
z/OS

MVS Installation Exits
Version 2 Release 2

SA23-1381-03

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 407.

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this document xi
Who should use this document xi
How to use this document xi

How each exit is organized xi
Where to find more information xii

How to send your comments to IBM xiii
If you have a technical problem xiii

Summary of changes xv
Summary of changes for z/OS Version 2 Release 2
(V2R2), as updated December, 2016 xv
Summary of changes for z/OS Version 2 Release 2
(V2R2), as updated December, 2015 xv
Summary of changes for z/OS Version 2 Release 2
(V2R2) xv
z/OS Version 2 Release 1 summary of changes . . xvi

Part 1. Introduction 1

Chapter 1. All About Exit Routines . . . 3
Assembling Installation Exit Routines 3
Link editing an Installation Exit Routine into a
Library 3
Programming Considerations for Installation Exit
Routines 4
Dynamic Exits Facility 5

Link editing a Dynamic Exit Routine into a
Library 6
Replacing a Dynamic Exit Routine 6
Providing Security for Dynamic Exits 7

Part 2. The Exits 9

Chapter 2. ASREXIT — SYMREC
Authorization Exit 11

Chapter 3. CNZ_MSGTOSYSLOG —
Message To Syslog Exit 15

Chapter 4. CNZ_MSIEXIT — Master
Scheduler Initialization Dynamic Exit. . 23

Chapter 5. CNZ_WTOMDBEXIT — WTO
Message Data Block Exit 25

Chapter 6. CSVLLIX1 — LLA Module
Fetch Exit 33

Chapter 7. CSVLLIX2 — LLA Module
Staging Exit 39

Chapter 8. DLF Connect / Disconnect
Exit 47
Installing the Exit Routine 48
Exit Routine Environment 49
Exit Routine Functions 49
Exit Routine Processing 51
Programming Considerations 51
Entry Specifications. 52
Return Specifications 53
Coded example of the exit routine 53

Chapter 9. HIS.SERVSTAT— HISSERV
Service Exit 55

Chapter 10. ICHRTX00 — MVS Router
Exit 59

Chapter 11. IEALIMIT — User Region
Size Limit Exit 65

Chapter 12. IEAVADFM — Format
SNAP, SYSABEND, and SYSUDUMP
Dumps. 71

Chapter 13. IEAVADUS — Select and
Format Dump Data Exit 77

Chapter 14. IEAVMXIT —
Installation-Specified MPF Exits 83

Chapter 15. IEAVTABX — Change
Options / Suppress Dump Exit 93

Chapter 16. IEAVTABX_EXIT —
ABDUMP Change Options / Suppress
Dump Exit 99

Chapter 17. IEAVTSEL — Post Dump
Exit Name List Exit 103

Chapter 18. IEF_ALLC_OFFLN —
Allocated or Offline Device Installation
Exit 111

© Copyright IBM Corp. 1988, 2015 iii

||

|
|
||

Chapter 19. IEF_ALLC_EVENT —
Allocation Event Installation Exit . . . 121

Chapter 20. IEF_ALLC_MOD —
Allocation Modify DDname Installation
Exit. 125

Chapter 21. IEF_ALLC_UNLOAD —
Allocation Event Installation Exit . . . 129

Chapter 22. IEF_SPEC_WAIT —
Specific Waits Installation Exit 133

Chapter 23. IEF_VOLUME_ENQ —
Volume ENQ Installation Exit. 139

Chapter 24. IEF_VOLUME_MNT —
Volume Mount Installation Exit 145

Chapter 25. IEFACTRT — SMF Job
and Job Step Termination Exits . . . 151

Chapter 26. IEFDB401 — Dynamic
Allocation Input Validation Routine
Exit. 165

Chapter 27. IEFDOIXT — Edit / Check
A Caller's Dynamic Output Text Units
Exit. 173

Chapter 28. IEFJFRQ — Subsystem
Function Request Exit 179

Chapter 29. IEFUAV — User Account
Validation Exit 187

Chapter 30. IEFUJI — Job Initiation
Exit. 195

Chapter 31. IEFUJP — Job Purge Exit 201

Chapter 32. IEFUJV — Job Validation
Exit. 205

Chapter 33. IEFUSI — Step Initiation
Exit. 215

Chapter 34. IEFUSO — SYSOUT Limit
Exit. 227

Chapter 35. IEFUTL — Time Limit Exit 231

Chapter 36. IEFU29 — SMF Dump Exit 239

Chapter 37. IEFU29L — SMF Log
Stream Dump Exit 243

Chapter 38. IEFU83 — SMF Record
Exit. 247

Chapter 39. IEFU84 — SMF Record
Exit. 253

Chapter 40. IEFU85 — SMF Record
Exit. 259

Chapter 41. Global Resource
Serialization Exits 265
System Programmer or Authorized Exits 265

ISGNQXITFAST — Fast ISGENQ / ENQ / DEQ
Installation Exit. 265
ISGNQXIT — ISGENQ / ENQ / DEQ
Installation Exit. 268
ISGCNFXITSYSTEM — Filter Global Resource
Serialization Contention Notification, SYSTEM
Scope 271
ISGCNFXITSYSPLEX — Filter Global Resource
Serialization Contention Notification, SYSTEMS
Scope 273

Authorized Exits 275
ISGDGRSRES — Display Global Resource
Serialization Resource Exit 275

Authorized Exits for Alternate Serialization
Products 277

ISGNQXITPREBATCH — ISGENQ / ENQ /
DEQ Batch Preprocessing Exit 277
ISGNQXITBATCH— ISGENQ / ENQ / DEQ
Batched Exit ISGNQXITBATCHCND —
ISGENQ / ENQ / DEQ Conditional Batch
Processing Exit 280
ISGNQXITQUEUED1 — ISGENQ / ENQ /
DEQ First Queued Exit 284
ISGNQXITQUEUED2 – ISGENQ / ENQ / DEQ
Second Queued Exit 287
ISGENDOFLQCB — End of Local QCB Exit . . 289

Chapter 42. IXC_ELEM_RESTART —
Element Restart Exit 293

Chapter 43. IXC_WORK_RESTART —
Workload Restart Exit 299

Chapter 44. Log Stream Subsystem
Exit (IXGSEXIT, For Example) 307

Chapter 45. MVS Commands
Installation Exit 319

Chapter 46. MVS Message Service
(MMS) Exits 329

iv z/OS V2R2 MVS Installation Exits

Part 3. Installation Exit Directory 339

Chapter 47. BCP Exits 341

Chapter 48. DFSMS Exits 343

Chapter 49. IPCS Exits 345

Chapter 50. JES2 Exits 347

Chapter 51. JES3 Exits 349

Chapter 52. RACF Exits 351

Chapter 53. RMF Exits 353

Chapter 54. TSO/E Exits 355

Chapter 55. VTAM Exits 359

Part 4. MVS Converter / Interpreter
Text Processing 361

Chapter 56. Issuing Messages through
JES Installation Exits 363

Chapter 57. Converter / Interpreter
(C/I) Text Strings 365
Prefix Information 365
Keyword Information 365
End-of-text Information 366

Chapter 58. Converter / Interpreter
Text String Formats. 367
Prefix Format 367

JOB String Prefix 367
EXEC String Prefix 368
DD String Prefix 368
JDT String Prefix 369
Extended Statement Type String Prefix 369

Positional Format 370

JOB String Positional Parameters 370
EXEC String Positional Parameters 370
DD String Positional Parameters 371

Text Format for JDT-defined JCL 371
Extended Statement Type String Positional
Parameters 373
Key Entry Format Examples 373

Referral Type Data 374
Data Set Name with Member Name 374
Overrides of Parameters 374

End-of-text Format 375
Examples of MVS/CI Text Strings 375
User References 376

Chapter 59. Modifying Converter /
Interpreter Text. 377

Part 5. Testing SMF Exit Routines 379

Chapter 60. TESTEXIT Exit Routine
Requirements 381
Obtaining TESTEXIT from SYS1.SAMPLIB. . . . 382
Modifying the TESTEXIT Procedure 383

Part 6. SMF Exit — System
Interface Diagrams 387

Part 7. Appendixes 401

Appendix. Accessibility 403
Accessibility features 403
Consult assistive technologies 403
Keyboard navigation of the user interface 403
Dotted decimal syntax diagrams 403

Notices 407
Policy for unsupported hardware. 408
Minimum supported hardware 409
Programming Interface Information 409
Trademarks 409

Index 411

Contents v

vi z/OS V2R2 MVS Installation Exits

Figures

1. Example: Link editing an installation exit
routine 4

2. CNZ_WTOMDBEXIT input parameter
structure 27

3. RACROUTE macro invokes the MVS router 60
4. Example: IEALIMIT exit routine 69
5. Writing Job Log Messages from IEFACTRT 154
6. Example: make an IEFACTRT installation exit

routine available 155
7. IEFACTRT Input Parameter Structure 159
8. Examples of Accounting Information 162
9. Example 162

10. Example 163
11. Example 163
12. IEFDB401 Input Parameter Structure 168
13. IEFDOIXT Input Parameter Structure 177
14. IEFUAV Input Parameter Structure 192
15. IEFUJI Input Parameter Structure 198
16. IEFUJP Input Parameter Structure. 203
17. IEFUJV Input Parameter Structure 212
18. IEFUSI Input Parameter Structure. 224
19. IEFUSO Input Parameter Structure 230
20. IEFUTL Input Parameter Structure 236
21. IEFU29 Input Parameter Structure 241
22. Example: SMF Dump Exit 243

23. IEFU29L Input Parameter Structure 246
24. IEFU83 Input Parameter Structure 250
25. IEFU84 Input Parameter Structure 257
26. IEFU85 Input Parameter Structure 262
27. TESTEXIT Input/Output and Control Flow 379
28. SMFWTM Macro Definition Required for

Using TESTEXIT 381
29. Sample JCL for Entering User-Written Exit

Routines into EXITLIB 382
30. Sample JCL for Obtaining a Punched Deck of

TESTEXIT. 382
31. IEFUJV — Job Validation Exit (Converter) 388
32. IEFUJV — Job Validation Exit (Interpreter) 389
33. IEFUJI — Job Initiation Exit and IEFUSI —

Step Initiation Exit 390
34. IEFUTL — Time Limit Exit 391
35. IEFUSO — JES2 SYSOUT Limit Exit 392
36. IEFUSO — JES3 SYSOUT Limit Exit 393
37. IEFU83 — SMF Record Exit 394
38. IEFU84 — SMF Record Exit 395
39. IEFU85 — SMF Record Exit 396
40. IEFACTRT — Termination Exit Part 1 of 2 397
41. IEFACTRT — Termination Exit Part 2 of 2 398
42. IEFUJP — JES2 Job Purge Exit 399
43. IEFUJP — JES3 Job Purge Exit 400

© Copyright IBM Corp. 1988, 2015 vii

||

viii z/OS V2R2 MVS Installation Exits

Tables

1. IEALIMIT Default Values 67
2. Values Passed to ADPLESRV. 79
3. Common Exit Parameter Area 160
4. Format of Accounting Information 161
5. Environmental factors for the log stream

subsystem exit routine 309
6. Setting Up the Common Data Area 324
7. BCP Exits (USERx) 341
8. BCP Exit (authorized assembler) 341
9. BCP Exits (JES common coupling services) 341

10. DFSMS Exits 343
11. IPCS Exits 345

12. JES2 Exits 347
13. JES3 Exits 349
14. RACF Exits 351
15. RACF Exit 351
16. RMF Exits 353
17. TSO/E Exits 355
18. VTAM Exits 359
19. Text Format for Long Parameters: Example 1 372
20. Text Format for Long Parameters: Example 2 372
21. Parameters and DD Statements for Executing

TESTEXIT. 386

© Copyright IBM Corp. 1988, 2015 ix

x z/OS V2R2 MVS Installation Exits

About this document

This document supports z/OS® (5650-ZOS). This document identifies and describes
the installation exits that you can use to modify your MVS™ system.

Who should use this document
This document is intended for a systems programmer who wants to modify the
processing of an MVS system. The document assumes that the reader can code in
assembler language and read assembler, loader, and linkage editor output.

Although the documentation for the exits in this document follows a standard
format, each exit has unique features and requirements that you need to know
about. In general, the introductory section to each exit describes the exit's functions
and the possible uses for the exit. The remaining sections point out specific
considerations for coding the exit.

How to use this document
Because all of the exits perform the general function of modifying the existing
code, you may find it helpful to read Section 1 to develop a general idea of what
an exit is and how it functions as a part of the MVS system.

Once you have determined the type of modification you want to make to your
system, you might follow these general steps when using the document:
v Use the table of contents to locate the exit that might fit your needs.
v Turn to the description of the exit and use the introductory section, which

provides a description of the exit routine and its possible uses, to determine if
the exit routine can meet your needs.

v Use the detailed information to design, code, and install your installation exit
routine.

How each exit is organized
The exit routines in this document follow a format to allow you to locate
information about the exit routine you are coding. The list that follows describes
how each exit can be organized. However, some of these topics may not apply to
every exit, such as I/O restrictions. A topic that does not apply to the exit is not
discussed for that exit.
v Exit routine name and description.
v Introductory material, which describes the function of the exit routine and lists

possible uses for the routine.
v Installing the exit.
v Exit routine environment, which contains specific environmental considerations

that you need to know, such as the address space that the exit runs in, the
AMODE and RMODE for the exit, and locks or ENQs that the exit routine might
hold when it gets control.

v Exit recovery environment, which describes the type of recovery environment for
the exit routine.

v Processing.
v Programming considerations.

© Copyright IBM Corp. 1988, 2015 xi

v Macro instructions and restrictions, which contain specific macro requirements
or restrictions that you must keep in mind when coding the exit routine.

v I/O restrictions.
v Entry specifications, which includes a list of the register contents when the exit

routine receives control and, when applicable, describes any related parameter
lists for the exit routine.

v Return specifications, which lists the register contents expected when the exit
routine returns control to the calling program.

v Coded example of the exit.

Where to find more information
Where necessary, this document references information in other documents, using
shortened versions of the document title. For complete titles and order numbers of
the documents for all products that are part of z/OS, see z/OS V2R2 Information
Roadmap.

xii z/OS V2R2 MVS Installation Exits

How to send your comments to IBM

We appreciate your input on this documentation. Please provide us with any
feedback that you have, including comments on the clarity, accuracy, or
completeness of the information.

Use one of the following methods to send your comments:

Important: If your comment regards a technical problem, see instead “If you have
a technical problem.”
v Send an email to mhvrcfs@us.ibm.com.
v Send an email from the "Contact us" web page for z/OS (http://www.ibm.com/

systems/z/os/zos/webqs.html).

Include the following information:
v Your name and address
v Your email address
v Your phone or fax number
v The publication title and order number:

z/OS V2R2 MVS Installation Exits
SA23-1381-03

v The topic and page number or URL of the specific information to which your
comment relates

v The text of your comment.

When you send comments to IBM®, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one or more of the following actions:
v Visit the IBM Support Portal (support.ibm.com).
v Contact your IBM service representative.
v Call IBM technical support.

© Copyright IBM Corp. 1988, 2015 xiii

mailto:mhvrcfs@us.ibm.com
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://support.ibm.com/

xiv z/OS V2R2 MVS Installation Exits

Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations for the current edition
are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 2 (V2R2), as updated
December, 2016

The following changes are made for z/OS Version 2 Release 2 (V2R2), as updated
December, 2016. In this revision, all technical changes for z/OS V2R2 are indicated
by a vertical line to the left of the change.

New
v A new chapter on IEAVTABX_EXIT, Chapter 16, “IEAVTABX_EXIT — ABDUMP

Change Options / Suppress Dump Exit,” on page 99, has been added for APAR
OA48457.

v A new section on IEF_ALLC_OFFLN, in Chapter 18, “IEF_ALLC_OFFLN —
Allocated or Offline Device Installation Exit,” on page 111, has been added for
APAR OA48457.

Changed
v Material is added to clarify information about the log stream subsystem exit.

See: Chapter 44, “Log Stream Subsystem Exit (IXGSEXIT, For Example),” on
page 307.

v Updates are made to support the JCL REGIONX keyword. For more
information, see: Chapter 33, “IEFUSI — Step Initiation Exit,” on page 215.

v A cross-reference to a coded example is provided. See Chapter 8, “DLF Connect
/ Disconnect Exit,” on page 47.

Summary of changes for z/OS Version 2 Release 2 (V2R2), as updated
December, 2015

The following changes are made for z/OS Version 2 Release 2 (V2R2), as updated
December, 2015. In this revision, all technical changes for z/OS V2R2 are indicated
by a vertical line to the left of the change.

Changed

Updates are made for optional IEFUSI exit changes to support the SMFLIMxx
parmlib member for REGION and MEMLIMIT control, as well as changes to
support the JCL REGIONX keyword. For more information, see:
v Chapter 11, “IEALIMIT — User Region Size Limit Exit,” on page 65
v Chapter 33, “IEFUSI — Step Initiation Exit,” on page 215.

Summary of changes for z/OS Version 2 Release 2 (V2R2)
The following changes are made for z/OS Version 2 Release 2 (V2R2).

© Copyright IBM Corp. 1988, 2015 xv

Changed
v All preexisting references to SYS1.LOGREC in the ASREXIT installation exit now

instead reference "the logrec recording medium." For details, see Chapter 2,
“ASREXIT — SYMREC Authorization Exit,” on page 11.

v Two new IEF_ALLC_EVENT Function codes are added. For details, see
Chapter 19, “IEF_ALLC_EVENT — Allocation Event Installation Exit,” on page
121.

z/OS Version 2 Release 1 summary of changes
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

xvi z/OS V2R2 MVS Installation Exits

Part 1. Introduction

In certain areas of processing, your installation might need to customize its MVS
system to an extent not available through standard options, such as initialization
parameters and operator commands. IBM provides installation exit points for this
purpose.

There are installation exit points located throughout the MVS system code. When
an exit is invoked, the system passes control to an IBM-supplied routine that might
or might not perform actual processing. When you provide an exit routine, control
passes to that routine, which does its special processing. At the end of the user
routine, control returns to a specified point in the system code.

© Copyright IBM Corp. 1988, 2015 1

2 z/OS V2R2 MVS Installation Exits

Chapter 1. All About Exit Routines

The following section contain introductory information about installation exit
routines. To start, it is helpful to review the following terminology.
v Installation Exit Point. An installation exit point is a specific point in component

processing at which control passes to an installation exit routine. The macro that
calls the user routine uses parameter values from keywords supplied at the
initialization of the component. In most cases, the initialization statement
defaults are set to cause the exit point to be ignored. However, you can modify
macro processing by specifying parameters supplied with operator commands.

v Replaceable Module. A replaceable module is a load module that the user
installation can update, alter, or completely replace. Some replaceable modules
are IBM-supplied code that performs a specific function, while others simply
branch directly back to the calling program without any additional processing.
When you write your exit routine, you replace the IBM-supplied routine with
your own. Both the name of the routine and its library location are predefined.

v Installation Exit Name List. An installation exit name list is similar to an
installation exit point. However, rather than directly calling the installation exit
routine, the macro addresses a CSECT that contains a list of installation exit
routine names. The installation exit routines are then invoked sequentially as
they appear in the name list. This processing ends in one of two ways:
– One of the installation exit routines issues a terminating return code.
– The end of the name list is reached.
Your installation provides the routine names by updating, reassembling, and
again linkediting the name list CSECT. (It is possible to update the CSECT
temporarily using SPZAP. See z/OS MVS Diagnosis: Tools and Service Aids for
more information on SPZAP.)
If you provide no exit routines, the name list contains blank entries.
In both the installation exit point and installation exit name list methods, the
installation defines the installation exit routine names.

v Dynamic Exit. A user-written or system exit that has been defined to the
dynamic exits facility. See “Dynamic Exits Facility” on page 5 for more
information.

Assembling Installation Exit Routines
To ensure all necessary macros are resolved during assembly of your exit routines,
use the same SYSLIB concatenation as your SMP procedure or SYSLIB DDDEF
statement.

Link editing an Installation Exit Routine into a Library
For information about link editing a dynamic exit routine, see “Link editing a
Dynamic Exit Routine into a Library” on page 6.

The example in Figure 1 on page 4 shows how to make an installation exit routine
available to the system by link editing it into a system library.

© Copyright IBM Corp. 1988, 2015 3

EXEC Statement: invokes the linkage editor and requests maximum diagnostic
listing. For a description of module attributes that you can assign to your routine,
see z/OS MVS Program Management: Advanced Facilities.

SYSPRINT DD Statement: defines the message data set.

SYSLMOD DD Statement: defines the output data set, in this case the link library,
SYS1.LINKLIB. The output data set can also be a permanent library to be
referenced by a JOBLIB or STEPLIB DD statement; in that case, the SYSLMOD DD
statement could be coded as follows:

SYSLIN DD Statement: defines the input data set, in this example the object code
for the user program.

NAME Control Statement: specifies the member name, and thus the program
name, to be assigned to the user program. In this example, the member name is
EXITNAME.

Programming Considerations for Installation Exit Routines
Each MVS component has individual programming conventions. Components that
have similar functions have similar requirements. Most requirements, however, are
unique. Because of these differences among component requirements, we cannot
provide universal rules for coding installation exit routines. The specific guidelines
we can give are:
v Whenever a macro is provided to perform a service, use the macro.
v Upon entry to your exit routine, save all register contents and restore them

before returning to your calling routine. An exception to this guideline is the use
of return and reason codes. In many cases, you must insert a return code in
register 15, and reason codes in registers 0 and 1 before returning to the calling
program.

v Under no circumstances should you assume an interface (such as contents of a
register) that is not specifically documented.

v Exits That Use a z/OS UNIX Callable Service: Any exit that uses a z/OS UNIX
callable service needs to be written based on the current environment. If the task
is not dubbed on entry to the exit (STCBOTCB=0), the exit must undub (perform
a CALL BPX1MPC) at completion if the exit has called any other z/OS UNIX
callable service callable service. If the task is already dubbed (STCBOTCB does
not equal 0), the exit should leave the environment as it was on entry, which
would require closing any files that it opens and leaving signal states
unchanged.

//LKUSRPGM JOB MSGLEVEL=(1,1)
// EXEC PGM=IEWL,PARM=’XREF,LET,LIST,NCAL’
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,10)
//SYSLMOD DD DSNAME=SYS1.LINKLIB,DISP=SHR
//SYSLIN DD *

object deck
NAME EXITNAME(R)

/*

Figure 1. Example: Link editing an installation exit routine

//SYSLMOD DD DSNAME=MYLIB,UNIT=3380,VOL=SER=666666,
// DISP=(NEW,KEEP),SPACE=(1024,(20,2,1))

Introduction

4 z/OS V2R2 MVS Installation Exits

Dynamic Exits Facility
The dynamic exits facility is a set of services that you can use through any of the
following methods:
v The EXIT statement of the PROGxx parmlib member. The EXIT statement allows

an installation to add exit routines to an exit, change the state of an exit routine,
delete an exit routine for an exit, undefine an implicitly defined exit, and change
the attributes of an exit.
The PROGxx EXIT statement interacts with the PROG=xx parameter of
IEASYSxx and the SET PROG=xx command. At IPL, operators can use PROG=xx
to specify the particular PROGxx parmlib member the system is to use. During
normal processing, operators can use the SET PROG=xx command to set a
current PROGxx parmlib member. See z/OS MVS Initialization and Tuning
Reference for information about the PROGxx parmlib member.

v The SETPROG EXIT operator command. This command performs the same
functions as the EXIT statement of the PROGxx parmlib member. See z/OS MVS
System Commands for information about the SETPROG EXIT command.

v The CSVDYNEX macro. The CSVDYNEX macro can be used to define exits to
the dynamic exits facility, control their use within a program, and associate one
or more exit routines with those exits. It can also be used to associate exit
routines with the existing SMF and allocation exits, which have been defined to
the dynamic exits facility. The CSVDYNEX macro provides a superset of the
functions available through the SETPROG EXIT operator command and the
EXIT statement of the PROGxx parmlib member. See z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN for information about the
CSVDYNEX macro.

An installation can use any of these methods to control dynamic exits. For
example, an exit routine can be associated with an exit using the CSVDYNEX ADD
request, the SETPROG EXIT,ADD operator command, or the EXIT statement of
PROGxx.

The following exits have been defined to the dynamic exits facility:
v ABDUMP exit:

– IEAVTABX_EXIT - ABDUMP Change Options / | Suppress Dump Exit
v Allocation exits:

– IEF_ALLC_OFFLN— Allocated/Offline Device Installation Exit
– IEFDB401— Allocation Input Validation Routine
– IEF_SPEC_WAIT— Specific Waits Installation Exit
– IEF_VOLUME_ENQ— Volume ENQ Installation Exit
– IEF_VOLUME_MNT— Volume Mount Installation Exit

v Automatic restart management exits:
– IXC_ELEM_RESTART— Element Restart Exit
– IXC_WORK_RESTART— Workload Restart Exit

v SMF exits:
– IEFACTRT— SMF Job/Job Step Termination Exit
– IEFUAV— User Account Validation Exit
– IEFUJI— Job Initiation Exit
– IEFUJP— Job Purge Exit
– IEFUJV— Job Validation Exit

Introduction

Chapter 1. All About Exit Routines 5

|

|

– IEFUSI— Step Initiation Exit
– IEFUSO— SYSOUT Limit Exit
– IEFUTL— Time Limit Exit
– IEFU29— SMF Dump Exit
– IEFU83— SMF Record Exit
– IEFU84— SMF Record Exit
– IEFU85— SMF Record Exit

v Subsystem interface (SSI) exit:
– IEFJFRQ— Subsystem Function Request Exit

v SVC dump (SDUMP) exits:
– IEASDUMP.QUERY
– IEASDUMP.GLOBAL
– IEASDUMP.LOCAL
– IEASDUMP.SERVER

Link editing a Dynamic Exit Routine into a Library
You can link edit a dynamic exit routine into a library by:
v Link editing it into a data set that is made part of the PLPA, MLPA, or FLPA at

IPL-time
v Link editing it into a data set that is part of the LNKLST concatenation
v Link editing it into IEANUC0x
v Link editing it into any PDS/PDSE and naming that data set using the

DSNAME option of:
– The SETPROG EXIT command
– The EXIT ADD statement of a PROGxx parmlib member
– The ADD request of the CSVDYNEX macro.

Replacing a Dynamic Exit Routine
There are two ways to replace a dynamic exit routine:
1. You can delete the current exit routine and add a replacement routine that uses

either the same or another name, or
2. You can change the state of the current routine to "inactive" and then later

change it back to "active."

You can use any of the following methods to accomplish the replacement:
v Use the CSVDYNEX macro.
v Use the SETPROG EXIT command.
v Use the SET PROG= command with new or modified EXIT statements in a

PROGxx parmlib member.
v Use the PROG= system parameter with new or modified EXIT statements in a

PROGxx parmlib member when you re-IPL.

You will make the most efficient use of storage if an exit routine that is associated
with more than one exit resides in the LPA. However, it is easier to replace a
dynamic exit routine that does not reside in the LPA.

Introduction

6 z/OS V2R2 MVS Installation Exits

If you are replacing an exit routine that is in the LPA, observe these two cautions
so that the system does not find and use the original (unchanged) copy of the
module in the LPA:
1. Use the DSNAME parameter of the ADD statement to specify the library into

which you have placed the modified load module.
2. Do not use the method that changes the state of the exit routine to inactive and

then back to active, unless you use the dynamic LPA function to add or replace
the modified exit module to the system.

Providing Security for Dynamic Exits
An installation can control access to programs that create and call dynamic exits by
authorizing specific users or groups of users to issue the various CSVDYNEX
requests.

The exit services tables contain lists of exits with associated exit routines. To
protect the exit services tables, set up RACF® FACILITY resource class profiles that
protect the following entities:
v CSVDYNEX.exitname.DEFINE
v CSVDYNEX.exitname.modname
v CSVDYNEX.exitname.UNDEFINE
v CSVDYNEX.exitname.ATTRIB
v CSVDYNEX.LIST
v CSVDYNEX.exitname.CALL
v CSVDYNEX.exitname.RECOVER
v Grant UPDATE authority to CSVDYNEX.exitname.DEFINE to users who are

authorized to define dynamic exits (CSVDYNEX DEFINE request).
v Grant UPDATE authority to CSVDYNEX.exitname.modname to users who are

authorized to add, delete, or modify exit routines for dynamic exits (CSVDYNEX
ADD, REPLACE, MODIFY, and DELETE requests).

v Grant UPDATE authority to CSVDYNEX.exitname.UNDEFINE to users who are
authorized to remove the definition of a dynamic exit (CSVDYNEX UNDEFINE
request).

v Grant UPDATE authority to CSVDYNEX.exitname.ATTRIB to users who are
authorized to change the attributes of dynamic exits (CSVDYNEX ATTRIB
request).

v Grant READ authority to CSVDYNEX.LIST to users who are authorized to list
information about dynamic exits (CSVDYNEX LIST request).

v Grant READ authority to CSVDYNEX.exitname.CALL to users who are
authorized to call exit routines for dynamic exits (CSVDYNEX CALL
FASTPATH=NO request).

v Grant READ authority to CSVDYNEX.exitname.RECOVER to users who are
authorized to provide recovery for exit routines associated with dynamic exits
(CSVDYNEX RECOVER request).

The SET PROG= and SETPROG commands are restricted to consoles with SYS
authority. The DISPLAY PROG command can be issued on any console with INFO
or higher authority You can prevent operators from issuing particular requests by
setting up the RACF profiles listed above for the ADD, MODIFY, DELETE, and
ATTRIB requests.

Introduction

Chapter 1. All About Exit Routines 7

8 z/OS V2R2 MVS Installation Exits

Part 2. The Exits

The installation exits described in this section of the document are functions
supported in the MVS base control program (BCP) code. The remaining installation
exit functions found in various MVS components and related products are listed in
Part 3, “Installation Exit Directory,” on page 339.

© Copyright IBM Corp. 1988, 2015 9

10 z/OS V2R2 MVS Installation Exits

Chapter 2. ASREXIT — SYMREC Authorization Exit

To allow unauthorized programs to write symptom records to the logrec data set
(or to a job log or to both) through the use of the SYMREC macro, the SYMREC
authorization exit, ASREXIT, must be in effect.

IBM provides the following sample ASREXIT routines for your installation's use:
v ASREXT0 allows all unauthorized programs to write symptom records to the

logrec recording medium.
v ASREXT1 allows only unauthorized programs that reside in APF-authorized

libraries to write symptom records to the logrec recording medium.

If one of these IBM-supplied routines serves the needs of your installation, use it
instead of coding your own routine (see “Coded Examples of the Exit Routine” on
page 14). If you plan to code your own routine, ASREXT0 and ASREXT1 appear in
SYS1.SAMPLIB. You can refer to them as examples when coding your routine.

You can use the ASREXIT interface to:
v Allow all or only particular unauthorized programs to write symptom records to

the logrec recording medium.
v Cause unauthorized programs to write symptom records to a job log instead of,

or in addition to, the logrec recording medium.

If you do not install the ASREXIT routine, MVS will not allow unauthorized
programs to write symptom records to the logrec recording medium.

For information on the SYMREC macro, see z/OS MVS Programming: Assembler
Services Guide.

Installing the Exit Routine

The exit must be linkedited with the name ASREXIT into SYS1.LINKLIB or any
library in the LNKLST concatenation. To activate the exit routine, refresh LLA
through the F LLA,REFRESH command.

Topics for This Exit Appear as Follows:

v “Installing the Exit Routine”

v “Exit Routine Environment” on page 12

– Exit Recovery

v “Exit Routine Processing” on page 12

v “Programming Considerations” on page 13

v “Entry Specifications” on page 13

– Registers at Entry

– Parameter List Contents

v “Return Specifications” on page 14

– Registers at Exit

v “Coded Examples of the Exit Routine” on page 14

© Copyright IBM Corp. 1988, 2015 11

|
|

|

|

|

|

For general instructions on installing an exit routine, see “Link editing an
Installation Exit Routine into a Library” on page 3.

Exit Routine Environment

ASREXIT receives control running under the unit of work that invoked the
SYMREC service, in the following environment:
v In supervisor state with PSW key 0
v Enabled or disabled for interrupts
v AMODE 31 and RMODE ANY
v Primary=home address space of the unit of work that issues the SYMREC

request.
v SRB or task mode. PSATOLD=0 means SRB mode, and nonzero means task

mode.

Note: Whether the exit routine receives control in task or SRB mode is
dependent on the unit of work that issues the SYMREC request.

Exit Recovery: ASREXIT should provide its own recovery.

If ASREXIT does not provide a recovery routine, or if an exit routine error
percolates beyond the exit's recovery, the system's ESTAEX recovery routine will
get control. The ESTAEX will record information in the SDWA and request an
SDUMP.

If ASREXIT abends, the system will not allow the symptom record to be written to
the logrec recording medium. The exit will be invoked for the next unauthorized
program that attempts to write symptom records.

Exit Routine Processing

When you install ASREXIT, the system will invoke the exit routine whenever an
unauthorized program issues the SYMREC macro to write symptom records to the
logrec recording medium. The system passes to the exit in register 1 the address of
fullword, which contains an address of the SYMREC authorization exit parameter
list (mapped by ASREPL). The SYMREC authorization exit parameter list contains
the following:
v A program name
v The job step name
v The address of the symptom record
v An indication of whether the program originated from an APF-authorized

library.

ASREXIT runs under an RB that issues a SYMREC request. The values of the
program name and the APF-authorized library indication in the SYMREC
authorization exit parameter list are not necessarily those of the RB that issued the
SYMREC request. The system obtains the program name and the APF-authorized
library indication from the MAJOR CDE pointed to by the oldest RB on the TCB
RB chain. See z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/) for information on the CDE
data area. Based on the program name and the authorized library indication,
ASREXIT indicates (by placing a value in the EPLRETC field of the exit parameter
list) whether to reject the request or allow the program to write the symptom
record to:

ASREXIT — SYMREC Authorization Exit

12 z/OS V2R2 MVS Installation Exits

|

|
|

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

v The logrec recording medium
v The job log
v Both the logrec recording medium and the job log.

If you code an ASREXIT routine, instead of installing one of the two IBM-supplied
routines, you will probably use the routine to allow only specific unauthorized
programs to write symptom records, or to cause unauthorized programs to write
symptom records to their job log instead of, or in addition to, the logrec recording
medium.

Using the Job Log: If you intend to restrict unauthorized programs from writing
symptom records to the logrec recording medium, but still want to collect
symptom records from unauthorized programs for debugging purposes, code the
ASREXIT routine to cause unauthorized programs' symptom records to be written
to their job log (by issuing WTOs with routing code 11). Application programmers
can then view symptom records in the job log directly, rather than having the
system programmer search the logrec recording medium for the symptom records.

If you do not install an ASREXIT routine, unauthorized programs cannot write
symptom records to a job log.

Programming Considerations

Code the ASREXIT exit routine to be reentrant. A new copy of ASREXIT is loaded
into storage from SYS1.LINKLIB for every request to write a SYMREC.

Entry Specifications

The system passes the address of the exit parameter list to ASREXIT.

Registers at Entry: The contents of the registers on entry to ASREXIT are as
follows.

Register
Contents

0 Not applicable

1 Pointer to the address of the exit parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit

Parameter List Contents: Register 1 contains a pointer to the address of the exit
parameter list, the EPL. The EPL contains the program name, job step name,
address of the symptom record, and an indication of whether the program resides
in an APF-authorized library.

The EPL is mapped by the ASREPL macro (data area ASREPL), which resides in
SYS1.MODGEN. See z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/) for a mapping of the ASREPL
data area.

ASREXIT — SYMREC Authorization Exit

Chapter 2. ASREXIT — SYMREC Authorization Exit 13

|

|

|
|

|

|

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Return Specifications

ASREXIT indicates to the system whether to cancel the request or allow the
symptom record to be written by placing one of the following values in the
EPLRETC field of the EPL:

Value Explanation

X'00' Write the symptom record to the logrec recording medium

X'04' Write the symptom record to both the logrec recording medium and to the
job log

X'08' Write the symptom record to the job log only

X'0C' Do not write the symptom record. The system returns to the caller both a
system return code (X'0C') and reason code (X'F1C') indicating that request
was rejected for either of the following reasons:
v The exit routine rejected the request.
v The exit routine was not installed.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0,1 Not relevant

2-14 Restored to contents at entry

15 Not relevant

Coded Examples of the Exit Routine

IBM provides two SYMREC authorization exit routines for your installation's use,
ASREXT0 and ASREXT1.

Use ASREXT0 to allow all unauthorized programs to write symptom records to the
logrec recording medium. This exit routine always returns a value of X'00' (grant
the request).

Use ASREXT1 to allow only unauthorized programs (that is, programs that were
not linkedited with authorization code AC=1), that you have installed in an
APF-authorized library to write symptom records to the logrec recording medium.
When it is invoked, ASREXT1 checks to see whether the calling program resides in
an APF-authorized library (the system sets the EPLAPFL bit to 1). If EPLAPFL is
set to 1, ASREXT1 returns a value of X'00' (grant the request). Otherwise, ASREXT1
returns a value of X'0C' (reject the request).

ASREXT0 and ASREXT1 are provided in SYS1.SAMPLIB. To install either exit
routine, you must linkedit the routine with the name ASREXIT into SYS1.LINKLIB
or any library in the LNKLSTxx concatenation.

When you assemble ASREXT0 and ASREXT1, ensure SYS1.MODGEN is included
in Assembler SYSLIB concatenation.

For more information on APF-authorized libraries, see z/OS MVS Programming:
Assembler Services Guide.

ASREXIT — SYMREC Authorization Exit

14 z/OS V2R2 MVS Installation Exits

|

|

|
|

|

Chapter 3. CNZ_MSGTOSYSLOG — Message To Syslog Exit

CNZ_MSGTOSYSLOG receives control from the system when a message is sent to
the SYSLOG. Every message line that is sent to syslog will be passed to the exit
routines active at the exit point. Multi-line messages will be presented as major line
first, then major and each minor (one at a time). For example, a multi-line message
with 1 major and 3 minor lines will result in the exit routines receiving control 4
times:
v 1st Time - For the major line
v 2nd Time - For the first minor line
v 3rd Time - For the second minor line
v 4th Time - For the last minor line

Code a CNZ_MSGTOSYSLOG exit routine when you want to view all messages
being sent to the SYSLOG.

Controlling the Exit Routine Through the Dynamic Exits Facilities

IBM has defined the CNZ_MSGTOSYSLOG exit to the dynamic exits facility. You
can refer to the exit by the name CNZ_MSGTOSYSLOG. You can use the EXIT
statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its exit routines.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
1. The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
2. The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

Topics for This Exit Appear as Follows:

v “Controlling the Exit Routine Through the Dynamic Exits Facilities”

v “Exit Routine Environment” on page 16

– Exit Recovery

v “Exit Routine Processing” on page 16

v “Programming Considerations” on page 16

v “Performance Considerations” on page 16

v “Entry Specifications” on page 17

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 17

– Registers at Exit

v “Coded Example of the Exit Routine” on page 17

© Copyright IBM Corp. 1988, 2015 15

By default, the system disables the exit routine after one abend.

Exit Routine Environment

The exit receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In AMODE 31.
v With no locks or ENQs held.
v In the CONSOLE address space.

Exit Recovery: The exit routine should NOT provide its own recovery. If recovery
is necessary, set up an EUT functional recovery routine (FRR) instead of an
ESTAE-type recovery routine. This will improve system performance by shortening
the path length of the exit routine.

If the exit routine abnormally terminates, and the exit routine does not provide its
own recovery, or the error percolates beyond the exit's recovery routine, a system
recovery routine will get control.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

MVS invokes the CNZ_MSGTOSYSLOG exit routine every time a message is sent
to the SYSLOG. If any CNZ_MSGTOSYSLOG routines are specified to the dynamic
exits facility, a parameter list (mapped by macro CNZMYM2S) is passed that
contains the following information about the message:
v Whether the message is a MLWTO
v Whether the message is for a minor line WQE
v Whether the message is the last line of a MLWTO
v Pointer to the single or major line WQE (Mapped by macro IHAWQE, data area

WQE for single WQE and data area WMJM for major line WQE)
v Pointer to the current minor line WQE (or zero) (Mapped by macro IHAWQE,

data area WMNM)

Note: Exactly one minor line is passed to the exit routine.
v Pointer to a 4K workarea that can be used by the exit (Each exit routine will

share the same 4K workarea. It is up to the exit routine to initialize the
workarea.)

Programming Considerations

Observe the following conventions when coding the CNZ_MSGTOSYSLOG exit
routine:
v Code the exit routine to be reentrant.
v Do not code the exit routine to issue messages to the SYSLOG.

Performance Considerations

Message to syslog processing may impact performance; therefore, consider the
following recommendations so that system performance is not degraded:

CNZ_MSGTOSYSLOG — Message To Syslog Exit

16 z/OS V2R2 MVS Installation Exits

v Exit routines installed at the CNZ_MSGTOSYSLOG exit point should not
perform operations that might degrade system performance, such as issuing
WAIT requests, issuing requests for large amounts of dynamic storage, or
issuing I/O requests. To reduce the need for storage requests, the system
provides a 4K workarea that your exit routine can use for dynamic storage. The
M2SL_WorkArea@ field in the CNZMYM2S parameter mapping points to the 4K
workarea. The exit routine must clear the workarea before using it, because all
exit routines installed at the CNZ_MSGTOSYSLOG exit point use the same
workarea.

v The exit routine should NOT provide its own recovery. If recovery is necessary,
set up an EUT functional recovery routine (FRR) instead of an ESTAE-type
recovery routine. This will improve system performance by shortening the path
length of the exit routine.

Entry Specifications

The system passes the address of the exit parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of a pointer to the exit parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit

Parameter Descriptions: Register 1 contains the address of a pointer to the exit
parameter list, the M2SL, which is mapped by macro CNZMYM2S.

Return Specifications

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-15 Restored to contents at entry

Coded Example of the Exit Routine

The following is an example of an CNZ_MSGTOSYSLOG exit:
TITLE ’M2SLEXIT - SAMPLE MESSAGE TO SYSLOG EXIT’

START OF SPECIFICATIONS***********************************
* *
* MODULE NAME = M2SLEXIT *
* *
* DESCRIPTIVE NAME = SAMPLE MESSAGE TO SYSLOG EXIT. *
* *
* FUNCTION = THIS EXIT WILL DEMONSTRATE HOW TO *
* PROCESS THE DATA IN THE PARAMETER *
* LIST. *
* *

CNZ_MSGTOSYSLOG — Message To Syslog Exit

Chapter 3. CNZ_MSGTOSYSLOG — Message To Syslog Exit 17

* OPERATION = IDENTIFIES THE MESSAGE LINE PASSED IN *
* THE PARAMETER LIST AND BRANCHES TO *
* THE APPROPRIATE SECTION TO PERFORM *
* PROCESSING BASED ON THE MESSAGE LINE. *
* *
* ENTRY POINT = M2SLEXIT *
* *
* PURPOSE = DEMONSTRATE HOW TO USE THIS EXIT. *
* *
* LINKAGE = BALR *
* *
* INPUT DATA = REG1 ADDRESS OF THE PARAMETER LIST *
* REG13 ADDRESS OF STANDARD SAVE AREA *
* REG14 RETURN ADDRESS *
* REG15 ENTRY POINT ADDRESS *
* *
* REGISTERS SAVED = REG0 - REG15 *
* *
* REGISTER USAGE = REG0 - USED FOR BASING *
* REG1 - PARAMETER REGISTER *
* REG2 - WORK REGISTER *
* REG3 - WORK REGISTER *
* REG4 - WORK REGISTER *
* REG5 - WORK REGISTER *
* REG6 - POINTER TO PARAMETER LIST *
* REG7 - NOT USED *
* REG8 - NOT USED *
* REG9 - NOT USED *
* REG10 - NOT USED *
* REG11 - POINTER TO 4K WORK AREA *
* REG12 - MODULE BASE REGISTER *
* REG13 - POINTER TO STANDARD SAVE AREA *
* REG14 - RETURN POINT *
* REG15 - NOT USED *
* *
* REGISTERS RESTORED = REG0 - REG14 *
* *
* CONTROL BLOCKS = *
* NAME MAPPING MACRO REASON USED USAGE *
* ---- ------------- ----------- ------- *
* M2SL CNZMYM2S EXIT PARAMETER LIST R *
* WQE IHAWQE WTO QUEUE ELEMENT R *
* *
* KEY = R-READ, W-WRITE, C-CREATE, D-DELETE *
* *
* TABLES = NONE *
* *
* MACROS = NONE *
* *
* MESSAGES = NONE *
* *
* MODULE TYPE = CSECT *
* *
* ATTRIBUTES = REENTRANT, REUSABLE, AMODE 31, *
* RMODE ANY *
* *
**
EJECT
M2SLEXIT CSECT
M2SLEXIT AMODE 31 31-BIT ADDRESSING MODE
M2SLEXIT RMODE ANY 31-BIT RESIDENCE
SPACE 1
**
* *
* REGISTER ASSIGNMENTS *
* *
**

CNZ_MSGTOSYSLOG — Message To Syslog Exit

18 z/OS V2R2 MVS Installation Exits

REG0 EQU 0 REGISTER 0
REG1 EQU 1 REGISTER 1
REG2 EQU 2 REGISTER 2
REG3 EQU 3 REGISTER 3
REG4 EQU 4 REGISTER 4
REG5 EQU 5 REGISTER 5
M2SLPTR EQU 6 REGISTER 6 - PTR TO M2SL
REG6 EQU 6 REGISTER 6
REG7 EQU 7 REGISTER 7
REG8 EQU 8 REGISTER 8
REG9 EQU 9 REGISTER 9
REG10 EQU 10 REGISTER 10
REG11 EQU 11 REGISTER 11
DATAREG EQU 11 REGISTER 11 - WORKAREA
REG12 EQU 12 REGISTER 12
BASEREG EQU 12 REGISTER 12 - MOD BASE
REG13 EQU 13 REGISTER 13
REG14 EQU 14 REGISTER 14
REG15 EQU 15 REGISTER 15
**
* *
* STANDARD ENTRY LINKAGE *
* *
**

SAVE (14,12) SAVE REGISTERS
BASR BASEREG,REG0 ESTABLISH MODULE BASE
USING *,BASEREG ESTABLISH ADDRESSABILITY
LR M2SLPTR,REG1 ESTABLISH ADDRESSABILITY
USING M2SL,M2SLPTR TO THE PARAMETER LIST

**
* *
* SET ADDRESSABILITY AND INITIALIZE 4K WORKAREA *
* *
**

L DATAREG,M2SL_WORKAREA@ ESTABLISH ADDRESSABILITY
USING DATAAREA,DATAREG TO 4K WORKAREA
LR REG2,DATAREG ADDRESS OF 4K WORKAREA
L REG3,LEN4K SIZE OF WORKAREA
LR REG4,REG2 ADDRESS OF 4K WORKAREA
SR REG5,REG5 CLEAR PADDING BYTE
MVCL REG2,REG4 INITIALIZE WORKAREA

**
* *
* CHECK WHAT THE PARAMETER LIST PASSED US. *
* *
**

SPACE 1
TM M2SL_FLAGS,M2SL_MLWTO MESSAGE IS MLWTO?
BZ SINGLINE NO, SINGLE LINE...
TM M2SL_FLAGS,M2SL_MINORLINE MINOR LINE?
BZ MAJRLINE NO, MAJOR LINE...

**
* *
* PROCESSING A MINOR WQE LINE. *
* *
**
MINRLINE EQU *

L REG3,M2SL_WQE@ ESTABLISH ADDRESSABILITY
USING WMJM,REG3 TO THE MAJOR WQE
L REG4,M2SL_WMNM@ ESTABLISH ADDRESSABILITY
USING WMNM,REG4 TO THE MINOR WQE

*
* DO STUFF NOW THAT WE KNOW THIS IS A MINOR WQE LINE.
*

MVC DYNAMTXT,WMNMTXT1 COPY MESSAGE TEXT
DROP REG3 DROP ADDRESSABILITY
DROP REG4 DROP ADDRESSABILITY

CNZ_MSGTOSYSLOG — Message To Syslog Exit

Chapter 3. CNZ_MSGTOSYSLOG — Message To Syslog Exit 19

TM M2SL_FLAGS,M2SL_LASTLINE LAST LINE?
BNZ COMPLETE YES, MLWTO IS COMPLETE
B FINISHED PROCESSED MINOR, QUIT

**
* *
* PROCESSING A MAJOR WQE LINE. *
* *
**
MAJRLINE EQU *

L REG3,M2SL_WQE@ ESTABLISH ADDRESSABILITY
USING WMJM,REG3 TO THE MAJOR LINE

*
* DO STUFF NOW THAT WE KNOW THIS IS A MAJOR WQE LINE.
*

MVC DYNAMTXT,WMJMTXT COPY MESSAGE TEXT
DROP REG3 DROP ADDRESSABILITY
TM M2SL_FLAGS,M2SL_LASTLINE LAST LINE?
BNZ COMPLETE YES, MLWTO IS COMPLETE
B FINISHED PROCESSED MAJOR, QUIT

**
* *
* PROCESSING A SINGLE WQE LINE. *
* *
**
SINGLINE EQU *

L REG3,M2SL_WQE@ ESTABLISH ADDRESSABILITY
USING WQE,REG3 TO THE SINGLE WQE

*
* DO STUFF NOW THAT WE KNOW THIS IS A SINGLE WQE LINE.
*

MVC DYNAMTXT,WQETXT COPY MESSAGE TEXT
DROP REG3 DROP ADDRESSABILITY
B COMPLETE MESSAGE IS COMPLETE

**
* *
* WE HAVE PROCESSED A COMPLETE MESSAGE. *
* *
**
COMPLETE EQU *
*
* DO STUFF NOW THAT WE KNOW THE MESSAGE IS COMPLETE.
*

B FINISHED DONE PROCESSING, QUIT
**
* *
* EXIT FROM THIS MODULE *
* *
**
FINISHED EQU *

RETURN (14,12) RESTORE REGISTERS
EJECT

**
* *
* 4K WORKAREA DEFINITIONS *
* NOTE: THIS SAMPLE ONLY USES 128 BYTES OF THE WORKAREA *
* *
**
LEN4K DC F’4096’
DATAAREA DSECT

DS 0H
DYNAMTXT DS CL128 MESSAGE TEXT AREA
DATAAVAL DS CL3968 AVAILABLE WORKAREA

DS 0H
ORG

DATAEND EQU *-DATAAREA
SPACE 2

**

CNZ_MSGTOSYSLOG — Message To Syslog Exit

20 z/OS V2R2 MVS Installation Exits

* *
* PARAMETER LIST MAPPING *
* *
**

IHAWQE FORMAT=NEW WTO QUEUE ELEMENT
CNZMYM2S M2SL PARAMETER LIST
EJECT
END M2SLEXIT

CNZ_MSGTOSYSLOG — Message To Syslog Exit

Chapter 3. CNZ_MSGTOSYSLOG — Message To Syslog Exit 21

CNZ_MSGTOSYSLOG — Message To Syslog Exit

22 z/OS V2R2 MVS Installation Exits

Chapter 4. CNZ_MSIEXIT — Master Scheduler Initialization
Dynamic Exit

Controlling the Exit Routine Through the Dynamic Exits Facilities

IBM has defined the CNZ_MSIEXIT exit to the dynamic exits facility. You can refer
to the exit by the name CNZ_MSIEXIT. You can use the EXIT statement of the
PROGxx parmlib member, the SETPROG EXIT operator command, or the
CSVDYNEX macro to control this exit and its exit routines.

By default, the system disables the exit routine after one abend.

Exit Routine Environment

The exit routine receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In AMODE 31.
v With no locks or ENQs held.
v In the MASTER address space.

The exit receives control during Master Scheduler Initialization before the
IEFSSNxx parmlib member is processed.

Exit Routine Processing

The exit routine is defined via the PROGxx parmlib member. Dynamic allocation is
not available at this point in the IPL, so the exit routine must be defined in LPA,
LNKLST or the NUCLEUS. The DSNAME parameter of the EXIT ADD statement
in PROGxx should not be used for this exit routine. If it is used, the exit routine
does not get control. For example, the PROGxx statement can be EXIT ADD
EXITNAME(CNZ_MSIEXIT) MODNAME(MYMSIEXT).

Topics for This Exit Appear as Follows:

v “Controlling the Exit Routine Through the Dynamic Exits Facilities”

v “Exit Routine Environment”

v “Exit Routine Processing”

v “Programming Considerations” on page 24

v “Performance Considerations” on page 24

v “Entry Specifications” on page 24

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 24

– Registers at Exit

© Copyright IBM Corp. 1988, 2015 23

Programming Considerations

You may code your CNZ_MSIEXIT to be reentrant or non-reentrant because the
exit is invoked only once for the IPL.

Performance Considerations

While your CNZ_MSIEXIT has control, the IPL of the system does not continue.
Therefore, keep the exit processing to a minimum.

Entry Specifications

No parameters will be passed by the exit point to the exit routine, while the 1-8
character parameter PARAM will be passed into the exit routine through Access
Registers AR0 and AR1. The value of PARAM parameter is specified in the EXIT
statement of the PROGxx parmlib member and in the SETPROG EXIT command.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0-12 Not applicable

13 Address of a 72 byte save area

14 Return address

15 Entry point address of the exit

Parameter Descriptions: Register 13 contains the address of a 72 byte save area on
entry to the exit routine.

Access Registers AR0 and AR1 contain the data for the 1-8 character parameter
PARAM, the value of which is specified in the EXIT statement of the PROGxx
parmlib member and in the SETPROG EXIT command. AR0 contains the first 4
bytes, and AR1 contains the second 4 bytes. To get the full 8 bytes of PARAM data,
the contents of AR0 and AR1 need to be concatenated.

Return Specifications

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-15 Restored to contents at entry

CNZ_MSIEXIT — Master Scheduler Initialization Dynamic Exit

24 z/OS V2R2 MVS Installation Exits

Chapter 5. CNZ_WTOMDBEXIT — WTO Message Data Block
Exit

Code a CNZ_WTOMDBEXIT exit routine when you want to view all messages
being sent by WTO or WTOR. Information in the message is readonly; you can not
modify the message contents.

CNZ_WTOMDBEXIT receives control from the system when a message is sent by a
single-line WTO, a multi-line WTO, or a WTOR. Every single-line message that is
sent by WTO or WTOR will be passed to the exit routines active at the exit point.
Multi-line messages will be presented only when all lines have been completed.
For example, a multi-line message with 1 major and 3 minor lines will result in the
exit routine receiving control one time.

Controlling the Exit Routine Through the Dynamic Exits Facilities

IBM has defined the CNZ_WTOMDBEXIT exit to the dynamic exits facility. You
can refer to the exit by the name CNZ_WTOMDBEXIT. You can use the EXIT
statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its exit routines.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
1. The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
2. The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system disables the exit routine after one abend.

Topics for This Exit Appear as Follows:

v “Controlling the Exit Routine Through the Dynamic Exits Facilities”

v “Exit Routine Environment” on page 26

– Exit Recovery

v “Exit Routine Processing” on page 26

v “Programming Considerations” on page 26

v “Performance Considerations” on page 27

v “Entry Specifications” on page 27

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 28

– Registers at Exit

v “Coded Example of the Exit Routine” on page 28

© Copyright IBM Corp. 1988, 2015 25

Exit Routine Environment

The exit receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In AMODE 31.
v With no locks or ENQs held.
v In the address space of the WTO or WTOR issuer, unless the message was a

branch-entry message or was a multi-line message that timed out. In both of
those cases, the exit receives control in the CONSOLE address space.

Exit Recovery: If the exit routine abnormally terminates, and the exit routine does
not provide its own recovery, or the error percolates beyond the exit's recovery
routine, a system recovery routine will get control.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

MVS invokes the CNZ_WTOMDBEXIT exit routine every time a WTO or WTOR
single-line or completed multi-line message is sent. If any CNZ_WTOMDBEXIT
routines are specified to the dynamic exits facility, a parameter list (mapped by
macro CNZMYWMX) is passed that contains information about the message, such
as:
v Whether the message is a single-line WTO
v Whether the message is a multi-line WTO
v Whether the message is a branch-entry WTO
v Whether the message is a WTOR
v First line of the message text, where the first 12 characters are typically the

message identifier.
v Pointer to the message data block (MDB), mapped by macro IEAVM105

Also passed to CNZ_WTOMDBEXIT is the address of a 4K workarea for use by
the exit routine.

Programming Considerations
1. All received messages are "completed" messages, in that control is received

after the subsystem interface.
2. The exit routine will not affect the content of the message itself. The original

message text and attributes (for example, routing and descriptor codes) remain
intact. This exit routine cannot suppress a message.

3. Do not code an exit routine that receives control for a message that the exit
issues; this causes an endless loop. The exit must be coded so that when it
receives control for that message, it does not issue the message again.

4. If an exit routine needs to issue a message it should issue it as a branch entry
message. Similarly, if an exit routine needs to DOM a message it should issue
the DOM as branch entered.

5. Code the exit routine to be re-entrant.

CNZ_WTOMDBEXIT — WTO MDB Exit

26 z/OS V2R2 MVS Installation Exits

Performance Considerations

WTO message processing can impact performance; therefore, consider the
following recommendations so that system performance is not degraded:
1. Do not code an exit routine that contains an explicit or implicit WAIT or other

processing of potentially long duration, for example, issuing requests for large
amounts of dynamic storage, or issuing I/O requests. Exits that do this can
adversely affect both application and overall system performance.

2. To reduce the need for storage requests, the system provides a 4K workarea
that your exit routine can use for dynamic storage. The second word of the
input parameter list points to the 4K workarea. The exit routine should clear
what they put in the workarea before exiting, because all exit routines installed
at the CNZ_WTOMDBEXIT exit point use the same workarea. Use this
workarea for your program's working storage (for example, variables) and
avoid doing a GETMAIN or STORAGE OBTAIN in the exit routine.

3. If recovery is necessary, set up an EUT functional recovery routine (FRR)
instead of an ESTAE-type recovery routine for shortened path length of the exit
routine. If it is not possible to use FRR recovery, then IEAARR should be used
because it has the best set/delete performance for Estae-type recovery routines.

Entry Specifications

The system passes the address of the exit parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of a pointer to the exit parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit

Parameter Descriptions: Register 1 points to the following:

Word 1
Address of the WMDX, mapped by macro CNZMYWMX

Word 2
Address of a 4K work area

R1
WMDX

4K-byte
work area

Figure 2. CNZ_WTOMDBEXIT input parameter structure

CNZ_WTOMDBEXIT — WTO MDB Exit

Chapter 5. CNZ_WTOMDBEXIT — WTO Message Data Block Exit 27

Return Specifications

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-15 Restored to contents at entry

Coded Example of the Exit Routine

The following is an example of an CNZ_WTOMDBEXIT exit:
TITLE ’WMXEXIT - SAMPLE WTO MDB EXIT’

START OF SPECIFICATIONS***********************************
* *
* MODULE NAME = WMXEXIT *
* *
* DESCRIPTIVE NAME = SAMPLE WTO MDB EXIT (FOR ACTIVATION *
* ON CNZ_WTOMDBEXIT). *
* *
* FUNCTION = THIS EXIT DEMONSTRATES HOW TO *
* USE THE DATA IN THE WMDX PARAMETER *
* LIST TO IDENTIFY DIFFERENT TYPES OF *
* MESSAGES. *
* *
* OPERATION = THIS SAMPLE EXIT DETERMINES IF THE MESSAGE *
* DESCRIBED BY THE WMDX IS FOR A SPECIFIC *
* MESSAGE ID, A WTOR, SINGLE LINE MESSAGE, OR *
* MULTIPLE LINE MESSAGE AND PUTS TEXT IN THE *
* WMDX USER WORKAREA INDICATING WHAT IT FOUND. *
* *
* NOTE1: THE WMDX PARAMETER LIST PROVIDES THE FIRST LINE OF *
* MESSAGE TEXT. IN ORDER TO OBTAIN SUBSEQUENT TEXT LINES *
* OF A MULTI-LINE MESSAGE USE THE MDB POINTER (IN THE *
* WMDX) TO ACCESS THE MESSAGE DATA BLOCK (MDB), WHICH *
* CONTAINS DATA DESCRIBING THE MESSAGE, AND ALLOWS YOU *
* TO ACCESS THE SUBSEQUENT LINES. SEE "RECEIVING *
* MESSAGES AND COMMAND RESPONSES" IN "Z/OS MVS *
* ASSEMBLER SERVICES GUIDE", SA22-7608-08 FOR *
* INFORMATION ABOUT USING THE MDB. A GOOD EXAMPLE *
* PROGRAM USING THE MDB IS IEAEXMCS IN SAMPLIB. *
* *
* ENTRY POINT = WMXEXIT *
* *
* PURPOSE = DEMONSTRATE HOW TO USE THIS EXIT. *
* *
* LINKAGE = REGISTER 1 CONTAINS THE ADDRESS OF A PARAMETER *
* LIST, WHICH CONTAINS (1) THE ADDRESS THE WMDX *
* (MAPPED BY CNZMYWMX), AND (2) THE ADDRESS OF A *
* 4K WORKAREA. *
* *
* NOTE2: THERE IS ONLY ONE COPY OF THE WMDX AND WORKAREA *
* PER MESSAGE FOR ALL USERS OF CNZ_WTOMDBEXIT. CARE *
* MUST BE TAKEN TO MAKE SURE THE WMDX DATA IS NOT *
* MODIFIED. THE WORKAREA IS NOT CLEARED BEFORE IT IS *
* PASSED TO SUBSEQUENT EXITS SO THE USER MUST CLEAR *
* IT IF IT CONTAINS SENSITIVE DATA. *
* *
* INPUT DATA = REG1 ADDRESS OF THE PARAMETER LIST *
* REG13 ADDRESS OF STANDARD SAVE AREA *
* REG14 RETURN ADDRESS *
* REG15 ENTRY POINT ADDRESS *
* *
* REGISTERS SAVED = REG0 - REG15 *

CNZ_WTOMDBEXIT — WTO MDB Exit

28 z/OS V2R2 MVS Installation Exits

* *
* REGISTER USAGE = REG0 - USED FOR BASING *
* REG1 - PARAMETER REGISTER *
* REG2 - WORK REGISTER *
* REG3 - WORK REGISTER *
* REG4 - WORK REGISTER *
* REG5 - WORK REGISTER *
* REG6 - POINTER TO PARAMETER LIST *
* REG7 - POINTER TO WMDX *
* REG8 - NOT USED *
* REG9 - NOT USED *
* REG10 - NOT USED *
* REG11 - POINTER TO 4K WORK AREA *
* REG12 - MODULE BASE REGISTER *
* REG14 - RETURN POINT *
* REG15 - NOT USED *
* REGISTERS RESTORED = REG0 - REG14 *
* *
* CONTROL BLOCKS = *
* NAME MAPPING MACRO REASON USED USAGE *
* ---- ------------- ----------- ------- *
* WMDX CNZMYWMX EXIT PARAMETER LIST R *
* WORKAREA NOT MAPPED FOR USER W *
* *
* KEY = R-READ, W-WRITE, C-CREATE, D-DELETE *
* *
* TABLES = NONE *
* *
* MACROS = NONE *
* *
* MESSAGES = NONE *
* *
* MODULE TYPE = CSECT *
* *
* ATTRIBUTES = REENTRANT, REUSABLE, AMODE 31, *
* RMODE ANY *
* *
01 DISCLAIMER = *
* *
* THIS SAMPLE PROGRAM IS PROVIDED FOR TUTORIAL PURPOSES ONLY. *
* A COMPLETE HANDLING OF ERROR CONDITIONS HAS NOT BEEN SHOWN *
* OR ATTEMPTED, AND THIS SOURCE HAS NOT BEEN SUBMITTED TO *
* FORMAL IBM TESTING. THIS SOURCE IS DISTRIBUTED ON AN *
* ’AS IS’ BASIS WITHOUT ANY WARRANTIES EITHER EXPRESSED OR *
* IMPLIED. *
* *
**

EJECT
WMXEXIT CSECT
WMXEXIT AMODE 31 31-BIT ADDRESSING MODE
WMXEXIT RMODE ANY 31-BIT RESIDENCE

SPACE 1
**
* *
* REGISTER ASSIGNMENTS *
* *
**
REG0 EQU 0 REGISTER 0
REG1 EQU 1 REGISTER 1
REG2 EQU 2 REGISTER 2
REG3 EQU 3 REGISTER 3
REG4 EQU 4 REGISTER 4
REG5 EQU 5 REGISTER 5
REG6 EQU 6 REGISTER 6
WMDXPPTR EQU 6 REGISTER 6 - PLIST
REG7 EQU 7 REGISTER 7
WMDXPTR EQU 7 REGISTER 6 - WMDX ADDRESS

CNZ_WTOMDBEXIT — WTO MDB Exit

Chapter 5. CNZ_WTOMDBEXIT — WTO Message Data Block Exit 29

REG8 EQU 8 REGISTER 8
REG9 EQU 9 REGISTER 9
REG10 EQU 10 REGISTER 10
REG11 EQU 11 REGISTER 11
DATAREG EQU 11 REGISTER 11 - 4K WORKAREA ADDR
REG12 EQU 12 REGISTER 12
BASEREG EQU 12 REGISTER 12 - MOD BASE
REG13 EQU 13 REGISTER 13
REG14 EQU 14 REGISTER 14
REG15 EQU 15 REGISTER 15
**
* *
* STANDARD ENTRY LINKAGE *
* *
**

SAVE (14,12) SAVE REGISTERS
BASR BASEREG,REG0 ESTABLISH MODULE BASE
USING *,BASEREG
LR WMDXPPTR,REG1 PARAMETER LIST
SPACE 1

**
* *
* ESTABLISH ADDRESABILITY *
* *
**

L WMDXPTR,0(,WMDXPPTR) GET ADDRESSABILITY
USING WMDX,WMDXPTR TO WMDX
L DATAREG,4(,WMDXPPTR) GET ADDRESSABILITY
USING WORKAREA,DATAREG TO 4K WORKAREA
SPACE 1

**
* *
* CHECK FOR A SPECIFIC MESSAGE. IN THIS EXAMPLE, *
* IEE114I (RESPONSE TO D A,L COMMAND) IS USED. *
* *
**

CLC WMDX_MSGTEXT(8),=C’IEE114I ’ IS THIS CORRECT MSG
BNE CHKWTOR NO, CONTINUE

*
* DO STUFF NOW THAT WE KNOW THE MESSAGE IS CORRECT MSG
*

MVC WORKATXT(L’WORKATXT),=C’MESSAGE IS IEE114I. ’
B FINISHED DONE
SPACE 1

**
* *
* CHECK FOR A WTOR *
* *
**
CHKWTOR EQU *

TM WMDX_FLAGS,WMDX_WTOR IS MESSAGE A WTOR
BNO CHKSLWTO NO, CONTINUE

*
* DO STUFF NOW THAT WE KNOW THE MESSAGE IS A WTOR
*

MVC WORKATXT(L’WORKATXT),=C’MESSAGE IS A WTOR. ’
B FINISHED DONE
SPACE 1

**
* *
* CHECK FOR A SINGLE LINE MESSAGE *
* *
**
CHKSLWTO EQU *

TM WMDX_FLAGS,WMDX_SLWTO IS MESSAGE A SLWTO
BNO MULTLINE NO, MSG IS A MULTILINE

*

CNZ_WTOMDBEXIT — WTO MDB Exit

30 z/OS V2R2 MVS Installation Exits

* DO STUFF NOW THAT WE KNOW THE MESSAGE IS A SINGLE LINE
*

MVC WORKATXT(L’WORKATXT),=C’MESSAGE IS A SINGLE LINE.’
B FINISHED DONE
SPACE 1

MULTLINE EQU *
**
* *
* PERFORM MULTIPLE LINE MESSAGE PROCESSING. *
* NOTE THAT WMDX_MLWTO COULD HAVE BEEN USED TO *
* DETERMINE IF MESSAGE IA A MULTI-LINE. *
* *
**
*
* DO STUFF NOW THAT WE KNOW THE MESSAGE IS A MULTILINE
*
* SEE NOTE ABOVE ON HOW TO LOCATE THE REMAINING LINES IN
* THE MDB.
*

MVC WORKATXT(L’WORKATXT),=C’MESSAGE IS A MULTI-LINE. ’
B FINISHED DONE
SPACE 1

**
* *
* EXIT FROM THIS MODULE *
* *
**
FINISHED EQU *

RETURN (14,12) RESTORE REGISTERS
EJECT

**
* *
* 4K WORKAREA DEFINITIONS *
* NOTE: THIS SAMPLE ONLY USES 25 BYTES OF THE WORKAREA *
* *
**
WORKAREA DSECT

DS 0H
WORKATXT DS CL25 MESSAGE TEXT AREA
WORKREST DS CL4071 AVAILABLE WORKAREA

DS 0H
ORG

WORKAEND EQU *-WORKAREA
EJECT

**
* *
* PARAMETER LIST MAPPING *
* *
**

CNZMYWMX WMDX PARAMETER LIST
SPACE 2
END WMXEXIT

CNZ_WTOMDBEXIT — WTO MDB Exit

Chapter 5. CNZ_WTOMDBEXIT — WTO Message Data Block Exit 31

CNZ_WTOMDBEXIT — WTO MDB Exit

32 z/OS V2R2 MVS Installation Exits

Chapter 6. CSVLLIX1 — LLA Module Fetch Exit

Library lookaside (LLA) improves the performance of fetching modules from both
LNKLST and non-LNKLST data sets, and is a control point in managing updates
to these data sets on DASD. For each module that is fetched, LLA dynamically
accumulates statistics such as the fetch rate and the fetch durations. Using these
and other statistics, LLA periodically triggers LLA module staging analysis to
evaluate the cost of fetching each module. Based on projected savings, LLA module
staging analysis places copies of the most frequently used modules into a virtual
lookaside facility (VLF) data space. LLA can then fetch these modules from virtual
storage without I/O and with a reduced number of processor instructions.

LLA module fetch keeps track of the number of modules fetched from the LLA
libraries. When a default threshold of 2000 module fetches from a library is
reached, or after the initial 10 fetches of a single module from DASD, LLA module
fetch triggers the LLA module staging analysis function.

Each time LLA fetches a module from an LLA library, it logs statistics and then
calls the installation exit CSVLLIX1. LLA fetch passes to CSVLLIX1 the address of
a parameter list containing fetch statistics, the address of a user work area, and a
copy of the module's BLDL format PDS directory entry.

You can use CSVLLIX1 to:
v Monitor and collect fetch statistics.
v Control the 2000 fetch default limit.
v Cause staging analysis to begin regardless of the statistics for one module or all

modules.
v Modify statistics to influence the triggering of staging analysis.

Topics for This Exit Appear as Follows:

v “Controlling The Exit Routine Through the Dynamic Exits Facility” on page 34

v “Exit Routine Environment” on page 34

– Exit Recovery

v “Exit Routine Processing” on page 35

v “Programming Considerations” on page 35

– Macro Instructions and Restrictions

– I/O Restrictions

v “Entry Specifications” on page 36

– Registers at Entry

– Parameter List Contents

v “Return Specifications” on page 36

– Registers at Exit

v “Coded Example of the Exit Routine” on page 37

© Copyright IBM Corp. 1988, 2015 33

Controlling The Exit Routine Through the Dynamic Exits Facility

IBM has defined the CSVLLIX1 installation exit to the dynamic exits facility. You
can refer to the exit by the name CSVLLIX1. You can use the EXIT statement of the
PROGxx parmlib member, the SETPROG EXIT operator command, or the
CSVDYNEX macro to control this exit and the exit routines of the exit.

When you start LLA, if the EXIT1(OFF) statement is not present in the CSVLLAxx
parmlib member being used by LLA, the system attempts to add exit routine
CSVLLIX1 in the following situations:
v no exit routines have been associated with CSVLLIX1 by PROGxx
v no exits have been associated using SETPROG
v there are no exit routines from a previous LLA start

If you have associated exit routines with CSVLLIX1 the system does not use the
default exit routine. In this case, if you require an exit routine of the default name,
you must explicitly add the default exit routine to PROGxx.

A change from EXIT1(ON) to EXIT1(OFF) has no effect. If you want to deactivate
the CSVLLIX1 exit routine (or any other exit routine for the CSVLLIX1 exit), you
can use the PROGxx EXIT statement with SET PROG=xx or you can use SETPROG
EXIT.

To limit the number of times the exit routine ends with an abend, before the exit
routine becomes inactive, you can use the ADDABENDNUM and ABENDCONSEC
parameters on the CSVDYNEX REQUEST=ADD macro, or the ABENDNUM
parameter of the SETPROG EXIT operator command. The system disables the exit
routine if the exit routine ends with an abend on two successive calls. An abend is
counted when both of the following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
v The system allows a retry (the recovery routine is entered with bit SDWACLUP

off).

The system disables the exit routine if the exit routine ends with an abend, as
defined above, on two successive calls.

Exit Routine Environment

CSVLLIX1 receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0 and in primary ASC mode with the primary

ASID equal to the home ASID.
v In AMODE 31 and RMODE ANY.
v Under a content supervisor's SVRB within the user's address space.
v With no locks or ENQs held.
v Under any task that might issue a LINK, LOAD, XCTL, or ATTACH macro.

Exit Recovery: The LLA recovery routine protects the exit routines of CSVLLIX1.
The recovery routine records diagnostic information in the system diagnostic work
area (SDWA), requests recording of the error in the logrec data set, and takes an
SVC dump. LLA then retries to a point within LLA module fetch to call the next
exit routine.

CSVLLIX1 — LLA Module Fetch Exit

34 z/OS V2R2 MVS Installation Exits

|
|

Exit Routine Processing

When a caller issues a LINK, LOAD, XCTL, or ATTACH macro, the system must
fetch the module if it doesn't already reside in virtual storage. If the module is in a
data set that LLA is managing, then an LLA fetch occurs. If the module has
already been staged, then LLA fetch obtains the module from a VLF data space to
avoid program fetch I/O. If the module has not been staged, LLA fetch obtains the
module from DASD. LLA first logs statistics about the fetch and then passes
control to CSVLLIX1. The exit routine examines the parameters and returns a code
indicating whether LLA should trigger module staging analysis.

The LLP1USER field in LLP1, the exit parameter list, contains a 31-bit address that
points to a 4-byte user data area in the CSA. The user data area is aligned on a
fullword boundary and is initialized to 0. The user data area is also pointed to by
the LLP2X1US field in the CSVLLIX2 (LLA module staging exit) parameter list. An
installation can use the user data area as a means of allowing CSVLLIX1 and
CSVLLIX2 to share information. For example, CSVLLIX1 or CSVLLIX2 can acquire
storage in the CSA (by issuing a GETMAIN or STORAGE macro) and place the
address of this storage in the 4-byte user data area. CSVLLIX1 could write records
to the common storage area during fetch time and CSVLLIX2, when it gets control,
could then write the records to DASD. This action could reduce the time
CSVLLIX1 needs for processing and thus shorten LLA's path length for fetching a
module.

CSVLLIX1 can also use the LLP1USER field to pass information (such as a
parameter or the address of a parameter) to itself during subsequent invocations of
the exit routine.

If your installation plans to have both CSVLLIX1 and CSVLLIX2 access the 4-byte
user data area (pointed to by LLP1USER and LLP2X1US), both exits must manage
the serialization of the area. If only CSVLLIX1 is going to use the area then
CSVLLIX1 must manage the serialization of the user data area. Compare-and-swap
(CS) is a potential serialization method. The 4-byte user data area is initialized to 0.
If LLA is restarted, the user data area is not reset to 0. It will contain the last value
stored in it by either CSVLLIX1 or CSVLLIX2. When using this field as a counter,
you must reset it when the condition you are testing for is met.

Programming Considerations

Code CSVLLIX1 to be reentrant.

CSVLLIX1 is called each time a program fetch occurs for LLA managed members.
When coding a modification to the exit, you should be aware that an increased
path length will increase processor utilization. If your installation wants to limit its
use of CSVLLIX1, perhaps to improve performance by shortening path length, you
can deactivate the exit.

Note: Be aware while coding the exit routine, that because the exit is called for
every module fetch request, an increased path length increases processor utilization
which can degrade system performance.

Macro Instructions and Restrictions: While CSVLLIX1 has control, it cannot issue
(or cause another program to issue) a LOAD, LINK, XCTL, or ATTACH macro that
might require LLA to fetch a module from a data set that LLA is managing. This
would result in recursive calls to the exit routine. See z/OS MVS Initialization and
Tuning Guide for information on managing a data set.

CSVLLIX1 — LLA Module Fetch Exit

Chapter 6. CSVLLIX1 — LLA Module Fetch Exit 35

Note: Do not code the exit routine to issue the WAIT macro or call a service, such
as WTOR, that issues a WAIT. Do not code the exit routine to call a service that
suspends processing for a period of time, like STIMER(M), which will also have a
severely negative impact upon system performance.

I/O Restrictions: Some functions that are needed to perform I/O, such as dynamic
allocation, must be initialized.

Entry Specifications

LLA passes to CSVLLIX1 the address of the LLP1 parameter list.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Zero

1 Address of the LLA module fetch exit parameter list (LLP1)

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of CSVLLIX1

Parameter List Contents: Register 1 contains the address of LLP1, the LLA fetch
exit parameter list. The macro IHALLP1 maps LLP1. The LLP1 mapping is
described in z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

Return Specifications

CSVLLIX1 passes back to LLA both a return code and a reason code to indicate
whether LLA should trigger module staging analysis.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0 One of the following reason codes:

Reason Code
Explanation

0 Use the default threshold to trigger LLA module staging analysis.

1 Indicates that LLA module staging analysis should begin.

2 Indicates that LLA module staging analysis should not begin.

1-14 Restored to contents at entry

15 One of the following return codes:

Return Code
Explanation

CSVLLIX1 — LLA Module Fetch Exit

36 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

0 Indicates that the default threshold should be used to trigger LLA
module staging analysis. The reason code in register 0 should be
zero.

4 Indicates that the exit has determined whether to trigger LLA
module staging analysis. The reason code in register 0 provides
additional information.

Coded Example of the Exit Routine

A sample CSVLLIX1 exit routine is provided in SYS1.SAMPLIB for your reference.
This routine contains the code for entry to the exit routine (a standard BR14
branch).

CSVLLIX1 — LLA Module Fetch Exit

Chapter 6. CSVLLIX1 — LLA Module Fetch Exit 37

38 z/OS V2R2 MVS Installation Exits

Chapter 7. CSVLLIX2 — LLA Module Staging Exit

Library lookaside (LLA) improves the performance of fetching modules from both
LNKLST and non-LNKLST data sets, and is a control point in managing updates
to these modules on DASD. LLA collects statistics such as fetch rates and fetch
durations to allow LLA module staging to determine the value of staging each
module. LLA module staging runs periodically to perform this evaluation and
stages, or places, copies of the most frequently used modules into a virtual
lookaside facility (VLF) data space. LLA can then fetch these selected modules
from virtual storage without I/O and with a reduced number of processor
instructions.

LLA combines four independent components of staging value to determine the net
value of staging a module into processor storage (see “Exit Routine Processing” on
page 41). LLA multiplies each component of staging value by its weighting factor,
adds the products, and determines the net LLA staging value for the module. LLA
stages modules that have the highest LLA staging value. Modules with a low LLA
value are provided to users through program fetch from DASD.

Before applying the weighting factors to determine whether a module should be
staged, LLA calls CSVLLIX2 and passes it the address of a parameter list that
contains the weighting factors. CSVLLIX2 can modify the weighting factor values
or specify an installation-defined value and thus determine which modules are
staged.

You can use CSVLLIX2 to:
v Analyze fetch statistics provided in the LLA module staging parameter list

(LLP2).
v Influence the calculation of the LLA value (which determines if a module should

be staged) by altering the weighting factors in the LLP2 parameter list.
v Force LLA to stage the module by setting the appropriate return and reason

codes.

Topics for This Exit Appear as Follows:

v “Controlling The Exit Routine Through the Dynamic Exits Facility” on page 40

v “Exit Routine Environment” on page 40

– Exit Recovery

v “Exit Routine Processing” on page 41

v “Programming Considerations” on page 42

v “Entry Specifications” on page 44

– Registers at Entry

– Parameter List Contents

v “Return Specifications” on page 44

– Registers at Exit

v “Coded Example of the Exit Routine” on page 45

© Copyright IBM Corp. 1988, 2015 39

Controlling The Exit Routine Through the Dynamic Exits Facility

IBM has defined the CSVLLIX2 installation exit to the dynamic exits facility. You
can refer to the exit by the name CSVLLIX2. You can use the EXIT statement of the
PROGxx parmlib member, the SETPROG EXIT operator command, or the
CSVDYNEX macro to control this exit and the exit routines of the exit.

When you start LLA, if the EXIT2(OFF) statement is not present in the CSVLLAxx
parmlib member being used by LLA, the system attempts to add exit routine
CSVLLIX2 in the following situations:
v no exit routines have been associated with CSVLLIX2 by PROGxx
v no exits have been associated using SETPROG
v there are no exit routines from a previous LLA start

If you have associated exit routines with CSVLLIX2 the system does not use the
default exit routine. In this case, if you require an exit routine of the default name,
you must explicitly add the default exit routine to PROGxx.

A change from EXIT2(ON) to EXIT2(OFF) has no effect. If you want to deactivate
the CSVLLIX2 exit routine (or any other exit routine for the CSVLLIX2 exit), you
can use the PROGxx EXIT statement with SET PROG=xx or you can use SETPROG
EXIT.

To limit the number of times the exit routine ends with an abend, before the exit
routine becomes inactive, you can use the ADDABENDNUM and ABENDCONSEC
parameters on the CSVDYNEX REQUEST=ADD macro, or the ABENDNUM
parameter of the SETPROG EXIT operator command. The system disables the exit
routine if the exit routine ends with an abend on two successive calls. An abend is
counted when both of the following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
v The system allows a retry (the recovery routine is entered with bit SDWACLUP

off).

The system disables the exit routine if the exit routine ends with an abend, as
defined above, on two successive calls.

Exit Routine Environment

CSVLLIX2 receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0 and in primary ASC mode with the primary

ASID equal to the home ASID.
v In AMODE 31 and RMODE ANY.
v With no locks or ENQs held.
v In task mode under a non-jobstep TCB attached by LLA's jobstep program in

LLA's address space.
v With TCB and PSW keys of zero.

Exit Recovery: The LLA recovery routine protects the exit routines of CSVLLIX2.
The recovery routine records diagnostic information in the system diagnostic work
area (SDWA), requests recording of the error in the logrec data set, and takes an

CSVLLIX2 — LLA Module Staging Exit

40 z/OS V2R2 MVS Installation Exits

|
|

SVC dump. LLA then retries to a point within LLA staging to call the next exit
routine.

Exit Routine Processing

CSVLLIX2 receives control from the LLA staging function before it applies the
weighting factors to determine a module's total staged value. LLA staging
combines 4 independent staging values to determine the net value of staging a
module into processor storage. The 4 values, which are contained in field
LLP2VALU of the parameter list, relate to response time, processor storage,
contention, and an optional, installation-defined cost. Each staging value is in the
range -10,000 to +10,000 and indicates the relative value to the system of LLA
staging the module. Each value has a corresponding weighting factor (LLP2WGTS)
in the range 0 to 100, used to indicate the relative importance of the value. LLA
staging multiplies each factor of staging value by its weighting factor, adds the
products, and determines the net LLA staging value for the module.

CSVLLIX2 receives control from LLA staging before it applies the weighting factors
to determine whether a module should be staged. CSVLLIX2 can influence the
calculation of the module's LLA staging value by altering the appropriate
weighting factors. For example, if response time is more important to your
installation than processor storage use, you can use CSVLLIX2 to set the response
time weighting factor to a high value (70-100) and set the processor storage
weighting factor to a low value (0-30).

CSVLLIX2 can introduce its own installation-defined value (LLP2VUSR). The value
must be in the specific range (-10,000 to +10,000), and the corresponding weighting
factor must be changed from its initial value of zero.

CSVLLIX2 can also force a module to be staged by setting the appropriate return
and reason codes. This is a less desirable solution because LLA can then change
the staging only at the direction of CSVLLIX2; for example, it could never
deactivate the staged module even if it was so infrequently used that it was stolen
to auxiliary storage.

The LLP2X1US field in LLP2, the exit parameter list, contains a 31-bit address that
points to a 4-byte user data area in the CSA. The user data area is aligned on a
fullword boundary and is initialized to 0. The user data area is also pointed to by
the LLP1USER field in the CSVLLIX1 (LLA module fetch exit) parameter list. An
installation can use the user data area as a means of allowing CSVLLIX1 and
CSVLLIX2 to share information. For example, CSVLLIX1 or CSVLLIX2 can acquire
storage in the CSA (by issuing a GETMAIN or STORAGE macro) and place the
address of this storage in the 4-byte user data area. CSVLLIX1 could then write
records to this common storage area during fetch time and CSVLLIX2, when it gets
control, could then write the records to DASD. This action could reduce the time
CSVLLIX1 needs for processing and thus shorten LLA's path length for fetching a
module.

If your installation plans to have both CSVLLIX1 and CSVLLIX2 access the 4-byte
user data area (pointed to by LLP1USER and LLP2X1US), both exits must manage
the serialization of the area. If only CSVLLIX1 is going to use the area, then
CSVLLIX1 must manage the serialization of the user data area. Compare-and-swap
(CS) is a potential serialization method. The 4-byte user data area is initialized to 0.
If LLA is restarted, the user data area is not reset to 0. It will contain the last value
stored in it by either CSVLLIX1 or CSVLLIX2. When using this field as a counter,
you must reset it when the condition you are testing for is met.

CSVLLIX2 — LLA Module Staging Exit

Chapter 7. CSVLLIX2 — LLA Module Staging Exit 41

The LLP2USER field in LLP2, the exit parameter list, points to a 4-byte user data
area that is aligned on a fullword boundary and is reserved for CSVLLIX2 to use.
CSVLLIX2 can use the 4-byte user data area as a work area to pass information to
itself during subsequent invocations. The 4-byte user data area is initialized to zero
and subsequently contains any value stored in it by CSVLLIX2. When using this
field as a counter, you must reset it when the condition you are testing for is met.

In most cases LLA does apply the same algorithm to program objects, however in
a few situations LLA finds staging in VLF unacceptable due to certain attributes of
program objects. For example, if LLA discovers that the number of deferred classes
in the header of the program object is not 0 or the program object is a split
RMODE module, then LLA cancels the staging algorithm, making a particular
program object ineligible for staging.

Programming Considerations

Code the exit routine to be reentrant. There are no restrictions on external routines
that CSVLLIX2 can invoke while it has control.

If your installation wants to limit its use of CSVLLIX2, perhaps to improve
performance by shortening path length, you can deactivate the exit. CSVLLIX2 is
ON by default.

Changing Weighting Factors: The default weighting factors that CSVLLIX2 can
change are set to response time=75, contention=50, storage=25, and installation=0.
You should not need to change these settings. However, if an adjustment is
necessary, consider the following:
v Response time (LLP2WRSP)

Keep this weighting factor higher than the others if you have sufficient central
storage to hold all the staged modules. Decrease this slightly relative to the
storage weighting factor if LLA quickly fills the VLF data space and the data
space cannot be enlarged. (To enlarge the data space, increase the value specified
by the MAXVIRT keyword for class CSVLLA in the COFVLFxx parmlib
member.) Processor time might increase if many staged modules age out to
expanded storage because of central storage contention. In general, for the
modules that remain backed by central storage, LLA uses slightly less processor
time than program fetch for all module sizes.

v Contention (LLP2WCTN)
Increase this factor relative to response time if data sets that LLA is managing
incur I/O activity that causes disruptive contention. Such data sets are likely to
be on volumes shared between systems or on volumes that contain other
performance-sensitive data sets. You can use storage isolation to control
contention for LLA's VLF data space.

v Storage (LLP2WSTO)
Increase this factor if you do not have enough processor storage to hold all the
modules. The storage value should always be weighted lower than the response
time value because the storage value usually is negative.

The values that LLA calculates using these weighting factors are derived as
follows:
v Response time (LLP2VRSP)

This value is defined as the time that would be saved per sample if the module
were to be fetched from VLF divided by the total time that would have been
saved during the previous sample if all modules had been fetched from VLF.

CSVLLIX2 — LLA Module Staging Exit

42 z/OS V2R2 MVS Installation Exits

|
|
|
|
|
|

v Contention time (LLP2VCTN)
This value is defined as the average difference between the minimum fetch for
the module from LLA or DASD, and the duration of the fetch. The average LLA
difference is then subtracted from the average DASD difference. The result is
multiplied by the number of fetches, and is normalized by dividing by the sum
of all the contention deltas from the previous sample.
Contention value helps LLA to compensate dynamically for unbalanced storage
and I/O resources in a system.

v Storage (LLP2VSTO)
This value is defined as the number of processor storage bytes that would be
saved minus the number of bytes that would be spent if the module were to be
kept in VLF, normalized by dividing the sum of all the storage deltas
accumulated in the previous sample. Storage is saved because users occupy
storage for less time while they wait for fetches. Storage is spent because the
staged module requires processor storage to back it in the VLF data space. With
the exception of some very small and highly used modules, storage value is a
negative number.

Changing the Staging Threshold: If your installation has a steady state workload,
you should notice a consistency in the modules being staged and in the ranking of
the modules. If the same modules are not being staged, or if the ranking of the
modules staged fluctuates often, the reason could be that your installation has a
large number of modules in its working set and therefore, LLA needs to have a
larger sampling of modules on which to base its staging decisions.

Increase the staging threshold (the default is 2000) to provide LLA with a more
meaningful sampling on which to base its decisions, so that LLA will consistently
stage the most often used modules. It is suggested that the staging threshold be at
least 3 times the total number of modules in your installation's working set.

Using the Exit to Influence Module Staging: If you use CSVLLIX2 to force LLA to
stage a particular module, the change applies only to the current staging analysis
of the module. That is, LLA does not maintain the changed staging status of the
module across subsequent exit invocations. In addition, if the exit is deactivated or
the code of the exit routine changed, the outcome of staging analysis might be
affected.

Depending on your installation's workload, the staging analysis for a given module
might be different each time CSVLLIX2 is invoked. If you use CSVLLIX2 to
determine whether a particular module should be staged, the exit routine should
continue to check the module's staging statistics during subsequent invocations.

If you plan to use CSVLLIX2 to force LLA to stage a particular module regardless
of the module's staging statistics, the exit routine should maintain this status each
time the exit is invoked. Do this by setting the appropriate return and reason
codes. Otherwise, excessive LLA overhead can occur.

For example, avoid using program logic that indicates that a module, if not staged,
should be staged, but fails to indicate an action if the module is already staged. In
this case, when the exit fails to indicate an action, LLA staging analysis will make
its own determination and might deactivate staging for the module. The next
invocation of the exit for this module would cause LLA to restage the module, and
so on. Excessive LLA overhead results as LLA alternately stages and deactivates
the same module repeatedly.

CSVLLIX2 — LLA Module Staging Exit

Chapter 7. CSVLLIX2 — LLA Module Staging Exit 43

Entry Specifications

LLA passes to CSVLLIX2 the address of the LLP2 parameter list.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Zero

1 Address of the LLA staging installation exit parameter list (LLP2)

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of CSVLLIX2

Parameter List Contents: Register 1 contains the address of LLP2, the LLA staging
exit parameter list. The macro IHALLP2 maps data area LLP2. See z/OS MVS Data
Areas in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/) for a mapping of the LLP2 data area.

Return Specifications

CSVLLIX2 passes back to LLA both a return code and a reason code to determine
the need for LLA module staging.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0 One of the following reason codes (the reason code in register 0 is
dependent upon the return code in register 15):

Reason Code
Explanation

0 Indicates that LLA should use the weighting factors to determine
whether the module should be staged. (Set register 15 to 0.)

1 Indicates that LLA is to stage this module. If the module is already
staged, it remains staged. (Set register 15 to 4.)

2 Indicates that LLA is not to stage this module. If the module is
already staged, LLA stops using the staged copy of the module.
(Set register 15 to 4.)

1-14 Restored to contents at entry

15 One of the following return codes:

Return Code
Explanation

0 Indicates that LLA module staging should use the weighting
factors to determine whether the module should be staged.

CSVLLIX2 — LLA Module Staging Exit

44 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

4 Indicates that LLA module staging should not use the weighting
factors. The decision to stage or not stage the module is specified
by the reason code in register 0.

Coded Example of the Exit Routine

IBM provides a sample CSVLLIX2 exit routine in SAMPLIB for your reference.
This routine contains the code for entry to the exit routine (a standard BR14
branch).

CSVLLIX2 — LLA Module Staging Exit

Chapter 7. CSVLLIX2 — LLA Module Staging Exit 45

46 z/OS V2R2 MVS Installation Exits

Chapter 8. DLF Connect / Disconnect Exit

This exit provides the control information that hiperbatch and the data lookaside
facility (DLF) need.

Hiperbatch is a performance enhancement that can significantly reduce the
execution time of certain batch job streams or multi-step batch jobs that access the
same VSAM or QSAM data sets. Hiperbatch works with DLF to allow batch jobs
to share access to a DLF object. A DLF object is a set of hiperspaces created by DLF
that contains QSAM or VSAM data managed by hiperbatch. Storing data into, and
retrieving data from, DLF objects is done transparently by the access method; an
installation does not need to rewrite its application programs or the JCL needed to
run them. The installation does, however, need to provide control information to
DLF.

If your system includes RACF 1.9 or higher, you can define RACF profiles in the
DLFCLASS general resource class instead of using this exit routine. However, you
must still code the exit; its decisions can override the information in the RACF
profiles.

If your system does not include RACF 1.9 or higher, you must code a DLF Connect
/ Disconnect installation exit routine to provide the needed control information.

You can use the DLF Connect / Disconnect exit to:
v Decide whether a job is eligible to connect to a DLF object. (The object will be

created if this is the first connection.)

Topics for This Exit Appear as Follows:

v “Installing the Exit Routine” on page 48

v “Exit Routine Environment” on page 49

– Exit Recovery

v “Exit Routine Functions” on page 49

– Initialization

– Query

– Connect

– Disconnect

v “Exit Routine Processing” on page 51

v “Programming Considerations” on page 51

– Macro Instructions and Restrictions

v “Entry Specifications” on page 52

– Registers at Entry

– Parameter List Contents

v “Return Specifications” on page 53

– Registers at Exit

v “Coded example of the exit routine” on page 53

© Copyright IBM Corp. 1988, 2015 47

v Specify whether or not to retain a DLF object even when no jobs are connected
to it. The default is to delete the DLF object when there are no longer any
connections to it.

v Determine whether a particular data set is eligible for DLF processing, so that if
the data set is updated while DLF is not running, DLF will process the updated
form of the data set. (See “Query” on page 50.)

To make these decisions, the exit must have access to the DLF control information:
v The names of all data sets that you want the system to process as DLF objects
v The names of all DLF objects that are to be retained
v The users and/or job names that are allowed to access each DLF object

You can store this control information in a data set or code the information in the
exit routine. If you have a great deal of control information, or if you plan to
update it often, you should consider storing the information in a data set.

Installing the Exit Routine
Before starting the Data Lookaside Facility:
1. You must include the exit in an authorized library in the LNKLST

concatenation.
2. You must specify the exit name on the CONEXIT keyword in the COFDLFxx

parmlib member.

If your installation runs jobs that perform random updates of VSAM or QSAM
data sets while other jobs read the data sets, you must name your exit COFXDLF1.
Hiperbatch calls this name when DLF is not running to request the exit to query
VSAM or QSAM data sets. If your installation does not access VSAM or QSAM
data sets when DLF is not running, you may choose any name for the exit. (See
“Query” on page 50.)

If you name the exit routine COFXDLF1—specify CONEXIT(COFXDLF1) in the
COFDLFxx member in the parmlib—the DLF initialization code will look for that
routine in the LPA. If it is not there, it will load the exit routine into the CSA from
the LNKLST. Then, as long as the DLF is active, the system will call the exit via a
branch to the LPA or CSA address, avoiding a LINK or LOAD.

Note: If you haven't named your exit routine on the CONEXIT keyword in the
COFDLFxx parmlib member, the system does a BLDL to the LNKLST for the exit;
when BLDL finds the routine, the system issues a LINK with DE= without first
searching the LPA. To avoid this overhead where your installation makes
infrequent accesses to the same VSAM or QSAM data sets and thus does not need
to use hiperbatch, simply don't start the DLF.

You cannot replace the exit while the DLF is active. The exit that is requested when
the DLF is started remains in effect for the duration of the DLF address space. To
replace the exit, you must stop the DLF, replace the exit (or change the parmlib
CONEXIT parameter to point to a different exit), and then start the DLF again.

For general instructions on installing an exit routine, see “Link editing an
Installation Exit Routine into a Library” on page 3. For information on how to start
the DLF, see z/OS MVS System Commands.

48 z/OS V2R2 MVS Installation Exits

Exit Routine Environment
The DLF exit receives control in the following environment:
v Resides in an APF-authorized library in the LNKLST concatenation
v Enabled for interrupts
v In primary ASC mode
v In AMODE 31 and RMODE ANY
v In supervisor state with PSW key 0
v When called to perform the initialization function, the exit is invoked in the DLF

address space. On subsequent calls, in which the routine performs the query,
connect, and disconnect functions, the exit routine runs in the address space of
the task that issues the request

Exit Recovery

DLF recovery protects the exit.

If the exit abnormally terminates during DLF initialization, the DLF initialization is
terminated.

If the exit abnormally terminates during a query call, DLF determines that the data
set is not eligible for DLF processing. OPEN processing continues and the job reads
the data set from DASD, instead of from a DLF object, and updates the data set on
DASD.

If the exit abnormally terminates during a user's attempt to connect to a DLF
object, the request is terminated and the user is not connected to the DLF object.
OPEN processing continues and the job reads the data set from DASD, instead of
from the DLF object.

If the exit abnormally terminates during a user's attempt to disconnect from the
DLF object, the user is disconnected from the DLF object.

Exit Routine Functions
The exit is called to perform these functions: initialization, query, connect, and
disconnect.

Initialization

When the DLF is started, the exit is invoked with a request from the DLF to
perform initialization: the CXTFUN field in the CXT (the exit routine parameter
list) is set to 0. If your installation places control information in a data set, use the
initialization call to access the data set. On subsequent calls, the exit routine uses
the control information in the data set to perform the query, connect, and
disconnect functions.

In the CXT, the CXTUDAB field points to a 16-byte area in the CSA. The exit
routine can acquire storage in the CSA (for example, by issuing a GETMAIN or
STORAGE macro) and place the address of this storage in the first word of a
16-byte area pointed to by CXTUDAB. The exit can then open the data set that
contains the DLF control information and read it into the CSA area. DLF passes the

Chapter 8. DLF Connect / Disconnect Exit 49

pointer to the address of the control information to the exit (in CXTUDAB) every
time it is called. The exit now has access to the control information it will need on
subsequent calls.

The exit must manage serialization of the 16-byte area in the CSA to prevent the
address of the control information from being reset by the exit on a DLF restart
while the area is being accessed for a query. An installation can serialize the
16-byte area by, for example, using the third word of the area as a serialization
field and using compare-and-swap (CS) as a serialization method. If DLF is
restarted, the 16-byte area is not reset to zero. It will contain the last values stored
by the exit.

You do not need to code the exit to perform initialization if you code the control
information within the exit routine itself. If you code the control information
within the exit routine, your exit needs only to return control to DLF on an
initialization call. The exit return code is ignored on an initialization call.

Query

If your installation runs jobs that perform random updates of VSAM or QSAM
data sets while other jobs read the data sets, you must:
v Code your exit routine to perform the query function.
v Name your exit COFXDLF1.

If you do not code the exit routine to perform the query function, you can choose
any name for the exit.

Hiperbatch calls the exit with a query request (the CXTFUN field in the CXT is set
to 1) to determine whether or not a particular VSAM or QSAM data set that is
being opened for update or output could be processed as a DLF object. The exit
routine searches the installation's control information (its address is pointed to by
CXTUDAB) for the name of the data set (in CXTDSN) and, optionally, its volume
serial (in CXTVOL). If the data set is listed in the control information, the exit
routine sets return code 0 to indicate that the data set is eligible for DLF
processing. If the data set is not listed in the control information, the exit routine
sets return code 8 to indicate that the data set is not eligible for DLF processing.

If the data set is listed in the control information, hiperbatch records the name of
the data set to ensure that if a data set is opened while DLF is down, and DLF is
started before the data set has been closed, subsequent jobs that open the data set
will connect to its updated form.

It is strongly recommended that you start DLF before starting JES. This action is
necessary to ensure that readers of VSAM and QSAM data sets read the latest level
of the data sets.

Connect

DLF calls the exit when a job opens a VSAM or QSAM data set (the CXTFUN field
in the CXT is set to 2). At this time, the exit routine must determine whether the
user or job requesting the connection is eligible to connect to the DLF object. The
exit also must specify whether the DLF object is to be retained. (If RACF profiles
exist for the DLF objects, the exit routine might not need to make these decisions,
but it can override the RACF information.) The exit sets a return code that
indicates whether the connection is to be permitted, or whether RACF information
to is to be used to make the decision.

50 z/OS V2R2 MVS Installation Exits

If DLF is not active, connect processing always invokes exit COFXDLF1.

Disconnect

DLF calls the exit when it disconnects a user from a DLF object (the CXTFUN field
in the CXT is set to 3). The exit return code is ignored on a disconnect call.

Exit Routine Processing
When a user attempts to open a VSAM or QSAM data set, and DLF is active, the
system tries to connect the user to the DLF object corresponding to the data set.

The exit is only called after RACF or another security product has already granted
the user access to the VSAM or QSAM data set. Then, on a system with RACF 1.9
or higher, DLF will check the job or user's eligibility to connect to the DLF object.
If RACF approves the request, DLF updates CXTSFLGS in the CXT, the exit
parameter list, with the connect information. Then DLF passes the CXT to the exit
routine, which can override the RACF decision to connect to a DLF object.

On a system without RACF 1.9, the CXTSFLGS bits are set to zero, and the exit
routine must determine whether the application is eligible to connect to a
particular DLF object.

After exit routine processing, the exit returns a code specifying whether or not the
user is allowed to connect to the DLF data object. The exit routine can override the
eligibility of the DLF data object and inform DLF not to connect the DLF object to
the user. The exit also sets bit CXTRTAIN in CXTUDATA to '1'B if the DLF object is
to be retained when no jobs are connected to it. CXTRTAIN will be honored only if
the data set is being opened for update (QSAM) or load (VSAM) mode.

For more information on the return codes the exit routine can set, see “Registers at
Exit” on page 53.

Programming Considerations
If your installation does not include RACF 1.9 or higher (or if you are using the
exit to override RACF decisions), the exit must determine which connections will
be permitted. The exit must have access to the following:
v The names of all data sets that you want the system to process as DLF objects
v The names of all DLF objects that are to be retained
v The users and/or job names that are allowed to connect to each DLF object.

The exit routine must be reentrant and must reside in an APF-authorized library in
the LNKLST concatenation.

If your installation runs jobs that perform random updates of VSAM or QSAM
data sets while other jobs read the data sets, you must name your exit COFXDLF1.
Hiperbatch calls this name when DLF is not running to request the exit to query
VSAM or QSAM data sets. If your installation does not access VSAM or QSAM
data sets when DLF is not running, you may choose any name for the exit (see
“Query” on page 50). However, you must specify the name in the COFDLFxx
parmlib member with the keyword CONEXIT, so that it is known to DLF.

The installation determines the maximum number of VSAM/QSAM data sets for
which DLF objects may exist, based on available extended storage, and places the

Chapter 8. DLF Connect / Disconnect Exit 51

value in the CXTDSMAX field. (The default is 50.) This value is read only on the
first query or connect call to the exit. It is recommended that you code the exit to
store the proper value in CXTDSMAX on all query and connect calls to the exit.

When the DLF is active, the exit is called for every OPEN (connect) and every
CLOSE (disconnect) issued by a VSAM or QSAM application. If you plan to have
the exit routine search very long lists of names, you should consider using a more
efficient search technique than sequential (for example, a binary search).

Macro Instructions and Restrictions

With one exception, the exit routine cannot issue (or cause another program to
issue) the OPEN macro, because the exit is already running under OPEN
processing. The exception is the initialization function; during this call, the exit
routine can issue the OPEN macro.

Entry Specifications
DLF passes to the exit the address of a fullword that points to the CXT, the exit
parameter list.

Registers at Entry

The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of a fullword that points to the CXT, which is mapped by
COFZCXIT

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit routine

Parameter List Contents

Register 1 contains the pointer to the fullword that contains the address of the
CXT, the exit parameter list. The CXT is described in z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

There is no field in the CXT that indicates whether or not a particular connection is
allowed. The exit must set a return code on the connect exit call to communicate
this information to DLF.

Note:

1. The exit routine indicates whether or not an object is to be retained by setting
the CXTRTAIN bit on the connect exit call.

2. To include the CXT mapping in your exit routine, you must code 'COPY
COFZCXIT' in the routine.

52 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/

Return Specifications
A return code from the exit indicates whether the DLF object is eligible to be
connected to the user (query), or whether the DLF object should be connected to
the user (connect).

The exit routine indicates whether or not an object is to be retained by setting the
CXTRTAIN bit on the connect exit call.

Registers at Exit

Upon return from the exit processing, the register contents must be as follows.

Register
Contents

0-1 Irrelevant

2-14 Same as at entry

15 One of the following return codes:

Query Return Code
Explanation

0 The data set is eligible for DLF processing.

4 DLF is to use information from the security product (e.g., RACF) to
determine whether the data set is eligible for DLF processing.

8 The data set is not eligible for DLF processing.

Connect Return Code
Explanation

0 DLF is to permit the user to connect to the DLF object.

4 DLF is to use information from the security product (e.g., RACF) to
determine whether the user is authorized to connect to the DLF
object. If RACF 1.9 or higher is not included in the system, DLF is
not to permit the user to connect to the DLF object.

8 DLF is not to permit the user to connect to the object.

Coded example of the exit routine
IBM Systems Centers produce IBM Redbooks® publications that can be helpful in
setting up and using z/OS. See the IBM Redbooks site at IBM Redbooks
(http://www.ibm.com/redbooks) site for more information.

At SMF Logstream Mode: Optimizing the New Paradigm (http://
www.redbooks.ibm.com/abstracts/sg247919.html?Open) the publication, SMF
Logstream Mode: Optimizing the New Paradigm, SG24-7919, provides an example for
this exit in Appendix E. Because IBM currently does not provide a sample IEFU29L
exit, it is included in this book. The sample exit consists of an Assembler stub that
calls a REXX program, passing the names of the log streams as parameters. The
sample REXX program simply returns the log stream names to the console, but
you can modify it as you require. Example E-6 shows a sample of the output.

Chapter 8. DLF Connect / Disconnect Exit 53

|

|
|
|

|
|
|
|
|
|
|
|

http://www.ibm.com/redbooks
http://www.ibm.com/redbooks
http://www.redbooks.ibm.com/abstracts/sg247919.html?Open
http://www.redbooks.ibm.com/abstracts/sg247919.html?Open

54 z/OS V2R2 MVS Installation Exits

Chapter 9. HIS.SERVSTAT— HISSERV Service Exit

The HIS.SERVSTAT exit will be defined by IBM. Any authorized program that
wants to know the state of the HISSERV service can register with the
HIS.SERVSTAT dynamic exit. For example, an exit can provide a bootstrap process
for potential exploiters of the HISSERV service, as a mechanism to know when a
program is able to begin exploiting the service. Exit routines are called for the
following reasons:
v The HISSERV service has been enabled.
v The HISSERV service has started instrumentation data collection.
v The HISSERV service has stopped instrumentation data collection.
v The HISSERV service had been disabled.

The HISYEXIT macro maps the storage passed to a HIS exit routine that is
monitoring the service.

Controlling the Exit Routine Through the Dynamic Exits Facility

The exit routine is defined by registering an exit routine with the HIS.SERVSTAT
dynamic exit. Note exit routines registered with the HIS.SERVSTAT dynamic exit
do not have the ability to receive instrumentation data, only monitor the state of
the service. You can use the CSVDYNEX macro to control the HIS.SERVSTAT
dynamic exit and its exit routines.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system will disable the exit routine after 3 consecutive abends.

Topics for This Exit Appear as Follows:

v “Controlling the Exit Routine Through the Dynamic Exits Facility”

v “Replacing the Exit Routine” on page 56

v “Exit Routine Environment” on page 56

v “Exit Recovery” on page 56

v “Exit Routine Processing” on page 56

v “Programming Considerations” on page 56

v “Entry Specifications” on page 57

v “Return Specifications” on page 57

v “Coded Example of the Exit Routine” on page 57

© Copyright IBM Corp. 1988, 2015 55

Replacing the Exit Routine

For information about replacing a dynamic exit routine, see “Replacing a Dynamic
Exit Routine” on page 6.

Exit Routine Environment

The exit routine receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0 and must return control in same state and

key with no locks held.
v In AMODE as defined by linkedit of exit routine module and RMODE=ABOVE.
v In the HIS address space as H=P=S for any of the events, or in *MASTER*

(ASID 1) with H=P=S for the "service has been disabled" call only.
v With no locks held in TCB mode.

Exit Recovery

The exit routine should provide its own recovery. If the exit routine abnormally
terminates, its recovery routine will get control.

If the exit routine abnormally terminates, and the exit routine does not provide its
own recovery, or the error percolates beyond the exit's recovery routine, a system
recovery routine will get control. If this occurs 3 consecutive times, the exit routine
will be disabled.

Exit Routine Processing

The system invokes the HIS.SERVSTAT exit routine or routines, if they are
registered to the dynamic exits facility, anytime the HISSERV service has enabled,
started, stopped, or has disabled.

Using the Information in the Parameter List:The system passes the address of a
list of parameters to the exit routine. The parameters contain the following
information:
v Version of this parameter area.
v The function code, which indicates why the exit routine was called. For this exit,

it would be that the status of the service has changed.
v The reason code describing how the HISSERV service has changed.

– (1) - The service has been enabled.
– (2) - The service has been disabled.
– (3) - The service has started profiling the system.
– (4) - The service has stopped profiling the system.

See macro HISYEXIT in z/OS V2R2 MVS Data Areas Volume 2 (IAX - ISG) for more
details on the interface.

Programming Considerations

Observe the following conventions when coding the HIS.SERVSTAT Exit routine:
v The exit routine is allowed to obtain and release any locks it desires in order to

handle the exit, however performance degradation should be a concern.

HISSERV Service Installation Exit

56 z/OS V2R2 MVS Installation Exits

v Code the exit routine to be reentrant.
v The exit is called whenever an event begins or ends. Therefore, when coding the

exit routine, you should be aware that an increased path length will increase
processor utilization and may degrade performance.

v Make sure that the exit routine does not get affected when new function code
support is added.

Macro Instructions and Restrictions: The exit is not allowed to issue a HISSERV
REQUEST=PROFILE request, or wait on a resource held by another work unit
which might issue a HISSERV REQUEST=PROFILE request.

Be aware that the exit can create performance degradation. Do not perform
unnecessary tasks.

Do not code the exit routine to invoke dynamic allocation.

Entry Specifications

The system passes the address of the exit parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the exit parameter list

2-12 Not applicable

13 Address to a 216 byte save area

14 Return address

15 Entry point address of the exit routine

Parameter Descriptions: Register 1 contains the address of the exit parameter list,
which is mapped by macro HISYEXIT in z/OS V2R2 MVS Data Areas Volume 2 (IAX
- ISG).

Return Specifications

The interface does not provide any field for a response; the exit does not need to
return a valid value.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-1 Does not need to be preserved

2-13 Restored to contents at entry

14-15 Does not need to be preserved

Coded Example of the Exit Routine

There is no coded example of this exit routine in SYS1.SAMPLIB.

HISSERV Service Installation Exit

Chapter 9. HIS.SERVSTAT— HISSERV Service Exit 57

58 z/OS V2R2 MVS Installation Exits

Chapter 10. ICHRTX00 — MVS Router Exit

The system authorization facility (SAF) provides an installation with centralized
control over system security processing through a system service called the MVS
router. The MVS router provides a focal point for all products that provide
resource management. The resource management components and subsystems call
the MVS router as part of security decision-making functions in their processing,
such as access control checking and authorization-related checking. These functions
are called “control points”. SAF supports the use of common control points across
products and across systems.

To use the MVS router, a resource management component or subsystem issues the
RACROUTE macro. The RACROUTE macro accepts all valid parameters for any of
the independent RACF system macros (RACDEF, RACINIT, RACHECK, RACLIST,
RACXTRT, and FRACHECK). RACROUTE verifies that only valid parameters have
been coded and then passes the parameters to the MVS router.

For more information on the RACROUTE macro and programming requirements
for the ICHRTX00 exit, see z/OS Security Server RACROUTE Macro Reference.

The RACROUTE macro invokes the MVS router. When it is invoked, the MVS
router first calls an optional installation exit routine. If an external security product
(such as RACF) is active and installed on the system, the MVS router calls it next.
This process is shown in Figure 3 on page 60.

Topics for This Exit Appear as Follows:

v “Installing the Exit Routine” on page 60

v “Exit Routine Environment” on page 60

– Exit Recovery

v “Exit Routine Processing” on page 61

v “Programming Considerations” on page 61

– Macro Instructions and Restrictions

v “Entry Specifications” on page 62

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 62

– Registers at Exit

v “Coded Example of the Exit Routine” on page 63

© Copyright IBM Corp. 1988, 2015 59

If an external security product is not available, you can use the MVS router exit as
an installation-written security processing (or routing) routine. If an external
security product is available, you can use the MVS router exit as a preprocessing
exit routine for the security product. The MVS router exit routine is ICHRTX00.

After MVS system initialization is complete, ICHRTX00 receives control for all
subsequent requests for the duration of the IPL. See “Programming
Considerations” on page 61 for information on coding ICHRTX00.

Installing the Exit Routine

To install ICHRTX00, name the exit ICHRTX00 and load it into the link pack area
(LPA). For general instructions on installing an exit routine, see “Link editing an
Installation Exit Routine into a Library” on page 3.

Exit Routine Environment

ICHRTX00 receives control in the following environment:
v Is entered via a branch and link macro. Therefore, the exit routine runs in the

same key and state as the issuer of the RACROUTE macro.
v Enabled for interrupts.
v Must be linkedited with AMODE(ANY) and RMODE(24).
v Can be invoked with the local lock held.
v Caller's address space.
v Can be invoked in SRB mode. If the routine is invoked in SRB mode, the exit

routine must follow SRB conventions.
v Can be invoked in cross-memory mode. If the routine is invoked in

cross-memory mode, system services that invoke SVC routines cannot be used.

Exit Recovery: An installation must provide its own recovery routine for
ICHRTX00. If the exit routine terminates abnormally, the recovery routine will get
control first.

Resource
Management
Component
(Such as JES)

MVS Router
MVS Router Exit
(ICHRTX00)

Security
Product
Router

External
Security
Product

Call Exit

If RC = 0
Call
Security
Product
Router

RACROUTE
Macro

Return
Code

Figure 3. RACROUTE macro invokes the MVS router

ICHRTX00 — MVS Router Exit

60 z/OS V2R2 MVS Installation Exits

Exit Routine Processing

Normally, a caller invokes the MVS router and passes it class, requestor, and
subsystem parameters via the RACROUTE parameter list. Using those parameters,
the MVS router invokes ICHRTX00. ICHRTX00 returns to the MVS router with a
return code that indicates whether further security processing is to occur.

If the return code is 0, the MVS router invokes the external security product by
calling its router, ICHRFR00. ICHRFR00 will then invoke the other external
security product processing and will report the results of that invocation to the
MVS router by placing a return code in register 15 and the detailed
RACF-compatible return and reason codes in the first and second words
(respectively) of the RACROUTE parameter list. For more information on the
return codes the exit routine can set, see the description of registers at exit in
“Return Specifications” on page 62.

Simulating a Call to RACF: Instead of invoking the external security product,
your installation may choose to have ICHRTX00 respond to the caller's request. In
that case, you must still provide the caller with the RACF-compatible return and
reason codes that it expects to receive. To do so, set the exit routine return code so
that the external security product is not invoked (as described in “Return
Specifications” on page 62). However, you must simulate the results of an external
security product invocation by coding ICHRTX00 so it places the RACF-compatible
return and reason codes in the RACROUTE parameter list.

RACF return and reason codes are documented in z/OS Security Server RACROUTE
Macro Reference.

Programming Considerations

ICHRTX00 must be reentrant.

In addition to the address of the RACROUTE parameter list, ICHRTX00 also
receives the address of a 152-byte work area.

SAF performs functions other than being a router, such as creating security tokens
for certain RACROUTE request types, propagating userids, and creating default
control blocks (ACEEs) when an external security product is not available to the
system. IBM recommends that, in coding ICHRTX00, you do not bypass these SAF
functions. SAF creates and returns control blocks (tokens or ACEEs) whenever the
RACROUTE request types are issued:
v REQUEST=VERIFYX
v REQUEST=TOKENMAP
v REQUEST=TOKENXTR
v REQUEST=TOKENBLD

SAF also creates default ACEEs for REQUEST=VERIFY when an external security
product is not available on the system. System code, such as JES, requires these
control blocks. Therefore, if your ICHRTX00 exit routine bypasses SAF security
functions, your installation must construct and return the control blocks that SAF
would have created. If you do not provide the required control blocks, problems
can result. The token fields are mapped by macro ICHRUTKN (data area RUTKN).
For a mapping of the RUTKN data area, see z/OS MVS Data Areas in the z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

ICHRTX00 — MVS Router Exit

Chapter 10. ICHRTX00 — MVS Router Exit 61

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Macro Instructions and Restrictions: Do not install an exit routine that issues the
WAIT macro or calls a service that issues a WAIT, such as WTOR. WAITs and
implied WAITs can cause the system console or JES to stop functioning.

Entry Specifications

The MVS router passes to the exit routine (in Register 1), the address of a
doubleword area that contains the addresses of:
v The RACROUTE parameter list and
v A work area that the exit routine can use.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the following area:

Offset Length Description
0 4 Parameter list address: points to the RACROUTE parameter list
4 4 Work area address: points to a 152-byte work area that ICHRTX00 can use.

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit

Parameter Descriptions: The RACROUTE parameter list (SAFP) is mapped by
macro ICHSAFP (data area SAFP). If an ICHRTX00 exit routine exists, the MVS
router passes the SAFP to the exit. See z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/) for a mapping of the
SAFP data area.

Return Specifications

A return code from the exit routine indicates whether the external security product
is to be given control or further security processing is to be bypassed.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents at entry.

15 One of the following return codes:

Hex/Dec
Explanation

X'0' (0)
The exit has completed successfully. Control proceeds to the
external security product router (ICHRFR00) for further security
processing and an invocation of the external security product.

ICHRTX00 — MVS Router Exit

62 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

X'C8' (200)
The exit routine has completed successfully. The MVS router
translates this return code to an MVS router return code of 0 and
returns control to the issuer of the RACROUTE macro, bypassing
further SAF and any external security product processing. (See
note.)

X'CC' (204)
The exit routine has completed successfully. The MVS router
translates this return code to an MVS router return code of 4 and
returns control to the issuer of the RACROUTE macro, bypassing
further SAF and any external security product processing. (See
note.)

X'D0' (208)
The exit routine has completed processing. The MVS router
translates this return code to an MVS router return code of 8 and
returns control to the issuer of the RACROUTE macro, bypassing
further SAF and any external security product processing. (See
note.)

Other If the exit routine sets any other return code, the MVS router
returns control directly to the issuer of the RACROUTE macro and
passes the untranslated code as the MVS router return code.
Further SAF and any external security product processing is
bypassed.

Note: The installation is responsible for putting RACF-compatible return and
reason codes in the first 2 fullwords, respectively, of the RACROUTE parameter list
(SAFP). If the exit routine does not issue a specific reason code, it should issue a
zero reason code.

Coded Example of the Exit Routine

A copy of a sample ICHRTX00 exit routine is provided in SYS1.SAMPLIB (in
member RACINSTL).

ICHRTX00 — MVS Router Exit

Chapter 10. ICHRTX00 — MVS Router Exit 63

64 z/OS V2R2 MVS Installation Exits

Chapter 11. IEALIMIT — User Region Size Limit Exit

An installation can limit application programs' access to nonextended private area
storage (subpools 0-127, 129-132, 244, 251 and 252) by writing IEALIMIT. This exit
routine is invoked before each job step is started. IEALIMIT can be used under
MVS to set nonextended region size and nonextended region limit only. The values
set by IEALIMIT should be less than the size of the nonextended private area. If
they are not, the control program uses the size of the nonextended private area.

The values set by IEALIMIT have no effect on establishing the extended region
size and extended region limit. It is recommended that the exit routine IEFUSI be
used in place of IEALIMIT when possible, especially when jobs are expected to
specify a region value greater than 16 megabytes. IEFUSI can include region limit
processing for the private area for both less than and greater than 16 megabytes.
See Chapter 33, “IEFUSI — Step Initiation Exit,” on page 215 for a comparison of
these two exit routines.

Limiting Region Size Consideration: If you want to use the IEALIMIT exit to
control region size, and you have the IEFUSI exit available, ensure that the flag to
bypass the IEALIMIT exit is not set in the IEFUSI parameter list.

The SMFLIMxx parmlib member provides the ability to set the REGION and
reserve storage for system key storage obtains without writing an IEALIMIT or
IEFUSI exit. For details, see:
v z/OS MVS Initialization and Tuning Reference

v z/OS MVS Initialization and Tuning Guide

Installing the Exit Routine

The IBM-supplied IEALIMIT exit routine is linkedited with the nucleus. To replace
the IBM-supplied routine with your own IEALIMIT, you must linkedit your own
version into the nucleus prior to an initial program load.

For general instructions on installing an exit routine, see “Link editing an
Installation Exit Routine into a Library” on page 3.

Topics for This Exit Appear as Follows:

v “Installing the Exit Routine”

v “Exit Routine Environment” on page 66

– Exit Recovery

v “Exit Routine Processing” on page 66

– IEALIMIT Default Values

v “Programming Considerations” on page 67

v “Entry Specifications” on page 68

– Registers at Entry

v “Return Specifications” on page 68

– Registers at Exit

v “Coded Example of the Exit Routine” on page 69

© Copyright IBM Corp. 1988, 2015 65

|
|
|

|

|

Exit Routine Environment

IEALIMIT receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In AMODE 24 and RMODE 24.
v In any address space.
v Holds a local lock.
v Under the initiator's task.

Exit Recovery: The exit routine runs under an ESTAE. The VSM recovery routine
that gets control should an error occur in the IEALIMIT exit will (1) fill in the
SDWA (with IEALIMIT as the module name) and take an SVC dump, and then (2)
either (a) retry the operation (including another call to the IEALIMIT exit) or (b)
percolate, which could eventually result in an ABEND.

Because IEALIMIT is an authorized routine that runs in key 0, it can provide its
own recovery routine, which would have the same capabilities as the IEALIMIT
routine itself. The recovery routine would be subject to the limitations on all
recovery routines, which are documented in the chapter "Providing Recovery" of
z/OS MVS Programming: Authorized Assembler Services Guide.

Exit Routine Processing

IEALIMIT gets control after an existing region has been freed, and before a new
region is initialized. On entry, the IEALIMIT routine receives in register 0 the
number of bytes requested by the application program for its region, as specified
through the JCL REGION parameter. If this REGION value is less than 16
megabytes, the value in register 0 is the same as the REGION value. If this
REGION value is greater than 16 megabytes, the value in register 0 is equal to the
size of the nonextended private area minus 64K. Register 1 contains the same value
as register 0.

If the JCL REGION parameter value is zero or if the parameter is absent, then the
installation JES default value is used. If the JES default is zero, the IEALIMIT
routine receives a zero in register 1.

After processing, the IEALIMIT routine returns values in both registers 0 and 1.
Register 0 contains the number of bytes to be used as the region size which should
be less than the size of the nonextended private area. Register 1 contains the
number of bytes to be used as the region limit. Both registers 0 and 1 should be
rounded to a multiple of 4K. These values in registers 0 and 1 determine how
much space is allocated in the user's region, in response to GETMAIN and
STORAGE requests.

IEALIMIT Default Values: If your installation does not supply an IEFUSI exit
routine to control region size, and does not override the default values in the
IBM-supplied IEALIMIT exit routine, users obtain the results shown in Table 1 on
page 67 when specifying various values for the region size on the REGION
parameter.

IEALIMIT — User Region Size Limit Exit

66 z/OS V2R2 MVS Installation Exits

Table 1. IEALIMIT Default Values

JCL Region parameter Results-below 16 Mb Results-above 16 Mb

0K or 0M The job step is allocated all the
storage available below 16
megabytes. The resulting size of the
region below 16 megabytes is 16
megabytes minus the amount of
virtual storage allocated to MVS.

The job step is allocated all the
storage available above 16
megabytes. The resulting size of the
region above 16 megabytes is 2
gigabytes minus the amount of
virtual storage allocated to MVS,
minus 16 megabytes.

> 0K or 0M and <= 16384K or 16M Establishes the size of the private
area below 16 megabytes. If the
region size specified is not available
below 16 megabytes, the job (or job
step, if coded on the EXEC
statement) abnormally terminates
with an ABEND 822.

The extended region size is the
default value of 32 megabytes

> 16384K or 16M and <= 32768K or
32M

The job (or job step) is allocated all
the storage available below 16
megabytes. The resulting size of the
region below 16 megabytes is 16
megabytes minus the amount of
virtual storage allocated to MVS.

The extended region size is the
default value of 32 megabytes.

> 32768K or 32M and <= 2096128K or
2047M

The job (or job step) is allocated all
the storage available below 16
megabytes. The resulting size of the
region below 16 megabytes is 16
megabytes minus the amount of
virtual storage allocated to MVS.

The extended region size is the
specified value. If the region specified
is not available above 16 megabytes,
the job step receives whatever storage
that is available above 16 megabytes,
up to the requested amount. The
resulting size of the region above 16
megabytes depends on system
options and on what system software
is installed.

Note that for the REGIONX keyword, the value passed to IEALIMIT will either be
0M (if the REGIONX second parameter is 0M) or the larger of the two specified
REGIONX values. In that case, the "results-below 16MB" will be the amount
specified in the first parameter or all storage available if 0M was specified for the
first parameter. The "Results-Above 16 MB" will be the amount specified in the
second parameter or all storage available if 0M was specified for the second
parameter. Note that the extended region will not be less than 32MB.

See z/OS MVS Initialization and Tuning Guide for further information on the effect of
the region limit and region size on requests for storage.

Programming Considerations

Code IEALIMIT to be reentrant. If this exit routine uses dynamic storage, use
subpool 229, 230, or 249 for that storage. Do not use 0-127, as this will determine
the key of the subpool for the duration of the jobstep. Common storage and LSQA
are not recommended.

When using IEALIMIT to limit region size, the region size should be less than the
region limit. This provides protection against programs that issue variable length
GETMAINs with very large maximums and then do not immediately free part of

IEALIMIT — User Region Size Limit Exit

Chapter 11. IEALIMIT — User Region Size Limit Exit 67

|
|
|
|
|
|
|

that space, or free such a small amount that a subsequent GETMAIN (possibly
issued by a system service) fails.

Entry Specifications

Either the value specified by the REGION parameter on the JOB or EXEC
statement or the value of the JES default is passed to the IEALIMIT routine so that
the exit can determine whether it is acceptable.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 If the application program requests a region that is less than 16 megabytes,
then register 0 contains the size of the region requested by the application
program.

If the application program requests a region that is greater than 16
megabytes, then register 0 contains a value equal to the size of the
available private area minus 64K.

Note: An application program explicitly requests a region that is less than
16 megabytes by specifying ‘REGION=xxM’ on the JOB or EXEC JCL
statements and making ‘xx’ less than or equal to 16.

An application program explicitly requests a region that is greater than 16
megabytes by specifying ‘REGION=xxM’ on the JOB or EXEC JCL
statements and making ‘xx’ larger than 16.

An application program requests a default region by omitting the REGION
parameter from both the JOB and EXEC JCL statements. The value that is
passed in register 0 is controlled by JES.

1 The contents are the same as register 0.

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of IEALIMIT

Return Specifications

The IEALIMIT routine returns a region size and region limit.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0 The number of bytes to be used as the region size. This number should be
less than the value in register 1.

1 The number of bytes to be used as the region limit. This value should be
less than the size of the nonextended private area.

2-15 Restored to contents at entry

IEALIMIT — User Region Size Limit Exit

68 z/OS V2R2 MVS Installation Exits

Coded Example of the Exit Routine

Figure 4 is a coded example of the IEALIMIT exit routine.

The IBM-supplied IEALIMIT routine (above) does the following processing:
v If register 1 contains a nonzero value, the IEALIMIT routine adds 64K to its

contents and returns to the caller. This value in register 1 is used to limit the
allocation of storage from subpools 0-127, 129-132, 244, 251, and 252. The content
of register 0 is unchanged.

v If register 1 contains a zero, the IEALIMIT routine returns a zero in register 1 to
the caller. This indicates that no limit is assigned to the job, started program, or
TSO/E user.

* Save caller’s registers and establish addressability.
STM 14,15,12(13)
STM 2,12,28(13)
BALR 9,0

* If this is not a request for an unlimited
* region, then increase the region limit by 64K.
* The region size is not changed.

LTR 1,1
BZ EXIT
AL 1,INCRMENT

* Restore caller’s registers and return to caller.
EXIT LM 14,15,12(13)

LM 2,12,28(13)
BR 14

INCRMENT DC F’65536’

Figure 4. Example: IEALIMIT exit routine

IEALIMIT — User Region Size Limit Exit

Chapter 11. IEALIMIT — User Region Size Limit Exit 69

IEALIMIT — User Region Size Limit Exit

70 z/OS V2R2 MVS Installation Exits

Chapter 12. IEAVADFM — Format SNAP, SYSABEND, and
SYSUDUMP Dumps

IEAVADFM is a dump facility installation exit routine name list. It contains a list of
installation exit routine names to be given control during the formatting of a SNAP
or ABEND dump. An installation can use these exit routines to:
v Gather information to be included in a SNAP/ABEND dump and
v Format the information to be written to a data set described by a SYSABEND,

SYSUDUMP, or installation-defined JCL DD statement.

The installation exit routines listed in IEAVADFM are invoked during the control
block formatting phase of every SNAP or ABEND dump for which the CB option
was specified. The system provides to the exit routines:
v A buffer in which the routines can build a print line
v The address of an IBM-supplied print routine to which the exit routines can pass

the line for printing.

The difference between IEAVADFM and IEAVADUS is that IEAVADFM is an
installation exit name list while IEAVADUS is a single exit routine. The routine
names listed in IEAVADFM are invoked sequentially and maintain control until the
end of the list of routines is reached or until a routine within the list returns a
terminating code. IEAVADUS receives control once for each SNAP dump or
ABEND dump and then returns control to the calling program.

Installing the Exit Routine

To install a dump formatting installation exit routine in your system, you need to
do the following :
v Linkedit the dump formatting exit routine into SYS1.LPALIB, SYS1.LINKLIB, or

a data set in the LNKLST concatenation.
v Define the dump formatting exit routine to MVS by adding its load module

name to the exit name list in IEAVADFM.

Topics for This Exit Appear as Follows:

v “Installing the Exit Routine”

v “Defining Dump Formatting Exits to IEAVADFM” on page 72

– Adding and Deleting Exit Names in IEAVADFM

v “Exit Routine Environment” on page 74

– Exit Recovery

v “Exit Routine Processing” on page 74

v “Programming Considerations” on page 75

v “Entry Specifications” on page 75

– Registers at Entry

– Parameter List Contents

v “Return Specifications” on page 76

– Registers at Exit

© Copyright IBM Corp. 1988, 2015 71

Defining Dump Formatting Exits to IEAVADFM

You can specify dump formatting exits in any of the blank entries in the
IEAVADFM exit name list. During the formatting of a SNAP or ABEND dump, the
system invokes the routines in the order you specified them. That is, the exit
routine specified in entry 1 gets control first, followed by the exit routine specified
in entry 2, and so on.

IEAVADFM is a CSECT in load module IGC0805A (which resides in SYS1.LPALIB).
The IBM-supplied version of IEAVADFM contains the following entries:
v Four 8-byte entries that contain hexadecimal zeroes, and are intended for

customer use, followed by
v A final 4-byte entry that contains hexadecimal zeroes to indicate the end of the

exit name list (the end-of-table marker).

You can add as many dump formatting exit routine load modules to IEAVADFM
as you want. IBM recommends that you use the existing blank entries in
IEAVADFM before creating new ones. Ensure that the last entry contains 4 bytes of
hexadecimal zeroes.

Contents of Entries: The first four 8-byte entries contain the exit load module
name. These entries contain hexadecimal zeroes, and are available for customer
use.

This is how the first, second, and last entries in IEAVADFM appear:
IEAVADFM
HEX LOCATION: CONTENTS:
0000 00000000 00000000 ENTRY 1
0008 00000000 00000000 ENTRY 2
. . .
. . .
. . .
0040 00000000 END OF LIST

To insert a dump formatting exit load module name in the list, select an available
entry (one that is set to hexadecimal zeroes) and substitute the exit load module
name in place of the hexadecimal zeroes. Exit names can be one to eight
characters, padded to the right with blanks.

Examples of changing entries in IEAVADFM are shown in the sections that follow .

Adding and Deleting Exit Names in IEAVADFM: To add or delete exit names in
the exit name list, you must modify the IEAVADFM object code in SYS1.LPALIB
through the use of the SPZAP program, or through SMP/E. For more information,
refer to “Using SPZAP or SMP/E to Add or Delete Name.”

Using SPZAP or SMP/E to Add or Delete Name

Adding Exit Names: When using SPZAP or SMP/E, take the following steps:
v Use SPZAP to produce a dump of IEAVADFM. Sample JCL follows:

//DUMPJCL JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSNAME=SYS1.LPALIB,DISP=OLD

IEAVADFM — SNAP, SYSABEND, SYSUDUMP Dumps Exit

72 z/OS V2R2 MVS Installation Exits

//SYSIN DD *
NAME IEAVADFM
DUMP IEAVADFM
/*

v Use the dump produced to select an available entry in IEAVADFM.
v Write the name of the dump formatting exit module in the entry. (See Example 1

if you are using SPZAP or Example 1A if you are using SMP/E.)

The changes will take affect on the next IPL.

Example 1 - Using SPZAP to Add Exit Names: The following job adds EXITRTN1
to the first entry in IEAVADFM, and EXITRTN2 to the second entry in IEAVADFM.
The job then dumps IEAVADFM to verify the changes.

//EXAMPLE1 JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSNAME=SYS1.LPALIB,DISP=OLD
//SYSIN DD *
NAME IEAVADFM
VER 0000 0000,0000,0000,0000 FIRST UNUSED ENTRY
REP 0000 C5E7,C9E3,D9E3,D5F1 SET TO EXITRTN1
VER 0008 0000,0000,0000,0000 SECOND UNUSED ENTRY
REP 0008 C5E7,C9E3,D9E3,D5F2 SET TO EXITRTN2
DUMP IEAVADFM
/*

Example 1A - Using SMP/E to Add Exit Names: The following job adds
EXITRTN1 to the first entry in IEAVADFM, and EXITRTN2 to the second entry in
IEAVADFM.
++USERMOD(USRMOD2).
++VER(Z038) FMID(HBB4410). /* CHANGE THE FMID AS NEEDED */
++ZAP(IEAVADFM).
NAME IEAVADFM IEAVADFM
VER 0000 0000,0000,0000,0000 FIRST UNUSED ENTRY
REP 0000 C5E7,C9E3,D9E3,D5F1 SET TO EXITRTN1
VER 0008 0000,0000,0000,0000 SECOND UNUSED ENTRY
REP 0008 C5E7,C9E3,D9E3,D5F2 SET TO EXITRTN2

Deleting Exit Names: When using SPZAP or SMP/E, take the following steps:
v Use SPZAP to dump IEAVADFM (as shown earlier in the sample JCL code

under “Using SPZAP or SMP/E to Add or Delete Name” on page 72).
v Write X'40' (blanks) in place of the dump formatting exit module name. (See

Example 2 if you are using SPZAP or Example 2A if you are using SMP/E.)

The changes will take effect on the next IPL.

If all entries are in use, you can replace module IEAVADFM, or expand it. Ensure
that the last entry contains 4 bytes of hexadecimal zeroes.

Example 2 - Using SPZAP to Delete Exit Names: The following job deletes
EXITRTN1 from the dump formatting exit list. The job then dumps IEAVADFM to
verify the changes.

//EXAMPLE2 JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSNAME=SYS1.LPALIB,DISP=OLD
//SYSIN DD *

IEAVADFM — SNAP, SYSABEND, SYSUDUMP Dumps Exit

Chapter 12. IEAVADFM — Format SNAP, SYSABEND, and SYSUDUMP Dumps 73

NAME IEAVADFM
VER 0000 C5E7,C9E3,D9E3,D5F1 EXITRTN1
REP 0000 4040,4040,4040,4040 RESTORE ENTRY 1
DUMP IEAVADFM
/*

Example 2A - Using SMP/E to Delete Exit Names: The following job deletes
EXITRTN1 from the dump formatting exit list.

++USERMOD(USRMOD3).
++VER(Z038) FMID(HBB4410). /* CHANGE THE FMID AS NEEDED */
++ZAP(IEAVADFM).
NAME IEAVADFM IEAVADFM
VER 0000 C5E7,C9E3,D9E3,D5F1 EXITRTN1
REP 0000 4040,4040,4040,4040 REPLACE WITH BLANKS

For additional information on the use of:
v SPZAP, see z/OS MVS Diagnosis: Tools and Service Aids.
v SMP, see SMP/E for z/OS User's Guide.
v Expand, see z/OS MVS Program Management: User's Guide and Reference.

Exit Routine Environment

Each routine in IEAVADFM receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In the AMODE and RMODE specified in the routine or in the linkedit.
v In the address space of the task taking the dump.
v With no locks held.
v Under the task associated with the request block that requested the dump. Each

routine runs under the SVRB of SNAP/ABDUMP.

Exit Recovery: An ESTAE routine provides recovery for SNAP. Each user
formatting routine listed in IEAVADFM should, however, also set up its own
recovery to handle any ABENDs encountered during the formatting process. Each
recovery routine should either recover and continue, or recover and return to
SNAP with a zero return code. A nonzero return code is interpreted as a
GETMAIN failure, causing the following message in the dump data set:
USER/PP CONTROL BLOCKS UNAVAILABLE

The dump is truncated because of lack of storage. The recovery routine should not
continue formatting if a X'37' ABEND occurs, because no space remains in the
dump data set. Before the recovery routine returns to SNAP, it should free all the
storage that it has obtained.

If the user formatting routine does not establish recovery, or if the recovery exit
specifies continue-with-termination after an ABEND, SNAP terminates this control
block formatter entirely and continues with the next portion of the dump, if any.

Exit Routine Processing

The installation exit routines listed in IEAVADFM receive control automatically
during the control block formatting phase of every SNAP or ABEND dump for
which the CB option was requested.

IEAVADFM — SNAP, SYSABEND, SYSUDUMP Dumps Exit

74 z/OS V2R2 MVS Installation Exits

The routines build one print line at a time in the buffer provided and use BALR to
branch to the IBM-supplied print routine, which in turn prints the line to the
dump data set. Offsets are recommended for all formatted control blocks that are
longer than one output line. (One line generally formats 20 hexadecimal
characters). The print routine saves registers, prints the line, blanks the buffer,
restores the registers, and returns control to the user's routine via register 14.

Programming Considerations

Code each routine in the IEAVADFM name list to be reentrant.

In order to avoid an abnormal termination later in the SNAP/ABEND routine, the
user's routines must not free either the entry parameter list or the print buffer.

IEAVADFM works through the IBM-supplied print routine, so the formatting exit
does not have any direct access to the carriage controls. Therefore, in order to
cause a skipped line in the dump output, you must pass a blank buffer to the print
routine. The print routine handles page ejects. The installation exit routine can use
format patterns to format data in the output buffer, by using the IBM-supplied
format service routine. The service routine can also convert data to printable
hexadecimal. This service routine is the same routine that is provided by the IPCS
service aid; see z/OS MVS IPCS Customization. No registers are necessary as input
to this service routine.

IBM-Supplied Print Routine:The installation exit routines listed in IEAVADFM can
use the IBM-supplied print routine to format data to the dump data set. The print
routine is pointed to by the ADPLPRNT field in the exit parameter list and is
mapped by macro BLSABDPL (data area BLSABDPL). For a mapping of the
BLSABDPL data area, see z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

The interface to the print routine is:
v Entry: via BALR 14,15 for each line to be written.
v Environment: PSW key 0, supervisor state, no locks held.

Entry Specifications

The ABDUMP calling routine passes to each installation exit routine in IEAVADFM
the address of a parameter list useful for formatting the dump data.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the parameter list (mapped by IHAABDPL) for the user
formatting routine.

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the installation exit routine listed in IEAVADFM

IEAVADFM — SNAP, SYSABEND, SYSUDUMP Dumps Exit

Chapter 12. IEAVADFM — Format SNAP, SYSABEND, and SYSUDUMP Dumps 75

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Parameter List Contents: Register 1 points to a parameter list that provides the
addresses of subroutines and data that the user-written format routines will use.
This is the same parameter list used by exit routine IEAVADUS.

This parameter list is mapped by the BLSABDPL mapping macro (data area
BLSABDPL). The mapping list includes all the fields of the IPCS service aid's
parameter list so user formatting routines can be invoked by either SNAP/ABEND
or IPCS.

The BLSABDPL mapping is documented in z/OS MVS Data Areas in the z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Return Specifications

The installation exit routine returns a code indicating whether processing should
continue.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents at entry

15 One of the following return codes:

Return Code
Explanation

0 Continue processing.

4 Request is not valid.

12 Suppress the remainder of the SNAP/ABEND dump. If the same
installation exit routine is executed under the IPCS service aid,
print dump does not suppress the remainder of the dump.

IEAVADFM — SNAP, SYSABEND, SYSUDUMP Dumps Exit

76 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Chapter 13. IEAVADUS — Select and Format Dump Data Exit

You can use the IEAVADUS installation exit to select and format data to be
included in an ABDUMP (SNAP/ABEND dump). The selected data is written to a
data set described by a SYSABEND, SYSUDUMP, or installation-defined JCL DD
statement. The system provides an area in which IEAVADUS builds a print line
and also provides the address of an IBM-supplied print routine to which the
installation exit routine passes the line for printing.

The difference between IEAVADUS and IEAVADFM is that the exit routine
IEAVADUS is a single exit routine while IEAVADFM is an installation exit name
list. IEAVADUS receives control once for each SNAP dump or ABEND dump. Your
IEAVADUS installation exit routine replaces one already supplied with your
system. In contrast, the routine names in IEAVADFM are invoked sequentially
when IEAVADFM receives control. IEAVADFM maintains control until the end of
the list of routines is reached or until a routine within the list returns a terminating
code.

Installing the Exit Routine

To use IEAVADUS, you must linkedit the exit routine into SYS1.LPALIB with the
load module name of IGC0905A, replacing the IBM-supplied routine IEAVADUS.

To remove the installation exit routine from the system, linkedit a copy of module
IEFBR14 into SYS1.LPALIB with the name IGC0905A.

Exit Routine Environment

IEAVADUS receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In the AMODE and RMODE specified in the routine or in the linkedit.
v In the address space of the task taking the dump.
v With no locks held.

Topics for This Exit Appear as Follows:

v “Installing the Exit Routine”

v “Exit Routine Environment”

– Exit Recovery

v “Exit Routine Processing” on page 78

v “Programming Considerations” on page 78

v “Entry Specifications” on page 80

– Registers at Entry

– Parameter List Contents

v “Return Specifications” on page 80

– Registers at Exit

© Copyright IBM Corp. 1988, 2015 77

v Under the task associated with the request block that requested the dump. The
routine runs under the SVRB of SNAP/ABEND.

Exit Recovery: An ESTAE routine provides recovery for SNAP. IEAVADUS should,
however, also set up its own recovery to handle any ABENDs encountered during
the formatting process. The routine should either recover and continue, or recover
and return to SNAP with a zero return code. A nonzero return code is interpreted
as a GETMAIN failure, causing the following message in the dump data set:

USER/PP CONTROL BLOCKS UNAVAILABLE

The dump is truncated because of lack of storage. The recovery routine should not
continue formatting if a X'37' ABEND occurs, because no space remains in the
dump data set. Before the recovery routine returns to SNAP, it should free all the
storage that it has obtained.

If the IEAVADUS routine does not establish recovery, or if the recovery exit
specifies continue-with-termination after an ABEND, SNAP terminates this control
block formatter entirely and continues with the next portion of the dump, if any.

Exit Routine Processing

IEAVADUS receives control automatically during the control block formatting
phase of every SNAP and ABEND dump for which the CB option was requested.

IEAVADUS builds one print line at a time in the buffer whose address is in the exit
parameter list (in the ADPLBUF field). To print the line on the dump data set,
IEAVADUS invokes the IBM-supplied print routine (via BALR or CALL). Offsets
are recommended for all formatted control blocks that are longer than one output
line. (One line generally formats 20 hexadecimal characters.) The print routine
saves registers, prints the line, blanks the buffer, restores the registers, and returns
control to IEAVADUS via register 14.

When all lines have been selected and printed, IEAVADUS restores the entry
registers and returns to SNAP/ABDUMP.

Note: IEAVADUS can format and print an entire control block in one invocation of
the IPCS control block formatter service. See “Writing IPCS Exit Routines” in z/OS
MVS IPCS Customization for information on how to define a control block model to
SNAP/ABDUMP.

Programming Considerations

Code your IEAVADUS routine to be reentrant.

Return from IEAVADUS to SNAP/ABDUMP must be made in protection key 0,
supervisor state, with no locks held (the same state as when IEAVADUS was
entered).

In order to avoid an abnormal termination later in the SNAP/ABEND routine, the
user's routines must not free either the entry parameter list or the print buffer.

Because IEAVADUS works through the IBM-supplied print routine, IEAVADUS has
no direct access to the carriage controls. Therefore, to cause a skipped line in the
dump output, you must code IEAVADUS to pass a blank buffer to the print
routine.

IEAVADUS — Select and Format Dump Data Exit

78 z/OS V2R2 MVS Installation Exits

The print routine handles page ejects.

IEAVADUS can use format patterns to format data in the output buffer by using
the IBM-supplied format service routine. The service routine can also convert data
to printable hexadecimal. This service routine is the same routine that is provided
by the IPCS service aid; see z/OS MVS IPCS Customization.

IEAVADUS can use the subpool indicated in ADPLSBPL for all working storage.

The IPCS Control Block Formatter Service: Before invoking the IPCS control block
formatter service, IEAVADUS initializes several fields in the exit parameter list (in
the ADPLPFMT area) as follows:

Field IEAVADUS Sets to:

ADPLPBLC
Number of blank lines the formatter will skip

ADPLPCHA
Control block acronym (for example, “TCBnnnn”)

ADPLBAS
0

ADPLPBLS
0

ADPLPBAV
The virtual address of the control block

ADPLPVCL
The view control; IEAVADUS sets this field to select the individual fields to
be printed in the dump

Invoking the Service: Code IEAVADUS to take the following steps to invoke the
IPCS control block formatter service:
1. Create and pass a 3-word parameter list to the control block formatter routine,

ADPLESRV. Before passing the 3-word parameter list, IEAVADUS places the
values shown in Table 2 in the parameter list.

Table 2. Values Passed to ADPLESRV

Field Description

Word 1 Address of the ABDPL

Word 2 Address of the control block service code (ADPLSCBF)

Word 3 Address of the control block formatter service parameter list (ADPLPFMT)

2. Set register to the address of the 3-word parameter list
3. Call the exit services router (its address is in the ADPLSERV field of the exit

parameter list). The remaining fields needed by the control block formatter
service have already been initialized by SNAP/ABDUMP.

See “Using the IBM-supplied Exit Service Routines” in z/OS MVS IPCS
Customization for more information about the IPCS control block formatter service.

The IBM-Supplied Print Routine: IEAVADUS can use the IBM-supplied print
routine to format data to the dump data set. The print routine is pointed to by the
ADPLPRNT field in the exit parameter list and is mapped by macro BLSABDPL

IEAVADUS — Select and Format Dump Data Exit

Chapter 13. IEAVADUS — Select and Format Dump Data Exit 79

(data area BLSABDPL). For a mapping of the BLSABDPL data area, see z/OS MVS
Data Areas in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/).

The interface to the print routine is:
v Entry: via BALR 14, 15 for each line to be written.
v Environment: PSW key 0, supervisor state, no locks held.

Entry Specifications

The ABDUMP calling routine passes to IEAVADUS the address of a parameter list
that contains information the exit routine can use to format the dump data.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of a parameter list (mapped by IHAABDPL) for the user
formatting routine

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of IEAVADUS

Parameter List Contents: Register 1 points to a parameter list that provides the
addresses of subroutines and data that the user written format routines will use.

This parameter list is mapped by the BLSABDPL mapping macro (data area
BLSABDPL). The mapping list includes all the fields of the IPCS service aid's
parameter list so user formatting routines can be invoked by either SNAP/ABEND
or IPCS.

The BLSABDPL mapping is documented in z/OS MVS Data Areas in the z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Return Specifications

A return code from IEAVADUS indicates whether the exit routine is to continue
processing or to suppress the remainder of the dump.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents at entry

15 One of the following return codes:

Return Code
Explanation

0 Continue processing.

IEAVADUS — Select and Format Dump Data Exit

80 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

4 Request is not valid.

12 Suppress the remainder of the ABEND dump. If the same exit
routine is executed under the IPCS service aid, print dump does
not suppress the remainder of the dump.

IEAVADUS — Select and Format Dump Data Exit

Chapter 13. IEAVADUS — Select and Format Dump Data Exit 81

IEAVADUS — Select and Format Dump Data Exit

82 z/OS V2R2 MVS Installation Exits

Chapter 14. IEAVMXIT — Installation-Specified MPF Exits

The IEAVMXIT installation exit or an MPF installation exit (one that you specify on
the USEREXIT parameter in an MPFLSTxx member of SYS1.PARMLIB) allows you
to modify message processing in a system or sysplex. IEAVMXIT is the
general-purpose exit routine that does processing that is common to many
messages (WTOs). An MPF exit routine does processing that is specific to a certain
type of message or a particular message ID.

For information on the MPFLSTxx member of SYS1.PARMLIB, see z/OS MVS
Initialization and Tuning Reference.

You can use IEAVMXIT or an MPF exit routine to:
v Modify the presentation of messages by:

– Changing the text and descriptor codes of selected messages.
Changing the descriptor code can alter the retention of the message on a
console screen and in the Action Message Retention Facility (AMRF). It can
also affect the color of a message when it is displayed on a console with color
capabilities.

– Changing the color, intensity, and highlighting of messages.
v Modify the routing of messages by:

– Changing the routing codes of selected messages.
– Changing either the console name or the console ID to which the message is

queued.
– Selectively routing messages to a specific console.
– Queuing messages to a particular active console.
– Queuing messages by routing codes.
– Directing messages to hardcopy only.

Topics for This Exit Appear as Follows:

v “Installing the Exit Routine” on page 84

– Replacing the Exit Routine Without a Re-IPL

v “Exit Routine Environment” on page 86

– Exit Recovery

v “Exit Routine Processing” on page 86

– Message Processing Considerations

v “Programming Considerations” on page 88

– Macro Instructions and Restrictions

– Security Consideration

v “Entry Specifications” on page 91

– Registers at Entry

– Parameter List Contents

v “Return Specifications” on page 92

– Registers at Exit

v “Coded Examples of MPF Exit Routines” on page 92

© Copyright IBM Corp. 1988, 2015 83

– Indicating whether or not to broadcast a message to active consoles.
– Reducing message traffic at specific consoles by redirecting some traffic.
– Indicating whether or not the message should be routed to the consoles that

requested to see the message as the result of a MONITOR command.
v Reduce operator workload through message suppression or automation by:

– Selectively suppressing (filtering) occurrences of messages. (MPF suppresses all
occurrences of a particular message.)

– Performing error thresholding.
– Indicating whether or not the action message retention facility (AMRF) is to

retain an action message.
– Overriding message processing facility (MPF) suppression.
– Handling the common requests (WTORs) from the system.
– Altering the automation token specified in the MFPLSTxx member of

SYS1.PARMLIB.
– Indicating whether to consider a message for automation.
– Deleting a message

If an IEAVMXIT message exit already exists in the installation and you require that
the installation uses message flood automation, you can either integrate the
existing IEAVMXIT with message flood automation, or call message flood
automation from IEAVMXIT. For more details about customizing the IEAVMXIT,
see z/OS MVS Planning: Operations.

Installing the Exit Routine

IEAVMXIT: The IEAVMXIT exit routine is an installation-coded module. When you
install this exit routine you must name it IEAVMXIT.

Specify whether you want to have IEAVMXIT active or not active at IPL by
specifying either (Y) or (N) on the UEXIT keyword on the INIT statement of the
CONSOLxx parmlib member. If you do not specify the UEXIT keyword, the
system assumes the default, which is UEXIT(Y), and activates IEAVMXIT if it is
installed.

You must provide your own IEAVMXIT routine if you specify UEXIT with the (Y)
option or expect the system to default to (Y).

If your IEAVMXIT routine is active at IPL, it will be invoked for all of the
messages that were issued during IPL and NIP. This invocation is done after NIP is
over, when the messages are re-issued to be recorded in the hardcopy log.

Operators can use the CONTROL M command to change the online status of
IEAVMXIT.

You can insert your IEAVMXIT exit routine into the control program by:
v Linkediting it into the LNKLST. Use 31-bit addresses in the routine and assemble

it with AMODE 31 and RMODE ANY.
v Activating it with the CONTROL M, UEXIT=Y command.

MPF Exit Routine: When an MPF exit routine is installed, its address is located
during the processing of the SET MPF command (and the associated processing of

IEAVMXIT — Installation-Specified MPF Exits

84 z/OS V2R2 MVS Installation Exits

the specified MPFLSTxx member of SYS1.PARMLIB). When the MPF exit routine is
to be invoked, its address is passed to the installation exit interface, and the exit
routine is invoked via standard linkage.

Do not use the name IEAVMXIT as the name of an MPF exit that you specify in
the MPFLSTxx parmlib member.

Operators can use the SET MPF command to change the online status of MPF exit
routines.

You can insert MPF exit routines into the control program by following these steps:
1. Link-edit them into an APF-authorized library that is part of the LNKLST

concatenation. Use 31-bit addresses in the routines and assemble them with
AMODE 31 and RMODE ANY.

2. Put the name of each MPF exit routine you write into the MPFLSTxx parmlib
member. Specify the name of the exit routine on the USEREXIT parameter of
the message ID entry for each message the exit routine is to process.

3. Activate the MPFLSTxx member with a SET MPF=xx command.

Replacing the Exit Routine Without a Re-IPL:

There may be times when you need to replace IEAVMXIT or an MPF exit routine,
either because you want to add functions to the routine or because the routine
abended when it was processing a particular message. Depending on whether the
routine is IEAVMXIT or an installation-specified MPF exit routine, the procedures
are as follows:

IEAVMXIT: To replace your IEAVMXIT exit routine with a fresh copy, take the
following steps:
v Linkedit the new copy of IEAVMXIT into the LNKLST.
v Refresh LLA with the MODIFY LLA,REFRESH command.

If you make the message exit available by changing the libraries referred to in
the LINKLIST concatenation, you must issue the
SETPROG LNKLST, UPDATE, JOB=CONSOLE

command to cause the Console address space to use the new LINKLIST
concatenation. The K M command runs in the Console address space.

v Reload and reactivate the exit routine using the K M, UEXIT=Y command.

MPF Exit Routine: To replace an MPF exit routine with a fresh copy, take the
following steps:
v Link-edit the new copy of the exit routine into an APF-authorized library that is

part of the LNKLST concatenation.
v Refresh LLA with the MODIFY LLA,REFRESH command.

If you make the message exit available by changing the libraries referred to in
the LINKLIST concatenation, you must issue the
SETPROG LNKLST, UPDATE, JOB=*MASTER*

command to cause the Master Schedule address space to use the new LINKLIST
concatenation. The SET MPF command runs in the Master Schedule address
space.

v Reload and reactivate the exit routine using the SET MPF=xx command.

IEAVMXIT — Installation-Specified MPF Exits

Chapter 14. IEAVMXIT — Installation-Specified MPF Exits 85

Exit Routine Environment

The IEAVMXIT and MPF exit routines receive control in the following
environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In AMODE 31 and RMODE ANY.
v With no locks held; they MUST return control with no locks held.
v Address space of the WTO issuer.

Exit Recovery: The IEAVMXIT and MPF exit routines must provide their own level
of recovery because, with one exception, the system does not continue to pass
control to an exit routine after it abnormally terminates.

The exception is when an exit routine is to be deactivated (via the CONTROL M
command for IEAVMXIT, and the SET MPF command for MPF exit routines) and
the contents of the exit routine's individual data area are nonzero. In this case, the
routine is given control before it is deactivated, so that it can clean up any work
areas it may have created.

For information on how to reactivate the exit routine if it abnormally terminates,
see “Replacing the Exit Routine Without a Re-IPL:” on page 85.

For information on the individual data area, see “Programming Considerations” on
page 88.

Exit Routine Processing

The IEAVMXIT and MPF exit routines get control during MPF processing. The
IEAVMXIT and MPF exit routines are mutually exclusive. For a particular message
ID, if you have not named an MPF exit routine to do specific processing,
IEAVMXIT, the general-purpose exit routine, receives control.

The control program calls IEAVMXIT or an MPF exit routine for all single-line
messages. For a multiple-line message, the program calls the exit routine only for
the first line of the message, unless the routine requests minor-line processing.
When the exit routine requests minor-line processing, all minor lines will be
processed. The default is to bypass minor-line processing.

Message Processing Considerations: Your exit will receive all of the parameters of
the message in a parameter list that is known as the CTXT. The CTXT is mapped
by macro IEZVX100 that is found in the SYS1.MODGEN system library. When
planning to write the IEAVMXIT or an MPF exit routine, you should consider
carefully the steps that are necessary to process the message. One step might be
sufficient to obtain your desired result; other cases might require several steps.

Request Processing: Your exit can examine all of the attributes of a message and
can alter almost all of them. To alter an attribute of a message, you must alter the
attribute in the CTXT parameter list and indicate through a "request flag" that the
alteration is to be made in the actual message. You can only alter fields that have
request flags associated with them. Alterations to fields that do not have request
flags associated with them will be ignored.

Although you can alter many of the attributes of a message, you cannot convert a
single-line message into a multi-line message or a multi-line message into a

IEAVMXIT — Installation-Specified MPF Exits

86 z/OS V2R2 MVS Installation Exits

single-line message. You cannot convert a single-line message into a Write To
Operator with Reply (WTOR) message or a WTOR message into a single-line
message.

The following are two examples of the planning that is necessary before you code
your exit routine to process a message:
v To request queuing of a message to a particular console and to eliminate

queuing by routing codes, the steps are:
1. Request queuing to a particular console
2. Request a change to the console ID or console name
3. Specify the desired console ID or console name
4. Request a change to the routing codes
5. Change the routing codes to all zeroes

v To request queuing a message by routing codes only and also change the text of
the message, the steps are:
1. Request queuing by routing codes only
2. Change the routing code to whatever is desired
3. Request a change in the message text
4. Specify the new length of the text
5. Supply the new text

Incompatible Requests: The system handles incompatible requests in one of two
ways. If IEAVMXIT or an MPF exit makes conflicting requests, the message is
either (1) processed in its original state or (2) processed according to the request
that is least detrimental to the message.

Incompatible request errors are signaled in the "MPF request flag" field in the
SYSLOG.

The following incompatible requests cause the message to be processed in its
original state:
v A request to delete a message (CTXTRDTM) and a request in the request flags in

CTXTRFLG that specifies processing other than a request to affect the
automation (CTXTRAYS or CTXTRANO) of the message. Any requests in the
extended request flags (CTXTERFS) may be specified with the request to delete a
message, including the request to suppress the message from JOBLOG
(CTXTESJL)

v A request to queue via routing codes only (CTXTRQRC) and a request to:
– Queue to a particular active console (CTXTRQPC)
– Queue to hardcopy only (CTXTRHCO)
– Change the message type (CTXTRCMF)

v A request to queue a message to hardcopy only (CTXTRHCO) and a request to
broadcast the message to active consoles (CTXTRBCA)

v A request to retain a message (CTXTRRET) and a request not to retain a message
(CTXTRNRT)

v A request to automate a message (CTXTRAYS) and a request not to automate a
message (CTXTRANO)

v A request to allow the primary subsystem to alter message routing
(CTXTEMRY) and a request not to allow the primary subsystem to alter message
routing (CTXTEMRN)

IEAVMXIT — Installation-Specified MPF Exits

Chapter 14. IEAVMXIT — Installation-Specified MPF Exits 87

The following incompatible requests cause the message to be processed according
to the request that is least detrimental to the message:
v A request to change both the name (CTXTRCNM) and the ID of the console

(CTXTRCFC) to which a message is queued causes only the console name to
change. If the specified console name is not valid, no change occurs, regardless
of whether the specified console ID is valid.

v A request to send a message to hardcopy (CTXTRFHC) and a request to not
send a message to hardcopy (CTXTRNHC) results in a hardcopy of the message.

v A request to send a message to hardcopy while allowing display at a console
(CTXTRFHC) and a request to send a message only to hardcopy (CTXTRHCO)
causes the message to be sent to hardcopy as well as displayed at any console to
which it might be queued.

v A request to send a message to only hardcopy (CTXTRHCO) and a request not
to send a message to hardcopy (CTXTRNHC) results in only sending a message
to hardcopy.

v A request to broadcast a message (CTXTRBCA) and a request to not broadcast a
message (CTXTRBCN) results in not broadcasting the message.

Previous Requests: In a JES3 complex, messages pass through MPF twice - once on
the LOCAL processor, and once on the GLOBAL processor. If your exit is running
on the GLOBAL processor, you can determine what was altered by an MPF exit on
the LOCAL processor by looking at the previous request flags pointed to by
CTXTPREQ.

You can observe the alterations that your exit has made to a message by examining
the message in the SYSLOG. Each record in the SYSLOG is mapped by macro
IHAHCLOG which is found in the SYS1.MODGEN system library. The
HCLREQFL User Exit/MPF Request Flags field in each SYSLOG record indicates
the actions taken against the message by MPF, an MPF exit, or by a subsystem on
the Subsystem Interface (SSI). If you requested that a message be deleted, it will
not be present in the SYSLOG.

If your exit made an incompatible request, this is also indicated in the HCLREQFL
field.

Programming Considerations

When you code an IEAVMXIT routine or an MPF exit routine, observe the
following conventions:
v Code the routine to be reentrant and serially reusable.
v Code the routine to use 31-bit addresses with AMODE 31 and allow residency

above the 16 MB line with RMODE ANY.
v Do not code an installation exit that receives control for a message that the exit

issues; this causes an endless loop. The exit must be coded so that when it
receives control for that message, it does not issue the message again.

v Do not use services (ENQ) or perform actions (I/O) that can result in a WAIT
since this might delay or even hang the message issuer and z/OS console
support.

v Do not use message intensity fields when coding an MPF exit and using a
multicolor screen. Message highlighting is best achieved by requesting a color
change for specified message.

IEAVMXIT — Installation-Specified MPF Exits

88 z/OS V2R2 MVS Installation Exits

v If you specify message text or a message text length value that exceeds the
maximum length allowed for that type of message, the system truncates the
message.

v When suppressing write-to-programmer (WTP) messages, either change the
routing code so that routing code 11 is not specified (CTXTRCRC is ON and
CTXTR11 is OFF), or set bit CTXTNWTP ("do not do WTP processing") ON.

v Some messages are issued using the MSGTYP parameter on the WTO macro,
causing the message to be routed to the consoles that requested to see the
message as the result of a MONITOR command. To queue these messages by
any other queueing attribute (for example, by console ID or route codes), it is
necessary to zero the message type bytes. To determine if an IBM message is
routed to consoles as a result of the MONITOR command, please refer to the
CTXTMTYP field.

v To prevent almost all further processing of a message, set these bits ON:

Bit Description

CTXTRDTM
“Delete the message.” The message will not be displayed on consoles or
logged in hardcopy.

CTXTRANO
“Automation is not required for this message.” The message will not be
sent to EMCS consoles receiving automation messages.

CTXTESJL
“Suppress from joblog.” The message will not go into the JES job log.

CTXTNWTP
“Do not do WTP processing.” The message will not be sent to a TSO
user's terminal or to the system message data set of a batch job.

Setting those four bits ON will prevent almost all of the usual message
processing. However, the message is still shown on the message SSI. Use
extreme caution when doing this to a message because there will be no record of
it in the system.

v Messages can be queued exclusively to EMCS consoles that are receiving
automation messages.To do this, use the CTXTRDTM, CTXTESJL, and
CTXTNWTP bits. Then either use CTXTRAYS or specify AUTO(YES) in the
MPFLSTxx member for a particular message.

v Do not add routing code 11 to message IEF170I, as this causes an endless loop.
v You must explicitly request processing for subsequent lines of a multiple-line

WTO, by setting the CTXTRPML bit in the CTXT to 1.
v When processing minor lines of a multiple-line WTO, the installation exit can

change only the message text of the current minor line.
v On entry, the CTXT indicates (in the CTXTSYSN field) which system sent the

message.
v If the WTO/R is a branch-entry WTO/R, the CTXTNBEW bit is set to 1. This is

for informational purposes only.
v IEAVMXIT and MPF exit routines will not be invoked during the initial

processing of synchronous WTOs or WTORs. The exit routine will be invoked
when the message is later issued (via SVC) to the hardcopy log.

v Some messages (such as $HASP373) have their text completed when WTO calls
the subsystem interface. This call occurs after the exit routine completes its
processing.

IEAVMXIT — Installation-Specified MPF Exits

Chapter 14. IEAVMXIT — Installation-Specified MPF Exits 89

v When replying to a WTOR, you should note the following restrictions:
– An exit routine should reply to a suppressed WTOR (using the MGCRE

macro); otherwise, the WTOR remains outstanding but will not be displayed
unless the operator issues a DISPLAY R command.

– An installation exit should not request deletion of a WTOR; a request for
deletion results in suppression of the WTOR. The operator will not be aware
of the WTOR unless the operator issues the DISPLAY R command.

– A WTOR may not be displayed on an MCS console when the reply is
processed before the message can be displayed. A WTOR that is replied to
with an exit routine can be seen in the hard-copy log.

– IEAVMXIT or the MPF exit routine uses the following fields in the CTXT to
determine the WTOR message for which it has been invoked:

Field Description

CTXTRPYB
Binary representation of the message reply ID

CTXTRPYL
Length of the reply ID (halfword)

CTXTRPYI
The reply id, in EBCDIC (8 bytes, left-justified, and padded with
blanks)

– A reply issued by an MPF exit to a WTOR will appear twice on the JES job
log of the job that issued the WTOR. This is because the system displays the
reply once on the job log of the job that issued the WTOR and once on the job
log of the job that issued the reply to that WTOR. An MPF exit replying to a
WTOR runs in the address space of the job that issued the WTOR, so in this
case the two jobs are the same.

Common Data Area: IEAVMXIT and all MPF exit routines receive the address of a
12-byte common data area (pointed to by CTXTCWKP in the CTXT). The common
data area allows the exit routines to share data (in common work areas) across
invocations.

Sharing Data With Other Exit Routines: You can code IEAVMXIT or an MPF exit
routine to create work areas in the extended common storage area (ECSA), by
issuing a GETMAIN or STORAGE macro, and then placing the address of these
work areas in the common data area. Whenever IEAVMXIT or the MPF exit
routines are invoked, the exit routines can access the common data area to obtain
the work area addresses. If the exits require 12 bytes or less of data, you can place
the data itself in the common data area instead of creating work areas.

The system initializes the common data area to zero; thereafter, the common data
area contains whatever values the exit routines place in it.

IEAVMXIT and the MPF exit routines must manage serialization of the common
data area.

Individual Data Area: In addition to the common data area, IEAVMXIT and all
MPF exit routines receive the address of an 8-byte individual data area (pointed to
by CTXTIWKP in the CTXT) whenever they are invoked. Each exit routine can use
its individual data area to pass data (or the address of a work area) to itself across
invocations.

IEAVMXIT — Installation-Specified MPF Exits

90 z/OS V2R2 MVS Installation Exits

Passing data to itself: To enable an exit routine to pass data to itself across
invocations, code the routine to:
1. Create a work area in the ECSA by issuing a GETMAIN or STORAGE macro
2. Place the address of the work area in the individual data area.

During subsequent invocations, the exit routine can obtain the address of the work
area by accessing its individual data area. As with the common data area, the
system initializes each individual data area to zero; thereafter, the individual data
area contains whatever values the exit routine places in it.

If the data required by the exit is 8 bytes or less, you can place the data itself
within the individual data area instead of using a work area.

IEAVMXIT and the MPF exit routines must manage serialization of the individual
data area.

Cleaning Up Work Areas: When IEAVMXIT or an MPF exit routine is to be
deactivated (via CONTROL M or SET MPF), and the contents of its individual data
area are nonzero, the exit routine is invoked before it is deactivated, so that it can
clean up any work areas it may have created.

Individual work area should be cleaned up when the exit that owns them
terminates. Common work areas should be cleaned up when the last exit using
them terminates.

The exit routine determines whether it has been called for deactivation by checking
the CTXTCIDA bit in the CTXT. The CTXTCIDA bit is set to 1 to indicate
deactivation.

When the exit routine is reactivated, its individual data area is reset to zero by the
system.

Macro Instructions and Restrictions: IEAVMXIT and MPF exit routines can issue
system macros, but you should be aware of the following restrictions:
v Do not install an exit routine that issues the WAIT macro or calls a service that

issues a WAIT. WAITs and implied WAITs can terminate console
communications.

v Do not use macros with expansions that store information into an inline
parameter list.

v Do not issue a GETMAIN or STORAGE macro for subpools that represent space
within a region (0 — 127, 240, or 250 — 252). Because the exit routine executes
as a part of the control program, it can use subpools such as 229, 230, and 249.

Security Consideration: It is the responsibility of your installation to provide any
required security for an exit routine that issues the MGCRE macro. For example,
the routine can issue the RACROUTE REQUEST=TOKENBLD macro to obtain the
user token for a user ID that is authorized to the command and then append the
security token to the MGCRE parameter list.

Entry Specifications

On entry, register 1 points to the address of the exit parameter list, the CTXT.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

IEAVMXIT — Installation-Specified MPF Exits

Chapter 14. IEAVMXIT — Installation-Specified MPF Exits 91

Register
Contents

0 Not applicable

1 Address of the pointer to the CTXT

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit routine

Parameter List Contents: Register 1 contains the address of a pointer to the exit
parameter list (the CTXT), which is mapped by macro IEZVX100 (data area CTXT).
The IEZVX100 mapping is described in z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Return Specifications

IEAVMXIT or an MPF exit routine returns to the calling module by using a branch
and return via register 14.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-15 Restored to contents at entry

Coded Examples of MPF Exit Routines

IBM provides the following examples of MPF exit routines in SYS1.SAMPLIB,
which can be used to modify message processing:
v IEACWAIT — used to cancel jobs that are waiting for volumes
v IEAOCANC — used to cancel jobs that are waiting for data sets
v IEAKTRCK — used to route status messages, for critical jobs, to a particular

console
v IEAJTRCK — used to track JES2 jobs that are started during a given period.

IEAVMXIT — Installation-Specified MPF Exits

92 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Chapter 15. IEAVTABX — Change Options / Suppress Dump
Exit

IEAVTABX is a SYSUDUMP/SYSABEND/SYSMDUMP dumping services
installation exit routine name list. It contains a list of installation exit routine
names to be given control before the dump actually is taken. These installation exit
routines allow an installation to change the dump options in effect or to suppress
the dump that would be generated by an abending task.

You can use IEAVTABX to:
v Change dump options or suppress a dump based on job name, abend code, or

other information in the SDWA.
v Tailor dumps for specific problems before the dump is taken.

Installing the Exit Routine

To install a dumping services installation exit routine in your system, you need to
take the following steps:
v Linkedit the dumping services exit routine into SYS1.LPALIB, SYS1.LINKLIB, or

a data set in the LNKLST concatenation.
v Define the dumping services exit to MVS by adding its load module name to the

exit name list in IEAVTABX.

Defining Dumping Services Exits to IEAVTABX

You can specify dumping services exits in any of the blank entries in the
IEAVTABX exit name list. At the completion of each SVC DUMP or SYSMDUMP,
the system invokes the routines in the order you specified them. That is, the exit
routine specified in entry 1 gets control first, followed by the exit routine specified
in entry 2, and so on.

IEAVTABX is a CSECT in load module IEAVTABX (which resides in SYS1.LPALIB).
The IBM-supplied version of IEAVTABX contains the following entries:

Topics for This Exit Appear as Follows:

v “Installing the Exit Routine”

v “Defining Dumping Services Exits to IEAVTABX”

– Adding and Deleting Exit Names in IEAVTABX

v “Exit Routine Environment” on page 96

– Exit Recovery

v “Exit Routine Processing” on page 96

v “Programming Considerations” on page 97

v “Entry Specifications” on page 97

– Registers at Entry

– Parameter List Contents

v “Return Specifications” on page 97

– Registers at Exit

© Copyright IBM Corp. 1988, 2015 93

v A 4-byte count field that contains hexadecimal zeroes, followed by
v Ten 8-byte entries that contain EBCDIC blanks, and are intended for customer

use, followed by
v An 8-byte entry that contains eight character zeroes (X'F0') to indicate the end of

the exit name list (the end-of-table marker).

You can add as many dumping services exit routine load modules to IEAVTABX as
you want. IBM recommends that you use the existing blank entries in IEAVTABX
before creating new ones. Ensure that the last entry is an 8-byte field that contains
eight character zeroes (X'F0').

Contents of Entries: The first 4-byte entry contains the count field, which indicates
the number of exit routine names in the table. Each 8-byte entry after the count
field contains the exit load module name.

This is how the first, second, third and end-of-table marker fields in the IEAVTABX
supplied by IBM appear:
IEAVTABX
HEX LOCATION: CONTENTS:
0000 00000000 COUNT
0004 40404040 40404040 ENTRY 1
000C 40404040 40404040 ENTRY 2
. . .
. . .
. . .
0054 F0F0F0F0 F0F0F0F0 END OF LIST

To insert a dumping services exit load module name in the list, select an available
entry (one that is set to blanks) and substitute the exit load module name in place
of the blanks. Exit names can be one to eight characters.

Examples of changing entries in IEAVTABX are shown in the sections that follow .

Adding and Deleting Exit Names in IEAVTABX: To add or delete exit names in
the exit name list, you must modify the IEAVTABX object code in SYS1.LPALIB
through the use of the SPZAP program, or through SMP/E. For more information,
refer to “Using SPZAP or SMP/E to Add or Delete Name.”

Using SPZAP or SMP/E to Add or Delete Name

Adding Exit Names: When using SPZAP or SMP/E, take the following steps:
v Use SPZAP to produce a dump of IEAVTABX. Sample JCL follows:

//DUMPJCL JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSNAME=SYS1.LPALIB,DISP=OLD
//SYSIN DD *
NAME IEAVTABX
DUMP IEAVTABX
/*

v Use the dump produced to select an available entry in IEAVTABX.
v Write the EBCDIC name of the dumping services exit module in the entry. (See

Example 1 if you are using SPZAP or Example 1A if you are using SMP/E.)

The changes will take affect on the next IPL.

IEAVTABX — Change Options / Suppress Dump Exit

94 z/OS V2R2 MVS Installation Exits

Example 1 - Using SPZAP to Add Exit Names: The following job adds EXITRTN1
to the first entry in IEAVTABX, and EXITRTN2 to the second entry in IEAVTABX.
The job then dumps IEAVTABX to verify the changes.

//EXAMPLE1 JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSNAME=SYS1.LPALIB,DISP=OLD
//SYSIN DD *
NAME IEAVTABX
VER 0000 0000,0000 COUNT FIELD
REP 0000 0000,0002 SET COUNT FIELD
VER 0004 4040,4040,4040,4040 FIRST UNUSED ENTRY
REP 0004 C5E7,C9E3,D9E3,D5F1 SET TO EXITRTN1
VER 000C 4040,4040,4040,4040 SECOND UNUSED ENTRY
REP 000C C5E7,C9E3,D9E3,D5F2 SET TO EXITRTN2
DUMP IEAVTABX
/*

Example 1A - Using SMP/E to Add Exit Names: The following job adds
EXITRTN1 to the first entry in IEAVTABX, and EXITRTN2 to the second entry in
IEAVTABX.

++USERMOD(USRMOD2).
++VER(Z038) FMID(HBB4410). /* CHANGE THE FMID AS NEEDED */
++ZAP(IEAVTABX).
NAME IEAVTABX IEAVTABX
VER 0000 0000,0000 COUNT FIELD
REP 0000 0000,0002 SET COUNT FIELD
VER 0004 4040,4040,4040,4040 FIRST UNUSED ENTRY
REP 0004 C5E7,C9E3,D9E3,D5F1 SET TO EXITRTN1
VER 000C 4040,4040,4040,4040 SECOND UNUSED ENTRY
REP 000C C5E7,C9E3,D9E3,D5F2 SET TO EXITRTN2

Deleting Exit Names: When using SPZAP or SMP/E, take the following steps:
v Use SPZAP to dump IEAVTABX (as shown earlier in the sample JCL code under

“Using SPZAP or SMP/E to Add or Delete Name” on page 94).
v Write EBCDIC blanks in place of the dump processing exit module name. (See

Example 2 if you are using SPZAP or Example 2A if you are using SMP/E.)

The changes will take effect on the next IPL.

If all entries are in use, you can replace module IEAVTABX, or expand it. Ensure
that the last entry contains 8 bytes of hexadecimal zeroes.

Example 2 - Using SPZAP to Delete Exit Names: The following job deletes
EXITRTN1 from the dump processing exit list. The job then dumps IEAVTABX to
verify the changes.

//EXAMPLE2 JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSNAME=SYS1.LPALIB,DISP=OLD
//SYSIN DD *
NAME IEAVTABX
VER 0000 0000,0002 COUNT FIELD
REP 0000 0000,0001 SET COUNT FIELD
VER 0004 C5E7,C9E3,D9E3,D5F1 EXITRTN1
REP 0004 4040,4040,4040,4040 RESTORE ENTRY 1
DUMP IEAVTABX
/*

IEAVTABX — Change Options / Suppress Dump Exit

Chapter 15. IEAVTABX — Change Options / Suppress Dump Exit 95

Example 2A - Using SMP/E to Delete Exit Names: The following job deletes
EXITRTN1 from the dump processing exit list.

++USERMOD(USRMOD3).
++VER(Z038) FMID(HBB4410). /* CHANGE THE FMID AS NEEDED */
++ZAP(IEAVTABX).
NAME IEAVTABX
VER 0000 0000,0002 COUNT FIELD
REP 0000 0000,0001 SET COUNT FIELD
VER 0004 C5E7,C9E3,D9E3,D5F1 EXITRTN1
REP 0004 4040,4040,4040,4040 REPLACE WITH BLANKS

See the following references for more information on the use of:
v SPZAP, see z/OS MVS Diagnosis: Tools and Service Aids.
v SMP, see SMP/E for z/OS User's Guide.
v Expand, see z/OS MVS Program Management: User's Guide and Reference.

Exit Routine Environment

Each routine in IEAVTABX must reside in (E)PLPA, and receives control in the
following environment:
v Enabled for interrupts
v In supervisor state with PSW key 0
v In AMODE 31
v Holding no locks
v Under the abending task and in the home address space
v Under the SVRB of ABDUMP
v Holding either or both of the following ENQs: QNAME SYSZTIOT and

SYSIEA01.

Exit Recovery: Each exit routine must establish an ESTAE and request a tailored
dump. Before each exit routine returns control to ABDUMP it must delete the
ESTAE, and it must free all storage it obtained.

Note: A request for an ABDUMP from the ESTAE will cause recursion, and no
dump will be produced for the installation exit routine error. It is suggested that
you take an SDUMP and issue a SETRP DUMP=NO. These actions cause a retry
attempt to a return point that prevents ABDUMP's recovery routine from getting
control.

Exit Routine Processing

The installation exit routines receive control sequentially prior to taking the dump.
At entry, each routine has addressability to a parameter list that is the major
communication area among the installation exit routines. The input parameter list
is mapped by the macro IHAABEPL (data area ABEP) and contains a copy of the
following types of information for each dump:
v Job name
v System completion code
v Address of the SDWA
v Module name
v Options in effect (SNAP parameter list)
v Parameter list level indicator

IEAVTABX — Change Options / Suppress Dump Exit

96 z/OS V2R2 MVS Installation Exits

|

|
|

v Return code from the previous installation exit routine

The SNAP parameter list, mapped by IHASNAPX (data area SNAPX), contains the
current dump options in effect. You can change these options in your exit routine
based on other information in the ABEPL and the SDWA.

The exit routine get control prior to taking the dump. If one of the exit routines
suppresses the dump, the system issues message IEA848I, indicating that dump
suppression has taken place.

Programming Considerations

The installation exit routines in IEAVTABX must be reentrant. Their load module
names must be eight bytes padded to the right with blanks.

The exits must obtain storage from specific subpools requested in the tailored
dump. Before returning, each exit routine must free all the storage it obtained.

The installation exit routine must not free the entry parameter list.

Entry Specifications

The ABDUMP calling routine passes to each installation exit routine in IEAVTABX
the address of a parameter list used for communication between the routines.

Registers at Entry: The contents of the registers on entry to an installation exit
routine specified in IEAVTABX are:

Register
Contents

0 Not applicable

1 Address of IHAABEPL parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the installation exit routine in IEAVTABX

Parameter List Contents: Register 1 points to the exit routine parameter list, which
is mapped by the IHAABEPL macro (data area ABEP). For a mapping of the ABEP
data area, see z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

Return Specifications

Each installation exit routine returns a code indicating whether processing should
continue.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents at entry

IEAVTABX — Change Options / Suppress Dump Exit

Chapter 15. IEAVTABX — Change Options / Suppress Dump Exit 97

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

15 One of the following return codes:

Return Code
Explanation

0 Continue processing with the current options.

4 Change options as indicated in IHAABEPL.

8 Suppress the dump.

IEAVTABX — Change Options / Suppress Dump Exit

98 z/OS V2R2 MVS Installation Exits

Chapter 16. IEAVTABX_EXIT — ABDUMP Change Options /
Suppress Dump Exit

As with the exit routines that receive control under the IEAVTABX interface,
described in Chapter 15, “IEAVTABX — Change Options / Suppress Dump Exit,”
on page 93, you can use an IEAVTABX_EXIT dynamic exit routine to change the
current dump options or suppress the dump that could be generated by an
abending task. The job name and abend code are examples of the data that is
provided for the current dump request.

Unlike the IEAVTABX interface, the dynamic exit routines are called before
ABDUMP setup processing begins. At this point in processing, no suppression
determination has been made, no ENQs are established, and the type of ABDUMP
has not yet been determined. Also, all of the associated exit routines are called,
regardless of the return code that is returned by any one of them.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEAVTABX_EXIT installation exit to the dynamic exits facility.
You can control the exit and its exit routines by using the EXIT statement of a
PROGxx PARMLIB member, the SETPROG EXIT operator command, or the
CSVDYNEX macro.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v Exit routine does not provide recovery, or the exit routine does provide recovery

but percolates the error.
v System allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system disables the exit routine after two consecutive abends.

Topics for This Exit Appear as Follows:

v “Controlling the Exit Routine Through the Dynamic Exits Facility”

v “Replacing the Exit Routine” on page 100

v “Exit Routine Environment” on page 100
– Exit Recovery

v “Exit Routine Processing” on page 100

v “Programming Considerations” on page 101

v “Entry Specifications” on page 101
– Registers at Entry
– Parameter List Contents

v “Return Specifications” on page 101
– Registers at Exit

© Copyright IBM Corp. 1988, 2015 99

|

|

|

|
|

|

|

|
|
|

|
|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|

|
|

|

Replacing the Exit Routine

For information about replacing a dynamic exit routine, see “Replacing a Dynamic
Exit Routine” on page 6.

Exit Routine Environment

The IEAVTABX_EXIT exit routine receives control in the following environment:
v Enabled for I/O and External interrupts.
v In supervisor state with PSW key 0.
v In AMODE 31.
v With no locks or ABDUMP obtained ENQs held.
v Cross memory environment is PASN=HASN=SASN.
v Under the abending task.

Exit Recovery: The exit routine should provide its own recovery routine. If the
IEAVTABX_EXIT exit routine ends abnormally, its recovery routine gets control
first. If that recovery routine percolates, or there is no recovery routine,
IEAVTABX_EXIT processing proceeds as though the exit routine had returned a
zero return code. Resource clean up processing remains the responsibility of the
exit routine.

Note: If the exit routine recovery requires a dump, it is suggested that you use the
IEATDUMP or SDUMPX interfaces and specify SETRP DUMP=NO. A user dump
could result in undesirable behavior.

Exit Routine Processing

The IEAVTABX_EXIT exit routines receive control when:
v An ABDUMP was requested for the original abend, or was requested by a

recovery routine (SETRP DUMP=YES) and no FRR retried the abend
v No subsequent recovery routine indicated that an ABDUMP should not be taken

(SETRP DUMP=NO)
v TCBPDUMP was not turned on in the jobstep task TCB
v No dump was suppressed by a previous exit routine.

The IEAVTABX_EXIT exit routines receive control regardless of whether:
v An ABDUMP DD statement was specified in the job steps
v An ABDUMP will be taken.

Every exit routine receives control sequentially before the dump is taken. At entry,
register 1 contains the address of the input parameter list.

Only one version of the two following informational messages is issued, with the
suppression version superseding the other. When any exit routine changes the
dump options, the system issues message IEA848I, indicating the name of the last
exit routine that made the modification. When any exit routine suppresses the
dump, the system issues message IEA848I, indicating the name of the last exit
routine that suppressed the dump.

When an IEAVTABX_EXIT exit routine ends abnormally, or returns a return code
of 0, no data is added. When an exit routine returns a return a code of 4, data is
added. When any exit routine returns a code of 8, no data is added and the dump
is suppressed.

IEAVTABX_EXIT — ABDUMP Change Options / Suppress Dump Exit

100 z/OS V2R2 MVS Installation Exits

|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|
|

|
|

|

|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

Programming Considerations

Code the exit routine to be reentrant.

Entry Specifications

Registers at Entry: The contents of the registers on entry to an installation exit
routine specified in IEAVTABX are:

Register
Contents

0 Not applicable

1 Address of IHAABEPL parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the installation exit routine in IEAVTABX_EXIT

Parameter List Contents: Register 1 points to the exit routine parameter list, which
is mapped by the IHAABEPL macro (data area ABEP), and contains the following
data for each dump. For a mapping of the ABEP data area, see z/OS MVS Data
Areas in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/).

The SNAPX parameter list, mapped by IHASNAPX (data area SNAPX) contains
the current dump options in effect. These options can be changed by the exit
routine. For details about data area fields, see see z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Return Specifications

Each installation exit routine returns a code indicating whether processing should
continue.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-1 Not applicable

2-13 Restored to contents at entry

14 Return address

15 One of the following return codes:

Return Code
Explanation

0 Continue processing with the current options.
4 Change options as indicated in IHAABEPL.
8 Suppress the dump.

IEAVTABX_EXIT — ABDUMP Change Options / Suppress Dump Exit

Chapter 16. IEAVTABX_EXIT — ABDUMP Change Options / Suppress Dump Exit 101

|

|

|

|
|

|
|

||

||

||

||

||

||

|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

||

||

||

||

|
|
||
||
||

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

IEAVTABX_EXIT — ABDUMP Change Options / Suppress Dump Exit

102 z/OS V2R2 MVS Installation Exits

Chapter 17. IEAVTSEL — Post Dump Exit Name List Exit

IEAVTSEL is the SVC, IEATDUMP, and SYSMDUMP post-dump exit names list. In
IEAVTSEL, you list the names of installation exit routines that the system is to
invoke after each SVC dump and SYSMDUMP. You can also set a flag bit for each
exit routine to indicate whether the system is to invoke the routine for any dump
that dump analysis and elimination (DAE) has suppressed.

Each routine receives control in the order it is listed in IEAVTSEL. However, to
prevent endless recursion processing loops, the system does not invoke any of the
exit routines in IEAVTSEL if an SVC dump request is issued by a post-dump exit
routine or its recovery routine.

You can use post-dump exit routines to:
v Extract certain information from the header record, such as the dump title,

ERRORID, time of dump, ABEND code, and failing module name. This
information can be written to a log data set (using DISP=MOD to append the
new entries at the end).

v Offload the dump from SYS1.DUMPnn to a DASD or tape data set for later
processing and log the information in a log data set.

v Start an IPCS job that would print a small portion of the dump (such as log
data, summary, and/or SUMDUMP).

Installing Post-Dump Exit Routines

To install a post-dump installation exit routine in your system, you need to take
both of the following steps:
v Linkedit the post-dump exit routine into SYS1.LPALIB, SYS1.LINKLIB, or a data

set in the LNKLST concatenation. The library containing the exit routine must be
APF-authorized.

v Define the post-dump exit to MVS by adding its load module name to the exit
name list in IEAVTSEL.

Topics for This Exit Appear as Follows:

v “Installing Post-Dump Exit Routines”

v “Defining Post-Dump Exits to IEAVTSEL” on page 104

– Methods of Adding and Deleting Exit Names in IEAVTSEL

v “Exit Routine Environment” on page 107

– Exit Recovery

v “Exit Routine Processing” on page 107

v “Programming Considerations” on page 108

v “Entry Specifications” on page 109

– Registers at Entry

– Parameter List Contents

v “Return Specifications” on page 110

– Registers at Exit.

© Copyright IBM Corp. 1988, 2015 103

|

Defining Post-Dump Exits to IEAVTSEL

You can specify post-dump exits in any of the blank entries in the IEAVTSEL exit
name list. At the completion of each SVC dump, IEATDUMP, or SYSMDUMP, the
system invokes the routines in the order you specified them. That is, the exit
routine specified in entry 1 gets control first, followed by the exit routine specified
in entry 2, and so on.

IEAVTSEL is a CSECT in load module IEAVTSEL (which resides in SYS1.LINKLIB).
The IBM-supplied version of IEAVTSEL contains the following 12-byte entries:
v Nine entries that contain EBCDIC blanks, and are intended for customer use,

followed by
v A number of entries that are reserved for use by IBM, followed by
v A final entry that contains hexadecimal zeroes to indicate the end of the exit

name list (the end-of-table marker).

You can add as many post-dump exit routine load modules to IEAVTSEL as you
want. IBM recommends that you use the existing blank entries in IEAVTSEL before
creating new ones. Ensure that you do not delete any entries in use by MVS, and
that the last entry contains 12 bytes of hexadecimal zeroes.

Contents of Entries: The first 8 bytes of each entry contain the exit load module
name, and the last 4 bytes of each entry contain a flag bit you would set under
certain conditions (explained in “The Flag Bit”). Entries that have 8 bytes of X'40'
(blanks) for the exit load module name are available for customer use.

This is how the first, second, and last entries in IEAVTSEL appear:
IEAVTSEL
HEX LOCATION: CONTENTS:
0000 40404040 40404040 00000000 ENTRY 1
000C 40404040 40404040 00000000 ENTRY 2
. . .
. . .
. . .
0078 00000000 00000000 00000000 END OF LIST

To insert a post-dump exit load module name in the list, select an available entry
(one that is set to blanks) and substitute the exit load module name in place of the
blanks. Exit names can be one to eight characters. Also, set the flag bit if
appropriate.

For examples of changing entries in IEAVTSEL, see “Methods of Adding and
Deleting Exit Names in IEAVTSEL” on page 105.

The Flag Bit

You can set the high-order bit of the 4-byte flag field to indicate whether the
corresponding exit routine is invoked for dumps that are suppressed through
dump analysis and elimination (DAE).
v If the bit is off (X‘00000000’), the exit routine gets control when dump processing

ends, if DAE has not suppressed the dump.
v If the bit is on (X‘80000000’), the exit routine gets control when dump processing

ends, even if DAE has suppressed the dump.

IEAVTSEL — Post Dump Exit Name List Exit

104 z/OS V2R2 MVS Installation Exits

Methods of Adding and Deleting Exit Names in IEAVTSEL

There are two ways to add or delete exit names in the exit name list. You can use
either of the following methods:
v Method 1: Modify the IEAVTSEL source code through the use of the DUMPEXIT

macro. Note that DUMPEXIT is defined within the IEAVTSEL module. To use
DUMPEXIT, you need the source code for IEAVTSEL. You can obtain the source
code for IEAVTSEL from the optional machine-readable material provided by
IBM. For additional information on this optional material, contact your IBM
Marketing representative.

v Method 2: Modify the IEAVTSEL object code in SYS1.LINKLIB through the use
of the SPZAP program, or through SMP/E.

Both methods are explained in greater detail in the sections that follow .

Method 1 — Using DUMPEXIT to Add Names: When using the DUMPEXIT
macro, take the following steps:
v Select an available entry in IEAVTSEL, which appears in IEAVTSEL as:

DUMPEXIT NAME=,ATTR=00000000

v On the NAME parameter of DUMPEXIT, specify the load module name of the
exit routine to be added and set the flag field if desired (on the ATTR
parameter). In this example:
DUMPEXIT NAME=EXITRTN,ATTR=xxxxxxxx

'EXITRTN' is the load module name of the post-dump exit routine to be added,
and 'xxxxxxxx' is either X‘00000000’ or X‘80000000’, depending on whether you
want the exit routine to receive control for dumps that are suppressed through
DAE.
Ensure that you do not delete any entries in use by MVS, and that the last entry
contains 12 bytes of hexadecimal zeroes.

v Assemble and linkedit the IEAVTSEL exit again.

The changes will take effect on the next IPL.

You can add as many post-dump exit routine load modules to IEAVTSEL as you
want. Additional DUMPEXIT macro invocations can be added to the post-dump
exit routine load module anywhere before the end of the table marker:
DC XL12X'000000000000000000000000'

Method 1 — Using DUMPEXIT to Delete Names: When using the DUMPEXIT
macro, take the following steps:
v Replace the entry to be deleted with:

DUMPEXIT NAME=,ATTR=00000000

v Assemble and linkedit IEAVTSEL again.

The changes will take effect on the next IPL.

Method 2 — Using SPZAP or SMP/E to Add Names: When using SPZAP or
SMP/E, take the following steps:
v Use SPZAP to produce a dump of IEAVTSEL. The sample JCL code follows:

//DUMPJCL JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*

IEAVTSEL — Post Dump Exit Name List Exit

Chapter 17. IEAVTSEL — Post Dump Exit Name List Exit 105

//SYSLIB DD DSNAME=SYS1.LINKLIB,DISP=OLD
//SYSIN DD *
NAME IEAVTSEL
DUMP IEAVTSEL
/*

v Use the dump produced to select an available entry in IEAVTSEL.
v Write the EBCDIC name of the post-dump exit module in the entry and set the

appropriate flag setting. (See Example 1 if you are using SPZAP or Example 1A
if you are using SMP/E.)

The changes will take affect on the next IPL.

Example 1 - Using SPZAP to Add Exit Names: The following job adds EXITRTN1
to the first entry in IEAVTSEL and sets the flag to indicate that EXITRTN1 should
get control even if the dump is suppressed by DAE. The job also adds EXITRTN2
to IEAVTSEL and sets the flag to indicate that EXITRTN2 should get control only
when a dump is not suppressed by DAE. The job then dumps IEAVTSEL to verify
the changes.

//EXAMPLE1 JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSNAME=SYS1.LINKLIB,DISP=OLD
//SYSIN DD *
NAME IEAVTSEL
VER 0000 4040,4040,4040,4040,0000,0000 FIRST UNUSED ENTRY
REP 0000 C5E7,C9E3,D9E3,D5F1,8000,0000 SET TO EXITRTN1
VER 000C 4040,4040,4040,4040,0000,0000 SECOND UNUSED ENTRY
REP 000C C5E7,C9E3,D9E3,D5F2,0000,0000 SET TO EXITRTN2
DUMP IEAVTSEL
/*

Example 1A - Using SMP/E to Add Exit Names: The following job adds
EXITRTN1 to the first entry in IEAVTSEL and sets the flag to indicate that
EXITRTN1 should get control even if the dump is suppressed by DAE. The job
also adds EXITRTN2 to IEAVTSEL and sets the flag to indicate that EXITRTN2
should get control only when a dump is not suppressed by DAE.
++USERMOD(USRMOD2).
++VER(Z038) FMID(HBB4410). /* CHANGE THE FMID AS NEEDED */
++ZAP(IEAVTSEL).
NAME IEAVTSEL IEAVTSEL
VER 0000 4040,4040,4040,4040,0000,0000 FIRST UNUSED ENTRY
REP 0000 C5E7,C9E3,D9E3,D5F1,8000,0000 SET TO EXITRTN1
VER 000C 4040,4040,4040,4040,0000,0000 SECOND UNUSED ENTRY
REP 000C C5E7,C9E3,D9E3,D5F2,0000,0000 SET TO EXITRTN2

Method 2 — Using SPZAP or SMP/E to Delete Name: When using SPZAP or
SMP/E, take the following steps:
v Use SPZAP to dump IEAVTSEL. Sample JCL code for using SPZAP or SMP/E to

add or delete names is shown in “Methods of Adding and Deleting Exit Names
in IEAVTSEL” on page 105.

v Write EBCDIC blanks in place of the post-dump exit module name and set the
flag bit off. (See Example 2 if you are using SPZAP or Example 2A if you are
using SMP/E.)

The changes will take effect on the next IPL.

IEAVTSEL — Post Dump Exit Name List Exit

106 z/OS V2R2 MVS Installation Exits

If all entries are in use, you can replace module IEAVTSEL, or expand it. Ensure
that you do not delete any entries in use by MVS, and that the last entry contains
12 bytes of hexadecimal zeroes.

Example 2 - Using SPZAP to Delete Exit Names: The following job deletes
EXITRTN1 from the post-dump exit list. The job then dumps IEAVTSEL to verify
the changes.

//EXAMPLE2 JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSNAME=SYS1.LINKLIB,DISP=OLD
//SYSIN DD *
NAME IEAVTSEL
VER 0000 C5E7,C9E3,D9E3,D5F1,8000,0000 EXITRTN1
REP 0000 4040,4040,4040,4040,0000,0000 RESTORE ENTRY 1
DUMP IEAVTSEL
/*

Example 2A - Using SMP/E to Delete Exit Names: The following job deletes
EXITRTN1 from the post-dump exit list.

++USERMOD(USRMOD3).
++VER(Z038) FMID(HBB4410). /* CHANGE THE FMID AS NEEDED */
++ZAP(IEAVTSEL).
NAME IEAVTSEL IEAVTSEL
VER 0000 C5E7,C9E3,D9E3,D5F1,8000,0000 EXITRTN1
REP 0000 4040,4040,4040,4040,0000,0000 REPLACE WITH BLANKS

For more information on the following topics, use these references:
v SPZAP, see z/OS MVS Diagnosis: Tools and Service Aids.
v SMP, see SMP/E for z/OS User's Guide.
v Expand, see z/OS MVS Program Management: User's Guide and Reference.

Exit Routine Environment

Each routine in IEAVTSEL receives control in the following environment:
v Enabled for interrupts.
v In supervisor state, PSW key 0.
v In AMODE 24 or 31 and RMODE ANY.
v In task mode in the DUMPSRV (dumping services) address space.
v With no locks held.

Exit Recovery: SVC dump establishes its own ESTAE before calling the IEAVTSEL
exit routines. Each exit routine must establish its own recovery.

Exit Routine Processing

The installation exit routines listed in IEAVTSEL receive control with the
completion of the dump.

Each exit routine in IEAVTSEL accesses a common parameter list (SDEPL)
containing data and an interface area that the routines can use to pass information
to succeeding routines. The SDEPL is mapped by macro IHASDEPL.

IEAVTSEL — Post Dump Exit Name List Exit

Chapter 17. IEAVTSEL — Post Dump Exit Name List Exit 107

Exit Status Flags: A post-dump exit routine listed in IEAVTSEL can determine
whether the exit routine that immediately preceded it completed successfully or
not by checking the SDEPLEXE flag bit in the SDEPL. The system sets this bit on if
the preceding exit routine returned a nonzero return code (in register 15).

A post-dump exit routine can determine whether any of the preceding exit routines
failed to complete successfully by checking the SDEPLERR flag bit in the SDEPL.
Like SDEPLEXE, this bit is set to ‘1’ if a post-dump exit returns a nonzero return
code. However, once set on, SDEPLERR is not reset when a subsequent exit routine
returns a zero return code.

Programming Considerations

Parameter List: The SDUMP exit parameter list (SDEPL) is passed to each
post-dump exit routine listed in IEAVTSEL. In addition to other useful information,
the SDEPL contains the addresses of both an exit interface area and a 200-byte exit
work area:
v The exit interface area (pointed to by SDEPLEXT) enables a post-dump exit

routine to pass information to successive post-dump exit routines. This area is
set to zeroes before the call to the first post-dump exit routine. Thereafter, the
exit interface area contains whatever values the post-dump exit routines place in
it. If an installation chooses, it can use this area as a work area

v The exit work area (pointed to by SDEPLWA) is a general work area for the
installation exit routine. This area is reset to zeroes between calls to each exit
named in IEAVTSEL

Dump Header Record: The SDEPLHD field in the parameter list (SDEPL) points to
a copy of the dump header record. The AMDDATA mapping macro maps the
dump header record, and the description of AMDDATA contains information about
fields in the header record. For details, see z/OS MVS Data Areas in the z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

The DAE section of the dump header record, which is located in the second 2K of
the header record, contains information about the dump that DAE has gathered.
Some fields in the DAE section of the header record that contain useful diagnostic
information are:

ADSSDAE
Start of the DAE section of the header record.

DAESSMVS
Symptom string used for matching.

DAECRIT
Criteria for unique symptom string generated by DAE.

DAESTAT
DAE status flags mapped by ADYDSTAT.

DAEERID
ERROR-ID from the original occurrence of the dump.

DAEDCNT
The number of occurrences of the dump.

If DAE has not suppressed the dump, the first 2K of the dump header record also
contains information that a post-dump exit routine can use. To determine whether
DAE has suppressed the dump, the exit routine can test the PRDID field in the

IEAVTSEL — Post Dump Exit Name List Exit

108 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

header record. If the PRDID field contains X'000000', DAE has suppressed the
dump, and the first 2K of the header record does not contain useful information. If
PRDID is non-zero, DAE has not suppressed the dump, and the first 2K of the
dump header record contains valid information about the dump. Some fields in
this part of the header record that contain useful diagnostic information are:

PRDDUMPT
PRDDUMPT Dump type that tells whether the dump is a stand alone
dump, an SVC dump, a SYSMDUMP, or an SVC dump for a SLIP request.

PRDDSNAM
Dump data set name to which dump was taken.

PRDERRID
Error ID from this dump.

PRDSDWA
A copy of the SDWA of the caller of SDUMP. From this SDWA you can
obtain the failing module name, the ABEND code, and any other
diagnostic data. See mapping macro SDWA in z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/)
for available fields.

The SDWA is not present on SLIP dumps.

Other Considerations:

v Dump data sets are allocated with the following attributes:
– RECFM = FBS
– LRECL = 4160
– BLKSIZE = whatever is optimum size per track

Therefore, have your exit routines specify these attributes when defining DCBs
to use to open SYS1.DUMPnn data sets.

v If an installation does not want to have the installation exit routine run in
supervisor state or key 0, the exit routine must issue a MODESET macro to
obtain the desired state.

Entry Specifications

Each exit routine in IEAVTSEL receives control sequentially and receives a common
parameter list.

Registers at Entry: The contents of the registers on entry to an installation exit
routine in IEAVTSEL are as follows.

Register
Contents

0 Not applicable

1 Address of the address of the parameter list mapped by IHASDEPL

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the installation exit routine in IEAVTSEL

IEAVTSEL — Post Dump Exit Name List Exit

Chapter 17. IEAVTSEL — Post Dump Exit Name List Exit 109

http://www.ibm.com/systems/z/os/zos/bkserv/

Parameter List Contents: Register 1 points to address of the SDUMP exit
parameter list (SDEPL) mapped by macro IHASDEPL (data area SDEPL). For a
mapping of the SDEPL data area, see z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Return Specifications

The installation exit routine returns a code indicating whether the exit was
successful.

Registers at Exit: Upon return from an installation exit routine in IEAVTSEL, the
register contents must be as follows.

Register
Contents

0-14 Restored to contents at entry

15 One of the following return codes

Return Code
Explanation

0 The exit was successful.

nonzero
The exit was unsuccessful.

The system sets exit status flags SDEPLEXE and SDEPERR based on the return
code in register 15. See “Exit Routine Processing” on page 107.

IEAVTSEL — Post Dump Exit Name List Exit

110 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Chapter 18. IEF_ALLC_OFFLN — Allocated or Offline Device
Installation Exit

When a job must wait because a device it requested is offline or allocated to
another job, MVS issues WTORs that instruct the system operator to take one of
the following actions:
v Cancel the waiting job
v Bring the device online
v Allow the job to wait for the device to become available.

You can automate your installation's responses to allocation requests for offline,
pending offline, or allocated devices, and reduce the need for operator intervention
by:
v Defining an installation default policy for handling the majority of potential

allocation requests for offline, pending offline, or allocated devices. Specify the
default policy in the ALLOCxx member of SYS1.PARMLIB.

v Coding the Allocated or Offline Device exit routine to make exceptions, if any, to
the installation default policy for certain jobs and/or devices. You can specify
the exit in the EXITxx or PROGxx member of SYS1.PARMLIB; however, IBM
recommends that you use PROGxx.

For a list of the allocation messages you can automate or suppress, see “Message
Processing” on page 119.

Using the information it receives about the job and the required device(s), the exit
routine can:

Topics for This Exit Appear as Follows:

v “Controlling the Exit Routine”

v “Replacing the Exit Routine” on page 112

v “Exit Routine Environment” on page 112

v “Exit Recovery” on page 112

v “Exit Routine Processing” on page 113

– Bringing a Device Online

– The Offline Device Table

– Letting the Job Wait for the Device

– Using the Exit with Your Installation's Default Policy

v “Programming Considerations” on page 118

– Macro Instructions and Restrictions

v “Entry Specifications” on page 119

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 120

– Registers at Exit

v “Coded Example of the Exit Routine” on page 120

© Copyright IBM Corp. 1988, 2015 111

v Cancel the job
v Cause offline devices to be brought online to satisfy the job's request
v Cause a pending offline device to be considered for allocation
v Allow the job to wait while:

– holding resources
– not holding resources

v Allow the installation's default policy to determine which action to take.
v Allow the WTOR to be issued so that the system operator can decide how to

handle the job. If the WTOR is to be issued, the exit routine can determine
which device numbers will be displayed on the WTOR.
Note: The exit routine can only exclude device numbers from the WTOR. It
cannot exclude the actual list of devices eligible for allocation.

For more information about the ALLOCxx, EXITxx, and PROGxx parmlib
members, see z/OS MVS Initialization and Tuning Reference.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the Allocated or Offline installation exit to the dynamic exits
facility. You can refer to the exit by the name IEF_ALLC_OFFLN. You can use the
EXIT statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its exit routines.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Replacing the Exit Routine

For information about replacing a dynamic exit routine, see “Replacing a Dynamic
Exit Routine” on page 6.

Exit Routine Environment

The exit routine receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 1.
v In AMODE 31 and RMODE ANY.
v With no locks held. (However, it may hold an exclusive ENQ on major name

SYSZTIOT for the address space in which the allocation occurs.)

Exit Recovery

The exit routine should provide its own recovery. If the exit routine abnormally
terminates, its recovery routine will get control.

Allocated or Offline Device Installation Exit

112 z/OS V2R2 MVS Installation Exits

If the exit routine abnormally terminates, and the exit routine does not provide its
own recovery, or the error percolates beyond the exit's recovery routine, a system
recovery routine will get control and fail the allocation request.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

MVS invokes the allocated or offline device exit routine or routines, if any are
specified to the dynamic exits facility, every time a job must wait for a device
because all devices that could satisfy the job's request are either offline, pending
offline, or allocated to other jobs. This exit is only invoked for tape requests and
non-SMS-managed DASD requests. It is not invoked for SMS-managed DASD
requests.

MVS invokes the exit routine before issuing WTORs that:
v Identify the job that is waiting
v List the devices that are unavailable
v Request operator action.

These messages are listed in “Message Processing” on page 119.

Using the Information in the Parameter List: MVS passes the address of a list of
parameters to the exit routine. The parameters contain the following information:
v Job name
v Step name
v Name of the DD statement that requires the resource
v Name of the data set that requires the resource
v If specific volumes are needed, the serial numbers of the volumes
v The number of nonspecific scratch volumes
v The number of nonspecific private volumes
v A list of the eligible devices that can be brought online

Note: The list may include pending offline devices. You can use this exit to
indicate whether these devices are eligible for allocation. If a pending offline
device is permanently resident DASD or has a reserved volume mounted, its
entry in the list contains the mounted volume serial number.

v An indication of whether the job can wait
v An indication of whether the job can bring devices online
v An indication of whether this is a repeated call to the exit
v Action to be taken in response to WTOR (this field, ACTION, is filled in by the

exit routine).
v The number of 'wait without holding resources' decisions that the system will

allow to be made for a particular device request (in the WAITNOHC field). This
number includes decisions made by both the exit routine and the installation
default. This number does not restrict the number of 'wait without holding
resources' decisions that can be made by the system operator.

v An indication of whether the system-managed tape library is online.
v An indication of whether the system-managed tape library is offline.
v An indication of whether the system-managed tape library is pending offline.

Allocated or Offline Device Installation Exit

Chapter 18. IEF_ALLC_OFFLN — Allocated or Offline Device Installation Exit 113

v For a system-managed tape library request, the name of the library.
v The relative concatenation number of the DD.
v An indication of the device class of the DD; one of the following:

– Tape device
– Communications device
– Direct access device
– Graphics display device
– Unit record device
– Character reader device
If the request is for an esoteric group name that includes both tape and direct
access devices, both the tape and direct access indicators will be set.

Using the information in the parameter list, the exit routine determines how the
system should respond to the allocation request. The exit routine indicates its
decision to the system by placing a value in the ACTION field of the parameter
list.

See “Return Specifications” on page 120 for the specific values the exit routine can
return.

Bringing a Device Online

The system indicates to the exit routine that the job can bring devices online by
setting the OKONLINE bit to 1 (in the exit parameter list).

If the exit routine attempts to bring a device online when the OKONLINE bit is
not set to 1, the system will ignore the exit routine's decision and use the
installation default policy (specified in the ALLOCxx parmlib member) to
determine how to respond to the allocation request. If your installation does not
define a default policy for handling allocated or offline device requests, or if no
ALLOCxx parmlib member is defined, the system will issue WTORs so that the
system operator must respond to the job's allocation request.

The exit routine brings device(s) online by:
v Setting the ACTION field to X'08'.
v Selecting the device(s) from the offline device table (as described in “The Offline

Device Table” on page 116).

Selecting an Offline Device to Bring Online: If you plan to use the exit routine to
cause devices to be brought online, code the routine to check the input bits in the
UXSTATUS field of the offline device table. Before selecting the device(s), check:
v The UXOFFLNE bit indicates whether the device has been varied offline (for

maintenance, for example). If a device has been varied offline, the system sets
the UXOFFLNE bit to 1.

v The UXNOTACC bit indicates whether the device is accessible to the exit
routine. If the device is not accessible (not physically defined in the system), the
system sets the UXNOTACC bit to 1.
The exit routine can cause only accessible devices to be brought online.

v The UXPENDNG bit indicates whether the device is pending offline. If a device
is pending offline it cannot be brought online by the exit. However, it can be
selected for allocation consideration. See “Selecting a Pending-Offline Device for
Allocation Consideration” on page 116.

Allocated or Offline Device Installation Exit

114 z/OS V2R2 MVS Installation Exits

v The UXVCOFFL bit indicates whether the device was varied offline by a
configuration manager (for example, ESCON Manager). If the exit routine
attempts to bring the device online, the device will be brought online.

v The UXVLOFFL bit indicates whether the device is offline because it resides in
an offline system-managed tape library. If the system-managed tape library is
offline, the system sets the UXVLOFFL bit to 1.

The exit routine brings the device online by setting the UXONLINE bit in the
UXSTATUS field to 1.

Be aware that if the chosen devices cannot be successfully brought online,
Allocation will retry the allocation request anyway. If the allocation request still
cannot be satisfied, the exit routine might be driven again. The parameter list does
not indicate that the device was not able to be brought online previously. The exit
routine should consider this when choosing devices, and should be aware that it
could cause a loop if it repeatedly chooses devices that cannot be brought online.

Selecting an Eligible System-Managed Tape Library Device

The system indicates whether a request is a system-managed tape library request
by setting the LBREQIND bit to one in the exit parameter list. For system-managed
tape library requests, the exit or installation default policy determines whether:
v The exit is to select an eligible system-managed tape library device. The exit

varies the device online only when the named library is already online.
v The operator is to select an eligible system-managed tape library device. To vary

the device online, the operator must first ensure that the named library is online
by issuing the DISPLAY SMS,LIBRARY command (described in z/OS MVS
System Commands). If the library is offline or pending offline, the operator must
vary the library online before varying the device online by issuing the VARY
SMS,LIBRARY command (described in z/OS MVS System Commands).

An eligible device in a system-managed tape library might be offline for one of the
following reasons:
v The device resides in a system-managed tape library that is offline or pending

offline
v There are no paths to the device
v A reason other than a VARY LIBRARY offline command; for example, because

the operator varied the tape device offline

Selecting an eligible tape library device based on device priority

The device priority value (UXDEVPRI) is added with the fix for APAR OA49373
(z/OS V2R1 and above) and is used in a system-managed tape environment to
reflect device preference information:
v The priority value is a number from 0-255, where 255 is the best or preferred

value, and 0 is the worst value.
v The priority value isn't unique, which means that multiple devices might have

the same value.
v Not all of the priority values are necessarily used. So for a given request, the

best device the exit sees might have a priority value of 250 (instead of 255), or
the best device might be 255 and the next best device might be 245, for example.

v Some allocation requests might not be prioritized - for those requests, the
priority value is 0.

Allocated or Offline Device Installation Exit

Chapter 18. IEF_ALLC_OFFLN — Allocated or Offline Device Installation Exit 115

|

|
|
|

|
|

|
|

|
|
|

|
|

Bit flag UXPRVALD indicates whether the devices in the offline device list have
been assigned priority values. The devices in the list are presented in the same
order that they were before APAR OA49373.

Priority values are returned in the following cases:
v The Device Allocation Assist (DAA) function is being used in the TS7700

Virtualization Engine to prioritize which clusters (or distributed libraries) are
preferred on a specific mount request.

v When multiple libraries are eligible for a scratch request, some libraries might be
above or below scratch threshold. Devices in libraries above scratch threshold
receive a priority value of 255 and devices in libraries below scratch threshold
receive a priority value of 254.

Selecting a Pending-Offline Device for Allocation Consideration

The exit can be used to indicate whether a specific pending-offline device will be
considered for allocation. A pending-offline device will be allocated only if no
other online device becomes available. The device will remain in pending offline
status.

The Offline Device Table

The offline device table (pointed to in the exit parameter list) contains the device
numbers of all offline or pending offline devices that match the device type that
the job specified in the allocation request.

The system sets the first 4 bytes of the offline device table to the number of entries
(devices) in the table. The 4-byte field is followed by one 12-byte entry for each
offline device:

Bytes Contents

1-4 contain the device number (in EBCDIC).

5 the UXSTATUS field contains information about the offline status of the
device.

6 priority value

7-12 contain the VOLSER of the pending offline permanently resident DASD or
reserved device is a volume is mounted.

The format of the offline device table follows:

Number of Entries (4 bytes)

Device Number (4 bytes)

Device Number (4 bytes)

Status (1 byte)

Status (1 byte)

Reserved (1 byte)

Priority (1 byte)

Pending-offline Volser (6 bytes)

Pending-offline Volser (6 bytes)

Pending-offline Volser (6 bytes)Reserved (1 byte)Status (1 byte)Device Number (4 bytes)

•

•

•

•

•

•

•

•

Allocated or Offline Device Installation Exit

116 z/OS V2R2 MVS Installation Exits

|

|

|
|
|

|

|
|
|

|
|
|
|

|

Letting the Job Wait for the Device

The system indicates to the exit routine (in the OKTOWAIT bit of the exit
parameter list) whether the job is allowed to wait. If OKTOWAIT is set to 1, the
exit routine can cause the job to wait by setting the ACTION field to indicate one
of the following:
v The job will wait holding any resources it may have obtained
v The job will wait without holding any resources it may have obtained.

If the exit routine attempts to cause the job to wait when OKTOWAIT is set to 0,
the system will ignore the exit routine's decision and use the installation default
policy (specified in the ALLOCxx parmlib member) to determine how to respond
to the allocation request. If your installation does not define a default policy for
handling allocated or offline device requests, or if no ALLOCxx parmlib member is
defined, the system will issue messages (listed in “Message Processing” on page
119) so that the system operator must respond to the job's allocation request.

If the exit routine allows the job to wait, the system will issue an eventual action
message (IEF289E) to inform the operator that the job is waiting for a device.

Using the Exit with Your Installation's Default Policy

If you code the exit, use it in conjunction with your installation default policy for
jobs that must wait for allocated or offline devices. Define your installation's
default policy by specifying one of the following parameters on the POLICY
keyword of the ALLC_OFFLN statement:

Parameter
Action

WTOR
Allow the messages to be issued so that the system operator must decide
whether to cancel the job or let the job wait.

Note: In a sysplex environment, you will want to reduce the number of
WTORs; this exit might be a candidate for that consideration.

WAITHOLD
Allow jobs to wait for devices while holding obtained resources.

WAITNOH
Allow jobs to wait for devices without holding obtained resources.

CANCEL
Cancel jobs that must wait for allocated or offline devices.

When you have chosen a default policy to handle the majority of possible requests
for allocation of pending offline, offline, or already-allocated devices use the exit
routine to make exceptions, if any, for certain jobs and/or devices. The exit
routine's decisions will override the installation's default policy.

If you do not code the exit routine, MVS will use your installation's default policy
(specified in the ALLOCxx parmlib member) to determine how to respond to all
allocation requests for allocated pending offline, or offline devices. If your
installation does not define a default policy, the system will always issue the
WTORs.

Allocated or Offline Device Installation Exit

Chapter 18. IEF_ALLC_OFFLN — Allocated or Offline Device Installation Exit 117

Programming Considerations

Observe the following conventions when coding the Allocated or Offline Device
Exit routine:
v Code the exit routine to be reentrant.
v Do not code the exit routine to issue dynamic allocation calls.
v Do not code an allocated or offline device exit routine if the decision of the exit

routine will always be the same regardless of which devices are needed. Instead,
allow your installation's default policy to determine how to handle the allocation
request.

v The exit is called every time a job requires a device that is either offline, pending
offline or allocated to another job. Therefore, when coding the exit routine, you
should be aware that an increased path length will increase processor utilization
and may degrade performance.

v When the exit routine determines that the system should issue WTORs (by
setting the ACTION field to X'40'), the routine can modify the list of device
numbers that will be displayed, via WTOR, to the system operator. The exit
routine can exclude certain device numbers from the WTOR by setting the
UXEXCLUD bit of the UXSTATUS field for the device (in the offline device
table) to 1.

v When using system-managed tape libraries, it is possible to loop between offline
recovery and the exit. In this situation, offline recovery calls the exit, which
selects a tape device that is offline because it is in an offline system-managed
tape library. However, offline recovery cannot bring the selected device online
until the operator brings the library online. Therefore, the device is not removed
from the table of offline eligible devices, and offline recovery again calls the exit.
This looping will occur up to the number of times specified by the MAXNWAIT
parameter of the ALLOCxx parmlib member. Then the system will use the
installation-defined default action.

v Before using the UXOFLPTR pointer field in the input parameters, check the
field's value to see if there are offline devices eligible to be allocated. A
UXOFLPTR value of zero indicates that no offline devices are eligible for this
request, and only already allocated devices are eligible.

v Use the exit routine, in conjunction with the installation default policy, to
automate your installation's responses to WTORs such as the following:
– IEF157E
– IEF238D
– IEF244I
– IEF433D
– IEF434D
– IEF490I.

v When the exit routine requests to bring one or more devices online by setting
the ACTION field to X'08' the system will attempt to bring the requested
device(s) online, and then retry the allocation. The system will retry the
allocation regardless of whether the devices can be brought online, and this
might result in the exit routine being called again for the same allocation
request. If the exit routine chooses the same devices to bring online, a loop will
result where Allocation repeatedly calls the exit routine to attempt to satisfy the
request, and the exit routine takes an action that will be unsuccessful and so the
request can never be satisfied.

Allocated or Offline Device Installation Exit

118 z/OS V2R2 MVS Installation Exits

Message Processing

Use the exit routine, in conjunction with the installation default policy, to suppress
or automate your installation's responses to the following message:
v IEF238D - Reply [device name] [,] ['wait'] or 'cancel'

Note: In a sysplex environment, determine which, if any, devices will require
job-level support; for these devices, code the exit to mark the REPLY with the
device number. For all other devices (the majority), determine whether this
message should set UXONLINE to 1 to allow offline devices to be brought
online and to allow a pending offline device to be considered for allocation.

v IEF244I - Unable to allocate <nnn> units(s). At least <nnn> allocated or offline
units are needed

v IEF433D - Wait requested — reply hold or nohold.

In addition, you might also avoid getting one or more of the following messages,
which the system issues in response to invalid replies to the preceding messages:
v IEF434D - Invalid reply (to message IEF433D). Reply hold or nohold.
v IEF490I - Invalid reply (to message IEF238D) for one of the following reasons:

– Device is not accessible
– Required system managed volume is not available
– Required volume is not available
– Replied device is not eligible
– Device could not be found in the configuration.
– Device found in an offline library.

v IEF877E - jjobname NEEDS xxx UNIT(S) FOR stepname ddname FOR
VOLUME(S): ser, ...,ser SCRTCH nn PRIVAT nn | LIBRARY: LIBNAME
LIBRARY STATUS: STATUS state1 dev ...dev state2

v IEF878I - END OF IEF877E FOR stepname ddname

Macro Instructions and Restrictions

Do not code the exit routine to issue the WAIT macro or call a service that issues a
WAIT, such as WTOR.

Entry Specifications

The system passes the address of the exit parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are:

Register
Contents

0 Not applicable

1 Address of a pointer to the exit parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit routine

Allocated or Offline Device Installation Exit

Chapter 18. IEF_ALLC_OFFLN — Allocated or Offline Device Installation Exit 119

Parameter Descriptions: Register 1 contains the address of a pointer to the exit
parameter list, the UXPARMD, which is mapped by macro IEFZB481 (data area
UXPARMD). For a mapping of the UXPARMD data area, see z/OS MVS Data Areas
in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Return Specifications

The exit routine indicates its decision to the system by setting the ACTION field
(in the UXPARMD) to one of the following values:

Value Meaning

X'80' Cancel the job

X'40' Issue the WTOR so that the operator can determine what to do

X'20' Let the job wait without holding resources

X'10' Let the job wait while holding resources

X'08' Bring the device online or, if pending offline, allow the device to be
considered for allocation

X'00' Let the installation default policy determine what to do

If the exit routine does not return a valid value in the ACTION field, the system
will ignore the exit, issue a message, and use the installation default policy to
make the decision.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents at entry

15 0

Coded Example of the Exit Routine

For your reference, IBM provides a coded example of this exit routine in
SYS1.SAMPLIB. The member is named IEFOFLNE.

Allocated or Offline Device Installation Exit

120 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/

Chapter 19. IEF_ALLC_EVENT — Allocation Event Installation
Exit

The IEF_ALLC_EVENT exit is driven at various points in the allocation process,
for example, at the start and end of batch allocation or dynamic allocation.
Parameters describing the function are passed to the exit. These parameters are
mapped by the IEFALCXT mapping macro.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the Allocation Event installation exit to the dynamic exits facility.
You can refer to the exit by the name IEF_ALLC_EVENT. You can use the
CSVDYNEX macro to control this exit and its exit routines.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Replacing the Exit Routine

For information about replacing a dynamic exit routine, see “Replacing a Dynamic
Exit Routine” on page 6.

Topics for This Exit Appear as Follows:

v “Controlling the Exit Routine”

v “Replacing the Exit Routine”

v “Exit Routine Environment” on page 122

v “Exit Recovery” on page 122

v “Exit Routine Processing” on page 122

v “Programming Considerations” on page 123

– Macro Instructions and Restrictions

v “Entry Specifications” on page 123

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 123

– Registers at Exit

v “Coded Example of the Exit Routine” on page 124

© Copyright IBM Corp. 1988, 2015 121

Exit Routine Environment

The exit routine receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 1.
v In AMODE 31 and RMODE ANY.
v With no locks held.

Exit Recovery

The exit routine should provide its own recovery. If the exit routine abnormally
terminates, its recovery routine will get control.

If the exit routine abnormally terminates, and the exit routine does not provide its
own recovery, or the error percolates beyond the exit's recovery routine, a system
recovery routine will get control and fail the allocation request.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

MVS invokes the Allocation Event exit routine or routines, if any are specified to
the dynamic exits facility, whenever an event takes place.

Using the Information in the Parameter List: MVS passes the address of a list of
parameters to the exit routine. The parameters contain the following information:
v Eye-Catcher ALCXT
v Version ID
v Length of the parameter list
v Job name
v Step name
v Name of the step in the procedure
v One of the following functions indicating the nature of the event:

– Beginning of batch allocation – 01
– End of batch allocation -- 02
– Beginning of dynamic allocation – 03
– End of dynamic allocation – 04
– Abend in allocation -- 05
– Concatenate DD function -- 06
– Deconcatenate DD function -- 07
– Unallocation (batch) -- 08
– Unallocation (Dynamic) -- 09
– Beginning of Recovery Allocation Wait -- 0A
– End of Recovery Allocation Wait -- 0B

v Pointer to an area, which contains function related data
– End of batch allocation

Return code (0 for Success and 4 for Failure)
– Beginning of dynamic allocation request

Allocation Event Installation Exit

122 z/OS V2R2 MVS Installation Exits

|

|

DDNAME
– End of dynamic allocation request

DDNAME
Return code (0 for Success and 4 for Failure)

The exit routine can use the information in the parameter list. Because there is no
action to be taken, the exit routine does not need to provide any response. MVS
does not expect any response from the Allocation Event Exit.

Programming Considerations

Observe the following conventions when coding the IEF_ALLC_EVENT Exit
routine:
v Code the exit routine to be reentrant.
v Do not code the exit routine to issue dynamic allocation calls.
v Do not code the exit routine if you do not need to be notified of an Allocation

event.
v The exit is called every time a step allocation begins or ends. Therefore, when

coding the exit routine, you should be aware that an increased path length will
increase processor utilization and may degrade performance.

v Make sure that the exit routine does not get affected when new function code
support is added.

Macro Instructions and Restrictions: Do not code the exit routine to invoke
dynamic allocation.

Entry Specifications

The system passes the address of the exit parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of a pointer to the exit parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit routine

Parameter Descriptions: Register 1 contains the address of a pointer to the exit
parameter list, which is mapped by macro IEFALCXT.

Return Specifications

MVS does not provide any field for a response; the exit does not return a valid
value.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Allocation Event Installation Exit

Chapter 19. IEF_ALLC_EVENT — Allocation Event Installation Exit 123

Register
Contents

0-14 Restored to contents at entry

15 0

Coded Example of the Exit Routine

There is no coded example of this exit routine in SYS1.SAMPLIB.

Allocation Event Installation Exit

124 z/OS V2R2 MVS Installation Exits

Chapter 20. IEF_ALLC_MOD — Allocation Modify DDname
Installation Exit

The IEF_ALLC_MOD exit is driven when the service routine IEFDDSRV requests
to modify a DDNAME. Parameters describing the modification are passed to the
exit. These parameters are mapped by the IEFDISXT mapping macro.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the Allocation Modify DDname installation exit to the dynamic
exits facility. You can refer to the exit by the name IEF_ALLC_MOD. You can use
the CSVDYNEX macro to control this exit and its exit routines.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Replacing the Exit Routine

For information about replacing a dynamic exit routine, see “Replacing a Dynamic
Exit Routine” on page 6.

Topics for This Exit Appear as Follows:

v “Controlling the Exit Routine”

v “Replacing the Exit Routine”

v “Exit Routine Environment” on page 126

v “Exit Recovery” on page 126

v “Exit Routine Processing” on page 126

v “Programming Considerations” on page 126

– Macro Instructions and Restrictions

v “Entry Specifications” on page 127

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 127

– Registers at Exit

v “Coded Example of the Exit Routine” on page 127

© Copyright IBM Corp. 1988, 2015 125

Exit Routine Environment

The exit routine receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 1.
v In AMODE 31 and RMODE ANY.
v With no locks held.

Exit Recovery

The exit routine should provide its own recovery. If the exit routine abnormally
terminates, its recovery routine will get control.

If the exit routine abnormally terminates, and the exit routine does not provide its
own recovery, or the error percolates beyond the exit's recovery routine, a system
recovery routine will get control and fail the allocation request.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

MVS invokes the Allocation Modify exit routine or routines, if any are specified to
the dynamic exits facility, every time it modifies DDname for an IEFDDSRV service
request.

Using the Information in the Parameter List: MVS passes the address of a list of
parameters to the exit routine. The parameters contain the following information:
v Eye-catcher (IEFDISXT)
v Version ID
v Length of the parameter list
v Modify function

– Modify DDNAME – 01
v Job name
v Step name
v Name of step in the procedure
v Modify Parameters

– Address of the DSAB modified
– DDNAME before Modification
– DDNAME after Modification

The exit routine can use the information in the parameter list. Because there is no
action to be taken, the exit routine does not need to provide any response. MVS
will not expect any response from the Modify Exit.

Programming Considerations

Observe the following conventions when coding the IEF_ALLC_MOD Exit routine:
v Code the exit routine to be reentrant.
v Do not code the exit routine to issue dynamic allocation calls.

Allocation Modify DDname Installation Exit

126 z/OS V2R2 MVS Installation Exits

v Do not code the exit routine if you do not need to be notified of a DDname
Modification by the IEFDDSRV request.

v The exit is called every time a DDname is modified by IEFDDSRV. Therefore,
when coding the exit routine, you should be aware that an increased path length
will increase processor utilization and may degrade performance.

Macro Instructions and Restrictions: Do not code the exit routine to invoke
dynamic allocation.

Entry Specifications

The system passes the address of the exit parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of a pointer to the exit parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit routine

Parameter Descriptions: Register 1 contains the address of a pointer to the exit
parameter list, which is mapped by macro IEFDISXT.

Return Specifications

MVS does not provide any field for a response; the exit does not return a valid
value.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents at entry

15 0

Coded Example of the Exit Routine

There is no coded example of this exit routine in SYS1.SAMPLIB.

Allocation Modify DDname Installation Exit

Chapter 20. IEF_ALLC_MOD — Allocation Modify DDname Installation Exit 127

128 z/OS V2R2 MVS Installation Exits

Chapter 21. IEF_ALLC_UNLOAD — Allocation Event
Installation Exit

The IEF_ALLC_UNLOAD exit is driven when a device is unloaded by Device
Allocation outside of normal end-of-job or end-of-step device unload processing. It
is invoked during processing such as VARY OFFLINE or UNLOAD commands.

This exit is called before the unload event starts and after the unload is complete.
It is intended for programs that need to perform pre-processing or post-processing
for an unload event. If your program only needs to be notified of an unload
occurring and does not need to perform pre- or post-processing, then ENF function
code 25 should be used instead.

Parameters describing the function are passed to the exit. These parameters are
mapped by the IEFUNLXT mapping macro.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the Allocation Event installation exit to the dynamic exits facility.
You can refer to the exit by the name IEF_ALLC_UNLOAD. You can use the
CSVDYNEX macro to control this exit and its exit routines.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Replacing the Exit Routine

For information about replacing a dynamic exit routine, see “Replacing a Dynamic
Exit Routine” on page 6.

Topics for This Exit Appear as Follows:

v “Controlling the Exit Routine Through the Dynamic Exits Facility”

v “Replacing the Exit Routine”

v “Exit Routine Environment” on page 130

v “Exit Recovery” on page 130

v “Exit Routine Processing” on page 130

v “Programming Considerations” on page 131

v “Entry Specifications” on page 131

v “Return Specifications” on page 131

v “Coded Example of the Exit Routine” on page 132

© Copyright IBM Corp. 1988, 2015 129

Exit Routine Environment

The exit routine receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 1.
v In AMODE 31 and RMODE ANY.
v With no locks held.
v May be invoked with any of the following ENQs held:

SYSIEFSD.Q4
SYSIEFSD.VARYDEV
SYSIEFSD.CHNGDEVS

The parameter list contains information indicating which of the ENQs are obtained
by another task on behalf of the unload process.

Exit Recovery

The exit routine should provide its own recovery. If the exit routine abnormally
terminates, its recovery routine will get control.

If the exit routine abnormally terminates, and the exit routine does not provide its
own recovery, or the error percolates beyond the exit's recovery routine, a system
recovery routine will get control and fail the allocation request.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

MVS invokes the Unload Event exit routine or routines, if any are specified to the
dynamic exits facility, whenever an unload event takes place.

Using the Information in the Parameter List: MVS passes the address of a list of
parameters to the exit routine. The parameters contain the following information:
v Eye-catcher (UNLXT)
v Version ID
v Length of the parameter list
v One of the following functions indicating the nature of the event:

– Beginning of Unload event - 01
– End of Unload event - 02
– ABEND occurred during unload - 03

v Flags indicating which of the following ENQs are held by the caller:
– SYSIEFSD.CHNGDEVS
– SYSIEFSD.VARYDEV
– SYSIEFSD.Q4

v Address of the UCB of the device being unloaded. The system does not pin the
UCB before calling the exit.

The exit routine can use the information in the parameter list. Because there is no
action to be taken, the exit routine does not need to provide any response from the
Unload Event exit.

Allocation Unload Device Exit

130 z/OS V2R2 MVS Installation Exits

Programming Considerations

Observe the following conventions when coding the IEF_ALLC_UNLOAD Exit
routine:
v Code the exit routine to be reentrant.
v Do not code the exit routine to issue dynamic allocation calls.
v Do not code the exit routine if you do not need to be notified of an Unload

event.
v The exit is called whenever an unload event begins or ends. Therefore, when

coding the exit routine, you should be aware that an increased path length will
increase processor utilization and may degrade performance. This includes
issuing WAITs or invoking routines that may issue WAITs. Also, because of the
serialization environment, other system processes may be delayed until the exit
routine completes if the exit was invoked with any ENQs held.

v Make sure that the exit routine does not get affected when new function code
support is added.

Macro Instructions and Restrictions: Do not code the exit routine to invoke
dynamic allocation.

Entry Specifications

The system passes the address of the exit parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the exit parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit routine

Parameter Descriptions: Register 1 contains the address of the exit parameter list,
which is mapped by macro IEFUNLXT.

Return Specifications

MVS does not provide any field for a response; the exit does not return a valid
value.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents at entry

15 0

Allocation Unload Device Exit

Chapter 21. IEF_ALLC_UNLOAD — Allocation Event Installation Exit 131

Coded Example of the Exit Routine

There is no coded example of this exit routine in SYS1.SAMPLIB.

Allocation Unload Device Exit

132 z/OS V2R2 MVS Installation Exits

Chapter 22. IEF_SPEC_WAIT — Specific Waits Installation Exit

When a job must wait for a specific volume or device to become available, MVS
issues a WTOR that requests the system operator to cancel the job or let the job
wait for the volume or device. You can automate your installation's responses to
specific waits allocation requests and reduce the need for system operator
intervention by:
v Defining an installation default policy for handling a majority of the specific

waits allocation requests that are likely to occur. Specify the default policy in the
ALLOCxx member of SYS1.PARMLIB.

v Coding the specific waits exit routine to make exceptions (for certain jobs
and/or volumes) to the installation default policy. You can specify the exit in the
EXITxx or PROGxx member of SYS1.PARMLIB, but IBM recommends that you
use PROGxx.

Using the information it receives about the job, the specific waits exit routine can:
v Cancel the job
v Allow the job to wait while:

– holding resources
– not holding resources

v Allow the installation default policy to determine the action to take.
v Allow the WTORs to be issued so that the system operator can determine the

action to take.

For a list of the allocation messages you can automate or suppress, see the
“Programming Considerations” on page 136.

For more information on the ALLOCxx, EXITxx and PROGxx members of
SYS1.PARMLIB, see z/OS MVS Initialization and Tuning Reference.

Topics for This Exit Appear as Follows:

v “Controlling the Exit Routine Through the Dynamic Exits Facility” on page 134

v “Replacing the Exit Routine” on page 134

v “Exit Routine Environment” on page 134

v “Exit Recovery” on page 134

v “Exit Routine Processing” on page 134

v “Programming Considerations” on page 136

– Macro Instructions and Restrictions

v “Entry Specifications” on page 137

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 137

– Registers at Exit

v “Coded Example of the Exit Routine” on page 138

© Copyright IBM Corp. 1988, 2015 133

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the specific waits installation exit to the dynamic exits facility. You
can refer to the exit by the name IEF_SPEC_WAIT. You can use the EXIT statement
of the PROGxx parmlib member, the SETPROG EXIT operator command, or the
CSVDYNEX macro to control this exit and its exit routines.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Replacing the Exit Routine

For information about replacing a dynamic exit routine, see “Replacing a Dynamic
Exit Routine” on page 6.

Exit Routine Environment

The exit routine receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 1.
v In AMODE 31 and RMODE ANY.
v With no locks held. (However, it may hold an exclusive ENQ on major name

SYSZTIOT for the address space in which the allocation occurs.)

Exit Recovery

The exit routine should provide its own recovery. If the exit routine abnormally
terminates, its recovery routine will get control.

If the exit routine abnormally terminates, and the exit routine does not provide its
own recovery, or the error percolates beyond the exit's recovery routine, a system
recovery routine will get control. The system will fail the allocation request.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

MVS invokes the specific waits exit routine or routines every time a job must wait
for a specific volume or a specific device to become available.

Example of a Wait for a Specific Volume: In the following example, JOB1 acquires
a shareable ENQ on volume 3350A0. JOB2 attempts to acquire an exclusive ENQ
on the same volume:

IEF_SPEC_WAIT: Specific Waits Installation Exit

134 z/OS V2R2 MVS Installation Exits

//JOB1 JOB
//DD ...,UNIT=12A0,VOL=SER=3350A0...

//JOB2 JOB
//DD ...,UNIT=12A1,VOL=SER=3350A0...

Because JOB2 must have exclusive access to the volume, JOB2 must wait for JOB1
to DEQ from the volume. MVS invokes the specific waits exit for JOB2's allocation
request because JOB2 must wait for a specific volume.

Example of a Wait for a Specific Device: In the following example, JOB1 and JOB2
acquire ENQs on different specific volumes, 3350A2 and 3350B2. JOB2 specifies the
same device, 2A0, that JOB1 controls.
//JOB1 JOB
//DD ...,UNIT=12A0,VOL=SER=3350A2...

//JOB2 JOB
//DD ...,UNIT=12A0,VOL=SER=3350B2...

MVS invokes the specific waits exit for JOB2's allocation request because JOB2
must wait for a specific device.

Using Information in the Exit Parameter List: Before issuing WTORs that identify
the volume(s) that are unavailable and request operator action, MVS invokes the
specific waits exit routine, if one is specified, and passes it a set of parameters that
contains the following information about the allocation request:
v Job name
v Step name
v Name of the DD statement that requires the specific volume or device
v Name of the data set that requires the specific volume or device
v Serial number of the specific volume (if one is required)
v Device number of the device that is required
v An indication of whether the job is waiting for both a specific volume and a

device, or for a specific device only.
v The number of 'wait without holding resources' decisions that the system will

allow both the exit routine and the installation default to make for a particular
device allocation request. This number (in the WAITNOHC field of the exit
parameter list) does not limit the number of 'wait without holding resources'
decisions that can be made by the system operator.

v Action to be taken in response to WTOR (this field, ACTION, is filled in by the
exit routine).

Using the information in the parameter list, the exit routine determines how the
system should respond to the allocation request. The exit routine indicates its
decision to the system by placing a value in the ACTION field of the exit
parameter list.

See “Return Specifications” on page 137 for the specific values the exit routine can
return.

Using the Exit with Your Installation's Default Policy: If you code the exit, use it
in conjunction with your installation default policy for jobs that must wait for

IEF_SPEC_WAIT: Specific Waits Installation Exit

Chapter 22. IEF_SPEC_WAIT — Specific Waits Installation Exit 135

specific volumes. Determine your installation's default policy by specifying one of
the following parameters on the POLICY parameter of the SPEC_WAIT statement:

Parameter
Action

WTOR
Allow the specific wait messages to be issued so that the system operator
must decide whether to cancel the job or let the job wait. (For a list of
these messages, see “Programming Considerations.”)

WAITHOLD
Allow jobs to wait for devices while holding obtained resources.

WAITNOH
Allow jobs to wait for devices without holding obtained resources.

CANCEL
Cancel jobs that must wait for a volume to be released.

When you have chosen a default policy to handle the majority of specific wait
WTORs that can occur, use the specific waits exit routine to make exceptions, if
any, for certain jobs and/or volumes. The exit routine's decisions will override the
installation's default policy.

If you do not code the specific waits exit routine, MVS will use your installation's
default policy (specified in the ALLOCxx member) to determine how to respond to
all specific waits allocation requests. If your installation does not define a default
policy, the system will always issue the specific wait WTOR.

Programming Considerations

Observe the following conventions when coding the specific waits exit routine:
v Code the exit routine so that it is reentrant.
v Do not code the exit routine to issue dynamic allocation calls.
v Do not code the exit routine if its decision will always be the same regardless of

which jobs are waiting or which volumes are needed. Instead, allow your
installation's default policy to make the decision.

v The exit is called every time a job requires a specific volume. Therefore, when
coding the exit routine, you should be aware that an increased path length will
increase processor utilization and may degrade performance.

Message Processing: Use the exit routine, in conjunction with the installation
default policy, to suppress and automate your installation's responses to the
following messages:
v IEF238D - Reply [device name] [,] ['wait'] or 'cancel'
v IEF244I - Unable to allocate <nnn> units(s). At least <nnn> allocated or offline

units are needed.
v IEF433D - Wait requested — reply hold or nohold
v IEF488I - Must wait for a unit, or volume on unit.

In addition, you might also avoid getting one or more of the following messages
which the system issues in response to an invalid reply to the preceding messages:
v IEF434D - Invalid reply (to message IEF433D). Reply hold or nohold.
v IEF490I - Invalid reply (to message IEF238D) for one of the following reasons:

– Device is not accessible

IEF_SPEC_WAIT: Specific Waits Installation Exit

136 z/OS V2R2 MVS Installation Exits

– Required system-managed volume is not available
– Required volume is not available
– Replied device is not eligible
– Device could not be found in the configuration.

Macro Instructions and Restrictions: Do not code the exit routine to issue the
WAIT macro or call a service that issues a WAIT, such as WTOR.

Entry Specifications

The system passes the address of the exit parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of a pointer to the exit parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit routine

Parameter Descriptions: Register 1 contains the address of a pointer to the exit
parameter list, the UXPARMC, which is mapped by macro IEFZB480 (data area
UXPARMC). For a mapping of the UXPARMC data area, see z/OS MVS Data Areas
in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Return Specifications

The exit routine indicates its decision to the system by setting the ACTION field
(in the UXPARMC) to one of the following values:

Value Meaning

X'80' Cancel the job

X'40' Issue the WTOR so that the operator can determine what to do

X'20' Let the job wait without holding resources

X'10' Let the job wait while holding resources

X'00' Let the installation default policy determine what to do

If the exit routine does not return a valid value, the system will ignore the exit and
use the installation default policy to make the decision.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents at entry

15 0

IEF_SPEC_WAIT: Specific Waits Installation Exit

Chapter 22. IEF_SPEC_WAIT — Specific Waits Installation Exit 137

http://www.ibm.com/systems/z/os/zos/bkserv/

Coded Example of the Exit Routine

For your reference, IBM provides a coded example of this exit routine in
SYS1.SAMPLIB. The routine is named IEFSWAIT.

IEF_SPEC_WAIT: Specific Waits Installation Exit

138 z/OS V2R2 MVS Installation Exits

Chapter 23. IEF_VOLUME_ENQ — Volume ENQ Installation
Exit

When a job must wait to enqueue on a volume or a series of volumes, MVS issues
a WTOR that requests the system operator to cancel the job or let the job wait. You
can automate your installation's responses to volume ENQ WTORs and reduce the
need for operator intervention by:
v Defining an installation default policy for handling a majority of the volume

ENQ allocation requests that are likely to occur. Specify the default policy on the
VOL_ENQ statement in the ALLOCxx member of SYS1.PARMLIB.

v Coding the volume ENQ exit routine to make exceptions, if any, to the
installation default policy for certain jobs and/or volumes. You can specify the
exit in the EXITxx or PROGxx member of SYS1.PARMLIB; however, IBM
recommends that you use PROGxx.

Using the information it receives about the job, the volume ENQ exit routine
determines whether to:
v Cancel the job and suppress the WTOR
v Allow the job to wait
v Allow the WTOR to be issued so that the system operator must decide whether

to cancel the job or let the job wait
v Allow the installation default policy to determine whether to cancel the job or

issue the WTOR.

For a list of the allocation messages you can automate or suppress, see
“Programming Considerations” on page 141.

For more information on the ALLOCxx, EXITxx, and PROGxx parmlib members,
see z/OS MVS Initialization and Tuning Reference.

Topics for This Exit Appear as Follows:

v “Controlling the Exit Routine Through the Dynamic Exits Facility” on page 140

v “Replacing the Exit Routine” on page 140

v “Exit Routine Environment” on page 140

v “Exit Recovery” on page 140

v “Exit Routine Processing” on page 140

v “Programming Considerations” on page 141

– Macro Instructions and Restrictions

v “Entry Specifications” on page 142

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 142

– Registers at Exit

v “Coded Example of the Exit Routine” on page 143

© Copyright IBM Corp. 1988, 2015 139

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the volume ENQ installation exit to the dynamic exits facility. You
can use the EXIT statement of the PROGxx parmlib member, the SETPROG EXIT
operator command, or the CSVDYNEX macro to control this exit and its exit
routines.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Replacing the Exit Routine

For information about replacing a dynamic exit routine, see “Replacing a Dynamic
Exit Routine” on page 6.

Exit Routine Environment

The exit routine receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 1.
v In AMODE 31 and RMODE ANY.
v With no locks held. (However, it may hold an exclusive ENQ on major name

SYSZTIOT for the address space in which the allocation occurs.)

Exit Recovery

The exit routine should provide its own recovery. If the exit routine abnormally
terminates, its recovery routine will get control.

If the exit routine abnormally terminates, and the exit routine does not provide its
own recovery, or the error percolates beyond the exit's recovery routine, a system
recovery routine will get control. The system will fail the allocation request.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

MVS invokes the volume ENQ exit routine or routines every time a job must wait
to enqueue on a volume. Before issuing messages (listed in “Programming
Considerations” on page 141) that identify the volume(s) and request operator
action, MVS invokes the volume ENQ exit routine or routines, if any are specified
to the dynamic exits facility, and passes a list of parameters that contains the
following information about the allocation request:
v Job name

IEF_VOLUME_ENQ: Volume ENQ Installation Exit

140 z/OS V2R2 MVS Installation Exits

v Step name
v A table containing the serial numbers of the volumes that the job requires
v Action to be taken in response to WTOR (this field, ACTION, is filled in by the

exit routine).

Using the information in the parameter list, the exit routine indicates to the system
(in the ACTION field of the parameter list) whether the system should:
v Cancel the job and suppress the WTORs
v Allow the job to wait for the volume(s)
v Allow the WTORs to be issued so that the system operator must make the

decision
v Allow the installation's default policy to make the decision.

See “Return Specifications” on page 142 for the specific values the exit routine can
return.

Using the Exit with Your Installation's Default Policy: If you code the exit, use it
in conjunction with your installation default policy for jobs that must wait to
enqueue on volumes. Determine your installation's default policy by specifying one
of the following parameters on the POLICY parameter of the VOLUME_ENQ
statement:

Parameter
Action

CANCEL
Cancel jobs that must wait for a volume to be released

WTOR
Allow the volume ENQ messages to be issued so that the system operator
must decide whether to cancel the job or let the job wait.

WAIT Allow jobs to wait for volumes to be released.

Attention: When WAIT is used as the default, deadlocks with other jobs in the
system might arise for tape volumes.

When you have chosen a default policy to handle the majority of volume ENQ
WTORs that can occur, use the volume ENQ exit routine to make exceptions, if
any, for certain jobs and/or volumes. The exit routine's decisions will override the
installation's default policy.

If you do not code the volume ENQ exit routine, MVS will use your installation's
default policy (specified in the ALLOCxx member) to determine how to respond to
all volume ENQ allocation requests. If your installation does not define a default
policy, the system will always issue the volume ENQ WTORs.

Programming Considerations

Observe the following conventions when coding the volume ENQ exit routine:
v Code the exit routine so that it is reentrant.
v Do not code the exit routine to issue dynamic allocation calls.
v Do not code the exit routine if its decision will always be the same regardless of

which jobs are waiting or which volumes are needed. Instead, allow your
installation's default policy to make the decision.

IEF_VOLUME_ENQ: Volume ENQ Installation Exit

Chapter 23. IEF_VOLUME_ENQ — Volume ENQ Installation Exit 141

v The exit is called every time a job requires a volume to be released. Therefore,
when coding the exit routine, you should be aware that an increased path length
will increase processor utilization and may degrade performance.

Message Processing: Use the exit routine, in conjunction with the installation
default policy, to suppress and automate your installation's responses to the
following messages:
v IEF690I - The following volumes are unavailable to <jobname>...
v IEF235D - <jobname> is waiting for volumes. To cancel wait, reply no.

In addition, you might avoid getting message IEF369D (invalid reply), which the
system issues in response to an invalid reply to IEF235D.

Macro Instructions and Restrictions: Do not code the exit routine to issue the
WAIT macro or call a service that issues a WAIT, such as WTOR.

Entry Specifications

The system passes the address of the exit parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of a pointer to the exit parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit routine

Parameter Descriptions: Register 1 contains the address of a pointer to the exit
parameter list, the UXPARMA, which is mapped by macro IEFZB478 (data area
UXPARMA). For a mapping of the UXPARMA data area, see z/OS MVS Data Areas
in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Return Specifications

The volume ENQ exit indicates its decision to the system by placing one of the
following values in the 1-byte ACTION field of the exit parameter list (the
UXPARMA):

Value Explanation

X'80' Cancel the job and suppress the WTOR

X'40' Issue the WTOR so that the system operator can make the decision

X'08' Let the job wait for the volume(s)

X'00' Let the installation default policy make the decision

If the exit routine does not return a valid value in the ACTION field, the system
will ignore the exit and use the installation default policy to make the decision.

IEF_VOLUME_ENQ: Volume ENQ Installation Exit

142 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents at entry

15 0

Coded Example of the Exit Routine

For your reference, IBM provides a coded example of this exit routine in
SYS1.SAMPLIB. The routine is named IEFVENQS.

IEF_VOLUME_ENQ: Volume ENQ Installation Exit

Chapter 23. IEF_VOLUME_ENQ — Volume ENQ Installation Exit 143

144 z/OS V2R2 MVS Installation Exits

Chapter 24. IEF_VOLUME_MNT — Volume Mount Installation
Exit

When a job's allocation request requires a volume to be mounted, MVS issues a
WTOR that requests the system operator to mount the volume or cancel the job.
You can automate your installation's responses to volume mount WTORs, and
reduce the need for operator intervention, by defining an installation default policy
for volume mount allocation requests in the ALLOCxx member of SYS1.PARMLIB.
The policy you specify will handle the majority of volume mount allocation
requests that can occur.

Code a volume mount exit routine when you want to make exceptions to your
installation default policy for certain jobs and/or volumes. Using the information it
receives about the job, the exit routine determines whether to:
v Cancel the job and suppress the WTOR
v Allow the WTOR to be issued so that the system operator must decide whether

to cancel the job or mount the volume
v Allow your installation's default policy to determine whether to cancel the job or

issue the WTOR.

For a list of the allocation messages you can automate or suppress, see
“Programming Considerations” on page 147.

For more information on the ALLOCxx and EXITxx members of SYS1.PARMLIB,
see z/OS MVS Initialization and Tuning Reference.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the volume mount exit to the dynamic exits facility. You can refer
to the exit by the name IEF_VOLUME_MNT. You can use the EXIT statement of
the PROGxx parmlib member, the SETPROG EXIT operator command, or the
CSVDYNEX macro to control this exit and its exit routines.

Topics for This Exit Appear as Follows:

v “Controlling the Exit Routine Through the Dynamic Exits Facility”

v “Replacing the Exit Routine” on page 146

v “Exit Routine Environment” on page 146

v “Exit Recovery” on page 146

v “Exit Routine Processing” on page 146

v “Programming Considerations” on page 147

– Macro Instructions and Restrictions

v “Entry Specifications” on page 148

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 148

– Registers at Exit

v “Coded Example of the Exit Routine” on page 149

© Copyright IBM Corp. 1988, 2015 145

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Replacing the Exit Routine

For information about replacing a dynamic exit routine, see “Replacing a Dynamic
Exit Routine” on page 6.

Exit Routine Environment

The exit receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 1.
v In AMODE 31 and RMODE ANY.
v With no locks held. (However, it may hold an exclusive ENQ on major name

SYSZTIOT for the address space in which the allocation occurs.)
v Can reside in (E)PLPA, (E)MLPA, or (E)FLPA.

Exit Recovery

The exit routine should provide its own recovery. If the exit routine abnormally
terminates, its recovery routine will get control.

If the exit routine abnormally terminates, and the exit routine does not provide its
own recovery, or the error percolates beyond the exit's recovery routine, a system
recovery routine will get control. The system will fail the allocation request.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility. However, the exit routine will continue to
be invoked for all other volume mount allocation requests.

Exit Routine Processing

MVS invokes the volume mount exit routine or routines every time a job must
wait for a volume to be mounted. Before issuing WTORs that identify the
volume(s) to be mounted and request operator action, MVS invokes the volume
mount exit routine or routines, if any are specified to the dynamic exits facility,
and passes a set of parameters that contains the following information about the
allocation request:
v Job name
v Step name
v DD name of the data set that requires the volume to be mounted
v Data set name
v Volume serial number

IEF_VOLUME_MNT: Volume Mount Installation Exit

146 z/OS V2R2 MVS Installation Exits

v Device number of the device on which the volume is to be mounted
v Flags indicating the type of label on the volume, if any
v Action to be taken in response to WTOR (this field is filled in by the exit

routine).

Using the information in the parameter list, the exit routine indicates to the system
(by placing a value in the ACTION field of the parameter list) whether the system
should:
v Cancel the job
v Allow the WTORs to be issued so that the system operator must make the

decision
v Allow the installation's default policy to make the decision.

See “Return Specifications” on page 148 for the specific values the exit routine can
return.

Using the Exit with Your Installation's Default Policy: If you code the exit, use it
in conjunction with your installation's default policy for jobs that require volumes
to be mounted. Determine your installation's default policy by specifying one of
the following parameters on the POLICY parameter of the VOLUME_MNT
statement:

Parameter
Action

CANCEL
Cancel jobs that must wait for a volume to be mounted.

WTOR
Allow the volume mount messages to be issued so that the system
operator must decide whether to cancel the job or mount the volume.

When you have chosen a default policy to handle the majority of volume mount
WTORs that can occur, use the volume mount exit routine to make exceptions, if
any, for certain jobs and/or volumes. The exit routine's decisions will override the
installation's default policy.

If you do not code the volume mount exit routine, MVS will use your installation's
default policy (specified on the ALLOCxx parmlib member) to determine how to
respond to all allocation volume mount requests (either cancelling all jobs that
must wait for a volume to be mounted, or always allowing the WTOR to be
issued). If your installation does not define a default policy, the system will always
issue the volume mount WTOR.

Programming Considerations

Observe the following conventions when coding the volume mount exit routine:
v Code the exit routine to be reentrant.
v Do not code the exit routine to issue dynamic allocation calls.
v Do not code the exit routine if its decision will always be the same regardless of

which volumes are needed. Instead, allow your installation's default policy to
make the decision.

v The exit is called every time a job requires a volume to be mounted. Therefore,
when coding the exit routine, you should be aware that an increased path length
will increase processor utilization and may degrade performance.

IEF_VOLUME_MNT: Volume Mount Installation Exit

Chapter 24. IEF_VOLUME_MNT — Volume Mount Installation Exit 147

Message Processing: Use the exit routine, in conjunction with the installation
default policy, to suppress and automate your installation's responses to the
following messages:
v IEF233A - Mount volume <ser>
v IEF233D - Mount volume <ser> or respond to IEF455D message
v IEF455D - Mount <ser> on <device> for <jobname> or reply no.

In addition, you might avoid getting message IEF369D (invalid reply), which the
system issues in response to an invalid reply to IEF455D.

Macro Instructions and Restrictions: Do not code the exit routine to issue the
WAIT macro or call a service that issues a WAIT, such as WTOR.

Entry Specifications

The system passes the address of the exit parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of a pointer to the exit parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit

Parameter Descriptions: Register 1 contains the address of a pointer to the exit
parameter list, the UXPARMB, which is mapped by macro IEFZB479 (data area
UXPARMB). For a mapping of the UXPARMB data area, see z/OS MVS Data Areas
in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Return Specifications

The volume mount exit indicates its decision to the system by placing one of the
following values in the 1-byte ACTION field of the exit parameter list:

Value Explanation

X'80' Cancel the job and suppress the WTOR

X'40' Issue the WTOR so that the system operator can make the decision

X'00' Let the installation default policy make the decision

If the exit routine does not return a valid value, the system will ignore the exit and
use the installation default policy to make the decision.

If you associate multiple exit routines with IEF_VOLUME_MNT, you can specify
how the return information is to be handled using the ATTRIB KEEPRC function
of the SETPROG EXIT command, the EXIT statement of PROGxx, or CSVDYNEX
services. If multiple exit routines match the ATTRIB KEEPRC criteria, the system
returns information from the exit routine that finished first.

IEF_VOLUME_MNT: Volume Mount Installation Exit

148 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/

If you do not specify the ATTRIB KEEPRC function, the system returns the
information from the exit routine whose return value was the greatest. If multiple
exit routines return with the same highest value, the return information from the
exit routine that finished first will be returned.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents at entry

15 0

Coded Example of the Exit Routine

For your reference, IBM provides a coded example of this exit routine in
SYS1.SAMPLIB. The routine is named IEFVOLMT.

IEF_VOLUME_MNT: Volume Mount Installation Exit

Chapter 24. IEF_VOLUME_MNT — Volume Mount Installation Exit 149

150 z/OS V2R2 MVS Installation Exits

Chapter 25. IEFACTRT — SMF Job and Job Step Termination
Exits

IEFACTRT receives control from the system when a job or job step terminates,
either normally or abnormally. A return code from IEFACTRT (in register 15)
indicates whether the job is to continue or terminate. Another return code (in
register 1) indicates whether or not SMF is to write the termination records to the
SMF data set.

The system invokes IEFACTRT only when the installation is collecting SMF record
types 4, 5, 30, 32, 34, or 35. IEFACTRT is invoked for:
v Record types 4, 5, and 30 for background jobs and started tasks.
v Record types 30, 32, 34, and 35 for TSO/E users.
v Record type 30 (subtypes 4 and 5) for work initiated by the IBM-supplied

APPC/MVS transaction scheduler (ASCH).

When the data for an SMF record exceeds 32,756 bytes in length, the system
constructs one or more "continuation" or "additional" records to ensure that no
individual record exceeds that length. The system invokes IEFACTRT once for the
original record and once for each continuation record.

The system invokes IEFACTRT for these types of records even when an installation
uses the SYS(NOTYPE) parameter in SMFPRMxx to suppress a particular subtype
of these record types. Only when the installation suppresses an entire record type
through SMFPRMxx will the system not pass the record to IEFACTRT.

The system does not invoke IEFACTRT for any other record types.

You can use IEFACTRT to:

Topics for This Exit Appear as Follows:

v “Defining the Exit in SMFPRMxx” on page 152

v “Controlling the Exit Routine Through the Dynamic Exits Facility” on page 152

v “Exit Routine Environment” on page 153

v “Exit Recovery” on page 153

v “Exit Routine Processing” on page 153

v “Programming Considerations” on page 155

– Macro Instructions and Restrictions

v “Entry Specifications” on page 156

– Registers at Entry

– Parameter Descriptions

– Common Exit Parameter Area

v “Return Specifications” on page 162

– Registers at Exit

v “Coded Example of the Exit Routine” on page 164

© Copyright IBM Corp. 1988, 2015 151

v Write selected job or job step records to an installation-defined data set for
further analysis.

v Displacement from PointerInclude additional information in the SMF job/job
step termination records.

v Write messages to a job log to provide additional information about the job or
job step. For example, if the operator has cancelled a job, you can issue a WTOR
to learn why the job was cancelled and then write the reason as a message to
the job log.

v Write an estimated job or job step cost to the job log.
v Update tables that describe the amount of resources certain users consume. For

example, you can keep a total of the processor time for specific users, then flag
their account numbers if they exceed an allowed time limit.

Defining the Exit in SMFPRMxx

In the SMF parmlib member (SMFPRMxx), specify IEFACTRT on the EXITS option
of the SYS or SUBSYS parameters, depending on the scope of work (system-wide
or subsystem-wide) the exit is to affect.

If you use the SUBSYS option, the system invokes the IEFACTRT routine only for
work running under the subsystems you specify on SUBSYS. If you use the SYS
option, the system invokes the IEFACTRT routine for work running under any
SMF-defined subsystem, such as JES2, JES3, STC, ASCH, OMVS, or TSO.

For more information about coding the EXITS option, see the description of
SMFPRMxx in z/OS MVS Initialization and Tuning Reference.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEFACTRT installation exit to the dynamic exits facility. You
can refer to the exit by the name SYS.IEFACTRT or SYSyyy.IEFACTRT. See the
description of the SMFPRMxx parmlib member in z/OS MVS Initialization and
Tuning Reference for an explanation of the naming conventions for SMF exit
routines. You can use the EXIT statement of the PROGxx parmlib member, the
SETPROG EXIT operator command, or the CSVDYNEX macro to control this exit
and its exit routines.

To define IEFACTRT to the dynamic exits facility, you must specify the exit in both
PROGxx and SMFPRMxx. The system does not call the exit if it is defined in
PROGxx only. If you do not plan to use the dynamic exits facility for IEFACTRT,
you need only define this exit in SMFPRMxx.

If you do not associate any exit routines with exit IEFACTRT in PROGxx, the
system defaults to using the exit routine name that matches the exit name
(IEFACTRT).

If you associate exit routines with IEFACTRT in PROGxx, the system does not use
the default exit routine. If you need the default exit routine, you should explicitly
add it to PROGxx.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:

IEFACTRT — SMF Job and Job Step Termination Exits

152 z/OS V2R2 MVS Installation Exits

v The exit routine does not provide recovery, or the exit routine does provide
recovery but percolates the error

v The system allows a retry; that is, the recovery routine is entered with bit
SDWACLUP off.

By default, the system does not disable the exit routine.

Exit Routine Environment

IEFACTRT receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In AMODE 31.
v In the address space of the task that is currently running.
v With no locks or ENQs held.

Exit Recovery

IBM strongly recommends that you set up an ESTAEX recovery routine to handle
errors that might occur during the execution of IEFACTRT.

An ESTAE-type recovery routine is set up by the module that calls IEFACTRT; the
recovery routine, if it gets control, will allow the job to continue processing if the
exit routine abnormally ends.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

SMF constructs several types of termination records. An installation can use the
IEFACTRT exit routine to include additional information in the termination record
and to determine whether to write the termination record to the SMF data set. The
specific SMF termination records that IEFACTRT references are:

Dec (Hex)
Description

4 (X'04')
The step termination record is constructed and written at the normal or
abnormal termination of a job or job step for a background job, or when a
job step is flushed during or after job initiation.

5 (X'05')
The job termination record is constructed and written at the normal or
abnormal termination of a background job.

30 (X'1E')
The common address space work record is written at the normal or
abnormal termination of a batch job or step, a TSO/E session, a started
task, or work initiated by the IBM-supplied APPC/MVS transaction
scheduler and at the expiration of a specified interval. The type 30 record
consolidates data that also is found in record types 4, 5, 20, 34, 35, and 40.
Record subtypes are used within the type 30 record to help limit the
amount of data stored in SMF data sets.

IEFACTRT — SMF Job and Job Step Termination Exits

Chapter 25. IEFACTRT — SMF Job and Job Step Termination Exits 153

32 (X'20')
The TSO/E user work accounting record is written when a TSO/E session
terminates (normally or abnormally) and when a TSO/E accounting
interval expires.

34 (X'22')
The TSO-step termination record is constructed and written when the
TSO/E logoff function processes a job step termination.

35 (X'23')
The logoff record is constructed and written when a logoff process is
completed.

At job or job step termination, use the termination indicators in record types 4, 5
and 30 to determine whether or not IEFACTRT cancelled the job.

The length of the type 30 record is variable. If the data exceeds 32,756 bytes, the
system constructs "continuation" (or "additional") type 30 records. Each such record
always contains these three sections:
v Header section
v Subsystem section
v Identification section

In addition, each continuation record contains one or more of the following
sections:
v Execute channel program (EXCP) section
v Usage section
v Automatic restart management section
v z/OS UNIX process section

Your exit routine should be aware of these added type 30 continuation records,
because they are passed to IEFACTRT. See the CAUTION bullet in the next section
, "Programming Considerations," if the exit routine suppresses some of these
records. See z/OS MVS System Management Facilities (SMF) for more information
concerning type 30 records.

IEFACTRT is the only SMF exit routine that can write to a job log, but only by
passing the message to module IEFYS. When IEFYS receives control, register 13
must contain the address of an 18-word save area and register 12 must be used to
pass message information. Figure 5 shows the procedure for writing JOBLOG
messages from IEFACTRT. The maximum number of characters that can appear in
a message is 132.

To resolve the VCON for IEFYS correctly, be sure to follow the example in Figure 6
on page 155 which shows how to make an IEFACTRT installation exit routine

MVC 36(4,12),MSGADDR MOVE MESSAGE ADDRESS AND
MVC 42(2,12),MSGLEN LENGTH TO SYSTEM TABLE
L REG15,VIEFYS BRANCH AND LINK TO MESSAGE
BALR REG14,REG15 ROUTINE

MSGADDR DC A(MSG)
MSG DC C’message text’
MSGLEN DC H’xx’ MESSAGE LENGTH
VIEFYS DC V(IEFYS)

Figure 5. Writing Job Log Messages from IEFACTRT

IEFACTRT — SMF Job and Job Step Termination Exits

154 z/OS V2R2 MVS Installation Exits

available to the system by link editing it into a system library.

Programming Considerations

SMF provides a replaceable module for an unused exit. If an installation includes
IEFACTRT, it must follow certain programming standards.
v The exit routine must follow standard linkage conventions. For example, upon

exit, register 15 must contain the return code. (But see the note in the topic
"Registers at Exit" later in this chapter .)

v Code the exit routine to be reentrant.
v IEFACTRT can perform dynamic allocations and write to installation-defined

data sets. In foreground jobs, data sets are allocated dynamically. However, for
background jobs, you can either allocate data sets dynamically or you can
pre-define (pre-allocate) a data set with a DD statement in the initiator cataloged
procedure.

v IEFACTRT cannot access ISAM data sets.
v Do not use a WTO with a routing code of 11 to send a message to the

JESYSMSG data set for started tasks or TSO users.
v To provide a consistent environment for accessing and allocating data sets across

calls to SMF exits for the duration of a job or task, IEFACTRT receives control
with the initiator's JSCB active.

v When there are multiple data records, the IEFACTRT exit routine receives
control once for each record.

v CAUTION: If the IEFACTRT installation exit elects to suppress one or more BUT
NOT ALL of the SMF type 30 continuation records, then follow-on batch jobs
that process SMF records might encounter unexpected and invalid conditions,
such as:
– "Continuation" type 30 records without the initial type 30 record
– An initial type 30 record indicating that more type 30 records follow, but

some or all of those continuation records are not present.

Macro Instructions and Restrictions: Your IEFACTRT exit routine can issue MVS
system macros. Observe the following restrictions:
v Do not code your IEFACTRT exit routine to issue the WAIT macro, or call a

service that issues WAIT. Doing so in IEFACTRT can adversely affect the
system's allocation and unallocation functions.

v Do not use a WTO with a routing code of 11 to send a message to the JES joblog
for started tasks or TSO users.

The following SMF macros are available to SMF installation exit routines:
v IFASMFR — to address SMF record fields
v SMFWTM — to write records to the SMF data set

//LKUSRPGM JOB MSGLEVEL=(1,1)
// EXEC PGM=IEWL,PARM=’XREF,LET,LIST’
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,10)
//SYSLMOD DD DSNAME=SYS1.LINKLIB,DISP=OLD
//SYSLIB DD DSNAME=SYS1.AOSB3,DISP=SHR
//SYSLIN DD *

object deck
INCLUDE SYSLIB(IEFTB724)
NAME EXITNAME(R)

/*

Figure 6. Example: make an IEFACTRT installation exit routine available

IEFACTRT — SMF Job and Job Step Termination Exits

Chapter 25. IEFACTRT — SMF Job and Job Step Termination Exits 155

v SMFEWTM — to write records to the SMF data set
v SMFRTEST — to test record recording
v SMFEXIT — to branch to the SMF exits
v SMFINTVL — to determine interval time
v SMFDETAL — to test detail recording
v SMFSUBP — to determine subsystem parameters
v SMFCHSUB — to change subsystem parameters.

For information on how to use these macros, see z/OS MVS System Management
Facilities (SMF).

Entry Specifications

SMF passes to IEFACTRT a code to define the reason for calling the exit routine
and a list of parameter addresses that the routine can use.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 One of the following hexadecimal codes that indicate why SMF has
invoked the exit:

Code Explanation

X'0C' Indicates job step termination. Word 10 in the parameter list is the
address of the record descriptor word (RDW) for a type 4 or type
34 record.

X'10' Indicates job termination. Word 10 in the parameter list is the
address of the RDW for a type 5 or type 35 record.

X'14' Indicates job or step termination. Word 10 in the parameter list is
the address of the RDW for a type 30 record. The subtype field in
the type 30 record determines if it is a job or a step termination
record.

X'18' Indicates TSO/E session or accounting interval termination. Word
10 in the parameter list is the address of the RDW for a type 32
record.

1 Address of the parameter list

2-11 Not applicable

12 Address of a message information area, which can be used to interface to
IEFYS.

13 Register save area

14 Return address

15 Entry point address of IEFACTRT

Parameter Descriptions: Register 1 points to the following list of addresses:

Word 1
Address of the common exit parameter area. For details, see “Common
Exit Parameter Area” on page 159.

IEFACTRT — SMF Job and Job Step Termination Exits

156 z/OS V2R2 MVS Installation Exits

Word 2
Address of an 8-byte area containing the job step name (in EBCDIC). This
area is aligned left and padded with blanks if necessary. At job
termination, the field is zero.

Note: It is possible that some address spaces will be associated with
IEESYSAS. For that case, JMRJOB will contain IEESYSAS.

Word 3
Address of a 20-byte area containing the programmer's name (in EBCDIC).
This area is aligned left and padded with blanks if necessary.

Word 4
Address of a 4-byte area. The first 3 bytes contain the job processor time
(which includes time under TCBs, enclave time, preemptable class SRB
time, and client SRB time), in hundredths of a second (in binary). The last
byte contains the number of accounting fields in the JOB statement. At job
termination, the field is zero.

Note: Since this job processor time is only 3 bytes it is limited to 46 hours.
If the job accumulates more than this amount of processor time, this field
will become invalid. You can avoid this situation by having your exit get
the processor time from the parameter at word 11.

Word 5
Address of a variable length area that contains accounting fields from the
JOB statement. For details, see Table 4 on page 161.

Word 6
Address of a 4-byte area. The first 3 bytes contain the step processor time
(which includes time under TCBs, enclave time, preemptable class SRB
time, and client SRB time), in hundredths of a second (in binary). The last
byte contains the number of accounting fields in the EXEC statement (in
binary). At job termination, the field is zero.

Note: Since this step processor time is only 3 bytes it is limited to 46
hours. If the step accumulates more than this amount of processor time,
this field will become invalid. You can avoid this situation by having your
exit get the processor time from the parameter at word 12.

Word 7
Address of a variable length area that contains accounting fields from the
EXEC statement. For details, see Table 4 on page 161.

Word 8
Address of a 2-byte area. The first byte is a binary indicator; if bit 7
(low-order bit) is set to 1 when the exit routine is entered, the job has been
cancelled. If the exit routine sets bit 7 to 1, the job will be cancelled. The
second byte contains the number of the job step currently being processed.
At job termination, the second byte contains the number of steps in the job.

Word 9
Address of a 2-byte area containing the termination status (condition or
completion code) for the job or job step. For information on the job or job
step termination status, see the description of the following fields in z/OS
MVS System Management Facilities (SMF):
v Record Type 4 — field SMF4SCC
v Record Type 5 — field SMF5JCC
v Record Type 30 — field SMF30SCC

IEFACTRT — SMF Job and Job Step Termination Exits

Chapter 25. IEFACTRT — SMF Job and Job Step Termination Exits 157

Note: X'0D' abends may result in a value of 0000.
v Record Type 34 — field TIVSTAT

Word 10
Address of an area containing a 4-byte record descriptor word (RDW). One
of the following records immediately follows the RDW:
v The job step termination record (type 4 or type 34)
v The job termination record (type 5 or type 35)
v The common address space work record (type 30)
v The TSO/E command accounting record (type 32)

Word 11
Address of a 4-byte area containing the job processor time, which includes
time under TCBs, enclave time, preemptable class SRB time, and client SRB
time, in hundredths of a secondary (in binary).

Word 12
Address of a 4-byte area containing the step processor time, which includes
time under TCBs, enclave time, preemptable class SRB time, and client SRB
time, in hundredths of a second (in binary). At job termination, the field is
zero.

Word 13
Address of a 4-character area that contains the name of the subsystem for
the job being processed. Examples:
v ASCH, JES2, or JES3 - indicates the name of the subsystem that selected

the job
v OMVS - indicates a forked or spawned address space
v STC - indicates a started task
v TSO - indicates a time sharing option task
v The jobname - used if it is four or fewer characters and none of the

above apply

Note: The high-order bit is set in the address of the last parameter to indicate the
end of the parameter list.

IEFACTRT — SMF Job and Job Step Termination Exits

158 z/OS V2R2 MVS Installation Exits

|

Common Exit Parameter Area

The common exit parameter area is a 56-byte area that contains information an
SMF installation exit routine might need. It is a copy of the first 56 bytes of the job
management record (JMR), of which the first 36 bytes are usable by the exit. In
addition, byte 56 is a version indicator, which indicates whether additional
information is available. When byte 56 is '01'x, an additional area is provided at
offset 76, mapped by the JMRE DSECT within the JMR and contains an 8 character
jobclass and a 64-byte job correlator, if provided by the primary JES subsystem.

The address of the common exit parameter area is passed to all SMF installation
exits except IEFU29, IEFU83, IEFU84, and IEFU85. The common exit parameter
area is mapped by macro IEFJMR, as part of the JMR, except for the indicator of
the SMF option selected by the user field. This field is mapped by the SMCAOPT
field in the SMCA data area. See Table 3 on page 160 for a description of the area,
and “Accounting Information” on page 161 for a description of the accounting

Register 1

Common exit parameter area

Job step name

Programmer’s name

Job processor time (3 bytes) / number
of JOB accounting fields (1 byte)

Job accounting fields

Step processor time (3 bytes) / number
of EXEC accounting fields (1 byte)

EXEC accounting fields

Cancel bit / Job step

Termination Status

RDW of SMF termination record

Job processor time

Step processor time

Subsystem name’1’b

0(0)

4(4)

8(8)

12(C)

16(10)

20(14)

24(18)

28(1C)

32(20)

36(24)

40(28)

44(2C)

48(30)

Figure 7. IEFACTRT Input Parameter Structure

IEFACTRT — SMF Job and Job Step Termination Exits

Chapter 25. IEFACTRT — SMF Job and Job Step Termination Exits 159

information. See z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/) for the complete mapping of
the JMR and the complete mapping of the SMCA.

Table 3. Common Exit Parameter Area

Displacement
from Pointer

Field
Size

Data
Format

Description

0 8 EBCDIC Job name

8 4 binary Time, in hundredths of a second, when the reader recognized the JOB
statement for this job

12 4 packed Date when the reader recognized the JOB statement for the job, in the form
0CYYDDDF where F is the sign and C is X '1' if the year is greater than
1999

16 4 EBCDIC System identification (taken from SID parameter)

20 8 EBCDIC User identification. SMF places this data in all subsequent records for this
job. This field is initialized to EBCDIC blanks when each job is read.

Note: This field is not related to the USER parameter on the JOB
statement.

28 1 binary Number of the step being processed

29 1 binary Indicator of the SMF options selected by the user. (The following bit
settings are mapped by the SMCAOPT field in the SMCA data area. See
z/OS MVS Data Areas in the z/OS Internet library (http://www.ibm.com/
systems/z/os/zos/bkserv/) for a mapping of the SMCA data area.)

Bit Meaning When Set

0 Reserved

1 Reserved

2 Reserved

3 Data set accounting.1

4 Volume accounting. Record type 19 selected

5 Usage data collection services

6 Type 17 records will be written for temporary data sets
(REC(ALL))

7 If 0, background job. If 1, foreground job.
Note: TSO sessions, APPC/MVS transactions, and OMVS (z/OS
UNIX System Services) forked and spawned jobs are indicated as
foreground jobs.

30 1 binary Restart indicator

Bit Meaning When Set

0 Automatic step restart

1 Automatic checkpoint/restart

2 Continue restart

3 Reserved

4 Warm start

5-7 Reserved

31 1 EBCDIC Job class

IEFACTRT — SMF Job and Job Step Termination Exits

160 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 3. Common Exit Parameter Area (continued)

Displacement
from Pointer

Field
Size

Data
Format

Description

32 4 binary The user-communication field. This field is intended for communication
among user-written exit routines within a unique job. The field is
initialized to zeroes when a job begins execution. For APPC/MVS
transactions, this field remains zeros.

36 19 binary Information not usable to the exit

55 1 binary Version of JMR

56 20 binary Information not usable to the exit

76 8 EBCDIC Job class

84 64 EBCDIC Job correlator, if provided by primary Job subsystem

Note: 1 This bit is set on when any of the following record types is selected: 14, 15, 17, 18, 62, 63, 64, 67, or 68.

Accounting Information

Accounting Information: These SMF installation exits receive accounting
information for the job or job step:
v IEFACTRT
v IEFUAV
v IEFUJI
v IEFUSI

The accounting information is presented to IEFACTRT differently than to IEFUAV,
IEFUJI, and IEFUSI. IEFACTRT receives both the number of accounting fields and
a pointer to the accounting fields in the input parameter list. See the parameter
descriptions in “Entry Specifications” on page 156 for more details. For the other
exits, the input parameter list contains a pointer to all the accounting information
as described in Table 4.

Table 4. Format of Accounting Information

Offset Length Format Description

0 1-Byte Binary Number of accounting fields.

1 Variable EBCDIC Accounting fields. Each accounting field contains the
length of the field (one byte, binary) followed by
accounting information (variable length, EBCDIC). A zero
in the length field indicates an omitted field.

Figure 8 on page 162 provides examples of accounting information. Note that these
fields are contiguous and are only spaced in Figure 8 on page 162 for clarity. These
examples show different forms of accounting information you can specify in JCL,
and the resulting representation (hexadecimal) that will be passed to the SMF exits
listed earlier .

In the examples in Figure 8 on page 162:
v 'MYJOB' represents the job name.
v 'PROGNAM' represents the programmer name.
v '#FIELDS' represents the number of accounting fields.

IEFACTRT — SMF Job and Job Step Termination Exits

Chapter 25. IEFACTRT — SMF Job and Job Step Termination Exits 161

v 'LEN1', 'LEN2', and 'LEN3' represent the length of the respective accounting
field.

v 'DATA1', 'DATA2', and 'DATA3' represent data in the respective accounting field.

Return Specifications

A return code from IEFACTRT (in register 15) indicates whether the job is to
continue or terminate. Another return code (in register 1) indicates whether or not
SMF is to write the termination records to the SMF data set.

If you associate multiple exit routines with IEFACTRT, you can use any of these
criteria methods to specify how the system is to handle the return information:
v The ATTRIB KEEPRC function of the SETPROG EXIT command,
v The ATTRIB KEEPRC parameter of the EXIT statement of PROGxx, or
v The RCFROM/RCCOMPARE parameters of the CSVDYNEX services.

The criterion is based on the contents of register 15. If multiple exit routines match
the defined criterion, the system returns information from the exit routine called
first.

If you do not specify a criteria method, the system returns the information from
the first exit routine that returns a value of four in register 15, and cancels the
remaining job steps. If that exit routine also returns a value of four in register 1,
the system does not write the termination records to the SMF data set. For any
other value in register 1 the system does write the termination records.

.........Accounting Information.........
JCLAccounting Fields........

#FIELDS LEN1 DATA1 LEN2 DATA2 LEN3 DATA3

//MYJOB JOB ,PROGNAM -> 01 00
//MYJOB JOB 9,PROGNAM -> 01 01 F9
//MYJOB JOB (9,8),PROGNAM -> 02 01 F9 01 F8
//MYJOB JOB (9,8,77),PROGNAM -> 03 01 F9 01 F8 02 F7F7
//MYJOB JOB ’9’,PROGNAM -> 01 01 F9
//MYJOB JOB ’9,8’,PROGNAM -> 01 03 F96BE8
//MYJOB JOB (’9’,’8’),PROGNAM -> 02 01 F9 01 F8
//MYJOB JOB (’9,8’),PROGNAM -> 01 03 F96BF8
//MYJOB JOB (9,,8),PROGNAM -> 03 01 F9 00 01 F8
//MYJOB JOB (9,’,8),PROGNAM -> 03 01 F9 00 01 F8
//MYJOB JOB ((9)),PROGNAM -> 01 01 F9

Figure 8. Examples of Accounting Information

The defined criterion is EXIT ATTRIB KEEPRC(GE,4).

If Exit A returns with R1 = 4 and R15 = 0,
and Exit B returns with R1 = 0 and R15 = 8,
and Exit C returns with R1 = 0 and R15 = 4,
and Exit D returns with R1 = 4 and R15 = 4,

the final results are R1 = 0 and R15 = 8.

The system derives the return information from the first exit called that
matches the defined criteria. Here, R15 is greater or equal to 4, which
is Exit B.

The job continues (because R15 is not 4) and the system writes the
termination records to the SMF data set (because R1 for Exit B is not 4).

Figure 9. Example

IEFACTRT — SMF Job and Job Step Termination Exits

162 z/OS V2R2 MVS Installation Exits

If no exit routine returns a value of four in register 15, the system returns the
information from the exit routine that is called first, and the job continues. Again,
if that exit routine returns a value of four in register 1, the system does not write
the termination records to the SMF data set, while for any other value in register 1
from that exit routine, the system does write the termination records to the SMF
data set.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0 Restored to contents at entry

1 One of the following return codes:

Return Code
Explanation

Value of 4
SMF is not to write the termination record to the SMF data set.

Other than 4
SMF is to write the termination record to the SMF data set.

2-14 Restored to contents at entry

15 One of the following return codes:

Return Code
Explanation

There are no defined criteria.

If Exit A returns with R1 = 4 and R15 = 0,
and Exit B returns with R1 = 0 and R15 = 8,
and Exit C returns with R1 = 0 and R15 = 4,
and Exit D returns with R1 = 4 and R15 = 4,

the final results are R1 = 0 and R15 = 4.

The system derives the return information from the first exit called that
returns a value of 4 in R15, which is Exit C.

The job terminates (because R15 is 4) and the system writes the
termination records to the SMF data set (because R1 for Exit C is not 4).

Figure 10. Example

There are no defined criteria.

If Exit A returns with R1 = 4 and R15 = 0,
and Exit B returns with R1 = 0 and R15 = 8,
and Exit C returns with R1 = 0 and R15 = 0,

the final results are R1 = 4 and R15 = 0.

Because no exit set R15 to 4, the system derives the return information
from the first exit called, which is Exit A.

The job continues (because R15 is not 4) and the system does not write
the termination records to the SMF data set (because R1 for Exit A is 4).

Figure 11. Example

IEFACTRT — SMF Job and Job Step Termination Exits

Chapter 25. IEFACTRT — SMF Job and Job Step Termination Exits 163

Value of 4
The remaining job steps are to be cancelled.

Other than 4
Job processing is to continue.

Note: The system may fail a step or job even if the return code is zero.
This could happen, for example, as a result of specifying CATLG_ERR
FAILJOB(YES) and incurring that type of post execution error. (A return
code is generated by the application program and is never changed by the
operating system.) A user can deduce that a step failed due to a "post
execution error" if bit SMF30SYE in the two-byte SMF30STI field in the
SMF30 subtype 4 record is on.

Coded Example of the Exit Routine

Sample IEFACTRT exit routines are provided in SYS1.SAMPLIB in members
SMFEXITS and IEEACTRT. The sample in SMFEXITS changes the SMF job
termination (types 5 and 35) and job step termination (types 4 and 34) records to
user records, and attempts to write them to an SMF data set. If the data set is full,
the routine writes a message to the console indicating that SMF records are being
lost. At job termination, the routine writes a record containing the job name,
programmer's name, and account number to the JOBLOG data set.

The IEEACTRT exit routine puts a summary of the step on each JES2 job log using
WTO with ROUTCODE=14. The summary includes both step and job information.

IEFACTRT — SMF Job and Job Step Termination Exits

164 z/OS V2R2 MVS Installation Exits

Chapter 26. IEFDB401 — Dynamic Allocation Input Validation
Routine Exit

The IEFDB401 installation exit from the allocation control routine allows an exit
routine to either validate or alter any dynamic allocation request. Control passes to
IEFDB401 for all system and user dynamic allocation requests. See z/OS MVS
Programming: Authorized Assembler Services Guide for more information about
dynamic allocation.

The user validation routine tests and can modify the dynamic allocation request,
and it indicates through a return code whether or not processing of the request is
to continue. You can use IEFDB401 to:
v Control the amount of direct access space requested.
v Check for authorization to use specified units.
v Check for authorization to use certain data sets.
v Check for authorization to hold certain resources for reuse.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEFDB401 installation exit to the dynamic exits facility. You
can refer to the exit by the name IEFDB401. You can use the EXIT statement of the
PROGxx parmlib member, the SETPROG EXIT operator command, or the
CSVDYNEX macro to control this exit and its exit routines.

If you do not associate any exit routines with exit IEFDB401 in PROGxx, the
system defaults to using the exit routine name that matches the exit name
(IEFDB401).

If you associate exit routines with IEFDB401 in PROGxx, the system does not use
the default exit routine. If you need the default exit routine, you should explicitly
add it to PROGxx.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the

Topics for This Exit Appear as Follows:

v “Controlling the Exit Routine Through the Dynamic Exits Facility”

v “Exit Routine Environment” on page 166

v “Exit Recovery” on page 166

v “Exit Routine Processing” on page 166

v “Programming Considerations” on page 166

v “Entry Specifications” on page 166

– Registers at Entry

– Parameter List Contents

v “Return Specifications” on page 168

– Registers at Exit

v “Coded Example of the Exit Routine” on page 169

© Copyright IBM Corp. 1988, 2015 165

SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Exit Routine Environment

IEFDB401 receives control in the following environment:
v In supervisor state and under the scheduler's PSW key (key 1).
v In AMODE 31 and RMODE ANY.

Exit Recovery

An ESTAE routine that is established in the calling module provides recovery from
errors encountered in IEFDB401.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

The dynamic allocation facility passes control to IEFDB401 before doing any
processing on behalf of a dynamic allocation request. It is entered for all requests,
foreground and background. IEFDB401 can test and modify the dynamic allocation
input, and indicate with a return code whether processing is to continue or if the
request is to be terminated. The exit receives control after System Allocation has
completed validation of the passed parameters.

The IBM-supplied version of IEFDB401 that your routine can replace does no
testing and allows all requests to continue processing.

Programming Considerations
v When IEFDB401 receives control, a parameter list is passed via register 1.

Among the parameters are the dynamic allocation request block and a work area
for the addition or modification of text units. This work area immediately
follows the text unit pointer list and is usually in nonfetch-protected scheduler
key storage (subpool 230). It is in fetch-protected scheduler key storage (subpool
229) only when the request has a password specification text unit. If text unit
pointers are to be added to the pointer list, they must be added to the end of the
list in the work area. The end-of-list indicator also must be adjusted. To delete a
text unit pointer, zero the text unit pointer or the text unit key.

v Code the exit routine so that it is reentrant.

Entry Specifications

IEFDB401 receives control from dynamic allocation.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

IEFDB401 — Dynamic Allocation Input Validation Routine Exit

166 z/OS V2R2 MVS Installation Exits

Register
Contents

0 Not applicable

1 Address of the parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of IEFDB401

Parameter List Contents: Register 1 points to the following parameters:

Word 1
Address of a copy of the dynamic allocation input parameter list in
scheduler-key storage (mapped by macro IEFZB4D0). See the chapter on
dynamic allocation in z/OS MVS Programming: Authorized Assembler Services
Guide. See S99PARMS in z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/) for the structure of
IEFZB4D0.

Word 2
Pointer to the address of a work area that the exit routine can use. This
area is contiguous with the text unit pointer list so that you can use it to
extend the list and provide additional text units.

Word 3
Address of a fullword that contains the length of the work area (500 bytes).

Word 4
Address of the 8-character job name.

Word 5
Address of the 20-character programmer name.

Word 6
Address of an area that contains accounting information from the JOB
statement. The first byte of this area contains the number of accounting
fields; the accounting fields follow this byte. Each entry for an accounting
field contains the length of the field (one byte, hexadecimal), followed by
the field itself. The entry for a null field contains a length of zero.

Word 7
Address of the 8-character step name.

Word 8
Address of the 8-character program name.

Word 9
Address of an area containing accounting information from the EXEC
statement. The first byte of this area contains the number of accounting
fields (zero for no fields); the accounting fields follow this byte. Each entry
for an accounting field contains the length of the field (one byte,
hexadecimal), followed by the field itself. The entry for a null field
contains a length of zero.

IEFDB401 — Dynamic Allocation Input Validation Routine Exit

Chapter 26. IEFDB401 — Dynamic Allocation Input Validation Routine Exit 167

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Return Specifications

A return code from IEFDB401 indicates whether processing of the dynamic
allocation request should continue.

If you associate multiple exit routines with IEFDB401, you can specify how the
return information is to be handled using the ATTRIB KEEPRC function of the
SETPROG EXIT command, the EXIT statement of PROGxx, or CSVDYNEX
services. If multiple exit routines match the ATTRIB KEEPRC criteria, the system
returns information from the exit routine that finished first.

If you do not specify the ATTRIB KEEPRC function, the system returns the
information from the exit routine whose return value was the greatest. If multiple
exit routines return with the same highest value, the return information from the
exit routine that finished first will be returned.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents at entry

15 One of the following return codes:

Return Code
Explanation

0 Dynamic allocation request processing continues.

Register 1

0

4(4)

8(8)

12(C)

16(10)

20(14)

24(18)

28(1C)

32(20)

SVC 99 input parameter list

Workarea length

Jobname

Programmer name

JOB accounting information

Step name

Program name

EXEC accounting information

Address of Workarea

Figure 12. IEFDB401 Input Parameter Structure

IEFDB401 — Dynamic Allocation Input Validation Routine Exit

168 z/OS V2R2 MVS Installation Exits

nonzero
Dynamic allocation request processing is terminated.

Coded Example of the Exit Routine

This sample exit routine first checks for an allocation verb code. If one is present,
the routine loops through the text unit pointers to find the end of the text unit list.
A return code is set to cancel the request if the unit description key is set to ‘3380’.

TITLE ’DYNAMIC ALLOCATION INSTALLATION EXIT EXAMPLE’
IEFDB401 AMODE 31
IEFDB401 RMODE ANY

* *
* $MOD(IEFDB401) *
* *
* DESCRIPTIVE NAME - DYNAMIC ALLOCATION *
* INSTALLATION EXIT EXAMPLE *
* *
* COPYRIGHT = 5665-291 *
* THIS MODULE IS "RESTRICTED MATERIALS OF IBM" *
* (C) COPYRIGHT IBM CORP. 1987 *
* LICENSED MATERIALS - PROPERTY OF IBM. *
* REFER TO COPYRIGHT INSTRUCTIONS *
* FORM NUMBER G120-2083 *
* *
* STATUS = HBB3310 *
* *
* FUNCTION - THE DYNAMIC ALLOCATION FACILITY OF THE CONTROL *
* PROGRAM EXITS TO THIS ’EXIT ROUTINE’ BEFORE *
* DOING ANY PROCESSING ON BEHALF OF A DYNAMIC *
* ALLOCATION REQUEST. IT IS ENTERED FOR ALL *
* REQUESTS, FOREGROUND AND BACKGROUND. THIS *
* ROUTINE MAY TEST AND MODIFY THE DYNAMIC *
* ALLOCATION INPUT, AND INDICATE THROUGH A *
* RETURN CODE WHETHER PROCESSING IS TO CONTINUE *
* OR IF THE REQUEST IS TO BE TERMINATED. *
* *
* THE ROUTINE MAY DELETE A TEXT UNIT BY ZEROING *
* THE TEXT UNIT POINTER OR TEXT UNIT KEY. *
* A WORK AREA IS PROVIDED TO FACILITATE THE *
* ADDITION OR MODIFICATION OF TEXT UNITS AND *
* IMMEDIATELY FOLLOWS THE TEXT UNIT POINTER *
* LIST. POINTERS TO ITS ADDRESS AND LENGTH *
* ARE PASSED AS PARAMETERS. THIS AREA IS IN *

* FETCH-PROTECTED SCHEDULER-KEY CORE. IF TEXT *
* UNIT POINTERS ARE TO BE ADDED TO THE POINTER *
* LIST, THEY MUST BE ADDED TO THE END OF THE *
* LIST, (IN THE WORK AREA DESCRIBED ABOVE) AND *
* THE END-OF-LIST INDICATOR MUST BE ADJUSTED. *
* *
* DEPENDENCIES - THIS MODULE RECEIVES CONTROL IN SCHEDULER *
* KEY FROM A PREVIOUS MODULE OF DYNAMIC *
* ALLOCATION. *
* *
* MODULE TYPE - PROCEDURE *
* *
* PROCESSOR - ASSEMBLER H *
* *
* ATTRIBUTES - REFRESHABLE, SCHEDULER KEY, EXTENDED PLPA, *
* SUPERVISOR STATE, AMODE(31), RMODE(ANY) *
* *
* ENTRY POINT - IEFDB401 *
* *
* LINKAGE - STANDARD ENTRY AND EXIT LINKAGE *
* *

IEFDB401 — Dynamic Allocation Input Validation Routine Exit

Chapter 26. IEFDB401 — Dynamic Allocation Input Validation Routine Exit 169

* INPUT - REGISTERS - REG0 - IRRELEVANT *
* REG1 - PARAMETER LIST ADDRESS *
* REG2-12 - IRRELEVANT *
* REG13 - SAVE AREA ADDRESS *
* REG14 - RETURN ADDRESS *
* REG15 - ENTRY ADDRESS *
* *
* - DATA - UPON ENTRY REG1 POINTS TO A LIST OF *
* ADDRESSES FOR THE FOLLOWING ITEMS: *
* *
* 1. THE DYNAMIC ALLOCATION REQUEST BLOCK *
* IN SCHEDULER-KEY, FETCH-PROTECTED *
* CORE. *
* 2. A POINTER TO THE WORK AREA THAT *
* FOLLOWS THE TEXT UNIT POINTER LIST. *
* 3. LENGTH OF THE WORK AREA *
* 4. 8-CHARACTER JOB NAME *
* 5. 20-BYTE PROGRAMMER NAME *
* 6. JOB ACCOUNTING INFORMATION - IN THE *
* STANDARD FORMAT PASSED TO SMF EXITS. *
* 7. 8-CHARACTER STEP NAME *
* 8. 8-CHARACTER PROGRAM NAME *
* 9. STEP ACCOUNTING INFORMATION - IN THE *
* STANDARD FORMAT PASSED TO SMF EXITS. *
* *
* EXITS - REGISTERS - REG0-13 - RESTORED *
* REG14 - RETURN ADDRESS *
* REG15 - RETURN CODE *
* *
* - RETURN CODE - 0 - CONTINUE SVC 99 PROCESSING *
* non-0 - TERMINATE SVC 99 PROCESSING *
* *
* - DATA - POSSIBLE CHANGES IN THE DYNAMIC ALLOCATION *
* REQUEST BLOCK, THE TEXT POINTERS, OR THE *
* TEXT UNITS. *
* *

TITLE ’DYNAMIC ALLOCATION (SVC 99) PARM LIST’
IEFZB4D0
TITLE ’DYNAMIC ALLOCATION KEY TABLE’
IEFZB4D2
TITLE ’DYNAMIC ALLOCATION INSTALLATION EXIT EXAMPLE’

IEFDB401 CSECT
SPACE 1

* STANDARD REGISTER EQUATES *

SPACE 1
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

SPACE 1

* STANDARD INPUT LINKAGE *

IEFDB401 — Dynamic Allocation Input Validation Routine Exit

170 z/OS V2R2 MVS Installation Exits

SPACE 1
STM R14,R12,12(R13) SAVE CALLER’S REGISTERS
BALR R12,R0 ESTABLISH ADDRESSABILITY
USING *,R12 TO CSECT
EJECT

* INITIALIZE RETURN CODE, GET POINTER TO THE PARAMETER LIST *
* AND ESTABLISH ADDRESSABILITY TO THE SVC 99 REQUEST BLOCK. *

SPACE 1
XR R15,R15 INITIALIZE RETURN CODE
L R9,0(R1) ESTABLISH ADDRESSABILITY TO
USING S99RB,R9 THE SVC 99 REQUEST BLOCK
SPACE 1

* CHECK FOR AN ’ALLOCATION’ VERB CODE, (X’01’), AND IF NOT *
* BRANCH TO CONTINUE THE REQUEST UNCHANGED. ELSE ESTABLISH *
* ADDRESSABILITY TO THE TEXT UNIT POINTER LIST AND CHECK *
* FOR A VALID TEXT UNIT POINTER,non-0,AND THEN CHECK FOR THE *
* END OF THE TEXT UNIT LIST. IF NEITHER OF THE CHECKS PASS, *
* THEN ADJUST THE TEXT UNIT POINTER AND LOOP UNTIL ONE DOES. *

SPACE 1
CLI S99VERB,S99VRBAL IS THIS AN ALLOCATION VERB CODE?
BNE DB401D BIN TO CONTINUE REQUEST UNCHANGED
L R8,S99TXTPP ESTABLISH ADDRESSABILITY TO
USING S99TUPL,R8 THE TEXT UNIT POINTER LIST

DB401A DS 0H
CLC S99TUPTR,BLANKPTR IS THIS A BLANK/¬LAST TEXT UNIT PTR?

BE DB401B BIY TO CHECK THE NEXT TEXT UNIT PTR
CLC S99TUPTR,LSTBLKPT IS THIS A BLANK/LAST TEXT UNIT PTR?
BE DB401D BIY TO EXIT THE EXIT ROUTINE
B DB401C GO CHECK THE TEXT UNIT CONTENTS

DB401B DS 0H
LA R8,4(,R8) POINT TO NEXT TEXT UNIT POINTER
B DB401A GO CHECK THE NEXT TEXT UNIT POINTER
SPACE 1

* ESTABLISH ADDRESSABILITY TO THE SVC 99 TEXT UNIT AND CHECK *
* FOR A ’UNIT DESCRIPTION SPECIFICATION’ KEY, (X’0015’), AND *
* IF MATCHED CHECK FOR A ’3380’ PARAMETER. IT THIS MATCHES, *
* SET THE RETURN CODE TO CANCEL THE REQUEST, (X’04’), AND *
* RETURN TO CALLER. IF EITHER OF THESE CHECKS FAIL THEN *
* BRANCH BACK TO CONTINUE THE LOOP OF TEXT UNIT POINTERS. *

SPACE 1
DB401BB DS 0H

TM S99TUPTR,LSTVALPT IS THIS A VALID LAST TEXT UNIT PTR?
BO DB401D BIY TO EXIT THE EXIT ROUTINE
B DB401B GO GET NEXT TEXT UNIT POINTER

DB401C DS 0H
L R7,S99TUPTR ESTABLISH ADDRESSABILITY TO
USING S99TUNIT,R7 THE SVC 99 TEXT UNIT
CLC S99TUKEY,UNDESKEY IS THIS A UNIT DESCRIPTION KEY?
BNE DB401BB BIN TO CHECK IF LAST TEXT UNIT PTR
CLC PARM3380,S99TUPAR IS THIS A 3380 PARAMETER?
BNE DB401BB BIN TO CHECK IF LAST TEXT UNIT PTR
LA R15,4(,R15) SET RETURN CODE TO CANCEL REQUEST

DB401D DS 0H
EJECT

* STANDARD EXIT LINKAGE *

SPACE 1
L R14,12(R13) RESTORE CALLER’S REGISTERS

IEFDB401 — Dynamic Allocation Input Validation Routine Exit

Chapter 26. IEFDB401 — Dynamic Allocation Input Validation Routine Exit 171

LM R0,R12,20(R13) EXCEPT REGISTER 15
BR R14 RETURN TO CALLER
DROP R7,R8,R9,R12
SPACE 1

* DECLARATIONS AND CONSTANTS *

SPACE 1
PARM3380 DC C’3380’ 3380 PARAMETER
BLANKPTR DC F’0’ CHECKS FOR A BLANK TEXT UNIT PTR
LSTBLKPT DC X’80000000’
UNDESKEY DC H’21’
LSTVALPT EQU X’80’

END

IEFDB401 — Dynamic Allocation Input Validation Routine Exit

172 z/OS V2R2 MVS Installation Exits

Chapter 27. IEFDOIXT — Edit / Check A Caller's Dynamic
Output Text Units Exit

Dynamic output is a system service that users can invoke by issuing the OUTADD
or OUTDEL macro. Dynamic output allows an installation to specify the output
characteristics of a sysout data set dynamically as an alternative to specifying these
characteristics on the OUTPUT JCL statement. For more detailed information about
using dynamic output, see z/OS MVS Programming: Authorized Assembler Services
Guide.

IEFDOIXT is the dynamic output installation exit. You can use IEFDOIXT to:
v Edit the text units. For example, you can use this exit to limit requests for

COPIES to be less than or equal to 50.
v Detect requests for unsupported devices or features.
v Correct requests for unsupported devices or features by issuing

installation-defined reason codes. These reason codes help the invoker of
dynamic output diagnose problems that the exit detected.

Installing the Exit Routine

The IBM-supplied version of IEFDOIXT resides in SYS1.LINKLIB. You can replace
IEFDOIXT in SYS1.LINKLIB with your own version or place your version of
IEFDOIXT in an authorized library somewhere else in the search order prior to
SYS1.LINKLIB. For more details on the search order for load modules, see z/OS
MVS Programming: Assembler Services Guide.

For general instructions on installing an exit routine, see “Link editing an
Installation Exit Routine into a Library” on page 3.

Exit Routine Environment

IEFDOIXT receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 1 and must return control in the same state

and key.

Topics for This Exit Appear as Follows:

v “Installing the Exit Routine”

v “Exit Routine Environment”

– Exit Recovery

v “Exit Routine Processing” on page 174

v “Programming Considerations” on page 175

v “Entry Specifications” on page 176

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 177

– Registers at Exit

© Copyright IBM Corp. 1988, 2015 173

v In AMODE 31 and RMODE ANY.
v In the caller's address space.
v With no locks or resources held (other than storage obtained via GETMAIN and

an ESTAE) when it calls IEFDOIXT.
v Under a type 3 SVC. See z/OS MVS Programming: Authorized Assembler Services

Guide for a description of the restrictions in this environment.

Exit Recovery: IEFDOIXT runs under dynamic output's recovery environment. If
recovery for dynamic output gets control during exit routine processing, dynamic
output returns to its invoker and sets return and reason codes to indicate that the
exit abnormally terminated.

Exit Routine Processing

Each time that you invoke dynamic output via the OUTADD or OUTDEL macro, it
links to the IEFDOIXT installation exit. When IEFDOIXT completes its processing,
it returns control to dynamic output. If no errors are detected, dynamic output
then creates or deletes the output descriptor.

Dynamic output passes the exit a copy of the input from the caller of dynamic
output. Before calling the exit, dynamic output performs the following verification
of the caller's input data:
v Dynamic output references the input data in the key of the caller that issued the

OUTADD or OUTDEL macro. If a protection exception (0C4 ABEND) occurs
when the data is referenced, dynamic output passes control back to the caller,
and the installation exit does not get control.

v Dynamic output verifies the text units. If the text units are not valid, dynamic
output reports the problem as being that the parameter list is not valid. In
general, dynamic output does not differentiate between text unit errors that the
caller causes and those that the exit causes. In addition, because the exit works
on a copy of the caller's parameter list, the caller can not recognize the changes
that the exit has made to the text units. For this reason, the exit must ensure that
text units are updated correctly.

If dynamic output determines that there is an error in the caller's input data, the
installation exit does not receive control. If dynamic output verifies the caller's
input data, the installation exit receives a copy of the data. This input data
includes the fixed parameter list (DOCNP), the text units and a text unit pointer
list with pointers to the copied text units. The exit also receives 500 bytes of
storage so that it can update the caller's text unit pointers and text units.

In the exit routine, you can read or make valid alterations to the data passed to the
exit. You can omit text units by zeroing their text unit pointers. You can add text
units, as well as the text unit pointers for the new text units, in the work area
provided. Concatenate the new text unit pointers to the end of the passed text unit
pointer list, which is contiguous with the work area. If you add new text unit
pointers, reset the high-order bit that indicates the last text unit pointer.

The exit should set the values of registers 0, 1 and 15 on return to dynamic output.
The value of register 15 indicates whether dynamic output is to cancel or proceed
with the request. Registers 1 and 0 are used for the exit to optionally pass
diagnostic information to the dynamic output caller. For specification of the
registers on return from the exit, see “Return Specifications” on page 177, and z/OS
MVS Programming: Assembler Services Guide.

IEFDOIXT — Edit / Check a Caller's Dynamic Output Text Units Exit

174 z/OS V2R2 MVS Installation Exits

Upon return from the exit, dynamic output performs the following verification of
the registers returned by the exit and the data areas passed to the exit:
v Dynamic output verifies the contents of registers 0, 1, and 15. If the register

contents are not valid, or if the return code in register 15 is an 8, dynamic
output denies the user's request and returns a reason code that identifies the
problem.

v Dynamic output verifies the fixed parameter list (DOCNP) and reports any
problems with the parameter list by setting the appropriate return and reason
codes. Because dynamic output also verifies DOCNP before linking to the exit
routine, unique error return and reason codes are issued to help differentiate
between errors in DOCNP which the caller causes, and errors that the exit
routine causes.

v Dynamic output verifies the text units. If the text units are not valid, dynamic
output reports the problem as being that the parameter list is not valid. Dynamic
output does not differentiate between text unit errors that the caller causes and
those that the exit causes. In addition, because the exit works on a copy of the
caller's parameter list, the caller can not recognize the changes that the exit has
made to the text units. For this reason, the exit should make changes to the text
units very carefully.
When the exit alters the text units to contain negative values in the number of
parameters field or in the length of parameter field, the results are
unpredictable. Dynamic output only checks these fields before calling the exit
routine. It is the exit's responsibility to make sure that it does not pass negative
values in these fields. It also is essential that the exit does not cause an
OUTADD request to contain no text units.

If no errors are detected, the output descriptor is created or deleted.

Programming Considerations

Code the IEFDOIXT routine to be reentrant.

The copy of the caller's input data, the text unit pointers and the 500-byte work
area that are passed to the exit are in key 1 storage, subpool 229. This storage is
pageable and fetch protected.

The IBM-supplied exit routine only zeroes the contents of registers 0, 1, and 15. It
restores the other registers and returns control to dynamic output.

The exit is an authorized exit, so you must follow standard security and integrity
procedures.

Dynamic output links to IEFDOIXT. The LINK macro does not restore the register
contents, so you must be sure that you restore the contents of registers 2-13 before
returning to dynamic output.

Tracing IEFDOIXT's Input and Output

You can use the generalized trace facility (GTF) to trace IEFDOIXT's input and
output, when the GTF identifier for dynamic output is active. The GTF identifier
for dynamic output is user event F62.

Each GTF trace record is prefixed with a 24-byte field that uniquely identifies the
creator of the trace record and the trace record's sequence number. The format of
the 24-byte field is as follows:

IEFDOIXT — Edit / Check a Caller's Dynamic Output Text Units Exit

Chapter 27. IEFDOIXT — Edit / Check A Caller's Dynamic Output Text Units Exit 175

(Hex) Contents

X'00' ‘TCB ’ (EBCDIC representation)

X'04' TCB address of the task that invoked the SVC

X'08' ‘SVRB’ (EBCDIC representation)

X'0C' SVRB address for this invocation of the SVC

X'10' ‘SEQ#’ (EBCDIC representation)

X'14' Sequence number of trace record. That is, 1 indicates the first trace record
of the input to IEFDOIXT, 2 indicates the second trace record, and so on.

Each GTF trace record can have a maximum length of 256 bytes. The following is a
description of the GTF trace records for IEFDOIXT:
v The first trace record contains a character string header (starting at offset X'18')

that indicates whether the data being traced is IEFDOIXT's input or output.
v The second trace record contains the following information:

(Hex) Contents

X'18' ‘ DOCNP->’

X'20' Pointer to copy of DOCNP

X'24' ‘ WORKAREA START->’

X'38' Pointer to the start of IEFDOIXT's workarea

X'3C' ‘ WORKAREA END->’

X'4C' Pointer to the end of IEFDOIXT's workarea
v The third record through the second-to-last record contains the data area that

was passed to IEFDOIXT. This includes the copy of the SVC caller's parameters
and the installation workarea. More than one trace record is issued if the data
area exceeds the maximum length of one trace record (256 bytes).

v The last record contains a character string that indicates the end of the trace
data.

See z/OS MVS Diagnosis: Tools and Service Aids for information on using GTF.

Entry Specifications

Dynamic output passes three address parameters to the installation exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of three consecutive fullwords. Each fullword is a pointer; the first
fullword points to the parameter list (DOCNP), the second fullword points
to the beginning (first byte) of the 500-byte work area that the exit can use,
and the third fullword points to the end (last byte) of the work area.
Figure 13 on page 177 shows the parameter structure.

2-12 Not applicable

13 Not applicable

IEFDOIXT — Edit / Check a Caller's Dynamic Output Text Units Exit

176 z/OS V2R2 MVS Installation Exits

14 Return address

15 Not applicable

Parameter Descriptions: Register 1 contains the address of a pointer list that
consists of three contiguous fullwords in storage. The first fullword points to the
address of the fixed parameter list, the DOCNP, which is mapped by macro
IEFDOCNP (data area DOCNP). For a mapping of the DOCNP data area, see z/OS
MVS Data Areas in the z/OS Internet library (http://www.ibm.com/systems/z/
os/zos/bkserv/).

Return Specifications

IEFDOIXT returns control to dynamic output and passes back a return code, a
reason code and, optionally, a key in error.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0 The contents of register 0 depend on the return code that the exit routine
places in register 15.
v If the return code is zero, register 0 must contain a zero.
v If the return code is 8, register 0 may contain a zero or an

installation-defined reason code with a value between X‘6000’ and
X‘7FFF’.

1 The contents of register 1 depend on the return code that the exit places in
register 15.
v If the return code is zero, set register 1 to zero.
v If the return code is 8, register 1 can contain either an erroneous text

unit key in the two low-order bytes, or zero. The two high-order bytes
must always contain zeroes.

2-13 Restored to contents at entry

Register 1

DOCNP

Start of the Work Area

End of the Work Area

DOCNP

Text Unit Pointers

Work Area

Text Units

00

04

08

Figure 13. IEFDOIXT Input Parameter Structure

IEFDOIXT — Edit / Check a Caller's Dynamic Output Text Units Exit

Chapter 27. IEFDOIXT — Edit / Check A Caller's Dynamic Output Text Units Exit 177

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

14 Return address

15 Contains one of the following return codes:

Return Code
Description

0 The request is to be processed.

8 The request is to be denied. The values in register 0 and 1 are set
accordingly and returned to the dynamic output caller in those
registers.

IEFDOIXT — Edit / Check a Caller's Dynamic Output Text Units Exit

178 z/OS V2R2 MVS Installation Exits

Chapter 28. IEFJFRQ — Subsystem Function Request Exit

You can use the IEFJFRQ exit to tailor the subsystem interface (SSI) processing of
subsystem function requests. See z/OS MVS Using the Subsystem Interface for more
information on subsystem function requests.

IEFJFRQ receives control at two different points in SSI function request processing:
v Prerequest — before the SSI routes either a directed or broadcast subsystem

function request to the target subsystem(s). For broadcast requests, IEFJFRQ is
called once for each subsystem defined to the SSI.

v Postrequest — after the SSI has routed either a directed or broadcast subsystem
function request to all appropriate subsystems.

At the prerequest point, you can use IEFJFRQ to modify or suppress processing for
any subsystem, or for any subsystem function request. (See z/OS MVS Using the
Subsystem Interface for a list of subsystem function requests.) For example, you can:
v Suppress commands or WTOs.
v Prevent calls to a specific subsystem, for example, a subsystem that is failing

repeatedly.
v Route directed requests to a different subsystem.
v Interrupt a broadcast request, that is, cause the SSI to discontinue routing the

broadcast request to the subsystems that have not yet processed the request.
v Maintain records of subsystem invocation.
v Enforce installation policies for subsystem invocation.
v Modify the return code that the caller of the SSI receives.

At the postrequest point, you can use IEFJFRQ to:
v Update records to reflect the results of function requests acted on by multiple

exit routines during the prerequest processing.
v Modify the return code that the caller of the SSI receives.

Topics for This Exit Appear as Follows:

v “Controlling the Exit Routine through the Dynamic Exits Facility” on page 180

v “Exit Routine Environment” on page 180

v “Exit Recovery” on page 181

v “Exit Routine Processing” on page 181

v “Programming Considerations” on page 182

v “Entry Specifications” on page 183

– Registers at Entry

– Parameter List Contents

v “Return Specifications” on page 184

– Registers at Exit

v “Coded Example of the Exit Routine” on page 185

© Copyright IBM Corp. 1988, 2015 179

Applications using the IEFJFRQ installation exit can determine whether it is
available by testing the JESFRQEX flag in the JESFLG field of the JESCT data area.

Controlling the Exit Routine through the Dynamic Exits Facility

IBM has defined the IEFJFRQ exit to the dynamic exits facility. You can refer to the
exit by the name IEFJFRQ. You can use the EXIT statement of the PROGxx parmlib
member, the SETPROG EXIT operator command, or the CSVDYNEX macro to
control this exit and its exit routines.

You may install more than one exit routine at the IEFJFRQ exit point. Each exit
routine can examine and modify the control blocks that represent the subsystem
function request. The control blocks passed to the target subsystem reflect the
modifications made by all installed exit routines.

You can control the order that exit routines receive control by using the FIRST or
LAST parameter on one of the following services:
v The CSVYDYNEX REQUEST=ADD macro
v The SETPROG EXIT,ADD command
v The EXIT ADD statement of the PROGxx parmlib member.

You can use the ADDABENDNUM parameter on the CSVDYNEX REQUEST=ADD
macro or the ABENDNUM parameter of the SETPROG EXIT operator command to
limit the number of times the exit routine abnormally ends before it becomes
inactive. See z/OS MVS Programming: Authorized Assembler Services Reference
ALE-DYN for more information on the CSVDYNEX macro, and z/OS MVS System
Commands for more information on the SETPROG EXIT operator command. An
abend is counted when both of the following conditions exist:
v The exit routine does not provide recovery, or the exit routine provides recovery

but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine. Note that IEFJFRQ cannot
take advantage of consecutive abend processing, since IEFJFRQ supports fastpath
calls in any PSW key,

You can use the DELETE parameter on the CSVDYNEX macro, or the SETPROG
EXIT,DELETE command to delete exit routines from IEFJFRQ. If the delete request
does not specify FORCE=YES, the system will not free the exit routine's storage,
since the IEFJFRQ exit supports callers in any PSW key. See z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN for more information
on the FORCE parameter on the CSVDYNEX macro, and z/OS MVS System
Commands for more information on the FORCE parameter on the SETPROG
command.

Exit Routine Environment

IEFJFRQ receives control in the following environment:
v Enabled for interrupts
v In the state and key of the caller of the SSI (issuer of the IEFSSREQ service that

produced the subsystem function request that drives this exit)
v In AMODE 31
v With any locks held by the caller of the SSI

IEFJFRQ — Subsystem Function Request Exit

180 z/OS V2R2 MVS Installation Exits

v In primary ASC mode
v In the dispatch mode (task or SRB) of the caller of the SSI
v In the cross-memory mode of the caller of the SSI.

Exit Recovery

You should consider the resources accessed by your exit routine and the impact on
system performance, when evaluating whether your exit routine should provide its
own recovery. IBM recommends that you establish your own recovery only if you
access system resources, and only for subsystem function requests that concern
your exit routine.

A system recovery routine will get control if:
v The exit routine abnormally ends and the exit routine does not provide its own

recovery
v The error percolates beyond the exit routine's recovery routine

The system does not route the function request to any other exit routines
associated with the exit, or to the target subsystem. If the error occurs while the
SSI is processing a broadcast request, the SSI continues routing the request to any
remaining subsystems. The abend processing of the dynamic exits facility
determines whether the exit routine continues to be invoked.

Exit Routine Processing

When IEFJFRQ receives control, the SSI has:
v Validated the SSOB and SSIB control blocks to ensure that these control blocks

are addressable and have the correct eyecatchers and lengths. Note that an SSOB
may have more than one acceptable length.

v Set the SSOBSSIB field in the SSOB control block to point to the life-of-job SSIB,
if the original subsystem function request did not specify an SSIB control block.
See z/OS MVS Using the Subsystem Interface for more information on the
life-of-job SSIB.

IEFJFRQ may be called multiple times for each subsystem function request. The
process for calling IEFJRFQ differs depending on whether the request is directed or
broadcast as follows:
v For directed requests, IEFJFRQ is called:

– Once before the target subsystem receives control
– Once after the target subsystem receives control
Note that the postrequest instance is called even if the prerequest instance
caused the SSI to bypass the call to the target subsystem.

v For broadcast requests, IEFJFRQ is called:
– Once when the MSTR subsystem is invoked to initiate the broadcast

processing
– Once for each target subsystem
– Once after broadcast processing is complete and the request has been routed

to all appropriate subsystems.
Note that the postrequest instance is called even if the prerequest instance
caused the SSI to bypass all broadcast processing.

Prerequest processing:

IEFJFRQ — Subsystem Function Request Exit

Chapter 28. IEFJFRQ — Subsystem Function Request Exit 181

IEFJFRQ receives control at the prerequest processing exit point before the SSI
routes either a directed or broadcast subsystem function request to the target
subsystem(s). Note that IEFJFRQ is invoked once for each subsystem receiving the
request.

Postrequest processing:

IEFJFRQ receives control at the postrequest processing point after the SSI has
routed either a directed or broadcast subsystem function request to all appropriate
subsystems. Its primary purpose is to inform exit routines of the actions the SSI
has taken with respect to the current subsystem function request.

Programming Considerations

IEFJFRQ exit routines must be reentrant.

Exit routines receive a pointer to the control blocks that represent the subsystem
function request, which include the SSOB, SSIB, SSOB extension, and any areas
pointed to from these control blocks. Exit routines should be careful when
modifying any of these control blocks.

IEFJFRQ exit routines should not take actions that result in a call to the SSI, such
as issuing a system command or dynamic allocation request. Actions that result in
a call to the SSI could result in infinitely recursive calls to the IEFJFRQ exit. For
example, an exit routine cannot issue an SVC WTO when processing a
WTO/WTOR function request (SSI function code 9).

The SSI provides a 12-byte correlation token, named
FRQP_CORRELATION_TOKEN, in the IEFJFRQP parameter mapping to assist exit
routines in correlating calls resulting from a single subsystem function request. The
correlation token has the following characteristics:
v The token is not valid if the system clock is not operating
v The first 8 bytes of the token are unique over the life of an IPL on a single

system
v The 8-byte single system token concatenated with the 4-byte system ID in the

parameter mapping form a 12-byte token that is unique across a sysplex.

Performance Considerations:

SSI processing, specifically the routing of subsystem function requests, may impact
performance; therefore, consider the following recommendations so that system
performance is not degraded:
v Exit routines installed at the IEFJFRQ exit point should not perform operations

that may degrade system performance, such as; issuing WAIT requests, issuing
requests for large amounts of dynamic storage, or issuing I/O requests. To
reduce the need for storage requests, the system provides an area that your exit
routine can use for dynamic storage. The FRQP_DYNSIZE constant in the
IEFJFRQP parameter mapping defines the size of the dynamic storage area. The
exit routine must clear the dynamic storage area before using it, because all exit
routines installed at the IEFJFRQ exit point use the same work area.

v Exit routines should quickly determine whether the current subsystem function
request is of interest, and return to the system immediately if not. Time
consuming operations, such as obtaining storage, should be deferred until after
this check. You can delay the establishment of recovery to perform this check, as

IEFJFRQ — Subsystem Function Request Exit

182 z/OS V2R2 MVS Installation Exits

long as the check references only information identified by the input control
blocks, that is, the IEFJFRQP parameter area, the SSOB, and the SSIB.

Entry Specifications

The IEFJFRQP macro maps the input to the IEFJFRQ exit, and contains the
following information:
v The address of the SSOB control block representing the subsystem function

request
v Flags that indicate:

– Which instance (prerequest or postrequest) of the exit is being called
– Whether the subsystem function request is a broadcast request
– Whether the SSIB is a copy of the life-of-job SSIB or was provided by the SSI's

caller.
v The current value of the return code that is passed back to the caller of the SSI,

if IEFJFRQ does not change this value.
v A token that you can use to correlate exit calls resulting from a single subsystem

function request.

For directed requests, the current return code value is always zero for the
prerequest instance of the exit.

Every broadcast request begins as a subsystem function request directed to the
MSTR subsystem. The SSI cannot determine if the request represents a broadcast
request until the MSTR subsystem processes this request. Therefore, the broadcast
indicator is not set when the SSI calls the prerequest instance of IEFJFRQ for a
request directed to the MSTR subsystem, even if the request will eventually be a
broadcast request.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Does not contain any information for use by the exit routine

1 Address of a list of pointers

2-12 Does not contain any information for use by the exit routine

13 Register save area

14 Return address

15 Entry point address of IEFJFRQ exit routine

Parameter List Contents: Register 1 points to the following list of addresses, which
are mapped by the FRQP_PLIST_AREA field of the IEFJFRQP macro:
v The address of the IEFJFRQP parameter area
v The address of the working storage that the system provides for use by the exit

routine.

Note: The high-order bit is set in the address of the last parameter to indicate the
end of the parameter list.

IEFJFRQ — Subsystem Function Request Exit

Chapter 28. IEFJFRQ — Subsystem Function Request Exit 183

Return Specifications

The exit routine must specify the following return codes:
v A return code passed in register 15 that controls the system's processing of the

subsystem function request
v A return code in register 0 that is passed to the caller of the SSI.

For the prerequest instance of the IEFJFRQ exit, the return code passed in register
0 for the caller of the SSI is used only if the return code passed in register 15
indicates that the SSI should not pass the subsystem function request to the target
subsystem.

For the postrequest instance of IEFJFRQ, the return code passed in register 0 is
passed back to the caller of the SSI. You can preserve the return code that would
be returned by the SSI by copying FRQP CURRENT SSI RETCODE in register 0.
Register 0 must contain one of the return code values defined in the IEFSSOBH
mapping macro.

If you associate multiple exit routines with IEFJFRQ, you can specify how the
return information is handled by using the ATTRIB KEEPRC function on one of
the following:
v The SETPROG EXIT command
v The EXIT statement of the PROGxx parmlib member
v The CSVDYNEX macro services.

If multiple exit routines match the ATTRIB KEEPRC criteria, the system returns
information from the exit routine that finished first.

Note that the KEEPRC function specifies tests to be performed on the return code
set in register 15 on exit from the IEFJFRQ exit routine. The results of the tests
control the information that is returned to the SSI, that is, both the exit's return
code in register 15 and the SSI caller's return code in register 0.

If you do not specify the ATTRIB KEEPRC function, the system returns the
information from the exit routine with the largest return code value. If multiple
exit routines return with the same value, the value in the exit routine that finished
first will be returned.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0 Return code to be provided to the caller of the SSI

1 The exit routine does not have to place any information in this register,
and does not have to restore its contents to what they were when the exit
routine received control.

2-14 Restored to contents on entry

15 One of the following return codes:

Return Code
Explanation

0 Route the subsystem function request to the target subsystem

IEFJFRQ — Subsystem Function Request Exit

184 z/OS V2R2 MVS Installation Exits

4 Do not route the subsystem function request to the target
subsystem

8 Do not route the subsystem function request to the target
subsystem, or for broadcast requests, do not route the subsystem
function request to any remaining subsystem that has not yet
processed the request.

24 Do not route the subsystem function request to the target
subsystem, or for broadcast requests, do not route the subsystem
function request to any remaining subsystem that has not yet
processed the request. Do not call any remaining IEFJFRQ exit
routines.

The IEFJFRQP macro provides mnemonic names for the return code values.

Coded Example of the Exit Routine

A sample IEFJFRQ exit routine is provided in SYS1.SAMPLIB (in member
IEFJSXIT).

IEFJFRQ — Subsystem Function Request Exit

Chapter 28. IEFJFRQ — Subsystem Function Request Exit 185

186 z/OS V2R2 MVS Installation Exits

Chapter 29. IEFUAV — User Account Validation Exit

You can use the IEFUAV installation exit routine to validate the accounting
information of users of APPC/MVS transaction programs (TPs).

IEFUAV is invoked:
v When the IBM-supplied APPC/MVS transaction scheduler (ASCH) selects a TP

for execution and
v At the points in TP processing where APPC/MVS could have tailored the

accounting information for the TP user. For example, IEFUAV is invoked when
APPC/MVS tailors the account number to which resources are charged for that
instance of the TP.

v The Workload Manager (WLM) component of the base control program is used
to create forked/spawned address spaces. In addition to APPC/MVS TPs, the
IEFUAV exit now receives control for forked/spawned address spaces.

When the IEFUAV exit receives control for a forked/spawned address space, the
TP flag value indicator is set to 1. The jobname in the ASCB is BPXAS, which is
the name of the procedure used to start the MVS initiator associated with
forked/spawned address spaces.

Based on whether the TP user's accounting information is valid, IEFUAV sets a
return code to indicate that either:
v Processing should continue for the unit of work or
v The unit of work is to be cancelled.

IEFUAV also allows you to place a message into a user's APPC/MVS job log. With
the message you can provide information to supplement the return code.

For APPC/MVS TPs, IEFUAV is the only exit that allows you to validate
accounting information for specific users at execution time. Therefore, it is
recommended that you use IEFUAV, instead of IEFUJV (or another exit, such as

Topics for This Exit Appear as Follows:

v “Defining the Exit in SMFPRMxx” on page 188

v “Controlling the Exit Routine Through the Dynamic Exits Facility” on page 188

v “Exit Routine Environment” on page 188

v “Exit Recovery” on page 189

v “Exit Routine Processing” on page 189

v “Programming Considerations” on page 190

– Macro Instructions and Restrictions

v “Entry Specifications” on page 191

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 192

– Registers at Exit

v “Coded Example of the Exit Routine” on page 193

© Copyright IBM Corp. 1988, 2015 187

IEFUJI or IEFUSI), to validate the accounting information of APPC/MVS TPs. Even
though IEFUJV is invoked (as part of C/I text processing) during the reading of a
TP profile, the user of the TP is not known at that time.

Defining the Exit in SMFPRMxx

To allow the system to invoke IEFUAV, define the exit in the SMF parmlib member
(SMFPRMxx). Specify IEFUAV on the EXITS option of the SUBSYS parameter for
the ASCH subsystem. If your installation chooses not to define a SUBSYS
parameter for ASCH, you can specify IEFUAV on the EXITS option of the SYS
parameter.

For more information about coding the EXITS option, see the description of
SMFPRMxx in z/OS MVS Initialization and Tuning Reference.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEFUAV installation exit to the dynamic exits facility. You can
refer to the exit by the name SYS.IEFUAV or SYSyyy.IEFUAV. See the description
of the SMFPRMxx parmlib member in z/OS MVS Initialization and Tuning Reference
for an explanation of the naming conventions for SMF exit routines. You can use
the EXIT statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its exit routines.

To define IEFUAV to the dynamic exits facility, you must specify the exit in both
PROGxx and SMFPRMxx. The system does not call the exit if it is defined in
PROGxx only. If you do not plan to use the dynamic exits facility for IEFUAV, you
need only define this exit in SMFPRMxx.

If you do not associate any exit routines with exit IEFUAV in PROGxx, the system
defaults to using the exit routine name that matches the exit name (IEFUAV).

If you associate exit routines with IEFUAV in PROGxx, the system does not use the
default exit routine. If you need this exit routine, you should explicitly add it to
PROGxx.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Exit Routine Environment

IEFUAV receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 1.
v In AMODE 31 and runs RMODE ANY.
v In the address space of the unit of work being started

IEFUAV — User Account Validation Exit

188 z/OS V2R2 MVS Installation Exits

v With no locks or ENQs held.

Exit Recovery

IBM strongly recommends that you set up an ESTAEX recovery routine to handle
errors that might occur during the execution of IEFUAV.

If you do not provide recovery for IEFUAV, or if the exit routine's error percolates
beyond its recovery routine, a system recovery routine will get control.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

The system invokes the IEFUAV exit routine during the processing of an
APPC/MVS TP at the points in which the accounting information might have been
altered. At these points, an installation can validate the user's accounting
information before processing the transaction further. For example, IEFUAV is
invoked when a TP issues Get_Transaction because this service allows APPC to
tailor the accounting information for the unit of work, such as the account number
to which a resource is charged.

When IEFUAV Is Invoked: IEFUAV will get control only for APPC/MVS TPs
whose profiles specify TAILOR_ACCOUNT(YES). IEFUAV is invoked once for
standard TPs and multiple times for multi-trans TPs, as follows:
v For both standard and multi-trans TPs, IEFUAV is invoked when the

APPC/MVS transaction scheduler (ASCH) selects a TP for execution. In this
case, IEFUAV receives the generic accounting information that is specified in the
TP user's RACF profile.

v For multi-trans TPs only, IEFUAV is invoked when the TPs issue calls to the
following services:
– Get_Transaction, to obtain the next transaction. IEFUAV receives accounting

information derived from the TP user's RACF profile.
– Return_Transaction, to restore the generic “shell” environment that was

established when the TP was initialized. IEFUAV receives generic accounting
information from the TP user's RACF profile.

For information on creating a TP profile, see z/OS MVS Planning: APPC/MVS
Management.

The circumstances under which IEFUAV receives control might impose restrictions
on exit routine processing; see macros and restrictions in “Programming
Considerations” on page 190 for more details.

Using IEFUAV to Validate Account Numbers

Code your IEFUAV routine to check the user's account number against a list of
valid installation account numbers.

Using the Exit Function Code: IEFUAV determines why it was invoked by
checking the exit function code in Word 3 of the parameter list (pointed to by
Register 1). An installation would probably want IEFUAV to perform validation
when Word 3 is set to a value of either 1 (generic account number) or 2 (possible
account number alteration).

IEFUAV — User Account Validation Exit

Chapter 29. IEFUAV — User Account Validation Exit 189

For exit function code 3, IEFUAV can simply return to the caller, as this code
indicates the generic account number that IEFUAV already validated during TP
initialization (exit function code 1).

See parameter descriptions in “Entry Specifications” on page 191 for more
information on the exit function codes.

Validating the User's Account Number: IEFUAV receives, as parameters, the
accounting information specified on the JOB statement in the TP user's RACF
profile. The accounting information appears in a formatted list, and follows the
order in which the accounting parameters were specified on the JOB statement.
Table 4 on page 161 shows the format of the accounting information.

After locating the account number field, IEFUAV would typically do these checks:
v Is the account number present? A value of 0 in the first byte of the account

number field indicates the account number was omitted.
v Does the account number have the correct length? A nonzero value in the first

byte indicates the length of the account number.
v Is the account number valid? IEFUAV can determine this by comparing the

account number to a list of valid account numbers.

At the end of its processing, IEFUAV sets a return code that indicates whether
processing for this user should continue or be cancelled.

Placing a Message into a User's APPC/MVS Job Log: IEFUAV allows you to place
a message into a user's APPC/MVS job log. Through the message, you can provide
information to supplement the return code from IEFUAV. On entry, word 5 of the
input parameter list points to a two-word area representing a message area. Place
the length of the message in the first word. If the length exceeds zero, then the
system issues the message that the second word points to regardless of the value
returned in register 15. The maximum allowed length is 80.

The second word is the address of an 80-byte buffer; in that buffer, place the
message to be issued to the APPC/MVS job log.

Programming Considerations

SMF provides a replaceable module for an unused exit.

If an installation includes an IEFUAV exit routine, the following programming
standards must be observed:
v IEFUAV must follow standard linkage conventions.
v IEFUAV must be reentrant.
v IEFUAV cannot access ISAM data sets.

Macro Instructions and Restrictions are as follows.
v If you want to issue a WTOR macro from IEFUAV, also issue the WAIT macro

with LONG=YES.
v You can issue any macros from IEFUAV, including the OPEN and DYNALLOC

macros. The circumstances under which IEFUAV receives control, however,
determine the results of OPEN and DYNALLOC processing:
– When IEFUAV gets control because the APPC initiator started a standard or

multi-trans TP, IEFUAV can open only those data sets specified in the APPC
initiator's procedure. If IEFUAV needs access to other data sets, it may

IEFUAV — User Account Validation Exit

190 z/OS V2R2 MVS Installation Exits

dynamically allocate them, which adds those data sets to the APPC initiator's
environment. Those data sets will remain available to the APPC initiator
unless IEFUAV unallocates them before completing its processing.

– When IEFUAV gets control because a multi-trans TP issued either
Get_Transaction or Return_Transaction, IEFUAV can open only those data sets
that are specified in the TP's profile. If IEFUAV needs access to other data
sets, it may dynamically allocate them, which adds those data sets to the TP's
environment. Those data sets will remain available to the TP unless IEFUAV
unallocates them before completing its processing.

Entry Specifications

IEFUAV is passed a list of parameter addresses (pointed to in register 1).

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point of IEFUAV

Parameter Descriptions: Register 1 points to a list of addresses. The list is specified
in VL format (that is, the last address has its leftmost bit set to 1). The following
describes the list of parameters:

Word 1
Address of the common exit parameter area. For details, see “Common
Exit Parameter Area” on page 159.

Word 2
Address of a 20-byte area containing the programmer's name (in EBCDIC).
This area is aligned left and padded with blanks if necessary.

Word 3
Address of a 1-byte area that contains a value (binary). The value indicates
one of the following conditions:

Exit Function Code
Condition

0 This code is reserved, and no action is taken.

1 For both standard and multi-trans TPs, this code indicates that
IEFUAV has received control during the initialization of a TP. The
exit receives generic, installation-supplied accounting information
from the TP user's RACF profile (in the area pointed to by Word
4).

2 For multi-trans TPs, this code indicates that accounting information
might have been altered. The exit receives accounting information
from the TP user's RACF profile (in the area pointed to by Word
4).

IEFUAV — User Account Validation Exit

Chapter 29. IEFUAV — User Account Validation Exit 191

3 For multi-trans TPs, this code indicates a return to processing on
behalf of the multi-trans “shell”. The exit receives generic,
installation-supplied accounting information from the TP user's
RACF profile (in the area pointed to by Word 4).

4-255 These codes are reserved, and no action is taken.

Word 4
Address of an area containing accounting information. (See “Accounting
Information” on page 161.)

Word 5
Address of a two-word area representing a message area. The first word
contains a message length of zero on entry. The second word contains the
address of an 80-byte message buffer. In that buffer, the exit routine can
place a message to be issued to the APPC/MVS job log.

Note: The high-order bit is set in the address of the last parameter to indicate the
end of the parameter list.

Return Specifications

A return code from IEFUAV indicates whether processing is to continue.

If you associate multiple exit routines with IEFUAV, you can specify how the
return information is to be handled using the ATTRIB KEEPRC function of the
SETPROG EXIT command, the EXIT statement of PROGxx, or CSVDYNEX
services. If multiple exit routines match the ATTRIB KEEPRC criteria, the system
returns information from the exit routine that finished first.

If you do not specify the ATTRIB KEEPRC function, the system returns the
information from the exit routine whose return value was the greatest. If multiple
exit routines return with the same highest value, the return information from the
exit routine that finished first will be returned.

If you associate multiple exit routines with exit IEFUAV, and any of those exit
routines return with a value of 8, the system will cancel the unit of work.

Register 1

Common exit parameter area

Programmer’s name

Value indicator

Job accounting information

Job log message’1’b

0(0)

4(4)

8(8)

12(C)

16(F)

Figure 14. IEFUAV Input Parameter Structure

IEFUAV — User Account Validation Exit

192 z/OS V2R2 MVS Installation Exits

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0 Not applicable

1 Address of input parameter list

Words 1-4
Not applicable

Word 5
Points to a two-word area representing a message to be written to
the APPC/MVS job log. The first word contains the length of the
message. The second word is the address of an 80-byte buffer; the
buffer contains the text of the message.

2-14 Not applicable

15 One of the following return codes:

Return Code
Explanation

0 Processing is to continue.

8 This unit of work should be cancelled.

Coded Example of the Exit Routine

IBM provides a sample IEFUAV exit routine in SYS1.SAMPLIB (member
SMFEXITS). The sample routine validates the account number of the current user.

If this routine meets the needs of your installation, use it instead of coding your
own routine (you will need to make minor modifications to the sample). If you
plan to code your own routine, you might want to refer to this routine as an
example.

IEFUAV — User Account Validation Exit

Chapter 29. IEFUAV — User Account Validation Exit 193

194 z/OS V2R2 MVS Installation Exits

Chapter 30. IEFUJI — Job Initiation Exit

IEFUJI receives control before the system selects a job on the input queue for
initiation. A return code from IEFUJI indicates whether job processing is to
continue or be cancelled.

You can use IEFUJI to:
v Validate job accounting information.
v Determine how long a job was on the input job queue before it was selected.
v Write particular information to an installation data set.

Defining the Exit in SMFPRMxx

In the SMF parmlib member (SMFPRMxx), specify IEFUJI on the EXITS option of
either the SYS or SUBSYS parameters, depending on the scope of work
(system-wide or subsystem-wide) the exit is to affect.

If you use the SUBSYS option, the system invokes the IEFUJI routine only for work
running under the subsystems you specify on SUBSYS. If you use the SYS option,
the system invokes the IEFUJI routine for work running under any SMF-defined
subsystem, such as JES2, JES3, STC, ASCH, OMVS, or TSO.

For more information about coding the EXITS option, see the description of
SMFPRMxx in z/OS MVS Initialization and Tuning Reference.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEFUJI installation exit to the dynamic exits facility. You can
refer to the exit by the name SYS.IEFUJI or SYSyyy.IEFUJI. See the description of
the SMFPRMxx parmlib member in z/OS MVS Initialization and Tuning Reference for
an explanation of the naming conventions for SMF exit routines. You can use the

Topics for This Exit Appear as Follows:

v “Defining the Exit in SMFPRMxx”

v “Controlling the Exit Routine Through the Dynamic Exits Facility”

v “Exit Routine Environment” on page 196

v “Exit Recovery” on page 196

v “Exit Routine Processing” on page 196

v “Programming Considerations” on page 197

– Macro Instructions and Restrictions

v “Entry Specifications” on page 197

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 198

– Registers at Exit

v “Coded Example of the Exit Routine” on page 199

© Copyright IBM Corp. 1988, 2015 195

EXIT statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its routines.

To define IEFUJI to the dynamic exits facility, you must specify the exit in both
PROGxx and SMFPRMxx. The system does not call the exit if it is defined in
PROGxx only. If you do not plan to use the dynamic exits facility for this exit, you
need only define IEFUJI in SMFPRMxx.

If you do not associate any exit routines with exit IEFUJI in PROGxx, the system
defaults to using the exit routine name that matches the exit name (IEFUJI).

If you associate exit routines with IEFUJI in PROGxx, the system does not use the
default exit routine. If you need the default exit routine, you should explicitly add
it to PROGxx.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Exit Routine Environment

IEFUJI receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In AMODE 31.
v In the address space of the job that is being started.
v With no locks or ENQs held.

Exit Recovery

IBM strongly recommends that you set up an ESTAEX recovery routine to handle
errors that might occur during the execution of IEFUJI.

An ESTAE-type recovery routine is set up by the module that calls IEFUJI; the
recovery routine, if it gets control, will allow the job to continue processing if the
exit routine abnormally ends.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

IEFUJI receives control from the system whenever a job on the input queue is
selected for initiation. If the system availability manager (SAM) function is active
and operational, the SAM job/step initialization exit routine executes before IEFUJI
is called.

IEFUJI — JOB Initiation Exit

196 z/OS V2R2 MVS Installation Exits

IEFUJI has information from the JOB statement available as parameters. The
accounting information is in a formatted list, so that, for account number
processing, IEFUJI is easier to use than exit IEFUJV. Table 4 on page 161 shows the
format of the JOB statement accounting information.

At the end of its processing, IEFUJI sets a return code to indicate whether job
processing is to continue or not.

Programming Considerations

SMF automatically provides a replaceable module for IEFUJI. If an installation
includes IEFUJI, it must follow certain programming standards:
v The exit routine must follow standard linkage conventions.
v Code the exit routine reenterable and refreshable.
v IEFUJI can perform dynamic allocations and write to installation-defined data

sets. In foreground jobs, data sets are allocated dynamically. However, for
background jobs, you can either allocate data sets dynamically or you can
pre-define (pre-allocate) a data set with a DD statement in the initiator cataloged
procedure.

v IEFUJI cannot access ISAM data sets.
v Do not use a WTO with a routing code of 11 to send a message to the

JESYSMSG data set for started tasks or TSO users.
v Do not use subpool 240 or 250 when obtaining storage for this exit. Using these

subpools may result in errors when the exit receives control for address spaces
that are created with the KEEPRGN attribute.

v To provide a consistent environment for accessing and allocating data sets across
calls to SMF exits for the duration of a job or task, IEFUJI receives control with
the initiator's JSCB active.

At job or job step termination, use the termination indicators in SMF record types
4, 5, 30, 34, and 35 to indicate that IEFUJI cancelled the job.

Macro Instructions and Restrictions: When issuing a WTOR macro, specify
LONG=YES on the WAIT macro. Do not use a WTO with a routing code of 11 to
send a message to the JESYSMSG data set for started tasks or TSO users.

Entry Specifications

The system provides a list of parameter addresses that IEFUJI can use.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of IEFUJI

Parameter Descriptions: Register 1 points to the following list of addresses:

IEFUJI — JOB Initiation Exit

Chapter 30. IEFUJI — Job Initiation Exit 197

Word 1
Address of the common exit parameter area. For details on the parameter
area, see Table 3 on page 160.

Word 2
Address of a 20-byte area containing the programmer's name (in EBCDIC)
from the JOB statement. This area is aligned left and padded with blanks if
necessary.

Word 3
Address of a one-byte area indicating (in binary) the requested job
selection priority. The value of this field equals the user-assigned priority
of 0 to 14 (taken from the PRTY parameter on the JOB statement).

Word 4
Address of an area containing the accounting information from the JOB
statement. (See “Accounting Information” on page 161.)

Word 5
Address of a 4-character area that contains the name of the subsystem for
the job being processed. Examples:
v ASCH, JES2, or JES3 — indicates the name of the subsystem that

selected the job
v OMVS — indicates a forked or spawned address space
v STC — indicates a started task
v TSO — indicates a time sharing option task
v The jobname — used if it is four or fewer characters and none of the

above apply

Note: The high-order bit is set in the address of the last parameter to indicate the
end of the parameter list.

Return Specifications

A return code from IEFUJI indicates whether job processing is to continue.

If you associate multiple exit routines with IEFUJI, you can specify how the return
information is to be handled using the ATTRIB KEEPRC function of the SETPROG

Register 1

Contains Address of
Parameter list.

Programmer’s name

Job priority

Job accounting information

Subsystem name’1’b

0(0)

4(4)

8(8)

12(C)

16(10)

Figure 15. IEFUJI Input Parameter Structure

IEFUJI — JOB Initiation Exit

198 z/OS V2R2 MVS Installation Exits

EXIT command, the EXIT statement of PROGxx, or CSVDYNEX services. If
multiple exit routines match the ATTRIB KEEPRC criteria, the system returns
information from the exit routine that finished first.

If you do not specify the ATTRIB KEEPRC function, the system returns the
information from the exit routine whose return value was the greatest. If multiple
exit routines return with the same highest value, the return information from the
exit routine that finished first will be returned.

If you associate multiple exit routines with exit IEFUJI, and any of those exit
routines return with a value of 4, job processing will not continue.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Not applicable

15 One of the following return codes:

Return Code
Explanation

Value of 4
Job processing is to be cancelled.

Value other than 4
Job processing is to continue.

Coded Example of the Exit Routine

A sample IEFUJI exit routine is provided in SYS1.SAMPLIB (in member
SMFEXITS). This routine determines how long a job has been on the input job
queue before it is initiated. It then writes this value and the job priority to the SMF
data set as a user record.

IEFUJI — JOB Initiation Exit

Chapter 30. IEFUJI — Job Initiation Exit 199

200 z/OS V2R2 MVS Installation Exits

Chapter 31. IEFUJP — Job Purge Exit

IEFUJP receives control from the job entry subsystem (JES2 or JES3) when a job is
ready to be purged from the system, meaning that the job terminated and the
system has written all SYSOUT output pertaining to the job. A return code from
IEFUJP indicates whether the SMF job purge record (type 26) is to be written to the
SMF data set.

Defining the Exit in SMFPRMxx

To allow the system to invoke IEFUJP, define the exit in the SMF parmlib member
(SMFPRMxx). Specify IEFUJP on the EXITS option of the SUBSYS parameter for
the STC subsystem. If your installation chooses not to define a SUBSYS parameter
for STC, you can specify IEFUJP on the EXITS option of the SYS parameter.

For more information about coding the EXITS option, see the description of
SMFPRMxx in z/OS MVS Initialization and Tuning Reference.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEFUJP installation exit to the dynamic exits facility. You can
refer to the exit by the name SYS.IEFUJP or SYSyyy.IEFUJP. See the description of
the SMFPRMxx parmlib member in z/OS MVS Initialization and Tuning Reference for
an explanation of the naming conventions for SMF exit routines. You can use the
EXIT statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its exit routines.

To define IEFUJP to the dynamic exits facility, you must specify the exit in both
PROGxx and SMFPRMxx. The system does not call the exit if it is defined in
PROGxx only. If you do not plan to use the dynamic exits facility for this exit, you
need only define IEFUJP in SMFPRMxx.

If you do not associate any exit routines with exit IEFUJP in PROGxx, the system
defaults to using the exit routine name that matches the exit name (IEFUJP).

Topics for This Exit Appear as Follows:

v “Defining the Exit in SMFPRMxx”

v “Controlling the Exit Routine Through the Dynamic Exits Facility”

v “Exit Routine Environment” on page 202

v “Exit Recovery” on page 202

v “Exit Routine Processing” on page 202

v “Programming Considerations” on page 202

– Macro Instructions and Restrictions

v “Entry Specifications” on page 203

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 203

– Registers at Exit

© Copyright IBM Corp. 1988, 2015 201

If you associate exit routines with this exit in PROGxx, the system does not use the
default exit routine. If you need the default exit routine, you should explicitly add
it to PROGxx.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Exit Routine Environment

IEFUJP receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 1.
v In AMODE 31.

Exit Recovery

IBM strongly recommends that you set up an ESTAEX recovery routine to handle
errors that might occur during the execution of IEFUJP.

An ESTAE-type recovery routine is set up by the module that calls IEFUJP; the
recovery routine, if it gets control, will allow the job to continue processing if the
exit routine abnormally ends.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

IEFUJP receives control from the job entry subsystem SMF writer. The addresses of
the SMF common exit parameter list and the type 26 SMF record (SMF job purge
record) are parameters that the exit routine can use to determine whether or not to
write the SMF record.

At the end of its processing, IEFUJP sets a return code to indicate to the JES SMF
writer whether to write the SMF record.

Programming Considerations

SMF automatically provides a replaceable module for an unused exit. If an
installation includes IEFUJP, certain programming conventions must be followed:
v The exit routine must follow standard linkage conventions.
v Code the exit routine to be reentrant and refreshable.
v If you use installation-defined data sets with IEFUJP, you must define them with

a DD statement in the job entry subsystem cataloged procedure.

IEFUJP — Job Purge Exit

202 z/OS V2R2 MVS Installation Exits

Macro Instructions and Restrictions: When issuing a WTOR macro, specify
LONG=YES on the WAIT macro. Do not use a WTO with a routing code of 11 to
send a message to the JESYSMSG data set for started tasks or TSO users.

Entry Specifications

The job entry subsystem provides the addresses of the SMF record and the
common exit parameter area for the exit routine to use.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Contains address of parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of IEFUJP

Parameter Descriptions: Register 1 points to the following list of addresses:

Word 1
The address of the common exit parameter area. (See Table 3 on page 160.)

Word 2
The address of an area containing the SMF job purge record (type 26) to be
written to the SMF data set.

Return Specifications

A return code from IEFUJP indicates whether the SMF type 26 record is to be
written.

If you associate multiple exit routines with IEFUJP, you can specify how the return
information is to be handled using the ATTRIB KEEPRC function of the SETPROG
EXIT command, the EXIT statement of PROGxx, or CSVDYNEX services. If
multiple exit routines match the ATTRIB KEEPRC criteria, the system returns
information from the exit routine that finished first.

If you do not specify the ATTRIB KEEPRC function, the system returns the
information from the exit routine whose return value was the greatest. If multiple

Register 1

0(0)

0(4)

Common exit parameter area

SMF job purge record

Figure 16. IEFUJP Input Parameter Structure

IEFUJP — Job Purge Exit

Chapter 31. IEFUJP — Job Purge Exit 203

exit routines return with the same highest value, the return information from the
exit routine that finished first will be returned.

If you associate multiple exit routines with exit IEFUJP, and any of those exit
routines return with a value of 4, the system will not write the SMF type 60 record.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents at entry

15 One of the following return codes:

Return Code
Explanation

Value of 4
Job purge record is not to be written to the SMF data set.

Value other than 4
Job purge record is to be written to the SMF data set.

IEFUJP — Job Purge Exit

204 z/OS V2R2 MVS Installation Exits

Chapter 32. IEFUJV — Job Validation Exit

IEFUJV receives control at three different points in the converter/interpreter (C/I)
processing of an input stream. They are:
1. Preconversion — before each job control statement (or cataloged procedure) in

the input stream is converted.
2. Postconversion — after all job control statements for a job have been converted.
3. Postinterpretation — after all job control statements for a job have been

interpreted.

For z/OS UNIX System Services, this exit is called only once when each BPXAS
initiator is started. It is not called for forked/spawned requests and can not be
used to validate them.

A return code from this exit indicates whether job processing is to continue.

At the preconversion point, you might use IEFUJV to:
v Validate any accounting fields included in the JOB and EXEC statements (except

symbolic parameters) by comparing them to a standard list.
v Validate or assign the REGION request.
v Validate or assign job TIME and job step TIME parameters.
v Control output stream data by using the OUTLIM or SPACE parameters.
v Check for authorization to use restricted data sets.
v Create user-written records.
v Assign the user identification to be included in both the SMF job/step

termination record and the SMF job purge record.
v Limit the size of temporary data sets handled by VIO.
v Require checkpoint/restart for jobs requesting a large amount of processor time.
v Enforce installation standards on usage of the ADDRSPC parameter.

Topics for This Exit Appear as Follows:

v “Defining the Exit in SMFPRMxx” on page 206

v “Controlling the Exit Routine Through the Dynamic Exits Facility” on page 206

v “Exit Routine Environment” on page 207

v “Exit Recovery” on page 207

v “Exit Routine Processing” on page 207

v “Programming Considerations” on page 209

v “Entry Specifications” on page 210

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 212

– Registers at Exit

v “Coded Example of the Exit Routine” on page 213

© Copyright IBM Corp. 1988, 2015 205

v Override certain JES initialization parameters (such as designation of where
SWA blocks are to be obtained) that are passed to converter routines.

At the postconversion point, you might use IEFUJV to:
v Create user-written records.
v Assign the user identification to be included in both the SMF job/step

termination record and the SMF job purge record.
v Override certain JES initialization parameters (such as designation of where

SWA blocks are to be obtained) that are passed to converter routines.

At the postinterpretation point, you might use IEFUJV to:
v Create user-written records.
v Assign the user identification to be included in both the SMF job/step

termination record and the SMF job purge record.

Defining the Exit in SMFPRMxx

In the SMF parmlib member (SMFPRMxx), specify IEFUJV on the EXITS option of
either the SYS or SUBSYS parameters, depending on the scope of work
(system-wide or subsystem-wide) the exit is to affect.

If you use the SUBSYS option, the system invokes the IEFUJV routine only for
work running under the subsystems you specify on SUBSYS. If you use the SYS
option, the system invokes the IEFUJV routine for work running under any
SMF-defined subsystem, such as JES2, JES3, STC, ASCH, OMVS, or TSO.

For more information about coding the EXITS option, see the description of
SMFPRMxx in z/OS MVS Initialization and Tuning Reference.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEFUJV installation exit to the dynamic exits facility. You can
refer to the exit by the name SYS.IEFUJV or SYSyyy.IEFUJV. See the description of
the SMFPRMxx parmlib member in z/OS MVS Initialization and Tuning Reference for
an explanation of the naming conventions for SMF exit routines. You can use the
EXIT statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its exit routines.
However, you cannot use the JOBNAME parameter of the SETPROG EXIT
command to restrict exit IEFUJV processing to a particular job.

To define IEFUJV to the dynamic exits facility, you must specify the exit in both
PROGxx and SMFPRMxx. The system does not call the exit if it is defined in
PROGxx only. If you do not plan to use the dynamic exits facility for this exit, you
need only define IEFUJV in SMFPRMxx.

If you do not associate any exit routines with exit IEFUJV in PROGxx, the system
defaults to using the exit routine name that matches the exit name (IEFUJV).

If you associate exit routines with this exit in PROGxx, the system does not use the
default exit routine. If you need the default exit routine, you should explicitly add
it to PROGxx.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the

IEFUJV — Job Validation Exit

206 z/OS V2R2 MVS Installation Exits

SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Exit Routine Environment

IEFUJV receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0 or 1 (based on the caller's key). When the

entry code (contained in word 3 of the input parameter list) is 32, the key is 0.
v In AMODE 31.

In a JES2 environment, conversion might take place on one processor and
interpretation of the same job on another. Therefore, the IEFUJV exits could receive
control on different processors for the same job. In that case, timing comparisons of
the job flow would not be valid.

For an interpreter call in a JES2 environment, a security environment must be
established if the exit is to obtain access to any protected resources. For example, if
a command is to be issued with RACF OPERCMDS active, pass a user security
token (UTOKEN) on the MGCRE macro to establish authority for the user
requesting access to the command. See z/OS MVS Programming: Authorized
Assembler Services Reference LLA-SDU for information about the MGCRE macro.

Exit Recovery

IBM strongly recommends that you set up an ESTAEX recovery routine to handle
errors that might occur during the execution of IEFUJV.

An ESTAE-type recovery routine is set up by the module that calls IEFUJV; the
recovery routine, if it gets control, will allow the job to continue processing if the
exit routine abnormally ends.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

There are two data formats related to JCL statements. The first data format is the
JCL "card image." A JCL card image is an 80-character EBCDIC string that
represents either an entire JCL statement or a portion of a JCL statement that is
continued. The second data format is the C/I text string representation of the JCL
statement. The C/I text format consists of an established pattern of hexadecimal
codes, or keys, assigned to each parameter or subparameter. See Part 4, “MVS
Converter / Interpreter Text Processing,” on page 361 for more details about C/I
text strings and the appropriate processing exit points.

IEFUJV — Job Validation Exit

Chapter 32. IEFUJV — Job Validation Exit 207

JES provides several exit points related to JCL card image processing. See z/OS
JES2 Installation Exits and z/OS JES3 Customization for additional information about
this processing.

Note that IEFUJV receives control following the JES exits related to card image
processing. Your installation is responsible for coordinating the processing between
IEFUJV and the JES exits.

Note further that if you use the IEFUJV exit to change certain parameters on the
JOB statement, the result might be that the internal representation of the JCL card
image would reflect the changes while the job itself continues to be processed
according to the original JOB statement. For example, if you change the CLASS
parameter as part of the exit routine, the job will still run in its original specified
class. This applies to both the JES2 and JES3 environments. These other JOB
statement parameters have the same restriction: GROUP, MSGCLASS, NOTIFY,
PASSWORD, PRTY, SECLABEL, TYPRUN, and USER.

Preconversion processing: IEFUJV receives control at the preconversion processing
exit point before each JCL statement card image is converted. The input parameter
list provides an indication of the type of JCL statement being processed.

The exit will be invoked multiple times for a continued JCL statement (once per
card image). The JCL statement type indicator is the same for each card image of
the continued JCL statement.

When modifying a JCL statement, the updated JCL statement must adhere to the
JCL syntax as defined in z/OS MVS JCL Reference. The following updates are not
permitted at the preconversion processing point:
v Do not include additional JCL statements
v Do not add continuation card images.
v Do not change the operation field on a JCL statement.
v Do not change the identifier field on a JCL statement.

If a procedure is used, it is expanded before the IEFUJV exit routine receives
control. For example, for a cataloged procedure, the sequence of statements are:
//UJV JOB
//STEP1 EXEC PROC=MYPROC
XXMYPROC PROC
XXSTEP2 EXEC PGM=...

followed by the other statements of the procedure. Note that the resolved values
for symbolic parameters are not passed to the IEFUJV exit routine.

Using IEFUJV for Job Accounting: You might want to use an IEFUJV exit routine for
job accounting. If so, consider the following:
v For APPC/MVS transaction programs (TPs), IBM recommends that you use

IEFUAV instead of IEFUJV to validate accounting information. IEFUAV is the
only exit that allows you to validate the accounting information of a TP user at
execution time. Even though IEFUJV is invoked when a TP profile is created
(specifically, when the profile's JCL statements are processed by the
converter/interpreter), the TP user is not known at that time. Therefore, when
you need to validate the TP user's accounting information (such as the job name
or account number), use the IEFUAV exit routine. See Chapter 29, “IEFUAV —
User Account Validation Exit,” on page 187 for more information.

IEFUJV — Job Validation Exit

208 z/OS V2R2 MVS Installation Exits

v Depending upon the processing to be performed, it may be more efficient to
check JOB and EXEC statement accounting fields in the IEFUJI exit routine and
the first IEFUSI exit routine, respectively. The accounting fields are passed as
parameters to IEFUJI and IEFUSI, making a statement scan routine unnecessary.
Either of these exit routines can assign user identification, and the IEFACTRT
exit routine can write messages to JOBLOG.

v When running JES2, you can use Exit 03, the job statement accounting field scan
exit (HASPRSCN), as well as the IEFUJV exit. Because Exit 03 receives control
before the IEFUJV exit, do not use the IEFUJV exit to change the following fields
of the JOB statement: CLASS, MSGCLASS, NOTIFY, PRTY, PASSWORD and
TYPRUN.

v If an installation checks JOB statement accounting in the IEFUJV exit for all
tasks, the IEFUJV exit should not be taken, unless modified, for started tasks.
Started tasks do not have any JOB statement accounting and might be cancelled
by the installation exit.

For jobs cancelled by IEFUJV from the converter, only SMF record types 6 and 26
are generated.

Preconversion input limitations: The following information is not made available to
this exit routine:
v Resolved values for JCL symbolic parameters
v JCL COMMAND, Command, and Comment statements
v JES2 control statements
v JES3 control statements

Postconversion processing: IEFUJV receives control at the postconversion
processing point once per job to indicate that the conversion processing for the job
has completed.

Postinterpretation processing: IEFUJV receives control at the postinterpretation
processing point once per job to indicate that the interpretation processing for the
job has completed.

When running JES3, a JES3 user can use JES3 installation exits, in addition to the
IEFUJV exit, to write programs to examine and change the results of interpreter
processing and allow the job to proceed or to flush the job from the system. For
more information about the JES3 installation exits, see z/OS JES3 Customization.

Programming Considerations

When issuing a WTOR macro, specify LONG=YES on the WAIT macro. Do not use
a WTO with a routing code of 11 to send a message to the JESYSMSG data set for
started tasks or TSO users.

IEFUJV must be reenterable and refreshable because PLPA pages are stolen. That
is, they can be paged in but not paged out, and subsequent page-ins overlay any
code changes.

To use installation-defined data sets with this exit routine, you must define them
with a DD statement in the job entry subsystem cataloged procedure. When
running JES2, you must also define the data sets with a DD statement in the
initiator cataloged procedure.

IEFUJV — Job Validation Exit

Chapter 32. IEFUJV — Job Validation Exit 209

IEFUJV cannot access ISAM data sets.

Exit IEFUJV is called multiple times for a job. When you change the exit routine
after it has been called at least once, but before all the calls for the job have been
made, the job might be rejected because of incorrect JCL. When you rerun the job it
will run successfully.

Entry Specifications

The converter/interpreter passes to IEFUJV a list of parameter addresses (in
register 1).

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of IEFUJV

Parameter Descriptions: Register one points to the following list of addresses:

Word 1
The address of the common exit parameter area. (See Table 3 on page 160.)

Word 2
When the value pointed to by Word 3 is neither 16 nor 32, Word 2 is the
address of the JCL statement card image.

This word is 0 when the value pointed to by word 3 is 16 or 32.

Word 3
The address of a 1-byte area that indicates the specific exit processing
point. For preconversion, it also indicates the type of JCL statement being
passed to the exit. See “Exit Routine Processing” on page 207 for more
information. The indicator is one of the following binary values:

Value Meaning

0 indicates the preconversion exit point; null statement card image.

1 indicates the preconversion exit point; JOB statement card image.

2 indicates the preconversion exit point; EXEC statement card image.

4 indicates the preconversion exit point; DD statement card image.

8 indicates the preconversion exit point; PROC statement card image
from cataloged procedure.

16 indicates the postconversion exit point; all JCL has been converted.

32 indicates the postinterpretation exit point; all JCL has been
interpreted.

64 indicates the preconversion exit point; JCL definition table defined
(JDT) statement card image.

IEFUJV — Job Validation Exit

210 z/OS V2R2 MVS Installation Exits

128 indicates the preconversion exit point; extended JCL statement type
card image. Extended JCL statement type refers to any new JCL
statements defined as of MVS/ESA Version 4. (For possible
exceptions see “Exit Routine Processing” on page 207.)

Word 4
This word is 0 when the value pointed to by word 3 is 32.

When the value pointed to by word 3 is not 32, word 4 is the address of
the JES initialization parameters that are passed to the converter routine.
The address points to the first converter parameter field, which is a 1-byte
bit-map defined as follows for bits that are set on:

.......1 Programmer name required.

......1. Account number required.

.....1.. Indicates that a job is enabled to run with the SWA located in
virtual storage above 16 megabytes.

Note: IEFUJV may turn any of these bits on or off at any time except
when the value pointed to by word 3 is 32. If a bit is turned on or off more
than one time, the final setting of the bit is the one which will be honored.

Note: The account number must not be required in the exit for started task
JOB statements because there is no way to put an account number on a
started task JOB statement. An accounting number can be required on an
EXEC statement in SYS1.PROCLIB.

Word 5
The address of a 4-character area that contains the name of the subsystem
for the job being processed. Examples:
v ASCH, JES2, JES3 or OMVS - indicates the name of the subsystem that

selected the job (For OMVS, see Guideline below.)
v STC - indicates a started task
v TSO - indicates a time sharing option task
v The jobname - used if it is four or fewer characters and none of the

above apply

Guideline: The first time after an IPL that a z/OS UNIX fork or spawn
occurs, z/OS UNIX creates JCL for a job named BPXYOEJS using a default
JOB statement and passes that JCL to the MVS Converter and Interpreter
(C/I). For this one job, C/I calls IEFUJV under SUBSYS = OMVS. Job
BPXYOEJS does not actually execute. Instead the Interpreter creates SWA
blocks for this job and passes them back to z/OS UNIX, which stores them
for later use. These SWA blocks will be used by all subsequent forked or
spawned address spaces. This means that whatever version of IEFUJV is
active when the first fork or spawn occurs will be the only IEFUJV entered
for forked or spawned address spaces, even if a new version of IEFUJV is
later dynamically activated (through the SETPROG EXIT command). The
BPXAS initiators in which the forked or spawned processes run, do go
through IEFUJV, but with SUBSYS = STC exit.

Word 6
The address of a 4-byte area that contains the environment indicator
associated with the subsystem specified in word 5.

The value that applies to all subsystems is 0.

Value Meaning

IEFUJV — Job Validation Exit

Chapter 32. IEFUJV — Job Validation Exit 211

0 Default - “no meaning”

The values that apply to ASCH (APPC Scheduler) are 1, 2, and 3.

Value Meaning

1 APPC Scheduler Utility TP Add call

2 APPC Scheduler Utility TP Retrieve call

3 APPC Scheduler Utility TP Reconvert call

Note: The high-order bit is set in the address of the last parameter to indicate the
end of the parameter list.

Return Specifications

A return code from IEFUJV indicates whether job processing will continue or be
terminated.

If you associate multiple exit routines with IEFUJV, you can specify how the return
information is to be handled using the ATTRIB KEEPRC function of the SETPROG
EXIT command, the EXIT statement of PROGxx, or CSVDYNEX services. If
multiple exit routines match the ATTRIB KEEPRC criteria, the system returns
information from the exit routine that finished first.

If you do not specify the ATTRIB KEEPRC function, the system returns the
information from the exit routine whose return value was the greatest. If multiple
exit routines return with the same highest value, the return information from the
exit routine that finished first will be returned.

If you associate multiple exit routines with exit IEFUJV, and any of those exit
routines return with a value of 4, job processing will be terminated.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register 1

Common exit parameter area

JCL statement image

JCL statement type

JES initialization parameters

Subsystem name

Subsystem environment indicator’1’b

0(0)

4(4)

8(8)

12(C)

16(10)

20(14)

Figure 17. IEFUJV Input Parameter Structure

IEFUJV — Job Validation Exit

212 z/OS V2R2 MVS Installation Exits

Register
Contents

0-14 Restored to contents at entry

15 One of the following return codes:

Return Code
Explanation

Value of 0
Job processing is to continue.

Value of 4
Job processing is to be cancelled.

Coded Example of the Exit Routine

Sample IEFUJV exit routines are provided in SYS1.SAMPLIB in members
SMFEXITS and IEEUJV. The routine in SMFEXITS checks the validity of a
continued JOB statement and of values supplied for the REGION, PRTY, TIME,
and accounting parameters in the JOB statement. The routine uses characters from
the account number to index a table that contains allowable values for these
parameters. If any value is not valid, the sample IEFUJV routine terminates the job.

The sample in IEEUJV changes the SYSOUT class to SYSOUT=* for jobs in
specified JOB classes and for specified SYSOUT classes. Assembled into the exit
routine is a list of eligible job classes and a list of eligible SYSOUT classes. Thus, if
a job enters the system in one of the specified job classes and contains a DD
statement specifying SYSOUT=class, where class is one of the specified SYSOUT
classes, then the SYSOUT class will be changed to '*'.

IEFUJV — Job Validation Exit

Chapter 32. IEFUJV — Job Validation Exit 213

214 z/OS V2R2 MVS Installation Exits

Chapter 33. IEFUSI — Step Initiation Exit

IEFUSI receives control before each job step is started (prior to allocation). A return
code from this exit indicates whether the job step is to be started or the job should
be cancelled.

You can use IEFUSI to:
v Validate job step accounting information.
v Write to a user data set.
v For long-running jobs, create and write a user step-initiation SMF record in case

of system failure.
v Set the region size and region limit for all programs that run under this job step.

For more information about controlling region size and region limit, see z/OS
MVS Initialization and Tuning Guide.

Note: For programs with the NOHONORIEFUSIREGION Program Property
Table (PPT) attribute specified, region and MEMLIMIT values and limits set by
the IEFUSI exit are not honored. See the z/OS MVS Initialization and Tuning
Reference and the z/OS MVS Initialization and Tuning Guide for more information
about this PPT attribute and how it affects the IEFUSI-altered region and
MEMLIIT settings.

v Set limits on the use of data spaces and hiperspaces created by application
programs with storage key 8-F.

v Limit the number of pages that can be shared at one time through the use of the
IARVSERV macro.

v Set the default size of data spaces and hiperspaces.
v Limit the use of the 16 exabyte address space above two gigabytes.

Topics for This Exit Appear as Follows:

v “Comparing IEFUSI with IEALIMIT when Limiting Region Size” on page 217

v “Defining the Exit in SMFPRMxx” on page 217

v “Controlling the Exit Routine Through the Dynamic Exits Facility” on page 217

v “Exit Routine Environment” on page 218

v “Exit Recovery” on page 218

v “Exit Routine Processing” on page 218

v “Programming Considerations” on page 219

v “Entry Specifications” on page 219

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 224

– Registers at Exit

v “Examples” on page 225

– Example of Using IEFUSI to Limit Region Size

– Examples of Storage Allocations Based on Values Set by IEFUSI

© Copyright IBM Corp. 1988, 2015 215

v Reduce the values of LDAELIM, LDAEVVRG, LDALIMIT, and LDAVVRG.
Initially, these fields contain the maximum amount of storage available to the
user. Specifically:

LDAELIM = LDAEVVRG = 32Mb
and

LDALIMIT = LDAVVRG = LDASIZA - 64K

Note: For programs with the NOHONORIEFUSIREGION Program Property
Table (PPT) attribute specified, these region values are not changed by the
IEFUSI exit. See the z/OS MVS Initialization and Tuning Reference and the z/OS
MVS Initialization and Tuning Guide for more information about this PPT setting
and how it affects the IEFUSI-altered region and MEMLIMIT values and limits.

If an installation uses major and minor account numbers with several fields,
IEFUSI is easier to use than IEFUJV for account number processing because the
accounting fields are placed in a formatted list. See Table 4 on page 161 for the
format of the accounting information.

Limiting Region Size: There are several factors to consider in using IEFUSI to limit
region size:
v Consider using the SMFLIMxx parmlib member, which provides the ability to

set the REGION and reserve storage for system key storage obtains without
writing an IEALIMIT or IEFUSI exit.

v If IEFUSI is not available, or IEFUSI is not used to set up the region size, the
system will use IEALIMIT.

v To use IEFUSI for region size control, you must tell the system to bypass the
IEALIMIT exit by setting a flag in the IEFUSI parameter list.

v When writing the installation exit, the region size should be made less than the
region limit. This is to protect against programs that issue variable requests for
storage with very large upper bounds and then do not immediately free part of
that space, or free such a small amount that a subsequent request for storage
(possibly issued by a system service) causes the job to fail. See z/OS MVS
Initialization and Tuning Guide for a discussion on the relationship between region
size and region limit and how the system uses these values.

v For programs with the NOHONORIEFUSIREGION Program Property Table
(PPT) attribute specified, IEFUSI-altered region and MEMLIMIT values and
limits are not honored. The NOHONORIEFUSIREGION PPT attribute can be
specified in the SCHEDxx member of SYS1.PARMLIB, or as an IBM supplied
PPT default. This PPT attribute is used to bypass IEFUSI region controls for
programs that require more region space to successfully execute. See the z/OS
MVS Initialization and Tuning Reference and the z/OS MVS Initialization and Tuning
Guide for more information on this PPT setting and how it affects the
IEFUSI-altered region and MEMLIMIT values and limits.

Although you can use the IEFUSI exit to modify the region size of an address
space, IBM strongly recommends that you do not alter the region size of address
spaces in the OMVS subsystem category.

Note: A default IEFUSI module is included in SYS1.LPALIB. This default module
does not do any processing, but just returns to the caller. It will be picked up first
by the system at IPL time, unless you code your exit specifically in the PROGxx
parmlib member using the EXIT ADD statement.

IEFUSI — Step Initiation Exit

216 z/OS V2R2 MVS Installation Exits

|
|
|

Comparing IEFUSI with IEALIMIT when Limiting Region Size

Historically, users could limit program storage below 16 megabytes in virtual
storage by using IEALIMIT. IEALIMIT can still be used to limit program storage in
the nonextended region; however, IEFUSI is the preferred exit routine, and has the
following advantages over IEALIMIT:
v IEFUSI is a separate load module in the link pack area. You must supply a

routine named IEFUSI and linkedit it into LPALIB or an LPALSTxx member of
SYS1.PARMLIB. IEALIMIT must reside in the nucleus, so you must linkedit the
nucleus every time you replace IEALIMIT with a new version. You must linkedit
your routine again into the nucleus each time you IPL a different version of the
nucleus, as all versions of the nucleus initially contain the IBM-supplied
IEALIMIT routine.

v IEFUSI users can obtain information required to set a region size and region
limit. IEALIMIT scans system control blocks to gather that information; thus
IEFUSI is easier to write and less susceptible to system changes.

v IEALIMIT requires that the local lock be held and therefore cannot issue SVCs.
IEFUSI has neither of these restrictions.

v IEFUSI can control the region size and region limit of both the area above and
the area below 16 megabytes in virtual storage. IEALIMIT can set values for
only the area below 16 megabytes, leaving values for the extended private area
above 16 megabytes to be determined by the system.

v Previously, if the region requested by a job was greater than 16 megabytes, MVS
allowed a minimum of 32 megabytes in the extended region; IEFUSI can
override this 32-megabyte minimum value.

Defining the Exit in SMFPRMxx

In the SMF parmlib member (SMFPRMxx), specify IEFUSI on the EXITS option of
either the SYS or SUBSYS parameters, depending on the scope of work
(system-wide or subsystem-wide) the exit is to affect.

If you use the SUBSYS option, the system invokes the IEFUSI routine only for
work running under the subsystems you specify on SUBSYS. If you use the SYS
option, the system invokes the IEFUSI routine for work running under any
SMF-defined subsystem, such as JES2, JES3, STC, ASCH, OMVS, or TSO.

For more information about coding the EXITS option, see the description of
SMFPRMxx in z/OS MVS Initialization and Tuning Reference.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEFUSI installation exit to the dynamic exits facility. You can
refer to the exit by the name SYS.IEFUSI or SYSyyy.IEFUSI. See the description of
the SMFPRMxx parmlib member in z/OS MVS Initialization and Tuning Reference for
an explanation of the naming conventions for SMF exit routines. You can use the
EXIT statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its routines.

To define IEFUSI to the dynamic exits facility, you must specify the exit in both
PROGxx and SMFPRMxx. The system does not call the exit if it is defined in
PROGxx only. If you do not plan to use the dynamic exits facility for IEFUSI, you
need only define this exit in SMFPRMxx.

IEFUSI — Step Initiation Exit

Chapter 33. IEFUSI — Step Initiation Exit 217

If you do not associate any exit routines with exit IEFUSI in PROGxx, the system
defaults to using the exit routine name that matches the exit name (IEFUSI).

If you associate exit routines with IEFUSI in PROGxx, the system does not use the
default exit routine. If you need the default exit routine, add it explicitly to
PROGxx.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Exit Routine Environment

IEFUSI receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In AMODE 31.

Exit Recovery

IBM strongly recommends that you set up an ESTAEX recovery routine to handle
errors that might occur during the execution of IEFUSI.

An ESTAE-type recovery routine is set up by the module that calls IEFUSI; the
recovery routine, if it gets control, will allow the job to continue processing if the
exit routine abnormally ends.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

IEFUSI exit routines receive control before the initiator checks to determine
whether the job step will actually execute. That is, IEFUSI receives control before
the system performs testing for COND and IF/THEN/ELSE/ENDIF, including
ABENDs. This means that IEFUSI will always be called, regardless of whether the
step will execute.

Using IEFUSI to Limit Data Space and Hiperspace™ Use: Your IEFUSI exit routine
can communicate the values you want to use to limit data space and hiperspace
use for programs with storage key 8-F. Code your routine to place these values in
word 7 of the SMF parameter list before returning control. (See the parameter
descriptions in “Entry Specifications” on page 219 for a description of word 7.)

Your IEFUSI exit routine can include region processing for the private area, both
less than and greater than 16 megabytes. The exit checks the region requested on
the JOB or EXEC JCL statement, and determines whether it is acceptable. You can

IEFUSI — Step Initiation Exit

218 z/OS V2R2 MVS Installation Exits

then communicate the values you want to use to limit access to private area
storage. Your IEFUSI routine places these values in the appropriate fullwords in
the SMF parameter list before returning control to the initiator.

For more information on data spaces and hiperspaces, see z/OS MVS Programming:
Extended Addressability Guide.

Programming Considerations

When coding an IEFUSI exit routine, observe the following conventions:
v When issuing a WTOR macro, specify LONG=YES on the WAIT macro. Do not

use a WTO with a routing code of 11 to send a message to the JESYSMSG data
set for started tasks or TSO users.

v Do not use subpool 240 or 250 when obtaining storage for this exit. Using these
subpools may result in errors when the exit receives control for address spaces
that are created with the KEEPRGN attribute.

v To provide a consistent environment for accessing and allocating data sets across
calls to SMF exits for the duration of a job or task, IEFUSI receives control with
the initiator's JSCB active.

v IEFUSI must be reenterable and refreshable because PLPA pages are stolen. That
is, they can be paged in but not paged out, and subsequent page-ins will overlay
any code changes.

v IEFUSI can perform dynamic allocations and write to installation-defined data
sets. In foreground jobs, data sets are allocated dynamically. However, for
background jobs, you can either allocate data sets dynamically or you can
pre-define (pre-allocate) a data set with a DD statement in the initiator-cataloged
procedure.

v IEFUSI cannot access ISAM data sets.

Additional Considerations for z/OS UNIX Applications: When running z/OS
UNIX applications you need to consider that fork and spawn are issued to create
new address spaces. The default processing on fork and spawn is for the z/OS
UNIX kernel to propagate the region size from the parent to the child. Because the
region size in the parent process has already passed through IEFUSI and has an
approved region size, IBM recommends that you bypass normal IEFUSI processing
when the subsystem (Word 8) is OMVS.

At the time of IEFUSI processing, the kernel has not yet propagated the parent's
region size to the child, so IEFUSI has nothing to work with. If IEFUSI modifies
the region size of the child process, the kernel will honor that region size and not
propagate the region size from parent to child. This can result in failure of a fork if
the region size is insufficient in the child to capture the parent's storage.

Entry Specifications

The system passes a list of parameter addresses to IEFUSI.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the parameter list

IEFUSI — Step Initiation Exit

Chapter 33. IEFUSI — Step Initiation Exit 219

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of IEFUSI

Parameter Descriptions: Register one points to the following list of addresses:

Word 1
The address of the common exit parameter area. (See Table 3 on page 160.)

Word 2
The address of an eight-byte area containing the job step name (in
EBCDIC) from the EXEC statement. This area is aligned left and padded
with blanks if necessary.

For a forked/spawned address space, this will be STEP1 when the address
space is first started and will be *OMVSEX, after an exec().

Note: It is possible that some address spaces will be associated with
IEESYSAS. For that case, JMRJOB will contain IEESYSAS.

Word 3
The address of an eight-byte area containing the program name (in
EBCDIC) from the EXEC statement. This area is aligned left and padded
with blanks if necessary. If you refer back, the area contains pgm=*.DD.
For a forked/spawned address space,this will be BPXPRFC; after an exec(),
it will be BPXPRECP.

Word 4
The address of an area containing the accounting information from the
EXEC statement. (See “Accounting Information” on page 161.)

Word 5
The address of an eight-word area that IEFUSI can use to communicate
with MVS regarding the region size and region limit it desires. The region
size and region limit information consists of:

Sub-word 1
Flag word to specify that IEFUSI, rather than IEALIMIT, is to
provide the information on how to control access to private area
storage.

The flag word is initialized to zero. Your routine sets the flag bits
to mean the following:

Bit Value Meaning
0 0 IEALIMIT is supplying information on how to control access to private area

storage.
1 IEFUSI is supplying information on how to control access to private area storage.

1 0 Check if the requested below-16-megabyte-region size is available. If the size is not
available an 822 abend occurs.

1 Do not check if the requested below-16-megabyte-region size is available. If the
size is not available, a less-predictable abend than 822 might occur.

2 0 Do not check if the requested above-16-megabyte-region size is available. If the
size is not available, a less-predictable abend than 822 might occur.

1 Check if the requested above-16-megabyte-region size is available. If the size is not
available, an 822 abend occurs.

3 0 REGIONX keyword was not used. Note that this bit cannot be altered.

IEFUSI — Step Initiation Exit

220 z/OS V2R2 MVS Installation Exits

|

|||

Bit Value Meaning
1 REGIONX keyword was used with sub-word 7 holding the REGIONX first

parameter (non-extended region size requested) and sub-word 8 holding the
REGIONX second parameter (extended region size requested).

4 0 The SMFLIMxx parmlib settings, if applicable, can override the exit's output.
1 The SMFLIMxx parmlib settings must not override the exit's storage settings.

5-31 Reserved

Note: The settings for bits 1 and 2 have opposite meanings. You
must turn on bit 2 when the amount of contiguous free space
requested is critical for the step to be executed.

Sub-word 2
Region size request on the JOB or EXEC JCL statement. For a
forked address space, this shows as 54M.

Sub-word 3
Region limit below 16 megabytes.

Sub-word 4
Region size below 16 megabytes.

Sub-word 5
Region limit above 16 megabytes.

Sub-word 6
Region size above 16 megabytes.

Sub-word 7
The REGIONX first parameter (non-extended region size
requested).

Sub-word 8
REGIONX second parameter (extended region size requested).

On every entry to IEFUSI, sub-words 3 through 6 in the region size
information list are set to X'FFFFFFFF'.

There is no lower bound on the region limit and region size that IEFUSI
can request. If the JCL specifies REGION=0 with no MEMLIMIT coded,
and the IEFUSI exit changes the REGION size but does not set the
MEMLIMIT, the MEMLIMIT value is set to the REGION size above 16MB.

Word 6
The address of a word containing a flag indicating a V=R job.

Word 7
The address of a four-word area containing IBM-supplied default values
for data spaces, hiperspaces, and data sharing (through the IARVSERV
macro). These defaults apply only for programs running in problem state
with user keys. The number of sharing pages, address spaces, data spaces
and hiperspaces can be limited only for jobs running in user keys and in
problem state. Jobs running in system key (0-7) or in supervisor state may
use unlimited sharing pages, data spaces and hiperspaces. The words are
defined as follows:

Sub-word
Contents

1 Default data space and hiperspace size. It is specified in blocks of
4K bytes and must be in the range of 1-X'00080000'. The
IBM-supplied default is 956K (X'000000EF' x 4K).

IEFUSI — Step Initiation Exit

Chapter 33. IEFUSI — Step Initiation Exit 221

|
|||

|||

|
|
|

|
|

|

2 Maximum combined size for all user key data spaces and
hiperspaces that are created by application programs owned within
an address space (in megabytes). The IBM-supplied default and the
maximum that can be specified is (2**24)-1 megabytes.

3 Maximum number of user-key data spaces and hiperspaces created
by application programs that can exist at any given time for an
address space. The IBM-supplied default and the maximum
number that can be specified is (2**32)-1.

4 Maximum number of source and target shared pages that can be
used at one time by problem state callers using the IARVSERV
SHARE services. The IBM-supplied default is 32 (which allows at
most 16 pages to be shared with 16 other pages; the number of
pages include source plus target). The maximum you can specify is
(2**31)-1.

Note: If you change the default, make sure you balance this with
other uses of SQA storage. The number of 4K pages that Extended
SQA (ESQA) requires equals (the number of shared pages plus the
number of shared views plus 252) all divided by 127 and then
ignoring any remainder.

Word 8
The address of a 4-character area that contains the name of the subsystem
for the job being processed. Examples:
v ASCH, JES2, or JES3 — indicates the name of the subsystem that

selected the job.
v OMVS — indicates a forked or spawned address space
v STC — indicates a started task
v TSO — indicates a time sharing option task
v The jobname — used if it is four or fewer characters and none of the

above apply

Word 9
The address of an area consisting of three 64-bit fields used to specify MVS
MEMLIMIT value. The MEMLIMIT information consists of:

Sub-parm 1
A 64-bit flag word. The first 8 bits indicate whether the source of
the MEMLIMIT is from JCL, or the SMF-supplied system default.
The remaining 56 bits are not used.

Your routine can set the flag bits to the following possible values:

Hex value of first 8 bits Meaning
01 ('00000001'b) MEMLIMIT is from SMF
02 ('00000010'b) MEMLIMIT is from JCL
03 ('00000011'b) MEMLIMIT was set to NOLIMIT because JCL specified REGION=0
FF ('11111111'b) MEMLIMIT is from SMF (indicative of internal processing errors)

Note: When you initialize a child address space in the UNIX
System Services environment, the source MEMLIMIT value can be
set using definitions other than those provided through the IEFUSI
exit. For additional information, see
v Handling process limits in z/OS UNIX System Services Planning.

IEFUSI — Step Initiation Exit

222 z/OS V2R2 MVS Installation Exits

v In z/OS UNIX System Services Programming: Assembler Callable
Services Reference:
– setrlimit (BPX1SRL).
– spawn (BPX1SPN, BPX4SPN).

Sub-parm 2
The 64-bit MEMLIMIT originally requested by the source that is
specified in the flagword. This value is specified in megabytes.

Sub-parm 3
The 64-bit MEMLIMIT requested by the IEFUSI exit. The initial
value is X'FFFFFFFFFFFFFFFF' to indicate that no value was set by
the exit. This value is specified in megabytes.

Note:

1. A MEMLIMIT of NOLIMIT is equivalent to X'00000FFFFFFFF000'.
2. Critical address spaces are exempt from the IEFUSI imposed limit on above the

bar virtual memory, so as not to affect system availability.

For a complete description of MEMLIMIT, and the ways to define it, see z/OS MVS
Programming: Extended Addressability Guide.

Note: The high-order bit is set in the address of the last parameter to indicate the
end of the parameter list.

IEFUSI — Step Initiation Exit

Chapter 33. IEFUSI — Step Initiation Exit 223

Note: These fields are only valid when bit 3 in the "Flag word" is set.

Return Specifications

A return code from IEFUSI indicates whether job processing should continue or be
cancelled.

Register 1

Flag word (initialized to 0)

V=R Flag

The Flagword contains:

Bit Meaning

0 V=R (virtual=real)
1-31 Reserved

Reserved

Common SMF exit
parameter area

Region size requested
on JCL

Job step name
(from EXEC
statement)

Region limit below
16 megabytesProgram name

(from EXEC
statement)

Region size below
16 megabytes

Default data space &
hiperspace size

Maximum combined size
all user key data
spaces & hiperspaces
that are created by
problem programs
owned within an
address space

Maximum number of user
key data space and
hiperspaces created by
problem programs that
may exist at any given
time for an address
space

Maximum number of
source and target
shared pages in use
at any one time.

0(0)

4(4)

8(8)

12(C)

Step accounting
information

Region limit above
16 megabytes

Region size
information

Region size above
16 megabytes

JCL - requested REGIONx size
below 16 megabytes (see note)

JCL - requested REGIONx size
above 16 megabytes (see note)

Flagword

Subsystem name

'1'b

0(0)

0(0)

4(4)4(4)

8(8)
8(8)

12(C)

12(C)

16(10)

16(10)

20(14)

24(18)

28(1C)

20(14)

28(1C)

Data space &
hiperspace infor.

24(18)

MEMLIMIT size
information

32(20)

Figure 18. IEFUSI Input Parameter Structure

IEFUSI — Step Initiation Exit

224 z/OS V2R2 MVS Installation Exits

|

If you associate multiple exit routines with IEFUSI, you can specify how the return
information is to be handled using the ATTRIB KEEPRC function of the SETPROG
EXIT command, the EXIT statement of PROGxx, or CSVDYNEX services. If
multiple exit routines match the ATTRIB KEEPRC criteria, the system returns
information from the exit routine that finished first.

If you do not specify the ATTRIB KEEPRC function, the system returns the
information from the exit routine whose return value was the greatest. If multiple
exit routines return with the same highest value, the return information from the
exit routine that finished first will be returned.

If you associate multiple exit routines with exit IEFUSI, and any of those exit
routines return with a value of 4, job processing will be cancelled.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents at entry

15 One of the following return codes:

Return Code
Explanation

4 Job processing should be cancelled.

Oher than 4
Job processing should continue.

Examples

The examples that follow illustrate actual allocations based on region size and limit
values set by IEFUSI.

Example of using IEFUSI to Limit Region Size: Suppose you want to limit all
jobs in a given step-accounting category to a user region of 4 megabytes below and
4 megabytes above 16 megabytes. You also want to set a GETMAIN limit of 6
megabytes below 16 megabytes and 48 megabytes above 16 megabytes.

The system applies the following limits when allocating space for the program
whose values you set in IEFUSI:
(Assume that the user’s private area below 16 megabytes is 8
megabytes, and that the extended private area, above 16
megabytes, is approximately 1975 megabytes.)

Limit Value below 16Mb = 6Mb
(Less than 8Mb)

Limit Value above 16Mb = 48Mb
(The value from IEFUSI is greater than 32Mb, but less than the extended
private area)

Region Size below 16Mb = 4Mb
(Less than limit value)

Region Size above 16Mb = 4Mb
(Less than extended limit value)

IEFUSI — Step Initiation Exit

Chapter 33. IEFUSI — Step Initiation Exit 225

Examples of Storage Allocations Based on Values Set by IEFUSI: Assume that
application program A has the following characteristics:
Limit value 150K
REGION size value 100K
Space currently allocated 80K

Program A issues the following variable length GETMAIN requests, in the order
indicated (note that the GETMAIN requests are cumulative):
1. Request 5K—10K: 10K is allocated, making the currently allocated space 90K.

Because the amount still unallocated (20K, relative to the region size of 100K), was
greater than the maximum amount requested, the maximum amount was allocated.

2. Request 5K—100K: 10K is allocated, making the currently allocated space 100K.
Because the amount still unallocated (10K, relative to the region size) was between the
minimum and maximum requested, the unallocated space was allocated.

3. Request 40K—100K: 40K is allocated, making currently allocated space 140K.
Although the amount still unallocated (0K, relative to the region size) was less than the
minimum amount requested (40K), the minimum amount requested would not increase
the currently allocated space beyond the limit value, so the minimum amount was
allocated.

4. Request 15K—50K: the GETMAIN fails.
The amount still unallocated (0K, relative to the region size) was less than the
minimum amount requested (15K), AND the minimum requested would increase the
currently-allocated space to 155K, which exceeds the GETMAIN limit value of 150K.

The region size value is usually set up to be less than the limit value. This will
protect against programs that issue variable length GETMAINs with very large
maximums and then do not immediately free part of that space, or free such a
small amount that a subsequent GETMAIN (possibly issued by a system service)
causes the job to fail.

As an example, suppose that the region size value equals the limit value, and a
program issues a variable length GETMAIN with a maximum of 2 gigabytes - 1. If
the GETMAIN is satisfied, all the space in the region up to the limit value will be
allocated, and any subsequent GETMAIN that cannot be satisfied from free space
in an already-existing subpool will cause the job to fail.

If, however, the region size value is less than the limit value, only space up to the
region size value is allocated for the GETMAIN. Thus, an amount of space equal to
the limit value minus the region size value remains for subsequent GETMAINs.

Note: For V=R jobs, the REGION parameter is more significant as a limiting value
than are the limits set by IEFUSI. You can use the two factors together to control
the region size for applications that must run V=R:
v Set the region size value where you want it, via IEFUSI.
v If a REGION parameter specification for a V=R job exceeds the region size value

you have set, the job will not be initiated.

Coded Example of the Exit Routine

A sample IEFUSI exit routine is provided in SYS1.SAMPLIB in member IEEUSI. It
sets the flag in the VSM parameter list indicating that it is controlling region sizes
and limits instead of IEALIMIT. It is designed to perform the same processing as
IEALIMIT in the control of region size and limit above and below the 16Mb line.

IEFUSI — Step Initiation Exit

226 z/OS V2R2 MVS Installation Exits

Chapter 34. IEFUSO — SYSOUT Limit Exit

IEFUSO receives control from the job entry subsystem when the number of records
written to an output data set exceeds the output limit for that data set. If the
output limit is exceeded and your installation does not supply an IEFUSO exit
routine, the job entry subsystem cancels the job. A return code from this exit
indicates that the job is to be terminated or that the job should continue processing
with a new output limit.

You can use IEFUSO to:
v Allow the job step to abend when a data set has exceeded its output limit.
v Inform the operator when a job exceeds its output limit for a data set and let the

job continue processing.
v Extend output limits at the data set level for selected jobs.
v Keep a record of jobs that exceed output limits.
v Vary the handling of exceeding the output limit for different types of data sets

or different types of jobs, such as teleprocessing, test, or production jobs.

Defining the Exit in SMFPRMxx

To allow the system to invoke IEFUSO, define the exit in the SMF parmlib member
(SMFPRMxx). Specify IEFUSO on the EXITS option of the SUBSYS parameter for
the STC subsystem. If your installation chooses not to define a SUBSYS parameter
for STC, you can specify IEFUSO on the EXITS option of the SYS parameter.

For more information about coding the EXITS option, see the description of
SMFPRMxx in z/OS MVS Initialization and Tuning Reference.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEFUSO installation exit to the dynamic exits facility. You can
refer to the exit by the name SYS.IEFUSO or SYSyyy.IEFUSO. See the description of
the SMFPRMxx parmlib member in z/OS MVS Initialization and Tuning Reference for
an explanation of the naming conventions for SMF exit routines. You can use the

Topics for This Exit Appear as Follows:

v “Defining the Exit in SMFPRMxx”

v “Controlling the Exit Routine Through the Dynamic Exits Facility”

v “Exit Routine Environment” on page 228

v “Exit Recovery” on page 228

v “Exit Routine Processing” on page 228

v “Programming Considerations” on page 229

– Macro Instructions and Restrictions

v “Entry Specifications” on page 229

– Registers at Entry

v “Return Specifications” on page 230

– Registers at Exit

© Copyright IBM Corp. 1988, 2015 227

EXIT statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its exit routines.

To define IEFUSO to the dynamic exits facility, you must specify the exit in both
PROGxx and SMFPRMxx. The system does not call the exit if it is defined in
PROGxx only. If you do not plan to use the dynamic exits facility for this exit, you
need only define IEFUSO in SMFPRMxx.

If you do not associate any exit routines with exit IEFUSO in PROGxx, the system
defaults to using the exit routine name that matches the exit name (IEFUSO).

If you associate exit routines with this exit in PROGxx, the system does not use the
default exit routine. If you need the default exit routine, you should explicitly add
it to PROGxx.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Exit Routine Environment

IEFUSO receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 1 from JES3 and key 0 from JES2.
v In AMODE 31 (JES2) and in AMODE 24 or 31 (JES3). For the valid combinations

of AMODE and RMODE, see z/OS MVS Programming: Assembler Services Guide.

Exit Recovery

IBM strongly recommends that you set up an ESTAEX recovery routine to handle
errors that might occur during the execution of IEFUSO.

An ESTAE-type recovery routine is set up by the module that calls IEFUSO; the
recovery routine, if it gets control, will allow the job to continue processing if the
exit routine abnormally ends.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

IEFUSO receives control from the job entry subsystem when the output limit for a
data set is exceeded. The output limit is specified by the OUTLIM parameter on
the DD statement defining the output data set. Note that the OUTLIM parameter
limits output only to spooled data sets. See z/OS MVS JCL User's Guide and z/OS
MVS JCL Reference for a description of this parameter.

IEFUSO — SYSOUT Limit Exit

228 z/OS V2R2 MVS Installation Exits

IEFUSO has the information in the SMF common exit parameter area available to
it. When the exit routine completes its processing, it sets a return code in register
15. This value indicates whether the job entry subsystem (JES) is to cancel the job
or allow it to continue processing with an increased output limit specified by the
exit routine. The value for the increment to be applied to the output limit is placed
in register 1.

Programming Considerations

SMF provides a replaceable module for each SMF exit routine. If an installation
includes IEFUSO, certain programming standards must be followed:
v The exit routine must follow standard linkage conventions.
v Code the exit routine reenterable and refreshable.
v If IEFUSO is entered for a foreground job, it cannot access installation-defined

data sets. If the exit routine is entered for a background job, it cannot write to
installation-defined data sets.

IEFUSO sets a return code in register 15 to indicate whether or not processing is to
continue with a new output limit. The value of the increment to the output limit is
placed in register 1. If you specify with the return code that the limit is to be
increased (register 15=4), but you do not increase the limit (register 1=0), then
IEFUSO will receive control again when the next record is written to the output
data set.

Note: For information about changing output limits at the job level for started
tasks, refer to the following:
v For JES2, Exit 9 - Job Output Overflow, see z/OS JES2 Installation Exits.
v For JES3, Exit 29 - Examine the Accounting Information, see z/OS JES3

Customization.

Macro Instructions and Restrictions: When issuing a WTOR macro, specify
LONG=YES on the WAIT macro. Do not use a WTO with a routing code of 11 to
send a message to the JESYSMSG data set for started tasks or TSO users.

Entry Specifications

The job entry subsystem provides IEFUSO with addressability to the SMF common
exit parameter area.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Contains the address of the parameter list (See Table 3 on page 160)

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of IEFUSO

Parameter Descriptions: Register 1 points to the following address:

IEFUSO — SYSOUT Limit Exit

Chapter 34. IEFUSO — SYSOUT Limit Exit 229

Word 1
The address of the common exit parameter area (see “Common Exit
Parameter Area” on page 159).

Return Specifications

A return code from IEFUSO indicates whether or not job processing is to continue.

If you associate multiple exit routines with IEFUSO, you can specify how the
return information is to be handled using the ATTRIB KEEPRC function of the
SETPROG EXIT command, the EXIT statement of PROGxx, or CSVDYNEX
services. If multiple exit routines match the ATTRIB KEEPRC criteria, the system
returns information from the exit routine that finished first.

If you do not specify the ATTRIB KEEPRC function, the system returns the
information from the exit routine whose return value was the greatest. If multiple
exit routines return with the same highest value, the return information from the
exit routine that finished first will be returned.

If you associate multiple exit routines with exit IEFUSO, and any of those exit
routines return with a value other than 4, job processing will not continue.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0 Restored to contents at entry

1 One of the following values:
v If R15=4, R1 contains the increment to the output limit.
v If R15 not=4, R1 restored to contents at entry.

2-14 Restored to contents at entry

15 One of the following return codes:

Return Code
Explanation

Value of 4
Continue processing the job. Increase the output limit by the value
in register 1.

Value other than 4
Cancel the job.

Register 1

Common exit parameter area0(0)

Figure 19. IEFUSO Input Parameter Structure

IEFUSO — SYSOUT Limit Exit

230 z/OS V2R2 MVS Installation Exits

Chapter 35. IEFUTL — Time Limit Exit

IEFUTL receives control from the system when one of the following time limits
expires:
v Job processor time limit (from the JOB statement)
v Step processor time limit (from the EXEC statement or the default from the job

entry subsystem)
v Continuous wait time limit for the job (from the SMFPRMxx JWT parameter).

"Continuous wait time" is defined as time spent waiting while the application
program is in control. For example, the time required to recall a data set from
HSM Migration Levels 1 or 2 and/or the time required to mount a tape is
counted towards the job's continuous wait time if the allocation of the data set is
dynamic (that is, issued while the application program is running) while the
time required for those activities is not counted toward the job's continuous wait
time if the allocation is static (that is, for a DD statement). This is because static
allocations occur under the initiator rather than under the application program.

If one of the above time limits is exceeded and your installation does not supply
an IEFUTL exit routine, the system cancels the job. A return code from this exit
indicates whether the job step is to be terminated or processing should continue
with a new time limit.

You can use IEFUTL to:
v Allow the job step to abend.
v Inform the operator that a job has exceeded its continuous-wait-time limits.
v Extend processor time limits for selected jobs.
v Extend the wait time limit within a job.
v Keep a record of time limit expirations.
v Vary the handling of time limit expirations for different types of jobs, such as

teleprocessing, test, or production jobs.

Topics for This Exit Appear as Follows:

v “Defining the Exit in SMFPRMxx” on page 232

v “Controlling the Exit Routine Through the Dynamic Exits Facility” on page 232

v “Exit Routine Environment” on page 232

v “Exit Recovery” on page 233

v “Exit Routine Processing” on page 233

v “Programming Considerations” on page 234

v “Entry Specifications” on page 235

– Registers at Entry

v “Return Specifications” on page 236

– Registers at Exit

v “Coded Example of the Exit Routine” on page 237

© Copyright IBM Corp. 1988, 2015 231

Defining the Exit in SMFPRMxx

In the SMF parmlib member (SMFPRMxx), specify IEFUTL on the EXITS option of
either the SYS or SUBSYS parameters, depending on the scope of work
(system-wide or subsystem-wide) the exit is to affect.

If you use the SUBSYS option, the system invokes the IEFUTL routine only for
work running under the subsystems you specify on SUBSYS. If you use the SYS
option, the system invokes the IEFUTL routine for work running under any
SMF-defined subsystem, such as JES2, JES3, STC, ASCH, OMVS, or TSO.

For more information about coding the EXITS option, see the description of
SMFPRMxx in z/OS MVS Initialization and Tuning Reference.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEFUTL installation exit to the dynamic exits facility. You can
refer to the exit by the name SYS.IEFUTL or SYSyyy.IEFUTL. See the description of
the SMFPRMxx parmlib member in z/OS MVS Initialization and Tuning Reference for
an explanation of the naming conventions for SMF exit routines. You can use the
EXIT statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its exit routines.

To define IEFUTL to the dynamic exits facility, you must specify the exit in both
PROGxx and SMFPRMxx. The system does not call the exit if it is defined in
PROGxx only. If you do not plan to use the dynamic exits facility for IEFUTL, you
need only define this exit in SMFPRMxx.

If you do not associate any exit routines with exit IEFUTL in PROGxx, the system
defaults to using the exit routine name that matches the exit name (IEFUTL).

If you associate exit routines with this exit in PROGxx, the system does not use the
default exit routine. If you need the default exit routine, you should explicitly add
it to PROGxx.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Exit Routine Environment

IEFUTL receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In AMODE 24 or 31. For the valid combinations of AMODE and RMODE, see

z/OS MVS Programming: Assembler Services Guide.
v In IRB mode as an asynchronous exit.

IEFUTL — Time Limit Exit

232 z/OS V2R2 MVS Installation Exits

Exit Recovery

IBM strongly recommends that you set up an ESTAEX recovery routine to handle
errors that might occur during the execution of IEFUTL.

An ESTAE-type recovery routine is set up by the module that calls IEFUTL. The
recovery routine, if it gets control, will allow the job to continue processing if the
exit routine abnormally ends.

Because the purpose of IEFUTL is to decide whether a step that has exceeded its
allotted processor time or wait time should be abnormally terminated (the system
default) or allowed to continue, be aware that the job WILL abend with the S322 or
S522 it would have received if the exit routine had never gotten control.

Exit Routine Processing

Processor time is collected in two categories: execution under TCBs and execution
under SRBs. The limiting function of IEFUTL applies only to such time under
TCBs.

IEFUTL receives control when a time limit has expired. While IEFUTL is running,
the application program continues to execute. (Note that this represents a change
from MVS/XA and MVS/ESA up through release 4, wherein the system would
suspend execution of an application program while IEFUTL was running.) This
means, for example, that if IEFUTL issues a WTOR asking the operator whether to
allow a job to continue executing or to cancel it, the job will, in fact, continue to
execute while IEFUTL is waiting for the answer to the WTOR.

Depending on whether the expired time limit is a job, step, or continuous wait
time limit, you can use the information in the SMF common exit parameter area to
determine if processing should continue. The value of the time limit extension is
either in seconds or in timer units, where 1 second = 38400 timer units. The
smallest time extension granted is 220 microseconds or 1.048576 seconds.

The time limit for the execution of a job step is specified by the job entry
subsystem or by parameters on job control statements.
v If a job time limit is not specified on the JOB statement, the time limit for each

job step is the value specified for the TIME=parameter on the EXEC statement,
or the default value from the job entry subsystem.

v If a job time limit is specified on the JOB statement, the time limit for each job
step is the remaining job time or the job step time limit (from the
TIME=parameter or the job entry subsystem default), whichever is smaller.

You can extend execution time and wait time only within a step. Each extension
resets the limit for the entire step to the extension value you specify.

The step execution and the wait time limits are re-initialized to the system default
values at the beginning of each job step. Thus, unused extended execution time
from one job step is not carried over for the next step.

An installation-written IEFUTL exit routine should control the number of
extensions for a given step to prevent looping. It can record the expiration in the
SMF data set or write a message to the console; however, in doing so, a system
interlock could occur. (See “Programming Considerations” on page 234.)

IEFUTL — Time Limit Exit

Chapter 35. IEFUTL — Time Limit Exit 233

z/OS UNIX MVS Address Space Processing: The following applies to address
spaces that are z/OS UNIX MVS processes:
v If the time expiration is for a job or step time limit and IEFUTL exit processing

indicates that the job step should be terminated, the system takes the following
action:
1. The system sends a SIGXCPU signal to the z/OS UNIX MVS process, and

grants a small time extension to allow for SIGXCPU processing to occur.
Applications can catch SIGXCPU signals and perform an orderly cleanup of
the job or reset the CPU limit to a larger value.

Note: Processes can use the z/OS UNIX MVS setrlimit callable service to
control CPU resource consumption. For information about z/OS UNIX MVS
signals and the setrlimit callable service, see z/OS UNIX System Services
Programming: Assembler Callable Services Reference.

2. If the time extension for SIGXCPU processing expires, the system sends a
SIGKILL signal to the z/OS UNIX MVS process and grants a small time
extension to allow SIGKILL processing to occur. Applications cannot catch or
ignore SIGKILL signals. SIGKILL signals provide for a more orderly
shutdown of the application than an abend of the job step.

3. If the time extension for SIGKILL processing expires, the system abends the
job step.

v If the time expiration is for a job or step time limit and IEFUTL exit processing
indicates that a time extension should be granted, the system grants the time
extension.

v If the time expiration is for a continuous wait time limit and IEFUTL exit
processing indicates that the job step should be terminated, the system abends
the job step.

v If the time expiration is for a continuous wait time limit and IEFUTL exit
processing indicates that a time extension should be granted, the system grants
the time extension.

Programming Considerations

IEFUTL must be reenterable and refreshable, because PLPA pages are stolen. That
is, they can be paged in but not paged out, and subsequent page-ins overlay any
code changes.

IEFUTL can perform dynamic allocations and write to installation-defined data
sets. In foreground jobs, data sets are allocated dynamically. For background jobs,
you can either allocate data sets dynamically or you can pre-define (pre-allocate) a
data set with a DD statement in the initiator cataloged procedure.

When issuing a WTOR macro, specify LONG=YES on the WAIT macro. Do not use
a WTO with a routing code of 11 to send a message to the JESYSMSG data set for
started tasks or TSO users. To provide a consistent environment for accessing and
allocating data sets across calls to SMF exits for the duration of a job or task,
IEFUTL receives control with the initiator's JSCB active.

If IEFUTL enqueues on any resource that the job task or any of its subtasks is
enqueued on, the initiator ends abnormally. IEFUTL can, however, determine if a
particular resource is held before issuing an ENQ (or invoking an SVC that issues
an ENQ) by issuing an ENQ macro with RET=TEST. The macro must also specify
the major and minor resource names in the QNAME and RNAME parameters. For
example:

IEFUTL — Time Limit Exit

234 z/OS V2R2 MVS Installation Exits

ENQ(QNAME,RNAME,E,3,SYSTEM),RET=TEST

Because SMF exits must be reentrant, be sure to use the execute form of the macro.

For more information on the ENQ macro, see z/OS MVS Programming: Assembler
Services Guide and z/OS MVS Programming: Assembler Services Reference ABE-HSP.

Entry Specifications

IEFUTL is passed the address of the SMF common exit parameter area and the
type of time limit that expired to determine whether processing should continue.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 A binary code to indicate why the exit is taking control:

Binary Code
Explanation

0 The processor time limit for the job expired

4 The processor time limit for the step expired

8 The continuous wait time limit for the job expired

1 Address of the parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of IEFUTL

Parameter Descriptions: Register 1 points to the following list of addresses:

Word 1
The address of the common exit parameter area (see “Common Exit
Parameter Area” on page 159).

Word 2
The address of a 4-character area that contains the name of the subsystem
for the job being processed. Examples:
v ASCH, JES2, or JES3 - indicates the name of the subsystem that selected

the job
v OMVS - indicates a forked or spawned address space
v STC - indicates a started task
v TSO - indicates a time sharing option task
v The jobname - used if it is four or fewer characters and none of the

above apply

Note: The high-order bit is set in the address of the last parameter to indicate the
end of the parameter list.

IEFUTL — Time Limit Exit

Chapter 35. IEFUTL — Time Limit Exit 235

Return Specifications

If IEFUTL returns a code that indicates that processing should continue, then the
time extension to be applied is returned in register 1.

If you associate multiple exit routines with IEFUTL, you can specify how the
return information is to be handled using the ATTRIB KEEPRC function of the
SETPROG EXIT command, the EXIT statement of PROGxx, or CSVDYNEX
services. If multiple exit routines match the ATTRIB KEEPRC criteria, the system
returns information from the exit routine that finished first.

If you do not specify the ATTRIB KEEPRC function, the system returns the
information from the exit routine whose return value was the greatest. If multiple
exit routines return with the same highest value, the return information from the
exit routine that finished first will be returned.

If you associate multiple exit routines with exit IEFUTL, and any of those exit
routines return with a value other than 4 or 8, job processing is cancelled.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0 Not applicable

1 Contains one of the following time extensions:
v If R15=4, R1 contains a time extension in timer units.
v If R15=8, R1 contains a time extension in seconds.

2-14 Not applicable

15 One of the following return codes:

Return Code
Explanation

4 Job processing should be continued with a time extension in timer
units.

8 Job processing should be continued with a time extension in
seconds.

Other value
Job processing should be cancelled.

Subsystem name’1’b
4(4)

Register 1

Common exit parameter area0(0)

Figure 20. IEFUTL Input Parameter Structure

IEFUTL — Time Limit Exit

236 z/OS V2R2 MVS Installation Exits

Coded Example of the Exit Routine

Sample IEFUTL exit routines are provided in SYS1.SAMPLIB in members
SMFEXITS and IEEUTL. This routine terminates a job if either the job processor
time limit or the job step processor time limit has been exceeded. If the continuous
wait time limit for the job has been exceeded, the routine extends the limit twice;
on the third entry for exceeding the continuous wait time limit, the routine cancels
the job.

The continuous wait time limit is not an accumulation of all the time the task
spends waiting, but rather a single continuous wait period that exceeds the
specified limit.

Each time the routine is invoked for exceeding the continuous wait time limit, the
routine writes a record to the SMF data set describing the action taken.

The IEEUTL exit routine is the SMF time limit exit. Since TSO sessions are handled
like batch jobs, the SMF job wait limit and CPU time limits are enforced. This
routine checks to see if the address space is a TSO session, and, if the CPU time is
exceeded, issues a warning message to the terminal and grants a one-minute
extension before the session is cancelled.

IEFUTL — Time Limit Exit

Chapter 35. IEFUTL — Time Limit Exit 237

238 z/OS V2R2 MVS Installation Exits

Chapter 36. IEFU29 — SMF Dump Exit

The SMF dump exit IEFU29 is invoked when the current recording data set cannot
hold any more records, since the SMF writer routine automatically switches
recording from the active SMF data set to an empty SMF data set. This exit is also
invoked when the writer switches recording data sets as a result of the SWITCH
SMF command. A return code from this exit routine indicates whether a message
that the SMF data set requires dumping should be suppressed or not.

You can use IEFU29 to:
v Issue the WTO macro to request that the operator start the dump program.
v Initiate the dump program by submitting a job request to an internal reader.

IEFU29 will also be invoked during SMF initialization for alternate data sets that
are not empty.

Defining the Exit in SMFPRMxx

To allow the system to invoke IEFU29, define the exit in the SMF parmlib member
(SMFPRMxx). Specify IEFU29 on the EXITS option of the SUBSYS parameter for
the STC subsystem. If your installation chooses not to define a SUBSYS parameter
for STC, you can specify IEFU29 on the EXITS option of the SYS parameter.

For more information about coding the EXITS option, see the description of
SMFPRMxx in z/OS MVS Initialization and Tuning Reference.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEFU29 installation exit to the dynamic exits facility. You can
refer to the exit by the name SYS.IEFU29 or SYSyyy.IEFU29. See the description of
the SMFPRMxx parmlib member in z/OS MVS Initialization and Tuning Reference for
an explanation of the naming conventions for SMF exit routines. You can use the
EXIT statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its exit routines.

Topics for This Exit Appear as Follows:

v “Defining the Exit in SMFPRMxx”

v “Controlling the Exit Routine Through the Dynamic Exits Facility”

v “Exit Routine Environment” on page 240

v “Exit Recovery” on page 240

v “Exit Routine Processing” on page 240

v “Programming Considerations” on page 241

– Macro Instructions and Restrictions

v “Entry Specifications” on page 241

– Registers at Entry

v “Return Specifications” on page 242

– Registers at Exit

© Copyright IBM Corp. 1988, 2015 239

To define IEFU29 to the dynamic exits facility, you must specify the exit in both
PROGxx and SMFPRMxx. The system does not call the exit if it is defined in
PROGxx only. If you do not plan to use the dynamic exits facility for this exit, you
need only define IEFU29 in SMFPRMxx.

If you do not associate any exit routines with exit IEFU29 in PROGxx, the system
defaults to using the exit routine name that matches the exit name (IEFU29).

If you associate exit routines with this exit in PROGxx, the system does not use the
default exit routine. If you need the default exit routine, you should explicitly add
it to PROGxx.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Exit Routine Environment

IEFU29 receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In AMODE 24 or 31: When the SMF data set name is in the SYS1.MANx format.
v In AMODE 31: When the SMF data set name is in a format other than

SYS1.MANx.
v In the SMF address space.

Exit Recovery

IBM strongly recommends that you set up an ESTAEX recovery routine to handle
errors that might occur during the execution of IEFU29.

An ESTAE-type recovery routine is set up by the module that calls IEFU29; the
recovery routine, if it gets control, will prevent SMF from ending if the exit routine
abnormally ends.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

While the SMF writer records on one data set, the others can be written out (or
cleared). As long as one inactive data set is empty when the active data set
becomes full, the SMF writer continues to record. If none is available, no further
recording takes place.

The SMF dump exit receives control from the SMF writer when an SMF data set
becomes full. IEFU29 returns a code specifying that the control program either

IEFU29 — SMF Dump Exit

240 z/OS V2R2 MVS Installation Exits

issue or suppress the dump message (IEE362A, IEE362I, IEE391A or IEE392I).

Programming Considerations

IEFU29 must be reenterable and refreshable because PLPA pages are stolen. That is,
they can be paged in but not paged out, and subsequent page-ins overlay any code
changes.

Note: IEFU29 runs in the SMF address space which runs under the MSTR
subsystem rather than JES. Therefore, jobs submitted to the internal reader from
IEFU29 will run under MSTR rather than JES. To have a job run under JES, you
must request that the job run on JES rather than the MSTR subsystem. For more
information on submitting a job request to an internal reader, see z/OS MVS Using
the Subsystem Interface.

Macro Instructions and Restrictions: IEFU29 can issue the WTOR macro (for
example, to request the operator to start the dump program). When issuing the
WTOR macro, specify LONG=YES on the WAIT macro.

IEFU29 cannot use the SMFWTM or SMFEWTM macro to write records to the SMF
data set.

Entry Specifications

SMF passes to IEFU29 the address of the name of the SMF data set that requires
dumping; see Figure 21.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the name of the SMF data set

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of IEFU29

Parameter Descriptions: Register 1 points to the following address:

Word 1
The address of the 44-character field that contains the name of the SMF
data set that requires dumping. This field is left-justified and padded on
the right with blanks.

’0’b

Register 1

Name of the 44-character
data set

0(0)

Figure 21. IEFU29 Input Parameter Structure

IEFU29 — SMF Dump Exit

Chapter 36. IEFU29 — SMF Dump Exit 241

Return Specifications

A return code from IEFU29 indicates whether the dump message (IEE362A,
IEE362I, IEE391A or IEE392I) is to be issued.

If you associate multiple exit routines with IEFU29, you can specify how the return
information is to be handled using the ATTRIB KEEPRC function of the SETPROG
EXIT command, the EXIT statement of PROGxx, or CSVDYNEX services. If
multiple exit routines match the ATTRIB KEEPRC criteria, the system returns
information from the exit routine that finished first.

If you do not specify the ATTRIB KEEPRC function, the system returns the
information from the exit routine whose return value was the greatest. If multiple
exit routines return with the same highest value, the return information from the
exit routine that finished first will be returned.

If you associate multiple exit routines with exit IEFU29, and any of those exit
routines return with a value of 4, the dump message (IEE362A, IEE362I, IEE391A
or IEE392I) is not issued.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Not applicable

15 One of the following return codes:

Return Code
Explanation

4 Indicates that the dump message (IEE362A, IEE362I, IEE391A or
IEE392I) is not to be issued.

Other than 4
The message is to be written.

Coded Example of the Exit Routine

IEFU29 exit routine is entered when an SMF dataset is switched. On entry, the SMF
data set name which was recording before the switch is passed to the routine.
Depending on which data set name is passed, the sample exit uses SVC 34 to issue
a START DUMPXY,DSNAME=dsname operator command. Using a WTO, this exit
routine informs the operator that the command has been issued, the DUMPXY
procedure saves the data in a data set and clears the SMF recording data set.

Figure 22 on page 243 is an example of a SMF Dump Exit.

IEFU29 — SMF Dump Exit

242 z/OS V2R2 MVS Installation Exits

|
|

Chapter 37. IEFU29L — SMF Log Stream Dump Exit

The SMF dump exit IEFU29L allows you to initiate the archiving of SMF data from
a log stream. IEFU29L is invoked using the SWITCH SMF command.

Note that you can use the system logger to manage how long you retain the SMF
log stream data and to automatically offload the log stream data to VSAM linear
DASD data sets, so you might not need to use IEFU29L to drive the archiving of
the SMF log stream data. See "Managing Log Data: How Much? For How Long?"in
z/OS MVS Setting Up a Sysplex.

Use IEFU29L to perform the following tasks:
v Issue the WTO macro to request that the operator start the SMF log stream

dump program, IFASMFDL.
v Initiate the dump program by submitting a job request to an internal reader.

Defining the Exit in SMFPRMxx

To allow the system to invoke IEFU29L, define the exit in the SMF parmlib
member (SMFPRMxx). Specify IEFU29L on the EXITS option of the SUBSYS

D SMF
IFA714I 18.35.11 SMF STATUS

LOGSTREAM NAME BUFFERS STATUS
A-IFASMF.STRIPE.TYPDFLT 37485 CONNECTED
A-IFASMF.#@$#PLEX.TYPRMF 12464 CONNECTED

I SMF
IFA705I SWITCH SMF PROCESS HAS SYNCHRONIZED THE BUFFERED LOGSTREAM RECORDS.
* *
* *
* SMF LOGSTREAM SWITCH EXIT *
* *
* *

LsName(1): IFASMF.STRIPE.TYPDFLT
LsName(2): IFASMF.#@$#PLEX.TYPRMF

Figure 22. Example: SMF Dump Exit

Topics for This Exit Appear as Follows:

v “Defining the Exit in SMFPRMxx”

v “Controlling the Exit Routine Through the Dynamic Exits Facility” on page 244

v “Exit Routine Environment” on page 244

v “Exit Recovery” on page 244

v “Exit Routine Processing” on page 245

v “Programming Considerations” on page 245

– Macro Instructions and Restrictions

v “Entry Specifications” on page 245

– Registers at Entry

v “Return Specifications” on page 246

– Registers at Exit

© Copyright IBM Corp. 1988, 2015 243

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

parameter for the STC subsystem. If your installation chooses not to define a
SUBSYS parameter for STC, you can specify IEFU29L on the EXITS option of the
SYS parameter.

For more information about coding the EXITS option, see the description of
SMFPRMxx in z/OS MVS Initialization and Tuning Reference.

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEFU29L installation exit to the dynamic exits facility. You can
refer to the exit by the name SYS.IEFU29L or SYSyyy.IEFU29L. See the description
of the SMFPRMxx parmlib member in z/OS MVS Initialization and Tuning Reference
for an explanation of the naming conventions for SMF exit routines. You can use
the EXIT statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its exit routines.

To define IEFU29L to the dynamic exits facility, you must specify the exit in both
PROGxx and SMFPRMxx. The system does not call the exit if it is defined in
PROGxx only. If you do not plan to use the dynamic exits facility for this exit, you
only need to define IEFU29L in SMFPRMxx.

If you do not associate any exit routines with exit IEFU29L in PROGxx, by default,
the system uses the exit routine name that matches the exit name (IEFU29L).

If you associate exit routines with this exit in PROGxx, the system does not use the
default exit routine. If you need the default exit routine, you should explicitly add
it to PROGxx.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times that the exit
routine abnormally ends before it becomes inactive. An abend is counted when
both of the following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
v The system allows a retry, that is, the recovery routine is entered with the bit

SDWACLUP off.

By default, the system does not disable the exit routine.

Exit Routine Environment

IEFU29L receives control in the following environment:
v Enabled for interruptions.
v In supervisor state with PSW key 0.
v In AMODE 24 or 31.
v In the SMF address space.

Exit Recovery

IBM suggests that you set up an ESTAEX recovery routine to handle errors that
might occur during the execution of IEFU29L.

IEFU29L — SMF Log Stream Dump Exit

244 z/OS V2R2 MVS Installation Exits

An ESTAE-type recovery routine is set up by the module that calls IEFU29L; if the
recovery routine gets control, it will prevent SMF from ending when the exit
routine ends abnormally.

Whether the exit routine continues to be invoked depends on the abend processing
of the dynamic exits facility.

Exit Routine Processing

The SMF dump exit receives control from the SMF writer when the SWITCH SMF
command is issued to dump data from an SMF log stream.

Programming Considerations

IEFU29L must be reenterable and refreshable because PLPA pages are stolen. That
is, they can be paged in but not paged out, and subsequent page-ins overlay any
code changes.

Note: IEFU29L runs in the SMF address space that runs under the MSTR
subsystem rather than JES. Therefore, jobs submitted to the internal reader from
IEFU29L will run under MSTR rather than JES. To have a job run under JES, you
must request that the job run on JES rather than the MSTR subsystem. For more
information about submitting a job request to an internal reader, see z/OS MVS
Using the Subsystem Interface.

Macro Instructions and Restrictions: IEFU29L can issue the WTOR macro (for
example, to request the operator to start the dump program). When you issue the
WTOR macro, specify LONG=YES on the WAIT macro.

IEFU29L cannot use the SMFWTM or SMFEWTM macro to write records to the
SMF log stream.

Entry Specifications

SMF passes to IEFU29L a parameter list mapped by IEFU29LM, which contains the
name of the log stream.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of a pointer to a parameter list of IEFU29L, mapped by the
IFAU29LM control block

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of IEFU29L

Parameter Descriptions: When IEFU29L is driven, control block IEFU29LM will
receive Register 1, which points to the following address. Figure 23 on page 246
shows an example of input parameter structure.

IEFU29L — SMF Log Stream Dump Exit

Chapter 37. IEFU29L — SMF Log Stream Dump Exit 245

Word 1
An array of pointers, each of which point to U29L_PARM mapped in
IFAU29LM. The high order bit of the pointer signifies that it is the last one.

Return Specifications

No return information is expected.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-15 Not applicable

Coded Example of the Exit Routine

A sample IEFU29L exit is provided in SYS1.SAMPLIB in member IEEU29. The
sample exit consists of an Assembler stub that calls a REXX program, passing the
names of the log streams as parameters. The sample REXX program returns the log
stream names to the console and can be modified as necessary.

Log stream name0

1

Register 1

Note that the last bit is on

Log stream name0

List of parameters

. . .

. . .

Log stream name

Two bytes

Lsname
length

Log stream name

Two bytes

Lsname
length

Log stream name

Two bytes

Lsname
length

Log stream name

Figure 23. IEFU29L Input Parameter Structure

IEFU29L — SMF Log Stream Dump Exit

246 z/OS V2R2 MVS Installation Exits

|

|
|
|
|

Chapter 38. IEFU83 — SMF Record Exit

The SMF record exit IEFU83 receives control when the caller invokes either:
v The SMFWTM macro.
v The SMFEWTM macro and specifies BRANCH=NO.

After exit routine processing, IEFU83 returns a code that specifies whether SMF is
to write the SMF record to the SMF data set. IEFU83 does not receive control for
records whose writing has been suppressed either because of a system failure or
because of options selected at IPL time or via the SET SMF command.

You can use IEFU83 to:
v Select or suppress those records to be written to the SMF data set. For example,

an installation with a large TSO/E account might want to suppress the SMF
dynamic DD records (type 40).

v Check resource use during a specific interval. For example, select records during
the peak workload period.

Defining the Exit in SMFPRMxx

In the SMF parmlib member (SMFPRMxx), specify IEFU83 on the EXITS option of
either the SYS or SUBSYS parameters, depending on the scope of work
(system-wide or subsystem-wide) the exit is to affect.

If you use the SUBSYS option, the system invokes the IEFU83 routine only for
work running under the subsystems you specify on SUBSYS. If you use the SYS
option, the system invokes the IEFU83 routine for work running under any
SMF-defined subsystem, such as JES2, JES3, STC, ASCH, OMVS, or TSO.

For more information about coding the EXITS option, see the description of
SMFPRMxx in z/OS MVS Initialization and Tuning Reference.

Topics for This Exit Appear as Follows:

v “Defining the Exit in SMFPRMxx”

v “Controlling the Exit Routine Through the Dynamic Exits Facility” on page 248

v “Exit Routine Environment” on page 248

v “Exit Recovery” on page 248

v “Exit Routine Processing” on page 249

v “Programming Considerations” on page 249

– Macro Instructions and Restrictions

v “Entry Specifications” on page 250

– Registers at Entry

v “Return Specifications” on page 250

– Registers at Exit

© Copyright IBM Corp. 1988, 2015 247

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEFU83 installation exit to the dynamic exits facility. You can
refer to the exit by the name SYS.IEFU83 or SYSyyy.IEFU83. See the description of
the SMFPRMxx parmlib member in z/OS MVS Initialization and Tuning Reference for
an explanation of the naming conventions for SMF exit routines. You can use the
EXIT statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its exit routines.

To define IEFU83 to the dynamic exits facility, you must specify the exit in both
PROGxx and SMFPRMxx. The system does not call the exit if it is defined in
PROGxx only. If you do not plan to use the dynamic exits facility for this exit, you
need only define IEFU83 in SMFPRMxx.

If you do not associate any exit routines with exit IEFU83 in PROGxx, the system
defaults to using the exit routine name that matches the exit name (IEFU83).

If you associate exit routines with this exit in PROGxx, the system does not use the
default exit routine. If you need the default exit routine, you should explicitly add
it to PROGxx.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system disables the exit routine after two consecutive abends.

Exit Routine Environment

IEFU83 receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In AMODE 31.

Exit Recovery

If IEFU83 abnormally terminates, SMF, in most cases, does not terminate. SMF
deactivates the exit and then issues message CSV430I to the operator. If the exit
performs a critical function, the operator can issue a SET SMF or SETSMF
command to terminate recording. Otherwise, SMF recording continues but
bypasses the installation exit routine.

IBM strongly recommends that you set up an ESTAEX recovery routine to handle
errors that might occur during the execution of your exit routine.

An ESTAE-type recovery routine is set up by the module that calls IEFU83; the
recovery routine, if it gets control, will prevent SMF from ending if the exit routine
abnormally ends. If this recovery routine gets control on two consecutive
invocations of the exit, SMF requests that the exit routine be marked inactive,

IEFU83 — SMF Record Exit

248 z/OS V2R2 MVS Installation Exits

preventing any further invocations of that exit routine. The system issues message
CSV430I, naming the exit and the exit routine.

If the exit performs a critical function, the operator can issue a SET PROG or
SETPROG MODIFY command to change the status of the exit to active. This
should be done only if you have corrected the program, or if you know the error
conditions are transient.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

Each SMF record is passed to an installation exit (either IEFU83, IEFU84, or
IEFU85) before it is written to the SMF data set. If you use the SMFWTM macro, or
if you specify BRANCH=NO on the SMFEWTM macro, SMF invokes installation
exit IEFU83. If you use the SMFEWTM macro and specify BRANCH=YES, SMF
invokes installation exit IEFU84.

IEFU83 places a return code in register 15 before returning control; the code
indicates whether the record should be written to the SMF data set.

Programming Considerations

IEFU83 must be reenterable and refreshable, because PLPA pages are stolen. That
is, they can be paged in but not paged out, and subsequent page-ins overlay any
code changes.

If IEFU83 is entered for a foreground job, it cannot access installation-defined data
sets. If the exit is entered for a background job, it cannot write to
installation-defined data sets.

The addresses of the user communication and user identification fields of the
common exit parameter area (a copy of the first 36 bytes of the JMR) are not
passed to the IEFU83 exit routine. To obtain these addresses, the exit routine can
follow pointers from the PSA to the TCB to the JMR. In the PSA, the PSATOLD
points to the TCB. In the TCB, the TCBTCT field points to the TCT. In the TCT, the
TCTJMR field points to the JMR. The JMR and the PSA are mapped by macro
IEFJMR and IHAPSA, respectively. See z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/) for the mapping of the
JMR and the mappings of the TCB and the TCT.

APPC/MVS Consideration: You might want your exit routine to perform specific
processing for work initiated by the APPC/MVS transaction scheduler. To enable
your exit routine to determine when it has been invoked during this type of
processing, have the routine check the OUCBSUBN field in the OUCB control
block. For APPC/MVS TPs, this field is set to 'ASCH' (EBCDIC).

The exit routine can access OUCBSUBN by chaining through pointers from the
PSA to the ASCB to the OUCB. In the PSA, the PSAAOLD points to the ASCB. In
the ASCB, the ASCBOUCB field points to the OUCB.

The ASCB, OUCB, and the PSA are mapped by macros IHAASCB, IRAOUCB, and
IHAPSA, respectively. The mappings are described in z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

IEFU83 — SMF Record Exit

Chapter 38. IEFU83 — SMF Record Exit 249

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Macro Instructions and Restrictions: When issuing a WTOR macro, specify
LONG=YES on the WAIT macro.

IEFU83 cannot use the SMFWTM or SMFEWTM macro to write to the SMF data
set.

Entry Specifications

SMF passes to IEFU83 the address of a fullword that points to the SMF record.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the parameter list.

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of IEFU83

Parameter Descriptions: Register 1 points to the following address:

Word 1
The address of the record that SMF is to write. The first four bytes of this
record are the record descriptor word (RDW). See z/OS MVS System
Management Facilities (SMF) for a description of the RDW.

Return Specifications

A return code from IEFU83 indicates whether the current SMF record is to be
suppressed.

If you associate multiple exit routines with IEFU83, you can specify how the return
information is to be handled using the ATTRIB KEEPRC function of the SETPROG
EXIT command, the EXIT statement of PROGxx, or CSVDYNEX services. If
multiple exit routines match the ATTRIB KEEPRC criteria, the system returns
information from the exit routine that finished first.

If you do not specify the ATTRIB KEEPRC function, the system returns the
information from the exit routine whose return value was the greatest. If multiple
exit routines return with the same highest value, the return information from the
exit routine that finished first will be returned.

Register 1

SMF record0(0)

Figure 24. IEFU83 Input Parameter Structure

IEFU83 — SMF Record Exit

250 z/OS V2R2 MVS Installation Exits

If you associate multiple exit routines with exit IEFU83, and any of those exit
routines return with a value of 4, the current SMF record is suppressed.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

1 Not applicable

2-14 Not applicable

15 One of the following return codes:

Return Code
Explanation

4 SMF is not to write the record to the SMF data set.

Other than 4
SMF is to write the record to the SMF data set.

IEFU83 — SMF Record Exit

Chapter 38. IEFU83 — SMF Record Exit 251

IEFU83 — SMF Record Exit

252 z/OS V2R2 MVS Installation Exits

Chapter 39. IEFU84 — SMF Record Exit

The SMF record exit IEFU84 receives control when the caller invokes the
SMFEWTM macro, specifying BRANCH=YES. After exit routine processing,
IEFU84 returns a code that specifies whether the SMF record should be written to
the SMF data set. The SMFEWTM macro allows the issuer to branch directly to the
SVC routine without issuing the SVC. IEFU84 does not receive control for records
suppressed because of options selected at IPL time or via the SET SMF command.

You can use IEFU84 to:
v Select or suppress those records to be written to the SMF data set. For example,

an installation with a large TSO/E account might want to suppress SMF records
for all but a few selected TSO/E users.

v Check resource use during a specific interval. For example, select records during
the peak workload period.

v Suppress some of the record type 30 subtypes.

Defining the Exit in SMFPRMxx

In the SMF parmlib member (SMFPRMxx), specify IEFU84 on the EXITS option of
either the SYS or SUBSYS parameters, depending on the scope of work
(system-wide or subsystem-wide) the exit is to affect.

If you use the SUBSYS option, the system invokes the IEFU84 routine only for
work running under the subsystems you specify on SUBSYS. If you use the SYS
option, the system invokes the IEFU84 routine for work running under any
SMF-defined subsystem, such as JES2, JES3, STC, ASCH, OMVS, or TSO.

For more information about coding the EXITS option, see the description of
SMFPRMxx in z/OS MVS Initialization and Tuning Reference.

Topics for This Exit Appear as Follows:

v “Defining the Exit in SMFPRMxx”

v “Controlling the Exit Routine Through the Dynamic Exits Facility” on page 254

v “Exit Routine Environment” on page 254

v “Exit Recovery” on page 254

v “Exit Routine Processing” on page 255

v “Programming Considerations” on page 255

– Macro Instructions and Restrictions

v “Entry Specifications” on page 256

– Registers at Entry

v “Return Specifications” on page 257

– Registers at Exit

© Copyright IBM Corp. 1988, 2015 253

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEFU84 installation exit to the dynamic exits facility. You can
refer to the exit by the name SYS.IEFU84 or SYSyyy.IEFU84. See the description of
the SMFPRMxx parmlib member in z/OS MVS Initialization and Tuning Reference for
an explanation of the naming conventions for SMF exit routines. You can use the
EXIT statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its exit routines.

To define IEFU84 to the dynamic exits facility, you must specify the exit in both
PROGxx and SMFPRMxx. The system does not call the exit if it is defined in
PROGxx only. If you do not plan to use the dynamic exits facility for this exit, you
need only define IEFU84 in SMFPRMxx.

If you do not associate any exit routines with exit IEFU84 in PROGxx, the system
defaults to using the exit routine name that matches the exit name (IEFU84).

If you associate exit routines with this exit in PROGxx, the system does not use the
default exit routine. If you need the default exit routine, you should explicitly add
it to PROGxx.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system disables the exit routine after two consecutive abends.

Exit Routine Environment

IEFU84 receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In AMODE 31.
v In the address space of the task that issues the SMFEWTM BRANCH=YES

macro.
v Can be locked or in SRB mode.

Exit Recovery

If IEFU84 abnormally terminates, SMF, in most cases, does not terminate. SMF
marks the exit as not valid and issues message IEE952I to the operator. If the exit
performs a critical function, the operator can issue a SET SMF or SETSMF
command to terminate recording. Otherwise, SMF recording continues but
bypasses the installation exit routine.

IBM strongly recommends that you set up an FRR recovery routine to handle
errors that might occur during the execution of your exit routine. The FRR should
use the EUT=YES option to handle errors that occur when the exit is called in
unlocked task mode.

IEFU84 — SMF Record Exit

254 z/OS V2R2 MVS Installation Exits

An FRR is set up by the module that calls IEFU84; the recovery routine, if it gets
control, will prevent SMF from ending if the exit routine abnormally ends. If this
recovery routine gets control on two consecutive invocations of the exit, SMF
requests that the exit routine be marked inactive, preventing any further
invocations of that exit routine. The system issues message CSV430I, naming the
exit and the exit routine.

If the exit performs a critical function, the operator can issue a SET PROG or
SETPROG MODIFY command to change the status of the exit to active. This
should be done only if you have corrected the program, or if you know the error
conditions are transient.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

Each SMF record is passed to an installation exit (either IEFU83, IEFU84 or
IEFU85) before it is written to the SMF data set. If you use the SMFEWTM macro
and specify BRANCH=YES, SMF invokes installation exit IEFU84. If you use the
SMFWTM macro or if you specify BRANCH=NO on the SMFEWTM macro, SMF
invokes installation exit IEFU83.

The SMFEWTM macro verifies that SMF recording is active and allows the issuer
to branch directly to the SVC routine without issuing the SVC. BRANCH=YES
causes the macro to generate a call to the subroutine that moves the data to the
SMF buffer.

IEFU84 places a return code in register 15 before returning control; the code
indicates whether the record is to be written to the SMF data set.

Programming Considerations

IEFU84 must be reenterable and refreshable, because PLPA pages are stolen. That
is, they can be paged in but not paged out, and subsequent page-ins overlay any
code changes.

IEFU84 cannot access installation-defined data sets.

The addresses of the user communication and user identification fields of the
common exit parameter area (a copy of the first 36 bytes of the JMR) are not
passed to the IEFU84 exit routine. To obtain these addresses, the exit routine can
follow pointers from the ASXB to the TCB to the JMR. In the ASXB, the ASXBLTCB
points to a chain of TCBs. The ASXB can be found from the field ASCBASXB in the
ASCB which in turn can be found from the PSAAOLD in the PSA.

In the TCB, the TCBTCT field points to the TCT. In the TCT, the TCTJMR field
points to the JMR. The JMR and the PSA are mapped by macros IEFJMR and
IHAPSA, respectively. See z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/) for the mapping of the JMR,
and z/OS MVS Data Areas, Vol 5 (SSAG-XTLST) for the mappings of the TCB and
the TCT.

Note: If you use the ASXBLTCB, this would only be the LAST TCB that was
attached in the address space, and would not necessarily be running, or even
dispatchable. You would have determine that by looking at the dispatchability bits

IEFU84 — SMF Record Exit

Chapter 39. IEFU84 — SMF Record Exit 255

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

in the TCB. Or you could start with the ASXBFTCB, which will point to the Region
Control Task's TCB, and chain down from that using the TCBTCB field.

APPC/MVS Consideration: You might want your exit routine to perform specific
processing for work initiated by the APPC/MVS transaction scheduler. To enable
your exit routine to determine when it has been invoked during this type of
processing, have the routine check the OUCBSUBN field in the OUCB control
block. For APPC/MVS TPs, this field is set to 'ASCH' (EBCDIC).

The exit routine can access OUCBSUBN by chaining through pointers from the
PSA to the ASCB to the OUCB. In the PSA, the PSAAOLD points to the ASCB. In
the ASCB, the ASCBOUCB field points to the OUCB.

The ASCB, OUCB, and the PSA are mapped by macros IHAASCB, IRAOUCB, and
IHAPSA, respectively. The mappings are described in z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Macro Instructions and Restrictions: When issuing a WTOR macro, specify
LONG=YES on the WAIT macro.

IEFU84 cannot use the SMFWTM or SMFEWTM macro to write to the SMF data
set.

Because IEFU84 might be locked or in SRB mode, the exit routine cannot issue any
SVCs. IEFU83 may be given the alias name IEFU84, if IEFU83 can run locked or
SRB mode.

Entry Specifications

SMF passes to IEFU84 the address of a fullword that points to the SMF record.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the parameter list

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of IEFU84

Parameter Descriptions: Register 1 points to the following address:

Word 1
The address of the record that SMF is to write. The first four bytes of this
record are the record descriptor word (RDW). See z/OS MVS System
Management Facilities (SMF) for a description of the RDW.

IEFU84 — SMF Record Exit

256 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/

Return Specifications

A return code from IEFU84 indicates whether the current SMF record is to be
suppressed.

If you associate multiple exit routines with IEFU84, you can specify how the return
information is to be handled using the ATTRIB KEEPRC function of the SETPROG
EXIT command, the EXIT statement of PROGxx, or CSVDYNEX services. If
multiple exit routines match the ATTRIB KEEPRC criteria, the system returns
information from the exit routine that finished first.

If you do not specify the ATTRIB KEEPRC function, the system returns the
information from the exit routine whose return value was the greatest. If multiple
exit routines return with the same highest value, the return information from the
exit routine that finished first will be returned.

If you associate multiple exit routines with exit IEFU84, and any of those exit
routines return with a value of 4, the system does not write the record to the SMF
data set.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Same as at entry

15 One of the following return codes:

Return Code
Explanation

Value of 4
SMF is not to write the record to the SMF data set.

Other than 4
SMF is to write the record to the SMF data set.

Register 1

SMF record0(0)

Figure 25. IEFU84 Input Parameter Structure

IEFU84 — SMF Record Exit

Chapter 39. IEFU84 — SMF Record Exit 257

IEFU84 — SMF Record Exit

258 z/OS V2R2 MVS Installation Exits

Chapter 40. IEFU85 — SMF Record Exit

The SMF record exit IEFU85 is used for a caller who is running in cross memory
mode. The exit routine receives control when the caller invokes the SMFEWTM
macro, specifying BRANCH=YES and MODE=XMEM and when ASCB does not
equal PSAAOLD (the home primary ASID). After exit routine processing, IEFU85
returns a code that specifies whether the SMF record should be written to the SMF
data set. The SMFEWTM macro allows the issuer to branch directly to the SVC
routine without issuing the SVC. IEFU85 does not receive control for records that
are suppressed because of options selected at IPL time or via the SET SMF
command.

You can use IEFU85 to:
v Select or suppress those records to be written to the SMF data set. For example,

an installation with a large TSO/E account might want to suppress SMF records
for all but a few selected TSO/E users.

v Check resource use during a specific interval. For example, select records during
the peak workload period.

Defining the Exit in SMFPRMxx

In the SMF parmlib member (SMFPRMxx), specify IEFU85 on the EXITS option of
either the SYS or SUBSYS parameters, depending on the scope of work
(system-wide or subsystem-wide) the exit is to affect.

If you use the SUBSYS option, the system invokes the IEFU85 routine only for
work running under the subsystems you specify on SUBSYS. If you use the SYS
option, the system invokes the IEFU85 routine for work running under any
SMF-defined subsystem, such as JES2, JES3, STC, ASCH, OMVS, or TSO.

For more information about coding the EXITS option, see the description of
SMFPRMxx in z/OS MVS Initialization and Tuning Reference.

Topics for This Exit Appear as Follows:

v “Defining the Exit in SMFPRMxx”

v “Controlling the Exit Routine Through the Dynamic Exits Facility” on page 260

v “Exit Routine Environment” on page 260

v “Exit Recovery” on page 260

v “Exit Routine Processing” on page 261

v “Programming Considerations” on page 261

– Macro Instructions and Restrictions

v “Entry Specifications” on page 262

– Registers at Entry

v “Return Specifications” on page 263

– Registers at Exit

© Copyright IBM Corp. 1988, 2015 259

Controlling the Exit Routine Through the Dynamic Exits Facility

IBM has defined the IEFU85 installation exit to the dynamic exits facility. You can
refer to the exit by the name SYS.IEFU85 or SYSyyy.IEFU85. See the description of
the SMFPRMxx parmlib member in z/OS MVS Initialization and Tuning Reference for
an explanation of the naming conventions for SMF exit routines. You can use the
EXIT statement of the PROGxx parmlib member, the SETPROG EXIT operator
command, or the CSVDYNEX macro to control this exit and its exit routines.

To define IEFU85 to the dynamic exits facility, you must specify the exit in both
PROGxx and SMFPRMxx. The system does not call the exit if it is defined in
PROGxx only. If you do not plan to use the dynamic exits facility for this exit, you
need only define IEFU85 in SMFPRMxx.

If you do not associate any exit routines with exit IEFU85 in PROGxx, the system
defaults to using the exit routine name that matches the exit name (IEFU85).

If you associate exit routines with this exit in PROGxx, the system does not use the
default exit routine. If you need the default exit routine, you should explicitly add
it to PROGxx.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM parameter of the
SETPROG EXIT operator command to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted when both of the
following conditions exist:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system disables the exit routine after two consecutive abends.

Exit Routine Environment

IEFU85 receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In AMODE 31.
v In the address space of the task that issues the SMFEWTM BRANCH=YES

MODE=XMEM macro.
v May be locked.
v In cross memory mode.

Exit Recovery

If IEFU85 abnormally terminates, SMF, in most cases, does not terminate. SMF
marks the exit as not valid and issues message IEE952I to the operator. If the exit
performs a critical function, the operator can issue a SET SMF or SETSMF
command to terminate recording. Otherwise, SMF recording continues but
bypasses the installation exit routine.

A functional recovery routine (FRR) is set up by IEEMB830 (the SVC 83 routine)
because the caller is in cross memory mode.

IEFU85 — SMF Record Exit

260 z/OS V2R2 MVS Installation Exits

IBM strongly recommends that you set up an FRR recovery routine to handle
errors that might occur during the execution of your exit routine.

An FRR is set up by the module that calls IEFU85; the recovery routine, if it gets
control, will prevent SMF from ending if the exit routine abnormally ends. If this
recovery routine gets control on two consecutive invocations of the exit, SMF
requests that the exit routine be marked inactive, preventing any further
invocations of that exit routine. The system issues message CSV430I, naming the
exit and the exit routine.

If the exit performs a critical function, the operator can issue a SET PROG or
SETPROG MODIFY command to change the status of the exit to active. This
should be done only if you have corrected the program, or if you know the error
conditions are transient.

Whether or not the exit routine continues to be invoked depends on the abend
processing of the dynamic exits facility.

Exit Routine Processing

Each SMF record is passed to an installation exit (either IEFU83, IEFU84, or
IEFU85) before it is written to the SMF data set. If you use the SMFEWTM macro
and specify BRANCH=YES MODE=XMEM, SMF invokes installation exit IEFU85.

The SMFEWTM macro verifies that SMF recording is active and allows the issuer
to branch directly to the SVC routine without issuing the SVC. BRANCH=YES
causes the macro to generate a call to the subroutine that moves the data to the
SMF buffer.

IEFU85 places a return code in register 15 before returning control; the code
indicates whether the record is to be written to the SMF data set.

Programming Considerations

IEFU85 must be reenterable and refreshable, because PLPA pages are stolen. That
is, PLPA pages can be paged in but not paged out, and subsequent page-ins
overlay any code changes.

IEFU85 cannot access installation-defined data sets.

Because IEFU85 is running in cross-memory mode, the exit routine cannot issue
any SVCs.

The addresses of the user communication and user identification fields of the
common exit parameter area (a copy of the first 36 bytes of the JMR) are not
passed to the IEFU85 exit routine. To obtain these addresses, the exit routine can
follow pointers from the PSA to the TCB to the JMR. In the PSA, the PSATOLD
points to TCB. In the TCB, the TCBTCT field points to the TCT. In the TCT, the
TCTJMR field points to the JMR. The JMR and the PSA are mapped by macros
IEFJMR and IHAPSA, respectively. See z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/) for the mapping of the
JMR, and z/OS MVS Data Areas, Vol 5 (SSAG-XTLST) for the mappings of the TCB
and the TCT.

APPC/MVS Consideration: You might want your exit routine to perform specific
processing for work initiated by the APPC/MVS transaction scheduler. To enable

IEFU85 — SMF Record Exit

Chapter 40. IEFU85 — SMF Record Exit 261

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

your exit routine to determine when it has been invoked during this type of
processing, have the routine check the OUCBSUBN field in the OUCB control
block. For APPC/MVS TPs, this field is set to 'ASCH' (EBCDIC).

The exit routine can access OUCBSUBN by chaining through pointers from the
PSA to the ASCB to the OUCB. In the PSA, the PSAAOLD points to the ASCB. In
the ASCB, the ASCBOUCB field points to the OUCB.

The ASCB, OUCB, and the PSA are mapped by macros IHAASCB, IRAOUCB, and
IHAPSA, respectively. The mappings are described in z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Macro Instructions and Restrictions: IEFU85 can issue only macros that can run in
cross-memory mode. See the macro summary in z/OS MVS Programming: Assembler
Services Reference ABE-HSP for information on macros that can run in
cross-memory mode.

IEFU85 cannot use the SMFWTM or SMFEWTM macro to write to the SMF data
set.

Entry Specifications

SMF passes to IEFU85 the address of a fullword that points to the SMF record.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the parameter list.

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of IEFU85

Parameter Descriptions: Register 1 points to the following address:

Word 1
The address of the record that SMF is to write. The first four bytes of this
record are the record descriptor word (RDW). See z/OS MVS System
Management Facilities (SMF) for a description of the RDW.

Register 1

SMF record0(0)

Figure 26. IEFU85 Input Parameter Structure

IEFU85 — SMF Record Exit

262 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/

Return Specifications

A return code from IEFU85 indicates whether the current SMF record is to be
suppressed.

If you associate multiple exit routines with IEFU85, you can specify how the return
information is to be handled using the ATTRIB KEEPRC function of the SETPROG
EXIT command, the EXIT statement of PROGxx, or CSVDYNEX services. If
multiple exit routines match the ATTRIB KEEPRC criteria, the system returns
information from the exit routine that finished first.

If you do not specify the ATTRIB KEEPRC function, the system returns the
information from the exit routine whose return value was the greatest. If multiple
exit routines return with the same highest value, the return information from the
exit routine that finished first will be returned.

If you associate multiple exit routines with exit IEFU85, and any of those exit
routines return with a value of 4, the current SMF record is suppressed.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Same as at entry

15 One of the following return codes:

Return Code
Explanation

Value of 4
SMF is not to write the record to the SMF data set.

Other than 4
SMF is to write the record to the SMF data set.

IEFU85 — SMF Record Exit

Chapter 40. IEFU85 — SMF Record Exit 263

IEFU85 — SMF Record Exit

264 z/OS V2R2 MVS Installation Exits

Chapter 41. Global Resource Serialization Exits

System Programmer or Authorized Exits

ISGNQXITFAST — Fast ISGENQ / ENQ / DEQ Installation Exit
ISGNXITFAST is the IBM recommended replacement for ISGNQXIT and should be
used except where restrictions apply.

For each ENQ/DEQ/RESERVE request with SCOPE=SYSTEM or
SCOPE=SYSTEMS, the system invokes the Fast ENQ/DEQ Installation Exit,
ISGNQXITFAST. The exit routine can modify attributes of the request prior to
Resource Name List (RNL) processing. See z/OS MVS Planning: Global Resource
Serialization for the installation flow through ENQ/DEQ exits.

By altering the ISGNXITFAST exit parameter list, the exit can:
v Alter the resource name (QNAME and/or RNAME).
v Alter the resource scope. See restrictions below .
v Alter the UCB address (for a RESERVE). See restrictions below .
v Convert a RESERVE to an ENQ by setting the UCB to zero. See restrictions

below .
v Convert an ENQ to a RESERVE by adding a UCB specification. See restrictions

below .
v Indicate to bypass the RNL processing.

Topics for The GRS Exits Appear as Follows:

v “System Programmer or Authorized Exits”

– ISGNQXITFAST – Fast ISGENQ / ENQ / DEQ Installation Exit

– ISGNQXIT – ISGENQ / ENQ / DEQ Installation Exit

– ISGCNFXITSYSTEM – Filter Global Resource Serialization Contention Notification,
SYSTEM Scope

– ISGCNFXITSYSPLEX – Filter Global Resource Serialization Contention Notification,
SYSTEMS Scope

v “Authorized Exits” on page 275

– ISGDGRSRES – Display Global Resource Serialization Resource Exit

v “Authorized Exits for Alternate Serialization Products” on page 277

– ISGNQXITPREBATCH – ISGENQ / ENQ / DEQ Batch Preprocessing Exit

– ISGNQXITBATCH – ISGENQ / ENQ / DEQ Batched Exit

– ISGNQXITBATCHCND – ISGENQ / ENQ / DEQ Conditional Batch Processing Exit

– ISGNQXITQUEUED1 – ISGENQ / ENQ / DEQ First Queued Exit

– ISGNQXITQUEUED2 – ISGENQ / ENQ / DEQ Second Queued Exit

– ISGENDOFLQCB – End of Local QCB Exit

© Copyright IBM Corp. 1988, 2015 265

Note: The exit routine cannot change the scope nor UCB address of a request
when the program issues the ENQ or ISGENQ macro with RNL=NO. The
Nqxp_SF1_RnlEqNo bit passed in the parameter list indicates if RNL=NO was
specified.

This exit is invoked under the caller's unit of work on the system where the caller
is running. For global resource requests, the exit is invoked only on the system
where the request is made.

Note:

1. This exit is intended to replace ISGNQXIT. Although it is possible to run with
both the ISGNQXIT and ISGNQXITFAST exits on a system, it is not
recommended as path length and processing time are increased.

2. If both the ISGNQXIT and ISGNQXITFAST exits are installed, because
ISGNQXIT is called second, any changes requested by the ISGNQXIT exits will
override any changes made by the ISGNQXITFAST exits.

3. Any changes made by ISGNQXITFAST are not honored for an ISGENQ
CHANGE or RELEASE request. Instead, the original changes made by
ISGNQXITFAST on the OBTAIN are used.

Replacing the Exit Routine

Unlike RNL changes, GRS does not know how an exit alters the resource identity
of a request. Therefore, to maintain data integrity, do not make an exit change that
alters the resource identity of any outstanding or in-flight ENQ or DEQ requests.
The resource identity consists of the QNAME, RNAME, SCOPE, and hardware
reserve status. When you make exit changes, first stop the programs that are
currently using the resource, and do not resume the programs until all the exit
changes in the GRS complex have completed.

For information regarding dynamic exit routine replacement, see “Replacing a
Dynamic Exit Routine” on page 6.

Exit Routine Environment

ISGNQXITFAST receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In primary mode with H not= P not= S or H=P=S.
v In AMODE 31 and RMODE ANY.
v With no locks held or with the local and CMSEQDQ locks held.
v An FRR held when locks are held, otherwise an ARR is in effect.

Exit Recovery is as follows.
v If an error occurs, ISGNQXITFAST provides its own recovery routine.
v If no recovery exists, or the recovery continues with termination, GRS fails the

request and continues processing. CSVDYNEX rules for the exit are used to
determine whether the exit should be removed.
The unplanned removal of an exit can result in serialization changes. Therefore,
it is important to provide recovery and to understand how CSVDYNEX
determines when to remove an abend exit. For more information about
CSVDYNEX, see z/OS MVS Programming: Authorized Assembler Services Reference
ALE-DYN.

ISGNQXITFAST — Fast ISGENQ/ENQ/DEQ Installation Exit

266 z/OS V2R2 MVS Installation Exits

Exit Routine Processing

The ISGNQXITFAST exit routine is invoked for every ISGENQ/ENQ/DEQ/
RESERVE request issued for a resource. If any exit routines are defined to the
dynamic exits facility, those routines are invoked before Resource Names List
processing. If any ISGNQXIT exit routines are defined, these are run after the
ISNGQXITFAST exit routines are run.

By updating and using information in the parameter list, the exit routine alters the
following characteristics of the request:
v Resource major name (QNAME).
v Resource minor name (RNAME).
v Resource scope. If the requestor specified RNL=NO, changes to this parameter

are not honored.
v Device UCB address (for RESERVE or DEQ with UCB requests). If the requestor

specified RNL=NO, changes to this parameter are not honored. A UCB address
can be deleted from a RESERVE request, converting the request from a
RESERVE to an ENQ or a UCB address can be added to an ENQ, converting the
request to a RESERVE.

The exit routine can also indicate that RNL processing can be bypassed.

Programming Considerations

Observe the following conventions when coding a Fast ISGENQ/ENQ/DEQ exit
routine:
v Every exit routine must be reentrant.
v Because the exit is called for every ENQ, RESERVE, and DEQ request, an

increased path length increases processor utilization and can degrade
performance.

v Do not code the exit routine to issue the WAIT macro or call a service, such as
WTOR, that issues a WAIT.

v Do not code the exit routine to issue another ISGENQ, ENQ, RESERVE, or DEQ
macro.

Entry Specifications

The system passes a NQXP parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the exit parameter list (ISGYNQXP)

2-12 Not applicable

13 Address of a 72-byte save area

14 Return address

15 Entry point address of ISGNQXITFAST

ISGNQXITFAST — Fast ISGENQ/ENQ/DEQ Installation Exit

Chapter 41. Global Resource Serialization Exits 267

Parameter List Contents: Register 1 contains the address of the exit parameter
(NQXP) that is mapped by macro ISGYNQXP. Refer to z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/) for the
mapping of the ISGYNQXP data area.

Return Specifications

The ISGNQXITFAST installation exit sets the appropriate request flag and alters
the value in the parameter list. For example, to change the major name, the exit
sets Nqxp_RFI_ChangeQName to B'1' and Nqxp_CP_QNAME to the new major
name.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents on entry

15 0

ISGNQXIT — ISGENQ / ENQ / DEQ Installation Exit
For the best performance, IBM recommends that the installation use the
ISGNQXITFAST rather than ISGNQXIT. The ISGNQXIT exit should only be used if
the ISGNQXITFAST exit cannot be used. In no case should both exits be used
because both will be called on every ENQ resulting in degraded system
performance.

For each ISGENQ/ENQ/DEQ/RESERVE request with SCOPE=SYSTEM or
SCOPE=SYSTEMS, the system invokes the ENQ/DEQ Installation Exit point,
ISGNQXIT. The exit routines can modify attributes of the request prior to Resource
Names List (RNL) processing. See z/OS MVS Planning: Global Resource Serialization
in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/)
for the installation flow through ENQ/DEQ exits.

By altering the exit parameter list, the exit can:
v Alter the resource name (QNAME and/or RNAME).
v Alter the resource scope. See restrictions below .
v Alter the UCB address (for a RESERVE). See restrictions below .
v Convert a RESERVE to an ENQ by setting the UCB to zero. See restrictions

below .
v Convert an ENQ to a RESERVE by adding a UCB specification. See restrictions

below .
v Indicate to bypass the RNL processing.

Note: The exit routine cannot change the scope nor UCB address of a request
when the program issues the ENQ or ISGENQ macro with RNL=NO. The
Nqxp_SF1_RnlEqNo bit passed in the parameter list indicates if RNL=NO was
specified.

This exit is invoked under the caller's unit of work on the system where the caller
is running. For global resource requests, the exit is invoked only on the system
where the request is made.

ISGNQXITFAST — Fast ISGENQ/ENQ/DEQ Installation Exit

268 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Note:

1. Any changes made by ISGNQXIT are not honored for an ISGENQ CHANGE or
RELEASE request. Instead, the original changes made by ISGNQXIT on the
OBTAIN are used.

2. This exit replaces the ISGGREX0 exit interface, which was removed in z/OS
V1R2; ISGGSIEX, ISGGSEEX, and ISGGRCEX are no longer used. Message
ISG351I is issued and the exit is not invoked if any of these exits are installed.

Replacing the Exit Routine

Unlike RNL changes, GRS does not know how an exit alters the resource identity
of a request. Therefore, to maintain data integrity, do not make an exit change that
alters the resource identity of any outstanding or in-flight ENQ or DEQ requests.
The resource identity consists of the QNAME, RNAME, SCOPE, and hardware
reserve status. When you make exit changes, first stop the programs that are
currently using the resource, and do not resume the programs until all the exit
changes in the GRS complex have completed.

Any changes the exit makes must be taken into consideration. For information
regarding dynamic exit routine replacement, see “Replacing a Dynamic Exit
Routine” on page 6.

Exit Routine Environment

ISGNQXIT receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In primary mode with H = P = S = requestor's address space.
v In AMODE 31 and RMODE ANY.
v With no locks held.

Exit Recovery is as follows.
v If an error occurs, ISGNQXIT provides its own recovery routine.
v If no recovery exists, or the recovery continues with termination, GRS fails the

request and continues processing. CSVDYNEX rules for the exit are used to
determine whether the exit should be removed.
The unplanned removal of an exit can result in serialization changes. Such
changes might cause data integrity errors. Therefore, it is important to provide
recovery and to understand how CSVDYNEX determines when to remove an
abend exit. For more information about CSVDYNEX, see z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN.

Exit Routine Processing

The ISGNQXIT exit routine is invoked for every ENQ/DEQ/RESERVE/ISGENQ
SCOPE=SYSTEM or SCOPE=SYSTEMS request issued for a resource. If any exit
routines are defined to the dynamic exits facility, those routines are invoked before
Resource Names List (RNL) processing.

By updating and using information in the parameter list, the exit routine alters the
following characteristics of the request:
v Resource major name (QNAME).
v Resource minor name (RNAME).

ISGNQXIT — ISGENQ / ENQ / DEQ Installation Exit

Chapter 41. Global Resource Serialization Exits 269

v Resource scope. If the requester specified RNL=NO, changes to this parameter
are not honored.

v Device UCB address (for RESERVE or DEQ with UCB requests). If the requester
specified RNL=NO, changes to this parameter are not honored. A UCB address
can be deleted from a RESERVE request, converting the request from a
RESERVE to an ENQ or a UCB address can be added to an ENQ, converting the
request to a RESERVE.

The exit routine can also indicate that RNL processing can be bypassed.

Programming Considerations

Observe the following conventions when coding an ISGENQ, ENQ, DEQ and
RESERVE exit routine:
v Every exit routine must be reentrant.
v Because the exit is called for every ISGENQ, ENQ, DEQ, and RESERVE request,

an increased path length increases processor utilization and can degrade
performance.

v Do not code the exit routine to issue the WAIT macro or call a service, such as
WTOR, that issues a WAIT.

v Do not code the exit routine to issue another ISGENQ, ENQ, RESERVE, or DEQ
macro.

v The QNAME, RNAME, SCOPE, and UCB must match both the ENQ and the
DEQ.

v Issuing the GETMAIN or STORAGE OBTAIN macro can slow down
performance.

Entry Specifications

The ISGENQ/ENQ/DEQ/RESERVE mainline routine passes the address of the
ENQ exit parameter list (ISGYNQXP).

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the exit parameter list (ISGYNQXP).

2-12 Not applicable

13 Address of a 72-byte save area

14 Return address

15 Entry point address of ISGNQXIT

Parameter List Contents: Register 1 contains the address of the exit parameter
(NQXP) that is mapped by macro ISGYNQXP. Refer to z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/) for the
mapping of the ISGYNQXP data area.

ISGNQXIT — ISGENQ / ENQ / DEQ Installation Exit

270 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/

Return Specifications

The ISGENQ/ENQ/DEQ installation exit sets the appropriate request flag and
alters the value in the parameter list. For example, to change the major name, the
exit sets Nqxp_RFI_ChangeQName to '1'b and Nqxp_CP_QNAME to the new
major name.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents on entry

15 0

ISGCNFXITSYSTEM — Filter Global Resource Serialization
Contention Notification, SYSTEM Scope

ISGCNFXITSYSTEM provides a way for your installation to suppress the ENF 51
signal that global resource serialization issues to notify programs of contention for
a scope=SYSTEM resource. When at least one exit routine has been added to the
ISGCNFXITSYSTEM exit, it will receive control for every resource of system scope
that Global Resource Serialization finds in contention. Depending on what your
installation specified in the exit routine, the exit can suppress the ENF 51 signal for
the resource in contention. This allows the installation to suppress ENF signals for
resources known to be frequently in contention, with the trade-off of providing less
data to any monitoring tools that listen for those signals.

Replacing the Exit Routine

For information regarding dynamic exit routine replacement, see “Replacing a
Dynamic Exit Routine” on page 6.

Exit Routine Environment

ISGCNFXITSYSTEM receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In primary ASC mode with H=S=requestor's address space, and P=Global

Resource Serialization's address space.
v In task mode.
v In AMODE 31 and RMODE ANY.
v With no locks held, a local lock held, or both a local lock and the CMSEQDQ

lock held..

Exit Recovery is as follows.
v If an error occurs, ISGCNFXITSYSTEM provides with its own recovery routine.
v If no recovery exists, or the recovery continues with termination, GRS fails the

request and continues processing. CSVDYNEX rules for the exit are used to
determine whether the exit should be removed.
The unplanned removal of an exit can result in serialization changes. Such
changes might cause data integrity errors. Therefore, it is important to provide
recovery and to understand how CSVDYNEX determines when to remove an

ISGNQXIT — ISGENQ / ENQ / DEQ Installation Exit

Chapter 41. Global Resource Serialization Exits 271

abend exit. For more information about CSVDYNEX, see z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN.

Exit Routine Processing

The ISGCNFXITSYSTEM exit point allows an exit routine to suppress the ENF 51
signal when global resource serialization detects contention on a system scope
resource. The exit routine is passed a parameter list, CNFP (mapped by CNFP),
which contains information about the request. The exit routine can check the
QNAME, RNAME, and Rnamelen of the resource and filter the ENF 51 signal.

Programming Considerations

Observe the following considerations when coding an exit routine to filter global
resource seriaqlization contention notification on a system scope:
v Every exit routine must be reentrant.
v While coding the exit routine, be aware that you will have an increased path

length for ENQ/DEQ requests because the exit is called for every system scope
resource in contention.

v Depending on the locks held upon entry to the exit routine, failing to return
control promptly can cause significant delays in global resource serialization
processing.

v Make sure that your exit routine takes into account the parameter list version,
CNFP_VERSION, in case of future interface changes for the exit point.

v Do not code the exit routine to change any variables in the parameter list except
for the filter flag. The exit does not make a copy of the resource identifying
parameters passed, such as QNAME, RNAME, and Rnamelen.

v If you want to write an exit routine that covers both system
(ISGCNFXITSYSTEM) and systems (ISGCNFXITSYSPLEX) scope resource
contention, then use the CNFP_SYSTEM flag in the CNFP parameter list to
differentiate between them.

v The resource described in the parameter list via CNFP_QNAME@,
CNFP_RNAME@, CNFP_RLEN, and CNFP_SYSTEM reflects any changes made
from other exits or RNL processing.

Entry Specifications

The system passes a parameter list (CNFP) to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the exit parameter list (ISGYCNFP)

2-12 Not applicable

13 Address of a 72-byte save area

14 Return address

15 Entry point of ISGCNFXITSYSTEM

Parameter List Contents: Register 1 contains the address of the exit parameter
(CNFP) that is mapped by macro ISGYCNFP. The parameter list contains the

ISGCNFXITSYSTEM — SYSTEM Scope

272 z/OS V2R2 MVS Installation Exits

QNAME, RNAME, and Rnamelen of the resource, the filter flag, and a 4K work
area. You should not use this work area to communicate among multiple exit
routines because the work area may not be cleared upon entry. In addition, in
certain recovery scenarios the work area may not be the same for all routines.

Return Specifications

At the completion of ISGCNFXITSYSTEM processing, ISGYCNFP can indicate that
the ENF 51 signal be suppressed by setting the CNFP_FILTER flag.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents on entry

15 0

Coded Example of the Exit Routine

IBM provides coded examples of the ISGCNFXITSYSTEM and
ISGCNFXITSYSPLEX exit routines in member ISGCNFXR of SYS1.SAMPLIB.

ISGCNFXITSYSPLEX — Filter Global Resource Serialization
Contention Notification, SYSTEMS Scope

ISGCNFXITSYSPLEX provides a way for your installation to suppress the ENF 51
signal that global resource serialization issues to notify programs of contention for
a scope=SYSTEMS resource. When at least one exit routine has been added to the
ISGCNFXITSYSPLEX exit, it will receive control for every resource of systems
scope that global resource serialization finds in contention. Depending on what
your installation specified in the exit routine, the exit can suppress the ENF 51
signal for the resource in contention. This allows the installation to suppress ENF
signals for resources known to be frequently in contention, with the trade-off of
providing less data to any monitoring tools that listen for those signals.

Replacing the Exit Routine

For information regarding dynamic exit routine replacement, see “Replacing a
Dynamic Exit Routine” on page 6.

Exit Routine Environment

ISGCNFXITSYSPLEX receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In primary ASC mode with P=H=S=Global Resource Serialization's address

space
v In task mode.
v In AMODE 31 and RMODE ANY.
v With no locks held, a local lock held, or both a local lock and the CMSEQDQ

lock held..

Exit Recovery is as follows.

ISGCNFXITSYSTEM — SYSTEM Scope

Chapter 41. Global Resource Serialization Exits 273

v If an error occurs, ISGCNFXITSYSPLEX provides with its own recovery routine.
v If no recovery exists, or the recovery continues with termination, GRS fails the

request and continues processing. CSVDYNEX rules for the exit are used to
determine whether the exit should be removed.
The unplanned removal of an exit can result in serialization changes. Such
changes might cause data integrity errors. Therefore, it is important to provide
recovery and to understand how CSVDYNEX determines when to remove an
abend exit. For more information about CSVDYNEX, see z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN.

Exit Routine Processing

The ISGCNFXITSYSPLEX exit point allows an exit routine to suppress the ENF 51
signal when global resource serialization detects contention on a systems scope
resource. The exit routine is passed a parameter list, CNFP (mapped by CNFP),
which contains information about the request. The exit routine can check the
QNAME, RNAME, and Rnamelen of the resource and filter the ENF 51 signal.

Programming Considerations

Observe the following considerations when coding an exit routine to filter global
resource serialization contention notification on a systems scope:
v Every exit routine must be reentrant.
v While coding the exit routine, be aware that you will have an increased path

length for ENQ/DEQ requests because the exit is called for every system scope
resource in contention.

v Depending on the locks held upon entry to the exit routine, failing to return
control promptly can cause significant delays in global resource serialization
processing.

v Make sure that your exit routine takes into account the parameter list version,
CNFP_VERSION, in case of future interface changes for the exit point.

v Do not code the exit routine to change any variables in the parameter list except
for the filter flag. The exit does not make a copy of the resource identifying
parameters passed, such as QNAME, RNAME, and Rnamelen.

v If you want to write an exit routine that covers both system
(ISGCNFXITSYSTEM) and systems (ISGCNFXITSYSPLEX) scope resource
contention, then use the CNFP_SYSTEM flag in the CNFP parameter list to
differentiate between them.

v The resource described in the parameter list via CNFP_QNAME@,
CNFP_RNAME@, CNFP_RLEN, and CNFP_SYSTEM reflects any changes made
from other exits or RNL processing.

Entry Specifications

The system passes a parameter list (CNFP) to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the exit parameter list (ISGYCNFP)

2-12 Not applicable

ISGCNFXITSYSPLEX — SYSTEMS Scope

274 z/OS V2R2 MVS Installation Exits

13 Address of a 72-byte save area

14 Return address

15 Entry point of ISGCNFXITSYSPLEX

Parameter List Contents: Register 1 contains the address of the exit parameter
(CNFP) that is mapped by macro ISGYCNFP. The parameter list contains the
QNAME, RNAME, and Rnamelen of the resource, the filter flag, and a 4K work
area. You should not use this work area to communicate among multiple exit
routines because the work area may not be cleared upon entry. In addition, in
certain recovery scenarios the work area may not be the same for all routines.

Return Specifications

At the completion of ISGCNFXITSYSPLEX processing, ISGYCNFP can indicate that
the ENF 51 signal be suppressed by setting the CNFP_FILTER flag.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents on entry

15 0

Coded Example of the Exit Routine

IBM provides coded examples of the ISGCNFXITSYSPLEX and
ISGCNFXITSYSTEM exit routines in member ISGCNFXR of SYS1.SAMPLIB.

Authorized Exits

ISGDGRSRES — Display Global Resource Serialization
Resource Exit

ISGDGRSRES is called for each ENQ resource displayed in a DISPLAY GRS,RES=
or CONTENTION command. It allows an application to provide additional
information describing the meaning of the ENQ resource name.

The parameter list passed to ISGDGRSRES is mapped by ISGYDSPX (DSPX). The
parameter list describes an ENQ resource name.

Replacing the Exit Routine

For information regarding dynamic exit routine replacement, see “Replacing a
Dynamic Exit Routine” on page 6.

Exit Routine Environment

ISGDGRSRES receives control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In primary mode with H = P = S = requestor's address space.
v In AMODE 31 and RMODE ANY.

ISGCNFXITSYSPLEX — SYSTEMS Scope

Chapter 41. Global Resource Serialization Exits 275

v With no locks held.
v An EUT FRR is held when the exit routine is called.

Exit Recovery is as follows.
v If an error occurs, ISGDGRSRES provides with its own recovery routine.
v If no recovery exists, or the recovery continues with termination, GRS fails the

request and continues processing. CSVDYNEX rules for the exit are used to
determine whether the exit should be removed.
The unplanned removal of an exit can result in serialization changes. Such
changes might cause data integrity errors. Therefore, it is important to provide
recovery and to understand how CSVDYNEX determines when to remove an
abend exit. For more information about CSVDYNEX, see z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN.

Exit Routine Processing

The exit routine should interrogate the QNAME and RNAME information that will
be displayed. If the exit routine can add information about the meaning of the
QNAME and RNAME for the resource, it can place:
v An identifier (16 EBCDIC characters padded with EBCDIC blanks on the right, if

needed) in the Dspx_ResourceIdentifier field (for example, a subsystem or
product name).

v Descriptive information (up to 70 EBCDIC characters padded with EBCDIC
blanks on the right, if needed) in the Dspx_ResourceInformation field.

For an example, see Providing ENQ resource information on DISPLAY GRS in
z/OS MVS Programming: Authorized Assembler Services Guide.

Programming Considerations

Observe the following conventions when coding a display global resource
serialization exit routine:
v Every exit routine must be reentrant.
v Be aware while coding the exit routine that because the exit is called for every

resource displayed in a DISPLAY GRS command response, excessive path length
could degrade system performance.

v Do not code the exit routine to issue the WAIT macro or call a service, such as
WTOR, that issues a WAIT.

v Do not code the exit routine to issue another ENQ, RESERVE, or DEQ macro.

Entry Specifications

The system passes a ISGYDSPX parameter list (DSPX) to the exit routine. The
DSPX contains the QNAME, RNAME, and scope of the resource being displayed.
The exit routine can update the resource identifier and information fields for
display.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the exit parameter list (ISGYDSPX)

ISGDGRSRES— Display Global Resource Serialization Resource Exit

276 z/OS V2R2 MVS Installation Exits

2-12 Not applicable

13 Address of a 72-byte save area

14 Return address

15 Entry point address of ISGDGRSRES

Parameter List Contents: Register 1 contains the address of the exit parameter
(DSPX) that is mapped by macro ISGYDSPX. Refer to z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/) for the
mapping of the ISGYDSPX data area.

Return Specifications

The information displayed in the command output will be that from the last exit
routine to update the DSPX parameter list.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents on entry

15 0

Authorized Exits for Alternate Serialization Products

ISGNQXITPREBATCH — ISGENQ / ENQ / DEQ Batch
Preprocessing Exit

ISGNQXITPREBATCH provides the ability to reduce CPU consumption for ENQ,
DEQ, ISGENQ or RESERVE requests that need to be processed by the
ISGNQXITBATCH and ISGNQXITQUEUED1 exit points. The system calls the
ISGNQXITPREBATCH exit point once for each ENQ, DEQ, ISGENQ or RESERVE
resource with SCOPE=SYSTEM or SCOPE=SYSTEMS. If any of the
ISGNQXITPREBATCH exit routines indicate that the resource should be processed
by the ISGNQXITBATCHCND exit, then all of the resources in the current request
will be presented to the ISGNQXITBATCHCND exit. Any ENQ or RESERVE
request presented to the ISGNQXITBATCHCND exit will also be processed by the
ISGNQXITQUEUED1 exit. See ENQ/DEQ Exits Installation in z/OS MVS Planning:
Global Resource Serialization for the installation flow through ENQ/DEQ exits.

The ISGNQXITPREBATCH exit point also provides the ability to control future
calls to this exit point. If the set of ISGNQXITPREBATCH exit routines indicates
that this exit should no longer be called for a particular resource QNAME and
scope, an entry for that QNAME is added to the GRS Exit Cache. Before calling the
ISGNQXITPREBATCH exit point, GRS queries the GRS Exit Cache. If a matching
entry is found and the entry indicates to NOT call the ISGNQXITPREBATCH exit
point, this exit can be bypassed. Filtering the GRS Exit Cache is based on the
QNAME, the original scope, the final scope, the original RESERVE state, and the
final RESERVE state.

To restore processing of a resource through the ISGNQXITPREBATCH exit, the
GRS Exit Cache must be cleared. For more information, see ISGGCECR,
ClearCache call in z/OS MVS Programming: Callable Services for High-Level Languages.

ISGDGRSRES— Display Global Resource Serialization Resource Exit

Chapter 41. Global Resource Serialization Exits 277

http://www.ibm.com/systems/z/os/zos/bkserv/

This exit is invoked under the caller's unit of work on the system where the caller
is running. For global resource requests, the exit is invoked only on the system
where the request is made.

Note:

1. The ISGNQXITBATCH exit is not affected by the ISGNQXITPREBATCH exit.
2. After a call to ISGGCECR, the ISGNQXITPREBATCH exit can called again for

all resources.
3. If an error occurs in the GRS Exit Cache, the cache will be disabled and all

resources will again be processed by the ISGNQXITPREBATCH. You must do
the IPL again to restore cache processing.

Note:

Replacing the Exit Routine

Unlike RNL changes, GRS does not know how an exit alters the resource identity
of a request. Therefore, to maintain data integrity, do not make an exit change that
alters the resource identity of any outstanding or in-flight ENQ or DEQ requests.
The resource identity consists of the QNAME, RNAME, SCOPE, and hardware
reserve status. When you make exit changes, first stop the programs that are
currently using the resource, and do not resume the programs until all the exit
changes in the GRS complex have completed.

For information regarding dynamic exit routine replacement, see “Replacing a
Dynamic Exit Routine” on page 6.

Exit Routine Environment

ISGNQXITPREBATCH receives control in the following environment:
v Task mode (running under the requester's task).
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In primary ASC mode.
v In cross-memory mode with H=Caller's home address space, S=Any space, and

P=Global Resource Serialization’s address space.
v In AMODE 31 and RMODE ANY.
v With no locks held or with the local and CMSEQDQ locks held.
v An FRR is held when locks are held, otherwise an ARR is in effect.

The routine can be invoked with an FRR established that must remain in effect.
Therefore, system services or instructions that do not allow FRRs to be active or
cause FRRs to be removed cannot be used. This includes the SVC instruction.

Exit Recovery is as follows.
v If an error occurs, the ISGNQXITPREBATCH exit routine should provide its own

recovery routine.
v Exclusive use of EUT FRR recovery is the suggested recovery to be used because

it can be used in all possible entry environments. ESTAE-like recovery is a worse
performer and can be used only when locks are not held on entry. ESTAE-like
recovery can be established but it does not receive control because an EUT FRR
is established on entry.

ISGNQXITPREBATCH — ISGENQ/ ENQ / DEQ Batch Preprocessing Exit

278 z/OS V2R2 MVS Installation Exits

v If no recovery exists, or the recovery continues with termination, GRS fails the
request and continues processing. CSVDYNEX rules for the exit are used to
determine whether the exit should be removed.
The unplanned removal of an exit can result in serialization changes. Therefore,
it is important to provide recovery and to understand how CSVDYNEX
determines when to remove an abend exit. For more information about
CSVDYNEX, see z/OS MVS Programming: Authorized Assembler Services Reference
ALE-DYN.

Exit Routine Processing

The ISGNQXITPREBATCH exit routine is invoked for every ENQ, DEQ, ISGENQ
or RESERVE SCOPE=SYSTEM or SCOPE=SYSTEMS request issued for a resource.
If any exit routines are defined to the dynamic exits facility, those routines are
invoked after Resource Names List (RNL) processing.

By updating and using information in the parameter list, the exit routine indicates
whether the ISGNQXITBATCHCND exit needs to be invoked or if the
ISGNQXITPREBATCH exit will be called again for a resource.

Programming Considerations

Observe the following conventions when coding a Batch Preprocessing exit routine:
v Every exit routine must be reentrant.
v You should be aware while coding the exit routine, that because the exit is called

for every ENQ, DEQ, ISGENQ and RESERVE request, an increased path length
increases processor utilization and can degrade performance.

v Do not code the exit routine to issue the WAIT macro or call a service, such as
WTOR, that issues a WAIT.

v Do not code the exit routine to issue another ENQ, DEQ, ISGENQ or RESERVE
macro.

Entry Specifications

The system passes the NQPB parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the exit parameter list (NQPB)

2-12 Not applicable

13 Address of a 72-byte save area

14 Return address

15 Entry point address of ISGNQXITPREBATCH

Parameter List Contents: Register 1 contains the address of the exit parameter
(NQPB) that is mapped by macro ISGYNQPB. Refer to z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/) for the
mapping of the ISGYNQPB data area.

ISGNQXITPREBATCH — ISGENQ/ ENQ / DEQ Batch Preprocessing Exit

Chapter 41. Global Resource Serialization Exits 279

http://www.ibm.com/systems/z/os/zos/bkserv/

Return Specifications

The pre-batch installation exit sets the appropriate request flag in the parameter list
to indicate:
v That ISGNQXITBATCHCND should be called
v That the scope of the ENQ should be considered to be global. This indication

will be reported through ISGQUERY and ISGENQ TEST for API users to
determine the overall scope of their ENQ request.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents on entry

15 0

ISGNQXITBATCH— ISGENQ / ENQ / DEQ Batched Exit
ISGNQXITBATCHCND — ISGENQ / ENQ / DEQ Conditional
Batch Processing Exit

Both the ISGNQXITBATCH exit and the ISGNQXITBATCHCND exit can
interrogate and alter an entire ENQ, DEQ, ISGENQ, or RESERVE request. In most
cases, the ISGNQXITBATCH exit and the ISGNQXITBATCHCND exit can be used
interchangeably.

The ISGNQXITBATCH or ISGNQXITBATCHCND exit is invoked after all of the
resources in the request have been passed to the ISGNQXIT exit point, and the
RNLs have been processed for each resource in the request. Only SCOPE=SYSTEM
and SCOPE=SYSTEMS resources are passed to the ISGNQXITBATCH or
ISGNQXITBATCHCND exit; STEP requests are not passed to the
ISGNQXITBATCH or ISGNQXITBATCHCND exit. See ENQ/DEQ Exits Installation
in z/OS MVS Planning: Global Resource Serialization for the installation flow through
ENQ/DEQ exits.

The ISGNQXITBATCH and ISGNQXITBATCHCND exits can:
v Set a return code for each resource in a conditional request. For example, make

the request not happen.
v Convert a RESERVE to an ENQ.
v Set an ABEND for the request. For example, make the entire request not happen.

The parameter list passed to ISGNQXITBATCH (or ISGNQXITBATCHCND) exit is
mapped by ISGYNQBP (NQBP). See ISGYNQBP macro in z/OS MVS Data Areas in
the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/) for
more information.

An ISGNQXITBATCH (or ISGNQXITBATCHCND) exit routine can set its own
non-zero return code for each resource in the request, overriding ENQ or RESERVE
functionality, for all:
v ENQ requests that specify a RET value or an ECB value
v Conditional ISGENQ requests

ISGNQXITPREBATCH — ISGENQ/ ENQ / DEQ Batch Preprocessing Exit

280 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/

In addition, the ISGNQXITBATCH (or the ISGNQXITBATCHCND) exit routine can
optionally set its own non-zero reason code that accompanies the non-zero return
code for conditional ISGENQ requests.

For all requests (ENQ, DEQ, ISGENQ, and RESERVE), an ISGNQXITBATCH (or
ISGNQXITBATCHCND) exit routine can set a one-byte ABEND code and a
half-word reason code for the request. The one-byte ABEND code is used to
generate the ABEND code. For example, if the exit routine sets the ABEND code to
5 for an ENQ request, a X'538' ABEND will be generated by ENQ processing.

When you use the ISGNQXITBATCH and ISGNQXITBATCHCND exits, be aware
of the following notes.

Note:

1. ISGNQXITBATCH and ISGNQXITBATCHCND exits are only used to
interrogate and alter an entire ENQ, DEQ, ISGENQ, or RESERVE request. For
any other changes, you must use the ISGNQXIT exit or the ISGNQXITFAST
exit.

2. If your installation is using an OEM serialization product to replace global
resource serialization, do not specify that the exit is to be called last, either with
the LAST parameter of the SETPROG command or the POS=LAST parameter
of the CSVDYNEX macro, when installing the exit.

3. If all ENQ, DEQ, ISGENQ, and RESERVE requests need to be processed, use
the ISGNQXITBATCH exit; if only a subset of requests need to be processed,
use the combination of the ISGNQXITPREBATCH and ISGNQXITBATCHCND
exit for better performance. See “ISGNQXITPREBATCH — ISGENQ / ENQ /
DEQ Batch Preprocessing Exit” on page 277 for more information on the usage
of ISGNQXITPREBATCH and ISGNQXITBATCHCND.

4. When both the ISGNQXITBATCH and ISGNQXITBATCHCND exits are
installed, ISGNQXITBATCHCND is called second. Therefore, any actions
requested by the ISGNQXITBATCHCND exits override any requests made by
the ISGNQXITBATCH exits.

Replacing the Exit Routine

Unlike RNL changes, GRS does not know how an exit alters the resource identity
of a request. Therefore, to maintain data integrity, do not make an exit change that
alters the resource identity of any outstanding or in-flight ENQ or DEQ requests.
The resource identity consists of the QNAME, RNAME, SCOPE, and hardware
reserve status. When you make exit changes, first stop the programs that are
currently using the resource, and do not resume the programs until all the exit
changes in the GRS complex have completed.

For information regarding dynamic exit routine replacement, see “Replacing a
Dynamic Exit Routine” on page 6.

Exit Routine Environment

ISGNQXITBATCH (or ISGNQXITBATCHCND) exit receives control in the
following environment:
v Task mode (running under the requester's task).
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In primary ASC mode.

ISGNQXITBATCH and ISGNQXITBATCH exits

Chapter 41. Global Resource Serialization Exits 281

v In cross-memory mode with H=Caller's home address space, S=Any space, and
P=Global Resource Serialization’s address space.

v In AMODE 31 and RMODE ANY.
v With no locks held.
v An EUT FRR is held when the exit routine is called.

The routine can be invoked in the cross-memory mode with an EUT FRR
established that must remain in effect. Therefore, system services or instructions
that do not allow FRRs to be active or cause FRRs to be removed cannot be used.
This includes the SVC instruction.

Exit Recovery is as follows.
v If an error occurs, the ISGNQXITBATCH (or ISGNQXITBATCHCND) exit should

provide its own EUT FRR recovery routine.
v An EUT FRR recovery is the only recovery type that can be used. ESTAE-like

recovery can be established but it does not receive control because an EUT FRR
is established on entry.

v If no recovery exists, or the recovery continues with termination, GRS fails the
request and continues processing. CSVDYNEX rules for the exit are used to
determine whether the exit should be removed.
The unplanned removal of an exit can result in serialization changes. Therefore,
it is important to provide recovery and to understand how CSVDYNEX
determines when to remove an abend exit. For more information about
CSVDYNEX, see z/OS MVS Programming: Authorized Assembler Services Reference
ALE-DYN.

Exit Routine Processing

The ISGNQXITBATCH (or ISGNQXITBATCHCND) exit point allows an exit
routine to interrogate an ENQ, DEQ, ISGENQ, or RESERVE request as a single
unit, rather that on an individual resource basis, as ISGNQXIT. The exit routine is
passed a NQBP (mapped by ISGYNQBP) which contains information about the
request.

The exit routine can affect processing in the following ways:
1. Set an ABEND code for the entire request. The requestor is ABENDed with this

ABEND code, prepended to the appropriate SVC number. For example, if the
exit indicated to use ABEND code 5 on an ENQ request, the caller would get
ABENDed with a S538 ABEND code.

2. Set the return code for a conditional request. If the request specified RET=TEST,
RET=HAVE, USE, CHNG, or ISGENQ COND=YES the exit routine can prevent
normal ENQ/DEQ processing by indicating the return code to pass back to the
caller. If this return code is set, the system will do no further processing on that
resource. The list of acceptable return codes is as follows:
ENQ/RESERVE:
v RET=TEST RC=X'00',X'04',X'08',X'14',X'20'
v RET=USE RC=X'00',X'04',X'08',X'14',X'18'
v RET=CHNG RC=X'00',X'04',X'08',X'14'
v RET=HAVE RC=X'00',X'08',X'14',X'18'X'28',X'44'
v RET=ECB RC=X'00',X'08',X'14',X'18'X'28',X'44'
DEQ:
v RET=HAVE RC=X'00',X'04',X'08'

ISGNQXITBATCH and ISGNQXITBATCH exits

282 z/OS V2R2 MVS Installation Exits

ISGENQ:
v RC=4 RSN=0402,0404,0405,0406,0407,0409,040A,040B
v RC=8 RSN=0815
v RC=C RSN=0C05
v RC=10 RSN=FFyy where yy are diagnostic bits set by the exit
Failure to use an acceptable return code may result in unexpected results for
the request. Example of failure case:
On an ENQ RET=HAVE, when an exit sets a resource return code to X'20' GRS
will not process the request. Instead GRS will pass the X'20' back to the ENQ
caller. The ENQ caller will assume they have control of the resource because
the return code X'20' indicates so. But GRS did not process the request so when
the corresponding DEQ is issued for the resource, GRS will not find the
resource on its queues, and therefore issue an ABEND130.

3. If the ISGNQXITBATCH (or ISGNQXITBATCHCND) exit is driven by an
ISGENQ COND=YES request, and ISGNQXITBATCH (or
ISGNQXITBATCHCND) specifies a return AND reason code, only the lower
two bytes of the reason code will be set; the upper two bytes are reserved for
system use.

4. Convert a RESERVE to an ENQ.

Programming Considerations

Observe the following conventions when you code a Batch ENQ exit routine. If
you do not want to get control for all request instances but only for particular
requests, the combined use of the ISGNQXITPREBATCH and
ISGNQXITBATCHCND provides better performance over the ISGNQXITBATCH
exit. See “ISGNQXITPREBATCH — ISGENQ / ENQ / DEQ Batch Preprocessing
Exit” on page 277 for more information.
v Every exit routine must be reentrant.
v Because the exit is called for every ENQ, DEQ, ISGENQ, and RESERVE request,

an increased path length increases processor utilization and can degrade
performance.

v Do not code the exit routine to issue the WAIT macro or call a service, such as
WTOR, that issues a WAIT.

v Do not code the exit routine to issue another ENQ, DEQ, ISGENQ, or RESERVE
macro.

Entry Specifications

The system passes a Batch Exit parameter list (NQBP) to the exit routine. The
NQBP contains a header section describing the request and an entry (NQBPRSC)
for each resource in the request.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the exit parameter list (ISGYNQBP)

2-12 Not applicable

13 Address of a 72-byte save area

ISGNQXITBATCH and ISGNQXITBATCH exits

Chapter 41. Global Resource Serialization Exits 283

14 Return address

15 Entry point address of ISGNQXITBATCH (or ISGNQXITBATCHCND)

Parameter List Contents: Register 1 contains the address of the exit parameter
(NQBP) that is mapped by macro ISGYNQBP. Refer to z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/) for the
mapping of the ISGYNQBP data area.

Return Specifications

At the completion of ISGNQXITBATCH (or ISGNQXITBATCHCND) processing,
ISGYNQBP can indicate that an ABEND code or return code has been set, or that a
RESERVE has been converted to an ENQ.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents on entry

15 0

ISGNQXITQUEUED1 — ISGENQ / ENQ / DEQ First Queued Exit
ISGNQXITQUEUED1 is called when all the elements of an ENQ (not DEQ) request
have completed local processing or have been queued to the global processor. The
exit is called just prior to waiting (for unconditional requests that have not been
granted) or returning to the ENQ requester. ISGNQXITQUEUED1 is called for both
successful and unsuccessful cases. However it is not called at all if neither the
batch nor batch conditional exits were called. See ENQ/DEQ Exits Installation in
z/OS MVS Planning: Global Resource Serialization for the installation flow through
ENQ/DEQ exits.

The parameter list passed to ISGNQXITQUEUED1 is mapped by ISGYNQQP
(NQQP). The request data presented to ISGNQXITQUEUED1 are read only.
Information contained in NQQP includes return codes that have been set for the
local resources, the ABEND code if the request failed, and whether the request
needs to be suspended for RNL processing.

Note:

1. This exit is intended for use by OEM serialization products.
2. If your installation is using an OEM serialization product to replace global

resource serialization, you should NOT specify that any installation provided
exits are to be called first (either with the FIRST parameter of the SETPROG
command or the POS=FIRST parameter of the CSVDYNEX macro) when
installing this exit.

Replacing the Exit Routine

Unlike RNL changes, GRS does not know how an exit alters the resource identity
of a request. Therefore, to maintain data integrity, do not make an exit change that
alters the resource identity of any outstanding or in-flight ENQ or DEQ requests.
The resource identity consists of the QNAME, RNAME, SCOPE, and hardware
reserve status. When you make exit changes, first stop the programs that are

ISGNQXITBATCH and ISGNQXITBATCH exits

284 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/

currently using the resource, and do not resume the programs until all the exit
changes in the GRS complex have completed.

For information regarding dynamic exit routine replacement, see “Replacing a
Dynamic Exit Routine” on page 6.

Exit Routine Environment

ISGNQXITQUEUED1 receives control in the following environment:
v Task mode (running under the requester's task).
v Enabled for interrupts.
v Supervisor state with PSW key 0.
v Cross-memory mode with H=S=Requester's address space and P=Global

Resource Serialization's address space.
v AMODE 31 and primary ASC mode.
v With no locks held.
v An EUT FRR might be held when the exit routine is called.

The routine can be invoked in the cross-memory mode with an EUT FRR
established that must remain in effect. Therefore, system services or instructions
that do not allow FRRs to be active or cause FRRs to be removed cannot be used.
This includes the SVC instruction.

Exit Recovery is as follows.
v If an error occurs, the ISGNQXITQUEUED1 exit should provide its own EUT

FRR recovery routine.
v An EUT FRR recovery is the only recovery type that can be used. ESTAE-like

recovery can be established but it does not receive control because an EUT FRR
is established on entry.

v If no recovery exists, or the recovery continues with termination, GRS fails the
request and continues processing. CSVDYNEX rules for the exit are used to
determine whether the exit should be removed.
The unplanned removal of an exit can result in serialization changes. Therefore,
it is important to provide recovery and to understand how CSVDYNEX
determines when to remove an abend exit. For more information about
CSVDYNEX, see z/OS MVS Programming: Authorized Assembler Services Reference
ALE-DYN.

Exit Routine Processing

The ISGNQXITQUEUED1 exit point is called after the local resources in an
ENQ/RESERVE rquest have been completed and the global resources have been
queued to the global resource serialization address space for global processing.
DEQ requests are not passed to ISGNQXITQUEUED1 exit routines. The exit
routine is passed a NQQP (mapped by ISGYNQQP) which contains information
about the request. If the request is going to ABEND, the ABEND code is indicated.
An indicator is set if the request will be redriven due to a dynamic RNL change
processing. Only SCOPE=SYSTEM and SYSTEMS resources are passed to the exit
(STEP requests are not passed to the exit).

The NQQP is followed by one NQQPRSC entry for each resource in the request.
Each NQQPRSC entry indicates the result for each local ENQ resource, or the fact
that the request has been queued, for each global resource.

ISGNQXITQUEUED1 — ENQ/DEQ First Queued Exit

Chapter 41. Global Resource Serialization Exits 285

Programming Considerations

Most of the exits that are driven for a request are provided with a unique "request
token". This token allows the exits to correlate any required user information
between exit callers. For example, the Nqqp_RD_RequestToken will be the same as
the Nqxp_RequestToken if both the ISGNQXITQUEUED1 and ISGNQXITFAST
exits are driven for the same request.

Observe the following conventions when coding an ENQ/DEQ First Queued exit
routine:
v Every exit routine must be reentrant.
v You should be aware while coding the exit routine, that because the exit is called

for every ENQ and RESERVE request, an increased path length increases
processor utilization and can degrade performance.

v Do not code the exit routine to issue the WAIT macro or call a service, such as
WTOR, that issues a WAIT.

v Do not code the exit routine to issue another ENQ, RESERVE, or DEQ macro.
v The ISGNQXITQUEUED1 exit point is called for all ENQ/RESERVE requests

only when either the ISGNQXITBATCH or ISGNQXITBATCHCND exits are
called. In other words, only if a batch exit is called, the queued exit is called.

Entry Specifications

The system passes a NQQP parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the exit parameter list (ISGYNQQP)

2-12 Not applicable

13 Address of a 72-byte save area

14 Return address

15 Entry point address of ISGNQXITQUEUED1

Parameter List Contents: Register 1 contains the address of the exit parameter
(NQQP) that is mapped by macro ISGYNQQP. Refer to z/OS MVS Data Areas in
the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/) for
the mapping of the ISGYNQQP data area.

Return Specifications

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents on entry

15 0

ISGNQXITQUEUED1 — ENQ/DEQ First Queued Exit

286 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/

ISGNQXITQUEUED2 – ISGENQ / ENQ / DEQ Second Queued
Exit

ISGNQXITQUEUED2 is called when all the elements of an ENQ (not DEQ) request
have completed both local and global processing. The exit is called before waiting
(for unconditional requests that have not been granted) or returning to the ENQ
requester. This exit is called only if either the ISGNQXITBATCH or
ISGNQXITBATCHCND exits have been called previously for the same request.

See ENQ/DEQ Exits Installation in z/OS MVS Planning: Global Resource Serialization
for the installation flow through ENQ/DEQ exits.

ISGYNQQP (NQQP) maps the parameter list that is passed to
ISGNQXITQUEUED2. The request data presented to ISGNQXITQUEUED2 are read
only. The following information is contained in NQQP:
v Return codes that have been set for both local and global resources.
v The ABEND code if the request failed.
v Information about whether the request needs to be suspended for RNL

processing.

Note:

1. This exit is intended for use by OEM serialization products.
2. If your installation is using an OEM serialization product to replace global

resource serialization, do not specify that any installation-provided exits are to
be called first (either with the FIRST parameter of the SETPROG command or
with the POS=FIRST parameter of the CSVDYNEX macro) when installing this
exit.

Replacing the Exit Routine

For information about the replacement of the dynamic exit routine, see “Replacing
a Dynamic Exit Routine” on page 6.

Exit Routine Environment

ISGNQXITQUEUED2 receives control in the following environment:
v Task mode (running under the requester’s task).
v Enabled for interrupts.
v Supervisor state with PSW key 0.
v Cross-memory mode with H=S=Requester’s address space and P=Global

Resource Serialization’s address space.
v AMODE 31 and primary ASC mode.
v With no locks held.
v An EUT FRR might be held when the exit routine is called.

The routine can be invoked in the cross-memory mode with an EUT FRR
established that must remain in effect. Therefore, system services or instructions
that do not allow FRRs to be active or that cause FRRs to be removed cannot be
used. This includes the SVC instruction.

Exit Recovery is as follows.
v To recover from errors, the ISGNQXITQUEUED2 routine must provide its own

recovery routine.

ISGNQXITQUEUED1 — ENQ/DEQ First Queued Exit

Chapter 41. Global Resource Serialization Exits 287

v If no recovery exists, or the recovery terminates, GRS fails the request and
continues processing. CSVDYNEX rules for the exit are used to determine
whether the exit needs to be removed.

An unplanned removal of an exit can result in loss of the function it provides.
Ensure that you provide recovery and understand how CSVDYNEX determines
when to remove an exit that ends abnormally. For more information about
CSVDYNEX, see z/OS MVS Programming: Authorized Assembler Services Reference
ALE-DYN.

Exit Routine Processing

The ISGNQXITQUEUED2 exit point is called after all local and global resources in
an ENQ/RESERVE request have been processed. DEQ requests are not passed to
ISGNQXITQUEUED2 exit routines. The exit routine is passed by an NQQP
(mapped by ISGYNQQP) that contains information about the request. If the
request ends abnormally, an abend code is indicated. Only SCOPE=SYSTEM and
SYSTEMS resources are passed to the exit (STEP requests are not passed to the
exit).

The NQQP is followed by one NQQPRSC entry for each resource in the request.
Each NQQPRSC entry indicates the result for each local and global ENQ resource.

Programming Considerations

Most of the exits that are driven for a request are provided with a unique request
token. This token enables the exits to correlate any required user information
between exit callers. For example, the Nqqp_RD_RequestToken is the same as the
Nqxp_RequestToken if both the ISGNQXITQUEUED2 and ISGNQXITFAST exits
are driven for the same request.

Observe the following conventions when coding an ISGNQXITQUEUED2 exit
routine:
v Every exit routine must be re-entrant.
v When you are coding the exit routine, an increased path length increases

processor utilization and can degrade performance, because the exit is called for
every ENQ, RESERVE and ISGENQ OBTAIN/CHANGE request.

v Do not code the exit routine to issue another ENQ, RESERVE, DEQ or ISGENQ
macro or to call another service that might issue those macros.

v The ISGNQXITQUEUED2 exit point is called for all ENQ/RESERVE requests
only when either the ISGNQXITBATCH or ISGNQXITBATCHCND exits are
called. In other words, only if a batch exit is called, the queued exit is called.

Entry Specifications

The system passes a NQQP parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the exit parameter list (ISGYNQQP)

2-12 Not applicable

ISGNQXITQUEUED1 — ENQ/DEQ First Queued Exit

288 z/OS V2R2 MVS Installation Exits

13 Address of a 72-byte save area

14 Return address

15 Entry point address of ISGNQXITQUEUED2

The contents of the registers on entry to ISGNQXITQUEUED2 are as follows:
Access Register contents are not predictable.

Parameter List Contents: Register 1 contains the address of the exit parameter
(NQQP) that is mapped by macro ISGYNQQP. See z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/) for the
mapping of the ISGYNQQP data area.

Return Specifications

No return information is expected.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents on entry

15 Zero

ISGENDOFLQCB — End of Local QCB Exit
ISGENDOFLQCB is called when the last requester for a LOCAL resource
(SCOPE=SYSTEM or RNL excluded SCOPE=SYSTEMS, but not SCOPE=STEP) is
DEQed. The ISGENDOFLQCB exit is also called for SCOPE=SYSTEMS resources in
a GRS=NONE environment. See ENQ/DEQ Exits Installation in z/OS MVS
Planning: Global Resource Serialization for the installation flow through ENQ/DEQ
exits.

The ISGENDOFLQCB exit point provides the ability to control future calls to this
exit point. If the set of ISGENDOFLQCB exit routines indicates that this exit no
longer needs to be called for a particular resource QNAME, an entry for that
QNAME is added to the GRS Exit Cache. Prior to calling the ISGENDOFLQCB exit
point, GRS queries the GRS Exit Cache. If a matching entry is found, and this entry
indicates to NOT call the ISGENDOFLQCB exit point, then this exit may be
bypassed. To restore processing of a resource through the ISGENDOFLQCB exit,
the GRS Exit Cache must be cleared. See, ISGGCECR, ClearCache call in z/OS MVS
Programming: Callable Services for High-Level Languages.

The parameter list passed to ISGENDOFLQCB is mapped by ISGYQCBP (QCBP).
The parameter list describes a resource for which the last requester on this system
has been DEQed.

Note:

1. This exit is intended for use by OEM serialization products.
2. If your installation is using an OEM serialization product to replace Global

Resource Serialization, you should NOT specify that the exit is to be called last
(either with the LAST parameter of the SETPROG command or the POS=LAST
parameter of the CSVDYNEX macro) when installing this exit.

ISGNQXITQUEUED1 — ENQ/DEQ First Queued Exit

Chapter 41. Global Resource Serialization Exits 289

http://www.ibm.com/systems/z/os/zos/bkserv/

3. After a call to ISGGCECR, the ISGENDOFLQCB exit can be called again for all
resources.

4. If an error occurs in the GRS Exit Cache, the cache is disabled and all resources
will again be processed by the ISGENDOFLQCB exit. Re-IPL to restore cache
processing.

Replacing the Exit Routine

Unlike RNL changes, GRS does not know how an exit alters the resource identity
of a request. Therefore, to maintain data integrity, do not make an exit change that
alters the resource identity of any outstanding or in-flight ENQ or DEQ requests.
The resource identity consists of the QNAME, RNAME, SCOPE, and hardware
reserve status. When you make exit changes, first stop the programs that are
currently using the resource, and do not resume the programs until all the exit
changes in the GRS complex have completed.

For information regarding dynamic exit routine replacement, see “Replacing a
Dynamic Exit Routine” on page 6.

Exit Routine Environment

ISGENDOFLQCB receives control in the following environment:
v Task mode.
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In primary ASC mode.
v Might be invoked in the cross-memory mode.
v In AMODE 31 and RMODE ANY.
v No locks held or local and CMSEQDQ locks held.
v An EUT FRR might be held when the exit routine is called.

The routine can be invoked in the cross-memory mode with an EUT FRR
established that must remain in effect. Therefore, system services or instructions
that do not allow FRRs to be active or cause FRRs to be removed cannot be used.
This includes the SVC instruction.

Exit Recovery is as follows.
v If an error occurs, the ISGENDOFLQCB exit should provide its own EUT FRR

recovery routine.
v An EUT FRR recovery is the only recovery type that can be used. ESTAE-like

recovery can be established, but it does not receive control because an EUT FRR
might be established on entry.

v If no recovery exists, or the recovery continues with termination, GRS fails the
request and continues processing. CSVDYNEX rules for the exit are used to
determine whether the exit should be removed.
The unplanned removal of an exit can result in serialization changes. Therefore,
it is important to provide recovery and to understand how CSVDYNEX
determines when to remove an abend exit. For more information about
CSVDYNEX, see z/OS MVS Programming: Authorized Assembler Services Reference
ALE-DYN.

ISGENDOFLQCB — End of Local QCB Exit

290 z/OS V2R2 MVS Installation Exits

Exit Routine Processing

The ISGENDOFLQCB exit point is called after the last requester for a local
resource (SCOPE=SYSTEM, only) DEQs from that resource. The exit routine is
passed a QCBP (mapped by ISGYQCBP) which describes the resource that is being
deleted.

Programming Considerations

Observe the following conventions when coding an End of Local QCB exit routine:
v Every exit routine must be reentrant.
v You should be aware while coding the exit routine, that because the exit is called

for every ENQ, RESERVE, and DEQ request, an increased path length increases
processor utilization and can degrade performance.

v Do not code the exit routine to issue the WAIT macro or call a service, such as
WTOR, that issues a WAIT.

v Do not code the exit routine to issue another ENQ, RESERVE, or DEQ macro.
v Do not code the exit such that the Local or CMSEQDQ locks are freed.

Entry Specifications

The system passes an QCBP parameter list to the exit routine.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Not applicable

1 Address of the exit parameter list (ISGYQCBP)

2-12 Not applicable

13 Address of a 72-byte save area

14 Return address

15 Entry point address of ISGENDOFLQCB

Parameter List Contents: Register 1 contains the address of the exit parameter
(QCBP) that is mapped by macro ISGYQCBP. Refer to z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/) for the
mapping of the ISGYQCBP data area.

Return Specifications

The ISGENDOFLQCB installation exit sets the appropriate request flag in the
parameter list to indicate if ISGENDOFLQCB exit routine will be called again.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-14 Restored to contents on entry

15 0

ISGENDOFLQCB — End of Local QCB Exit

Chapter 41. Global Resource Serialization Exits 291

http://www.ibm.com/systems/z/os/zos/bkserv/

ISGENDOFLQCB — End of Local QCB Exit

292 z/OS V2R2 MVS Installation Exits

Chapter 42. IXC_ELEM_RESTART — Element Restart Exit

Through the IXC_ELEM_RESTART exit, your installation can modify or cancel the
automatic restart management-initiated restart of an element. Your installation may
use this exit to coordinate the restart of an element with other automation routines,
and to make decisions about how, or if, it will be restarted. Automatic restart
management (ARM) invokes this exit once for each element that is to be restarted,
on the system where it will be restarted.

Installing the Exit Routine

IXC_ELEM_RESTART must be a load module in LPA or in an APF-authorized
library in the LNKLST concatenation on all the systems in the sysplex that are, or
may be, connected to the ARM couple data set. This exit must be linkedited as
reentrant.

For general instructions on installing a dynamic exit routine, see “Link editing a
Dynamic Exit Routine into a Library” on page 6.

Exit Routine Environment

The element restart exit receives control on the system where the element is to be
restarted, in the following environment:
v Task mode
v Supervisor state with PSW key 0
v 31-bit addressing mode
v Primary ASC mode
v Enabled for interrupts
v No locks held

Exit Recovery: Your installation must provide recovery for this exit, if it is critical
for the exit to successfully complete its processing. If you do not provide recovery
and the exit ends abnormally, MVS restarts proceed without modification.

Topics for This Exit Appear as Follows:

v “Installing the Exit Routine”

v “Exit Routine Environment”

– Exit Recovery

v “Exit Routine Processing” on page 294

v “Programming Considerations” on page 294

v “Entry Specifications” on page 295

– Registers at Entry

– Parameter List Contents

v “Return Specifications” on page 295

– Registers at Exit

v “Coded Example of the Exit Routine” on page 296

© Copyright IBM Corp. 1988, 2015 293

Exit Routine Processing

MVS invokes the IXC_ELEM_RESTART exit on the system on which the element is
to be restarted, just before restarting the element. When MVS is restarting a group
of elements from a failing system in the sysplex, MVS first invokes the
IXC_WORK_RESTART exit once, so the installation can prepare the new system for
additional work, and then invokes the IXC_ELEM_RESTART exit once for each
element to be restarted.

When the exit routine receives control, MVS passes a parameter list (mapped by
the IXCYERE macro) that contains such information as the name of the element to
be restarted, the reason for the restart, and the restart method. Based on your
knowledge of the installation, the systems in its sysplex, its automation packages
and production controllers, and the elements registered with the automatic restart
manager, you can design the element restart exit to use the parameter list
information to do one of the following:
v Allow MVS to proceed without changes by setting a return code of 0.
v Select a different restart method; for example, request that MVS use a START

command instead of persistent JCL.
1. Check to see what restart methods are available in the EREFLAGS field.
2. Update the EREJCLDATASET with the name of the data set that contains the

JCL that should be used, or update ERESTARTTXT with the new START text
that should be used.

3. Indicate the change in the ERERESTARTTYPE field.
4. Set a return code of 4.

v Modify the current restart method.
1. Modify the START command text in ERESTARTTXT, or the JCL in

EREJCLDATASET, whichever is appropriate.
2. Set a return code of 4.

v Cancel the restart of the element.
1. Indicate in the ERERESTARTTYPE field that the element should not be

restarted.
2. Set a return code of 4.

Programming Considerations
v Code IXC_ELEM_RESTART to be reentrant.
v If you provide new restart text (either a JCL data set name or a started task

command), and you use any symbolic substitution parameters (such as
&SYSCLONE.), they will be resolved using the values from the system on which
the element initially registered. If you use symbolic substitution parameters,
retrieve the replication ID of the system the element initially registered on, the
system the element was previously running on, or the system the element is to
be restarted on from the EREHOMESYSTEM field, the EREFROMSYSTEM field,
or the ERETOSYSTEM field in IXCYERE.

v Do not code the IXC_ELEM_RESTART exit to perform the restart itself, because
the element might not be able to reregister. Use this exit to notify automatic
restart management that it should not restart the element. Use a separate
program to restart the element, after it has been deregistered. To indicate that
this element should not be restarted by automatic restart management, code the
following in the IXC_ELEM_RESTART exit:
– Set ERERESTARTTYPE to X'01' to indicate that automatic restart management

should not restart the element.

IXC_ELEM_RESTART — Element Restart Exit

294 z/OS V2R2 MVS Installation Exits

– Set a return code of X'4' in register 15.
From another program, use the ENFREQ macro to listen for the deregister ENF
signal for the element. Restart the element.

Entry Specifications

MVS passes to IXC_ELEM_RESTART the address of the parameter list mapped by
IXCYERE.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Does not contain any information for use by the exit

1 Address of the IXCYERE parameter list

2-12 Does not contain any information for use by the exit

13 Register save area

14 Return address

15 Entry point address of IXC_ELEM_RESTART

Parameter List Contents: Register 1 contains the address of the element restart exit
parameter list, which is mapped by the IXCYERE mapping macro. The parameter
list contains:
v The job name, element name, and element type.
v An indication of whether the element registered with the ELEMBIND=CURSYS

option.
v START command text, persistent JCL, or the data set name containing the JCL

that MVS will use to restart the element.
v An indication of how MVS will restart the element (START command, persistent

JCL, or JCL in a data set).
v The name of the system where the element will be restarted.
v The name of the system the element was running on when the failure occurred.
v An indication of whether persistent restart text is available or is not available for

this element. Persistent restart text is either the JCL or the started task command
that was used to previously start this element.

v An indication of whether the exit must supply restart text or the restart will fail
and the element will be deregistered.

The IXCYERE mapping is described in z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Return Specifications

MVS expects the exit to return a return code of 0 if no changes to the restart
method were requested, or a return code of 4 if a change to the restart method was
requested in the ERERESTARTTYPE field of IXCYERE. ERERESTARTTYPE may
also be used to indicate that the automatic restart manager should not restart an
element.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

IXC_ELEM_RESTART — Element Restart Exit

Chapter 42. IXC_ELEM_RESTART — Element Restart Exit 295

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Register
Contents

0-14 The exit does not have to place any information in these registers, and
does not have to restore their contents to what they were when the exit
received control.

15 Return code

0 No changes to the restart method

4 The automatic restart manager should change the restart method as
indicated in the IXCYERE parameter list.

Coded Example of the Exit Routine

The following is an example of an IXC_ELEM_RESTART exit.
TITLE ’ELEMEXIT - SAMPLE AUTOMATIC RESTART MANAGER ELEMENT RESTART EXIT’
START OF SPECIFICATIONS
* *
* MODULE NAME = ELEMEXIT *
* *
* DESCRIPTIVE NAME = SAMPLE AUTOMATIC RESTART MANAGER ELEMENT *
* RESTART EXIT. *
* *
* FUNCTION = THIS EXIT WILL PROHIBIT RESTARTS FOR ELEMENT *
* TERMINATIONS BUT WILL ALLOW RESTARTS FOR *
* SYSTEM TERMINATIONS. *
* *
* OPERATION = DETERMINES THE TERMINATION TYPE FROM THE *
* EVENT CODE IN THE ELEMENT RESTART EXIT *
* PARAMETER LIST. IF AN ELEMENT TERMINATION IS *
* INDICATED, THE RESTART TYPE IN THE PARAMETER *
* LIST WILL BE SET TO RESTART OF NONE AND THE *
* EXIT’S RETURN CODE WILL BE SET TO FOUR. *
* IF A SYSTEM TERMINATION IS INDICATED, THE *
* PARAMETER LIST WILL NOT BE CHANGED AND THE *
* EXIT’S RETURN CODE WILL BE SET TO ZERO. *
* *
* ENTRY POINT = ELEMEXIT *
* *
* PURPOSE = TO DETERMINE THE WAY IN WHICH AN ELEMENT *
* WILL BE RESTARTED. *
* *
* LINKAGE = BALR *

* *
* INPUT DATA = REG1 ADDRESS OF THE IXCYERE PARAMETER LIST *
* REG13 ADDRESS OF STANDARD SAVE AREA *
* REG14 RETURN ADDRESS *
* REG15 ENTRY POINT ADDRESS *
* *
* REGISTERS SAVED = REG0 - REG15 *
* *
* REGISTER USAGE = REG0 - USED FOR BASING *
* REG1 - PARAMETER REGISTER *
* REG2 - NOT USED *
* REG3 - WORK REGISTER *
* REG4 - NOT USED *
* REG5 - POINTER TO IXCYERE *
* REG6 - NOT USED *
* REG7 - NOT USED *
* REG8 - NOT USED *
* REG9 - NOT USED *
* REG10 - NOT USED *
* REG11 - NOT USED *

IXC_ELEM_RESTART — Element Restart Exit

296 z/OS V2R2 MVS Installation Exits

* REG12 - MODULE BASE REGISTER *
* REG13 - POINTER TO A STANDARD SAVE AREA *
* REG14 - RETURN POINT *
* REG15 - RETURN CODE *
* *
* REGISTERS RESTORED = REG0 - REG14 *
* *
* CONTROL BLOCKS = *
* NAME MAPPING MACRO REASON USED USAGE *
* ---- ------------- ----------- ------- *
* ERE IXCYERE EXIT PARAMETER LIST R,W *
* *
* KEY = R-READ, W-WRITE, C-CREATE, D-DELETE *
* *
* TABLES = NONE *
* *
* MACROS = NONE *
* *
* MESSAGES = NONE *
* *
* MODULE TYPE = CSECT *
* *
* ATTRIBUTES = REENTRANT, REUSABLE, AMODE 31, RMODE ANY *
* *

EJECT
ELEMEXIT CSECT
ELEMEXIT AMODE 31 31-BIT ADDRESSING MODE
ELEMEXIT RMODE ANY 31-BIT RESIDENCE

SPACE 1

* *
* REGISTER ASSIGNMENTS *
* *

REG0 EQU 0 REGISTER 0
REG1 EQU 1 REGISTER 1
REG2 EQU 2 REGISTER 2
REG3 EQU 3 REGISTER 3
REG4 EQU 4 REGISTER 4
EREPTR EQU 5 REGISTER 5 - POINTS TO ERE
REG6 EQU 6 REGISTER 6
REG7 EQU 7 REGISTER 7
REG8 EQU 8 REGISTER 8
REG9 EQU 9 REGISTER 9
REG10 EQU 10 REGISTER 10
REG11 EQU 11 REGISTER 11
REG12 EQU 12 REGISTER 12
BASEREG EQU 12 REGISTER 12 - MODULE BASE
REG13 EQU 13 REGISTER 13
REG14 EQU 14 REGISTER 14
REG15 EQU 15 REGISTER 15

EJECT

* *
* STANDARD ENTRY LINKAGE *
* *

STM REG14,REG12,12(REG13) SAVE CALLER’S REGISTERS
BALR BASEREG,REG0 ESTABLISH MODULE BASE
USING *,BASEREG ESTABLISH ADDRESSABILITY
LR EREPTR,REG1 ESTABLISH ADDRESSABILITY
USING ERE,EREPTR TO THE ERE

* *
* DETERMINE THE TERMINATION TYPE BASED ON THE INPUT *
* EVENT CODE. *

IXC_ELEM_RESTART — Element Restart Exit

Chapter 42. IXC_ELEM_RESTART — Element Restart Exit 297

* *

SPACE 1
LA REG3,EREELEMTERM
CH REG3,EREEVENTCODE ELEMENT TERMINATION?
BNE SYSTERM NO, GO TO SYSTEM TERMINATION

* *
* IF ELEMENT TERMINATION IS INDICATED, THE RESTART TYPE IN *
* THE PARAMETER LIST IS SET TO RESTART OF NONE AND THE *
* EXIT’S RETURN CODE IS SET TO FOUR. *
* *

MVI ERERESTARTTYPE,ERERESTARTNONE SET RESTART TO NONE
L REG15,FOUR SET RETURN CODE TO FOUR
B FINISHED GO TO FINISHED

* *
* IF SYSTEM TERMINATION IS INDICATED, THE PARAMETER LIST *
* IS NOT CHANGED AND THE EXIT’S RETURN CODE IS SET TO ZERO. *
* *

SYSTERM EQU *

L REG15,ZERO SET RETURN CODE TO ZERO

* *
* STANDARD EXIT LINKAGE, AND EXIT FROM THIS MODULE *
* *

FINISHED EQU *

L 14,12(REG13) RESTORE CALLER’S
LM 0,12,20(REG13) REGISTERS
BR REG14 RETURN TO CALLER
EJECT

* CONSTANTS *

DS 0F
ZERO DC F’0’ ZERO
FOUR DC F’4’ FOUR

EJECT
IXCYERE ERE
EJECT
END ELEMEXIT

IXC_ELEM_RESTART — Element Restart Exit

298 z/OS V2R2 MVS Installation Exits

Chapter 43. IXC_WORK_RESTART — Workload Restart Exit

Through the IXC_WORK_RESTART exit, your installation can prepare a system to
receive additional workload from a failing system in the sysplex. MVS invokes
IXC_WORK_RESTART one time on each system that is selected to restart work
from a failing system. MVS selects the system most capable of handling the
additional work. Because of the system's resources or unusual workload, your
installation might want to improve this system's capability. Your installation can do
so by coding the workload restart exit to perform tasks such as cancelling lower
priority work.

This exit cannot cancel or change the restart of an element. To prevent the restart
of an element, or to change how an element will be restarted, see Chapter 42,
“IXC_ELEM_RESTART — Element Restart Exit,” on page 293.

Installing the Exit Routine

IXC_WORK_RESTART must be a load module in LPA or in an APF-authorized
library in the LNKLST concatenation, on all the systems in the sysplex that are, or
may be, connected to the automatic restart management (ARM) couple data set.
This exit must be linkedited as reentrant.

For general instructions on installing a dynamic exit routine, see “Link editing a
Dynamic Exit Routine into a Library” on page 6.

Exit Routine Environment

The workload restart exit receives control on the system where the work is to be
restarted, in the following environment:
v Task mode
v Supervisor state with PSW key 0
v 31-bit addressing mode
v Primary ASC mode
v Enabled for interrupts
v No locks held

Topics for This Exit Appear as Follows:

v “Installing the Exit Routine”

v “Exit Routine Environment”

– Exit Recovery

v “Exit Routine Processing” on page 300

v “Programming Considerations” on page 300

v “Entry Specifications” on page 300

– Registers at Entry

– Parameter List Contents

v “Return Specifications” on page 301

v “Coded Example of the Exit Routine” on page 301

© Copyright IBM Corp. 1988, 2015 299

Exit Recovery: Your installation must provide recovery for this exit, if it is critical
for the exit to successfully complete its processing. If you do not provide recovery
and the exit ends abnormally, MVS restarts proceed without modification.

Exit Routine Processing

MVS invokes the IXC_WORK_RESTART exit once on each system where elements
from a failed system are to be restarted, just prior to any restarts. MVS passes to
the exit a parameter list that contains information about the failing system and the
elements to be restarted. Design this exit to use the parameter list information, and
information about this system and its current workload and resources, to cancel
lower priority work or take any other actions necessary to lessen the impact of or
prepare for additional work on this system.

You cannot use IXC_WORK_RESTART to cancel or redirect the elements to another
system. MVS expects no information on return from this exit, and so will not alter
the restarts.

Programming Considerations
v Code IXC_WORK_RESTART to be reentrant.
v Because MVS expects no information on return from the exit, you might want to

code the exit to issue a message to indicate successful or unsuccessful
processing. You might also code it to issue messages to report whatever actions
the exit has taken to prepare the system for the restarts.

Entry Specifications

MVS passes to IXC_WORK_RESTART the address of the parameter list mapped by
IXCYWRE.

Registers at Entry: The contents of the registers on entry to the exit are as follows.

Register
Contents

0 Does not contain any information for use by the exit

1 Address of the IXCYWRE parameter list

2-12 Does not contain any information for use by the exit

13 Register save area

14 Return address

15 Entry point address of IXC_WORK_RESTART

Parameter List Contents: Register 1 contains the address of the workload restart
exit parameter list, which is mapped by the IXCYWRE mapping macro. The
parameter list contains:
v The name of the failing system.
v The number of elements that are to be restarted on this system.
v The names of the elements that are to be restarted on this system.

IXCYWRE is described in z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

IXC_WORK_RESTART — Workload Restart Exit

300 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Return Specifications

No information is expected on return to MVS.

Registers at Exit: MVS does not use any register contents returned from this exit,
so you are not required to place any specific contents in the registers.

Coded Example of the Exit Routine

The following is an example of an IXC_WORK_RESTART exit.
TITLE ’WORKLOAD - SAMPLE AUTOMATIC RESTART MANAGER WORKLOAD RESTART EXIT’
START OF SPECIFICATIONS
* *
* MODULE NAME = WORKLOAD *
* *
* DESCRIPTIVE NAME = SAMPLE AUTOMATIC RESTART MANAGER WORKLOAD *
* RESTART EXIT. *
* *
* FUNCTION = BASED ON THE NUMBER OF ELEMENTS TO BE *
* RESTARTED, THIS EXIT WILL CANCEL THE SAME *
* NUMBER OF JOBS ON THE SYSTEM. *
* *
* OPERATION = DETERMINES THE NUMBER OF ELEMENTS TO BE *
* RESTARTED FROM THE INPUT PARAMETER LIST. IF *
* THE NUMBER IS LARGER THAN 10, 10 JOBS WILL BE*
* CANCELLED. OTHERWISE, THE NUMBER OF JOBS TO *
* BE CANCELLED WILL BE THE SAME AS THE NUMBER *
* TO BE RESTARTED. *
* *
* THE JOB NAMES WILL BE OBTAINED FROM AN *
* INTERNAL LIST AND EACH WILL BE CANCELLED VIA *
* THE MGCRE MACRO. A WTO WILL BE ISSUED *
* INDICATING THAT EACH JOB IS BEING CANCELLED. *
* *
* ENTRY POINT = WORKLOAD *
* *
* PURPOSE = TO FREE RESOURCES BY CLEANING UP LOW PRIORITY*
* WORK ON THE SYSTEM PRIOR TO RESTART. *
* *
* LINKAGE = BALR *

* *
* INPUT DATA = REG1 ADDRESS OF THE IXCYWRE PARAMETER LIST *
* REG13 ADDRESS OF STANDARD SAVE AREA *
* REG14 RETURN ADDRESS *
* REG15 ENTRY POINT ADDRESS *
* *
* REGISTERS SAVED = REG0 - REG15 *
* *
* REGISTER USAGE = REG0 - PARAMETER REGISTER *
* REG1 - PARAMETER REGISTER *
* REG2 - NOT USED *
* REG3 - WORK REGISTER *
* REG4 - WORK REGISTER *
* REG5 - POINTER TO WRE *
* REG6 - WORK REGISTER *
* REG7 - WORK REGISTER *
* REG8 - WORK REGISTER *
* REG9 - RETURN REGISTER FOR SUBROUTINES *
* REG10 - NOT USED *
* REG11 - MODULE DATA REGISTER *
* REG12 - MODULE BASE REGISTER *
* REG13 - POINTER TO A STANDARD SAVE AREA *
* REG14 - RETURN POINT *
* REG15 - PARAMETER REGISTER *

IXC_WORK_RESTART — Workload Restart Exit

Chapter 43. IXC_WORK_RESTART — Workload Restart Exit 301

* *
* REGISTERS RESTORED = REG0 - REG15 *
* *
* CONTROL BLOCKS = *
* NAME MAPPING MACRO REASON USED USAGE *
* ---- ------------- ----------- ------- *
* WRE IXCYWRE EXIT PARAMETER LIST R *
* *
* KEY = R-READ, W-WRITE, C-CREATE, D-DELETE *
* *
* TABLES = JOB NAME TABLE *
* *
* MACROS = GETMAIN, FREEMAIN, MGCRE, WTO *
* *
* MESSAGES = USER001I *
* *
* MODULE TYPE = CSECT *
* *
* ATTRIBUTES = REENTRANT, REUSABLE, AMODE 31, RMODE ANY *
* *

EJECT
WORKLOAD CSECT
WORKLOAD AMODE 31 31-BIT ADDRESSING MODE
WORKLOAD RMODE ANY 31-BIT RESIDENCE

SPACE 1

* *
* REGISTER ASSIGNMENTS *
* *

REG0 EQU 0 REGISTER 0
REG1 EQU 1 REGISTER 1
REG2 EQU 2 REGISTER 2
REG3 EQU 3 REGISTER 3
REG4 EQU 4 REGISTER 4
WREPTR EQU 5 REGISTER 5 - POINTS TO WRE
REG6 EQU 6 REGISTER 6
REG7 EQU 7 REGISTER 7
REG8 EQU 8 REGISTER 8
REG9 EQU 9 REGISTER 9
REG10 EQU 10 REGISTER 10 - CURRENTLY UNUSED
DATAREG EQU 11 REGISTER 11 - DYNAMIC DATA AREA
REG12 EQU 12 REGISTER 12
BASEREG EQU 12 REGISTER 12 - MODULE BASE
REG13 EQU 13 REGISTER 13
REG14 EQU 14 REGISTER 14
REG15 EQU 15 REGISTER 15

SPACE 1

* *
* EQUATES *
* *

SPINPRVT EQU 230 SUBPOOL VALUE FOR GETMAIN

EJECT

* *
* STANDARD ENTRY LINKAGE *
* *

STM REG14,REG12,12(REG13) SAVE CALLER’S REGISTERS
BALR BASEREG,REG0 ESTABLISH MODULE BASE
USING *,BASEREG ESTABLISH ADDRESSABILITY
LR WREPTR,REG1 ESTABLISH ADDRESSABILITY
USING WRE,WREPTR TO THE WRE

IXC_WORK_RESTART — Workload Restart Exit

302 z/OS V2R2 MVS Installation Exits

* *
* OBTAIN DYNAMIC STORAGE *
* *

SPACE 1
LA REG0,DATAEND LENGTH OF DATA AREAS
GETMAIN RU,LV=(REG0),SP=SPINPRVT OBTAIN DYNAMIC STORAGE
LR DATAREG,REG1 ADDRESS RETURNED IN REG1
USING DATAAREA,DATAREG ADDRESSABILITY TO DYNAMIC X

STORAGE

* *
* DETERMINE THE NUMBER OF JOBS TO CANCEL BASED ON THE INPUT *
* NUMBER OF ELEMENTS TO BE RESTARTED. IF THE NUMBER IS *
* LARGER THAN 10, 10 WILL BE USED. *
* *

SPACE 1
LA REG3,10 MAX NUMBER OF JOBS TO CANCEL
L REG4,WRENUMBEROFELEMENTS NUMBER OF ELEMENTS TO RESTART
CR REG4,REG3 IS NUMBER GREATER THAN MAX?
BL CANCEL NO, GO TO CANCEL
LR REG4,REG3 USE THE MAX

* *
* CANCEL THE JOBS SPECIFIED IN THE INTERNAL TABLE VIA THE *
* MGCRE MACRO. ISSUE A WTO INDICATING EACH JOB THAT IS *
* CANCELLED. *
* *

CANCEL EQU *

ST REG4,JOBNUM SAVE THE NUMBER OF JOBS
LA REG3,0 SET COUNTER TO ZERO

LOOP EQU *
LR REG7,REG3 MANIPULATE COUNTER VALUE TO
M REG6,ENTRYLNG OBTAIN JOBS INDEX VALUE
LA REG6,JOBS GET ADDRESS OF JOBS TABLE
AR REG7,REG6 ADD THE DISPLACEMENT
MVC JOBNAME(8),0(REG7) STORE JOB NAME TO BE CANCELLED
BAL REG9,ISSMGCRE ISSUE CANCEL COMMAND
BAL REG9,ISSUWTO ISSUE MESSAGE USER001I
A REG3,ONE INCREMENT COUNTER BY ONE
C REG3,JOBNUM IF COUNTER IS LESS THAN NUMBER
BL LOOP OF ELEMENTS, LOOP
EJECT ,

* RETURN THE DYNAMIC STORAGE OBTAINED *

LA REG0,DATAEND LENGTH OF DATA AREAS
FREEMAIN RU,LV=(REG0),A=(DATAREG),SP=SPINPRVT X

FREE THE DYNAMIC STORAGE AREA

* *
* STANDARD EXIT LINKAGE, AND EXIT FROM THIS MODULE *
* *

FINISHED EQU *

LM REG14,REG12,12(REG13) RESTORE CALLER’S X
REGISTERS

BR REG14 RETURN TO CALLER
EJECT

* *
* PROCEDURE - ISSMGCRE *
* *
* FUNCTION - ISSUES A CANCEL COMMAND FOR A JOB *

IXC_WORK_RESTART — Workload Restart Exit

Chapter 43. IXC_WORK_RESTART — Workload Restart Exit 303

* *
* INPUT - REGISTER 11 POINTS TO THE DYNAMIC AREA WHICH CONTAINS *
* STORAGE FOR THE MGCRE PARAMETER LIST *
* *
* OUTPUT - A CANCEL COMMAND IS ISSUED VIA MGCRE *
* *
* NOTES - LIST AND EXECUTE FORMS OF MGCRE ARE REQUIRED. *
* *

SPACE 1
ISSMGCRE EQU *

LA REG7,DYNCMDR1 ADDRESS COMMAND REPLY AREA
MVI 0(REG7),BLANK BLANK FIRST MESSAGE CHARACTER
MVC 1(CMDRLENG-1,REG7),0(REG7) BLANK ENTIRE MESSAGE FIELD
MVC 0(L’CMDLNGTH,REG7),CMDLNGTH INITIALIZE COMMAND LENGTH
MVC L’CMDLNGTH(L’TXINSRT1,REG7),TXINSRT1

* MOVE CANCEL VERB TO AREA

* JOBNAME CONTAINS THE JOB NAME VALUE. ENTRYLNG *
* CONTAINS THE LENGTH OF THE JOB NAME. USE THESE FIELDS TO *
* MOVE THE JOB NAME INTO THE TEXT AREA *

LH REG8,ENTRYLNG JOB NAME LENGTH
BCTR REG8,0 DECREMENT BY 1 FOR EXECUTE
EX REG8,MOVEJOBN MOVE JOB NAME VALUE INTO TEXT
LA REG4,DYNMGCRE ADDRESS MGCRE PARAMETER LIST
MVC 0(REPLEN,REG4),REPAREA COPY MGCRE LIST TO DYNAMIC
XR REG6,REG6 CONSOLE ID VALUE OF ZERO
MGCRE TEXT=(REG7),CONSID=(REG6),MF=(E,(REG4))
BR REG9 RETURN TO CALLER

* OBJECT OF AN EXECUTE *

MOVEJOBN MVC TXINSRT2-CMDCANCL(0,REG7),JOBNAME MOVE JOB NAME
* INTO CANCEL COMMAND

EJECT

* *
* PROCEDURE - ISSUWTO *
* *
* FUNCTION - ISSUES A MESSAGE INFORMING OPERATOR THAT A JOB IS *
* BEING CANCELLED *
* *
* INPUT - NONE *
* *
* OUTPUT - MESSAGE STATING JOB CANCELLED *
* *

SPACE 1
ISSUWTO EQU *

* INITIALIZE MESSAGE TEXT FOR TEXT= PARAMETER ON WTO *

LA REG8,DYNAMTXT DYNAMIC MESSAGE AREA
MVC 0(USERLENG,REG8),USERMSG1 INITIALIZE MESSAGE TEXT
MVC USERM1VB-USERMSG1(L’USERM1VB,REG8),JOBNAME JOB NAME
MVC DYNUSERS,USERSTAT MOVE WTO STATIC AREA
SR REG0,REG0 INITIALIZE REGISTER 0 TO ZERO
WTO TEXT=(REG8),ROUTCDE=(11),DESC=(6),MF=(E,DYNUSERS)

* ISSUE THE MESSAGE
BR REG9 RETURN TO CALLER
EJECT

* *
* JOB NAME TABLE *
* *

IXC_WORK_RESTART — Workload Restart Exit

304 z/OS V2R2 MVS Installation Exits

JOBS DC CL8’JOB1 ’
DC CL8’JOB2 ’
DC CL8’JOB3 ’
DC CL8’JOB4 ’
DC CL8’JOB5 ’
DC CL8’JOB6 ’
DC CL8’JOB7 ’
DC CL8’JOB8 ’
DC CL8’JOB9 ’
DC CL8’JOB10 ’
SPACE 1

* LENGTH AND TEXT OF CANCEL COMMAND *

CMDCANCL EQU *
CMDLNGTH DC XL2’0F’ LENGTH OF CANCEL COMMAND
TXINSRT1 DC CL7’CANCEL ’ FIRST STATIC INSERT
TXI1LENG EQU *-CMDCANCL OFFSET TO TXINSRT1
TXINSRT2 DC CL8’XXXXXXXX’ PLACE JOB NAME HERE
CMDRLENG EQU *-CMDCANCL COMMAND LENGTH

EJECT ,

* *
* LIST FORM OF MGCRE MACRO (STATIC) *
* *

USERREP DS 0H
REPAREA MGCRE MF=L LIST FORM OF MACRO
REPLEN EQU *-USERREP LENGTH OF MGCRE PARAMETER LIST

* *
* LIST FORM OF WTO MACRO (STATIC) *
* *

USERSTAT DS 0H

WTO TEXT=USERMSG1,ROUTCDE=(11),DESC=(6),MF=L
CNCLMSGL EQU *-USERSTAT LENGTH OF PARAMETER LIST

SPACE 1

* CONSTANTS *

DS 0F
ENTRYLNG DC F’8’ LENGTH OF JOB NAME TABLE ENTRY
ONE DC F’1’ ONE
BLANK EQU X’40’ BLANK CHARACTER

SPACE 1

* LAYOUT OF MESSAGE TEXT FOR USER001I *

USERMSG1 DS 0H
USERM1LN DC XL2’1C’ LENGTH OF MESSAGE (IN HEX)
USERM1S1 DC C’USER001I CANCELLING ’ FIRST STATIC FIELD
USERM1VB DC CL8’ ’ JOB NAME
USERLENG EQU *-USERMSG1 LENGTH OF AREA FOR GETMAIN

EJECT

* *
* STORAGE DEFINITIONS *
* *

DATAAREA DSECT

DS 0F
JOBNUM DS F
JOBNAME DS CL8
DYNMGCRE DS CL(REPLEN) DYNAMIC MGCRE AREA
DYNAMTXT DS CL(USERLENG) DYNAMIC MESSAGE TEXT AREA
DYNUSERS DS CL(CNCLMSGL) WTO MACRO AREA

IXC_WORK_RESTART — Workload Restart Exit

Chapter 43. IXC_WORK_RESTART — Workload Restart Exit 305

DYNUMSG1 DS CL(USERLENG) DYNAMIC USER001I MESSAGE
DYNCMDR1 DS CL(CMDRLENG) DYNAMIC COMMAND REPLY AREA

DS 0H
ORG

DATAEND EQU *-DATAAREA
EJECT
IXCYWRE WRE
EJECT
END WORKLOAD

IXC_WORK_RESTART — Workload Restart Exit

306 z/OS V2R2 MVS Installation Exits

Chapter 44. Log Stream Subsystem Exit (IXGSEXIT, For
Example)

A specifically-named exit routine is given control for the log stream subsystem exit
routine. The exit routine name is provided by the log stream owner, which is
identified by the SUBSYS specification on a JCL DD statement or through
equivalent dynamic allocation (DYNALLOC) text units, that is, when keys 005F
(DALSSNM) and 0060 (DALSSPRM) are provided (see mapping macro IEFZB4D2).
If no name is identified on the SUBSYS specification, the logger default exit routine
name IXGSEXIT is used.

If the log stream owner has special processing considerations, the log stream
subsystem exit routine must be modified. For example, z/OS components logrec
and SMF each provide an exit routine for access to log blocks from their respective
log streams. The exit routine name for logrec is IFBSEXIT and for SMF is
IFASEXIT. Another example is the CICS® exit routine named DFHLGCNV that is
used when running the the CICS DFHJUP utility program, which is a batch
program used to access CICS log stream data.

Note: The log stream subsystem exit routine can support applications that use
QSAM and BSAM (GET and READ) requests in a sequential fashion. The exit
routine cannot support applications that attempt to use other access method
services when processing the records maintained in a log stream. If other access
method services are required by the application or if the application does not
intend to obtain records in a sequential fashion, you will need to update the
application to make use of the system logger services. QSAM and BSAM support
record sizes up to approximately 32 KB. A log stream log block can have record
lengths of up to 64K-4. If log blocks (no blocking) or individual records are written
with a size greater than what the access methods allow, then applications using the
LOGR subsystem will not be able to obtain entire records.

The log stream subsystem exit routine receives control at six different points in the
processing of an application's JCL DD statement that has the
SUBSYS=(LOGR,exit_routine_name,...) specification. Each point causes the exit
routine to be invoked when the DD with the SUBSYS specification is encountered,
with the exception of the GET request. The exit routine receives control during

Topics for This Exit Routine Appear as Follows:

v “Installing the Exit Routine” on page 308

v “Exit Routine Environment” on page 309

– Linkage Conventions

– Exit Recovery

v “Exit Routine Processing” on page 310

v “Programming Considerations” on page 313

v “Entry Specifications” on page 315

– Registers at Entry

v “Return Specifications” on page 316

– Registers at Exit

© Copyright IBM Corp. 1988, 2015 307

|
|
|
|
|
|
|

|

|

|

|

|
|

|

|

GET processing once per GET request from the requesting application. The exit
routine can also receive control at five of the six same different points of
processing for an application's dynamic allocation request that contains the
equivalent text units. The converter exit point call is not made to the exit routine
for dynamic allocation requests.

You can use the log stream subsystem exit routine to:
v At the converter exit point:

– Validate the JCL parameters on the DD's SUBSYS keyword.
– Cause system-type messages to be issued to the job's log.
– Cause the job to end processing because of a JCL error.

v At the allocation exit point:
– Validate the parameters on the DD's SUBSYS keyword or on the

corresponding dynamic allocation text units.
– Cause system-type messages to be issued to the job's log.
– Cause the job to end processing because of a JCL error, or, cause a dynamic

allocation request to fail because of a text unit error.
– Establish data areas or obtain resources that will be persistent throughout the

other exit points.
v At the open exit point:

– Connect to the system logger log stream.
– Start the log stream browse session.

v At the get exit point:
– Return a record to the requesting application.

v At the close exit point:
– End the log stream browse session.
– Disconnect from the system logger log stream.

v At the unallocation exit point:
– Cause unneeded log blocks to be deleted from the log stream.
– Disconnect from the system logger log stream.
– Return data areas or resources that were obtained in prior exit event calls.

Installing the Exit Routine

The log stream subsystem exit routine must be linkedited in its own load module
into SYS1.LINKLIB or any APF-authorized library in the LNKLST concatenation.
To activate the exit routine, refresh LLA through the MODIFY LLA,REFRESH
command. Do not give the exit routine APF authority. In other words, do not
specify the binder option AC(1). That option is only for programs that are designed
to run as job step tasks.

The name of the exit routine is determined by the log stream owner and must
match the value in the second positional parameter of the
SUBSYS=(LOGR,exit_routine_name,...) DD JCL specification for applications that
intend to access records from the owner's log stream. The name of the exit routine
must also match its load module and entry point names. It is the responsibility of
the log stream owner to provide the exit routine name to applications that will use
the exit routine. If an exit routine name is not specified on the
SUBSYS=(LOGR,exit_routine_name,...) statement, IXGSEXIT is used as a default
exit routine name.

Log Stream Subsystem Exit (IXGSEXIT, For Example)

308 z/OS V2R2 MVS Installation Exits

|
|
|
|
|

|

|
|

|
|

|

|
|
|

|

|

|
|
|

Note: To use the log stream subsystem exit routine, the LOGR subsystem must be
activated. See z/OS MVS Setting Up a Sysplex for more information.

Exit Routine Environment

The log stream subsystem exit routine receives control in the following
environment:
v Task mode
v Enabled for interrupts and unlocked
v Primary ASC mode

As Table 5 shows, other environmental factors for the log stream subsystem exit
routine are based on the event that causes the routine to be invoked.

Table 5. Environmental factors for the log stream subsystem exit routine

Event Authorization AMODE Cross Memory Mode Considerations

Converter Supervisor state with
PSW key 1

31 PASN = HASN = SASN The control blocks passed to the exit
routine do not reside in the
application's address space. The
application's address space might
even be on a different processor
than where converter processing is
occurring.

Allocation Supervisor state with
PSW key 1

31 PASN = HASN = SASN The control blocks passed to the exit
routine reside in the application's
address space.

Unallocation Supervisor state with
PSW key 1

31 PASN = HASN = SASN The control blocks passed to the exit
routine reside in the application's
address space.

Open Supervisor state with
PSW key 1

31 PASN = HASN = SASN The control blocks passed to the exit
routine reside in the application's
address space.

Close Supervisor state with
PSW key 1

31 PASN = HASN = SASN The control blocks passed to the exit
routine reside in the application's
address space.

Get State and PSW key of
the application, typically
problem state and key 8

31 PASN = HASN = SASN The control blocks passed to the exit
routine reside in the application's
address space.

Linkage Conventions: The log stream subsystem exit routine is invoked using
BALR R14,R15 for each event or purpose.

Exit Recovery: The log stream subsystem exit routine should provide its own
recovery. If it does not provide a recovery routine, or if an exit routine error
percolates beyond the exit routine's recovery, the system's ESTAEX recovery
routine gets control. The ESTAEX records information in the SDWA and requests
an SDUMP.

If the exit routine abends, the system does not allow the current point to continue.
Based on the specific point, an abend in the exit routine could cause the job or
application to end. If the exit routine abends and the log stream owner provides
recovery that returns to the normal return point of the invoking routine, the LOGR
subsystem does not cause the job or application to end.

Log Stream Subsystem Exit (IXGSEXIT, For Example)

Chapter 44. Log Stream Subsystem Exit (IXGSEXIT, For Example) 309

|

|

|

|

|

|

|

|

|
|
|

|

|

|

|
|
|

Exit Routine Processing

The processing in the exit routine depends on which point caused the exit routine
to be invoked.

The exit routine is invoked with register 1 pointing to a word that contains the
address of the common parameter list (IXGSXCMP) for the exit routine. Code your
exit routine to check IXGSXCMP_EVENT for the type of call for which it was
invoked. The IXGSXCMP parameter list contains information that is common to all
of the exit calls. In addition, the IXGSXCMP_SPECIFIC_PTR field points to the
specific point's parameter list extension.

Converter Call

The log stream subsystem exit routine receives control during JCL converter
processing each time a DD statement containing a
SUBSYS=(LOGR,exit_routine_name,...) specification is encountered. The purpose of
this call is to validate the JCL parameters. It is not meant to build any control
blocks based on the JCL parameters; because this processing runs in a different
address space, possibly on a different system from the actual job processing, any
control blocks built during this call would not be accessible during later calls.

Before the log stream subsystem exit routine gets control, the LOGR subsystem
validates and checks the syntax of the SUBSYS parameters with the exception of
SUBSYS-options2. If there are any errors, an error return code is returned to the
converter. Otherwise, the log stream subsystem exit routine is invoked.

When the log stream subsystem exit routine receives control, it can also validate
the input JCL, especially the SUBSYS-options2 parameters. The SUBSYS-options2
parameters are unique to each exit routine, so the exit routine must check for
syntax errors.

If there are no errors, the job continues processing. If a parsing error occurs, the job
ends. If the system provided an error message describing the parsing error, the
message is returned so that it can be placed in the job log. If an abend occurs, the
job ends.

Allocation Call

The log stream subsystem exit routine receives control during allocation processing
each time a DD statement containing a SUBSYS=(LOGR,exit_routine_name,...)
specification is encountered. The exit routine can perform similar processing as for
the converter call (dynamic allocation does not go through converter processing).
You can set the IXGSXCMP_EXIT_TOKEN field to be used as input for the other
exit calls.

Before the log stream subsystem exit routine gets control, the LOGR subsystem
validates and checks the syntax of the SUBSYS parameters with the exception of
the SUBSYS-options2 parameters. If there are any errors it will return an error
return code to allocation. Otherwise it will invoke the log stream subsystem exit
routine.

When the log stream subsystem exit routine receives control, it can also validate
the input JCL, especially the SUBSYS-options2 parameters. The SUBSYS-options2
parameters are unique to each exit routine, so they are the exit routine's
responsibility for syntax checking.

Log Stream Subsystem Exit (IXGSEXIT, For Example)

310 z/OS V2R2 MVS Installation Exits

|

|
|

|

|

|

|

|

|

|

|

|

If there are no errors, the job continues processing. If a parsing error occurs, the job
ends. If the system provided an error message describing the parsing error, the
message is returned so that it can be placed in the job log. If an abend occurs, the
job ends.

Open Call

The log stream subsystem exit routine receives control during OPEN processing
each time a DD statement containing a SUBSYS=(LOGR,exit_routine_name,...)
specification is encountered.

When the log stream subsystem exit routine receives control, it might ensure that
the log stream can be accessed by the current job or application. When a program
issues a log stream connect using the IXGCONN macro, system logger processing
will perform the SAF authorization checking. The xstreamname to be used on the
connect can be obtained from field IXGSXCMP_LOGNAME in data area
IXGSXCMP.

After the log stream is connected, the log stream subsystem exit routine can start a
browse session. See z/OS MVS Programming: Assembler Services Guide for more
information about a browse session. The SUBSYS parameters have been processed
by the LOGR subsystem and the values have been corrected in fields in the
IXGSXCMP parameter list. If some of these keywords are not specified, defaults
were used. Logger can add new parameters on the SUBSYS-options1 set. New
parameters that are added to this set are done in a compatible manner. It is up to
the exit routine owner to provide additional support to take advantage of the new
options. For example, the VIEW= ACTIVE | ALL | INACTIVE options were newly
added as maintenance on HBB6608 and higher releases and on JBB7713.

The exit routine needs to save the log stream connect token and browse token for
use on GET exit calls to browse the log stream data. The exit routine needs to save
the browse token for use on GET exit calls.

In the IXGSXOCP parameter list, your exit routine can provide the name of the
routine to process the GET requests. It might make the exit routine's structure and
processing easier to provide a separate routine to handle the GET requests.

When the exit routine returns to the LOGR subsystem, control returns to OPEN
processing. If there are no errors, the job continues. If the request was unsuccessful,
DFSMS issues an abend for the open failure.

The system can call the subsystem exit routine for open under a task that differs
from the task that issued the open. This is due to the principle of concatenation.
Consider a case in which a user submits JCL to concatenate (logically join) multiple
data sets. Any or all of these could be logger subsystem data sets. Suppose all of
them are logger subsystem data sets. Suppose task A opens the concatenation and
task B then reads all of the records from the whole concatenation of data sets. As
far as task B is concerned, it is reading one large data set. Inside the access method
(BSAM or QSAM), when it reaches the end of the first data set, it calls close for
that data set and it calls open for the next data set. The system will call the logger
subsystem exit routines for close and open under task B, even though task A
opened the data sets. Therefore, any code in the close exit that frees storage that
was obtained by the open exit must be sharing the subpool between the tasks or
the close exit routine must know the address of the TCB that opened the data set
so it can direct the FREEMAIN to that task. This works only if the exit is running
authorized. The exit can go to the DEB (provided in the open call) to learn the

Log Stream Subsystem Exit (IXGSEXIT, For Example)

Chapter 44. Log Stream Subsystem Exit (IXGSEXIT, For Example) 311

|

|

|
|

|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

address of the TCB that issued the open from the user.

Get Call

The log stream subsystem exit routine receives control during GET processing each
time a GET request from the requesting application containing a
SUBSYS=(LOGR,exit_routine_name,...) specification is encountered. The intent of
this exit call is to allow a log stream owner the ability to return records from a log
stream as if they were being obtained from a conventional data set. This is for
QSAM or BSAM requests only.

On GET requests, the LOGR subsystem sets up the input parameter list and passes
control to the log stream subsystem exit routine. The log stream subsystem exit
routine receives control in the application's state and key (typically problem state,
key 8).

The exit routine obtains log stream blocks, deblocks and formats the logical
records, if appropriate, and returns them to the application.

After the exit routine returns, the LOGR subsystem returns control to GET
processing with a normal or error return code.

Close Call

When the application program issues a CLOSE macro for a log stream data set, the
LOGR subsystem calls the log stream subsystem exit routine for the close function.
The subsystem also calls the log stream subsystem exit routine for the close
function when the application program terminates without closing the DCB. The
task termination function of the system will call close on behalf of the application
program. Another situation where the subsystem calls the log stream subsystem
exit routine for the close function is when the reading program reaches the end of
a log stream subsystem data set in a concatenation of data sets and the subject data
set is not the last in the concatenation. In this last case, the call might happen
under a task that differs from the open function that the application program
issued.

When the log stream subsystem exit routine receives control, it might end the log
stream browse session established during the Open exit call.

When the exit routine returns to the LOGR subsystem, control returns to CLOSE
processing. If there are no errors, the job continues. If the request was unsuccessful,
DFSMS issues an abend for the close failure.

Unallocation Call

The log stream subsystem exit routine receives control during Unallocation
processing each time a DD statement containing a
SUBSYS=(LOGR,exit_routine_name,...) specification is encountered.

The exit routine might need to invoke other system logger functions prior to
disconnecting from the log stream. For example, the exit routine can invoke the
IXGDELET service to delete log stream blocks from the oldest to the block just
before a specified blockid. Optionally, all of the log stream blocks can be deleted
on the request.

Log Stream Subsystem Exit (IXGSEXIT, For Example)

312 z/OS V2R2 MVS Installation Exits

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|

The exit routine should ensure that all resources that were obtained during the
other exit calls are returned to the system. For example,
IXGCONN REQUEST=DISCONNECT,STREAMNAME=xstreamname,

STREAMTOKEN=xstreamtoken,...

The xstreamname to be used on the disconnect can be obtained from field
IXGSXCMP_LOGNAME in data area IXGSXCMP. The xstreamtoken is the value
returned on the previous log stream connect request for this DD statement.

If the exit routine used the IXGSXCMP_EXIT_TOKEN field as an anchor for
keeping persistent data across the exit calls, the storage should be returned to the
system.

If there are no errors, the job continues.

Programming Considerations

If the log stream owner does not have any special processing requirements for
handling the SUBSYS parameters and interfacing with the system logger, the
system logger default exit routine, IXGSEXIT, might be suitable to satisfy the
processing requirements.

You might not want to use IXGSEXIT. You might want to code your own exit
routine, for any number of reasons, including:
v Data read from the log stream need to be de-blocked. For example, data might

now be written to a log stream in log blocks that contains more than one record
of data per block. IXGSEXIT returns only one entire block of data to the caller
for each read request.

v Additional processing features are required. IXGSEXIT supports only the FROM,
TO, DURATION, and VIEW keywords of the LOGR subsystem. See z/OS MVS
Programming: Assembler Services Guide for more information about the LOGR
subsystem keywords.

v IXGSEXIT tries again when a system logger service returns a log stream or a
resource-temporarily-unavailable condition.

Consider the following scenario, in which you are given three options. You have an
application that writes data to one data set per system in a sysplex. Some users of
your application have written tools to read the data using QSAM/BSAM.

Suppose that you change your application to write to a single log stream instead of
to system data sets.

You now have three choices:
v Inform your users that they have to write new code and use system logger

services to read the data.
v Inform your users that they have to change their JCL and use the LOGR

subsystem with the default exit routine, IXGSEXIT.
v Write a log stream subsystem exit routine with more features than IXGSEXIT,

and inform your users to change their JCL to use the LOGR subsystem with
your exit.

If you decide to write your own log stream subsystem exit routine, code the exit
routine to be reentrant. If your exit is in the LNKLST concatenation, the system

Log Stream Subsystem Exit (IXGSEXIT, For Example)

Chapter 44. Log Stream Subsystem Exit (IXGSEXIT, For Example) 313

|

|

|

|

|

|
|

loads a new copy of the exit in each address space that invokes it and it does not
have to be reentrant. If your exit is in the LPALIST concatenation, the system loads
only one copy of the exit.
v Converter Call

The conversion of a job's JCL will take place in a different address space and
potentially on a different system image from where the application will run. The
exit routine should not attempt to keep persistent data from this invocation of
the exit routine to the other invocations of the exit routine.

v Allocation Call
The allocation invocation of the exit routine provides a mechanism for the exit
routine to obtain persistent data that can be used in the other invocations of the
exit routine.
The IXGSSCMP_EXIT_TOKEN field can be set by the log stream subsystem exit
routine during the allocation call and it will then be input to the next exit call
for this DD statement.
It is the responsibility of the exit routine to ensure that the resources it obtains
are released. If the exit routine obtains any resources that are not explicitly job
related, such as common storage, a resource manager routine may need to be
established. If an abnormal memory end occurs, close and unallocation
processing do not occur, so the exit routine will not receive control through this
exit interface.

Note: Log stream data sets can be concatenated. Some special processing by the
exit routine is needed to handle this. For example, it must recognize that the
DDname (the IXGSXAP_DDNAME field in the IXGSXAP data area) can be
blank. The system automatically goes through open and close functions for each
data set, although the application does not issue them for each data set.

v Open Call
Field IXGSSCMP_EXIT_TOKEN can be used to pass data from the Allocation
call to the Open exit routine. It can also be set as output from the Open exit
routine to pass data to the subsequent log stream subsystem exit routine
invocations.
It is the responsibility of the log stream subsystem exit routine to establish the
correct connection and references to the log stream.
It is possible that Logger will add new parameters on the SUBSYS-options1 set.
New parameters that are added to this set are done in a compatible manner. It is
up to the exit routine owner to provide additional support to take advantage of
the new options. For example, the VIEW= ACTIVE | ALL | INACTIVE options
were newly added as maintenance on HBB6608 and higher releases and on
JBB7713.
The exit routine needs to save the log stream connect token and browse token
for use on GET exit calls to browse the log stream data.
Field IXGSXOCP_IOEXIT_NAME can be updated by the exit routine to identify
the name of an exit routine to be invoked on GET requests. This allows a
separate exit routine to be invoked and operate in problem program state and
key 8 (to aid in protecting system security and integrity).
An end of file condition may be encountered via a specific return/reason code
from the IXGBRWSE API or as a result of the exit routine determining that no
data meets the input criteria. If the exit routine returns an error condition on the
Open call, then DFSMS will fail/ABEND the DD OPEN request. To avoid the
OPEN failure condition, the exit routine could indicate the end of file condition
in its persistent data area and use that indication on the first GET call. This

Log Stream Subsystem Exit (IXGSEXIT, For Example)

314 z/OS V2R2 MVS Installation Exits

|
|
|

|

|
|
|

|
|

|

|

|

|
|
|
|

allows the program that is attempting to read the log stream data to simply
receive an end of file (or end of data) condition versus an OPEN failure.

v Get Call
Any special deblocking or formatting of records from a log stream block needs
to be performed during this call.
The GET exit routine should recognize any special conditions established during
the Open call exit routine processing.

v Close Call
The application program might call the allocation function but not the open or
close functions.
The close call frees storage that the open call obtained. The close and open calls
to the exit can be made during what the reading program considers a get call.
That close call might be made under a task that differs from the task that
opened the DCB initially. Therefore, if the exit routine for close wants to free
storage that the exit routine obtained for open, the two tasks must share the
subpool or the close function must direct the FREEMAIN to the task that
handled the first open. The address of the TCB for the task that issued the open
for the first data set in the concatenation is in field DEBTCBB in the DEB. See
the DEB mapping macro IEZDEB.

v Unallocation Call
When the exit routine is invoked for unallocation, all resources that were
obtained by the exit should be returned.
It is the responsibility of the exit routine to ensure that the resources it obtains
are released. If the exit routine obtains any resources that are not explicitly job
related, such as common storage, a resource manager routine may need to be
established. If an abnormal memory end occurs, close and unallocation
processing do not occur, so the exit routine will not receive control through this
exit interface.
The application program might call the allocation function but not the open or
close functions.

Entry Specifications

The LOGR subsystem passes a standard format parameter list and linkage on entry
to the log stream subsystem exit routine.

Registers at Entry: The contents of the registers on entry to the exit routine are as
follows.

Register
Contents

0 Not applicable

1 Pointer to a full word field containing the address of the common
parameter list (IXGSXCMP) of the log stream subsystem exit routine. The
high-order bit in the full word field pointed to by register 1 is set on ('1'b)
to indicate the end of the input parameter list.

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit routine

Log Stream Subsystem Exit (IXGSEXIT, For Example)

Chapter 44. Log Stream Subsystem Exit (IXGSEXIT, For Example) 315

|
|

|
|
|
|
|
|
|
|
|

|
|

|

|

|

The contents of the registers on entry to this exit routine are: See z/OS MVS Data
Areas in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/) for the following data areas, which are used as parameter lists:
IXGSXCMP, IXGSXCNP, IXGSXAP, IXGSXOCP, IXGSXGP, IXGSXUP, IXGSXMSP,
and IXGSXTXT.

Return Specifications

The exit routine can return information in specific output fields in the parameter
list and in register 15 to indicate a return code.

Output Parameter Descriptions, Converter are as follows.

IXGSXCNP_ISSUE_MSG
Issue message indicator. The message contained in the area pointed to by
IXGSXCNP_MSG_PTR is to be issued as part of the system messages in the
job's log. The message area contains a halfword length field followed by
the message text. The length of the message text does not include the
2-byte prefix. See z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/) for data area
IXGSXMSP.

Output Parameter Descriptions, Allocation are as follows

IXGSXCMP_EXIT_TOKEN
Exit token. The value returned in this field will be provided as input to the
next exit call for this DD.

IXGSXAP_ISSUE_MSG
Issue message indicator. The message contained in the area pointed to by
IXGSXAP_MSG_PTR is to be issued as part of the system messages in the
job's log (during batch allocation). The message area contains a halfword
length field followed by the message text. The length of the message text
does not include the 2-byte prefix. See z/OS MVS Data Areas in the z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/) for
data area IXGSXMSP.

IXGSXAP_INFO_CODE
DD error information code. Passed back to allocation to identify the reason
why the allocation for the DD statement failed.

Output Parameter Descriptions, Open are as follows.

IXGSXCMP_EXIT_TOKEN
Exit token. The value returned in this field will be provided as input to the
next exit call for this DD statement.

IXGSXOCP_IOEXIT_NAME
Name of the exit routine to be invoked on GET requests. This exit routine
will be loaded into storage and called for the GET exit processing. The
field is initialized with the exit name specified as the second positional
parameter on the SUBSYS keyword.

Output Parameter Descriptions, GET are as follows.

IXGSXGP_RETURN_CODE
Return code to be passed to the issuer of the GET request. The following
values, in decimal, can be set:

Log Stream Subsystem Exit (IXGSEXIT, For Example)

316 z/OS V2R2 MVS Installation Exits

|

|

|

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

IXGSXGP_OK
0 - record is returned in the user's area.

IXGSXGP_PHYSICAL_ERROR
8 - logical error was encountered. The record was not returned in
the user's area.

IXGSXGP_SYSTEM_ERROR
24 - the exit routine had an abend or a system error and could not
process the request. Do not continue job processing. The record
was not returned in the user's area.

IXGSXGP_ERROR_CODE
Error code used to identify the reason for a non-zero value in
IXGSXGP_RETURN_CODE. The following values, in decimal, can be set:

IXGSXGP_NO_ERROR
0 - no error was encountered. The field is initialized with a zero.

IXGSXGP_END_OF_DATA
4 - end of data condition was detected. The record was not
returned in the user's area.

IXGSXGP_PERM_ERROR
8 - a permanent error condition was detected.

Output Parameter Descriptions, Close are as follows.

IXGSXCMP_EXIT_TOKEN
Exit token. The value returned in this field will be provided as input to the
next exit call for this DD statement.

Output Parameter Descriptions, Unallocation are as follows.

IXGSXCMP_EXIT_TOKEN
Exit token. No longer applicable because unallocation is the last in the
series of calls.

Registers at Exit: Upon return from the exit processing, the register contents must
be as follows.

Register
Contents

0-1 Not relevant

2-14 Restored to contents at entry

15 One of the following return codes:

Return Code
Explanation

Value of 0
Job processing is to continue. Refer to specific exit calls for details
for these messages.

Value of 4
Job processing is not to continue. Refer to specific exit calls for
details for these messages.

Value of 20
The exit routine had an abend or logical error and could not

Log Stream Subsystem Exit (IXGSEXIT, For Example)

Chapter 44. Log Stream Subsystem Exit (IXGSEXIT, For Example) 317

|

|
|

|

|

|

process the request. Job processing is not to continue. Refer to
specific exit calls for details for these messages.

Value other than 0 or 4
Treated the same as for return code 20.

Log Stream Subsystem Exit (IXGSEXIT, For Example)

318 z/OS V2R2 MVS Installation Exits

|

Chapter 45. MVS Commands Installation Exit

The MVS commands installation exit allows you to modify command processing in
a system or sysplex. Use one or more MVS commands exit routines to modify
command text or modify the MCS authority of consoles that issue commands (for
example, to allow a console to issue a command for which it is not authorized).

You can use MVS commands installation exit routines to:
v Change the text of commands
v In a sysplex, change the destination of commands by routing them to a different

system for execution
v Modify a console's MCS authority for a particular command. That is, you can

use the exit to:
– Allow the command from a console that normally would not have the MCS

authority to issue the command
– Reject the command from a console that normally would have the MCS

authority to issue the command
v Execute commands
v Suppress commands

Installing the Exit Routine

You can insert MVS commands exit routines into the control program by:
v Linkediting the routines into an APF-authorized library as part of the LNKLST

concatenation. Use 31-bit addresses in the routines and assemble them with
AMODE 31. RMODE ANY is recommended.

Topics for This Exit Appear as Follows:

v “Installing the Exit Routine”

– Replacing an MVS Commands Exit Routine Without a ReIPL

– Deactivating a Command Exit

v “Exit Routine Environment” on page 320

– Exit Recovery

v “Exit Routine Processing” on page 321

– MVS Commands Exit Routines in a Sysplex Environment

v “Programming Considerations” on page 322

– Communication Between the Exits

– Macro Instructions and Restrictions

– Security Consideration

v “Entry Specifications” on page 325

– Registers at Entry

– Parameter List Contents

v “Return Specifications” on page 326

– Registers at Exit

v “Coded Example of the Exit Routine” on page 326

© Copyright IBM Corp. 1988, 2015 319

v Specifying the name of each exit routine on the USEREXIT parameter of the
.CMD statement of the required MPFLSTxx member of SYS1.PARMLIB. If you
specify more than one exit routine, the routines are called in the order in which
they are specified on the .CMD statement. The name of each exit routine can be
from 1 to 8 alphanumeric characters.

v Activating the MPFLSTxx member with SET MPF=xx

For more information on how to specify MVS commands exit routines in the
MPFLSTxx member of SYS1.PARMLIB, see z/OS MVS Initialization and Tuning
Reference.

Replacing an MVS Commands Exit Routine Without a ReIPL: There may be
times when you need to replace a commands exit routine, either because you want
to add functions to the routine or because the routine abended when it was
processing a particular command.

If you want to replace a commands exit routine with a fresh copy, you must do the
following:
v Linkedit the new copy of the routine into SYS1.LINKLIB
v Refresh LLA with the MODIFY LLA,REFRESH command
v Reactivate the exit routine using the SET MPF=xx command

Deactivating a Command Exit: There are times when you might want to
deactivate a command exit routine, perhaps because its function is not required at
particular times or because you want to modify the routine. You can deactivate a
command exit routine in one of two ways:
v Specify, on the .CMD statement of the required MPFLSTxx member, the name of

a command exit that does not exist in SYS1.LINKLIB, such as
'USEREXIT(NONE)'. Enter the SET MPF=xx command to refresh the MPFLSTxx
member.
This action effectively deactivates any command exits that were enabled during
the prior MPFLSTxx activation. The system issues an informational message that
can be ignored in this case.

v Enter the SET MPF=NO command to disable all active MPFLSTxx members.
Remove the exit name from the .CMD statement of the appropriate MPFLSTxx
member and enter the SET MPF=xx command to resume MPF processing.
Attention: Entering the SET MPF=NO command deactivates all
installation-specified MPF options. IBM-supplied defaults are used until the
installation reactivates its MPFLSTxx members.

Exit Routine Environment

MVS commands exit routines receive control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In primary ASC mode.
v With no locks held; they must return control with no locks held.
v In AMODE 31. RMODE ANY is recommended.
v In the address space of the routine that issued the command.

Exit Recovery: The MVS commands exit routines must provide their own level of
recovery because, with one exception, the system does not continue to pass control

MVS Commands Installation Exit

320 z/OS V2R2 MVS Installation Exits

to an exit routine after it abnormally terminates. The exception is when the exit
routine is to be deleted and the installation has provided a clean-up routine that
will get control for termination calls. When the system calls the exits for deletion, a
commands exit routine can invoke the clean-up routine to release any work areas
the exits may have created.

See “Installing the Exit Routine” on page 319 for information on how to reactivate
the exit routine if it abnormally terminates.

See “Communication Between the Exits” on page 323 for more information on exit
routine work areas and clean-up routines.

Exit Routine Processing

The MVS commands exit routines get control whenever a command is issued.
Command processing invokes the exit prior to issuing the subsystem interface (SSI)
call for command processing.

The MVS commands exit routine parameter list (the CMDX) contains a command
buffer (CMDXCLIB). The buffer contains the command text, and the length of the
command text, to be processed as it was entered on the console. The exit must
place the modified command text and its new length back into this buffer before it
returns control to the calling module. The modified command text can be up to 126
bytes long.

Operator commands may contain the following characters:
v A to Z
v 0 to 9
v ' # $ & () * + , - . / ¢ < | ! ; ¬ % _ > ? : @ " =

The system translates characters that are not valid into null characters (X'00').

If you are modifying the MCS authority of the console for this command in the
exit routine, you must place the modified command authority into the
CMDXAUTH field in the CMDX. Also you must set the appropriate authority
change bits in the CMDXAFLA field in the CMDX.

The CMDX is mapped by the IEZVX101 macro (data area CMDX). See z/OS MVS
Data Areas in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/) for a description of the IEZVX101 mapping.

Changing Command Text with Exit Routines: If a command installation exit
changes the text of a command, the system does the following:
v Logs the “new” text of the command (the result of the change by the exit

routine)
v Issues message IEE295I to display both the original text and the new text.

If the command installation exit specified system symbols in the new command
text, the system does not substitute text for those system symbols. The system
symbols appear in the new command text in their original format.

To add or change a system symbol in command text and have it processed, the exit
can create a copy of the new system symbol text, and then call the ASASYMBM
service explicitly to substitute text for the system symbol.

MVS Commands Installation Exit

Chapter 45. MVS Commands Installation Exit 321

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

For more information about ASASYMBM,see z/OS MVS Programming: Assembler
Services Reference ABE-HSP.

See the section on sharing system commands in z/OS MVS System Commands for
more information about using system symbols in commands.

Considerations for System Symbols: When a command contains system symbols,
MVS provides the command text to command installation exits after it substitutes
text for the system symbols. For example, if the following command is entered to
display a console group on system SYS1:
DISPLAY CNGRP,G=(CN1GRP&SYSCLONE.)

The command installation exit receives the following text (assuming that the
default for &SYSCLONE., the last two characters of the system name, is taken):
DISPLAY CNGRP,G=(CN1GRPS1)

If a command installation exit requires the original command text (the one that
existed before symbolic substitution), the exit can do the following:
1. Access the CMDXSYMS field in the CMDX to validate that the command was

changed by symbolic substitution
2. If the command was changed by symbolic substitution, access the CMDXOLIP

field in the CMDX to obtain the address of structure CMDXOLIB, which
contains the original command text (before symbolic substitution occurred).

For a description of the IEZVX101 mapping macro, which maps the CMDX, see
z/OS MVS Data Areas in the z/OS Internet library (http://www.ibm.com/systems/
z/os/zos/bkserv/).

MVS Commands Exit Routines in a Sysplex Environment:In a sysplex, a
command can be routed from one system to another. If a .CMD statement specifies
MVS commands exit routines in an active MPFLSTxx member for a system, the
exit routines on that system are invoked. (For a description of the .CMD statement,
see z/OS MVS Initialization and Tuning Reference.) Which system executes command
exit routines depends on the following:
v If the ROUTE command is used, the MVS commands exit routines, if specified,

are invoked on both the system that issued the ROUTE command and the
system that received the routed command. However, the exit routines on the
target system do not see 'ROUTE'.

v If a command is issued with an L= parameter, and the console addressed is on a
different system, only the command exit routines on the system that issued the
command are invoked. The exit routines on the system in which the console
specified by L= is attached, are not invoked.

v If the MCS command prefix facility (CPF) is used to route a prefix command
from one system to another system, only the command exit routines on the
receiving system are invoked.

v If commands are directed to a specific system (via the CMDSYS option specified
in the CONSOLxx member of SYS1.PARMLIB), only the command exit routines
on the receiving system are invoked.

Programming Considerations

When you code an MVS commands exit routine, observe the following
conventions:

MVS Commands Installation Exit

322 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

v The MVS commands exit routines get control before the subsystem interface
(SSI) passes control to subsystems enabled for function code 10 (command
processing SSI call). For information on SSI function code 10, see z/OS MVS
Using the Subsystem Interface.

v If you specify REMOVE=YES on the CPF macro, the system removes the
command's prefix before invoking the MVS commands exit routines. If STRIP is
specified for the prefix, the prefix will be stripped before the exit gets control.

v The MVS commands exit routines must be reentrant and serially reusable. Do
not use macros with expansions that store information into an inline parameter
list.

v Do not code an exit routine that receives control for a command that the routine
issues; this causes an endless loop. The exit routine must be coded so that when
it receives control for that command, it does not issue the command again.

v If you specify command text, or a text length value, that exceeds the maximum
length allowed for that type of command, the system truncates the command.

Communication Between the Exits

Common Data Area: The MVS commands exits receive from the system the
address of a 12-byte common data area in the exit routine parameter list. The
common data area allows the exit routines to:
v Share data (in common work areas) across invocations.
v Supply the address of an installation-supplied routine that will clean up the

common work areas when the exit routines are deleted. Deleted exit routines
occur when:
– MPF terminates (via a SET MPF=NO command) or
– MPF is refreshed with a new MPFLSTxx that contains a new .CMD userexit

name. MPF is then refreshed with that member using the SET MPF=xx
command.

Sharing data: To enable your MVS commands exit routines to share data across
invocations, code one of the exit routines to:
1. Create work areas in the extended common storage area (ECSA) by issuing a

GETMAIN or STORAGE macro.
2. Place the addresses of the work areas in the second and third words of the

common data area.

Whenever they are invoked, the MVS commands exit routines can access the
common data area to obtain the addresses of the work areas. If the data required
by the exits is 8 bytes or less, you can place the data itself within the second and
third words of the common data area instead of creating work areas.

Supplying the address of a clean-up routine: You can also use the common data
area to hold the address of an installation-supplied clean-up routine that will get
control when the exits are to be deleted. The clean-up routine can perform any
processing that is usually associated with exit routine work areas (such as releasing
storage or clearing a control block). When you want to use a common data area
specified clean-up routine, do the following:
1. Code the clean-up routine.
2. Supply the address of the clean-up routine in the first word of the common

data area, which is pointed to by CMDXCWKP (the system initializes this field
to 0).

3. The clean-up routine will be invoked when:

MVS Commands Installation Exit

Chapter 45. MVS Commands Installation Exit 323

a. MPF terminates or
b. MPF is refreshed with a new MPFLSTxx that contains a new .CMD userexit

name.
4. The clean-up routine will get control via a BALR 14, 15 instruction with the

CMDXCCDA bit set to 1. Register 1 will be a pointer to an address that points
to CMDX.

Note: There is a restriction on the data that resides in the first word of a storage
pointed to by CMDXCWKP. It MUST be a valid address of your clean-up routine
or zero. During command exit termination, the SET MPF processor checks the first
word of the storage pointed to by CMDXCWKP, and if it is non-zero BALR 14, 15
is executed, where register 15 contains the first word pointed to by CMDXCWKP.
So, if the first word pointed to by CMDXCWKP is not a valid address of a
clean-up routine (it contains any non-zero value) an ABEND can be encountered.

Setting up the common data area: Normally, the first exit routine that anchors
work areas from the last 8 bytes of the common data area will also initialize the
first 4 bytes to the address of the clean-up routine, as shown in Table 6.

Table 6. Setting Up the Common Data Area

Field Description

Word 1 Address of an installation-supplied clean-up routine that the exit routine calls
when it is to be deleted

Word 2 Address of an installation-defined value (such as the address of a work area)

Word 3 Address of an installation-defined value (such as the address of a work area)

The system initializes the common data area to 0; thereafter, the common data area
contains whatever values the exit routines place in it.

The exit routines must manage serialization of the common data area.

Individual Data Area

In addition to the common data area, the MVS commands exit routines each
receive from the system the address of an individual 8-byte data area (in field
CMDXIWKP of the CMDX) whenever they are invoked. Each exit routine can use
its individual data area to:
v Pass data to itself (in a work area) across invocations
v Process the data during exit deletion

Passing data to itself: To enable an exit routine to pass data to itself across
invocations, code the exit routine to:
1. Create a work area in the ECSA by issuing a GETMAIN or STORAGE macro
2. Place the address of the work area in the individual data area.

To obtain the address of the work area, code the exit routine to access the
individual data area. As with the common data area, each individual data area is
initialized to zero by the system and subsequently contains whatever values the
exit routine places in it.

Processing during exit deletion: A command exit will be invoked once before
deletion if its individual work area is non-zero. For this final invocation, the bit

MVS Commands Installation Exit

324 z/OS V2R2 MVS Installation Exits

CMDXCIDA will be set to 1. The exit should then clean up and free any storage
pointed to from the individual work area. Exit deletion occurs when:
1. MPF terminates or
2. MPF is refreshed with a new MPFLSTxx that contains a new .CMD userexit

name.

Note: There is NO restriction on the data pointed to by CMDXIWKP. The data can
be bits or pointers to other data areas that contain data.

Each exit routine must manage serialization of its individual data area.

Macro Instructions and Restrictions

The MVS commands exit routines can issue system macros, but you should be
aware of the following restrictions:
v Do not install an exit routine that issues the WAIT macro or calls a service that

issues a WAIT. WAITs and implied WAITs can terminate console
communications.

v Do not use macros whose expansions store data into an in-line parameter list.
v Do not issue the GETMAIN or STORAGE macro for subpools that represent

space within a region (0 — 127, 240, or 250—252). Because the exit routines
execute as part of the control program, they can use subpools 229, 230, and 249.

v Do not issue the DYNALLOC macro. Requesting dynamic allocation functions
can cause an abend if your exit is processing a command that originated from a
console. To avoid the abend, create a subsystem that runs in its own address
space, and request dynamic allocation functions through that subsystem.

Security Consideration

It is the responsibility of your installation to provide any required security for an
exit routine that issues system commands. For example, the routine can issue the
RACROUTE REQUEST=VERIFYX macro to obtain the user token for a user id that
is authorized to the command and then append the security token to the MGCRE
macro parameter list. See System Authorization Facility (SAF) in the z/OS MVS
Programming: Authorized Assembler Services Guide for further information on the
security interface.

Entry Specifications

On entry, register 1 points to the address of the MVS commands exit parameter list
(CMDX).

Registers at Entry: The contents of the registers on entry to the exit are as follows:

Register
Contents

0 Not applicable

1 Address of the pointer to the CMDX

2-12 Not applicable

13 Register save area

14 Return address

15 Entry point address of the exit routine

MVS Commands Installation Exit

Chapter 45. MVS Commands Installation Exit 325

Parameter List Contents: Register 1 contains a pointer to the address of the
commands exit parameter list (CMDX). The CMDX is mapped by the IEZVX101
macro (data area CMDX). See z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/) for a description of the
IEZVX101 mapping.

Return Specifications

Registers at Exit: Upon return from the exit, the register contents must be:

Register
Contents

0-14 Restored to contents at entry

15 One of the following return codes:

Return Code
Explanation

0 Indicates that the exit routine requests that the system process the
command in the parameter list. The routine takes no action in
processing the command itself.

2 Indicates that the user is not authorized to issue the command. No
more exits are invoked for the command, and the subsystem call is
bypassed.

4 Indicates that the exit routine (or module called from the routine)
has processed the command. On return, the system takes no
further action.

8 Indicates that the exit (or module called by the exit) should process
the command but cannot at this time. The system issues message
IEE707I. No more exits are invoked, and the subsystem call is
bypassed.

Any value higher than 8 indicates an error condition.

Note: Installation-modified command text is used only when the exit routine
returns a 0 return code.

Coded Example of the Exit Routine

The following is a coded example of an MVS commands installation routine that
can be used to modify command processing:

* *
* MODULE NAME : CMDXIT *
* *
* DESCRIPTIVE NAME : SAMPLE COMMUNICATIONS TASK INSTALLATION EXIT *
* MODIFYING DISPLAY COMMANDS. *
* *
* FUNCTION : FOR DISPLAY TIME COMMANDS, *
* THIS EXIT PERMITS THE COMMAND TO BE *
* ENTERED WITHOUT THE BLANK BETWEEN THE VERB *
* AND THE PARAMETER. SPECIFICALLY *
* - DT BECOMES DISPLAY T *
* *
* OPERATION : GET THE ADDRESS OF THE COMMAND BUFFER WHICH *
* IS POINTED TO BY CMDXCLIP. *
* DETERMINE IF THE COMMAND IS ’DT’. NO *

MVS Commands Installation Exit

326 z/OS V2R2 MVS Installation Exits

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

* PROCESSING IS DONE IN THIS EXIT FOR ANY *
* OTHER COMMANDS. *
* FOR DT CHANGE THE COMMAND TO DISPLAY T. *
* *
* NOTES : FIRST 2 BYTES OF THE COMMAND BUFFER *
* CONTAINS THE LENGTH OF THE COMMAND AND *
* THE REST OF THE BUFFER CONTAINS THE COMMAND *
* IMAGE. THE BUFFER IS 128 BYTES LONG. *
* *
* ENTRY POINT : CMDXIT *
* *
* PURPOSE : ADD A BLANK BETWEEN THE DISPLAY VERB AND *
* SUBPARAMETER ’T’ TO PERMIT A SHORTER FORM *
* OF THE COMMAND. *
* *
* LINKAGE : BALR *
* *
* INPUT DATA : REG1 POINTER TO THE ADDRESS OF THE CMDX *
* : REG13 ADDRESS OF STANDARD SAVE AREA *
* : REG14 RETURN ADDRESS *
* : REG15 ENTRY POINT *
* *
* REGISTERS SAVED : REG14 - REG12 *
* *
* REGISTER USAGE : REG0 - PARAMETER REGISTER *
* REG1 - PARAMETER REGISTER *
* REG2 - WORK REGISTER *
* REG3 - WORK REGISTER *
* REG4 - WORK REGISTER *
* REG5 - CMDX *
* REG6 - COMMAND BUFFER *
* REG7 - UNUSED *
* REG8 - UNUSED *

* REG9 - UNUSED *
* REG10 - UNUSED *
* REG11 - UNUSED *
* REG12 - MODULE BASE REGISTER *
* REG13 - STANDARD SAVE AREA *
* REG14 - RETURN ADDRESS *
* REG15 - RETURN CODE ON EXIT *
* *
* REGISTERS RESTORED : REG14 - REG12 *
* *
* CONTROL BLOCKS : *
* *
* NAME MAPPING MACRO REASON USED USAGE *
* ---- ------------- ----------- ----- *
* CMDX IEZVX101 CMD INSTALLATION EXIT R,W *
* PARAMETER LIST *
* *
* KEY = R-READ, W-WRITE, C-CREATE, D-DELETE *
* *
* DATA TABLE : NONE *
* *
* DATA AREA : NONE *
* *
* EXECUTABLE MACROS : WTO *
* *
* *

CMDXIT CSECT
CMDXIT AMODE 31 31 BIT ADDRESSING MODE
CMDXIT RMODE ANY 31 BIT RESIDENCE
REG1 EQU 1
REG2 EQU 2
REG4 EQU 4
CMDXPTR EQU 5

MVS Commands Installation Exit

Chapter 45. MVS Commands Installation Exit 327

BUFFPTR EQU 6
REG12 EQU 12
REG14 EQU 14
REG15 EQU 15

EJECT ,
BAKR REG14,0 SAVE CALLER’S REGISTERS
BALR REG12,0 ESTABLISH MODULE BASE
USING *,REG12
L CMDXPTR,0(REG1) GET CMDX ADDRESS
USING CMDX,CMDXPTR ACCESS THE CMDX
L BUFFPTR,CMDXCLIP GET THE COMMAND BUFFER ADDRESS
USING CMDXCLIB,BUFFPTR ACCESS THE BUFFER
LA REG2,CMDXCMDI ACCESS START OF TEXT
CLC 0(L’DT,REG2),DT IS THIS DT
BNE EXIT NO, NO PROCESSING FOR COMMAND

* PROCESS THE DT COMMAND. *
* 1. ALTER THE TEXT IN THE COMMAND BUFFER TO D T *
* 2. INDICATE TEXT CHANGE REQUEST *

MVC CMDXCMDI(L’D_T),D_T MOVE IN D T
LA REG4,L’D_T GET NEW COMMAND LENGTH
STH REG4,CMDXCMDL STORE NEW COMMAND LENGTH
OI CMDXRFL1,CMDXRCMI REQUEST TEXT CHANGE

EXIT EQU *
XR REG15,REG15 SYSTEM TO PROCESS COMMAND
PR RETURN TO CALLER

DT DC C’DT’ SHORT FORM OF D T
D_T DC C’D T’ REAL D T

IEZVX101
END CMDXIT

MVS Commands Installation Exit

328 z/OS V2R2 MVS Installation Exits

Chapter 46. MVS Message Service (MMS) Exits

The MVS message service (MMS) enables you to translate U.S. English messages
into other languages.

If you are routing system messages to a TSO/E extended MCS console, TSO/E will
display translated messages in the primary language associated with the TSO/E
session. If MMS is active, users of extended MCS consoles on TSO/E can select
available languages for message translation and the system can display translated
messages on the user's screen. TSO/E terminal users can also receive on their
terminals translated TSO/E messages and the translated messages of any
application that directs its messages to TSO/E and uses MMS services directly or
through TSO/E services. To receive translated messages on TSO/E terminals, you
must have TSO/E Version 2.2 installed on your system.

MMS provides two installation exit points that allow you to modify MMS
processing. The MMS exits are invoked when application programs issue macros to
request the following user functions:
v Message translation
v Language query (to see if a particular language is available).

For information on MMS and MMS user functions, see z/OS MVS Programming:
Assembler Services Guide.

For information on MMS macros, see z/OS MVS Programming: Assembler Services
Reference ABE-HSP.

Topics for This Exit Appear as Follows:

v “Installing the Exit Routines” on page 330

v “Exit Routine Environment” on page 331

– Exit Recovery

v “Exit Routine Processing” on page 331

– Message Translation

– Language Query

v “Programming Considerations” on page 333

– Macro Instructions and Restrictions

v “Entry Specifications” on page 333

– Registers at Entry

– Parameter Descriptions

v “Return Specifications” on page 334

– Registers at Exit

v “Coded Examples of MMS Exit Routines” on page 335

– MMSEXIT1: Preventing Translations of a Particular Language

– MMSEXIT2: Collecting MMS Usage Statistics

© Copyright IBM Corp. 1988, 2015 329

There are two MMS exits: the MMS preprocessing exit and the MMS
postprocessing exit. The MMS preprocessing exit is invoked before MMS processes
the user function. The MMS postprocessing exit is invoked after MMS processes
the user function.

The MMS preprocessing exit can be used to:
v Replace existing translations of selected messages with other installation-defined

translations.
v Prevent translation of selected messages.
v Set a local communication word that will be passed to the MMS postprocessing

exit. Use this field to pass any information to your postprocessing exit.

The MMS postprocessing exit can be used to:
v Collect MMS usage statistics.

Installing the Exit Routines

The MMS exits must reside in an APF-authorized load library included in the
LNKLST concatenation.

Statements that identify either an MMS preprocessing exit routine, an MMS
postprocessing exit routine, or both, must be specified in the appropriate
MMSLSTxx member of SYS1.PARMLIB.

In MMSLSTxx, do the following on an EXIT statement:
v On the NUMBER keyword:

– To identify an MMS preprocessing exit, specify: (1)
– To identify an MMS postprocessing exit, specify: (2).

v Specify the module name of the exit routine on the ROUTINE parameter.

For example, to identify both an MMS preprocessing exit (MMSEXIT1) and an
MMS postprocessing exit (MMSEXIT2) in an MMSLSTxx parmlib member, specify:

EXIT NUMBER(1) ROUTINE(mmsexit1)
EXIT NUMBER(2) ROUTINE(mmsexit2)

No more than two MMS exit routines can be specified in an MMSLSTxx parmlib
member.

For more information on the MMSLSTxx parmlib member, see z/OS MVS
Initialization and Tuning Reference.

For general instructions on installing an exit routine, see “Link editing an
Installation Exit Routine into a Library” on page 3.

Replacing the Exit Routines: To replace an MMS exit routine when MMS is active,
you must either:
v Modify the MMSLSTxx parmlib member to name a different exit routine on the

ROUTINE parameter and issue the SET MMS=xx command to refresh the
parmlib member.

v Issue the SET MMS=xx command for the MMSLSTxx parmlib member that
names the required MMS exit routine.

MVS Message Service (MMS) Exits

330 z/OS V2R2 MVS Installation Exits

For more information on the SET MMS command, see z/OS MVS System
Commands.

Exit Routine Environment

The exit routines receive control in the following environment:
v Enabled for interrupts.
v In supervisor state with PSW key 0.
v In AMODE 31 and RMODE ANY.
v In the MMS address space.
v In pageable storage.
v In cross memory mode.

Exit Recovery: MMS provides a functional recovery routine (FRR) to protect the
exits.

If the MMS exit routine abends, the system will shut down MMS. The system
recovery routine will request an SDUMP that can be used by the installation to
debug the exit routine.

Exit Routine Processing

The MMS preprocessing exit routine, if one is defined, is invoked before MMS
processes the input parameter block (and its related data areas). The MMS
postprocessing exit is invoked immediately after MMS processes the input
parameter block but before the block has been copied back to the caller's address
space.

The system passes the address of the input parameter block to the exits in word 1
of the exit routine parameter list (pointed to by register 1). For message translation,
the input parameter block is a message input/output block (MIO), which is
mapped by the CNLMMIO macro. For a language query, the input parameter
block is a language query block (LQB), which is mapped by the CNLMLQB macro.
The exit routines can modify these blocks as needed.

If your installation defines MMS exits, MMS will invoke the exits for both the
message translation and language query functions. The system indicates the type
of function for which the exit has been invoked in register 0 with one of the
following codes:

Code Meaning

1 Message translation

4 Language query

Message Translation: The MMS exits are invoked each time an application invokes
MMS with a request to translate a message (register 0 is set to function code 1). If
you code MMS exit routines to modify MMS translation, you will probably modify
translations of selected messages. For the majority of MMS translations, the exit
routines will allow the translations to occur without modification (as if the exit
routines did not exist).

Allowing MMS Translations to Occur: To allow MMS translation of a message to
occur, the exit routines simply return control to the system:

MVS Message Service (MMS) Exits

Chapter 46. MVS Message Service (MMS) Exits 331

v Without resetting the default of zero that is in the exit processing indicator
(pointed to in word 3 of the parameter list)

v With a zero return code in register 15.

The installation application receives the MMS translated message text.

Modifying MMS Translations: When you want to modify MMS translations, use
the preprocessing exit routine. The MMS preprocessing exit is invoked before
MMS translates a message. The exit routine can examine the input message text
(pointed to by the MIO control block) and do one of the following:
v Replace the message with installation-preferred message text
v Prevent the message from being translated.

Using the Preprocessing Exit: To replace or prevent MMS translations of selected
messages, code the preprocessing exit routine to set the exit processing indicator to
a nonzero value and do one of the following:
v Place an installation-defined message in the message output area (also pointed

to in the MIO) and return control to the system. The installation-defined
message is returned to the application that invoked MMS.

v Return control to the system, thus preventing translation. The original, U.S.
English form of the message is returned to the application that invoked MMS.

v Set register 15 to a nonzero value and return control to MMS. The translation
request will be terminated.

The exit routine must return a zero return code in register 15. Otherwise, MMS
will terminate the translation request.

With one exception, the postprocessing exit routine (if one is defined) will be
invoked even when MMS translation is bypassed. The exception is when the
preprocessing exit routine indicates an error (by placing a value greater than 8 in a
fullword pointed to by word 4 of the exit parameter list). See “Return
Specifications” on page 334 (Using Words 4 and 5) for more information.

Using the Postprocessing Exit: The MMS postprocessing exit (if one is defined) is
invoked after MMS has translated a message, but before the message is returned to
the end user.

Like the MMS preprocessing exit routine, the MMS postprocessing exit routine can
examine the input message parameters and place installation-preferred message
text in the message output area. Because it is invoked after MMS message
translation has occurred, the MMS postprocessing exit routine cannot bypass MMS
processing. However, the postprocessing exit routine can do one of the following:
v Gather statistics
v Set the exit processing indicator to a nonzero value and return control to MMS.

The original, U.S. English form of the message is returned to the application.

Language Query: The MMS exits are invoked when MMS receives a query to
determine which languages are available for message translation (register 0 is set
to function code 4).

When invoked during a language query, an MMS exit could:
v Collect usage statistics
v Modify the list of languages to be returned to the application (in the LQB).

MVS Message Service (MMS) Exits

332 z/OS V2R2 MVS Installation Exits

Programming Considerations

Using Information in the Exit Parameter List:

v The system passes the address of the input parameter block to the exits in word
1 of the exit routine parameter list (pointed to by register 1). For message
translation, the input parameter block is a message input/output block (MIO).
For a language query, the input parameter block is a language query block
(LQB). The exit routines can modify these blocks as needed. For the mappings of
the MIO and LQB control blocks, see z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/).

v The system passes to the exit routines the address of a local communication
word in word 2 of the exit parameter list. The pre and postprocessing exit
routines can use the local communication word to share data (or the address of
data) for one user invocation of MMS.

v The system provides the address of the exit processing indicator in word 3 of
the exit parameter list. An MMS exit routine can cause MMS processing of a
particular message to be bypassed by setting the exit processing indicator to a
nonzero value. The exit processing indicator is set to 0 each time MMS invokes
the exit.

v The exit routines can indicate processing errors by placing installation-defined
return and reason codes in areas pointed to by words 4 and 5, respectively, of
the exit routine parameter list. See “Return Specifications” on page 334 (Using
Words 4 and 5) for more information.

v The system passes to the exit routines the address of a 512-byte work area in
word 6 of the exit routine parameter list. The exits can use the work area for the
current invocation of the service. Additional storage, if required, must be
obtained by the exit routines by issuing a STORAGE or branch-entry GETMAIN
macro.

Other Considerations:

v Code the exit routines to be reentrant.
v Because the exit routines run in cross memory mode, they cannot issue SVCs.
v The exit routines are invoked each time MMS processes the message translate or

language query functions. Therefore, when coding the exit routines, you should
be aware that an increased path length will increase processor use and affect
performance.

v The exit routines must follow standard linkage conventions.

Macro Instructions and Restrictions: The exit routines can only use services that
run in cross-memory mode. See z/OS MVS Programming: Assembler Services
Reference ABE-HSP for information on services that run in cross-memory mode.

Entry Specifications

MMS passes to the exit the address of the input parameter block (either an MIO or
an LQB, depending on the type of request that MMS has been called to process).

Registers at Entry: The contents of the registers on entry to the MMS exit routines
are:

Register
Contents

0 Type of MMS function the installation application requested (1 for message
translation, 4 for language query)

MVS Message Service (MMS) Exits

Chapter 46. MVS Message Service (MMS) Exits 333

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

1 Address of the exit parameter list

2-12 Undefined

13 Address of an 18-fullword register save area

14 Return address

15 Entry point address of exit

Parameter Descriptions: Register 1 points to the following list of addresses:

Word 1
The address of an MIO or LQB control block.
v When the exit is invoked for the message translation function, this field

will point to the address of an MIO (mapped by macro CNLMMIO).
v When the exit is invoked for the language query function, this field will

point to the address of an LQB (mapped by macro CNLMLQB).

Word 2
The address of a local communication word.

Word 3
The address of the exit processing indicator. The indicator is set to 0 by
default.

Word 4
The address of an optional, installation-defined return code.

Word 5
The address of an optional, installation-defined reason code.

Word 6
The address of a 512-byte storage area (starting on a double-word
boundary) that the exit routines can use for the current invocation of MMS.

Return Specifications

The exit routines return control to the system with:
v A value in the exit processing indicator, pointed to by Word 3 of the exit

parameter list.
v Optional, installation-defined return and reason codes, pointed to by words 4

and 5 of the exit parameter list.
v A return code in register 15.

Preprocessing Exit Routine: The exit routine indicates whether to bypass the
requested MMS function by setting the exit processing indicator to a nonzero
value. If the exit processing indicator is not set, the system will process the
function.

Using Words 4 and 5: The preprocessing exit routine can return optional,
installation-defined return and reason codes in areas pointed to by words 4 and 5,
respectively, of the exit parameter list. When the exit routine sets the exit
processing indicator to a nonzero value, the system checks the value in the area
pointed to by word 4. The exit routine can indicate that it has encountered a
serious error by setting the field pointed to by word 4 to a value greater than 8.
When this happens, MMS terminates the user request. Otherwise, if the field
pointed to by word 4 is set to a value of 8 or less, or the exit routine does not set

MVS Message Service (MMS) Exits

334 z/OS V2R2 MVS Installation Exits

the exit processing indicator, MMS continues processing and the fields pointed to
by words 4 and 5 are passed as information to the MMS postprocessing exit
routine (if one is defined).

Postprocessing Exit Routine: Like the preprocessing exit routine, the
postprocessing exit routine can cause MMS processing to be bypassed by setting
the exit processing indicator to a nonzero value and returning control to the system
with a zero return code in register 15. However, any values the exit routine places
in the fields pointed to by words 4 and 5 of the exit parameter list are not used by
the system.

Registers at Exit: Upon return from exit routine processing, the register contents
must be:

Register
Contents

0,1 Undefined

2-14 Restored to contents at entry

15 One of the following return codes:

Return Code
Explanation

0 The exit routine has completed processing.

nonzero
The exit routine has encountered an error. MMS will terminate the
user request.

Coded Examples of MMS Exit Routines

This topic contains the following sample MMS exit routines:
v MMSEXIT1. This MMS preprocessing exit routine prevents translation of a

particular language.
v MMSEXIT2. This MMS postprocessing exit routine collects MMS usage statistics.

MMSEXIT1 -- Preventing Translations of a Particular Language: In the following
example, an installation uses the MMS preprocessing exit routine to prevent MMS
from translating messages into Japanese.

The installation places the language code of the language for which translations are
to be suppressed (in this case, JPN is the language code) into the CVTUSER field
of the CVT so that the exit routine can access it.

When the installation's exit routine is invoked for a translation request, the routine
compares the language code in the CVTUSER field with the language code
contained in the MIO. When the request is for Japanese translation (MIO contains
'JPN'), the exit routine causes MMS translation to be bypassed by setting the exit
processing indicator (pointed to by word 3 of the exit parameter list) to a nonzero
value and returning control.
MMSEXIT1 CSECT
MMSEXIT1 AMODE 31
MMSEXIT1 RMODE ANY

STM 14,12,12(13)
BALR 12,0
USING *,12

MVS Message Service (MMS) Exits

Chapter 46. MVS Message Service (MMS) Exits 335

*** *
*** FOR A TRANSLATION REQUEST, THIS EXIT WILL COMPARE THE *
*** LANGUAGE CODE CONTAINED IN THE CVTUSER FIELD OF THE CVT *
*** WITH THAT CONTAINED IN THE MIO FOR THIS REQUEST. THIS EXIT *
*** ASSUMES THE INSTALLATION HAS UPDATED THE CVTUSER FIELD TO *
*** CONTAIN THE DESIRED THREE CHARACTER LANGUAGE CODE. IF THE *
*** LANGUAGE CODE CONTAINED IN THE CVTUSER FIELD MATCHES THE *
*** CODE IN THE MIO, THE TRANSLATION REQUEST WILL BE *
*** TERMINATED BY SETTING THE EXIT PROCESSING INDICATOR *
*** TO A NON-ZERO VALUE. *
*** *
*** *

*

C R0,ONE TRANSLATION REQUEST?
BNE END NO, END PROCESSING
L R3,0(,R1) OBTAIN MIO ADDRESS
L R2,16(0,R0) OBTAIN CVT ADDRESS
CLC CVTUSER-CVT(3,R2),MIOLANG-MIO(R3) COMPARE LANG. CODES
BNE END EXIT IF NOT EQUAL
L R3,8(,R1) OBTAIN PROCESSING C

INDICATOR ADDRESS C
MVC 0(4,R3),ONE SET PROCESS C

INDICATOR TO C
PREVENT TRANSLATION C

END DS 0H
LM 14,12,12(13)
SLR 15,15
BR 14

ONE DC F’1’
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3

DSECT
CVT DSECT=YES
CNLMMIO
END MMSEXIT1

MMSEXIT2 -- Collecting MMS Usage Statistics: In the following example, an
installation uses the MMS postprocessing exit routine to track the number of
successful and unsuccessful (successful=RC0, unsuccessful=nonzero) translations of
U.S. English into Japanese.

The installation first creates a work area to contain counters of successful and
unsuccessful translations. The routine places the address of the work area in the
CVTUSER field of the CVT so that the postprocessing exit routine can find the
work area and update the counters.

The installation can use the following MMS postprocessing exit routine to
determine whether the translation was successful. Based on the result, the routine
updates the appropriate counter in the work area (pointed to in CVTUSER).
MMSEXIT2 CSECT
MMSEXIT2 AMODE 31
MMSEXIT2 RMODE ANY

STM 14,12,12(13)
BALR 12,0
USING *,12

*** FOR A TRANSLATION REQUEST, THIS EXIT ROUTINE WILL OBTAIN *
*** THE ADDRESS OF AN INSTALLATION DEFINED CONTROL BLOCK *

MVS Message Service (MMS) Exits

336 z/OS V2R2 MVS Installation Exits

*** (POINTED TO BY THE CVTUSER FIELD OF THE CVT CONTROL BLOCK). *
*** IF THE INSTALLATION CONTROL BLOCK EXISTS, *
*** A CHECK OF THE SUCCESS OR FAILURE OF THE TRANSLATION *
*** REQUEST WILL BE MADE AND THE APPROPRIATE SUCCESS/FAILURE *
*** COUNTER IN THE INSTALLATION CONTROL BLOCK WILL BE UPDATED. *

C R0,ONE TRANSLATION REQUEST?
BNE END NO, END PROCESSING
L R2,0(,R1) OBTAIN MIO ADDRESS
CLC MIOLANG-MIO(3,R2),=C’JPN’ COMPARE LANGUAGE C

CODES
BNE END EXIT IF NOT EQUAL
L R2,0(,R0)
L R3,CVTUSER-CVT(,R2) OBTAIN INSTALLATION C

CONTROL BLOCK ANCHOR
LTR R3,R3 INSTALLATION CONTROL BLOCK C

PRESENT?
BZ END NO,END
L R4,12(,R1) OBTAIN RETURN CODE ADDRESS
L R4,0(,R4) OBTAIN RETURN CODE
LTR R4,R4 TEST RETURN CODE
BNZ FAIL
L R5,INSTLSUC-INSTLCB(R3) OBTAIN SUCCESS COUNTER
LA R5,1(,R5) BUMP COUNTER
ST R5,INSTLSUC-INSTLCB(R3) SAVE COUNTER
B END GOTO END

FAIL L R5,INSTLFAL-INSTLCB(R3) OBTAIN FAILURE COUNTER
LA R5,1(,R5) BUMP COUNTER
ST R5,INSTLFAL-INSTLCB(R3) SAVE COUNTER

END DS 0H RETURN
LM 14,12,12(13)
SLR 15,15
BR 14

ONE DC F’1’
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5

DSECT
CVT DSECT=YES
CNLMMIO

INSTLCB DSECT INSTALLATION CONTROL BLOCK
INSTLACR DS CL4’INST’ INSTALLATION CONTROL BLOCK ACRONYM
INSTLSUC DS F LANGUAGE USAGE COUNTER FOR JAPANESE C

SUCCESSFUL TRANSLATIONS
INSTLFAL DS F LANGUAGE USAGE COUNTER FOR JAPANESE C

UNSUCCESSFUL TRANSLATIONS
DS CL12 RESERVED

INSTLLEN EQU *-INSTLCB
END MMSEXIT2

MVS Message Service (MMS) Exits

Chapter 46. MVS Message Service (MMS) Exits 337

MVS Message Service (MMS) Exits

338 z/OS V2R2 MVS Installation Exits

Part 3. Installation Exit Directory

This section contains a list of installation exits that are coded into the various
components of MVS and DFP and related program products. Each installation exit
has an entry that lists its name and a short description or title that explains its use.

The installation exits listed in this section are described in other publications. The
exits are listed by the title and order number of the manual that contains the
documentation for the exit.

This directory contains entries for the following components and program
products:
v Chapter 47, “BCP Exits,” on page 341.
v Chapter 48, “DFSMS Exits,” on page 343.
v Chapter 49, “IPCS Exits,” on page 345.
v Chapter 50, “JES2 Exits,” on page 347.
v Chapter 51, “JES3 Exits,” on page 349.
v Chapter 52, “RACF Exits,” on page 351.
v Chapter 53, “RMF™ Exits,” on page 353.
v Chapter 54, “TSO/E Exits,” on page 355.
v Chapter 55, “VTAM® Exits,” on page 359.

© Copyright IBM Corp. 1988, 2015 339

340 z/OS V2R2 MVS Installation Exits

Chapter 47. BCP Exits

z/OS MVS System Management Facilities (SMF) describes the exits listed in Table 7.

Table 7. BCP Exits (USERx)

Exit Description

USER1(name) Exit routine is given control after each record is read by SMF dump
program

USER2(name) Exit routine is given control only when the dump program selects a record
to be written

USER3(name) Exit routine is given control after the output data set is closed by SMF
dump program

z/OS MVS Programming: Authorized Assembler Services Guide describes the exit listed
in Table 8.

Table 8. BCP Exit (authorized assembler)

Exit Description

IEAVTRML Allows installation to supply resource management routines

z/OS MVS Programming: JES Common Coupling Services describes the exits listed in
Table 9.

Table 9. BCP Exits (JES common coupling services)

Exit Description

IXZXIT01 Allows installation to view, modify, or reroute a message or
acknowledgement before the message arrives at the receiving member's
mailbox.

IXZXIT02 Allows installation to view or modify a message before it is retrieved from
a mailbox.

IXZXIT03 Allows installation to attach to or detach from an installation-defined JES
XCF group.

© Copyright IBM Corp. 1988, 2015 341

BCP Exits

342 z/OS V2R2 MVS Installation Exits

Chapter 48. DFSMS Exits

Table 10 lists the DFSMS installation exits, described in z/OS DFSMS Installation
Exits and z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide
for Tape Libraries.

The list in Table 10 does not include DFSMS user exits.

Table 10. DFSMS Exits

Exit Description

CBRHADUX Object access method (OAM) auto-delete

CBRUXCUA Change use attribute installation exit

CBRUXEJC Cartridge eject installation exit

CBRUXENT Cartridge entry installation exit

IDAEOVXT VSAM EOV installation exit

IEFXVNSL Automatic volume recognition (AVR) nonstandard label processing

IFG0EX0A Format-1 DSCB not found during OPEN or EOV

IFG0EX0B Take control during OPEN for a DCB

IFG01991 Open, close, end of volume abnormal conditions

IFG0193G ISO/ANSI/FIPS Version 3 label exits for volume access, file access,
label validation, and label validation suppression

IGBDCSX1
IGBDCSX2

DASD precalculation and postcalculation services

IGDACSDC Automatic class selection (ACS) data class exit

IGDACSSC Automatic class selection (ACS) storage class exit

IGDACSMC Automatic class selection (ACS) management class exit

IGG026DU Catalog pre-initialization

IGG029DM Process after DADSM SCRATCH failure

IGG029DU DADSM SCRATCH pre-initialization

IGGDASU3 DADSM SCRATCH postprocessing

IGG030DU DADSM RENAME pre-initialization

IGGDARU3 DADSM RENAME postprocessing

IGGPRE00
IGGPOST0

System provided DADSM pre-processing and post-processing exit
routines, associated with the IGGPRE00_EXIT and IGGPOST0_EXIT
dynamic exits, for allocate, extend, scratch, partial release and rename
functions.

IGXMSGEX Customize messages

NSLETRLI Nonstandard label processing for input trailers

NSLETRLO
NSLCTRLO

Nonstandard label processing for output trailers

NSLOHDRI
NSLEHDRI

Nonstandard label processing for input headers

NSLOHDRO
NSLEHDRO

Nonstandard label processing for output headers

© Copyright IBM Corp. 1988, 2015 343

Table 10. DFSMS Exits (continued)

Exit Description

NSLREPOS Volume verification using the dynamic device reconfiguration (DDR)
option for nonstandard label processing

NSLRHDRI Nonstandard label processing for restarting after a checkpoint

OMODVOL1
EMODVOL1

Volume label editor for open and EOV

DFSMS Exits

344 z/OS V2R2 MVS Installation Exits

Chapter 49. IPCS Exits

z/OS MVS IPCS Customization describes the exits listed in Table 11.

Table 11. IPCS Exits

Exit Description

ANALYZE exit Generate data for contention analysis

ASCB exit Generate information related to the address space or ASCB being
processed

BLSUGWDM
validity check
routine

Command validation routine for IPCS

Control block
formatter exit

Assist in formatting a control block

Control block
status (CBSTAT)
exit

Perform analysis and generate condensed output describing
information relevant to the debugging process

CTRACE buffer
find exit

Locate the component trace buffers in a dump for a particular
component

CTRACE
filter/analysis
(CTRF) exit

v Perform statistical analysis of the component trace

v Provide additional component trace filtering

v Limit the number of component trace entries processed

Find exit Associate a symbol with an AREA or STRUCTURE in a dump

GTFTRACE
filter/analysis
exit

v Do statistical analysis of GTF trace records

v Provide additional GTF trace record filtering

v Limit the number of GTF trace records processed

GTFTRACE
formatting
appendage

Format GTF trace records containing a particular FID and EID format
in the user range.

Model processor
formatting (MPF)
exit

Dynamically interact with the formatting service to augment its
function

Post-formatting
exit

Supply a routine for any type of structure that can be described by a
parmlib data statement

Scan exit Check the validity of an AREA or STRUCTURE in a dump

Task control
block (TCB) exit

Generate information related to the task control block (TCB) being
processed

Verb exit Format and print dump data sets created by stand-alone, SVC or
SYSMDUMP dumping services

© Copyright IBM Corp. 1988, 2015 345

IPCS Exits

346 z/OS V2R2 MVS Installation Exits

Chapter 50. JES2 Exits

z/OS JES2 Installation Exits describes the exits listed in Table 12.

Table 12. JES2 Exits

Exit Description

Exit 0 Pre-initialization

Exit 1 Print/Punch Separators

Exit 2 JOB Statement Scan

Exit 3 JOB Statement Accounting Field Scan

Exit 4 JCL and JES2 Control Statement Scan

Exit 5 JES2 Command Preprocessor

Exit 6 Converter/Interpreter Text Scan

Exit 7 JCT Read/Write (JES2)

Exit 8 Control Block Read/Write (USER)

Exit 9 Job Output Overflow

Exit 10 $WTO Screen

Exit 11 Spool Partitioning Allocation ($TRACK)

Exit 12 Spool Partitioning Allocation ($STRAK)

Exit 13 TSO/E Interactive Data Transmission Facility Screening and Notification

Exit 14 Job Queue Work Select — $QGET

Exit 15 Output Data Set/Copy Select

Exit 16 Notify

Exit 17 BSC RJE SIGNON/SIGNOFF

Exit 18 SNA RJE LOGON/LOGOFF

Exit 19 Initialization Statement

Exit 20 End of Input

Exit 21 SMF Record

Exit 22 Cancel/Status

Exit 23 FSS Job Separator Page (JSPA) Processing

Exit 24 Post-initialization

Exit 25 JCT Read (FSS)

Exit 26 Termination/Resource Release

Exit 27 PCE Attach/Detach

Exit 28 Subsystem Interface (SSI) Job Termination

Exit 29 Subsystem Interface (SSI) End-of-Memory

Exit 30 Subsystem Interface (SSI) Data Set OPEN and RESTART

Exit 31 Subsystem Interface (SSI) Allocation

Exit 32 Subsystem Interface (SSI) Job Selection

Exit 33 Subsystem Interface (SSI) Data Set CLOSE

Exit 34 Subsystem Interface (SSI) Data Set Unallocation

© Copyright IBM Corp. 1988, 2015 347

Table 12. JES2 Exits (continued)

Exit Description

Exit 35 Subsystem Interface (SSI) End-of-Task

Exit 36 Pre-security Authorization Call

Exit 37 Post-security Authorization Call

Exit 38 TSO/E Receive Data Set Disposition

Exit 39 NJE SYSOUT Reception Data Set Disposition

Exit 40 Modifying SYSOUT Characteristics

Exit 41 Modifying Output Grouping Key Selection

Exit 42 Modifying a Notify User Message

Exit 43 Transaction Program Select/Terminate/Change

Exit 44 JES2 Converter Exit (Main Task)

Exit 45 Pre-SJF Exit Request

Exit 46 Transmitting an NJE Data Area

Exit 47 Receiving an NJE Data Area

Exit 48 Subsystem Interface (SSI) SYSOUT Data Set Unallocation

Exit 49 Job Queue Work Select — QGOT

Exit 50 End of Input

Exit 51 Job Phase Change Exit ($QMOD)

Exit 52 JOB JCL Statement Scan (JES2 User Environment)

Exit 53 JOB Statement Accounting Field Scan (JES2 User Environment)

Exit 54 JCL and JES2 Control Statement Scan (JES2 User Environment)

Exit 55 NJE SYSOUT Reception Data Set Disposition

Exit 56 Modifying an NJE Data Area before Its Transmission

Exit 57 Modifying an NJE Data Area before Receiving the Rest of the NJE Job

JES2 Exits

348 z/OS V2R2 MVS Installation Exits

Chapter 51. JES3 Exits

z/OS JES3 Customization describes the exits listed in Table 13.

Table 13. JES3 Exits

Exit Description

IATUX03 Examine or modify converter/interpreter text created from JCL

IATUX04 Examine the job information from the JCL

IATUX05 Examine the step information from the JCL

IATUX06 Examine DD statement information from the JCL

IATUX07 Examine or substitute unit, type and volume serial information

IATUX08 Examine setup information

IATUX09 Examine final job status, JST and JVT

IATUX10 Generate a message

IATUX11 Inhibit printing of the LOCATE request or response

IATUX14 Job validation/restart LOCATE request or response

IATUX15 Scan an initialization statement

IATUX17 Define set of scheduler elements

IATUX18 Check input authority level for consoles

IATUX19 Examine or modify temporary OSE

IATUX20 Examine or modify data written on job header pages

IATUX21 Create and write data set headers for output data sets

IATUX22 Examine or alter the forms alignment

IATUX23 Examine or modify data written to trailer pages

IATUX24 Examine the Net-id and the devices requested

IATUX25 Examine or modify volume serial number

IATUX26 Examine MVS scheduler control blocks

IATUX27 Examine or alter the JDAB, JCT and JMR

IATUX28 Examine the accounting information as provided by the JOB statement

IATUX29 Examine the accounting information as provided by the JCT, JDAB and
JMR

IATUX30 Examine authority level for TSO/E terminal commands

IATUX32 Override the DYNALDSN initialization statement

IATUX33 JES3 control statement and JCL EXEC statement installation exit

IATUX34 JCL DD statement user exit and JCL EXEC statement installation exit

IATUX35 Validity check network commands

IATUX36 Collect accounting information

IATUX37 Modify the JES3 networking data set header

IATUX38 Change SYSOUT class for networking data sets

IATUX39 Modify the data set header for a SYSOUT data set

IATUX40 Modify job header

© Copyright IBM Corp. 1988, 2015 349

Table 13. JES3 Exits (continued)

Exit Description

IATUX41 Determines the disposition of job over JCL limit

IATUX42 TSO/E interactive data transmission facility screening and notification

IATUX43 Modify job header segments

IATUX44 Examine and modify the JCL

IATUX45 Examine and modify data sent to an output writer FSS

IATUX46 Select processors eligible for C/I processing

IATUX48 Override operator modification of output data sets

IATUX49 Override address space selected for C/I processing

IATUX50 Process user defined BSIDMOD codes for C/I processing

IATUX57 Select a single WTO routing code for JES3 MSGROUTE

IATUX58 Modify security information before JES3 security processing

IATUX59 Modify security information after JES3 security processing

IATUX60 Determine action to take when a TSO/E user is unable to receive a data
set

IATUX61 During MDS processing, chooses whether a job should be canceled or sent
to the error queue

IATUX62 Overrides the decision to accept a tape or disk mount

IATUX66 Assigns transmission priority to a SNA/NJE data stream

IATUX67 Determines action when remote data set is rejected by RACF

IATUX69 Determines if a message is to be sent to the JES3 global address space

IATUX70 Performs additional message processing

JES3 Exits

350 z/OS V2R2 MVS Installation Exits

Chapter 52. RACF Exits

z/OS Security Server RACF System Programmer's Guide describes the exits listed in
Table 14.

Table 14. RACF Exits

Exit Description

ICHCCX00 Command exit

ICHCNX00 Command exit

ICHDEX01 RACF password authentication

ICHFRX01 RACROUTE request=FASTAUTH preprocessing

ICHFRX02 RACROUTE request=FASTAUTH postprocessing

ICHPWX01 New password exit

ICHRCX01 RACROUTE request=AUTH preprocessing

ICHRCX02 RACROUTE request=AUTH postprocessing

ICHRDX01 RACROUTE request=DEFINE preprocessing

ICHRDX02 RACROUTE request=DEFINE postprocessing

ICHRIX01 RACROUTE request=VERIFY preprocessing

ICHRIX02 RACROUTE request=VERIFY postprocessing

ICHRLX01 RACROUTE request=LIST pre/postprocessings

ICHRLX02 RACROUTE request=LIST selection

ICHRSMFE RACF report writer

IRRACX01 ACEE compression/expansion

IRREVX01 Common command exit

ICHRFX03 RACROUTE request=FASTAUTH preprocessing

ICHRFX04 RACROUTE request=FASTAUTH postprocessing

z/OS Security Server RACF Callable Services describes the exit listed in Table 15.

Table 15. RACF Exit

Exit Description

IRRSXT00 SAF callable services router

© Copyright IBM Corp. 1988, 2015 351

RACF Exits

352 z/OS V2R2 MVS Installation Exits

Chapter 53. RMF™ Exits

z/OS RMF User's Guide describes the exits listed in Table 16.

Table 16. RMF Exits

Exit Description

ERBMFDUC Internal processing

ERBMFEVT User sampler

ERBMFIUC Monitor I session initialization

ERBMFPUS Post-processor

ERBMFRUR Report writer

ERBMFTUR Termination

ERBTRACE Field tracing

© Copyright IBM Corp. 1988, 2015 353

RMF Exits

354 z/OS V2R2 MVS Installation Exits

Chapter 54. TSO/E Exits

z/OS TSO/E Customization describes the exits listed in Table 17.

Table 17. TSO/E Exits

Exit Description

ADRS exit Perform additional processing whenever a user selects the ADRS
option from the Information Center Facility

REXX attention
handling

Perform special attention processing

CHSFEXIT Change default space parameters that VM/PC servers use to
dynamically allocate MVS data sets

Edit exit for
RENUM, MOVE,
and COPY
subcommands

Tailor the way line numbering is done

Edit exit for syntax
checkers

Supply syntax checker with data set attributes

REXX exec
initialization

Access or update REXX variables

REXX exec
processing

Perform special processing before REXX exec executes

REXX exec
termination

Access or update REXX variables

ICQAMFX1 Application manager function pre-initialization

ICQAMFX2 Application manager function post-termination

ICQAMPX1 Application manager panel pre-display

ICQAMPX2 Application manager panel post-display

IDYTSINI TSOLIB initialization

IDYTSTER TSOLIB termination

IKJADINI ALTLIB initialization

IKJADTER ALTLIB termination

IKJCNXCD CONSPROF pre-display

IKJCNXCI CONSPROF initialization

IKJCNXCT CONSPROF termination

IKJCNXAC CONSOLE activation

IKJCNXDE CONSOLE deactivation

IKJCNX50 CONSOLE 80% message capacity

IKJCNX60 CONSOLE 100% message capacity

IKJCNXPP CONSOLE pre-parse

IKJCT43I EXEC initialization

IKJCT43T EXEC termination

IKJCT44B Add installation-written CLIST built-in functions

IKJCT44S Add installation-written CLIST statements

© Copyright IBM Corp. 1988, 2015 355

Table 17. TSO/E Exits (continued)

Exit Description

IKJEESXA LISTBC failure

IKJEESXB LISTBC termination

IKJEESX0 SEND initialization

IKJEESX1 IEEVSNX1 SEND pre-display

IKJEESX2 IEEVSNX2 SEND pre-save

IKJEESX3 IEEVSNX3 SEND failure

IKJEESX4 IEEVSNX4 SEND termination

IKJEESX5 LISTBC initialization

IKJEESX6 LISTBC pre-display

IKJEESX7 LISTBC pre-list

IKJEESX8 LISTBC pre-read

IKJEESX9 LISTBC pre-allocate

IKJEFD21 FREE initialization

IKJEFD22 FREE termination

IKJEFD47 ALLOCATE command initialization

IKJEFD49 ALLOCATE command termination

IKJEFF10 SUBMIT command

IKJEFF53 OUTPUT, STATUS and CANCEL commands

IKJEFLD Logon pre-prompt

IKJEFLD1 Logon authorized pre-prompt

IKJEFLD2 Logoff

IKJEFLD3 Logon post-prompt

IKJEFLN1 Logon pre-display

IKJEFLN2 Logon post-display

IKJEFY11 OUTDES initialization

IKJEFY12 OUTDES termination

IKJEFY60 PRINTDS initialization

IKJEFY64 PRINTDS termination

IKJEGASI TESTAUTH subcommand initialization

IKJEGAST TESTAUTH subcommand termination

IKJEGAUI TESTAUTH initialization

IKJEGAUT TESTAUTH termination

IKJEGCIE TEST subcommand initialization

IKJEGCTE TEST subcommand termination

IKJEGMIE TEST initialization

IKJEGMTE TEST termination

IKJPRMX1 PARMLIB initialization

IKJPRMX2 PARMLIB termination

INMCZ21R TRANSMIT/RECEIVE NAMES data set pre-allocation

TSO/E Exits

356 z/OS V2R2 MVS Installation Exits

Table 17. TSO/E Exits (continued)

Exit Description

INMRZ01
INMRZ01R

RECEIVE initialization

INMRZ02
INMRZ02R

RECEIVE termination

INMRZ04
INMRZ04R

RECEIVE notification

INMRZ05R RECEIVE acknowledgment notification

INMRZ06R RECEIVE pre-acknowledgment notification

INMRZ11
INMRZ11R

RECEIVE data set preprocessing

INMRZ12
INMRZ12R

RECEIVE data set postprocessing

INMRZ13
INMRZ13R

RECEIVE data set decryption

INMRZ15R RECEIVE post-prompt

INMRZ21R RECEIVE log data set pre-allocation

INMXZ01
INMXZ01R

TRANSMIT startup

INMXZ02
INMXZ02R

TRANSMIT termination

INMXZ03
INMXZ03R

TRANSMIT encryption

INMXZ21R TRANSMIT log data set pre-allocation

IRXINITX REXX pre-environment initialization

IRXITTS IRXITMV REXX post-environment initialization

IRXTERMX REXX environment termination

Names service exit Track changes made to Information Center Facility names directories

Session Manager Initialization/stream monitoring/termination

TSO/E Exits

Chapter 54. TSO/E Exits 357

TSO/E Exits

358 z/OS V2R2 MVS Installation Exits

Chapter 55. VTAM® Exits

VTAM Customization describes the exits listed in Table 18.

Table 18. VTAM Exits

Exit Description

ISTAUCAG Calculates and records time during which a terminal user or an
application program is logged onto an application program

ISTAUCAT Validates a logon request to an application program

ISTEXCVR Provides ACF/VTAM with an ordered list of virtual routes for path
selection to transmit data through network

ISTINCDT User supplies supplementary tables to session-link unformatted system
services table which ACF/VTAM uses to handle command input and
message output

ISTINCLM User can change IBM-supplied logon mode table which contains
parameters representing protocols for telecommunications session or user
can supply supplementary tables

ISTINCNO User supplies supplementary tables to operation-level unformatted system
services tables which handle commands from an ACF/VTAM operator
and messages to an ACF/VTAM operator

ISTMGC00 Communication network management (CNM) table routes unsolicited
network service requests to application programs to record and report
maintenance statistics

ISTPUCWC Virtual route pacing window size calculator specifies limits to data flow
through a network to avoid congestion in nodes along a virtual route

ISTRACON Module containing constants used to control functions not suitable for
modification by operator command or start option

© Copyright IBM Corp. 1988, 2015 359

VTAM Exits

360 z/OS V2R2 MVS Installation Exits

Part 4. MVS Converter / Interpreter Text Processing

The processing of a job control language (JCL) statement includes the stage of
converting the JCL statement to C/I text, a form of data that the job entry
subsystem (JES) and the job scheduler function of MVS both recognize. The
converter takes the job's JCL, merges it with JCL from a procedure library, and
converts the composite JCL into C/I text. The converter scans each JCL statement
for syntax errors and issues appropriate error messages. The converter also
resolves symbolic parameters and assigns default values. The converter /
interpreter (C/I) text is further interpreted to build the necessary control blocks
needed before the job can be scheduled for execution. See the JES2 exit, Exit 6
(converter/interpreter text scan) in z/OS JES2 Installation Exits, and the JES3 exit,
IATUX03 (examine/modify converter/interpreter text created for JCL) in z/OS JES3
Customization for more information.

Topics for This Section Appear as Follows:

v Chapter 56, “Issuing Messages through JES Installation Exits,” on page 363

– Initializing the Converter Message Buffer (CNMB)

v Chapter 57, “Converter / Interpreter (C/I) Text Strings,” on page 365

– Prefix Information

– Keyword Information

– End-of-text Information

v Chapter 58, “Converter / Interpreter Text String Formats,” on page 367

– Prefix Format

– Positional Format

– Text Format for JDT-defined JCL

– Extended Statement Type String Positional Parameters

– Key Entry Format Examples

– End-of-text Format

v “Examples of MVS/CI Text Strings” on page 375

v “User References” on page 376

v Chapter 59, “Modifying Converter / Interpreter Text,” on page 377

– Related Documents

© Copyright IBM Corp. 1988, 2015 361

362 z/OS V2R2 MVS Installation Exits

Chapter 56. Issuing Messages through JES Installation Exits

After all JCL statements are converted to C/I text, the converter calls a JES
installation exit that allows the installation to issue messages to the JCLMSG data
set and indicate whether or not the converter should fail the job. The installation
must place any desired message in a converter message buffer (CNMB), which is
mapped by the IEFCNMB mapping macro. See z/OS MVS Data Areas in the z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/) for more
information on the CNMB data area.

The maximum length of a message for a single CNMB is 110 characters. If the
CNMBMLEN field of a CNMB contains a value greater than 110, the message is
truncated at 110 characters. You can chain multiple CNMBs together to pass longer
messages. The CNMBNPTR field of the CNMB contains either the address of the
next CNMB in the chain or zero if no other CNMBs follow.

Initializing the CNMB:

To initialize the converter message buffer (CNMB):
1. Obtain a buffer from a private area subpool, such as 230, to contain the CNMB.

The storage must be obtained in key 1.
You do not need to issue a FREEMAIN in the installation exit since the
converter releases the storage for the CNMB after writing the messages to the
JCLMSG data set. IBM recommends that you obtain buffer storage
v in multiples of the CNMB mapping size (CNMBSIZE) when NOT issuing

messages to the message data set, OR
v in multiples of the CNMB mapping size plus the maximum size of a

message text (CNMBSIZE + CNMBMAXL) when issuing messages to the
message data set.

This is to ensure that the converter releases the correct amount of storage and
that no storage fragmentation occurs.

2. Set the following fields in all cases:
v Set the CNMBID field to CNMBCID (C'CNMB').
v Set the CNMBVER field to CNMBCVER.
v Set the CNMBSUBP field with the subpool number from which the storage

was obtained via GETMAIN.
3. Set the following fields if you are issuing a message to the message data set:
v Set the CNMBMSG field with the message text.
v Set the CNMBNPTR field to zeroes or to the address of the next CNMB if

you are issuing a message that is longer than 110 characters.
v Set the CNMBMLEN field with the length of the message text. The message

text cannot be longer than 110 characters.
v Set the CNMBLEN field based on how much storage was obtained:

– If the storage is the size of the CNMB mapping plus the size of the
message text, set the CNMBLEN field to CNMBSIZE + CNMBMLEN.

– If the storage is the size of the CNMB mapping plus the maximum size of
the message text, set the CNMBLEN field to CNMBSIZE + CNMBMAXL.

4. Set the following fields if you are failing the job:

© Copyright IBM Corp. 1988, 2015 363

|

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

v Set the CNMBFJOB bit on in the CNMBOPTS byte to indicate that the
converter should fail the job. Setting the CNMBFJOB bit causes the converter
to mark the job as failed when it regains control from the JES installation
exit, and the job will not be run.

v Set the CNMBMLEN field to zero if the installation exit is not going to issue
a message.

For more information on the JES installation text, see:
v Exit 6 in z/OS JES2 Installation Exits.
v IATUX03 in z/OS JES3 Initialization and Tuning Guide.

Issuing Messages through JES Installation Exits

364 z/OS V2R2 MVS Installation Exits

Chapter 57. Converter / Interpreter (C/I) Text Strings

Each C/I text record represents one JCL statement. This record, or text string, is
built in an 8192-byte buffer. The length of the used data area of this buffer is
specified by a 2-byte field at the beginning of the text string. If modifications are
made, it is the user's responsibility to ensure that the data in this length field is
correct.

The C/I text string for a record contains a hexadecimal value to indicate the
statement type, such as JOB statement, EXEC statement, or last DD statement,
among others. The text string also contains a specific key value (called the verb
key) to identify the type of JCL statement (such as JOB, EXEC, DD).

The information for one type of JCL statement differs from the information for
another, depending on the presence of parameters and subparameters. In general,
however, the text strings adhere to a common format. Each C/I text record
contains prefix information and an end-of-text indicator. In addition, key entries
are defined for parameters in the text string. Positional information specified may
be represented in the prefix and/or in the key entries.

Prefix Information
The prefix information contains the two-byte field at the beginning that specifies
the length of the used data area of this record. The third byte is the statement type.
Other prefix information relates specifically to the type of JCL statement (such as,
“account number required” on a JOB statement or “SYSOUT data set” on a DD
statement). The text string for a JOB statement contains seven bytes of prefix
information; all other JCL statements have a prefix section containing five bytes.

Keyword Information
The keyword information defines the associated parameters on a JCL statement.
The length of this section of the text string is variable depending on the number of
parameters and subparameters. Each keyword (such as DSNAME or UNIT) has a
one-byte hexadecimal key associated with it. These key values can be referenced
with the mapping macro IEFVKEYS (data area ITK). For each of these keywords in
the JCL statement, the following information (in this “key entry” format) is
included in the text string:

Number of Parameters
1-byte key specifying the number of parameters.

Length
1-byte number specifying the length of the parameter. The high order bit is
always off.

Parameter
Variable length string containing the value of the specified parameter.

Number of Subparameters
1-byte number specifying the number of subparameters. The high order bit
is always on.

© Copyright IBM Corp. 1988, 2015 365

|

|

|

Length
1-byte number specifying the length of the subparameter. The high order
bit is always off.

Subparameter
Variable length string containing the value of the specified subparameter.

This key entry format is repeated for each keyword in the JCL statement.

End-of-text Information
The final entry in the text string is the end-of-text key. This entry is required by the
MVS interpreter to indicate the end of the text string.

Converter / Interpreter (C/I) Strings

366 z/OS V2R2 MVS Installation Exits

|

Chapter 58. Converter / Interpreter Text String Formats

The following section describe the formats of converter and interpreter text strings.

Prefix Format
The first three bytes of a text string always contain the string length and the
statement type. The string length is a 2-byte length of the entire text string. The
statement type is a 1-byte indicator of the type of text string.

The statement type is one of the following values:

X'01' JOB statement text string

X'02' EXEC statement text string

X'04' DD statement text string

X'08' PROC statement text string

X'10' Last statement for this step

X'20' JDT-defined verb string

X'40' JDT-defined JCL appears on this statement

X'80' Extended JCL statement types.

JOB String Prefix

String Length Statement Type Job Indicators BLP Default Job Verb Key

String Length
Two-byte length of the entire text string

Statement Type
One-byte indicator of the type of text string

Job Indicators
Two bytes of job-related information indicators

BLP Default
One byte containing the bypass label default

Job Verb Key
Verb key for the job text string (X'B4')

v The statement type value for a JOB statement is X'01'.
v Values for the two bytes of job indicators are as follows:

– Byte 1

X'01' Account number required

X'02' Programmer name required

X'04' Job has been failed

X'08' Job has a SYSCHK DD statement

X'10' Flush to restart step name

X'20' Message header has been written

© Copyright IBM Corp. 1988, 2015 367

X'40' Region value is a default

X'80' JDT-defined JCL appears in this job's JCL
– Byte 2

X'01' JDT-defined JCL error in this job's JCL

X'02' Job is enabled to run with SWA located in virtual storage above 16
megabytes.

v The BLP default is one byte containing the bypass label default.

X'01' No label

X'10' Bypass label processing
v The job verb key for the JOB text string is always X'B4'.

EXEC String Prefix

String Length Statement Type EXEC Indicators EXEC Verb Key

String Length
Two-byte length of the entire text string

Statement Type
One-byte indicator of the type of text string

EXEC indicators
One byte of EXEC-related information indicators

EXEC Verb Key
Verb key for the EXEC text string (X'94')

v The statement type value for an EXEC statement is X'02'.
v The EXEC indicator field contains one byte of EXEC-related information.

X'01' Checkpoint restart EXEC statement

X'02' Step has a STEPCAT DD

X'04' Step has a STEPLIB DD

X'08' Statement is from a procedure

X'10' Step has no DD statements

X'20' Statement invokes a procedure
v The verb key for the EXEC text string is always X'94'.

DD String Prefix

String Length Statement Type DD Indicators DD Verb Key

String Length
Two-byte length of the entire text string

Statement Type
One-byte indicator of the type of text string

DD indicators
One byte of DD-related information indicators

DD Verb Key
Verb key for the DD text string (X'6E')

C/I Text String Formats

368 z/OS V2R2 MVS Installation Exits

v The DD indicator field contains one byte of DD-related information.

X'01' DUMMY specified

X'02' DDNAME= specified

X'04' DSNAME specified in quotation marks

X'08' DYNAM specified

X'10' SYSIN (DD * or DD DATA) data set

X'20' SYSOUT data set

X'40' SUBSYS= specified

X'80' Statement is from a procedure
v The verb key for the DD text string is always X'6E'.

JDT String Prefix

String Length Statement Type JDT Indicators JDT Verb Key

(none) (none) (none) (none)

String Length
Two-byte length of the entire text string

Statement Type
One-byte indicator of the type of text string

JDT indicators
One byte of JDT-related information indicators (all reserved)

JDT Verb Key
Verb key for the JDT text string (X'BE')

v The JDT indicator field contains one byte of JDT-related information and is
reserved.

X'20' The statement is regenerated.

X'40' Statement is generated.

X'80' Statement is from a PROC.
v The verb key for the JDT-defined text string is always X'BE'.

Extended Statement Type String Prefix

String Length Statement Type Statement Indicators Verb Key

String Length
Two-byte length of the entire text string

Statement Type
One-byte indicator of whether this is an extended statement type (always
set to X'80')

Statement indicator
Two bytes of extended statement type indicators

Verb Key
Verb key for the extended statement text string

v The statement indicator field contains one byte that indicates one of the
following statement type values:

C/I Text String Formats

Chapter 58. Converter / Interpreter Text String Formats 369

X'80' IF statement

X'40' ELSE statement

X'20' ENDIF statement
v The verb key for the extended statement type text string is equal to the extended

statement type value.

Positional Format
Positional parameters specified may be represented in the prefix and/or in the key
entries depending on the particular parameter. The following section describes the
manner in which each positional parameter is represented.

JOB String Positional Parameters
//JOB1 JOB (1234,ABCD),'John Doe'

Key
No.
Parms

Length
Jobname Jobname

Sublist/
no.
elements

Length
Account
Par 1

Account
Info. Par 1

Length
Account
Par 2

Account
Info. Par 2

Length
Name

Programmer
Name

B4 03 04 JOB1 82 04 1234 04 ABCD 08 John Doe

v The statement label is the first parameter on the job verb key.
v Accounting information is the second parameter on the job verb key.
v Programmer name is the third parameter on the job verb key.
//JOB1 JOB (1234),'John Doe'

Key
No.
Parms

Length
Jobname Jobname

Sublist / no.
elements

Length
Account
parm#1

Account
Info.

Length
Name

Programmer
Name

B4 03 04 JOB1 81 04 1234 08 John Doe

v The statement label is the first parameter on the JOB verb key.
v Accounting information is the second parameter on the JOB verb key.

Note: Enclosing the accounting information within parentheses indicates that
the information is in the form of a subparameter list. In this case, the
subparameter list has one element (1234).

v Programmer name is the third parameter on the JOB verb key.

EXEC String Positional Parameters
The verb key for an EXEC statement is always X'94'. When executing a procedure,
the positional parameters associated with the EXEC statement depend on whether
the statement has been coded with the PROC= keyword or not.
v When no PROC= keyword is used, the text string for the statement contains two

positional parameters on the EXEC verb key.
//STEP1 EXEC PROC1

1. The statement label (STEP1) is the first parameter on the EXEC verb key.
2. The PROC name (PROC1) is the second parameter on the EXEC verb key.

Verb Key
Number
Parameters Label Length Label Proc Length Proc Name

94 02 05 STEP1 05 PROC1

C/I Text String Formats

370 z/OS V2R2 MVS Installation Exits

v When the PROC= keyword is used, the text string contains a verb key for the
EXEC statement (X'94') and also a PROC key for the PROC= keyword (X'8B').
The text string for the statement contains one positional parameter on each key.
//STEP1 EXEC PROC=PROC1

1. The statement label is the first parameter on the EXEC verb key (X' 94').
2. The PROC name is the first parameter on the PROC key (X'8B').

Verb Key
Number
Parameters

Label
Length Label Proc Key

Number
Parameters

Proc
Length

Proc
Name

94 01 05 STEP1 8B 01 05 PROC1

DD String Positional Parameters
There are two instances when a positional parameter is represented by key entries
in the text string for a DD statement. When a DD statement specifies DD DYNAM,
the DD indicator in the prefix is set to X'08'. When it specifies DD DUMMY, the
DD indicator is set to X'01'. In both of these cases, a key entry containing the
respective key value and one parameter of length zero is added to the text string.

If a DD statement specifies DD * or DD DATA, the DD indicator in the prefix is set
to X'10'. No other key entry is defined in the text string for these positional
parameters.

Text Format for JDT-defined JCL
v JDT-defined verbs

//OUTPUT1 OUTPUT

Verb Key
Number
Parameters Verb Length Verb Label Length Label

BE 02 06 OUTPUT 07 OUTPUT1

v

– The JDT-defined verb is the first parameter on the verb key (X'BE').
– The statement label is the second parameter on the verb key (X'BE').

v JDT-defined keywords
//DD1 DD ACCODE=A

Long Parameters: The length of some parameters, such as a pathname for an
hierarchical file, can be up to 255 bytes. Any parameter with a maximum length
that is over 127 bytes is represented in the key entry format as a subparameter list
within the key for the parameter. Each subparameter has a maximum length of 127
bytes.

The PATH parameter is used to specify the pathname:
//ddname DD PATH=pathname

Example 1: In the following example, the PATH parameter has 6 characters:
//DD2 DD PATH=’/name1’

Even though the pathname parameter is only 6 bytes, it must be represented as a
subparameter list because the maximum length of the pathname can be 255 bytes.

C/I Text String Formats

Chapter 58. Converter / Interpreter Text String Formats 371

Table 19. Text Format for Long Parameters: Example 1

Key
Number
Parameters Key Length

JDT-Defined Key
for Specified
Keyword

Number
Sub-parameters

Parameter
Length Parameter Value

1A 02 02 X'8017' 81 6 X'61D5C1D4C5F1'

Example 2: In this example, the PATH parameter has 130 characters:
//DD2 DD PATH=’/NAME11111/NAME22222/NAME33333/NAME44444/NAME55555/NAME6
// 6666/NAME77777/NAME88888/NAME99999/NAME00000/NAME11111/N
// AME22222/NAME33333’

It would be represented as shown in Table 20.

Table 20. Text Format for Long Parameters: Example 2

Key
Number
Parameters

Key
Length

JDT-Defined
Key for
Specified
Keyword

Number
Sub-
parameters

Parameter
Length Parameter Value

1A 02 02 X'8017' 82 7F X'61D5C1D4C5F1F1F1F1F1,,,61D5C1D4C5F3F3'

03 X'F3F3F3'

Because only 127 characters can fit in a single subparameter field, the parameter
must be represented as two subparameters. Therefore, the Num of Subparameters
field is 82.
v The first subparameter is X'7F' (127 decimal) bytes long, and its value in the C/I

text is the hex string representing the first 127 characters of the PATH parameter
value in the JCL.

v The second subparameter is 3 bytes long, and its value in the text is the hex
string representing the last 3 bytes of the PATH parameter value.

Pre-MVS/ESA SP 4.1: For JCL converted on a pre-MVS/ESA SP 4.1 system, the
JDT-defined keyword is the first parameter on the JDT key (X'1A').

Key
Number of
Parameters

Keyword
Length Keyword Parameter Length Parameter

1A 02 06 ACCODE 01 A

v The parameter on the JDT-defined keyword is the second parameter on the JDT
key (X'1A').

MVS/ESA SP 4.1: For JCL converted on an MVS/ESA SP 4.1 system, the
JDT-defined key for the specified JDT keyword is the first parameter on the JDT
key (X'1A'). For JDT-defined keywords on the DD statement, refer to the macro
IEFSJKEY. For JDT-defined keywords on the OUTPUT statement, refer to the macro
IEFDOKEY.

Key
Number of
Parameters

Key
Length

JDT-Defined Key for
the Specified
Keyword

Parameter
Length Parameter

1A 02 02 X'8001' 01 A

v The parameter on the JDT-defined keyword is the second parameter on the JDT
key (X'1A').

C/I Text String Formats

372 z/OS V2R2 MVS Installation Exits

Extended Statement Type String Positional Parameters
//IFBAD IF (STEP1.RC > 4) THEN

Key BF

Number of Name Parmeters 00

02

Number of Name Qualifiers 01

Length of Qualifier 05

Subject of Test 03

Length Compared Value 04

Compared Value 4

Type of Comparator 0C

Number of Comparators 01

Length 01

Comparator >

v The qualifier specifies the step and procedure level of the statement.
v The possible values for the “Subject of Test” field are:

X'01' Job level return code

X'02' Step level return code (within the procedure)

X'03' Return code

X'04' Job abend code

X'05' Step abend code (within the procedure)

X'06' User abend code

X'07' System abend code

X'08' Job abend code

X'09' Step abend code

X'0A' Processed/run
v The “Type of Comparator” field can be set to either of the following values:

X'0B' Boolean comparator (such as | or &);

X'0C' Mathematical operator (such as < or >)

Key Entry Format Examples
SPACE=(TRK,(30,10))

Key
Number
Parms Length Parameter

Number
Sub-parm Length Parameter Length Parameter

47 02 03 TRK 82 02 F3F0 02 F1F0

The key X'47' represents the keyword SPACE=, which has two parameters — TRK
and (30,10). The first parameter, TRK, has a length of 3. The second parameter is
made up of two subparameters and the high order bit of that field is on (X'82').
The length of each subparameter is 2; the values are given in EBCDIC.

VOL=SER=111111

C/I Text String Formats

Chapter 58. Converter / Interpreter Text String Formats 373

Key Number Parms Key
Number
Parms Length Parameter

43 00 4F 01 06 F1F1F1F1F1F1

The key X'43' represents the keyword VOL=. The subparameter keyword, SER=, is
considered a minor keyword and is assigned a unique key entry. Therefore SER=
will not be defined in the key entry for the keyword (VOL=) on which it appears.
VOL= (key X'43') then has no parameters. SER= (key X' 4F') has one parameter
with a length of 6. The value of this parameter (111111) is given in EBCDIC.

Referral Type Data
Referral type data is represented in the key entry format as subparameter fields.
The pieces of the parameter are defined as delimited by periods. Each piece of the
referred-to data is identified by its length and name in the order in which it
appears in the statement. The asterisk is the first subparameter defined.
//DD1 DD DCB=*.STEP1.DD1

Key
Number
Parameters

Number
Subparms Length *

Length
Piece 1 Piece 1

Length
Piece 2 Piece 2

40 01 83 01 * 05 STEP1 03 DD1

v The asterisk is the first subparameter.
v The remaining subparameters are the pieces of the referred-to data delimited by

periods.

Note: In the “number of subparameters” field, the high-order bit is always set on.

Data Set Name with Member Name
A data set name that includes a member is represented in the key entry format as
subparameter fields within the key for the parameter. The data set is identified as
the first subparameter; the member name is the second subparameter.
//DD1 DD DSN=THIS.DATA1(MEMBER1)

Key
Number
Parms

Number
Subparms

Length DS
Name Data set Name

Length
Member

Member
Name

4A 01 82 0A THIS.DATA1 07 MEMBER1

v The data set name is the first subparameter.
v The member name is the second subparameter.

Overrides of Parameters
Keywords that override EXEC statement keywords within a procedure appear in
the text string for the EXEC statement for the procedure. The values specified for
the overridden keywords are applied to the EXEC statement during conversion.
// EXEC PROC=PROCA,TIME.STEP1=2,PARM.STEP2=’ABCD’

Proc Key Number Parameters Proc Length Proc Name

8B 01 05 PROCA

Key
Number
Parameters Step Length Step Name Parm Length Parm

8F 02 05 STEP1 01 F2

C/I Text String Formats

374 z/OS V2R2 MVS Installation Exits

Key
Number
Parameters Step Length Step Name Parm Length Parm

8E 02 05 STEP2 04 ABCD

DD statements that override DD statements within a procedure are merged with
the overridden statement as the statements are converted. The resulting text string
contains the result of the merged statements. The merging of the statements keeps
all the keywords present on the overridden statement as long as they are not
explicitly overridden or are not mutually exclusive with a keyword already
specified on the overriding statement.

//DD1 DD SYSOUT=A,DCB=(LRECL=133,DSORG=PS)

is overridden by
//STEP1.DD1 DD DSN=XYZ,DCB=LRECL=80,DISP=SHR

The keywords are merged so that overridden parameters are replaced and
mutually exclusive parameters are nullified. The resulting text string contains
//DD1 DD DSN=XYZ,DCB=(LRECL=80,DSORG=PS),DISP=SHR

End-of-text Format
This final entry, after return from the installation's converter / interpreter (C/I) text
exit, if any, (that is, Exit 6 in JES2, Exit IATUX03 in JES3), signifies the end of the
text string with an end-of-text key. (Prior to and within the C/I text exit, if any, the
end-of-text format is just the FE key, with nothing following it.)

Key Number Parms Length Proc Level Length
Statement
Number

FE 02 01 04

The procedure nesting level is a value between 0 and 15 inclusive, and is obtained
as follows:
v JOB-level statements (not in a procedure) are level 0.
v Statements within the first procedure level are level 1.
v The nesting level is incremental for each successive level of procedure nesting.
v The nesting level is not affected by INCLUDE statement nesting.

See z/OS MVS JCL Reference for more information on procedure nesting.

Note that the system ignores JCL comment statements when computing the
statement number.

Examples of MVS/CI Text Strings
//SYSUT1 DD DSNAME=LINKEDIT.WORK,UNIT=3380,SPACE=(TRK,(30,10)),
// VOL=SER=111111

Prefix and Statement Label (SYSUT1)

String
Length Type DD Ind.

DD Verb
Key

Number
Parms Length Parameter

003D 04 00 6E 01 06 SYSUT1

C/I Text String Formats

Chapter 58. Converter / Interpreter Text String Formats 375

DSNAME=LINKEDIT.WORK,

Key Number Parms Length Parameter

4A 01 0D LINKEDIT.WORK

UNIT=3380,

Key Number Parms Length Parameter

41 01 04 F3F3F8F0

SPACE=(TRK,(30,10)),

Key
Number
Parms Length Parameter

Number
Subparm Length Parameter Length Parameter

47 02 03 TRK 82 02 F3F0 02 F1F0

VOL=SER=111111

Key
Number
Parms Key Number Length Parameter

43 00 4F 01 06 F1F1F1F1F1F1

User References
You can find additional information about C/I text in MVS macros. The C/I text
format is mapped in the macro IEFTXTFT. The table of converter/interpreter key
definitions is mapped in the macro IEFVKEYS (data area ITK).

Examples of MVS/CI Text Strings

376 z/OS V2R2 MVS Installation Exits

Chapter 59. Modifying Converter / Interpreter Text

Both JES2 and JES3 provide installation exit points for scanning the text created by
the converter. You can use these exits to decide whether JES should cancel the job
or allow it to continue normally. Your routine also can modify the C/I text. You
cannot add text for an additional JCL statement, but you can add parameters to an
existing JCL statement. You cannot delete the text for an entire JCL statement, but
you can delete some of the parameters on that statement.

Use Caution When Modifying C/I Text. At the exit point at which the text is
made available to your routine, the data already has been validated for syntax and
for the proper keywords. The converter does not repeat this validation process
after any modifications that you make. Therefore, there is no way to correct any
error that a modification to the C/I text causes, and the job might fail at a later
point in processing.

MVS creates the C/I text and uses it in its preparation for executing your job. IBM
recommends that you do not modify this text. If you decide to do so, use the
following guidelines:

The interpreter needs to have all the correct lengths, the number of parameters,
and the end-of-text key (X'FE') in order to parse the text string. You must ensure
that the length of the entire text string (in the prefix) and the values for the length
and number of parameters (in the key entries) are updated to reflect any
modifications that you make.

More information about how you can use installation exits to modify C/I text is
available in the following documents :
v z/OS JES3 Customization

v z/OS JES2 Installation Exits.

© Copyright IBM Corp. 1988, 2015 377

Modifying Converter / Interpreter Text

378 z/OS V2R2 MVS Installation Exits

Part 5. Testing SMF Exit Routines

This section describes one method of testing user-written SMF exit routines, the
TESTEXIT procedure in SYS1.SAMPLIB. This procedure contains an assembler
language source program (also named TESTEXIT) which attaches the data
generator utility program (IEBDG) to create sample parameter lists for all
user-written exit routines except IEFU29. (The TESTEXIT procedure creates the
parameter list for the IEFU29 exit routine without using the data generator utility
program.) The source program then calls each user-written exit routine being
tested, and passes the appropriate parameter list to it.

Before using the TESTEXIT procedure:
1. Fulfill the following user-written exit routine testing requirements:
v Specify a user subpool (0-127) in all GETMAIN macro instructions included

in the routines.

Topics for This Section Appear as Follows:

v Chapter 60, “TESTEXIT Exit Routine Requirements,” on page 381

– Obtaining TESTEXIT from SYS1.SAMPLIB

– Modifying the TESTEXIT Procedure

Data
Generator
Control
Statements

IEBDG

Exit
Parameter
Lists

JCL

TESTEXIT

IEFU29

IEFUJV

IEFUJI
IEFUSI

IEFUSO
IEFUTL

IEFU83

IEFACTRT
IEFUJP

SYSPRINT

MANX

Diagnostic Messages

SMF Records

Figure 27. TESTEXIT Input/Output and Control Flow

© Copyright IBM Corp. 1988, 2015 379

v Provide a special SMFWTM macro instruction in all routines that use the
macro.

v Place the routines in a partitioned data set.
2. Obtain the TESTEXIT procedure from SYS1.SAMPLIB.
3. Modify the procedure to meet the installation's testing requirements.

380 z/OS V2R2 MVS Installation Exits

Chapter 60. TESTEXIT Exit Routine Requirements

Before using the TESTEXIT procedure, fulfill the following exit routine
requirements:
v Specify a user subpool (0-127) in all GETMAIN macro instructions included in

your routines.
v Provide a special SMFWTM macro instruction in all exit routines that use the

macro. The special macro definition writes to the TESTEXIT data set defined by
the DD statement named MANX. (With the normal SMFWTM macro instruction
the data is written to the active SMF data set.) Using this macro definition, then,
data is processed without accessing the system data on the active SMF data set.
When testing is completed, remove the macro definition.
Figure 28 shows the SMFWTM macro instruction that is required for using the
TESTEXIT procedure.

v Place the exit routines in a partitioned data set named EXITLIB. Figure 29 on
page 382 shows sample JCL for entering the routines into EXITLIB.

MACRO
&NAME SMFWTM &MSGAD

AIF (’&MSGAD’EQ’);E1
AIF (’&MSGAD’EQ’(1)’;BAL
AIF (’&MSGAD’(1,1)EQ’(’);REGA
AGO .LODIT

.E1 MNOTE ’***NO OPERAND SPECIFIED***’
MEXIT

.BAL ANOP
CNOP 0.4

&NAME BAL 15,*+8
.LIST DC V(TSMFWTM)

L 15,0(15)
BALR 14,15
MEXIT

.REGA ANOP
&NAME LR 1,&MSGAD(1)

CNOP 0,4
BAL 15,*+8
AGO .LIST

.LODIT ANOP
&NAME LA 1,&MSGAD

CNOP 0,4
BAL 15,*+8
AGO .LIST
MEND

Figure 28. SMFWTM Macro Definition Required for Using TESTEXIT

© Copyright IBM Corp. 1988, 2015 381

Obtaining TESTEXIT from SYS1.SAMPLIB
Figure 30 shows sample JCL for obtaining a punched deck of TESTEXIT from
SYS1.SAMPLIB.

//UPDTE JOB MSGLEVEL=1
// EXEC PGM=IEBUPDTE,PARM=NEW
//SYSUT2 DD DSNAME=EXITLIB,VOLUME=SER=338000,
// UNIT=3380,SPACE=(TRK,(10,3,1)),DISP=(,KEEP),
// DCB=(LRECL=80,BLKSIZE=400,RECFM=FB)
//SYSPRINT DD SYSOUT=A
//SYSIN DD DATA
./ ADD NAME=IEFUJV

(IEFUJV object deck)
./ ADD NAME=IEFUJI

(IEFUJI object deck)
./ ADD NAME=IEFUSI

(IEFUSI object deck)
./ ADD NAME=IEFUTL

(IEFUTL object deck)
./ ADD NAME=IEFUSO

(IEDUSO object deck)
./ ADD NAME=IEFU83

(IEFU83 object deck)
./ ADD NAME=IEFACTRT

(IEFACTRT object deck)
./ ADD NAME=IEFUJP

(IEFUJP object deck)
./ ADD NAME=IEFU29

(IEFU29 object deck)
./ ADD NAME=IEFU84

(IEFU84 object deck)
./ ENDUP
/*

Figure 29. Sample JCL for Entering User-Written Exit Routines into EXITLIB

//PUNCH JOB MSGLEVEL=1
// EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=SYS1.SAMPLIB,DISP=(OLD,KEEP),
// UNIT=xxxx,VOLUME=SER=xxxxxx1

//SYSUT2 DD UNIT=2540-2
//SYSIN DD *

PUNCH TYPORG=PO,MAXNAME=1,MAXFLDS=1
MEMBER NAME=TESTEXIT
RECORD FIELD=(80)

1The volume and unit parameters depend on your installation’s request.

Figure 30. Sample JCL for Obtaining a Punched Deck of TESTEXIT

TESTEXIT Exit Routine Requirements

382 z/OS V2R2 MVS Installation Exits

Modifying the TESTEXIT Procedure
“Sample JCL for Executing TESTEXIT” shows sample JCL for executing the
TESTEXIT procedure.

Sample JCL for Executing TESTEXIT
//TESTEXIT JOB MSGLEVEL=1
//TEST EXEC ASMFCL
//ASM.SYSIN DD *
(TESTEXIT Source Module)
/*
//LKED.SYSLMOD DD DSNAME=TESTLIB,VOLUME=SER=338000.
// UNIT=3380,SPACE=(TRK,(5,2,1))),
// DISP=(NEW,KEEP)
//LKED.EXITS DD DSNAME=EXITLIB,VOLUME=SER=338000.
// UNIT=3380,DISP=OLD
//LKED.SYSIN DD *

INCLUDE EXITS(IEFUJV,IEFUJI,IEFUSI,IEFUTL,IEFUSO,
IEFU83,IEFACTRT,IEFUJP,IEFU29,IEFU84)

ENTRY TESTEXIT
NAME TESTEXIT

/*
//DATAGEN JOB MSGLEVEL=1
// EXEC PGM=IEBGENER
//SYSUT2 DD DSNAME=DGINPUT,UNIT=3380,DISP=(,KEEP),
// VOLUME=SER=338000,SPACE=(TRK,(10,5,1)),
// DCB=(LRECL=80,BLKSIZE=400,RECFM=FB)
//SYSPRING DD SYSOUT=A
//SYSIN DD *,DLM=XX

GENERATE MAXNAME=9,MAXGPS=0
MEMBER NAME=UJV
RECORD IDENT=(6,’ENDUJV’,1)
MEMBER NAME=UJI
RECORD IDENT=(6,’ENDUJI’,1)
MEMBER NAME=USI
RECORD IDENT=(6,’ENDUSI’,1)
MEMBER NAME=UTL
RECORD IDENT=(6,’ENDUTL’,1)
MEMBER NAME=U83
RECORD IDENT=(6,’ENDU83’,1)
MEMBER NAME=ACT
RECORD IDENT=(6,’ENDACT’,1)
MEMBER NAME=USO
RECORD IDENT=(6,’ENDUSO’,1)
MEMBER NAME=UJP
RECORD IDENT=(6,’ENDUJP’,1)
MEMBER NAME=U84
RECORD IDENT=(6,’ENDU84’,1)

XX
//SYSUT1 DD DATA,DLM=YY

DSD OUTPUT=(OUTUJV)
(IEBDG Control Statements for IEFUJV)

ENDUJV END
DSD OUTPUT=(OUTUJI)
(IEBDG Control Statements for IEFUJI)

ENDUJI END
DSD OUTPUT=(OUTUSI)
(IEBDG Control Statements for IEFUSI)

ENDUSI END
DSD OUTPUT=(OUTUTL)
(IEBDG Control Statements for IEFUTL)

ENDUTL END
DSD OUTPUT=(OUTU83)
(IEBDG Control Statements for IEFU83)

ENDU83 END
DSD OUTPUT=(OUTACT)

TESTEXIT Exit Routine Requirements

Chapter 60. TESTEXIT Exit Routine Requirements 383

(IEBDG Control Statements for IEFACTRT)
ENDACT END

DSD OUTPUT=(OUTUSO)
(IEBDG Control Statements for IEFUSO)

ENDUSO END
DSD OUTPUT=(OUTUJP)
(IEBDG Control Statements for IEFUJP)

ENDUJP END
DSD OUTPUT=(OUTU84)
(IEBDG Control Statements for IEFU84)

ENDU84 END
YY
//TESTING JOB MSGLEVEL=1
//JOBLIB DD DSNAME=TESTLIB,VOLUME=SER=338000,
// UNIT=3380,DISP=(OLD,KEEP)
// EXEC PGM=TESTEXIT,
// PARM=’UJV=25,UJI=8,USI=8,USO=5,UTL=5,U83=12,ACT=2,UJP=2,U29=2,U84=12’
//INUJV DD DSNAME=DGINPUT(UJV),DCB=(LRECL=80,
// BLKSIZE=400,RECFM=FB),DISP=(OLD,PASS),
// UNIT=3380,VOLUME=SER=338000
//INUJI DD DSNAME=DGINPUT(UJI),DCB=(LRECL=80,
// BLKSIZE=400,RECFM=FB),DISP=(OLD,PASS),
// UNIT=3380,VOLUME=SER=338000
//INUSI DD DSNAME=DGINPUT(USI),DCB=(LRECL=80,
// BLKSIZE=400,RECFM=FB),DISP=(OLD,PASS),
// UNIT=3380,VOLUME=SER=338000
//INUSO DD DSNAME=DGINPUT(USO),DCB=(RECL=80,
// BLKSIZE=400,RECFM=FB),DISP=(OLD,PASS),
// UNIT=3380,VOLUME=SER=338000
//INUTL DD DSNAME=DGINPUT(UTL),DCB=(LRECL=80,
// BLKSIZE=400,RECFM=FB),DISP=(OLD,PASS),
// UNIT=3380,VOLUME=SSER=338000
//INU83 DD DSNAME=DGINPUT(U83),DCB=(RECL=80,
// BLKSIZE=400,RECFM=FB),DISP=(OLD,PASS),
// UNIT=3380,VOLUME=ser=338000
//INACT DD DSNAME=DGINPUT(ACT),DCB=(RECL=80,
// BLKSIZE=400,RECFM=FB),DISP=(OLD,PASS),
// UNIT=3380,VOLUME=SER=338000
//INUJP DD DSNAME=DGINPUT(UJP),DCB=(LRECL=80,
// BLKSIZE=400,RECFM=FB),DISP=(OLD,PASS),
// UNIT=3380,VOLUME=SER=338000
//INU84 DD DSNAME=DGINPUT(U84),DCB=(RECL=80,
// BLKSIZE=400,RECFM=FB),DISP=(OLD,PASS),
// UNIT=3380,VOLUME=SER=338000
//OUTUJV DD DSNAME=UJV(OUT),UNIT=3380,DISP=(,PASS),
// SPACE=9TRK,(10,5,1)),VOLUME=SER=338000,
// DCB=(LRECL=80,BLKSIZE=400,RECFM=FB)
//OUTUJI DD DSNAME=UJI(OUT),UNIT=3380,DISP=(,PASS),
// SPACE=(TRK,(10,5,1)),VOLUME=SER=338000,
// DCB=(LRECL=80,BLKSIZE=400,RECFM=FB)
//OUTUSI DD DSNAME=USI(OUT),UNIT=3380,DISP=(,PASS),
// SPACE=(TRK,(10,5,1)),VOLUME=SER=338000,
// DCB=(LRECL=80,BLKSIZE=400,RECFM=FB)
//OUTUSO DD DSNAME=USO(OUT),UNIT=3380,DISP=(,PASS),
// SPACE=(TRK(10,5,1)),VOLUME=SER=338000,
//OUTUTL DD DSNAME=UTL(OUT),UNIT=3380,DISP=(,PASS),
// SPACE=(TRK,(10,51,1)),VOLUME=SER=338000,
// DCB=(LRECL=80,BLKSIZE=400,RECFM=FB)
//OUTU83 DD DSNAME=U83(OUT),UNIT=3380,DISP=(,PASS),
// SPACE=(TRK,(10,5,1)),VOLUME=SER=338000,
// DCB=(LRECL=130,BLKSIZE=130,RECFM=FB)
//OUTACT DD DSNAME=ACT(OUT),UNIT=3380,DISP=(,PASS),
// SPACE=(TRK,(10,5,1)),VOLUME=SER=338000,
// DCB=(RECL=180,BLKSIZE=180,RECFM=FB)
//OUTUJP DD DSNAME=UJP(OUT),UNIT=3380,DISP=(,PASS),
// SPACE=(TRK,(10,5,1)),VOLUME=SER=338000,
// DCB=(LRECL=130,BLKSIZE=130,RECFM=FB)

TESTEXIT Exit Routine Requirements

384 z/OS V2R2 MVS Installation Exits

//OUTU84 DD DSNAME=U84(OUT),UNIT=3380,DISP=(,PASS),
// SPACE=(TRK,(10,5,1)),VOLUME=SER=338000,
// DCB=(LRECL=130,BLKSIZE=130,RECFM=FB)
//MANX DD UNIT=3380,VOLUME=SER=338000,DSN=MANX,
// SPACE=(TRK,(3,1)),DISP=(NEW,KEEP),
// DCB=(BLKSIZE=200,LRECL=196)
//SYSPRINT DD SYSOUT=a,dcb=(BLKSIZE=136,LRECL=132)
//DGPRINT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
/*

The following summarizes the operations performed by the procedure shown in
“Sample JCL for Executing TESTEXIT” on page 383:
v The TESTEXIT job assembles the TESTEXIT source program (not illustrated in

the figure) and linkedits it with the exit routines being tested. (Note that the exit
routines must reside in EXITLIB, a partitioned data set.)

v The DATAGEN job, using the IEBGENER utility program, creates a partitioned
data set (DGINPUT) containing control statements for the IEBDG utility
program, which will be attached by the TESTEXIT source program.

v The TESTING job includes the execution of the TESTEXIT source program.

Use the TESTEXIT procedure provided in SYS1.SAMPLIB to linkedit the example
exit routines in SYS1.SAMPLIB, generate sample parameter lists, and test the
sample exit routines. To adapt the TESTEXIT procedure to your installation's
testing requirements, however, note the following modifications:
v The TESTEXIT job shown in “Sample JCL for Executing TESTEXIT” on page 383

linkedits the TESTEXIT source program with the exit routines. The TESTEXIT
procedure in SYS1.SAMPLIB contains ten exit names in the INCLUDE statement.
However, when you use the TESTEXIT procedure your INCLUDE statement
should contain only the names of the exit routines you are testing.

v The DATAGEN job shown in “Sample JCL for Executing TESTEXIT” on page
383 creates a partitioned data set containing the IEBDG control statements that
generate samples of standard parameter lists. The TESTEXIT procedure contains
the control statements for nine exits. Note that control statements are not
required for the IEFU29 exit routine because the TESTEXIT procedure creates the
parameters needed to test that routine. When using the TESTEXIT procedure
you should include only those statements needed for the routine you are testing.
When testing for special conditions or required additional test parameters, you
must make appropriate modifications and additions to the control statements.
You must supply the control statements in such an order that the records the
IEBDG utility program generates later will be grouped as complete parameter
lists that conform in length and format to the exit parameters defined earlier in
this chapter . (Be sure to include the entry code passed to exits IEFUTL and
IEFACTRT in register 0 as a one-byte parameter at the end of the parameter lists
for those exits.) For detailed information on using IEBDG control statements, see
z/OS DFSMSdfp Utilities.

v The TESTING job shown in “Sample JCL for Executing TESTEXIT” on page 383
includes the execution of the TESTEXIT source program. Values for the PARM
parameter of the EXEC statement specify which exit routines are to be tested
and the number of times each is to be tested. The TESTEXIT procedure in
SYS1.SAMPLIB contains the parameters to test ten exits. However, when you use
the TESTEXIT procedure you should include only the parameters for the
routines you are testing. This parameter has the format:

PARM=’xxx=nnn,...,xxx=nnn’

TESTEXIT Exit Routine Requirements

Chapter 60. TESTEXIT Exit Routine Requirements 385

where:

xxx
is an exit routine identifier.

nnn
is the number of times an exit routine is to be tested (the maximum value is
255).

The DD statements to be included depend upon the exit routines being tested. The
TESTEXIT procedure contains DD statements for nine exits as shown in the sample
(“Sample JCL for Executing TESTEXIT” on page 383). When you use the TESTEXIT
procedure you should include only the DD statements for exits you are testing. DD
statements are not required for the IEFU29 exit. Table 21 shows the exit-routine
identifiers, specified on the EXEC statement, and the DD statements that you must
include for each exit routine being tested.

Table 21. Parameters and DD Statements for Executing TESTEXIT

Exit Routine Identifier DD Statements

IEFUJV UJV INUJV, OUTUJV

IEFUJI UJI INUJI, OUTUJI

IEFUSI USI INUSI, OUTUSI

IEFUTL UTL INUTL, OUTUTL

IEFUSO USO INUSO, OUTUSO

IEFU83 U83 INU83, OUTU83

IEFACTRT ACT INACT, OUTACT

IEFUJP UJP INUJP, OUTUJP

IEFU29 U29 Not required

IEFU84 U84 INU84, OUTU84

Any MANX,SYSPRINT,DGPRING,SYSABEND

You must include (in the JCL for the TESTEXIT procedure) the DD statements for
any other data sets the exit routines use.

TESTEXIT Exit Routine Requirements

386 z/OS V2R2 MVS Installation Exits

Part 6. SMF Exit — System Interface Diagrams

This section contains diagrams that show the system interface(s) for the SMF exit
routines listed below. Each diagram illustrates the general flow of events that occur
before and after the exit routine receives control. Note that the diagrams do not
indicate the specific control path between system modules.

The system interfaces for the following SMF exits are illustrated:
v Figure 31 on page 388. IEFUJV — Job Validation Exit (Converter)
v Figure 32 on page 389. IEFUJV — Job Validation Exit (Interpreter)
v Figure 33 on page 390. IEFUJI — Job Initiation Exit and IEFUSI — Step Initiation

Exit
v Figure 34 on page 391. IEFUTL — Time Limit Exit
v Figure 35 on page 392. IEFUSO — JES2 SYSOUT Limit Exit
v Figure 36 on page 393. IEFUSO — JES3 SYSOUT Limit Exit
v Figure 37 on page 394. IEFU83 — SMF Record Exit
v Figure 38 on page 395. IEFU84 — SMF Record Exit
v Figure 39 on page 396. IEFU85 — SMF Record Exit
v Figure 40 on page 397. IEFACTRT — Termination Exit
v Figure 42 on page 399. IEFUJP — JES2 Job Purge Exit
v Figure 43 on page 400. IEFUJP — JES3 Job Purge Exit

© Copyright IBM Corp. 1988, 2015 387

Job Entry
Subsystem

Read a JCL
statement into
input buffer

List the JCL
statement

More JCL
statements

?

No

Substitute for
symbolic
parameters

Free converter
tables and work
areas

Job Entry
Subsystem

Yes

Converter GET
Routine

Converter Pre-Scan
Routine

Converter Scan
Routine

Convert each
JCL statement
to C/I text

Converter
Termination
Routine

Storage protection
key 1 or 0
Entry codes 0, 1,
2, 4, 8, 64, and 128

IEFUJV Exit

Storage protection
key 1 or 0
Entry code 16

IEFUJV Exit

Figure 31. IEFUJV — Job Validation Exit (Converter)

388 z/OS V2R2 MVS Installation Exits

Job Entry
Subsystem

SWA Create
Interface

End of step?

No

Yes

JOB, EXEC, or
DD Statement
Processor

Ensure that all
EXEC statement
overrides are
resolved

End of job?

No

Yes

SWA Create
Interface

Job Entry
Subsystem

Get one JCL
C/I text
statement

GET and Router
Routine

ENQUEUE Routine

Call SWA manager
interface to write
step tables to SWA
as necessary

Call SWA manager
interface to write
job tables to SWA
as necessary

Interpreter
Termination
Routine

Storage
protection key 0
Entry code 32

IEFUJV Exit

Figure 32. IEFUJV — Job Validation Exit (Interpreter)

Part 6. SMF Exit — System Interface Diagrams 389

Initiator selects
a job

First step of
job?

Step execution
and termination

Last step of
job? Job termination

Data Set Enqueue
and ATTACH
Interface Routines

Yes

No

Yes

No

Set indicator if
job or step to be
cancelled

Construct timing
control table
(TCT)

No

Is step
exit to be
taken?

Build SMF record
type 20

Is SAM
active and
operational

?

AMSUJI Exit

No

Yes

Yes

Step Initiation
Routine

SMF Initialization
Exit Support

Step Initiation
Routine

Set VSM region
limit

Storage
protection key 0

Storage
protection key 0

IEFUJI Exit

IEFUSI Exit

Figure 33. IEFUJI — Job Initiation Exit and IEFUSI — Step Initiation Exit

390 z/OS V2R2 MVS Installation Exits

TIMER
INTERRUPTS

First Level
Interrupt
Handler

Timer Supervision
SRB Routine

Supervisor
EXIT Routine

For any violation,
schedule the timer
supervision SRB

?SRB is dispatched?

?IRB is dispatched?

Return to
dispatcher

Timer Second Level
Interrupt Handler

For each processor
time or wait time
violation, build and
enqueue an IRB for
the initiator’s TCB
under which the SMF
time limit routine
receives control

SMF Time Limit
Routine

Storage
protection key 0

IEFUTL Exit

Figure 34. IEFUTL — Time Limit Exit

Part 6. SMF Exit — System Interface Diagrams 391

Access Method
Routines

User issues
SYSOUT request

Increment output
record count by 1

Is ouput record
limit exceeded?

Update buffer
address

Return to user

Yes

Yes

No

No

PUT Access Method
in JES2

Move data from user
area to unprotected
buffer associated
with data set

Is buffer
Full? Write a record

Increment limit
or cancel step
requesting SYSOUT

Storage
protection key 0

IEFUSO Exit

Figure 35. IEFUSO — JES2 SYSOUT Limit Exit

392 z/OS V2R2 MVS Installation Exits

USAM Subsystem
Interface Routines

User issues
SYSOUT request

Move data from
user area to
unprotected buffer
associated with
data set

Increment output
record count by 1

Is output record
limit exceeded?

Increment limit or
cancel step
requesting SYSOUT

Update buffer
address

Return to user

Yes

No

Issue SMFEXIT
macro

USAM (User Spool
Access Method)
Routine

Output Limit
Exceeded Routine

Storage
protection key 1

IEFUSO Exit

Figure 36. IEFUSO — JES3 SYSOUT Limit Exit

Part 6. SMF Exit — System Interface Diagrams 393

SVCInterruptHandler

SMFWTM or SMFEWTM,
BRANCH=NO macro
issued

Yes

No

Move to next buffer

Writebuffer?

Call record buffering routine
to moverecord
to SMF buffer
(segmenting if necessary)

Record buffering
routineschedules
SRB to writebuffer

Return to issuer
of SMFWTM or
SMFEWTM,
BRANCH=NO

Fill in header and
timestamp record
(for record types0-127)

Storage
protection key 0

IEFU83Exit

Figure 37. IEFU83 — SMF Record Exit

394 z/OS V2R2 MVS Installation Exits

SMFEWTM
BRANCH=YES
macro issued

Yes

No

Move to next buffer

Writebuffer?

Call record buffering routine
to moverecord
to SMF buffer
(segmenting if necessary)

Record buffering
routineschedules
SRB to writebuffer

Return to issuer
of SMFEWTM
BRANCH=YES

Fill in header and
timestamp record
(for record types0-127)

Storage
protection key 0

IEFU84Exit

Figure 38. IEFU84 — SMF Record Exit

Part 6. SMF Exit — System Interface Diagrams 395

SMFEWTM
BRANCH=YES,
MODE=XMEM
macro issued

Yes

No

Move to next buffer

Writebuffer?

Call record buffering routine
to moverecord
to SMF buffer
(segmenting if necessary)

Record buffering
routineschedules
SRB to writebuffer

Return to issuer
of SMFEWTM
BRANCH=YES,
MODE=XMEM

Fill in header and
timestamp record
(for record types0-127)

Storage
protection key 0

IEFU85Exit

Figure 39. IEFU85 — SMF Record Exit

396 z/OS V2R2 MVS Installation Exits

Step processing
has completed

Detach step region
when appropriate
ECBs are posted

Free data sets and
devices used by step

End of job?
Yes

No

Initiator ATTACH Routine

Calculate step/job
processor time
under TCBs

Step Delete Routine

Calculate step
processor time
under SRBs

Calculate job processor
time under SRBs

Job Delete Routine

Initiator Unallocation
Interface

Figure 40. IEFACTRT — Termination Exit Part 1 of 2

Part 6. SMF Exit — System Interface Diagrams 397

End of Job?

AMSACT
Exit AMSACT

Exit

AMSACT
Exit

Is SAM
active and
operational

?

AMSACT
Exit

Is SAM
active and
operational

?

Is SAM
active and

operational
?

Is SAM
active and

operational
?

Is SAM
active and
operational

?

Is
IEFACTRT
exit active?

Is
IEFACTRT
exit active?

Is
IEFACTRT
exit active?

Is
IEFACTRT
exit active?

Is
IEFACTRT
exit active?

AMSACT
Exit

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No No

No

No

No

Write SMF type 30
Record (subtype 4)

Write SMF type 4
or 34 record

Write SMF type 30
Record (Subtype 5)

Write SMF type 5
or 35 Record

Return to initiator
to begin processing
next step

Write SMF type
32 record

Storage
protection key 0
Entry code 20

Storage
protection key 0
Entry code 12

Storage
protection key 0
Entry code 20

Storage
protection key 0
Entry code 24

Storage
protection key 0
Entry code 16

SMF Unallocation
Routine

TSO/E user ?

IEFACTRT Exit

IEFACTRT Exit

IEFACTRT ExitIEFACTRT Exit IEFACTRT Exit

Figure 41. IEFACTRT — Termination Exit Part 2 of 2

398 z/OS V2R2 MVS Installation Exits

Output processing
completed for job

JES2 Dispatcher

Remove job from
the system

Build SMF record
type 26 in another
JES2 buffer

Build parameter
list for IEFUJP
exit

Copy common exit
parameter area into
a JES2 buffer

‘JOB PURGED’
message issued
to operator

JES2 Dispatcher

Write SMF record
type 26

JES2 Purge Processor

JES2 SMF Writer

Storage
protection key 1

IEFUJP Exit

Figure 42. IEFUJP — JES2 Job Purge Exit

Part 6. SMF Exit — System Interface Diagrams 399

Output processing
completed for job

JES3 Multi-function
Monitor (MFM)

Remove job from
the system

Read JSTs (job
summary tables)
and write all SMF
type 25 records

Release all disk
tracks assigned to
the job

Clean up tables

JES3 Job Segment
Scheduler (JSS)

Call IEFUJP exit
by means of the
SMFEXIT
interface

Write SMF
record type 26

Return

IATOSDR

RC=0

RC=4

JES3 Purge and Accounting
Routines

Write the SMF
type 26 record

Storage
protection key 1

IEFUJP Exit

Figure 43. IEFUJP — JES3 Job Purge Exit

400 z/OS V2R2 MVS Installation Exits

Part 7. Appendixes

© Copyright IBM Corp. 1988, 2015 401

402 z/OS V2R2 MVS Installation Exits

Appendix. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the "Contact us" web page for z/OS (http://www.ibm.com/
systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out

© Copyright IBM Corp. 1988, 2015 403

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html

punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

404 z/OS V2R2 MVS Installation Exits

default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix. Accessibility 405

406 z/OS V2R2 MVS Installation Exits

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1988, 2015 407

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

408 z/OS V2R2 MVS Installation Exits

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming Interface Information
This manual is intended to help a customer modify the processing of an MVS
operating system. This manual also documents intended Programming Interfaces
that allow the customer to write programs to obtain the services of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available at Copyright and Trademark
information (http://www.ibm.com/legal/copytrade.shtml).

Notices 409

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

410 z/OS V2R2 MVS Installation Exits

Index

A
accessibility 403

contact IBM 403
features 403

account number processing 187, 195, 215
accounting information 161

passed to IEFUJI and IEFUSI 195
Allocated or Offline Device Installation

Exit 111
allocation input validation routine 165
allocation WTOR 111, 133, 139, 145
APPC/MVS user account validation 187
ASREXIT installation exit 11
assistive technologies 403

B
Batch ENQ request

exit routine 280
Batch ISGENQ request

exit routine 280

C
C/I (converter/interpreter)

processing
IEFUJV exit 205

text
modifying text 377

text processing 361
text string 365

example 375
change options / suppress dump 93, 99
CMDX parameter list 321
CMDXAFLA field 321
CMDXAUTH field 321
CMDXCLIB command buffer 321
CNZ_MSGTOSYSLOG installation

exit 15
CNZ_MSIEXIT installation exit 23
CNZ_WTOMDBEXIT installation exit 25
COFXDLF1 exit routine 47
command modification 319
command suppression 319
commands exit 319
communications task exit parameter

list 92
used by IEAVMXIT 92

contact
z/OS 403

control block
formatting

exit routine 74, 78
converter/interpreter 205, 361
CSVLLIX1 installation exit 33

LLA module fetch 33
CSVLLIX2 installation exit 39

LLA module staging 39
CTXT parameter list 92

D
data lookaside facility 47
data space

controlling use 218
default size 218

DFSMS exits 343
directory of installation exits 339
Display global resource serialization

request
exit routine 275

DLF (data lookaside facility)
DLF Connect / Disconnect Installation

Exit 47
DLF Connect / Disconnect Installation

Exit 47
dump formatting

exit routine 71, 77
dynamic exit routine

linkediting 6
replacing 6

dynamic exits
ABDUMP 5
providing security 7
SDUMP 6

dynamic exits facility 5
dynamic output SVC 173

E
ENQ/DEQ preprocessing

exit routine 277
ENQ/DEQ/RESERVE/ISGENQ request

exit routine 268

F
fast ENQ/DEQ

exit routine 265
fast ISGENQ

exit routine 265
Filter global resource serialization

exit routine 271, 273

G
Global resource serialization

contention notification
SYSTEM scope 271
SYSTEMS scope 273

H
Hiperbatch 47
hiperspace

controlling use 218
default size 218

I
IARVSERV macro

sharing page limit 215, 221
ICHSAFP mapping macro

RACROUTE parameter list 62
IEALIMIT installation exit 65, 66

compared with IEFUSI 65
use of REGION parameter 66, 68

IEAVADFM installation exit
compared with IEAVADUS 71

IEAVADUS installation exit
compared with IEAVADFM 77

IEAVMXIT installation exit 83
common data area 90
communication between exit

routines 90
data shared across invocations 90
incompatible request 87
individual data area 90
message modification 83
replacement

without a re-IPL 85
IEAVTABX installation exit 93

using IHAABEPL 97, 101
IEAVTABX_EXIT installation exit 99
IEAVTSEL installation exit 103
IEFACTRT installation exit 151

common exit parameter area 160
recovery processing 153
SMF termination record 153

IEFDB401 installation exit 165
coded example 169

IEFDOIXT installation exit 173
IEFJFRQ installation exit 179

recovery processing 181
IEFTB724 module 155
IEFTXTFT mapping macro 376
IEFU29 installation exit 239

recovery processing 240
IEFU29L installation exit 243

recovery processing 244
IEFU83 installation exit 247

recovery processing 248
IEFU84 installation exit 253

recovery processing 254
IEFU85 installation exit 259

recovery processing 260
IEFUAV installation exit 187

recovery processing 189
IEFUJI installation exit 195

compared with IEFUJV 195
recovery processing 196

IEFUJP installation exit 201
recovery processing 202

IEFUJV installation exit 205
recovery processing 207

IEFUSI installation exit 215, 220
common exit parameter area 219
compared with IEALIMIT 220
compared with IEFUJV 216
recovery processing 218

© Copyright IBM Corp. 1988, 2015 411

IEFUSI installation exit (continued)
region limit processing 218
shared page limit 221

IEFUSO installation exit 227
common exit parameter area 229
recovery processing 228

IEFUTL installation exit 231
common exit parameter area 235
recovery processing 233

IEFVKEYS mapping macro 376
IEFYS module 154
IEZVX101 mapping macro 321
installation exit

ABDUMP exit 99
Allocated or Offline Device

installation Exit 111
Allocation Event Installation Exit 121
Allocation Modify DDname

Installation Exit 125
Allocation Unload Device Exit 129
ASREXIT 11
CNZ_MSGTOSYSLOG 15
CNZ_MSIEXIT 23
CNZ_WTOMDBEXIT 25
CSVLLIX1 33
CSVLLIX2 39
DLF Connect / Disconnect exit 47
HISSERV Service Installation Exit 55
ICHRTX00 59
IEALIMIT 65
IEAVADFM 71
IEAVADUS 77
IEAVMXIT 83
IEAVTABX 93
IEAVTABX_EXIT 99
IEAVTSEL 103
IEFACTRT 151
IEFDB401 165
IEFDOIXT 173
IEFJFRQ 179
IEFU29 239
IEFU29L 243
IEFU83 247
IEFU84 253
IEFU85 259
IEFUAV 187
IEFUJI 195
IEFUJP 201
IEFUJV 205
IEFUSI 215
IEFUSO 227
IEFUTL 231
introduction

calling an installation exit
routine 3

keyword modification 3
linkediting 3
macro use 3
programming considerations 3
register saving 3
replaceable module 3
restrictions 3
source code 3
user modification routine 3

ISGCNFXITSYSPLEX 273
ISGCNFXITSYSTEM 271
ISGENDOFLQCB 289

installation exit (continued)
ISGNQXIT 268
ISGNQXITBATCH 275, 280
ISGNQXITQUEUED1 284
IXC_ELEM_RESTART 293
IXC_WORK_RESTART 299
log stream subsystem exit 307
MMS installation exit 329
MVS commands installation exit 319
specific waits installation exit 133
volume ENQ installation exit 139
volume mount installation exit 145

Installation exit
ISGNQXITFAST 265
ISGNQXITPREBATCH 277

installation exit directory 339
installation exit name list

IEAVADFM 71
using a DSECT 3

installation exit point
instruction 3
keyword modification 3

installation-specified MPF exit 83
IPCS exits 345
ISGCNFXITSYSPLEX installation

exit 273
ISGCNFXITSYSTEM installation exit 271
ISGDGRSRES installation exit 275
ISGENDOFLQCB installation exit 289
ISGENQ preprocessing

exit routine 277
ISGNQXIT installation exit 268
ISGNQXITBATCH installation exit 280
ISGNQXITFAST installation exit 265
ISGNQXITPREBATCH installation

exit 277
ISGNQXITQUEUED1 installation

exit 284
IXC_ELEM_RESTART installation

exit 293
IXC_WORK_RESTART installation

exit 299

J
JCL

JDT-defined
long parameters 371

JES2 exits 347
JES3 exits 349
job initiation exit 195
job purge exit 201
job validation exit 205

K
keyboard

navigation 403
PF keys 403
shortcut keys 403

keyword modification
installation exit point 3

L
library lookaside 33, 39
limit user region size 65
LLA (library lookaside)

CSVLLIX1 exit routine 33
CSVLLIX2 exit routine 39

LLA module fetch 33
LLA module staging 39
log stream subsystem exit 307
long parameters 371

M
MCS authority for console

modifying
exit routine 319

message automation 83
message display 83
message modification 83
message processing 83

incompatible request 87
minor-line processing 86

message routing 83
message suppression 83
MGCRE macro 325
minor-line 86
MMS (MVS message service) 329
MMS installation exit

modifying user request 329
module fetch 33
module staging 39
MPF exit 83
MPFLSTxx member

activation 320
specifying command exit 320

multiple console support 319
MVS command 319
MVS commands installation exit 319

coded example 326
command modification 319
common data area 323
in a sysplex environment 322
individual data area 324
replacing

without a reIPL 320
specified in MPFLSTxx member 320

MVS message service 329
MVS router

installation exit 59
MVS router exit 59

N
navigation

keyboard 403
nonextended region limit

set by IEALIMIT 65
Notices 407

O
OUTADD macro 173
OUTDEL macro 173

412 z/OS V2R2 MVS Installation Exits

P
PATH parameter

z/OS UNIX pathname 371
post dump exit name list 103

Q
QCB Destroy Exit request

exit routine 289
Queued ENQ/DEQ request

exit routine 284

R
RACF exits 351
RACROUTE macro 59
region limit processing 215
REGION parameter

used by IEALIMIT 66, 68
resource name list 265, 268, 271, 273,

275, 277, 280, 284, 289
RMF exits 353
RNL (resource name list)

fast ENQ/DEQ
exit routine 265

preprocessing
exit routine 277

scanning
exit routine 268, 271, 273, 275,

280, 284, 289
router exit 59

S
SAF (system authorization facility)

ICHRTX00 exit routine 59
router exit 59

sending comments to IBM xiii
sharing page limit

IARVSERV macro 215, 221
shortcut keys 403
SMF data set

SMF dump exit 241
SMF dump exit 239, 243
SMF exit routines, user-written

testing 379
SMF job and job step termination

exits 151
SMF log stream

SMF dump exit 245
SMF record exit 247, 253, 259
SMF termination record

description 153
SNAP dump

formatting
exit routine 71, 77

specific waits installation exit 133
step initiation exit 215
subsystem function request exit 179
summary of changes xv

for z/OS V2R2 xvi
Summary of changes xvi
SYSABEND dump

formatting
exit routine 71, 77

SYSOUT limit exit 227
system authorization facility 59
system command 319
system symbols

changing in command text 321
processing, in command text 322

SYSUDUMP dump
formatting

exit routine 71, 77

T
TESTEXIT assembler program 379
text unit 173

modification
exit routine 173

time limit exit 231
time limit extension 231
TP (transaction program)

account number processing 187
user accounting information

validation 190
TP user accounting validation 187
trademarks 409
transaction program 187
TSO/E exits 355

U
user account validation exit 187
user interface

ISPF 403
TSO/E 403

user modification routine
introduction 3

user's region size 215
USEREXIT parameter

in MPFLSTxx 320

V
volume ENQ installation exit 139
volume mount installation exit 145
VTAM exits 359

W
WTO modification 83
WTO/WTOR exit 83
WTO/WTOR macro 83

Z
z/OS UNIX

pathname 371

Index 413

414 z/OS V2R2 MVS Installation Exits

IBM®

Product Number: 5650-ZOS

Printed in USA

SA23-1381-03

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	How to use this document
	How each exit is organized

	Where to find more information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 2 (V2R2), as updated December, 2016
	Summary of changes for z/OS Version 2 Release 2 (V2R2), as updated December, 2015
	Summary of changes for z/OS Version 2 Release 2 (V2R2)
	z/OS Version 2 Release 1 summary of changes

	Part 1. Introduction
	Chapter 1. All About Exit Routines
	Assembling Installation Exit Routines
	Link editing an Installation Exit Routine into a Library
	Programming Considerations for Installation Exit Routines
	Dynamic Exits Facility
	Link editing a Dynamic Exit Routine into a Library
	Replacing a Dynamic Exit Routine
	Providing Security for Dynamic Exits

	Part 2. The Exits
	Chapter 2. ASREXIT — SYMREC Authorization Exit
	Chapter 3. CNZ_MSGTOSYSLOG — Message To Syslog Exit
	Chapter 4. CNZ_MSIEXIT — Master Scheduler Initialization Dynamic Exit
	Chapter 5. CNZ_WTOMDBEXIT — WTO Message Data Block Exit
	Chapter 6. CSVLLIX1 — LLA Module Fetch Exit
	Chapter 7. CSVLLIX2 — LLA Module Staging Exit
	Chapter 8. DLF Connect / Disconnect Exit
	Installing the Exit Routine
	Exit Routine Environment
	Exit Routine Functions
	Exit Routine Processing
	Programming Considerations
	Entry Specifications
	Return Specifications
	Coded example of the exit routine

	Chapter 9. HIS.SERVSTAT— HISSERV Service Exit
	Chapter 10. ICHRTX00 — MVS Router Exit
	Chapter 11. IEALIMIT — User Region Size Limit Exit
	Chapter 12. IEAVADFM — Format SNAP, SYSABEND, and SYSUDUMP Dumps
	Chapter 13. IEAVADUS — Select and Format Dump Data Exit
	Chapter 14. IEAVMXIT — Installation-Specified MPF Exits
	Chapter 15. IEAVTABX — Change Options / Suppress Dump Exit
	Chapter 16. IEAVTABX_EXIT — ABDUMP Change Options / Suppress Dump Exit
	Chapter 17. IEAVTSEL — Post Dump Exit Name List Exit
	Chapter 18. IEF_ALLC_OFFLN — Allocated or Offline Device Installation Exit
	Chapter 19. IEF_ALLC_EVENT — Allocation Event Installation Exit
	Chapter 20. IEF_ALLC_MOD — Allocation Modify DDname Installation Exit
	Chapter 21. IEF_ALLC_UNLOAD — Allocation Event Installation Exit
	Chapter 22. IEF_SPEC_WAIT — Specific Waits Installation Exit
	Chapter 23. IEF_VOLUME_ENQ — Volume ENQ Installation Exit
	Chapter 24. IEF_VOLUME_MNT — Volume Mount Installation Exit
	Chapter 25. IEFACTRT — SMF Job and Job Step Termination Exits
	Chapter 26. IEFDB401 — Dynamic Allocation Input Validation Routine Exit
	Chapter 27. IEFDOIXT — Edit / Check A Caller's Dynamic Output Text Units Exit
	Chapter 28. IEFJFRQ — Subsystem Function Request Exit
	Chapter 29. IEFUAV — User Account Validation Exit
	Chapter 30. IEFUJI — Job Initiation Exit
	Chapter 31. IEFUJP — Job Purge Exit
	Chapter 32. IEFUJV — Job Validation Exit
	Chapter 33. IEFUSI — Step Initiation Exit
	Chapter 34. IEFUSO — SYSOUT Limit Exit
	Chapter 35. IEFUTL — Time Limit Exit
	Chapter 36. IEFU29 — SMF Dump Exit
	Chapter 37. IEFU29L — SMF Log Stream Dump Exit
	Chapter 38. IEFU83 — SMF Record Exit
	Chapter 39. IEFU84 — SMF Record Exit
	Chapter 40. IEFU85 — SMF Record Exit
	Chapter 41. Global Resource Serialization Exits
	System Programmer or Authorized Exits
	ISGNQXITFAST — Fast ISGENQ / ENQ / DEQ Installation Exit
	ISGNQXIT — ISGENQ / ENQ / DEQ Installation Exit
	ISGCNFXITSYSTEM — Filter Global Resource Serialization Contention Notification, SYSTEM Scope
	ISGCNFXITSYSPLEX — Filter Global Resource Serialization Contention Notification, SYSTEMS Scope

	Authorized Exits
	ISGDGRSRES — Display Global Resource Serialization Resource Exit

	Authorized Exits for Alternate Serialization Products
	ISGNQXITPREBATCH — ISGENQ / ENQ / DEQ Batch Preprocessing Exit
	ISGNQXITBATCH— ISGENQ / ENQ / DEQ Batched Exit ISGNQXITBATCHCND — ISGENQ / ENQ / DEQ Conditional Batch Processing Exit
	ISGNQXITQUEUED1 — ISGENQ / ENQ / DEQ First Queued Exit
	ISGNQXITQUEUED2 – ISGENQ / ENQ / DEQ Second Queued Exit
	ISGENDOFLQCB — End of Local QCB Exit

	Chapter 42. IXC_ELEM_RESTART — Element Restart Exit
	Chapter 43. IXC_WORK_RESTART — Workload Restart Exit
	Chapter 44. Log Stream Subsystem Exit (IXGSEXIT, For Example)
	Chapter 45. MVS Commands Installation Exit
	Chapter 46. MVS Message Service (MMS) Exits
	Part 3. Installation Exit Directory
	Chapter 47. BCP Exits
	Chapter 48. DFSMS Exits
	Chapter 49. IPCS Exits
	Chapter 50. JES2 Exits
	Chapter 51. JES3 Exits
	Chapter 52. RACF Exits
	Chapter 53. RMF™ Exits
	Chapter 54. TSO/E Exits
	Chapter 55. VTAM® Exits
	Part 4. MVS Converter / Interpreter Text Processing
	Chapter 56. Issuing Messages through JES Installation Exits
	Chapter 57. Converter / Interpreter (C/I) Text Strings
	Prefix Information
	Keyword Information
	End-of-text Information

	Chapter 58. Converter / Interpreter Text String Formats
	Prefix Format
	JOB String Prefix
	EXEC String Prefix
	DD String Prefix
	JDT String Prefix
	Extended Statement Type String Prefix

	Positional Format
	JOB String Positional Parameters
	EXEC String Positional Parameters
	DD String Positional Parameters

	Text Format for JDT-defined JCL
	Extended Statement Type String Positional Parameters
	Key Entry Format Examples
	Referral Type Data
	Data Set Name with Member Name
	Overrides of Parameters

	End-of-text Format
	Examples of MVS/CI Text Strings
	User References

	Chapter 59. Modifying Converter / Interpreter Text
	Part 5. Testing SMF Exit Routines
	Chapter 60. TESTEXIT Exit Routine Requirements
	Obtaining TESTEXIT from SYS1.SAMPLIB
	Modifying the TESTEXIT Procedure

	Part 6. SMF Exit — System Interface Diagrams
	Part 7. Appendixes
	Appendix. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

