* SQL CURSORS *

*** CURSOR LISTS ALL EMPLOYEE NAMES

EXEC SQL DECLARE TELE1 CURSOR FOR
SELECT *
FROM DSN8910.VPHONE
END-EXEC.

*** CURSOR LISTS ALL EMPLOYEE NAMES WITH A PATTERN (%) OR (_)
*** FOR LAST NAME

EXEC SQL DECLARE TELE2 CURSOR FOR
SELECT *
FROM DSN8910.VPHONE
WHERE LASTNAME LIKE :LNAME-WORK
AND FIRSTNAME LIKE :FNAME-WORK
END-EXEC.

*** CURSOR LISTS ALL EMPLOYEES WITH A SPECIFIC
*** LAST NAME

EXEC SQL DECLARE TELE3 CURSOR FOR
SELECT *
FROM DSN8910.VPHONE
WHERE LASTNAME = :LNAME
AND FIRSTNAME LIKE :FNAME-WORK
END-EXEC.
/
/**
* FIELDS SENT TO MESSAGE ROUTINE *

01 MAJOR PIC X(07) VALUE ’DSN8BC3’.

01 MSGCODE PIC X(4).

01 OUTMSG PIC X(69).

01 MSG-REC1.
02 OUTMSG1 PIC X(69).
02 RETCODE PIC S9(9).

01 MSG-REC2.
02 OUTMSG2 PIC X(69).

�C� LINKAGE SECTION.
COPY JNI.

PROCEDURE DIVISION.
*------------------

Figure 20. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 4 of 10)

Chapter 5. Application structure and build considerations for COBOL and Java 39

* SQL RETURN CODE HANDLING *

EXEC SQL WHENEVER SQLERROR GOTO DBERROR END-EXEC.
EXEC SQL WHENEVER SQLWARNING GOTO DBERROR END-EXEC.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

* MAIN PROGRAM ROUTINE *

PROG-START.
MOVE 0 to RETURN-CODE.
SET ADDRESS OF JNIENV TO JNIENVPTR
SET ADDRESS OF JNINATIVEINTERFACE TO JNIENV

�D� Invoke HelloJ "sayHello"
Display "Returned from Java sayHello to MAIN"
Perform ErrorCheck
* **OPEN FILES
OPEN INPUT CARDIN
OUTPUT REPOUT.

* **GET FIRST INPUT
READ CARDIN RECORD INTO IOAREA
AT END MOVE ’N’ TO INPUT-SWITCH.

* **MAIN ROUTINE
PERFORM PROCESS-INPUT
UNTIL NOMORE-INPUT.
PROG-END.
* **CLOSE FILES
CLOSE CARDIN
REPOUT.

GOBACK.

* CREATE REPORT HEADING *
* SELECT ACTION *

PROCESS-INPUT.
* **PRINT HEADING
WRITE REPREC FROM REPHDR1
AFTER ADVANCING TO-TOP-OF-PAGE.
WRITE REPREC FROM REPHDR2
AFTER ADVANCING 2 LINES.
WRITE REPREC FROM REPHDR3.

* **SELECT ACTION
IF ACTION = ’L’
PERFORM LIST-FUNCTION
ELSE
IF ACTION = ’U’
PERFORM TELEPHONE-UPDATE

Figure 21. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 5 of 10)

40 z/OS V2R1.0 Batch Runtime Planning and User's Guide

ELSE
* **INVALID REQUEST
* **PRINT ERROR MESSAGE
MOVE ’068E’ TO MSGCODE
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG
MOVE OUTMSG TO OUTMSG2
WRITE REPREC FROM MSG-REC2
AFTER ADVANCING 2 LINES.
READ CARDIN RECORD INTO IOAREA
AT END MOVE ’N’ TO INPUT-SWITCH.
/

* DETERMINE FORM OF NAME USED TO LIST EMPLOYEES *

LIST-FUNCTION.
* **NO LAST NAME GIVEN
IF LNAME = SPACES
MOVE ’%’ TO LNAME.
* **NO FIRST NAME GIVEN
IF FNAME = SPACES
MOVE ’%’ TO FNAME.
* **LIST ALL EMPLOYEES
IF LNAME = ’*’
PERFORM LIST-ALL
ELSE
* **UNSTRING LAST NAME
UNSTRING LNAME
DELIMITED BY SPACE
INTO LNAME-WORKC
COUNT IN LNAME-WORKL
* **UNSTRING FIRST NAME
UNSTRING FNAME
DELIMITED BY SPACE
INTO FNAME-WORKC
COUNT IN FNAME-WORKL
* **COUNT %’S
MOVE ZERO TO PERCENT-COUNTER
INSPECT LNAME
TALLYING PERCENT-COUNTER FOR ALL ’%’
IF PERCENT-COUNTER > ZERO
* **IF NO %’S THEN
* **LIST SPECIFIC NAME(S)
* **ELSE
* **LIST GENERIC NAME(S)
PERFORM LIST-GENERIC
ELSE
PERFORM LIST-SPECIFIC.
/

* LIST ALL EMPLOYEES *

LIST-ALL.
* **OPEN CURSOR
EXEC SQL OPEN TELE1 END-EXEC
* **GET EMPLOYEES
EXEC SQL FETCH TELE1 INTO :PPHONE END-EXEC.

Figure 22. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 6 of 10)

Chapter 5. Application structure and build considerations for COBOL and Java 41

IF SQLCODE = NOT-FOUND
* **NO EMPLOYEE FOUND
* **PRINT ERROR MESSAGE
MOVE ’008I’ TO MSGCODE
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG
MOVE OUTMSG TO OUTMSG2
WRITE REPREC FROM MSG-REC2
AFTER ADVANCING 2 LINES
ELSE
* **LIST ALL EMPLOYEES
PERFORM PRINT-AND-GET1
UNTIL SQLCODE IS NOT EQUAL TO ZERO.

* **CLOSE CURSOR
EXEC SQL CLOSE TELE1 END-EXEC.

PRINT-AND-GET1.
PERFORM PRINT-A-LINE.
EXEC SQL FETCH TELE1 INTO :PPHONE END-EXEC.
/

* LIST GENERIC EMPLOYEES *

LIST-GENERIC.
* **OPEN CURSOR
EXEC SQL OPEN TELE2 END-EXEC.

* **GET EMPLOYEES
EXEC SQL FETCH TELE2 INTO :PPHONE END-EXEC.

IF SQLCODE = NOT-FOUND
* **NO EMPLOYEE FOUND
* **PRINT ERROR MESSAGE
MOVE ’008I’ TO MSGCODE
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG
MOVE OUTMSG TO OUTMSG2
WRITE REPREC FROM MSG-REC2
AFTER ADVANCING 2 LINES
ELSE
* **LIST GENERIC EMPLOYEE(S)
PERFORM PRINT-AND-GET2
UNTIL SQLCODE IS NOT EQUAL TO ZERO.

* **CLOSE CURSOR
EXEC SQL CLOSE TELE2 END-EXEC.

PRINT-AND-GET2.
PERFORM PRINT-A-LINE.
EXEC SQL FETCH TELE2 INTO :PPHONE END-EXEC.
/

* LIST SPECIFIC EMPLOYEES *

LIST-SPECIFIC.
* **OPEN CURSOR
EXEC SQL OPEN TELE3 END-EXEC.

Figure 23. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 7 of 10)

42 z/OS V2R1.0 Batch Runtime Planning and User's Guide

* **GET EMPLOYEES
EXEC SQL FETCH TELE3 INTO :PPHONE END-EXEC.

IF SQLCODE = NOT-FOUND
* **NO EMPLOYEE FOUND
* **PRINT ERROR MESSAGE
MOVE ’008I’ TO MSGCODE
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG
MOVE OUTMSG TO OUTMSG2
WRITE REPREC FROM MSG-REC2
AFTER ADVANCING 2 LINES
ELSE
* **LIST SPECIFIC EMPLOYEE(S)
PERFORM PRINT-AND-GET3
UNTIL SQLCODE IS NOT EQUAL TO ZERO.

* **CLOSE CURSOR
EXEC SQL CLOSE TELE3 END-EXEC.

PRINT-AND-GET3.
PERFORM PRINT-A-LINE.
EXEC SQL FETCH TELE3 INTO :PPHONE END-EXEC.
/

* PRINT A LINE OF INFORMATION FROM DIRECTORY *

PRINT-A-LINE.
* **GET INFORMATION
MOVE LASTNAMEC TO RLNAME.
MOVE FIRSTNAMEC TO RFNAME.
MOVE MIDDLEINITIAL TO RMIDINIT.
MOVE PHONENUMBER OF PPHONE TO RPHONE.
MOVE EMPLOYEENUMBER OF PPHONE TO REMPNO.
MOVE DEPTNUMBER TO RDEPTNO.
MOVE DEPTNAMEC TO RDEPTNAME.
* **PRINT INFORMATION
WRITE REPREC FROM REPDATA
AFTER ADVANCING 2 LINES.

MOVE SPACES TO LASTNAMEC
FIRSTNAMEC
DEPTNAMEC.
/

* UPDATES PHONE NUMBERS FOR EMPLOYEES *

TELEPHONE-UPDATE.
EXEC SQL UPDATE DSN8910.VEMPLP
SET PHONENUMBER = :NEWNO
WHERE EMPLOYEENUMBER = :ENO END-EXEC.
IF SQLCODE = ZERO
* **EMPLOYEE FOUND
* **UPDATE SUCCESSFUL
* **PRINT CONFIRMATION
* **MESSAGE

�E� INVOKE BCDTranHelper "commit"
DISPLAY "After the BCcommit"
Perform ErrorCheck
MOVE ’004I’ TO MSGCODE
ELSE
* **NO EMPLOYEE FOUND
* **UPDATE FAILED

Figure 24. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 8 of 10)

Chapter 5. Application structure and build considerations for COBOL and Java 43

* **PRINT ERROR MESSAGE
MOVE ’007E’ TO MSGCODE.
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG.
MOVE OUTMSG TO OUTMSG2.
WRITE REPREC FROM MSG-REC2
AFTER ADVANCING 2 LINES.
/

* SQL ERROR OCCURRED - GET ERROR MESSAGE *

DBERROR.
* **SQL ERROR
* **PRINT ERROR MESSAGE
MOVE ’060E’ TO MSGCODE
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG.
MOVE OUTMSG TO OUTMSG1 OF MSG-REC1.
MOVE SQLCODE TO RETCODE OF MSG-REC1.
WRITE REPREC FROM MSG-REC1
AFTER ADVANCING 2 LINES.
CALL ’DSNTIAR’ USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.
IF RETURN-CODE = ZERO
PERFORM ERROR-PRINT VARYING ERROR-INDEX
FROM 1 BY 1 UNTIL ERROR-INDEX GREATER THAN 10
ELSE

* **MESSAGE FORMAT
* **ROUTINE ERROR
* **PRINT ERROR MESSAGE
MOVE ’075E’ TO MSGCODE
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG
MOVE OUTMSG TO OUTMSG1 OF MSG-REC1
MOVE RETURN-CODE TO RETCODE OF MSG-REC1
WRITE REPREC FROM MSG-REC1
AFTER ADVANCING 2 LINES.

* SQL RETURN CODE HANDLING WHEN PROCESSING CANNOT PROCEED *

EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

�F� * **PERFORM ROLLBACK
INVOKE BCDTranHelper "rollback"
DISPLAY "After the BCrollback"
Perform ErrorCheck

IF SQLCODE = ZERO

* **ROLLBACK SUCCESSFUL
* **PRINT CONFIRMATION
* **MESSAGE
MOVE ’053I’ TO MSGCODE
ELSE

* **ROLLBACK FAILED
* **PRINT ERROR MESSAGE
MOVE ’061E’ TO MSGCODE.
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG.
MOVE OUTMSG TO OUTMSG1 OF MSG-REC1.
MOVE SQLCODE TO RETCODE OF MSG-REC1.
WRITE REPREC FROM MSG-REC1
AFTER ADVANCING 2 LINES.
GO TO PROG-END.

Figure 25. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 9 of 10)

44 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Binding DB2 with Java JDBC and COBOL embedded SQL

Note: Before you begin, it is important to be familiar with the DB2 for z/OS
package creation for SQLJ programs. For additional details, see the following
information about writing and preparing Java programs that access DB2 for z/OS
databases:
v The topic about "Programming for Java" in http://publib.boulder.ibm.com/

infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db29.doc.java/
db2z_java.htm

v The topic about "Preparing and running JDBC and SQLJ programs" in DB2
Application Programming Guide and Reference for Java.

v The topic "Binding an application" in DB2 Application Programming and SQL
Guide and in http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/
index.jsp?topic=/com.ibm.db29.doc.apsg/db2z_bindplanpanel.htm

As input, the JDBC driver of z/OS supports application package collections or a
plan name. Embedded SQL in IBM Enterprise COBOL routines typically use a
bound DB2 plan as input. Packages provide more flexibility by minimizing full
application rebuilds when only one SQL source file is updated. Therefore, a best
practice for the hybrid mixture of COBOL and Java JDBC sharing a local RRSAF
attachment is to use a package list passed to the JDBC driver through the JDBC
property db2.jcc.pkList. These JDBC properties can be passed on the Java
command line using -Dprop_name=value. When many properties are involved, you
can use the special JDBC property -Ddb2.jcc.PropertiesFile=pathname of the
file, where the PropertiesFile contains the list of desired jcc.db2.* system
properties. You can also use JDBC APIs to set properties; for more information,
refer to DB2 Application Programming Guide and Reference for Java.

For the commands necessary to build SQLJ packages for Java programs containing
SQLJ, see “Commands for SQLJ program preparation” on page 46.

* PRINT MESSAGE TEXT *

ERROR-PRINT.
WRITE REPREC FROM ERROR-TEXT (ERROR-INDEX)
AFTER ADVANCING 1 LINE.

�G� * Java Exception Check *

ErrorCheck.
Compute RETCODE = 0
Call ExceptionOccurred
using by value JNIEnvPtr
returning ex
If ex not = null then
Call ExceptionClear using by value JNIEnvPtr
Display "Caught an unexpected exception"
Invoke ex "printStackTrace"
MOVE 99 to RETURN-CODE
End-if.

Figure 26. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 10 of 10)

Chapter 5. Application structure and build considerations for COBOL and Java 45

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db29.doc.java/db2z_java.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db29.doc.java/db2z_java.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db29.doc.java/db2z_java.htm
http://publib.boulder.ibm.com/epubs/pdf/dsnjvm05.pdf
http://publib.boulder.ibm.com/epubs/pdf/dsnjvm05.pdf
http://publib.boulder.ibm.com/epubs/pdf/dsnapm04.pdf
http://publib.boulder.ibm.com/epubs/pdf/dsnapm04.pdf
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db29.doc.apsg/db2z_bindplanpanel.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db29.doc.apsg/db2z_bindplanpanel.htm
http://publib.boulder.ibm.com/epubs/pdf/dsnjvm05.pdf

There is considerable flexibility when binding with existing packages and DBRM
members, or both. To bind a COBOL program containing embedded SQL, which
has been preprocessed or co-processed to produce DBRM member XMPCOBJX (for
instance, COBOL extended with Java JDBC), you can use --.

Using the example in Figure 27, you now have a new COBOL collection named
XMPCOBJX.*. This can be passed to z/OS Batch Runtime as the system property
db2.jcc.pkList, which can be appended to the default JDBC-provided NULLID
collection. On the Java command line, for example, this would be seen as follows:
-Ddb2.jcc.pkList=NULLID.*,XMPCOBJX.*

You should also grant package privileges, according to the specific security
standards that are in place at your installation. Using the example in Figure 27, you
would specify the following statement, where authid can be either a user ID or
secondary ID, such as a RACF® (SAF) group name.
GRANT EXECUTE ON PACKAGE XMPCOBJX.* TO authid

Commands for SQLJ program preparation
To build SQLJ packages for Java programs that contain SQLJ embedded SQL,
knowledge and use of the following commands is a must:

sqlj - SQLJ translator
The sqlj command translates an SQLJ source file into a Java source file and
zero or more SQLJ serialized profiles. By default, the sqlj command also
compiles the Java source file.

db2sqljcustomize - SQLJ profile customizer
The db2sqljcustomize command augments the profile with DB2-specific
information for use at run time. It processes an SQLJ profile, which contains
embedded SQL statements. By default, db2sqljcustomize produces four DB2
packages: one for each isolation level.

Remember, also, to include SQLJ.JAR in the classpath set up of your BCDBATCH
JCL.

//BINDCOBX JOB (1),’name’
// NOTIFY=&SYSUID,
// MSGCLASS=X,
// CLASS=A,
// REGION=0M,
// TIME=120
//BINDEXE EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//DBRMLIB DD DSN=SUIMGJB.DBRMLIB.DATA,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//REPORT DD SYSOUT=*
//SYSIN DD *
//SYSTSIN DD *
DSN SYSTEM(DSN9)
BIND PACKAGE(XMPCOBJX) MEMBER(XMPCOBJX) -
ACT(REP) ISO(CS) CURRENTDATA(YES) ENCODING(EBCDIC)

/*

Figure 27. Example: JDBC-only case

46 z/OS V2R1.0 Batch Runtime Planning and User's Guide

For the complete details, syntax, authorization, and parameters, see the topic on
"JDBC and SQLJ reference information" in DB2 Application Programming Guide
and Reference for Java.

Chapter 5. Application structure and build considerations for COBOL and Java 47

http://publib.boulder.ibm.com/epubs/pdf/dsnjvm05.pdf
http://publib.boulder.ibm.com/epubs/pdf/dsnjvm05.pdf

48 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Chapter 6. Application structure and build considerations for
PL/I and Java

The z/OS Batch Runtime component, introduced in z/OS V1R13, is part of an
ongoing z/OS effort to integrate Java and modernize JES batch with traditional
application language assets prevalent in many z/OS installations. In that initial
release, the z/OS Batch Runtime provided the ability for applications written in
COBOL and Java to inter operate with DB2 in a Resource Recovery Services (RRS)
global transaction environment.

In z/OS V2R1, the batch runtime is enhanced to include PL/I as a supported
language. When mixing COBOL, PL/I, and Java programs in a batch environment,
the z/OS Batch Runtime provides a managed environment to govern the different
programming models being used. Just as with the IBM COBOL support, the
environment is bound and centered around traditional JES submitted job steps.

In particular, this managed environment provides a framework and APIs to enable
shared access to a local DB2 for z/OS database connection by COBOL, PL/I, and
Java programs. Updates to the database across language boundaries are committed
within a single RRS managed transaction scope. Also new in z/OS V2R1 is
transparent support for Transactional VSAM (TVS) across these same language
environments.

Support is added to allow the z/OS Batch Runtime to launch an Enterprise PL/I
main routine similar to the launch of COBOL that was done in V1R13.

Further enhancements are made in z/OS V2R1 Batch Runtime to support the IBM
Batch Programming Model. This support, fully documented in Appendix
AAppendix A, is for JES submitted new JAVA applications described in an XML
like policy (termed xJCL) and following the rules intrinsic to the IBM Batch
Programming Model. This is the same descriptive language used in IBM
Websphere Batch support, albeit with a traditional JES submission and limited to a
single non-persistent JVM per job step.

In the descriptions that follow, we use the term “batch container” to distinguish
the surrounding transaction management subset of the full z/OS Batch Runtime.

PL/I External Control JCL Statement
Identically to the IBM COBOL support, z/OS Batch Runtime control statements are
read from the //BCDIN file defined in the batch JCL.

The bcd.applicationLanguage statement is changed to accept the new LE value to
indicate the program being launched is written in either COBOL or PL/I. Although
the COBOL language value will still be accepted, the new LE value is the preferred
syntax. The batch runtime processes both COBOL and PL/I applications in the
same way.

The revised syntax is as follows:

© Copyright IBM Corp. 2013 49

The bcd.applicationArgs statement is used to pass an application argument to the
launched program. For PL/I, a single string up to 100 characters in length can be
used.

PL/I Compile and Bind Considerations for PL/I Main Routines
The z/OS Batch Runtime launches an application by fetching and calling it. As a
result, the PL/I external procedure being launched must specify the “fetchable”
and “assembler” options. The “main” option cannot be used. So at a minimum,
and launched PL/I “Main” routine must be at least slightly modified as shown
below. Additionally, the assembler option is also needed so that any launched PL/I
“Main” application can set a return code using the PLIRETC function upon return
to the z/OS Batch Runtime.

For example, the external procedure could be written as follows:
PLITEST: Procedure Options(Fetchable

Assembler);

When binding the PL/I application, the ENTRY CEESTART must not be used.
Instead, the entry point should specify the name of the external procedure. For
example, the procedure shown above would be bound as:
//BIND.SYSIN DD *
ENTRY PLITEST
NAME PLITEST(R)

Complete JCL examples will be shown in the sections that follow.

Commit and Rollback Callbacks
The z/OS Batch Runtime coordinates updates to data through commit and rollback
operations. When an application needs to commit or rollback a transaction, the
batch runtime is called to initiate the activity. This is done through Java callbacks
to the batch container.

The batch container provides two Java helper methods that must be invoked by
the application:
v Commit: com.ibm.batch.spi.UserControlledTransactionHelper.commit()
v Rollback: com.ibm.batch.spi.UserControlledTransactionHelper.rollback()

Because these helper methods are written in Java, the PL/I application must use
the Java Native Interface (JNI) to call them. The batch runtime will document a
sample that shows how to do this but will not deliver any PL/I sample code.

PL/I provides a mapping of the JNI functions which are needed to invoke Java
methods in the %ibmzjni.inc include member. The PL/I application then invokes a
series of JNI calls to find the helper method and invoke it.

This process is described generally below and is followed with an example:
1. Obtain the JNIEnv pointer (which is needed to access JNI functions) using the

JNI_GetCreatedJavaVMs function

bcd.applicationLanguage=JAVA | COBOL | LE

Figure 28. bcd.applicationLanguage Syntax

50 z/OS V2R1.0 Batch Runtime Planning and User's Guide

2. Invoke the FindClass JNI function to locate the
com.ibm.batch.spi.UserControlledTransactionHelper class

3. Invoke the GetStaticMethodID JNI function to locate the commit or rollback
methods

4. Invoke the CallStaticVoidMethod JNI function to invoke the commit or rollback
method located above

It is likely the PL/I application will already have similar code due to
interoperability since the process is the same when invoking any Java method.

Sample PL/I Source to Invoke Commit Callback
The following source file contains an example of a PL/I module calling Java
through the JNI to invoke the batch container commit method using the steps as
described above. One may als0 think of this as simple proxy for any PL/I “main”
routine launched from the z/OS Batch Runtime and invoking simple Java
methods.

Chapter 6. Application structure and build considerations for PL/I and Java 51

*Process Limits(Extname(100));
*Process Margins(1, 100);
*Process Display(STD) Rent;
*Process Default(ASCII) Or(’|’);
*Process Options InSource Source Nest Macro Storage;
*Process Aggregate Offset;
*Process List Flag(I) MarginI(’|’);
*Process Opt(2) Attributes(Full) Xref(Short);
/* PL/I calling batch container commit using JNI */
PLICOMIT: Procedure Options(Fetchable

Assembler);

/**/
/* */
/* This sample invokes the z/OS batch runtime to commit a */
/* transaction. */
/* */
/* The batch runtime transaction helper class is loaded and the */
/* commit method is located and invoked. */
/* */
/**/

/************/
/* Includes */
/************/

%INCLUDE ibmzjni;

/*************/
/* Constants */
/*************/

Dcl NULLPTR Pointer Static Init(PtrValue(0));

Dcl TRANSACTION_HELPER_CLASS_NAME Char(60) VaryingZ Static
Init("com/ibm/batch/spi/UserControlledTransactionHelper");

/*******************/
/* Local variables */
/*******************/

Dcl myRC Fixed Bin(31);

Dcl myClass Type jclass;
Dcl myMethodID Type jmethodID;
Dcl myjstring Type jstring;

Dcl javaNumVMs Type jsize;

Dcl myNull Pointer;

Put skip list("Starting PLICOMIT ...");
/*****************/
/* Query the JVM */
/*****************/

myRC = JNI_GetCreatedJavaVMs(addr(JavaVM),
1,
addr(javaNumVMs));

Figure 29. PL/I Sample to Commit Transaction Using JNI

52 z/OS V2R1.0 Batch Runtime Planning and User's Guide

If myRC = JNI_OK then
Do;

If javaNumVMs = 1 then
Do;
/*******************************/
/* Get env pointer for our JVM */
/*******************************/
myRC = JGetEnv(JavaVM,

addr(JNIEnv),
JNI_VERSION_1_4);

If myRC ^= JNI_OK then
Do;

Put skip list("JGetEnv failed rc=",myRC);
Stop;

End;
Else;

End;
Else

Do;
Put skip list("javaNumVMs not 1",javanumVMs);
Stop;

End;
End;

Else
Do;

Put skip list("getCreatedJavaVMs failed",myRC);
Stop;

End;

/******************************/
/* Get the Java class to call */
/******************************/

myClass = FindClass(JNIEnv,
TRANSACTION_HELPER_CLASS_NAME);

If myClass = NULLPTR then
Do;

Put skip list("myClass is null");
Stop;

End;
Else;

/***********************************/
/* Get method id for commit method */
/***********************************/

myMethodID = GetStaticMethodID(JNIEnv,
myClass,
"commit",
"()V");

If myMethodID = NULLPTR then
Do;

Put skip list("myMethodID is null");
Stop;

End;
Else;

Put skip list("Calling commit method ...");
myNull = CallStaticVoidMethod(JNIEnv,

myClass,
myMethodID);

Call PLIRETC(0); /* Set rc=0 */

Put skip list("PLICOMIT ended.");
End PLICOMIT;

Chapter 6. Application structure and build considerations for PL/I and Java 53

Sample Compile and Bind JCL
The following is an example of the JCL needed to compile and bind the sample
source as shown in Figure 29 on page 52

Commit and Rollback Helpers
Although the batch runtime commit and rollback methods can be called using the
JNI as shown above, the process is cumbersome. To simplify the process, the batch
runtime is providing the convenience methods bcdcommit() and bcdrollback() that
can be called directly from a PL/I or COBOL application. Use of the helpers
replaces the JNI calls to callback to the batch container.

The methods reside in a new DLL bcdlibuser.so that will be shipped with this line
item. For PL/I callers, an include file is provided in SYS1.SAMPLIB(BCDPLIH)
that defines the entry points. COBOL applications do not need the include file and
can just call the methods directly.

Both COBOL and PL/I applications must include the bcdlibuser.x side deck when
binding their applications to make the methods accessible to the program.

Syntax

The syntax of calling the methods varies based on the calling language as shown
in the figures below.

//jobname JOB (1)
//*
//* Complies and links PLICOMIT
//*
//JCLLIB JCLLIB ORDER=PLI.PLI410.SIBMZPRC
//*
//STEP1 EXEC IBMZCB,
// REGION=0M,
// LNGPRFX=’PLI.PLI410’,
// PARM.BIND=(’OPTIONS=OPTS’)
//*
//PLI.SYSLIB DD DSN=PLI.PLI410.SIBMZSAM,DISP=SHR
//*
//PLI.SYSIN DD DSN=IBMUSER.BATCH.SOURCE(PLICOMIT),DISP=SHR
//*
//BIND.SYSLMOD DD DSN=IBMUSER.BATCH.LOAD,DISP=SHR
//BIND.OPTS DD *
MAP
RENT
DYNAM=DLL
CASE=MIXED
LIST=ALL
XREF
//*
//BIND.SYSIN DD *
INCLUDE ’/usr/lpp/java/J6.0/bin/j9vm/libjvm.x’
ENTRY PLICOMIT
NAME PLICOMIT(R)
//

Figure 30. Sample Compile and Bind JCL to Commit Transaction Using JNI

54 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Return Codes

The bcdcommit() and bcdrollback() methods set a return code as follows:

Table 5. bcdcommit() and bcdrollback() Return Codes

Return Code Description

00 Success

16 Function not performed, unable to obtain JNI pointer

The methods can also throw a Java exception in the event the callback to the batch
runtime fails.

The following is sample JCL to compile and bind the PL/I sample. Note that the
helper method side deck must be included in the bind step to make the methods
accessible to the application.

rc=bcdcommit();

Figure 31. PL/I bcdcommit() Syntax

rc=bcdrollback();

Figure 32. PL/I bcdrollback() Syntax

Call ’bcdcommit’ returning rc.

Figure 33. COBOL bcdcommit() Syntax

Call ’bcdrollback’ returning rc.

Figure 34. COBOL bcdrollback() Syntax

Chapter 6. Application structure and build considerations for PL/I and Java 55

Using the bcdcommit() and bcdrollback() helpers from PL/I

The sample below shows a PL/I caller invoking the bcdcommit() and bcdrollback()
methods to commit a transaction instead of calling the JNI directly.

//jobname JOB (1)
//*
//* Complies and links PLIHELP
//*
//JCLLIB JCLLIB ORDER=PLI.PLI410.SIBMZPRC
//*
//STEP1 EXEC IBMZCB,
// REGION=0M,
// LNGPRFX=’PLI.PLI410’,
// PARM.BIND=(’OPTIONS=OPTS’)
//*
//PLI.SYSLIB DD DSN=SYS1.SAMPLIB,DISP=SHR
//*
//PLI.SYSIN DD DSN=IBMUSER.BATCH.SOURCE(PLIHELP),DISP=SHR
//*
//BIND.SYSLMOD DD DSN=IBMUSER.BATCH.LOAD,DISP=SHR
//BIND.OPTS DD *
MAP
RENT
DYNAM=DLL
CASE=MIXED
LIST=ALL
XREF
//*
//BIND.SYSIN DD *
INCLUDE ’/usr/lpp/bcp/lib/libbcduser.x’
ENTRY PLIHELP
NAME PLIHELP(R)
//

Figure 35. Sample PL/I Compile and Bind JCL for bcdcommit() and bcdrollback() Helpers

56 z/OS V2R1.0 Batch Runtime Planning and User's Guide

PL/I Embedded SQL and Transactional VSAM Considerations
Just as with IBM COBOL and DB2, there are no particular changes required to
PL/I source for use of embedded SQL in the z/OS Batch Runtime environment.
Since the RRSAF attachment is acquired by the runtime prior to the application
receiving control, it is not necessary for any application code to initialize a DB2
RRSAF local attachment (identify, create thread, etc RRS protocal). Any such code
should either be removed or recognize an existing attachment. Normal RRSAF
pre-compilation or DB2 coprocessor is sufficient to establish the correct runtime
linkage to DB2. See the the sample DB2 “phone” application DSN8BP3 provided
and built with DSNTEJ2P in the hlqprefix.SDSNSAMP library provided with your
DB2 installation. Simply include DSNRLI in the bind step of your program to get
the correct RRSAF linkage. This sample application is described in the DB2 for
z/OS Application Programming & SQL Guide SC18-9841 in the “DB2 sample
applications and data” chapter.

For Transactional VSAM, once the TVS environment is established there are no
required changes for the VSAM RLS (Record Level Sharing) APIs used in the
application program. Transactional VSAM is a systems programmer only setup
with correct TVS server, RLS server, VSAM dataset, and Logger definitions. The
z/OS Batch Runtime provided RRS commit and rollback operations initiate any
2-phase commit processing required of the TVS server. Good references are z/OS
DFSMStvs Planning and Operating Guide SC26-7348-00 and z/OS DFSMStvs
Administration Guide GC26-7483-00.

Calling PL/I from Java
Java method naming must conform to java conventions for native PL/I calls. The
full documentation for PL/I and Java interoperability and linkage is contained in
Chapter 16, Interfacing with Java of the Enterprise PL/I for z/OS V4.2

*Process Limits(Extname(100));
*Process Margins(1, 100);
*Process Display(STD) Rent;
*Process Default(ASCII) Or(’|’);
*Process Options InSource Source Nest Macro Storage;
*Process Aggregate Offset;
*Process List Flag(I) MarginI(’|’);
*Process Opt(2) Attributes(Full) Xref(Short);
/* PL/I Module calling batch container helpers */
PLIHELP: Procedure Options(Fetchable

Assembler);

%INCLUDE BCDPLIH;

Dcl rc fixed bin(31);

Display("Calling bcdcommit helper ...");
rc = bcdcommit();
Display("bcdcommit rc=" || rc);

Display("Calling bcdrollback helper ...");
rc = bcdrollback();
Display("bcdrollback rc=" || rc);

End PLIHELP;

Figure 36. Sample PL/I Commit Transaction Using bcdcommit() and bcdrollback()

Chapter 6. Application structure and build considerations for PL/I and Java 57

Programming Guide (GI11-9145-01). There are no special considerations of this
standard JNI protocol for the z/OS Batch Runtime. We include here a small
extracted sample for completeness. Note that the PL/I in this example is built into
a JNI required DLL named “hiFromPLI”

*Process Limits(Extname(100)) Margins(1, 100) ;
*Process Display(Std) Dllinit Extrn(Short);
*Process Rent Default(ASCII IEEE);
PliJava_Demo: Package Exports(*);
Java_callingPLI_callToPLI:
Proc(JNIEnv , MyJObject)

External("Java_callingPLI_callToPLI")
Options(FromAlien NoDescriptor ByValue);
%include ibmzjni;
Dcl myJObject Type jObject;
Display(’Hello from Enterprise PL/I!’);

End;

Figure 37. PL/I example to be called from Java

public native void callToPLI();
public class callingPLI {

public native void callToPLI();
static {

System.loadLibrary("hiFromPLI");
}
public static void main(String[] argv) {

callingPLI callPLI = new callingPLI();
callPLI.callToPLI();
System.out.println("And Hello from Java, too!");

}
}

Figure 38. Corresponding Java which calls the PL/I native method

58 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Chapter 7. Troubleshooting for z/OS Batch Runtime

In addition to the standard z/OS messages (in the format BCDnnnnx, where nnnn
is the message number and x is the message severity), z/OS Batch Runtime
provides logging and tracing facilities for troubleshooting problems. The following
topics explore trace and logging in more detail. For more information about
messages, see z/OS MVS System Messages, Vol 3 (ASB-BPX).

Trace facilities for z/OS Batch Runtime
All z/OS Batch Runtime classes are designed to use the standard Java trace
facilities available in the java.util.logging package. At a minimum, z/OS Batch
Runtime traces entry and exit to all significant methods, all exceptions, and all
significant events. Tracing is controlled through a system property or by the
logging configuration file, which by default is specified in the
jre/lib/logging.properties file. You can override the location of the file using the
following Java system property when you invoke z/OS Batch Runtime:
java.util.logging.config.file

Use a trace to diagnose problems in z/OS Batch Runtime. Obtain the trace using
the following system property:
com.ibm.zos.batch.container.BCDTraceConfig=trace-level

The property values for trace-level are ALL, which indicates that all events will be
traced, or NONE, which indicates no tracing. When diagnosing problems, use a
trace level of ALL.

Log facilities for z/OS Batch Runtime
z/OS Batch Runtime provides a verbose mode to provide additional messages that
can assist in diagnosing batch runtime problems. When running in verbose mode,
all messages are created for all commit and rollback requests. Messages are written
to //BCDOUT.

Signalling and exception handling by z/OS Batch Runtime
PL/I and COBOL applications have a specific signal or error condition handling
process. Java has a defined signal handling process as well as a set of JNI
processes for signal and error condition handling. Language Environment also has
application programming interfaces (APIs) for application code that allows you to
customize condition handling to override the default settings.

z/OS Batch Runtime uses the JVM startup option -XCEEHDLR. This option
informs the JVM to register a stack-based Language Environment condition
handler before COBOL JNI calls. It is then able to translate potentially-recoverable
Language Environment exceptions into a Java exception and pass it back to the
calling Java code. z/OS Batch Runtime catches and reports percolated runtime
exceptions out of the Java application.

© Copyright IBM Corp. 2013 59

60 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Appendix A. Common Batch Container

Introduction
This appendix describes the IBM WebSphere Common Batch Container. z/OS
embeds this component, and supports a subset of its overall functionality. The IBM
WebSphere Common Batch Container enables JES submission of the Transactional
Batch programming model. This batch model is an XML-like policy driven control
flow of looping business logic with defined input and output data streams. z/OS
Resource Recovery Services (RRS) provides transaction support for z/OS data
streams, such as DB2, that support transactional behavior.

To use the z/OS Batch Runtime, you must build a set of Java class files
corresponding to the described transactional batch job step interface and data
streams, and submits these files as a traditional job step to the z/OS JES scheduler.
As explained further in the following sections, there can be multiple and sequential
transactional batch steps defined in a single JES job step. z/OS supports an
inherently serial flow of these transactional batch steps.

Transactional batch programming model
The common batch container supports the transactional batch programming model
in which batch applications conform to a few well-defined interfaces that allow the
batch runtime environment to manage the start of batch jobs destined for the
application. In the z/OS batch container environment, this model is implemented
as a Java object.

The transactional batch programming model provides details on how the common
batch container manages the life cycle of the application and jobs that are
submitted to the common batch container. Central to all common batch containers
is the concept that a job represents an individual unit of work that needs to be
processed.

Batch job steps
A batch job can be comprised of one or more batch steps. All steps in a job are
processed sequentially. Dividing a batch application into steps allows for
separation of distinct tasks in a batch application. Batch steps are created by
implementing the interface com.ibm.websphere.batch.BatchJobStepInterface. The
implementation of this interface provides the business logic of the batch step that
the batch runtime invokes to run the batch application. See “Creating batch job
steps” on page 83 for more information.

Batch data streams
Batch data streams (BDS) are Java objects that provide an abstraction for the data
stream processed by a batch step. A batch step can have zero or more BDS objects
associated with it. The batch endpoints make the BDS associated with the batch
step available at run time. The batch endpoints also manage the lifecycle of a BDS
by invoking batch-specific callbacks.

A BDS object implements the com.ibm.websphere.batch.BatchDataStream interface.
The implementing object can retrieve data from any type of data source.

See “Implementing batch data stream framework and patterns” on page 63 for
more information.

© Copyright IBM Corp. 2013 61

Batch data stream framework
Common batch container provides a batch data stream (BDS) framework that
includes pre-built code to work with popular streams like text, byte, database, data
sets, and so on. You can implement an interface where the business logic for
processing the stream is added. The pre-built code manages such operations as the
opening, closing, and the externalizing/internalizing of checkpoints for the batch
data stream.

Checkpoint algorithms
The batch runtime environment uses checkpoint algorithms to record progress
during a step. he XML Job Control Language (xJCL) definition of a batch job
defines the checkpoint algorithms to be used.

Properties specified for checkpoint algorithms in xJCL allow for checkpoint
behavior, such as checkpoint intervals, to be customized for batch steps. The
common batch container provides time-based and record-based checkpoint
algorithms. A checkpoint algorithm SPI is also provided for building additional
custom checkpoint algorithms. See “Implementing Checkpoint algorithms” on page
98 for more information about implementing checkpoint algorithms.

Results algorithm
Results algorithms are an optional feature of the batch programming model.
Results algorithms are applied to batch steps through XML Job Control Language
(xJCL). The algorithms are used to manipulate the return codes of batch jobs.
Additionally, these algorithms are place holders for triggers based on step return
codes. See “Implementing a Results algorithm” on page 99 for more information
about implementing results algorithms.

Batch job return codes
Batch job return codes fall into two groups named system and user. System return
codes are defined as negative integers. User application return codes are defined as
positive integers. Both system and user ranges include the return code of zero (0).
If a user application return code is specified in the system return code range, a
warning message is posted in the job and system logs. See “Batch job return codes
explanations” on page 91 for explanations of the return codes that might be issued.

Developing a simple batch application
The following procedure for developing a batch application is kept simple from a
processing standpoint to highlight the steps involved in developing a new batch
application.

Procedure
1. Create batch job steps.

Create a new Java class that implements the interface
com.ibm.websphere.BatchJobStepInterface. Implement business logic. If your
step has exactly one input and one output stream you could alternatively use
the Generic batch step (GenericXDBatchStep).

2. Create batch data streams.
Batch data streams are accessed from the business logic (i.e. from the batch job
steps) by calling BatchDataStreamMgr with jobID and stepID. JobID and stepID
are retrieved from the step bean properties list using keys
BatchConstants.JOB_ID and BatchConstants.STEP_ID. Map
BatchConstants.JOB_ID to com.ibm.websphere.batch.JobID and map

62 z/OS V2R1.0 Batch Runtime Planning and User's Guide

BatchConstants.STEP_ID to com.ibm.websphere.batch.StepID. You should
already have access to the BatchConstants class.
The batch datastream framework provides several ready-to-use patterns to
work with different types of datastreams. For example, file, database, and so
on. To use the batch datastream framework:
a. Identify the data stream type you want to operate with (TextFile, ByteFile,

JDBC, z/OS stream)
b. Identify whether you would be reading or writing data from/to this stream.
c. Refer to the table in “Implementing batch data stream framework and

patterns,” and select the class from the supporting classes column that
matches your data stream type and operation.
For example, if you want to read data from a text file then you would
choose TextFileReader.

d. Implement the interface listed in the pattern name column that corresponds
to the supporting class you selected in the previous step.
The supporting class handles all the book keeping activities related to the
stream and the batch programming model, allowing the implementation
class to focus on the stream processing logic.
Example:

<batch-data-streams>
<bds>

<logical-name>inputStream</logical-name>
<props>

<prop name="PATTERN_IMPL_CLASS" value="MyBDSStreamImplementationClass"/>
<prop name="file.encoding" value="8859_1"/>
<prop name="FILENAME" value="${inputDataStream}" />
<prop name="PROCESS_HEADER" value="true"/>
<prop name="AppendJobIdToFileName" value="true"/>

</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteReader
</impl-class>

</bds>

Note: The PATTERN_IMPL_CLASS denotes your implementation of the
BDS framework pattern and the impl-class property denotes the supporting
class.

e. Declare the supporting class and your implementation class in the xJCL.
f. Repeat this procedure for each datastream required in your step.

Implementing batch data stream framework and patterns
The batch data stream (BDS) framework pattern interface is a simple Java interface
for a particular type of data stream into which you an insert business logic. The
BDS framework has several supporting classes for each pattern that do most of the
mundane tasks related to stream management. The following table shows the
patterns that the common batch container provides.

The following main methods exist for the BatchDataStream interface. See the API
for the BatchDataStream interface for additional information.
v void open(): Called by batch jobs to open the BDS
v void close(): Called by batch jobs to close the BDS
v void initialize(String ilogicalname, String ijobstepid): Called by batch jobs to

initialize the BDS and let it knows its logical name and batch step ID.

Appendix A. Common Batch Container 63

v String externalizeCheckpointInformation(): Called by batch jobs right before a
checkpoint to record the current cursor of the BDS

v void internalizeCheckpointInformation(String chkpointInfo(): Called by batch
jobs to inform the BDS of the previously recorded cursor, chkpointInfo. Typically,
the positionAtCurrentCheckpoint is called after this call to position the BDS to
this cursor.

v void positionAtCurrentCheckpoint(): Called by batch jobs after calling
internalizeCheckpointInformation to position the BDS to the cursor indicated by
the chkpointInfo passed in through the internalizeCheckpointInformation call.

The BatchDataStream interface does not have methods for retrieving or writing
data. There are no getNextRecord and putNextRecord methods defined on the
interface that a batch step calls to read or write to the BDS object. Methods for
passing data between the batch step and the BDS object are left up to the
implementation of the BDS object. Review the batch samples that are provided to
see how to implement batch data streams.

Table 6. Batch data stream patterns

Pattern name Description Supporting classes

“JDBCReaderPattern” on page 66 Used to retrieve data from a
database using a JDBC connection.

v LocalJDBCReader

v JDBCReader

v CursorHoldableJDBCReader

“JDBCWriterPattern” on page 69 Used to write data to a database
using a JDBC connection.

v LocalJDBCWriter

v JDBCWriter

“ByteReaderPattern” on page 71
Used to read byte data from a file. FileByteReader

“ByteWriterPattern” on page 72 Used to write byte data from a file. FileByteWriter

“FileReaderPattern” on page 73 Used to read a text file. TextFileReader

“FileWriterPattern” on page 75 Used to write to a text file. TextFileWriter

“RecordOrientedDatasetReaderPattern”
on page 76 Used to read a z/OS dataset.

v ZFileStreamOrientedTextReader

v ZFileStreamOrientedByteReader

v ZFileRecordOrientedDataReader

“RecordOrientedDatasetWriterPattern”
on page 78 Used to write to a z/OS dataset.

v ZFileStreamOrientedTextWriter

v ZFileStreamOrientedByteWriter

v ZFileRecordOrientedDataReader

“JPAReaderPattern” on page 80
Used to retrieve data from a
database using OpenJPA

JPAReader

“JPAWriterPattern” on page 82 Used to write data to a database
using a Java Persistence API (JPA)
connection.

JPAWriter

Using the batch data stream framework
Before you start this task, you must identify the correct pattern to use. Select a
pattern based on the type of data stream you need to use. For example, if you

64 z/OS V2R1.0 Batch Runtime Planning and User's Guide

want to read text from a file, then select the FileReaderPattern. See “Implementing
batch data stream framework and patterns” on page 63 for a description of the
available patterns
1. Implement the pattern interface:

<codeblock>package com.ibm.websphere.samples;

import java.io.BufferedReader;
import java.io.IOException;
import java.util.Properties;

import com.ibm.websphere.batch.devframework.configuration.BDSFWLogger;
import com.ibm.websphere.batch.devframework.datastreams.patternadapter.FileReaderPattern;

// Implement the FileReaderPattern
public class TransactionListStream implements FileReaderPattern {
private Properties properties;
private BDSFWLogger logger;

/**
Save properties specified in the xJCL

*/

public void initialize(Properties props) {
// create logger

logger = new BDSFWLogger(props);

if (logger.isDebugEnabled())
logger.debug("entering TransactionListInputStream.initialize()");
properties = props;

}

// This method is where you should add the business logic of processing the read //string
public Object fetchRecord(BufferedReader reader) throws IOException {
String str = null;
Posting posting = null;
if (logger.isDebugEnabled())

logger.debug("Entering TransactionListInputStream.fetchRecord");
if(reader.ready()) {
str = reader.readLine();
}
if(str != null) {

posting = _generateRecord(str);

}

if (logger.isDebugEnabled())
logger.debug("Exiting TransactionListInputStream.fetchRecord with " + posting);
return posting;

}
// Helper method that parses the read string and
creates an internal object for use ///by other parts of the code
private Posting _generateRecord(String str) {
Posting post = null;
String [] tokens = str.split(",", 3);

if(tokens.length == 3) {

String txTypeStr = tokens[0];
String actNoStr = tokens[1];
String amtStr = tokens[2];

int txType = Integer.parseInt(txTypeStr);

Appendix A. Common Batch Container 65

double amt = Double.parseDouble(amtStr);
post = new Posting(txType,actNoStr,amt);

} else {
logger.error("Invalid csv string" + str);
}
if(logger.isDebugEnabled())
logger.debug("Loaded posting record " + post);
return post;
}
public void processHeader(BufferedReader reader) throws IOException {
// NO OP for this sample

}

}
</codeblock>

2. Add a reference to the class that you just created in the previous step, along
with the supporting class in the xJCL.

<codeblock><batch-data-streams>
<bds>

<logical-name>txlististream</logical-name>
<props>

<prop name="IMPLCLASS" value= "com.ibm.websphere.samples.TransactionListStream"/>
<prop name="FILENAME" value="/opt/inputfile.txt"/>
<prop name="debug" value="true"/>

</props>
<impl-class> com.ibm.websphere.batch.devframework.datastreams.patterns.TextFileReader </impl-class>
</bds>

</batch-data-streams>

</codeblock>

JDBCReaderPattern
This pattern is used to retrieve data from a database using a Java Database
Connectivity (JDBC) connection.

Supporting classes
v CursorHoldableJDBCReader

This class is referenced when the usage pattern of your JDBC input stream
retrieves a set of results at the beginning of the step, and then iterates over them
throughout the step-processing logic. The CursorHoldableJDBCReader uses a
stateful session bean with a cursor-holdable, non-XA data source. A
cursor-holdable JDBCReader is a pattern that is implemented in such a way that
the cursor is not lost when the transaction is committed. As a result, ResultSets
do not need to be repopulated after every checkpoint, which improves
performance. To use CursorHoldableJDBCReader, package the
CursorHoldableSessionBean in your application. To create the package, add the
nonxadsjndiname=jndi_name_of_a_non-XA_data_source_to_database property to the
properties file that is used by the BatchPackager. For example:
nonxadsjndiname=jdbc/nonxads

If you want to add multiple non-XA datasources enter the following:
name1>;<jndi name2>...

Restriction: Currently, the resource reference name of the JDBC data source is
the same as the Java Naming and Directory Interface (JNDI) name.

v JDBCReader

66 z/OS V2R1.0 Batch Runtime Planning and User's Guide

This class is referenced when the usage pattern of your JDBC input stream
retrieves a single result from a query, which is used and discarded after every
iteration of the step.

v LocalJDBCReader
This class is referenced when data is read from a local database.

Required properties
Table 7. Required properties

Property Value LocalJDBCReader CursorHoldableJDBCReader JDBCReader

PATTERN_IMPL _CLASS Class implementing
JDBCReaderPattern interface Applicable Applicable Applicable

ds_jndi_name Datasource JNDI name.
Applicable Not applicable Applicable

jdbc_url The JDBC URL. For example,
jdbc:derby:C:\\mysample\\
CREDITREPORT.

Applicable Not applicable Not applicable

jdbc_driver The JDBC driver. For
example,
org.apache.derby.jdbc.
EmbeddedDriver

Applicable Not applicable Not applicable

userid The user ID for the database.
For example, Myid Applicable Not applicable Not applicable

pswd User password. For example,
mypwd. LocalJDBCReader
only.

Applicable Not applicable Not applicable

Optional properties
Table 8. Optional properties
Property name Value Description LocalJDBCReader CursorHoldableJDCReader JDBCReader

debug true or false
(default is
false)

Enables detailed tracing
on this batch
datastream.

Applicable Applicable Applicable

EnablePerformance
Measurement

true or false
(default is
false)

Calculates the total time
spent in the batch
data-streams and the
processRecord method,
if you are using the
GenericXDBatchStep.

Applicable Applicable Applicable

EnableDetailedPerformance
Measurement

true or false
(default is
false)

Provides a more
detailed breakdown of
time spent in each
method of the batch
data-streams.

Applicable Applicable Applicable

Interface definition
public interface JDBCReaderPattern {

/**
* This method is invoked during the job setup phase.
*
* @param props properties provided in the xJCL
*/

public void initialize(Properties props);

/**
* This method should retrieve values for the various columns for the current row
* from the given resultset object. Typically this data would be used to populate
* an intermediate object which would be returned

Appendix A. Common Batch Container 67

* @param resultSet
* @return
*/
public Object fetchRecord(ResultSet resultSet);

/**
* This method should return a SQL query that will be used during setup of the
* stream to retrieve all relevant data that would be processed part of the job
* steps @return object to be used during process step.
*/
public String getInitialLookupQuery();

/**
* This method gets called during Job Restart. The restart token should be used to
* create an SQL query that will retrieve previously unprocessed records.
* Typically the restart token would be the primary key in the table and the query
* would get all rows with primary key value > restarttoken
* @param restartToken
* @return The restart query
*/
public String getRestartQuery(String restartToken);

/**
* This method gets called just before a checkpoint is taken.
* @return The method should return a string value identifying the last record

* read by the stream.
*/
public String getRestartTokens();

}

xJCL examples
Example 1:

<batch-data-streams>
<bds>
<logical-name>inputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoReader"/>
<prop name="ds_jndi_name" value="jdbc/fvtdb"/>
<prop name="debug" value="true"/>
<prop name="DEFAULT_APPLICATION_NAME" value="XDCGIVT"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.CursorHoldableJDBCReader
</impl-class>
</bds>
</batch-data-streams>

Example 2:

<batch-data-streams>
<bds>
<logical-name>inputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoReader"/>
<prop name="jdbc_url" value="jdbc:derby:C:\\mysample\\CREDITREPORT"/>
<prop name="jdbc_driver" value="org.apache.derby.jdbc.EmbeddedDriver"/>
<prop name="user_id" value="myuserid"/>
<prop name="pswd" value="mypswd"/>
<prop name="debug" value="true"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.LocalJDBCReader
</impl-class>
</bds>
</batch-data-streams>

68 z/OS V2R1.0 Batch Runtime Planning and User's Guide

JDBCWriterPattern
This pattern is used to write data to a database using a JDBC connection.

Supporting classes
v JDBCWriter
v LocalJDBCWriter

Required properties
Table 9. Required properties

Property Value LocalJDBCWriter JDBCWriter

PATTERN_IMPL_CLASS Class implementing JDBCWriterPattern
interface Applicable Applicable

ds_jndi_name Datasource JNDI name.
Applicable Not applicable

jdbc_url The JDBC URL. For example,
jdbc:derby:C:\\mysample\\
CREDITREPORT.

Applicable Not applicable

jdbc_driver The JDBC driver. For example,
org.apache.derby.jdbc.EmbeddedDriver Applicable Not applicable

user_id The user ID for the database. For example,
Myid Applicable Not applicable

pswd User password. For example, mypwd.
LocalJDBCReader only. Applicable Not applicable

Optional properties
Table 10. Optional properties

Property name Value Description LocalJDBCReader JDBCWriter

debug true or false
(default is
false)

Enables detailed
tracing on this batch
datastream.

Applicable Applicable

EnablePerformance Measurement true or false
(default is
false)

Calculates the total
time spent in the
batch data-streams
and the
processRecord
method, if you are
using the
GenericXDBatchStep.

Applicable Applicable

EnableDetailedPerformance
Measurement

true or false
(default is
false)

Provides a more
detailed breakdown
of time spent in each
method of the batch
data-streams.

Applicable Applicable

Appendix A. Common Batch Container 69

Table 10. Optional properties (continued)

Property name Value Description LocalJDBCReader JDBCWriter

batch_interval Default value
is 20. This
value should
be less than
the checkpoint
interval for
record-based
checkpointing.

Denotes the number
of SQL updates to
batch before
committing.

Applicable Applicable

Interface definition
public interface JDBCWriterPattern {

public void initialize(Properties props);

/**
* This is typically an Update query used to write data into the DB
* @return
*/
public String getSQLQuery();

/**
* The parent class BDSJDBCWriter creates a new preparedstatement and
* passes it to this method. This method populates the preparedstatement
* with appropriate values and returns it to the parent class for execution
* @param pstmt
* @param record
* @return
*/
public PreparedStatement writeRecord(PreparedStatement pstmt, Object record);
}

xJCL examples
Example 1:

<batch-data-streams>
<bds>
<logical-name>outputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoWriter"/>
<prop name="ds_jndi_name" value="jdbc/fvtdb"/>
<prop name="debug" value="true"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.JDBCWriter</impl-class>
</bds>
</batch-data-streams>

Example 2:

<batch-data-streams>
<bds>
<logical-name>outputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoWriter"/>
<prop name="jdbc_url" value="jdbc:derby:C:\\mysample\\CREDITREPORT"/>
<prop name="jdbc_driver" value="org.apache.derby.jdbc.EmbeddedDriver"/>
<prop name="user_id" value="myuserid"/>
<prop name="pswd" value="mypswd"/>
<prop name="debug" value="true"/>

70 z/OS V2R1.0 Batch Runtime Planning and User's Guide

</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.LocalJDBCWriter</impl-class>
</bds>
</batch-data-streams>

ByteReaderPattern
This pattern is used to read byte data from a file.

Supporting classes
v FileByteReader

Required properties
Table 11. Required properties

Property name Value

PATTERN_IMPL_CLASS Class implementing ByteReaderPattern interface

FILENAME Complete path to the input file

Optional properties
Table 12. Optional properties

Property name Value Description

debug true or false (default is false) Enables detailed tracing on this
batch datastream.

EnablePerformanceMeasurement true or false (default is false) Calculates the total time spent
in the batch data-streams and
the processRecord method, if
you are using the
GenericXDBatchStep.

EnableDetailedPerformanceMeasurement true or false (default is false) Provides a more detailed
breakdown of time spent in each
method of the batch
data-streams.

file.encoding Encoding of the file. For example, 8859_1

AppendJobldToFileName true or false (default is false) Appends the JobID to the file
name before loading the file.

Interface definition
public interface ByteReaderPattern {

/**
* Is called by the framework during Step setup stage
* @param props
*/
public void initialize(Properties props);

/**
*
* @param reader
* @throws IOException
*/

Appendix A. Common Batch Container 71

public void processHeader(BufferedInputStream reader) throws IOException;

/**
* Get the next record from the input stream
* @param reader
* @return
* @throws IOException
*/
public Object fetchRecord(BufferedInputStream reader) throws IOException;
}

xJCL example
<batch-data-streams>
<bds>
<logical-name>inputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoReader"/>
<prop name="file.encoding" value="8859_1"/>
<prop name="FILENAME" value="/opt/txlist.txt" />
<prop name="debug" value="true"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteReader</impl-class>
</bds>
</batch-data-streams>

ByteWriterPattern
This pattern is used to write byte data to a file.

Supporting classes
v FileByteWriter

Required properties
Table 13. Required properties

Property name Value

PATTERN_IMPL_CLASS Class implementing ByteWriterPattern interface

FILENAME Complete path to the input file

Optional properties
Table 14. Optional properties

Property name Value Description

debug true or false (default is false) Enables detailed tracing on this
batch datastream.

EnablePerformanceMeasurement true or false (default is false) Calculates the total time spent
in the batch data-streams and
the processRecord method, if
you are using the
GenericXDBatchStep.

EnableDetailedPerformanceMeasurement true or false (default is false) Provides a more detailed
breakdown of time spent in
each method of the batch
data-streams.

file.encoding Encoding of the file For example, 8859_1

72 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Table 14. Optional properties (continued)

Property name Value Description

AppendJobldToFileName true or false (default is false) Appends the JobID to the file
name before loading the file.

Interface definition
public interface ByteWriterPattern {

/**
* Invoked during the step setup phase
* @param props
*/
public void initialize(Properties props);

/**
* Writes the given object onto the given outputstream. Any processing
* that needs to be done before writing can be added here
* @param out
* @param record
* @throws IOException
*/
public void writeRecord(BufferedOutputStream out, Object record) throws IOException;

/**
* Write header information if any
* @param out
* @throws IOException
*/
public void writeHeader(BufferedOutputStream out) throws IOException;

/**
* This method can be optionally called during process step to explicity
* initialize and write the header.
* @param header
*/
public void writeHeader(BufferedOutputStream out, Object header) throws IOException;
}

xJCL example
<batch-data-streams>
<bds>
<logical-name>outputStream</logical-name>
<props>

<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoWriter"/>
<prop name="file.encoding" value="8859_1"/>
<prop name="FILENAME" value="/opt/txlist.txt" />
<prop name="debug" value="true"/>

</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteWriter</impl-class>
</bds>
</batch-data-streams>

FileReaderPattern
This pattern is used to read text data from a file.

Supporting classes
v TextFileReader

Appendix A. Common Batch Container 73

Required properties
Table 15. Required properties

Property name Value

PATTERN_IMPL_CLASS Class implementing FileReaderPattern interface

FILENAME Complete path to the input file

Optional properties
Table 16. Optional properties

Property name Value Description

debug true or false (default is false) Enables detailed tracing on this
batch datastream.

EnablePerformanceMeasurement true or false (default is false) Calculates the total time spent
in the batch data-streams and
the processRecord method, if
you are using the
GenericXDBatchStep.

EnableDetailedPerformanceMeasurement true or false (default is false) Provides a more detailed
breakdown of time spent in
each method of the batch
data-streams.

file.encoding Encoding of the file.
For example, 8859_1

AppendJobldToFileName true or false (default is false) Appends the JobID to the file
name before loading the file.

Interface definition
public interface FileReaderPattern {

/**
* Invoked during the step setup phase
* @param props
*/
public void initialize(Properties props);
/**
* This method is invoked only once. It should be used
* to read any header data if necessary.
* @param reader
* @throws IOException
*/
public void processHeader(BufferedReader reader) throws IOException;

/**
* This method should read the next line from the reader
* and return the data in suitable form to be processed
* by the step.
* @param reader
* @return
* @throws IOException
*/
public Object fetchRecord(BufferedReader reader) throws IOException;

/**
* This method can be optionally invoked from the process step

74 z/OS V2R1.0 Batch Runtime Planning and User's Guide

* to obtain the header data that was previously obtained during the
* processHeader call
* @return
*/

public Object fetchHeader();
}

xJCL example
<batch-data-streams>
<bds>
<logical-name>inputStream</logical-name>
<props>

<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoReader"/>
<prop name="file.encoding" value="8859_1"/>
<prop name="FILENAME" value="/opt/txlist.txt" />
<prop name="debug" value="true"/>

</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.TextFileReader</impl-class>
</bds>
</batch-data-streams>

FileWriterPattern
The FileWriterPattern pattern is used to write text data to a file.

Supporting classes
v TextFileWriter

Required properties
Table 17. Required properties

Property name Value

PATTERN_IMPL_CLASS Class that implements the FileWriterPattern interface

FILENAME Complete path to the input file

Optional properties
Table 18. Optional properties

Property name Value Description

debug true or false (default is
false)

Enables detailed tracing on this batch
datastream.

EnablePerformanceMeasurement true or false (default is
false)

Calculates the total time spent in the
batch data-streams and the
processRecord method, if you are
using the GenericXDBatchStep.

EnableDetailedPerformanceMeasurement true or false (default is
false)

Provides a more detailed breakdown
of time spent in each method of the
batch data-streams.

file.encoding Encoding of the file For example, 8859_1

AppendJobldToFileName true or false (default is
false)

Appends the JobID to the file name
before loading the file.

Appendix A. Common Batch Container 75

Interface definition
public interface FileWriterPattern {

/**
* Invoked during step setup phase
* @param props
*/
public void initialize(Properties props);

/**
* This method should write the given record
* object to the bufferedwriter.
* @param out
* @param record
* @throws IOException
*/
public void writeRecord(BufferedWriter out, Object record) throws IOException;

/**
* This method is invoked only once just after the bufferedwriter
* is opened. It should be used to write any header information
* @param out
* @throws IOException
*/
public void writeHeader(BufferedWriter out) throws IOException;

/**
* This method can be optionally called during process step to explicity
* initialize and write the header.
* @param header
* @throws IOException
*/
public void writeHeader(BufferedWriter out, Object header) throws IOException;

}

xJCL example
<batch-data-streams>
<bds>
<logical-name>outputStream</logical-name>
<props>

<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoWriter"/>
<prop name="file.encoding" value="8859_1"/>
<prop name="FILENAME" value="/opt/txlist.txt" />
<prop name="debug" value="true"/>

</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.TextFileWriter</impl-class>
</bds>
</batch-data-streams>

RecordOrientedDatasetReaderPattern
The RecordOrientedDatasetReaderPattern pattern is used to read data from a z/OS
dataset.

Supporting classes
v ZFileStreamOrientedTextReader: Reads text data
v ZFileStreamOrientedByteReader: Reads byte data
v ZFileRecordOrientedDataReader: Reads sequential data

76 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Required properties
Table 19. Required properties

Property name Value Description

PATTERN_IMPL_CLASS Java class name
Class that implements the
RecordOrientedDatasetReaderPattern
interface

DSNAME
Dataset name

For example,
USER216.BATCH.RECORD.OUTPUT

Optional properties
Table 20. Optional properties

Property name Value Description

ds_parameters Parameters used to open
the dataset.

Default for
ZFileRecordOrientedDataReader is
rb,recfm=fb,type=record,lrecl=80 and
Default for
ZFileStreamOrientedByteReader and
ZFileStreamOrientedTextReader is rt

debug true or false (default is
false)

Enables detailed tracing on this batch
datastream.

EnablePerformanceMeasurement true or false (default is
false)

Calculates the total time spent in the
batch data-streams and the
processRecord method, if you are using
the GenericXDBatchStep.

EnableDetailedPerformanceMeasurement true or false (default is
false)

Provides a more detailed breakdown of
time spent in each method of the batch
data-streams.

file.encoding Encoding of the file.
For example, 8859_1.

Interface definition
public interface RecordOrientedDatasetReaderPattern {

/**
* This method is invoked during the job setup phase.
* The properties are the ones specified in the xJCL.
* @param props
*/
public void initialize(Properties props);

/**
* This method is invoked only once immediately after
* the Zfile is opened. It should be used to process
* header information if any.
* @param reader
* @throws IOException
*/
public void processHeader(ZFile reader) throws IOException;

/**
* This method should read the next record from the Zfile
* and return it in an appropriate form (as an intermediate object)

Appendix A. Common Batch Container 77

* @param reader
* @return
* @throws IOException
*/
public Object fetchRecord(ZFile reader) throws IOException;
}

xJCL example
<batch-data-streams>
<bds>
<logical-name>inputStream</logical-name>
<props>

<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoReader"/>
<prop name="DSNAME" value="USER216.BATCH.RECORD.INPUT"/>
<prop name="ds_parameters" value="rt"/>
<prop name="file.encoding" value="CP1047"/>
<prop name="debug" value="true"/>

</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.ZFileStreamOrientedByteReader
</impl-class>
</bds>

<bds>
<logical-name>outputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoWriter"/>
<prop name="DSNAME" value="USER216.BATCH.RECORD.OUTPUT"/>
<prop name="ds_parameters" value="wt"/>
<prop name="file.encoding" value="CP1047"/>
<prop name="debug" value="${debug}"/>
</props>

<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.ZFileStreamOrientedByteWriter
</impl-class>
</bds>
</batch-data-streams>

RecordOrientedDatasetWriterPattern
The RecordOrientedDataSetWriterPattern pattern is used to write data to a z/OS
dataset.

Supporting classes
v ZFileStreamOrientedTextWriter: Writes text data
v ZFileStreamOrientedByteWriter: Writes byte data
v ZFileRecordOrientedDataWriter: Writes sequential data

Required properties
Table 21. Required properties

Property name Value Description

PATTERN_IMPL_CLASS
Java class name Class implementing

RecordOrientedDatasetWriterPattern
interface

DSNAME
Dataset name For example,

USER216.BATCH.RECORD.OUTPUT

78 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Optional properties
Table 22. Optional properties

Property name Value Description

ds_parameters
Parameters used to open
the dataset.

Default for
ZFileRecordOrientedDataWriter is
wb,recfm=fb,type=record,lrecl=80and

Default
forZFileStreamOrientedByteWriter and
ZFileStreamOrientedTextWriter is wt

debug true or false (default is
false)

Enables detailed tracing on this batch
datastream.

EnablePerformanceMeasurement true or false (default is
false)

Calculates the total time spent in the
batch data-streams and the
processRecord method, if you are using
the GenericXDBatchStep.

EnableDetailedPerformanceMeasurement true or false (default is
false)

Provides a more detailed breakdown of
time spent in each method of the batch
data-streams.

file.encoding Encoding of the file.
For example, CP1047

Interface definition
/**
*
* This pattern is used to write data to z/OS dataset using
* jzos apis
*/
public interface RecordOrientedDatasetWriterPattern {

/**
* This method is called during the job setup phase allowing
* the user to do initialization.
* The properties are the ones passed in the xJCL
* @param props
*/
public void initialize(Properties props);

/**
* This method should be used to write the given
* object into the dataset
* @param out
* @param record
* @throws IOException
*/
public void writeRecord(ZFile out, Object record) throws IOException;

/**
* This method should be used to write header information
* if any
* @param out
* @throws IOException
*/
public void writeHeader(ZFile out) throws IOException;

/**

Appendix A. Common Batch Container 79

* This method can be optionally called during process step to explicity
* initialize and write the header.
* @param header
*/
public void writeHeader(ZFile out, Object header);

}

xJCL example
<batch-data-streams>
<bds>
<logical-name>outputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoWriter"/>
<prop name="DSNAME" value="USER216.BATCH.RECORD.OUTPUT"/>
<prop name="ds_parameters" value="wt"/>
<prop name="file.encoding" value="CP1047"/>
<prop name="debug" value="${debug}"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.ZFileStreamOrientedByteWriter
</impl-class>
</bds>
</batch-data-streams>

JPAReaderPattern
This pattern is used to retrieve data from a database using OpenJPA.

Supporting classes
v JPAReader: This class implements the basic JPA operations of obtaining an

EntityManager and joining or begin/commit of transactions.
By default the JPAWriter joins an existing global transaction. The user should
package a persistence.xml that sets the transaction-type attribute to JTA and
declare a jta-data-source
Optionally the JPAWriter can be configured to begin and commit transactions in
synch with the global transactions for use with non-jta-data-sources and
connection URLs. In this case the persistence.xml should set the transaction-type
to RESOURCE_LOCAL and declare a non-jta-data-source or connection URLs

Required properties
Table 23. Required properties

Property Value

PATTERN_IMPL_CLASS Class implementing JPAWriterPattern interface

PERSISTENT_UNIT The OpenJPA persistent unit name.

Any other JPA properties that a user wishes to set on the
EntityManager

The values of these properties.

Optional properties
Table 24. Optional properties

Property name Value Description

debug true or false (default is false) Enables detailed tracing on this batch
data stream

80 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Table 24. Optional properties (continued)

Property name Value Description

use_JTA_transactions true or false (default is true) If a user wishes to use
non-jta-data-source or connection
URLs, this value should be false.

EnablePerformanceMeasurement true or false (default is false) Calculates the total time spent in the
batch data-streams and the
processRecord method, if you are
using the GenericXDBatchStep.

Interface definition
public interface JPAReaderPattern {

/**
* This method is invoked during the job setup phase.
*
* @param props properties provided in the xJCL
*/

public void initialize(Properties props);

/**
* This method should retrieve values for the various columns for the current

* row from the given Iterator object. Typically this data would be used
* to populate an intermediate object which would be returned
* @param listIt
* @return
*/
public Object fetchRecord(Iterator listIt);

/**
* This method should return a JPQL query that will be used during setup of the
* stream to retrieve all relevant data that would be processed part of the job
* steps @return object to be used during process step.
*/
public String getInitialLookupQuery();

/**
* This method gets called during Job Restart. The restart token should be used
* to create an JPQL query that will retrieve previously unprocessed records.
* Typically the restart token would be the primary key in the table and the
* query would get all rows with primary key value > restarttoken
* @param restartToken
* @return The restart query
*/
public String getRestartQuery(String restartToken);

/**
* This method gets called just before a checkpoint is taken.
* @return The method should return a string value identifying the last record

* read by the stream.
*/
public String getRestartTokens();

}

xJCL example
<batch-data-streams>
<bds>
<logical-name>inputStream</logical-name>
<props>

Appendix A. Common Batch Container 81

<prop name="openjpa.ConnectionDriverName" value="org.apache.derby.jdbc.EmbeddedDriver"/>
<prop name="openjpa.ConnectionURL" value="jdbc:derby:/opt/tmp/hellojpadb;create=true"/>
<prop name="openjpa.ConnectionUserName" value="" />
<prop name="openjpa.ConnectionPassword" value="" />
<prop name="openjpa.jdbc.SynchronizeMappings" value="buildSchema"/>
<prop name="openjpa.Log" value="DefaultLevel=WARN,SQL=TRACE"/>
<prop name="PERSISTENT_UNIT" value="hellojpa"/>
<prop name="debug" value="true"/>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.samples.JPAOutputStream"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.LocalJDBCReader</impl-class>
</bds>
</batch-data-streams>

JPAWriterPattern
This pattern is used to write data to a database using a Java Persistence API (JPA)
connection.

Supporting classes
v JPAWriter: This class implements the basic JPA operations of obtaining an

EntityManager and joining or begin/commit of transactions.
By default the JPAWriter joins an existing global transaction. The user should
package a persistence.xml that sets the transaction-type attribute to JTA and
declare a jta-data-source
Optionally the JPAWriter can be configured to begin and commit transactions in
synch with the global transactions for use with non-jta-data-sources and
connection URLs. In this case the persistence.xml should set the transaction-type
to RESOURCE_LOCAL and declare a non-jta-data-source or connection URLs

Required properties
Table 25. Required properties

Property Value

PATTERN_IMPL_CLASS Class implementing JPAWriterPattern interface

PERSISTENT_UNIT The OpenJPA persistent unit name.

Any other JPA properties that a user wishes to set on the
EntityManager

The values of these properties.

Optional properties
Table 26. Optional properties

Property name Value Description

debug true or false (default is false) Enables detailed tracing on this batch
data stream

use_JTA_transactions true or false (default is true) If a user wishes to use
non-jta-data-source or connection
URLs, this value should be false.

EnablePerformanceMeasurement true or false (default is false) Calculates the total time spent in the
batch data-streams and the
processRecord method, if you are
using the GenericXDBatchStep.

82 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Interface definition
public interface JPAWriterPattern {

/**
* This method is invoked during create job step to allow the JPAWriter stream to
* initialize.
* @param props Properties passed via xJCL
*/

public void initialize(Properties props);

/**
* This method is invoked to actually persist the passed object to the database
* using JPA EntityManager
* @param manager
* @param record
*/
public void writeRecord(EntityManager manager, Object record);
}

xJCL example
<batch-data-streams>
<bds>
<logical-name>outputStream</logical-name>
<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.samples.tests.bds.EchoWriter"/>
<prop name="jdbc_url" value="jdbc:derby:C:\\mysample\\CREDITREPORT"/>
<prop name="jdbc_driver" value="org.apache.derby.jdbc.EmbeddedDriver"/>
<prop name="user_id" value="myuserid"/>
<prop name="pswd" value="mypswd"/>
<prop name="debug" value="true"/>
</props>
<impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.LocalJDBCWriter</impl-class>
</bds>
</batch-data-streams>

Common batch container jobs
All jobs contain the following information:
v The identity of the common batch container job that performs the work
v One or more job steps that need to be performed to complete the work
v The identity of an artifact within the application that provides the logic for each

job step
v Key and value pairs for each job step to provide additional context to the

application artifacts
v Definitions of sources and destinations for data
v Definitions of checkpoint algorithms

Creating batch job steps
Call back methods in the BatchJobStepLocalInterface allow the common batch
container to run batch steps when it runs a batch job. Typically, a batch step
contains code to read a record from a batch data stream, perform business logic
with that record and then continue to read the next batch container in a batch loop.
This method contains all the logic that can be batched to perform on data.

The following common batch container callback methods exist on the
BatchJobStepLocalInterface that are invoked by the common batch container in the
following ordered list:

Appendix A. Common Batch Container 83

1. setProperties(java.util.Properties properties): Makes properties defined in XML
Job Control Language (xJCL) available to batch step in a java.util.Properties
object.

2. void createJobStep(): Indicates to the step that it has been initialized.
Initialization logic, such as retrieving a handle to a batch data stream, can be
placed here.

3. int processJobStep(): Repeatedly invoked by common batch container in a batch
loop until the return code integer of this method indicates that the step has
finished processing. Review BatchConstants in the batch API to see which
return codes can be returned. A return code of
BatchConstants.STEP_CONTINUE signals to the common batch container to
continue calling this method in the batch loop. A return code of
BatchConstants.STEP_COMPLETE indicates to the common batch container that
the step has finished, and destroyJobStep should be called.

4. int destroyJobStep() - indicates to the step that completion has occurred. The
integer return code of this method is arbitrary and can be chosen by the batch
application developer. This return code is saved in the common batch container
database and represents the return code of the batch step. If the results
algorithm is associated with the batch job, then this return code is passed to it.
If there is a return code-based conditional logic in the xJCL of the batch job,
then the common batch container uses this return code to evaluate that logic.

The getProperties() method on the BatchJobStepLocalInterface is not currently
called by the common batch container. The method is included in the interface for
symmetry and possible later use.

Generic batch step (GenericXDBatchStep)
A generic batch step works with exactly one input and one output stream. This
step during each iteration of the batch loop reads a single entry from the BDS
Input Stream passes it to the BatchRecordProcessor for processing. The
BatchRecordProcessor returns the processed data which is then passed to the BDS
output stream.

Table 27. Required properties

Property name Value Description

BATCHRECORDPROCESSOR java class name
Class implementing the
BatchRecordProcessor
interface

Table 28. Optional properties

Property Value Description

debug true or false (default is false)
Enable tracing and
debugging on the step

EnablePerformanceMeasurement true or false (default is false)
Measure time spent within
the step

Procedure:

1. Implement the following interface to provide the business logic for the step.
com.ibm.websphere.batch.devframework.steps.technologyadapters.BatchRecordProcessor

84 z/OS V2R1.0 Batch Runtime Planning and User's Guide

The xJCL for the step should declare a property BATCHRECORDPROCESSOR
with the value set to the implementation of the interface. For example:
...
<props>
<prop name="BATCHRECORDPROCESSOR" value=
"com.ibm.websphere.batch.samples.tests.steps.InfrastructureVerificationTest"/>

</props>
...

2. Set the BDS input stream logical name to inputStream and a BDS output stream
logical name to outputStream.
The logical names are declared in the xJCL. For example:
<batch-data-streams>

<bds>
<logical-name>inputStream</logical-name>
<props>

....
</bds>
<bds>

<logical-name>outputStream</logical-name>
<props>
...

</bds>
</batch-data-streams>

3. While using the BatchPackager for packaging, jobstepclass for the application
must be set to the following value:
com.ibm.websphere.batch.devframework.steps.technologyadapters.GenericXDBatchStep

For example:
ejbname.1=IVTStep1
jndiname.1=ejb/GenericXDBatchStep
jobstepclass.1=

com.ibm.websphere.batch.devframework.steps.technologyadapters.GenericXDBatchStep

Error Tolerant step
An error tolerant generic batch step works with exactly one input, one output
stream and one error stream. This step during each iteration of the batch loop
reads a single entry from the batch data stream (BDS) input stream passes it to the
BatchRecordProcessor for processing

The BatchRecordProcessor may either return a valid data object or a null value in
case of a tolerable error. If the returned value is null, the record read from the
inputStream is logged onto the errorstream and the invalidRecordEncountered
method is invoked on the ThresholdPolicy. The threshold policy determines
whether the error tolerance threshold has been reached. If so, it returns
STEP_CONTINUE_FORCE_CHECKPOINT_BEFORE_PROCESSING_CANCEL,
which forces a checkpoint and puts the job in the restartable state. Otherwise, the
job continues as normal. If the data returned by
BatchRecordProcessor.processRecord is valid, then the data is passed to the BDS
Outputstream.

Table 29. Required properties

Property name Value Description

threshold_policy java
class
name

Class implementing the
com.ibm.websphere.batch.devframework.thresholdpolicies.ThresholdPolicy
interface

Appendix A. Common Batch Container 85

Table 29. Required properties (continued)

Property name Value Description

BATCHRECORDPROCESSOR java
class
name

Class implementing the BatchRecordProcessor interface

Table 30. Optional properties

Property Value Description

debug true or false (default is
false)

Enable tracing and debugging on the step

EnablePerformanceMeasurement true or false (default is
false)

Measure time spent within the step

Procedure:

1. Implement the following interface to provide the business logic for the step:
com.ibm.websphere.batch.devframework.steps.technologyadapters.BatchRecordProcessor

The xJCL for the step should declare a property BATCHRECORDPROCESSOR
with the value set to the implementation of the interface. For example:

...
<props>

<prop name="BATCHRECORDPROCESSOR"
value="com.ibm.websphere.batch.samples.tests.steps.InfrastructureVerificationTest"/>

</props>
...

2. Implement the following interface to provide the threshold policy for the step:
com.ibm.websphere.batch.devframework.thresholdpolicies.ThresholdPolicy

Declare the ThresholdPolicy to use in the xJCL as shown in the following code
snippet:

...
<props>

<prop name="threshold_policy"
value="com.ibm.websphere.batch.devframework.thresholdpolicies.PercentageBasedThresholdPolicy"/>

</props>
...

You can also use the product implementations such as the following:
com.ibm.websphere.batch.devframework.thresholdpolicies.PercentageBasedThresholdPolicy

or
com.ibm.websphere.batch.devframework.thresholdpolicies.RecordBasedThresholdPolicy

3. Set the BDS input stream logical name to inputStream and a BDS output stream
logical name to outputStream and the BDS output stream for errors to
errorStream.
The logical names are declared in the xJCL. For example:
<batch-data-streams>

<bds>
<logical-name>inputStream</logical-name>
<props>

....
</bds>
<bds>

<logical-name>outputStream</logical-name>

86 z/OS V2R1.0 Batch Runtime Planning and User's Guide

<props>
...

</bds>
<bds>

<logical-name>errorStream</logical-name>
<props>
...

</bds>
</batch-data-streams>

4. While using the BatchPackager for packaging, the jobstepclass for the
application must be set to the following value:
com.ibm.websphere.batch.devframework.steps.technologyadapters.ThresholdBatchStep

For example:
ejbname.1=IVTStep1
jndiname.1=ejb/MyThresholdBatchStep
jobstepclass.1=com.ibm.websphere.batch.devframework.steps.technologyadapters.ThresholdBatchStep

PercentageBasedThresholdPolicy
This policy provides a common batch container implementation of the
ThresholdPolicy interface.

The percentageBasedThresholdPolicy is applicable only if the ThresholdBatchStep
is used. It calculates the percentage of the number of error records processed to the
total number processed. If the result is greater than the threshold, it forces the job
to go into restartable state.

Table 31. Optional properties

Property Value Description

debug true or false (default is false) Enable tracing and
debugging on the step

minimum_threshold_sample_size
Integer value (default is 20) The minimum number of

records to process before
checking for threshold
breach.

threshold_threshold Double value (default is 0.1) The acceptable percentage
of errors.

Procedure:

1. Declare the ThresholdPolicy to use in the xJCL as a property of the step.
...
<props>

<prop name="threshold_policy"
value="com.ibm.websphere.batch.devframework.thresholdpolicies.PercentageBasedThresholdPolicy"/>

</props>
...

RecordBasedThresholdPolicy
This policy provides a grid implementation of the ThresholdPolicy interface.

The RecordBasedThresholdPolicy is applicable only if the ThresholdBatchStep is
used. It counts the number of error records processed if the result is greater than
the threshold forces the job to go into restartable state.

Appendix A. Common Batch Container 87

Table 32. Optional properties

Property Value Description

debug true or false (default is false) Enable tracing and
debugging on the step

minimum_threshold_size
Integer value (default is 20) The minimum number of

records to process before
checking for threshold
breach.

error_threshold Double value (default is 100) The number of error
records.

Procedure: Declare the ThresholdPolicy to use in the xJCL as a property of the
step as follows:

...
<props>

<prop name="threshold_policy"
value="com.ibm.websphere.batch.devframework.thresholdpolicies.RecordBasedThresholdPolicy"/>

</props>
...

xJCL elements
Jobs are described using a job control language. Batch jobs use an XML-based job
control language. The job description identifies which application to run, its inputs,
and outputs.

Jobs are expressed using an Extensible Markup Language XML dialect called XML
xJCL Job Control Language. See the xJCL provided with the Sample applications,
the xJCL table and xJCL XSD schema document for more information about xJCL.
The xJCL definition of a job is not part of the batch application, but is constructed
separately.

The following table summarizes the xJCL elements:

Table 33. xJCL elements

Element Sub-element Attributes Description

job not-applicable not-applicable Scopes the description of a batch job.

not-applicable not-applicable name Name of the job. This name must match
the name of the batch application.

not-applicable step-scheduling-criteria See
step-scheduling-criteria
element

not-applicable

not-applicable checkpoint-algorithm See
checkpoint-algorithm
element

not-applicable

not-applicable job-step See job-step element not-applicable

job-step not-applicable not-applicable not-applicable

not-applicable not-applicable name Name of the step. This information is
returned on operational commands.

not-applicable step-scheduling See step-scheduling
element

Allows for conditional logic based on
return codes of steps that determine if
the batch step should be invoked or not

88 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Table 33. xJCL elements (continued)

Element Sub-element Attributes Description

not-applicable checkpoint-algorithm-ref See
checkpoint-algorithm-ref
element

Specifies the checkpoint algorithm to
use for the batch job step.

not-applicable classname not-applicable Fully-qualified name of class that
implements the compute intensive job.

not-applicable props See props element Name-value properties to pass to the
step

not-applicable batch-data-streams See batch-data-streams
element

A sequence of bds elements. Each bds is
the configuration information necessary
to create a batch data stream.

prop not-applicable not-applicable Single instance of a name value pair,
that serves as a property.

not-applicable not-applicable name Name of the property.

not-applicable not-applicable value Value of the property.

props not-applicable not-applicable Series of prop elements that are used to
pass name value pair properties to
steps, bds, checkpoint algorithms and
results algorithms.

not-applicable prop See prop element not-applicable

bds not-applicable not-applicable Single instance of a batch data stream
implementation that is made available
to the batch job to use.

not-applicable logical-name not-applicable A string that is embedded in batch step
that the batch step uses to ask the batch
runtime environment for a specific batch
data stream instance.

not-applicable impl-class not-applicable Fully qualified class name of the batch
data stream implementation class.

not-applicable props See Props elements List of properties that are passed to the
batch data stream implementation class.

batch-data-streams not-applicable not-applicable Series of bds elements

not-applicable bds see bds element not-applicable

step-scheduling not-applicable not-applicable Can be applied to job steps to create
return code-based conditional flows for
a batch job. Can compare values of
return codes defined for this batch job
to decide whether a step is invoked or
not while processing a batch job. The
values of return codes are compared
using the return code-expression
element.

not-applicable returncode- expression see returncode-
expression

Returncode- expression for evaluation.

not-applicable not-applicable condition If there is more than one
returncode-expression element in the
step-scheduling element, then
conditional operators can be applied to
them. Conditional operators supported
are: AND, OR.

Appendix A. Common Batch Container 89

Table 33. xJCL elements (continued)

Element Sub-element Attributes Description

returncode-
expression

not-applicable not-applicable Used for step scheduling tags to decide
if a batch job step is run based on return
codes of other job steps.

not-applicable not-applicable step Name of step whose return code is to be
compared in this expression.

not-applicable not-applicable operator Operator to use for the return code
expression; the supported operators are:
eq equals, lt less than, gt greater than, le
less than or equal to, ge greater than or
equal to.

not-applicable not-applicable value The value with which to compare the
return code.

step-scheduling-
criteria

not-applicable not-applicable Describes the sequence in which the job
steps are processed. Currently sequential
scheduling is supported, and steps get
invoked in the order in which they are
displayed in xJCL.

not-applicable scheduling-mode not-applicable Sequence in which to invoke steps: only
possible value is sequential

checkpoint-
algorithm

not-applicable not-applicable Declares a checkpoint algorithm that can
be used for a batch job step.

not-applicable not-applicable name Name of algorithm.

not-applicable classname not-applicable Class that implements this algorithm.

not-applicable props see props element Sequence of props elements for the
checkpoint algorithm.

checkpoint-
algorithm-ref

not-applicable not-applicable Reference to a checkpoint algorithm
element.

not-applicable not-applicable name Name of checkpoint algorithm to which
you are referring.

not-applicable props see props element Sequence of prop elements for the
checkpoint algorithm.

++ The xJCL element substitution-props is discussed in the following section.

xJCL substitution-props
The job xJCL can contain symbolic variables. A symbolic variable is an expression
of the form ${variable-name}, which is found outside a comment in an otherwise
well-formed document. For example:
<checkpoint-algorithm-ref name="${checkpoint}" />

The xJCL element, substitution-props, defines a default name and value pairs for
symbolic variables. Following is an example of the substitution-props element,
taken from the postingSampleXJCL.xml document:
<substitution-props>
<prop name="wsbatch.count" value="5" />
<prop name="checkpoint" value="timebased" />
<prop name="checkpointInterval" value="15" />
<prop name="postingsDataStream"

value="${was.install.root}${file.separator}temp${file.separator}postings" />
</substitution-props>

90 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Substitution for symbolic variables occurs at run time. At run time, the string
${variable-name} is replaced with the value of the property when the xJCL is
submitted for execution. Using the properties in the previous example, the string
${checkpoint} is replaced with the string timebased before the job is submitted.

Symbolic variables can be indirect. For example: name=FILENAME
value=${${filename}} used with the name/value pair filename=postingsDataStream
yields the same result as specifying name=FILENAME
value=${postingsDataStream}.

Symbolic variables can also be compound. For example:
name=postingsDataStream

value=${was.install.root}${file.separator}temp${file.separator}postings.

The name/value pairs must be defined in the job document substitution-props
element. The props name and value pairs are initially defined to the default values
for the named variables. The following two conditions must be met before an xJCL
is considered valid:.
v Every symbolic variable defined in the body of a job document must be

resolved.
v Every name/value pair defined in the job document must resolve to a symbolic

variable which is found in the body of the xJCL.

Batch job return codes explanations
The following table lists the system batch job return codes that the common batch
container uses. Do not confuse the batch job return code with either the
JobStatusConstants (see the com.ibm.websphere.longrun.JobStatusConstants API) or
the JobSchedulerConstants (see the
com.ibm.websphere.longrun.JobSchedulerConstants API). The JobStatusConstants
represent the status of the job such as submitted, ended, restartable, canceled, or
execution failed.

The JobSchedulerConstants represent operating conditions returned by the job
scheduler on requests involving multiple jobs. For example, int[] cancelJob(String[]
jobid)). These conditions include:
1. Job does not exist
2. Job is in an invalid state
3. Database exception has occurred.

Table 34. Return codes and explanations

Return code Explanation

0
Job ended normally

-4
Job was suspended

-8
Job was canceled

-10
Job was forcibly canceled

-12
Job failed and is in restartable state

-14
Job failed and is in execution failed state**

Appendix A. Common Batch Container 91

Table 34. Return codes and explanations (continued)

Return code Explanation

** This return code value does not apply in the case where the application returns
BatchConstants.STEP_COMPLETE_EXECUTION_FAILED from the processJobStep method.
In this case, the return code is determined by the application.

There are two options that are used to report an error in a batch application. The
first option is for the application to throw an exception when an error is
encountered. This results in termination of the job with a batch job return code of
-12 and a batch job status of restartable. The second option is for the application to
return a BatchConstants.STEP_COMPLETE_EXECUTION_FAILED return code (see
the com.ibm.websphere.batch.BatchConstants API) from the processJobStep method
and return an application-specific error return code from the destroyJobStep
method. This results in termination of the job and a batch job status of execution
failed. The step return code set in the destroyJobStep method is passed to any
results algorithm specified on the job step and is used to influence the return code
of the job to indicate the specific cause of the failure.

Job logs
A job log is a file that contains a detailed record of the execution details of a job. It
is comprised of both system and application messages.

A job log is a file that contains a detailed record of the execution details of a job.
System messages from the batch container and output from the job executables are
collected. By examining job logs, you can see the life cycle of a batch job, including
output from the batch applications themselves.

A job log is composed of the following three types of information:
1. xJCL - A job log contains a copy of the xJCL used to run the job, including

xJCL substitution values.
2. System messages - A set of system messages that communicate the major life

cycle events corresponding to the job. The following system events are recorded
in a job log:
v Begin and end of a job
v Begin and end of a step
v Begin and end of a checkpoint
v Open, close, and checkpoint of a batch data stream
v Checkpoint algorithm invocation / results
v Results algorithm invocation / results

3. Application messages - A set of messages written to standard out and standard
error by a job step program.

Output of a job log
Job log output is collected in a directory which has the format:
specified_root/joblogs/job-directory/timeStamp-directory

In this directory path:
v specified_root is the root directory for your logs.
v job-directory is generated at run time from the job name. For example, if the job

ID is PostingsSampleEar:99, then the generated directory name is
PostingsSampleEar_99.

92 z/OS V2R1.0 Batch Runtime Planning and User's Guide

v timeStamp-directory Is generated at run time from the current date. It is in the
format ddmmyyy_hhmmss, where dd is the day of the month, mm is a month
(00 - 11), and yyyy is the year. hh is the hour of the day (00 - 23), mm is the
minute of the hour (00 - 59) and ss is the seconds of the minutes (00 - 59). For
example, a timestamp directory with the name 14022010_164535 means that the
job began processing on 14 Mar 2010, at 16:45:35.

The job log output contains both application output and batch endpoint runtime
messages. This output includes any application generated output directed to the
System.out and System.err output streams. Job log output from the common batch
container is collected in the job log directory in files with names such as part.1.log
and part.2.log. Each of the log parts contains approximately 1000 records. The
following example shows the contents of part.1.log:

CWLRB5588I: [03/13/07 08:25:32:104 EDT] Setting up j2ee job SimpleCIEar:44 for execution in batch endpoint
dmgrCell/lreeNode/lreeServer: [jobClass Default] [jobName SimpleCIEar] [module null]
[user UNAUTHENTICATED] [applicationName SimpleCIEar] [applicationType j2ee]

CWLRB5784I: [03/13/07 08:25:32:696 EDT] Setting step SLSB property: calculationTimeInSecs=30
CWLRB5784I: [03/13/07 08:25:32:696 EDT]

Setting step SLSB property: outputFileName=/dtc/bin/XD/temp/simpleCI.txt
System.out: [03/13/07 08:25:32:708 EDT] Tue Mar 13 08:25:32 EDT 2007: SimpleCI application starting...
System.out: [03/13/07 08:25:32:708 EDT] -->Will loop processing a variety of math functions for

approximately 30.0 seconds!
System.out: [03/13/07 08:26:02:752 EDT] Tue Mar 13 08:26:02 EDT 2007: SimpleCI application complete!
System.out: [03/13/07 08:26:02:753 EDT] -->Actual Processing time = 30.043 seconds!
CWLRB5764I: [03/13/07 08:26:03:069 EDT] Job SimpleCIEar:44 ended

XML schema for a batch job
The following example shows the XML schema for a batch job:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="classname" type="xsd:string" />
<xsd:element name="impl-class" type="xsd:string" />
<xsd:element name="jndi-name" type="xsd:string" />
<xsd:element name="logical-name" type="xsd:string" />

<xsd:element name="scheduling-mode">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:pattern value="sequential"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:element name="required" >
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:pattern value="[YNyn]"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:element name="batch-data-streams">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1" ref="bds" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="job-scheduling-criteria">
<xsd:complexType>

<xsd:sequence>

Appendix A. Common Batch Container 93

<xsd:element maxOccurs="unbounded" minOccurs="1" ref="required-capability" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="bds">
<xsd:complexType>

<xsd:all>
<xsd:element ref="logical-name" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="impl-class" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="props" minOccurs="0" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

</xsd:element>

<xsd:element name="checkpoint-algorithm">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="classname" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="props" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />

</xsd:complexType>
</xsd:element>

<xsd:element name="checkpoint-algorithm-ref">
<xsd:complexType>

<xsd:attribute name="name" type="xsd:string" use="required" />
</xsd:complexType>

</xsd:element>

<xsd:element name="required-capability">
<xsd:complexType>

<xsd:attribute name="expression" type="xsd:string" use="required" />
</xsd:complexType>

</xsd:element>

<xsd:element name="results-algorithm">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="classname" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="props" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="required" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />

</xsd:complexType>
</xsd:element>

<xsd:element name="results-algorithms">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1" ref="results-algorithm" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="results-ref">
<xsd:complexType>

<xsd:attribute name="name" type="xsd:string" use="required" />
</xsd:complexType>

</xsd:element>

<xsd:element name="substitution-props">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="prop" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

94 z/OS V2R1.0 Batch Runtime Planning and User's Guide

</xsd:complexType>
</xsd:element>

<xsd:element name="job">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="jndi-name" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="job-scheduling-criteria" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="step-scheduling-criteria" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="checkpoint-algorithm" maxOccurs="unbounded" minOccurs="1"/>
<xsd:element ref="results-algorithms" maxOccurs="1" minOccurs="0"/>
<xsd:element ref="substitution-props" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="job-step" maxOccurs="unbounded" minOccurs="1" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="class" type="xsd:string" use="optional" />
<xsd:attribute name="accounting" type="xsd:string" use="optional" />
<xsd:attribute name="default-application-name" type="xsd:string" use="optional" />

</xsd:complexType>
</xsd:element>

<xsd:element name="job-step">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="step-scheduling" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="jndi-name" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="checkpoint-algorithm-ref" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="results-ref" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="batch-data-streams" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="props" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="optional" />
<xsd:attribute name="application-name" type="xsd:string" use="optional" />

</xsd:complexType>
</xsd:element>

<xsd:element name="prop">
<xsd:complexType>

<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="value" type="xsd:string" use="required" />

</xsd:complexType>
</xsd:element>

<xsd:element name="props">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="prop" maxOccurs="unbounded" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="returncode-expression">
<xsd:complexType>

<xsd:attribute name="step" type="xsd:string" use="required" />
<xsd:attribute name="operator" type="xsd:string" use="required" />
<xsd:attribute name="value" type="xsd:string" use="required" />

</xsd:complexType>
</xsd:element>

<xsd:element name="step-scheduling">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="returncode-expression" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="condition" type="xsd:string" use="optional" />

Appendix A. Common Batch Container 95

</xsd:complexType>
</xsd:element>

<xsd:element name="step-scheduling-criteria">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="scheduling-mode" minOccurs="1" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>

xJCL sample for a batch job
The following sample illustrates a batch job.

<job name="PostingsSampleEar" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<jndi-name>ejb/com/ibm/websphere/samples/PostingsJob</jndi-name>

<step-scheduling-criteria>
<scheduling-mode>sequential</scheduling-mode>
</step-scheduling-criteria>

<checkpoint-algorithm name="${checkpoint}">
<classname>com.ibm.wsspi.batch.checkpointalgorithms.${checkpoint}</classname>
<props>
<prop name="interval" value="${checkpointInterval}" />
</props>
</checkpoint-algorithm>

<results-algorithms>
<results-algorithm name="jobsum">
<classname>com.ibm.wsspi.batch.resultsalgorithms.jobsum</classname>
</results-algorithm>
</results-algorithms>

<substitution-props>
<prop name="wsbatch.count" value="5" />
<prop name="checkpoint" value="timebased" />
<prop name="checkpointInterval" value="15" />
<prop name="postingsDataStream"

value="${was.install.root}${file.separator}temp${file.separator}postings" />
</substitution-props>

<job-step name="Step1">

<jndi-name>ejb/DataCreationBean</jndi-name>

<!-- apply checkpoint policy to step1 -->
<checkpoint-algorithm-ref name="${checkpoint}" />

<results-ref name="jobsum"/>

<batch-data-streams>
<bds>

<logical-name>myoutput</logical-name>

96 z/OS V2R1.0 Batch Runtime Planning and User's Guide

<impl-class>com.ibm.websphere.samples.PostingOutputStream</impl-class>

<props>

<prop name="FILENAME" value="${postingsDataStream}" />

</props>
</bds>
</batch-data-streams>

<props>

<prop name="wsbatch.count" value="${wsbatch.count}" />
</props>
</job-step>

<job-step name="Step2">

<step-scheduling condition="OR">
<returncode-expression step="Step1" operator="eq" value="0" />

<returncode-expression step="Step1" operator="eq" value="4" />
</step-scheduling>

<jndi-name>ejb/PostingAccountData</jndi-name>
<checkpoint-algorithm-ref name="${checkpoint}" />
<results-ref name="jobsum"/>

<batch-data-streams>
<bds>

<logical-name>myinput</logical-name>
<impl-class>com.ibm.websphere.samples.PostingStream</impl-class>

<props>
<prop name="FILENAME" value="${postingsDataStream}" />
</props>

</bds>
</batch-data-streams>
</job-step>

<job-step name="Step3">
<step-scheduling>

<returncode-expression step="Step2" operator="eq" value="4" />
</step-scheduling>

<jndi-name>ejb/OverdraftAccountPosting</jndi-name>
<checkpoint-algorithm-ref name="${checkpoint}" />
<results-ref name="jobsum" />

<batch-data-streams>
<bds>

<logical-name>dbread</logical-name>
<impl-class>com.ibm.websphere.samples.OverdraftInputStream</impl-class>

</bds>
</batch-data-streams>

</job-step>
</job>

Appendix A. Common Batch Container 97

Implementing Checkpoint algorithms
The common batch container use checkpoint algorithms to determine when to
commit global transactions under which batch steps are invoked. These algorithms
are applied to a batch job through the XML Job Control Language (xJCL)
definition. Properties specified for checkpoint algorithms in xJCL allow for
checkpoint behavior, such as transaction timeouts and checkpoint intervals, to be
customized for batch steps. The common batch container supports both a
time-based checkpoint algorithm and a record-based algorithm, and defines a
service provider interface (SPI) for building additional custom checkpoint
algorithms.

On each batch step iteration of the processJobStep method, the common batch
container consults the checkpoint algorithm applied to that step if it commits the
global transaction or not. Callback methods on the checkpoint algorithms allow the
common batch container to inform the algorithm when a global transaction is
committed or started. This behavior enables the algorithm to keep track of the
global transaction life cycle. On each iteration of the processJobStep method, the
common batch container calls the ShouldCheckpointBeExecuted callback method
on the algorithm to determine if the transaction is committed. The algorithm
controls the checkpoint interval through this method.

Review the batch API for the checkpoint algorithm SPI that you can use to create
custom checkpoint algorithms. The class name is
com.ibm.wsspi.batch.CheckpointPolicyAlgorithm.

Time-based algorithm
The time-based checkpoint algorithm commits global transactions at a specified
time interval. The following example declares a time-based algorithm in xJCL:
<checkpoint-algorithm name="timebased">

<classname>com.ibm.wsspi.batch.checkpointalgorithms.timebased</classname>
<props>

<prop name="interval" value="15" />
<prop name="TransactionTimeOut" value="30" />

</props>
</checkpoint-algorithm>

The units of interval and TransactionTimeOut properties in the previous example
are expressed in seconds.

Record-based algorithm
The record-based checkpoint algorithm commits global transactions at a specified
number of iterations of the processJobStep method of batch step. Each call to the
processJobStep method is treated as iterating through one record. The
processJobStep method can retrieve multiple records from a batch data stream on
each call. However, for this checkpoint algorithm one record is the equivalent one
call to the processJobStep method.

The following example declares a record-based algorithm in xJCL:
<checkpoint-algorithm name="recordbased">

<classname>com.ibm.wsspi.batch.checkpointalgorithms.recordbased</classname>
<props>

<prop name="recordcount" value="1000" />
<prop name="TransactionTimeOut" value="60" />

</props>
</checkpoint-algorithm>

98 z/OS V2R1.0 Batch Runtime Planning and User's Guide

The unit of the TransactionTimeOut property in the previous example is expressed
in seconds.

If not specified in xJCL, the default transaction timeout is 60 seconds and the
default record count is 10000.

Applying a checkpoint algorithm to a batch step
Checkpoint algorithms are applied to a batch job through xJCL. You can declare
multiple checkpoint algorithms in xJCL, and you can apply a different algorithm to
each batch step. You can apply no more than one checkpoint algorithm to a batch
step.

The following example applies checkpoint algorithms in xJCL:
<job name="PostingsSampleEar">

<checkpoint-algorithm name="timebased">
<classname>com.ibm.wsspi.batch.checkpointalgorithms.timebased</classname>
<props>

<prop name="interval" value="15" />
<prop name=" TransactionTimeOut" value="30" />

</props>
</checkpoint-algorithm>

<checkpoint-algorithm name="recordbased">
<classname>com.ibm.wsspi.batch.checkpointalgorithms.recordbased</classname>
<props>

<prop name="recordcount" value="1000" />
<prop name="TransactionTimeOut" value="60" />

</props>
</checkpoint-algorithm>

<job-step name="Step1">
<checkpoint-algorithm-ref name="timebased" />

</job-step>

<job-step name="Step2">
<checkpoint-algorithm-ref name="recordbased" />

</job-step>
</job>

Implementing a Results algorithm
Results algorithms are an optional feature of the batch programming model.

A results algorithm allows for two types of actions to occur at the end of a batch
step:
v To influence the return code of the batch job based on the return code of the

batch step that just ended. Note that there are two types of return codes: the
return code of an individual batch step and the return code of the batch job to
which the step belongs.

v To provide a place holder for triggers or actions to take based on various step
return codes.

Results algorithms are applied to a batch job through XML Job Control Language
(xJCL). These algorithms are declared in xJCL and then applied to batch steps.

At the end of a batch step, the common batch container checks the xJCL of the
batch job to determine which results algorithm to invoke. For each results
algorithm specified, the common batch container passes to the algorithm the return

Appendix A. Common Batch Container 99

code of the batch step, which is the integer returned by the destroyJobStep method
of the step, and the current return code of the batch job in the common batch
container database. The results algorithm can then take any action based on the
return codes passed in. The algorithm then passes a return code for the batch job
back to the common batch container which is persisted to the common batch
container database as the current return code of the batch job. This return code can
be the same as the return code that the common batch container passed to the
results algorithm initially, or the return code can be different, depending on logic
coded into the results algorithm. If a results algorithm is not specified on a batch
step, the job return code is that of the results algorithm from the previous step. If
no results algorithms are specified, the job return code is zero (0).

A results algorithm system programming interface (SPI) is also provided, which
you can use to write your own algorithms and apply them to batch jobs.

100 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Appendix B. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 2013 101

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

102 z/OS V2R1.0 Batch Runtime Planning and User's Guide

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix B. Accessibility 103

104 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2013 105

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS™, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

106 z/OS V2R1.0 Batch Runtime Planning and User's Guide

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: http://www.ibm.com/

software/support/systemsz/lifecycle/
v For information about currently-supported IBM hardware, contact your IBM

representative.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: http://www.ibm.com/

software/support/systemsz/lifecycle/
v For information about currently-supported IBM hardware, contact your IBM

representative.

Notices 107

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/

108 z/OS V2R1.0 Batch Runtime Planning and User's Guide

Index

A
accessibility 101

contact IBM 101
features 101

application code
single threaded 3

application interfaces 19
assistive technologies 101

B
bcd option

application name 20
default 20
example 20

argument 20
default 20
example 20

language 19
default 20
example 20

support class 20
default 20
example 20

verbose 21
default 21
example 21

BCDBATCH
guide 6
overview 8
procedure 10
quickstart guide 6

bcdcommit() and bcdrollback() helpers from COBOL 27

C
C code

COBOL
example 34

C DLL
example

example 34
Calling PL/I From Java 57
CLASSPATH 5
COBOL

invoking Java
example 35

when z/OS Batch Runtime calls 1
where to find information 2

COBOL restriction
using Language Environment

STOP RUN 24
code examples 32
commit 22
Commit

Rollback Callbacks 50
Rollback Helpers 54

commit function 22
common batch container 61

Completion code
z/OS Batch Runtime 25

completion codes 24
configuration option

keyword 19
names 19
stem 19
types of 19

configuration options 19

D
DB2

support elements 23
where to find information 2

E
example

C calling COBOL from Java 34
COBOL invoking Java 35
Java code calling COBOL 33

exception handling 59

H
helper function 22

I
IBM Support

z/OS Batch Runtime 59
interoperability 1
INVOKE statement 22

J
J2EE processing 23
Java

configuring 5
tracing, enabling 59
where to find information 2

Java code calling COBOL 33
Java function

commit 22
static method 22

rollback 22
static method 22

Java method
definitions 23
get 23
initialize 23
notify 23
terminate 23

Java restriction
additional 24
using Language Environment

single threaded 24

© Copyright IBM Corp. 2013 109

JCL
invoke z/OS Batch Runtime 5

JCL examples
BCDIN procedure 12

JDBC
support class 21
support elements 23

JZOS 5

K
keyboard

navigation 101
PF keys 101
shortcut keys 101

keyword
configuration option 19

L
language 19
LIBPATH 5
logging 59

N
navigation

keyboard 101
Notices 105

O
overview 1

P
PL/I

build
structure 49

compile
bind 50

PL/I Embedded SQL and Transactional VSAM
Considerations 57

PL/I External Control JCL Statement 49
planning

use of z/OS Batch Runtime 3
program arguments 22

example 22
single 22
string array 22

Q
quickstart guide

BCDBATCH JCL 6

R
requirements

COBOL 2
DB2 2
Java 2
PL/I 2
z/OS Batch Runtime 2

Resource Recovery Services (RRS) 1
restrictions

COBOL 24
Java 24
Language Environment 24

rollback function 22

S
Sample Compile

Bind JCL 54
Sample PL/I Source 51
sending comments to IBM xiii
shortcut keys 101
signal handling 59
single threaded 3
stem

configuration option 19
Summary of changes xv
support class 23

definition 20
example 20
JDBC 21

SYS1.SAMPLIB
sample JCL 8

T
trace facilities 59
troubleshooting

IBM Support 59
log facilities 59
trace 59
trace facilities 59

U
user interface

ISPF 101
TSO/E 101

V
verbose

definition 21

Z
z/OS Batch Runtime

calling COBOL 1
completion codes 24
configuration options 19
configurations options 12
considerations 3
helper functions 22
initialization 1
invoke 5
overview 1
requirements 2
Resource Recovery Services (RRS) 1

110 z/OS V2R1.0 Batch Runtime Planning and User's Guide

����

Product Number: 5650-ZOS

Printed in USA

SA23-1376-00

	Contents
	Figures
	Tables
	About this information
	Who should read Batch Runtime Planning and User's Guide
	Where to find more information
	Internet sources

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Overview and planning of z/OS Batch Runtime
	Requirements for z/OS Batch Runtime
	Planning for z/OS Batch Runtime

	Chapter 2. Invoking z/OS Batch Runtime
	Configuring Java
	Improving Java start up time
	Java environment variables for z/OS Batch Runtime
	JAVA_HOME
	CLASSPATH
	LIBPATH
	IBM_JAVA_OPTIONS
	31-bit support
	64-bit support

	Main JCL statements needed for BCDBATCH
	JCL for the BCDBATCH job
	Sample BCDBATCH JCL
	Procedure for modifying the BCDBATCH job

	JCL for BCDIN configurations options
	Sample BCDIN File
	Procedure for modifying the BCDIN JCL

	Sample BCDPROC to invoke z/OS Batch Runtime

	Chapter 3. Defining connectivity for the database
	Considerations for setting up z/OS Batch Runtime services for a database resource
	DB2 Java Database Connectivity (JDBC) and z/OS Batch Runtime
	Transaction management and global transactions
	Commit and rollback services of z/OS Batch Runtime
	End-of-job clean up processing

	Chapter 4. Application interfaces for z/OS Batch Runtime
	Configuration options reference
	Configuration option types
	Configuration option names
	Program arguments

	Helper functions for z/OS Batch Runtime
	Java function for commit and rollback

	Support elements for JDBC and DB2
	Language Environment restrictions for z/OS Batch Runtime
	Completion codes for z/OS Batch Runtime

	Chapter 5. Application structure and build considerations for COBOL and Java
	DLL considerations for COBOL and Java
	Example of a COBOL COMMIT wrapper
	Using the bcdcommit() and bcdrollback() helpers from COBOL

	Examples of program structures
	Building programs: compile and link JCL examples
	Code examples
	Example: Java code calling COBOL
	Example: C DLL calling COBOL from Java
	Example: COBOL code invoking Java

	Binding DB2 with Java JDBC and COBOL embedded SQL
	Commands for SQLJ program preparation

	Chapter 6. Application structure and build considerations for PL/I and Java
	PL/I External Control JCL Statement
	PL/I Compile and Bind Considerations for PL/I Main Routines
	Commit and Rollback Callbacks
	Sample PL/I Source to Invoke Commit Callback
	Sample Compile and Bind JCL
	Commit and Rollback Helpers
	PL/I Embedded SQL and Transactional VSAM Considerations
	Calling PL/I from Java

	Chapter 7. Troubleshooting for z/OS Batch Runtime
	Trace facilities for z/OS Batch Runtime
	Log facilities for z/OS Batch Runtime
	Signalling and exception handling by z/OS Batch Runtime

	Appendix A. Common Batch Container
	Introduction
	Transactional batch programming model
	Batch job steps
	Batch data streams
	Batch data stream framework
	Checkpoint algorithms
	Results algorithm
	Batch job return codes

	Developing a simple batch application
	Procedure

	Implementing batch data stream framework and patterns
	Using the batch data stream framework
	JDBCReaderPattern
	Supporting classes
	Required properties
	Optional properties
	Interface definition
	xJCL examples

	JDBCWriterPattern
	Supporting classes
	Required properties
	Optional properties
	Interface definition
	xJCL examples

	ByteReaderPattern
	Supporting classes
	Required properties
	Optional properties
	Interface definition
	xJCL example

	ByteWriterPattern
	Supporting classes
	Required properties
	Optional properties
	Interface definition
	xJCL example

	FileReaderPattern
	Supporting classes
	Required properties
	Optional properties
	Interface definition
	xJCL example

	FileWriterPattern
	Supporting classes
	Required properties
	Optional properties
	Interface definition
	xJCL example

	RecordOrientedDatasetReaderPattern
	Supporting classes
	Required properties
	Optional properties
	Interface definition
	xJCL example

	RecordOrientedDatasetWriterPattern
	Supporting classes
	Required properties
	Optional properties
	Interface definition
	xJCL example

	JPAReaderPattern
	Supporting classes
	Required properties
	Optional properties
	Interface definition
	xJCL example

	JPAWriterPattern
	Supporting classes
	Required properties
	Optional properties
	Interface definition
	xJCL example

	Common batch container jobs
	Creating batch job steps
	Generic batch step (GenericXDBatchStep)
	Error Tolerant step
	PercentageBasedThresholdPolicy
	RecordBasedThresholdPolicy

	xJCL elements
	xJCL substitution-props

	Batch job return codes explanations
	Job logs
	Output of a job log
	XML schema for a batch job
	xJCL sample for a batch job

	Implementing Checkpoint algorithms
	Time-based algorithm
	Record-based algorithm
	Applying a checkpoint algorithm to a batch step

	Implementing a Results algorithm

	Appendix B. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Minimum supported hardware

	Index
	A
	B
	C
	D
	E
	H
	I
	J
	K
	L
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Z

