
z/OS

MVS Planning: APPC/MVS Management
Version 2 Release 1

SA23-1388-00

���



Note
Before using this information and the product it supports, read the information in “Notices” on page 275.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1991, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Figures . . . . . . . . . . . . . . vii

Tables . . . . . . . . . . . . . . . ix

About this information . . . . . . . . xi
Who should use this information . . . . . . . xi
How to use this information . . . . . . . . . xi
Where to find more information . . . . . . . xii

How to send your comments to IBM . . xv
If you have a technical problem . . . . . . . xv

z/OS Version 2 Release 1 summary of
changes . . . . . . . . . . . . . xvii

Part 1. Introduction . . . . . . . . . 1

Chapter 1. Introduction to APPC/MVS . . 3
APPC Overview . . . . . . . . . . . . . 3

How APPC Relates to SNA, LU 6.2, VTAM, and
CPI-C. . . . . . . . . . . . . . . . 3

APPC Concepts and Commonly Used Terms . . . 6
Programming Terms . . . . . . . . . . . 6
Network Terms . . . . . . . . . . . . 8

What is APPC/MVS? . . . . . . . . . . . 11
Programming Support for APPC/MVS Callable
Services . . . . . . . . . . . . . . 12
z/OS System Support . . . . . . . . . . 17
Overview of an APPC/MVS Outbound Request 18
Overview of an APPC/MVS Inbound Request. . 19

Chapter 2. Planning Overview . . . . . 23
Levels of Connections . . . . . . . . . . . 23

Physical Connections . . . . . . . . . . 24
Program Connections . . . . . . . . . . 25
Logical Connections and APPC/MVS
Management . . . . . . . . . . . . . 25

APPC Management Tasks . . . . . . . . . 25
System-Wide APPC Connections . . . . . . 26

Part 2. Program management. . . . 31

Chapter 3. Scheduling Transaction
Programs . . . . . . . . . . . . . 33
Overview of Transaction Scheduling . . . . . . 33

Scheduling Characteristics of the APPC/MVS
Transaction Scheduler . . . . . . . . . . 34

Using the APPC/MVS Transaction Scheduler . . . 36
Classes of Transaction Initiators . . . . . . 36
DISPLAY Command . . . . . . . . . . 36
TP Schedule Types . . . . . . . . . . . 36

Multi-Trans Processing . . . . . . . . . . 37

SMF Accounting of Multi-Trans Resources . . . 39
Security for Multi-Trans TPs . . . . . . . . 39
SYSOUT Processing for Multi-Trans TPs . . . . 39
Assigning Multi-Trans TPs to their own Class . . 39
Establishing a Multi-Trans TP that is Always
Available . . . . . . . . . . . . . . 40

Logging Transaction Program Processing . . . . 40
The TP Message Log . . . . . . . . . . 41

Chapter 4. Defining Scheduling
Characteristics with ASCHPMxx . . . . 51
ASCHPMxx Parmlib Member . . . . . . . . 51

Changing Values . . . . . . . . . . . 51
Using Default Values . . . . . . . . . . 52

Planning Specific Values . . . . . . . . . . 53
Defining a Class — CLASSADD Statement . . . . 53

Example of defining a class . . . . . . . . 54
Modifying a Class — CLASSADD Statement . . . 55

Example of modifying a class . . . . . . . 56
Deleting a Class — CLASSDEL . . . . . . . . 57

Example of deleting a class . . . . . . . . 57
Defining Default Options — OPTIONS . . . . . 58

Example of Defining a Default Class . . . . . 58
Defining Default Scheduler Options — TPDEFAULT 59

Example of Defining Scheduling Defaults . . . 59
Examples ssing ASCHPMxx Parmlib members. . . 60

Tracking Changes in Scheduling Definitions . . 61

Chapter 5. Controlling the Execution of
Transaction Programs . . . . . . . . 65
Determining Scheduling Characteristics . . . . . 65
Defining the VSAM Key Sequenced Data Sets
(KSDS) . . . . . . . . . . . . . . . . 66

Determining How Many Files to Define . . . . 66
Determining the Size of Each File . . . . . . 67

Creating a TP Profile . . . . . . . . . . . 70
TP Profile Key . . . . . . . . . . . . 70
Program Attributes Section . . . . . . . . 71
Transaction Scheduler Section . . . . . . . 72
Summary of TP Profile Keywords . . . . . . 76

Creating Side Information . . . . . . . . . 77
Example of Side Information . . . . . . . 78
Summary of Side Information Keywords . . . 79

Defining TP Profiles and Side Information Early . . 79
Specific Scheduler JCL Information for TP Profiles 80

SYSOUT Recommendations . . . . . . . . 80
JCL Size Restrictions . . . . . . . . . . 80
Unsupported Statements and Restrictions . . . 80

Chapter 6. Using the APPC/MVS
Administration Utility . . . . . . . . 85
Utility Commands . . . . . . . . . . . . 85

TP Profile Commands . . . . . . . . . . 85
Side Information Commands . . . . . . . 86

© Copyright IBM Corp. 1991, 2013 iii



Database Token Commands . . . . . . . . 86
Syntax Requirements . . . . . . . . . . . 87

Syntax Rules . . . . . . . . . . . . . 88
Invoking the APPC/MVS Administration Utility . . 89

Invoking the APPC/MVS Administration Utility
from a Batch Job. . . . . . . . . . . . 89
Invoking the APPC/MVS Administration Utility
from an Application Program . . . . . . . 91
Invoking the APPC/MVS Administration Utility
from a REXX Program . . . . . . . . . . 92
Restrictions on Invoking the APPC/MVS
Administration Utility . . . . . . . . . . 93
Return Codes. . . . . . . . . . . . . 93

Examples . . . . . . . . . . . . . . . 94

Chapter 7. Using the APPC/MVS
Administration Dialog . . . . . . . . 95
Overview of the Dialog . . . . . . . . . . 95

TP Profile Administration. . . . . . . . . 96
Side Information Administration . . . . . . 96
Database Token Administration. . . . . . . 96

How to Use the Dialog . . . . . . . . . . 96
Using a Command Line . . . . . . . . . 97
Using PF Keys . . . . . . . . . . . . 97
Using Input Fields . . . . . . . . . . . 97
Receiving Messages and Getting Help . . . . 98

Installing the Dialog . . . . . . . . . . . 99
Installing the Dialog under Application
Manager . . . . . . . . . . . . . . 100
Installing the Dialog from ISPF . . . . . . 102

Customizing the Dialog . . . . . . . . . . 103

Part 3. Session management . . . 105

Chapter 8. Planning Sessions . . . . 107
Determining the Number of Local LUs . . . . . 107
Defining the System Base LU . . . . . . . . 108
Naming LUs . . . . . . . . . . . . . 108

Using Network-Qualified Names Support . . . 109
Assigning a VTAM Generic Resource Name to
APPC/MVS LUs . . . . . . . . . . . 111

Setting Up a Session for APPC/MVS . . . . . 117
Defining a Local LU on MVS . . . . . . . 117
Defining an APPC Logon Mode . . . . . . 118
Defining the Local LU to VTAM . . . . . . 120

Customizing Sessions for APPC/MVS . . . . . 125
Defining Additional Logon Mode Entries . . . 126
Specifying a Logon Mode for a Conversation 126
Using APPC/MVS Protected Conversations
Support . . . . . . . . . . . . . . 126

Chapter 9. Controlling Configuration
through APPCPMxx. . . . . . . . . 137
APPCPMxx Parmlib Member . . . . . . . . 137

Changing Values . . . . . . . . . . . 137
Default Values . . . . . . . . . . . . 137

Planning Specific Values. . . . . . . . . . 138
Adding a Local LU — LUADD Statement . . . . 138

Example of Adding LUs . . . . . . . . . 139

Modifying a Local LU — LUADD Statement . . . 140
Examples of Modifying an LU. . . . . . . 141

Deleting a Local LU — LUDEL Statement . . . . 142
Examples of Deleting an LU . . . . . . . 143

Specifying a VSAM KSDS for Side Information —
SIDEINFO Statement . . . . . . . . . . . 143
Examples Using APPCPMxx Parmlib Members . . 144

Initial APPC Setup . . . . . . . . . . 144
Anticipated Modifications . . . . . . . . 144
Deletions . . . . . . . . . . . . . . 145

Tracking Changes in the Configuration . . . . . 146
Keeping a Hardcopy Log . . . . . . . . 146
Viewing the Current Configuration . . . . . 147

Part 4. Security management . . . 149

Chapter 10. Setting up Network
Security. . . . . . . . . . . . . . 151
APPC/MVS Security Requirements . . . . . . 151

Giving the APPC and ASCH Started Procedures
Access to Resources . . . . . . . . . . 151

Why Security for APPC? . . . . . . . . . 152
An APPC Application Example . . . . . . 152

Planning for APPC Security . . . . . . . . 153
Determining the Application's Security Type . . 153
LU Security Mechanisms . . . . . . . . 155
Conversation Security Mechanisms . . . . . 156

LU Security: Protecting APPC/MVS Logical Units 156
Coding Security Keywords on the VTAM APPL
Statement . . . . . . . . . . . . . 156
Defining LU-to-LU Access Authority with RACF
APPCLU Profiles . . . . . . . . . . . 158
Controlling the Use of VTAM ACBs . . . . . 163

Conversation Security: Protecting APPC/MVS TPs 164
Establishing a Security Environment for
Inbound TPs on MVS . . . . . . . . . 164
Controlling User Access to LUs . . . . . . 165
Controlling User Access from LUs . . . . . 167
Controlling User Access to TP Profiles and Side
Information on MVS . . . . . . . . . . 168
Controlling Ability to Collect API Trace Data 174
Obtaining SYSOUT and Account Information
from RACF User Profiles . . . . . . . . 177
Using Persistent Verification (PV). . . . . . 178

Diagnosing Security Problems . . . . . . . . 180
Maintaining MVS Passwords in an APPC
Environment . . . . . . . . . . . . . 180

What is the SIGNON/Change Password TP? 181
How to Create Partner LU Communication for
the SIGNON/Change Password TP . . . . . 182
Using Sample Programs to Maintain User
Passwords on a Partner LU. . . . . . . . 188
Diagnosing Problems when Using the Password
Maintenance Sample Programs . . . . . . 191
How to Install the Sample Programs that
Maintain Passwords . . . . . . . . . . 198

Encrypting Data and Security Information. . . . 200
Summary. . . . . . . . . . . . . . . 200

Part 5. System management. . . . 203

iv z/OS V2R1.0 MVS Planning: APPC/MVS Management



Chapter 11. Operating APPC/MVS. . . 205
Starting the APPC and ASCH Address Spaces . . 205

Restarting APPC/MVS . . . . . . . . . 206
Displaying Information about APPC/MVS Work 207
Dynamically Changing the APPC/MVS
Environment . . . . . . . . . . . . . 207

Changing Parmlib Specifications through the
SET Command . . . . . . . . . . . . 207
Changing LU Characteristics through VTAM
Commands . . . . . . . . . . . . . 208

Stopping APPC/MVS Work . . . . . . . . 208
Deactivating a Transaction Program through its
TP Profile . . . . . . . . . . . . . 209
Stopping an Initiator Address Space with the
STOP Command . . . . . . . . . . . 209
Stopping a Class of Transaction Programs with
the SET Command . . . . . . . . . . 210
Stopping One or More LUs with the SET or
VARY Command . . . . . . . . . . . 211
Stopping a TP or APPC/MVS Address Space
with the CANCEL Command . . . . . . . 213
Stopping VTAM with the HALT Command . . 214
Summary of Methods of Stopping APPC/MVS
Work . . . . . . . . . . . . . . . 215

Tracking Changes to the APPC/MVS Configuration
and Workload . . . . . . . . . . . . . 217

Displaying TP Status . . . . . . . . . . 217
Displaying UR Status. . . . . . . . . . 218
Displaying Server Status. . . . . . . . . 219
Displaying LU Status . . . . . . . . . . 219
Displaying Scheduling Status . . . . . . . 219

Managing Use of the APPC/MVS API Trace
Facility . . . . . . . . . . . . . . . 226

Planning for the Use of API Trace Data Sets . . 226
Restoring API Tracing Capability . . . . . . 227

Recovering from APPC problems . . . . . . . 227
Recovery for the APPC Address Space . . . . 227
Recovery for the APPC/MVS Transaction
Scheduler (ASCH) address space . . . . . . 229

Chapter 12. APPC/MVS Measurement
and Tuning . . . . . . . . . . . . 231
Managing APPC Work in the System . . . . . 231
Considering APPC/MVS Storage Requirements 232

Changing the Maximum for the System
Workload. . . . . . . . . . . . . . 232

Monitoring APPC Performance . . . . . . . 233
Using SMF to Audit APPC Work . . . . . . 233
Using RMF Reports . . . . . . . . . . 235
Using the DISPLAY Operator Command . . . 235

Improving Performance Through Program Design
and Administration . . . . . . . . . . . 236

Making Efficient Use of Callable Services . . . 236

Avoiding Certain JCL Keywords . . . . . . 236
Using the Multi-Trans Schedule Type . . . . 237
Defining Classes and Response Time Goals . . 237
Putting Multi-Trans TPs in their Own Class . . 238
Associating TPs and LUs with the Appropriate
Level . . . . . . . . . . . . . . . 239
Limiting Use of the TP Message Log . . . . 239

Improving Performance through System Changes 240
Controlling Buffer Limit Size . . . . . . . 240
Minimizing Use of APPC Component Trace . . 242
Controlling SMF Type 33 Recording for APPC 242
Improving Network Performance. . . . . . 243

Maximum number of APPC active conversations 244

Part 6. Installation checklists . . . 247

Chapter 13. Installing an APPC
Application . . . . . . . . . . . . 249
Installing a TP that Initiates an Outbound Request 249
Installing a TP that Responds to an Inbound
Request . . . . . . . . . . . . . . . 252

Part 7. Appendixes . . . . . . . . 257

Appendix A. Character Sets . . . . . 259

Appendix B. Coding the APPCLOG
Utility . . . . . . . . . . . . . . . 263
Parameters . . . . . . . . . . . . . . 263
Examples of using the APPCLOG Utility . . . . 265
Sample output . . . . . . . . . . . . . 265

APPCLOG Formatted Dump . . . . . . . 265
APPCLOG Analysis Dump . . . . . . . . 269

Appendix C. Accessibility . . . . . . 271
Accessibility features . . . . . . . . . . . 271
Using assistive technologies . . . . . . . . 271
Keyboard navigation of the user interface . . . . 271
Dotted decimal syntax diagrams . . . . . . . 271

Notices . . . . . . . . . . . . . . 275
Policy for unsupported hardware. . . . . . . 276
Minimum supported hardware . . . . . . . 277
Programming Interface Information . . . . . . 277
Trademarks . . . . . . . . . . . . . . 277

Glossary . . . . . . . . . . . . . 279

Index . . . . . . . . . . . . . . . 289

Contents v



vi z/OS V2R1.0 MVS Planning: APPC/MVS Management



Figures

1. Network Communications between LUs and
Users . . . . . . . . . . . . . . . 4

2. An SNA Network for Communications between
Different Systems . . . . . . . . . . . 5

3. CPI Communications Program Scenario . . . 6
4. A Session between Two LUs . . . . . . . 9
5. A Conversation between Two TPs . . . . . 10
6. Parallel Sessions between LUs . . . . . . 10
7. Different Types of Sessions between Two LUs 11
8. Types of APPC/MVS Callable Services 13
9. Using TP Profiles and Side Information to Find

a Partner TP . . . . . . . . . . . . 16
10. Using Side Information in Client/Server

Communications . . . . . . . . . . . 16
11. APPC/MVS Communications Services

(Outbound) . . . . . . . . . . . . 19
12. APPC/MVS Communication Services

(Inbound) . . . . . . . . . . . . . 20
13. Levels of Connections . . . . . . . . . 24
14. APPC Connectivity Options . . . . . . . 24
15. System-Wide APPC Connections (Part 1 of 2) 28
16. System-Wide APPC Connections (Part 2 of 2) 29
17. Transaction Program Routing . . . . . . 34
18. Initialization and Termination in Multi-trans

Processing . . . . . . . . . . . . . 38
19. Example of Adding a TP Profile. . . . . . 41
20. Message Wrapping in a Multi-Trans TP

Message Log . . . . . . . . . . . . 46
21. Messages in a Cumulative TP Message Log for

a Multi-Trans TP . . . . . . . . . . . 47
22. TP Profile Parameters . . . . . . . . . 48
23. ASCHPMxx Parameters . . . . . . . . 48
24. Invoking the Write Log Routine . . . . . . 49
25. ASCHPM00 . . . . . . . . . . . . 52
26. ASCHPM1A . . . . . . . . . . . . 54
27. DISPLAY command output . . . . . . . 55
28. DISPLAY command output . . . . . . . 56
29. ASCHPM1M . . . . . . . . . . . . 57
30. ASCHPM1D . . . . . . . . . . . . 57
31. DISPLAY command output . . . . . . . 58
32. ASCHPM2A . . . . . . . . . . . . 58
33. ASCHPM3A . . . . . . . . . . . . 59
34. DISPLAY command output . . . . . . . 60
35. ASCHPM1S . . . . . . . . . . . . 60
36. ASCHPM2M . . . . . . . . . . . . 61
37. ASCHPM1M . . . . . . . . . . . . 61
38. ASCHPM1D . . . . . . . . . . . . 61
39. ASCHPM2D . . . . . . . . . . . . 61
40. ASCHPM3D . . . . . . . . . . . . 61
41. SET command LIST option output . . . . . 62
42. DISPLAY command output . . . . . . . 63
43. Relationship of files to LUs . . . . . . . 66
44. Combinations of Partner LUs, TPs, and Logon

Modes . . . . . . . . . . . . . . 68
45. Side Information Estimate. . . . . . . . 68
46. TP Levels in a File . . . . . . . . . . 69

47. TP Profile Estimate . . . . . . . . . . 69
48. TP Profile Key . . . . . . . . . . . 70
49. Mapping an SNA TPNAME into an

Administration Utility TPNAME . . . . . 71
50. Program Attributes Section . . . . . . . 71
51. APPC/MVS Transaction Scheduler Section 72
52. Side Information Key . . . . . . . . . 77
53. Side Information Data . . . . . . . . . 77
54. Mapping an SNA TPNAME into an

Administration Utility TPNAME . . . . . 78
55. Example of Side Information . . . . . . . 79
56. Example of JCL to Invoke ATBSDFMU Using

SYSIN Data . . . . . . . . . . . . 89
57. Example of JCL to Invoke ATBSDFMU Using a

SYSIN Data Set . . . . . . . . . . . 90
58. Sample IKJTSOxx PARMLIB member 101
59. Sample ICQASE00 ICF Member . . . . . 102
60. Sample ISPF Panel Definition for APPC/MVS

Selections . . . . . . . . . . . . . 103
61. Sample ISPF Selection Panel with APPC/MVS

Options . . . . . . . . . . . . . 103
62. APPC/MVS Configuration with a Mix of

Allocate Requests to Specific and Generic LU
Names . . . . . . . . . . . . . . 112

63. Example of an LUADD Statement. . . . . 118
64. Example logon mode (APPCPCLM) . . . . 118
65. Example logon mode (MVSAPPC) . . . . 119
66. Application Definition to VTAM . . . . . 123
67. COBOL example of an ATBALC2 call using a

logon mode name . . . . . . . . . . 125
68. COBOL example of a CMINIT call using a

symbolic destination name . . . . . . . 125
69. Side Information for USR3NEWS . . . . . 125
70. Overriding Session Defaults. . . . . . . 126
71. APPCPM1A . . . . . . . . . . . . 140
72. APPCPM2A . . . . . . . . . . . . 141
73. APPCPM2M . . . . . . . . . . . . 141
74. APPCPM3M . . . . . . . . . . . . 141
75. DISPLAY command output . . . . . . . 142
76. APPCPM1D . . . . . . . . . . . . 143
77. APPCPM2D . . . . . . . . . . . . 143
78. APPCPM1A . . . . . . . . . . . . 144
79. APPCPM3S . . . . . . . . . . . . 145
80. APPCPM1S . . . . . . . . . . . . 145
81. APPCPM1D . . . . . . . . . . . . 145
82. APPCPM2D . . . . . . . . . . . . 146
83. APPCPM3D . . . . . . . . . . . . 146
84. SET command LIST option output . . . . 147
85. DISPLAY command output . . . . . . . 147
86. Sample APPC/MVS Conversation . . . . 153
87. Passing Security_PGM Information on an

Allocate Request . . . . . . . . . . 155
88. Sending Security Information through VTAM 157
89. Security for LU01 and LU02 . . . . . . 164
90. Setting Security Environment from the RACF

Profile . . . . . . . . . . . . . . 165

© Copyright IBM Corp. 1991, 2013 vii



91. TP Profiles and Side Information . . . . . 169
92. Protecting the Generic User ID. . . . . . 174
93. Permitting Update Access to a Multi-trans TP 174
94. Signing a User On to APPC/MVS (Unexpired

Password) . . . . . . . . . . . . 182
95. Signing a User On to APPC/MVS (Changing

an Expired Password). . . . . . . . . 183
96. Changing an Expired Password . . . . . 190
97. APPC Error Notification Panel . . . . . . 191
98. DOS Error Notification Panel . . . . . . 192
99. APPCPM1A . . . . . . . . . . . . 208

100. APPCPM2A . . . . . . . . . . . . 208
101. Example of Deactivating a TP . . . . . . 209
102. Sample DISPLAY Output . . . . . . . 210
103. ASCHPM4D . . . . . . . . . . . . 210
104. APPCPM1D . . . . . . . . . . . . 211
105. Sample DISPLAY Output . . . . . . . 213
106. Sample DISPLAY Output for System SY1 on

Network USIBMY0 . . . . . . . . . 221
107. Sample DISPLAY Output for System SY2 on

Network USIBMZ0 . . . . . . . . . 222
108. Sample DISPLAY Output . . . . . . . 223
109. Sample DISPLAY Output . . . . . . . 224
110. Sample DISPLAY Output . . . . . . . 225
111. Sample DISPLAY Output . . . . . . . 225
112. Example of a TP Profile for No Account

Tailoring . . . . . . . . . . . . . 234
113. Example of a TP Profile for Account Tailoring 235
114. Example of a RACF User Profile for Account

Tailoring . . . . . . . . . . . . . 235
115. Response Time in an APPC/MVS

Environment . . . . . . . . . . . . 238

116. Example . . . . . . . . . . . . . 249
117. Example . . . . . . . . . . . . . 250
118. Example . . . . . . . . . . . . . 250
119. Example . . . . . . . . . . . . . 250
120. Example . . . . . . . . . . . . . 250
121. Example . . . . . . . . . . . . . 250
122. Example . . . . . . . . . . . . . 250
123. Example . . . . . . . . . . . . . 251
124. Example . . . . . . . . . . . . . 251
125. Example . . . . . . . . . . . . . 251
126. Example . . . . . . . . . . . . . 251
127. Example . . . . . . . . . . . . . 251
128. Example . . . . . . . . . . . . . 252
129. Example . . . . . . . . . . . . . 252
130. Example . . . . . . . . . . . . . 252
131. Example . . . . . . . . . . . . . 252
132. Example . . . . . . . . . . . . . 253
133. Example . . . . . . . . . . . . . 253
134. Example . . . . . . . . . . . . . 253
135. Example . . . . . . . . . . . . . 253
136. Example . . . . . . . . . . . . . 253
137. Example . . . . . . . . . . . . . 254
138. Example . . . . . . . . . . . . . 254
139. Example . . . . . . . . . . . . . 254
140. Example . . . . . . . . . . . . . 254
141. Example . . . . . . . . . . . . . 254
142. Example . . . . . . . . . . . . . 255
143. Example . . . . . . . . . . . . . 255
144. Example of JCL to Use the APPCLOG Utility 265

viii z/OS V2R1.0 MVS Planning: APPC/MVS Management



Tables

1. Example of Multi-trans Resource Processing 37
2. Parameters Used in TP Message Log Definition 41
3. Combination of Parameters Used in TP

Message Log Definition . . . . . . . . 42
4. Summary of TP Profile Keywords . . . . . 76
5. Summary of Side Information Keywords 79
6. APPC/MVS Administration Utility Commands

and Required Data . . . . . . . . . . 87
7. TP Profile Administration . . . . . . . . 96
8. Side Information Administration . . . . . 96
9. Database Token Administration . . . . . . 96

10. Variables in ICQASE00 . . . . . . . . 103
11. How APPC sets byte 5 of the Exchange Log

Name (X'1211') GDS Variable . . . . . . 128
12. Persistent Verification Verb Exit Return and

Reason Codes . . . . . . . . . . . 179
13. General Format of SIGNON/Change

Password GDS Variable . . . . . . . . 184
14. Format of GDS Variable Sub-fields For A

Sign-on Request. . . . . . . . . . . 184
15. Format of GDS Variable Sub-fields For A

Sign-on and Change Password Request . . . 185
16. Format of GDS Variable Sub-fields For

SIGNON/Change Password Reply . . . . 185

17. Example GDS Variable (SIGNON/Change
password TP input) . . . . . . . . . 185

18. GDS Variable Structure (SIGNON/Change
password TP output) . . . . . . . . . 186

19. SIGNON/Change Password TP Status Values 187
20. SIGNON/Change Password Request

Formatting Errors . . . . . . . . . . 187
21. Security Mechanisms Available, based on

Application Security Types . . . . . . . 201
22. Summary of RACF Classes and Resource

Names . . . . . . . . . . . . . . 201
23. VTAM's HALT Command and Its Effect on

APPC/MVS Work . . . . . . . . . . 214
24. Stopping APPC/MVS Work. . . . . . . 215
25. Displaying TP Status . . . . . . . . . 217
26. Displaying UR Status . . . . . . . . . 218
27. Displaying Server Status . . . . . . . . 219
28. Displaying LU Status . . . . . . . . . 219
29. Displaying Scheduling Status . . . . . . 219
30. SMF Records for APPC/MVS . . . . . . 233
31. Local LU and TP profile level interactions 239
32. Character Sets 01134, Type A, and 00640 259

© Copyright IBM Corp. 1991, 2013 ix



x z/OS V2R1.0 MVS Planning: APPC/MVS Management



About this information

This information supports z/OS® (5650–ZOS).

APPC/MVS is an implementation of IBM's Advanced Program-to-Program
Communication (APPC) in the MVS operating system. APPC/MVS allows MVS
application programs to communicate on a peer-to-peer basis with other
application programs on the same z/OS system, different z/OS systems, or
different operating systems including Microsoft Windows®, Sun Solaris, AIX®,
OS/400®, OS/2, and VM in an SNA network. These communicating programs,
known as transaction programs or TPs, together form cooperative processing
applications that can exploit the strengths of different computer architectures.
Whenever the term program is used in this information, it means transaction
program, unless otherwise stated.

In this information, the term transaction program refers to a program scheduled
by the APPC/MVS transaction scheduler (ASCH) or to any other program,
running in an MVS address space, that uses APPC/MVS services. The term
transaction is not restricted to programs scheduled by the APPC/MVS transaction
scheduler, or to programs using APPC/MVS services.

Note that APPC/MVS transaction programs are parts of cooperative processing
applications and are distinct from, but coexistent and compatible with, CICS® and
IMS™ transaction processing applications.

This publication contains the general information necessary to plan, configure,
activate, customize, and maintain APPC/MVS. When more detailed or related
information exists elsewhere, this publication references other publications.

See z/OS Planning for Installation for information about how to install the software
products that are necessary to run APPC/MVS.

Who should use this information
This information is for the following people:
v System programmers responsible for setting up an APPC network that includes

APPC/MVS.
v APPC administrators who define transaction programs to APPC/MVS
v Security administrators responsible for the security of APPC transaction

programs.

How to use this information
All users of this information should read Chapter 1, “Introduction to APPC/MVS,”
on page 3 to familiarize themselves with APPC as it is implemented in MVS.
Chapter 2, “Planning Overview,” on page 23 introduces program management,
session management, security management and operations for APPC/MVS. This
publication describes each of these management areas as follows:
v Part 2, “Program management,” on page 31

– Chapter 3, “Scheduling Transaction Programs,” on page 33 describes the
special scheduling considerations for APPC/MVS transaction programs.

© Copyright IBM Corp. 1991, 2013 xi



– Chapter 4, “Defining Scheduling Characteristics with ASCHPMxx,” on page
51 describes how to use the ASCHPMxx parmlib member to define
scheduling characteristics for transaction programs that use the APPC/MVS
transaction scheduler.

– Chapter 5, “Controlling the Execution of Transaction Programs,” on page 65
describes how to define transaction programs to MVS through TP profiles and
side information.

– Chapter 6, “Using the APPC/MVS Administration Utility,” on page 85
describes how to use the APPC/MVS administration utility to define TP
profiles and side information.

– Chapter 7, “Using the APPC/MVS Administration Dialog,” on page 95
describes the panel interface used in the APPC/MVS administration dialog,
which defines TP profiles and side information.

v Part 3, “Session management,” on page 105
– Chapter 8, “Planning Sessions,” on page 107 describes defining sessions using

VTAM® in an SNA network.
– Chapter 9, “Controlling Configuration through APPCPMxx,” on page 137 tells

how to use the APPCPMxx parmlib member to define APPC/MVS local LUs
and their session characteristics.

v Part 4, “Security management,” on page 149
– Chapter 10, “Setting up Network Security,” on page 151 describes how to use

RACF® to set up APPC network security.
v Part 5, “System management,” on page 203

– Chapter 11, “Operating APPC/MVS,” on page 205 describes how to use MVS
operator commands to initialize and maintain APPC/MVS.

– Chapter 12, “APPC/MVS Measurement and Tuning,” on page 231 describes
how to set up performance groups for APPC, measure how APPC work
performs in the system, and then tune various aspects of the system to
optimize how APPC uses system resources.

v Part 6, “Installation checklists,” on page 247
– Chapter 13, “Installing an APPC Application,” on page 249 describes the basic

installation requirements for installing APPC, including the requirements for
installing a TP that initiates an outbound request and for installing a TP that
responds to an inbound request.

The last section contains installation information and includes an install checklist
for two types of transaction programs. Items in the checklist refer back to previous
sections in the publication for details.

Where to find more information
Where necessary, this publication references information in other publications,
using the shortened version of the publication title. For complete titles and order
numbers of the publications for all products that are part of z/OS, see z/OS
Information Roadmap. The following table lists the titles and order numbers of
publications for other IBM® products.

Short Title Used in This
publication Title Order Number

AS/400 APPC Programmer's
Guide

AS/400 Communications: Advanced Program-to-Program
Communication Programmer's Guide

SC41-8189

CPI-C Reference Common Programming Interface Communications Reference SC26-4399

xii z/OS V2R1.0 MVS Planning: APPC/MVS Management



Short Title Used in This
publication Title Order Number

OS/400 Communications
Configuration Reference

AS/400 Communications: Operating System/400®

Communications Configuration Reference
SC41-0001

SNA Formats SNA Formats GA27-3136

SNA LU 6.2 Reference: Peer
Protocols

SNA Network Architecture LU 6.2 Reference: Peer Protocols SC31-6808

SNA Network Product Formats SNA Network Product Formats LY43-0081

SNA Technical Overview SNA Technical Overview GC30-3073

SNA Transaction Programmer's
Reference Document for LU 6.2

SNA Transaction Programmer's Reference Document for LU
6.2

SC31-6808

VM

VM/ESA Connectivity VM/ESA Connectivity SC24-5756

About this information xiii



xiv z/OS V2R1.0 MVS Planning: APPC/MVS Management



How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 MVS Planning: APPC/MVS Management
SA23-1388-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1991, 2013 xv

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/


xvi z/OS V2R1.0 MVS Planning: APPC/MVS Management



z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1991, 2013 xvii



xviii z/OS V2R1.0 MVS Planning: APPC/MVS Management



Part 1. Introduction

© Copyright IBM Corp. 1991, 2013 1



2 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Chapter 1. Introduction to APPC/MVS

References:
v SNA Network Concepts and Products

v CPI-C Reference

APPC Overview
Advanced Program-to-Program Communication (APPC) is an implementation of
the Systems Network Architecture (SNA) LU 6.2 protocol on a given system. APPC
allows interconnected systems to communicate and share the processing of
programs.

How APPC Relates to SNA, LU 6.2, VTAM, and CPI-C
Many organizations require fast and accurate exchanges of data to perform their
business functions, and they depend on communication networks to facilitate such
data exchange. To address data processing and communication needs, IBM
designed the SNA architecture as a guide for connecting products in a
communications network.

The SNA architecture provides formats and protocols that define a variety of
physical and logical SNA components. One such logical component, called the
logical unit (LU), is responsible for handling communication between end users
and provides each end user with access to the network. SNA defines different
types of logical units to meet the needs of specific end users, whether the end user
is an application program, a stand-alone terminal, or a terminal and an operator.
LU 6.2 is a type of logical unit that is specifically designed to handle
communications between application programs.

Figure 1 on page 4 depicts a logical view of an SNA network that handles
communication from different users through LUs.

© Copyright IBM Corp. 1991, 2013 3



A typical SNA network consists of a diverse collection of processors or nodes.
Some nodes may be running the z/OS or VM operating systems. Using LU 6.2, an
APPC application running on one of these processors can communicate with a
remote APPC application running on another processor, regardless of the type of
processor on which the remote application is running.

A product that makes such communication possible between applications on
diverse processors is Virtual Telecommunications Access Method (VTAM). VTAM and
APPC/VTAM are implementations of SNA architecture, which direct data between
programs and devices. Figure 2 on page 5 represents an SNA network that is
directing data among unlike systems.

user

user

user userLULU

LU

LU

SNA Network

Figure 1. Network Communications between LUs and Users

Introduction to APPC/MVS

4 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Before data can flow over a network, the application programs that cause the
exchange of data must request communication services. For programmers who
code these applications, it is desirable to use a consistent interface to the
communications services, regardless of the environment. To address the need for a
consistent interface across different environments, IBM introduced Common
Programming Interface Communications (CPI-C). CPI-C defines how applications
written in high-level languages can be integrated and ported across various
platforms, such as z/OS, OS/390, AS/400, VM/ESA, and workstations.

The following example (Figure 3 on page 6 ) represents a network application of
two transaction programs (A and B) that use CPI Communications calls to establish
the APPC type of communication called a conversation. The conversation is
directed by the CMxxxx calls, which initialize and allocate the conversation
(CMINIT and CMALLC), send and receive data (CMSEND and CMRCV), and
eventually deallocate the conversation (CMDEAL).

The sample conversation shown could represent an application in which a
workstation program (Program A) sends input to its partner in z/OS (Program B),
which then processes and stores the input in a database.

OS/2 OS/2 OS/2 OS/400

LU

6.2

LU

6.2

LU

6.2

LU

6.2

LU

6.2

LU

6.2

LU

6.2

LU

6.2

LU

6.2

LU

6.2

OS/390

OS/390

VM

SNA

Network

Figure 2. An SNA Network for Communications between Different Systems

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 5



APPC Concepts and Commonly Used Terms
Before planning an APPC network, you must be familiar with certain SNA terms
as used in APPC. The APPC/MVS implementation of LU 6.2 uses the common
SNA programming and network terms that follow.

Programming Terms
Transaction Program (TP)

An application program that uses APPC communication calls is a
transaction program, or TP. A TP on one system can communicate with a
TP on another system to access resources on both systems. Both TPs can be
considered a single cooperative processing application that happens to
reside on two different systems.

Local TP/Partner TP
Whether a TP is a local TP or a partner TP usually depends on point of
view. From the point of view of a z/OS system, TPs residing on the system
are local TPs, and TPs on remote systems are partner TPs. However, from

LU
A

LU
B

NETWORK
PROGRAM PROGRAM

A B

CMINIT
/* Initialize a
/* conversation’s
/* characteristics

CMALLC
/* Allocate the
/* conversation */

CMSEND
/* Send data */

CMDEAL
/* Deallocate the
/* conversation

*/
*/
*/

*/

*/
*/

CMACCP
/* Accept the */
/* conversation */

CMRCV
/* Receive data */
/* until */
/* */

CMRCV
/* Receive data */
/* until a deallocate*/
/* return code is */
/* received */

COMPLETE_DATA_RECEIVED

/* Network gives the OK */

/*Session set up, if */
/* not up already */

/* LUB starts Program B */

/* Network gives the OK */

/* Network transfers the */
/* data to Program B */

/* Network ends conversation */

(Running)

Figure 3. CPI Communications Program Scenario

Introduction to APPC/MVS

6 z/OS V2R1.0 MVS Planning: APPC/MVS Management



the point of view of the remote system, the names are reversed: the TPs
that reside on its system are local TPs and the ones on z/OS are the
partner TPs.

A local TP can initiate communication with one or more partner TPs. The
partner might or might not reside on the local system. The TP does not
need to know whether the partner TP is on the same system or on a
remote system.

Other terms for TPs are inbound TP and outbound TP, which convey who
establishes the communication. An outbound TP is the one that starts a
conversation and an inbound TP is the one that responds. In Figure 3 on
page 6, program A is the outbound TP and program B is the inbound TP.
On z/OS, any program that calls APPC/MVS services to start a
conversation is considered an outbound TP, while an inbound TP requires
special processing by z/OS, such as scheduling and initiation, or
processing by an APPC/MVS server.

Client TP
A client transaction program is one that requests the services of an
APPC/MVS server.

APPC/MVS Server
An APPC/MVS server is an MVS application program that uses the
APPC/MVS Receive_Allocate callable service to receive allocate requests
from one or more client TPs. An APPC/MVS server can serve multiple
requestors serially or concurrently.

Conversation
The communication between TPs is called a conversation. Like a telephone
conversation, one TP calls the other and they “converse,” one TP “talking”
at a time, until one TP ends the conversation. The conversation uses
predefined communication services that are based on SNA-architected LU
6.2 services called verbs. These verb services are implemented in
APPC/MVS as callable services.

To start (allocate) a conversation, a TP issues an allocate call that contains
specific information, such as the name of the partner TP, the LU in the
network where the partner TP resides, and other network and security
information. The conversation is established when the partner TP accepts
the conversation. After a conversation is established, other calls can
transfer and receive data until a TP ends (deallocates) the conversation
with a Deallocate call.

Note: The CPI Communications protocol requires an
Initialize_Conversation (CMINIT) call before an Allocate call.

Conversation_ID
A conversation_ID is an 8-byte token that the Allocate,
Initialize_Conversation, Accept_Conversation, and Receive_Allocate calls
return. APPC provides the conversation_ID to uniquely identify the
conversation on subsequent APPC calls.

TP_ID A TP_ID is a unique 8-byte token that APPC/MVS assigns to each instance
of an inbound transaction program. When multiple instances of a TP are
running simultaneously under APPC/MVS, they have the same TP name,
but each has a unique TP_ID. The TP_ID can be used to trace a specific
instance of a TP in the system.

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 7



Conversation State
To ensure orderly conversations and prevent both TPs from trying to send
or receive data at the same time, APPC enforces conversation states. TPs
enter specific conversation states by calling specific APPC services, and the
states determine what services the TP may call next. For example, when a
local TP allocates a conversation, the local TP is initially in send state; and
when the partner TP accepts the conversation, the partner is in receive
state. As the need arises, the local TP can call a receive service to enter
receive state and put its partner in send state, allowing the partner to send
data.

Inbound/Outbound Allocate Request
An inbound allocate request is one that starts a conversation with a TP on
z/OS; an outbound allocate request is a request to start a conversation
from a local TP on z/OS.

Inbound/Outbound Conversation
Whether a conversation is inbound or outbound, similar to whether a TP is
a local TP or a partner TP, depends on point of view. From the point of
view of an z/OS system, an inbound conversation originates from a TP
that issues an inbound allocate request for a TP on the z/OS system. An
outbound conversation originates from a TP on the z/OS system that
issues an outbound allocate request for its partner.

The significant difference between inbound and outbound conversations
generally has to do with whether the conversation will initiate work that
requires special processing by z/OS. Inbound conversations might allocate
local TPs on z/OS that need to be scheduled by a transaction scheduler, or
inbound conversations might need to be queued for an APPC/MVS server.

Network Terms
Logical Units (LUs) and LU 6.2

A logical unit is an SNA addressable unit that manages the exchange of
data and acts as an intermediary between an end user and the network.
There are different types of logical units. Some LU types support
communication between application programs and different kinds of
workstations. Other LU types support communication between two
programs. LU type 6.2 specifically supports program-to-program
communication. The actual implementation of LU 6.2 on a given system is
APPC.

Local LU/Partner LU
Whether an LU is a local LU or a partner LU depends on point of view.
From the point of view of an z/OS system, LUs defined to the z/OS
system are local LUs and LUs defined to remote systems are partner LUs.
However, from the point of view of the remote system, the names are
reversed: the LUs that are defined to its system are local LUs and the ones
on z/OS are the partner LUs.

A partner LU might or might not be on the same system as the local LU.
When both LUs are on the same system, the LU through which
communication is initiated is the local LU, and the LU through which
communication is received is the partner LU.

LUs are defined to VTAM on z/OS by APPL statements in
SYS1.VTAMLST. LUs managed by APPC/MVS must also be defined by
LUADD statements in APPCPMxx parmlib members.

Introduction to APPC/MVS

8 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Physical units (PUs)
An SNA network consists of physical nodes, called physical units (PUs),
which are connected by physical data links. Typically in an APPC/MVS
network, there is at least one host node (PU 5), one communication
controller node (PU 4), and any number of peripheral nodes (PU 2.0 and
PU 2.1). A PU 2.0 can be either a programmable workstation or a
non-programmable workstation that is configured as a dependent LU. A
dependent LU can support a single session. Because only one conversation
can flow over a session, the dependent LU can be used by only one
transaction program at a time. A PU 2.1 is a physical node, such as a
programmable workstation, an AS/400, or other compatible hardware, that
can be configured as an independent LU. An independent LU can support
multiple sessions concurrently. With a conversation flowing over each
session, the LU can be used by many transaction programs at the same
time.

Sessions
A session is a logical connection that is established or bound between two
LUs of the same type. A session acts as a conduit through which data
moves between the pair of LUs.

The following figure shows how a session spans two LUs that are defined
on two different systems.

A session can support only one conversation at a time, but one session can
support many conversations in sequence. Because sessions are reused by
multiple conversations, a session is a long-lived connection compared to a
conversation.

If no session exists when a TP issues an Allocate call to start a
conversation, VTAM binds a session between the local LU and the partner
LU. After a session is bound, TPs can communicate with each other over
the session in a conversation. This sending of data between a local TP and
its partner occurs until one TP ends the conversation with a Deallocate call.

The following figure shows a single conversation between TP1 and TP2
that is occurring over a session.

LU
6.2

LU
6.2

session

Figure 4. A Session between Two LUs

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 9



If the hardware permits and the two LUs are configured as independent
LUs, they can have multiple, concurrent sessions called parallel sessions.
When a TP from either LU issues an allocate call and sessions exist but are
being used by other conversations, an LU can request a new session unless
the defined session limit is reached.

Default session limits are defined for an LU in a VTAM APPL statement.
Session-limit values can be changed by entering the VTAM MODIFY
CNOS and MODIFY DEFINE operator commands, or by modifying the
VTAM APPL definition statement and then restarting APPC/MVS. For
more information about these commands, see z/OS Communications Server:
SNA Operation.

The following figure shows three parallel sessions, each of which is
carrying a conversation.

An installation can define different types of sessions, but sessions are
ultimately defined by the LUs they span and by the session characteristics
contained in the VTAM logon mode table that is associated with the
session.

Sessions can span LUs on the same system, LUs on two like systems, and
LUs on two unlike systems that are LU 6.2 compatible. The following
figure shows three sessions bound from a single LU on SYS2. Session 1
spans LUs on two different systems. Session 2 spans the same two systems
but is bound from a different LU on SYS1. Session 3 is bound between two
LUs on the same system.

TP1 TP2
LU

6.2

LU

6.2

session

conversation

Figure 5. A Conversation between Two TPs

TP1 TP2

TP3

TP5TP4

LU

6.2

LU

6.2

parallel sessions

Figure 6. Parallel Sessions between LUs

Introduction to APPC/MVS

10 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Logon Modes
A logon mode contains the parameters and protocols that determine a
session's characteristics. Logon modes are defined in a VTAM logon mode
table, a compiled version of which exists in SYS1.VTAMLIB. Session
characteristics, such as pacing levels and class of service, are controlled by
entries in logon mode tables. A VTAM system programmer can use these
characteristics to define sessions for specific types of transactions, such as
for ASCII data, satellite communication, high-speed transactions, batch,
and interactive data.

Contention
When a TP from each LU in a session simultaneously attempts to start a
conversation, the situation that results is called contention. To control
which TP can allocate the conversation, a system programmer can define
for each LU the number of sessions in which it is the contention winner and
the number of sessions in which the LU is the contention loser.

Generally, a system programmer divides the contention winner role
between the two LUs. For example, if two LUs can have ten parallel
sessions and if the sessions will be equally started by both LUs, each LU is
designated the contention winner for five sessions and the contention loser
for five sessions. A contention winner can use the session without
informing the contention loser. A contention loser can request use of the
session from the contention winner.

Default contention winners and losers are defined for an LU in a VTAM
APPL statement.

What is APPC/MVS?
APPC/MVS is a VTAM application that extends APPC support to the z/OS
operating system. Although APPC/VTAM previously provided some LU 6.2
capability, APPC/MVS in cooperation with APPC/VTAM provides full LU 6.2
capability to programs running in z/OS.

TP2

TP3

TP4

TP5

SESSION 1

SESSION 2

SESSION 3

SYS1 SYS2

TP1

TP6

LU
6.2

LU
6.2

LU
6.2

LU
6.2

Figure 7. Different Types of Sessions between Two LUs

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 11



The primary role of APPC/MVS is to provide a set of MVS callable services that
enable z/OS application programs to communicate with other application
programs through communication protocols provided by the SNA network.

APPC/MVS consists of programming support and z/OS system support. The
programming support consists of APPC/MVS callable services and administrative
system files for transaction programs. The z/OS system support enables programs
to use the callable services in z/OS.

Programming Support for APPC/MVS Callable Services
The APPC/MVS callable services can be divided into five types as shown in
Figure 8 on page 13. Each type is explained in more detail following the figure.

Introduction to APPC/MVS

12 z/OS V2R1.0 MVS Planning: APPC/MVS Management



CPI Communications Calls
Common Programming Interface (CPI) Communications calls allow
high-level language programs to communicate regardless of the system on
which they are running. High-level language programs use the CPI
Communications calls to establish conversations and pass data back and
forth. When programs in z/OS use these calls, the underlying
implementation may be different from another system, but the results are
equivalent.

APPC
VTAM
APPC
VTAM

SAA CPI
Communications

Calls

SAA CPI
Communications

Calls

MVS TP
Conversation

calls
(LU 6.2)

MVS TP
Conversation

calls
(LU 6.2)

MVS Advanced
TP calls

MVS Advanced
TP callsAPPC/MVS

MVS Allocate
Queue

Service calls

MVS Allocate
Queue

Service calls

MVS System
Service calls
MVS System
Service calls

MVS

Network

Figure 8. Types of APPC/MVS Callable Services

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 13



For example, a distributed application written in C could have part of the
application on a workstation configured for APPC and the other part on an
z/OS system running APPC/MVS. The two parts of the application could
communicate using the same CPI Communications calls, even though their
underlying environments are different. Programs that use only the CPI
Communications calls can be ported to many other systems.

The CPI Communications calls use the SNA LU 6.2 architected verbs. Each
communication call is prefixed by the letters CM; for example, CMALLC
(Allocate). For more information, including languages supported, see z/OS
MVS Programming: Writing Transaction Programs for APPC/MVS .

APPC/MVS TP Conversation Calls
The APPC/MVS TP conversation calls are the z/OS implementation of the
SNA LU 6.2 architected verbs and are prefixed by the letters ATB. These
conversation calls are similar to the CPI Communications calls except that
the z/OS versions take advantage of specific z/OS functions. For example,
the z/OS Send_Data call (ATBSEND) can send data residing in a data
space—something the CPI Communications Send call cannot do.

Like the CPI Communications calls, the APPC/MVS TP conversation calls
can be issued from a high-level language such as COBOL, C, PL/I,
FORTRAN, and REXX, or from assembler language programs.

Unlike the CPI Communications calls, programs issuing the z/OS calls are
not portable to other systems.

APPC/MVS TP Advanced Calls
The z/OS advanced TP calls provide unique, non-LU 6.2 architected
services to TPs running in z/OS. These calls provide specific z/OS
functions, such as the ability to extract information about communications
resources used by APPC/MVS transaction programs.

The advanced calls can be issued from high-level languages other than
REXX, and from assembler language programs.

APPC/MVS Allocate Queue Services Calls
The APPC/MVS allocate queue services calls allow a server address space
on z/OS to own and manage inbound allocate requests. Servers own
allocate requests by registering for them through the Register_For_Allocates
callable service.

Rather than directing such requests to a transaction scheduler, APPC/MVS
places allocate requests for which a server has registered on a structure
called an allocate queue. APPC/MVS queues allocate requests on a first-in,
first-out (FIFO) basis. Servers process allocate requests by selecting them
from allocate queues and performing the requested function.

The allocate queue services, which can be called from a high-level
language such as COBOL, C, PL/I, FORTRAN, and REXX, or from
assembler language programs, are described in z/OS MVS Programming:
Writing Servers for APPC/MVS.

The allocate queue services calls are not based on the LU 6.2 architecture.

APPC/MVS System Service Calls
Another type of APPC/MVS callable service provides access to system
services not normally used by transaction programs. These services are
used by other z/OS components, subsystems, and transaction schedulers,
which run in supervisor state or PSW key 0-7. The system services calls

Introduction to APPC/MVS

14 z/OS V2R1.0 MVS Planning: APPC/MVS Management



can be called from assembler and high-level languages other than REXX,
and are documented in z/OS MVS System Messages, Vol 3 (ASB-BPX).

The z/OS system service calls are not based on the LU 6.2 architecture.

Administrative System Files
In addition to the callable services, APPC/MVS programming support provides an
administrative utility that creates and maintains entries about TPs (TP profiles and
side information) in Virtual Storage Access Method (VSAM) key sequenced data
sets (KSDS). The entries in the VSAM system files provide information that
facilitates the flow of conversations across sessions. The two types of entries are
placed in different VSAM files—a TP profile file and side information file.

A TP profile file contains scheduling and security information for z/OS programs
that are scheduled in response to inbound allocate requests. Each LU is assigned a
TP profile file that contains information about the programs that will be associated
with that LU. When an LU receives an inbound allocate request, it locates in its TP
profile file the information necessary to retrieve and schedule the transaction
program requested. A TP profile file can be assigned to more than one LU at a
time.

Inbound allocate requests for which a server has registered are not scheduled, and
therefore do not require a TP profile.

The side information file contains the translation of symbolic destination names
used by:
v z/OS local TPs, when issuing outbound allocate requests
v APPC/MVS servers, when registering for inbound allocate requests.

If the allocate or register request does not specify a symbolic destination name,
other parameters with routing information must be specified. There can be only
one side information file per system in use at one time.

Use of TP Profile and Side Information for a Scheduled Conversation: Figure 9
on page 16 shows how TP profile and side information files are used by TPs on
two different systems. TP1 on the peer system allocates a conversation across the
network to TP2, using symbolic destination name TP2sym. The side information
translates TP2sym into the necessary information to send the allocate request to the
correct LU on z/OS and to the correct TP profile. The TP profile schedules TP2 to
run so it can accept the allocate request with a Get_Conversation call. TP2 then
allocates a different conversation across the network to TP3 using symbolic
destination name TP3sym, and the process repeats itself going from z/OS to the
peer system.

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 15



Use of Side Information for an APPC/MVS Server: Figure 10 shows how side
information files are used by a client TP and its APPC/MVS server on two
different systems. The client TP on the peer system allocates a conversation across
the network to the server, using symbolic destination name SERVsym. The side
information on the peer system translates SERVsym into the necessary information
to send the allocate request to the server. Note that served requests do not require
the use of a TP profile.

Before APPC/MVS can queue the allocate request for the server, the server must
have previously registered for the request through the Register_For_Allocates
service. When it registered, the server specified symbolic destination name TPsym
on the call to Register_For_Allocates to own inbound conversations from the client
TP. The side information on the z/OS system translated TPsym into the necessary
information to identify allocate requests from the client TP. The server receives the
conversation through the Receive_Allocate service so that APPC communications
can ensue between client and server.

Peer System OS/390

TP1:

Allocate

TP2sym

TP3:

Get conv
TP profile

equivalent

side info

equivalent

LU LU

TP

profile

side

info

TP2:

Get conv

Allocate

TP3sym

Figure 9. Using TP Profiles and Side Information to Find a Partner TP

Peer System OS/390

Client TP:

Allocate

SERVsym

side info

equivalent

Server:

Register

TPsym

Receive

Allocate

side info

allocate

queue

LU LU

Figure 10. Using Side Information in Client/Server Communications

Introduction to APPC/MVS

16 z/OS V2R1.0 MVS Planning: APPC/MVS Management



A system programmer uses APPC administration utility (ATBSDFMU) to maintain
the TP profile and side information files by submitting a batch job that can add,
modify, retrieve, and delete entries. An interactive panel dialog using the APPC
administration utility is available with TSO/E 2.3 and above.

For more information about the administrative utility and the dialog, see
Chapter 5, “Controlling the Execution of Transaction Programs,” on page 65 z/OS
MVS Planning: APPC/MVS Management.

z/OS System Support
APPC/MVS operates primarily in two startable MVS address spaces, APPC and
ASCH. The APPC/MVS communication functions run in the APPC address space
and the APPC/MVS transaction scheduler functions run in the ASCH address
space.

Transactions residing in z/OS can be scheduled by the APPC/MVS transaction
scheduler or by an installation-defined scheduler. Transactions can also be routed
directly to an APPC/MVS server address space, rather than being scheduled.

When the APPC/MVS transaction scheduler is used, the installation can:
v Assign TPs to classes with specific scheduling characteristics.
v Assign TPs to a schedule type of standard or multi-trans. Standard scheduling

allocates resources for each transaction and deallocates them when the TP ends.
Multi-trans scheduling causes a transaction program to remain active between
inbound conversations with its resources available. This type of scheduling
avoids the overhead of repeated resource allocation and deallocation.

If an installation or product requires a specialized scheduler, APPC/MVS provides
system services that allow you to write a customized transaction scheduler, or to
specify a scheduler in addition to the APPC/MVS transaction scheduler. However,
before using an alternate transaction scheduler, you should first investigate using
an APPC/MVS server.

Specific APPC/MVS Support
Specific system support for APPC/MVS consists of:
v Two parmlib members, one to contain definitions for the APPC address space

(APPCPMxx) and the other to contain definitions for the APPC/MVS transaction
scheduler address space (ASCHPMxx).

APPCPMxx
Names APPC/MVS local logical units (LUs) and the administrative
VSAM KSDSs. It also sets up a correspondence between local LUs and
transaction schedulers, and, optionally, defines LUs that are not to be
associated with schedulers (“NOSCHED” LUs).

ASCHPMxx
Defines classes for the APPC/MVS transaction scheduler that determine
scheduling characteristics, such as the response time goal for TPs
running in a class.

v APPC implementation through MVS system commands:
– START command initiates the APPC and ASCH address spaces.
– SET command specifies the parmlib member or members whose definitions

are to dynamically modify APPC and ASCH characteristics.

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 17



– DISPLAY command displays current communication configurations,
information about queued and running transactions, information about active
conversations, and information about APPC/MVS server address spaces and
allocate queues.

– CANCEL command terminates local TPs and cancels the APPC and ASCH
address spaces.

– STOP command terminates an initiator address space.
– TRACE, TRACK, and STOPTR help with recovery and diagnostics associated

with APPC/MVS TPs.
v Interactive problem control system (IPCS) subcommands, APPCDATA and

ASCHDATA, that aid in problem determination for APPC/MVS.
v System resource manager (SRM) performance management of TPs scheduled

under the APPC/MVS transaction scheduler and based on installation
performance criteria for all TPs, individual TPs, TP initiator classes, or account
numbers.

v Resource Measurement Facility (RMF) monitoring of TP performance.
v System management facility (SMF) accounting for conversations by any TP and

for resources used by TPs scheduled under the APPC/MVS transaction
scheduler.

Overview of an APPC/MVS Outbound Request
When a local TP makes a request to establish a conversation with its partner, the
request is called an “outbound” request.

Figure 11 on page 19 illustrates APPC/MVS initialized and ready to service
communication requests. Communications services are available through
application programming interfaces to any MVS address space, such as TSO/E
users, batch jobs, and started tasks. An application (local TP) running in any
existing MVS address space can allocate a conversation with a partner TP. Note
that the APPC/MVS transaction scheduler plays no role in outbound requests.

If a symbolic destination name was used to allocate a conversation, the side
information file is accessed to translate the symbolic destination name into the
required routing information.

Introduction to APPC/MVS

18 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Overview of an APPC/MVS Inbound Request
When a request to establish communications comes from a remote node in the
network into the local z/OS system, it is called an “inbound” request. An inbound
request could also come from the same LU.

An illustration of inbound processing follows.

Side

Information

Schedule

Policy

APPC

VTAM

APPC

Address

Space

TSO

Calls

BATCH

. . .

OS/390

Address Spaces

STC

APPC/MVS

Transaction

Scheduler

Address

Space APPC

TP

Figure 11. APPC/MVS Communications Services (Outbound)

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 19



An installation can use Resource Access Control Facility (RACF) or an equivalent
security product to check that the inbound request is authorized to access the local
LU. A security environment can then be established to validate access to other
resources.

The inbound request contains the 1- to 64-character name of the local TP that is to
be attached. When an inbound request enters the system, APPC/MVS first checks
to see whether any address spaces on the local system had previously requested to
serve the request (that is, whether an APPC/MVS server has registered for the
request through the Register_For_Allocates service). If so, APPC/MVS places the
request on an allocate queue from which the server can later select it for
processing. When the server selects the request from the allocate queue, it receives
the conversation ID, and a conversation with the issuer of the request starts.

If the server used a symbolic destination name to register for the request,
APPC/MVS uses the side information file to translate the symbolic destination
name into the required routing information.

If no servers have registered for the request, APPC/MVS attempts to schedule the
request to a transaction scheduler. APPC/MVS maps the name of the TP targeted
by the request to a TP profile that contains information necessary to set up the
appropriate z/OS environment that will be required to run the TP. All inbound TPs

TP

Profile

Schedule

Policy

APPC

VTAM

APPC

Address

Space

APPC

TP

Calls

APPC/MVS

Transaction

Scheduler

Address

Space

APPC/MVS

Transaction

Initiator

APPC/MVS Transaction

Initiators

Allocate

Queue

Side

Information

Server

Address

Space

Figure 12. APPC/MVS Communication Services (Inbound)

Introduction to APPC/MVS

20 z/OS V2R1.0 MVS Planning: APPC/MVS Management



processed by the APPC/MVS transaction scheduler must have a TP profile
associated with them. The TP profile contains information such as:
v Transaction program capabilities and status
v Transaction scheduler information:

– MVS job name
– MVS program name (for example, “IEBMAIL”)
– Data set allocation environment
– Execution class.

The APPC/MVS transaction scheduler is responsible for maintaining pools of
address spaces into which TPs are scheduled. These address spaces can receive the
services of all MVS components, and are called subordinate address spaces. An
APPC transaction initiator is the program that runs in each of the APPC/MVS
transaction scheduler's subordinate address spaces, and is responsible for setting
up the appropriate environment (as specified in the TP profile) and managing the
processing of the TPs. The APPC/MVS transaction initiator is similar to the MVS
initiator that provides a processing environment for traditional types of work on
z/OS (such as batch jobs). The term transaction initiator is used throughout this
document to mean an APPC/MVS transaction scheduler subordinate address
space. Figure 12 on page 20 shows these initiators on the right-hand side.

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 21



22 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Chapter 2. Planning Overview

An APPC network is transaction-driven. Thus, the physical and logical aspects of
the network reflect the types of transaction programs that will communicate over
the network. For example, if an installation wants to run an office application with
the user interface on several PCs and the storage and search facilities on an z/OS
system, the necessary levels of connection between the PCs and the z/OS system
must be set up. Once the network structure is in place, program communication
can flow much like conversations on a telephone line.

Planning and defining an APPC network is a team effort involving MVS system
programmers as well as application programmers, VTAM programmers, security
administrators, hardware engineers, and system programmers for other systems in
the network. Planning usually begins with a clear idea of the kinds of programs
that will run in the network. Then, to allow the programs to communicate,
appropriate participants define levels of connections in MVS and VTAM, and make
corresponding connection definitions on the peer systems.

Reference:
z/OS Communications Server: SNA Network Implementation Guide

Levels of Connections
Before programs on two different systems can converse in an APPC network,
connections on various levels must exist. Basically the connections are on the
physical level, the logical level, and the program level. The physical level of
connection is the hardware that links like and unlike systems together. After the
physical connection is made, a logical level of connection is possible. Logical
connections are the definitions that permit VTAM to establish a session. The
session allows transaction programs on different systems to communicate on the
program level. The program level connection is the transaction program
identification and the use of callable services, which establish a conversation.

A hardware connection can support multiple sessions. A single session supports
one conversation at a time. Figure 13 on page 24 shows the relationship of the
three levels of connection.

© Copyright IBM Corp. 1991, 2013 23



When using RACF, a security administrator can define security for an APPC
network on both the logical level and the program level. Physical level security is
accomplished through facilities planning.

For information about security, see Chapter 10, “Setting up Network Security,” on
page 151.

Physical Connections
There are many hardware configurations that support APPC/MVS. For example,
several combinations of hardware can link a workstation to an z/OS system. The
configuration you choose depends on your intended use of APPC/MVS, the
hardware available, and the physical connections already in place.

Figure 14 shows a sample configuration to give you an idea of some connectivity
options available through APPC/MVS.

The configuration example shows a connection of two z/OS systems and the
connection of one of the z/OS systems to many workstations through a
communications controller.

session

hardware

conversation

Physical level

Logical level

Program level

(hardware)

(session)

(conversation)

TP 1 TP 2

LULU

6.2 6.2

System 1 System 2

Figure 13. Levels of Connections

TP1 TP2
LU

6.2

LU

6.2

session

conversation

Figure 14. APPC Connectivity Options

24 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Hosts can be connected through a channel-to-channel adapter. The two hosts
would be running MVS/ESA SP 4.2 or higher with an appropriate level of VTAM.
In the example, one z/OS system has two LUs defined: SRV1LU01 and SRV1LU02.
The other z/OS system has one LU defined, SRV2LU03. Each z/OS system belongs
to its own SNA network subarea.

To connect the host to the workstations, a communications controller from the 37x5
family is used. The 37x5 communications controller is installed between the host
and the workstation to allow remote communications through Synchronous Data
Link Control (SDLC). The 37x5 must be running an appropriate level of NCP. If the
37x5 has a Token Ring interface card (TIC) installed, a Token Ring of workstations
can be connected to the 37x5 directly or through a gateway workstation.

An alternative configuration for remote communications is to connect a
workstation to a modem, and communicate over the phone lines to another
modem, which would then be connected to the 37x5. The 37x5 and all of the
connected workstations make up another subarea. Each workstation has its own
LU.

Another possible configuration is to arrange multiple workstations in a Token Ring
network with a gateway workstation connected to the 37x5 through SDLC and two
modems.

Transaction programs communicating through any of the defined LUs can
communicate with each other. A transaction program on SRV1LU01 can
communicate with a transaction program on SRV1LU02 or SRV2LU03. TPs can
communicate between the two z/OS systems, or between an z/OS system and any
of the workstations.

Program Connections
Transaction programs that run in an APPC/MVS network must follow general
APPC requirements as well as MVS requirements. For example, one general
requirement is that any TP starting a conversation in an APPC network must
identify its logical connection by directly or indirectly naming a logon mode and
the partner LU.

These and other program level considerations are described in z/OS MVS
Programming: Writing Transaction Programs for APPC/MVS.

Logical Connections and APPC/MVS Management
Before a TP running on an z/OS system can use APPC/MVS to converse, system
programmers must provide the information z/OS needs to support the TP's
conversations. Communication requirements must be determined and translated
into LUs and VTAM session definitions. In addition, TPs must be defined to the
system and grouped according to scheduling classes. If the conversations require
security, RACF provides various methods to secure all or part of the supporting
APPC/MVS structure.

These considerations and many more fall under the category of APPC/MVS
management, the topic of this document.

APPC Management Tasks
The management tasks required to support APPC/MVS fall into four categories:

Chapter 2. Planning Overview 25



Program Management
After an installation has coded or acquired APPC applications, a
programmer defines scheduling classes for the TPs and uses the
administration utility or dialog to define TP profiles and side information.

Session Management
To enable TPs to communicate over the network, an installation must plan
each LU 6.2 it needs and the characteristics of sessions that connect the LU
to LU 6.2s on other systems. Each LU 6.2 is defined to APPC/MVS as a
local LU, and to VTAM in an APPL statement. Session definitions are
determined by logon mode names that must first be defined in VTAM and
must correspond to session characteristics defined on the partner system.

Security Management
Security of APPC/MVS can be controlled on the LU-to-LU level, LU-to-TP
level, TP-to-TP level, LU-to-user level, and TP-to-user level. Some specific
ways of controlling access are through defining TPs as RACF resources,
which controls access to TPs, and defining a pair of LUs as a RACF
resource, which allows specific levels of conversation security.

System Management
To operate APPC/MVS, use various MVS system commands such as
START, DISPLAY, SET, STOP, and CANCEL. To control how APPC work
performs in relation to other z/OS work, create an SRM performance
group for TPs scheduled by the APPC/MVS transaction scheduler and a
second SRM performance group for any transactions processed by
APPC/MVS servers. You can also use SMF records to audit TPs.

The remainder of this document is organized into four parts based on these
management categories. The way the tasks are ordered is not, of course, the only
way to order them; and the processes described are not performed only when
APPC is first introduced on an z/OS system. The tasks and processes are ongoing.
As an installation acquires more TPs, for example, those TPs must be defined,
possibly creating the need to add an LU or change an existing LU.

System-Wide APPC Connections
Figure 15 on page 28 shows the MVS support structure for APPC/MVS using
specific values. The examples, which show only a subset of all possible situations,
go across the four management areas using values that are numbered. A
description of each numbered value follows:
v �1� Name of APPC/MVS transaction scheduler class

A class of transaction initiators for the APPC/MVS transaction scheduler must
be defined in an ASCHPMxx member of the parmlib concatenation. A TP is
assigned to a class through a TP profile. An APPC/MVS transaction scheduler
class is recorded in an SMF type 33 subtype 1 record.

v �2� Name of VSAM KSDS for TP profiles
TP profiles are contained in a VSAM key sequenced data set (KSDS). You must
first define the VSAM KSDS with a DEFINE CLUSTER command and then
associate it to an LU in an LUADD statement within an APPCPMxx member of
the parmlib concatenation. If you need RACF protection for the VSAM KSDS,
define it with a RACF ADDSD command and then allow access to specifically
named users.

v �3a� Transaction program name
A transaction program name can be from 1 to 64 characters long. It is a required
parameter in the TP profile key and may be, but does not have to be, the same

26 z/OS V2R1.0 MVS Planning: APPC/MVS Management



as the jobname in the TP profile JCL. The transaction program name is recorded
in an SMF type 33 record (subtypes 1 and 2). If you need RACF protection for
an individual TP, you can define the transaction program name to a RACF
APPCTP class. If you specify TPNAME in the side information, it must match
the TPNAME in the TP profile, or the TP will not run. So, in Figure 15 on page
28, the entry for TPNAME in SYS1.APPCTP must match the entry for TPNAME
in SYS1.APPCSI.

v �3b� Jobname
A job name in the TP profile is 1 to 8 characters long and is the name of the JCL
job that runs the transaction program. The job name can be, but does not have to
be, the same as the transaction program name used in the TP profile key. To
cancel a transaction program, use the job name and address space identifier in a
CANCEL command.

v �4� Level of access for a transaction program
Transaction program execution access is determined by the level of the TP
profile and the level of the LU through which the transaction program
communicates. RACF can use the level of access to specifically define access to
each transaction program and its TP profile.

v �5a� �5b� Account number
An account number can be assigned to a transaction program in TP profile JCL
(5a) or in a RACF user profile (5b). When the TP's account is to be tailored, the
account number comes from the RACF user profile. SMF can audit a TP using
either account number.

v �6� Database token for VSAM KSDS
You can assign a database token to each VSAM KSDS to represent the file name
in RACF security definitions that give access to TPs.

v �7� Name of VSAM KSDS for side information
Side information is contained in a VSAM key sequenced data set (KSDS). You
must define the VSAM KSDS with a DEFINE CLUSTER command and then
associate it with an LU in a SIDEINFO statement within an APPCPMxx parmlib
member. If you need RACF protection for the VSAM KSDS, define it with a
RACF ADDSD command and then allow access to specifically named users.

v �8� Logon mode name
A logon mode contains the definition of session characteristics for network
communication. Logon modes are compiled entries in the VTAM logon mode
table in SYS1.VTAMLIB. (The logon mode in this example is shown as
uncompiled source.) When a transaction program initiates a conversation, it
must specify a logon mode or indirectly specify it. In APPC/MVS, a TP can
indirectly specify a logon mode through a reference to side information.

v �9� Partner LU name
The partner LU (logical unit) is the SNA type 6.2 LU that, in this example, is
located on a workstation. When an outbound transaction program initiates a
conversation, it can directly or indirectly specify the partner LU. In z/OS, a TP
can indirectly specify the partner LU in side information. SMF records the
partner LU name in SMF type 33 records (subtypes 1 and 2). If RACF protection
is required, the partner LU is specified in RACF LU access definitions.

v �10� Local LU name
The local LU (logical unit) is the SNA type 6.2 LU that, in this example, is
located on an z/OS system. In APPC/MVS, the local LU is defined by an
LUADD statement in an APPCPMxx parmlib member. In VTAM, the z/OS local
LU is defined by a VTAM APPL definition statement in SYS1.VTAMLST.

v �11� Name of VTAM logon mode table

Chapter 2. Planning Overview 27



The VTAM logon mode table contains logon mode entries that define network
session characteristics. The logon modes available for an z/OS local LU are
contained in the table named after the MODETAB parameter in the LU's VTAM
APPL statement.

PROGRAM MANAGEMENT

VSAM Administration Files

CLASSADD LUADD

DATASET(SYS1.APPCSI)
SIDEINFO

TPNAME(MAIL)
SYSTEM
TPSCHED_DELIMITER(##)

//MAIL JOB ’P1234’
//STEP1 EXEC PGM=RUNMAIL
+++
##

DBTOKEN(TOKEN1)

DESTNAME(DESTA)
TPNAME(MAIL)
MODENAME(MODE01)
PARTNER_LU(OS2LU01)

DESTNAME(DESTB)
TPNAME(MAIL_NOTICE)

APPL ACBNAME=MVSLU01
APPC=YES
DDRAINL=NALLOW
DRESPL=NALLOW
MODETAB=ISTINCLM
SRBEXIT=YES

DEFINE CLUSTER (NAME(SYS1.APPCTP) -

DEFINE CLUSTER (NAME(SYS1.APPCSI) -

MVSLU01
CLASS(FAST)
JCL_DELIMITER(+++)

CLASSNAME(FAST),
MAX(10),
MIN(2),
RESPGOAL(,01),
MSGLIMIT(500)

ACBNAME(MVSLU01),
SCHED(ASCH),
TPDATA(SYS1.APPCTP),
TPLEVEL(SYSTEM),
BASE

VTAM Configuration

Peer Configuration

SESSION MANAGEMENT

ASCHPM0A

SYS1.APPCTP (TP profiles) SYS1.VTAMLST

MODEENT
LOGMODE=MODE01,
RUSIZES=X’8989’,

Partner LU=MVSLU01
Local LU=OS2LU01
Trans.Ser.Mode=MODE01

MODE01

SYS1.VTAMLIB

APPCPM1A

SYS1.APPCSI (side information)

OS/2 CONFIG File

MVSAPPLS

ISTINCLM

Legend:
Name of APPC/MVS transaction scheduler class Jobname of transaction program

Name of VSAM KSDS for TP profiles Level of access for a transaction program

Transaction program (TP) name Account number

1

2

1 10

2
4

7

2

3a
4

1

5a3b

6

10

7

8
9

11

8
8

10
9
8

2

7

3b

4

3a 5a 5b

Parmlib Concatenation

Figure 15. System-Wide APPC Connections (Part 1 of 2)

28 z/OS V2R1.0 MVS Planning: APPC/MVS Management



SYSTEM MANAGEMENT

Administration Utility Access to Administration Files:

RACF User Access to Administration Files:

RACF Access from LUs:

RACF Access to TPs:

RACF User Profile:

RACF Access LU-to-LU:

RACF Access to LUs:

Database token for VSAM KSDS Partner LU name

Name of VSAM KSDS for side information Local LU name

Logon mode name Name of VTAM logon mode table

RDEFINE FACILITY APPCMVS.DBTOKEN UACC(NONE)

PERMIT APPCMVS.DBTOKEN CLASS(FACILITY)
ID(userid) ACCESS(UPDATE)

SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)

RDEFINE APPL MVSLU01 UACC(NONE)

PERMIT MVSLU01 CLASS(APPL)
ID(groupid) ACCESS(READ)

SETROPTS CLASSACT(APPL) RACLIST(APPL)

RDEFINE APPCPORT OS2LU01 UACC(NONE)

PERMIT OS2LU01 CLASS(APPCPORT)
ID(groupid) ACCESS(READ)

SETROPTS CLASSACT(APPCPORT)
RACLIST(APPCPORT)

RDEFINE APPCTP TOKEN1.SYSTEM.MAIL
UACC(NONE)

PERMIT TOKEN1.SYSTEM.MAIL CLASS(APPCTP)
ID(groupid) ACCESS(EXECUTE)

SETROPTS CLASSACT(APPCTP) RACLIST(APPCTP)

USER22 WORKATTR (WANAME('LINDA MEYERS') . . .
WAACCNT('22LMD5A'))

RDEFINE APPCLU MVSNET1.MVSLU01.OS2LU01
SESSION(SESSKEY(KEY1)) UACC(NONE)

SETROPTS CLASSACT(APPCLU)

RDEFINE PROGRAM ATBSDFMU
ADDMEM('SYS1.MIGLIB'/volser) UACC(NONE)

PERMIT ATBSDFMU CLASS(PROGRAM)
ID(userid) ACCESS(READ)

ADDSD 'SYS1.APPCTP' UACC(NONE)
PERMIT 'SYS1.APPCTP' ID(userid)
ACCESS(UPDATE) WHEN(PROGRAM(ATBSDFMU))

ADDSD 'SYS1.APPCSI' UACC(NONE)
PERMIT 'SYS1.APPCSI' ID(userid)
ACCESS(UPDATE) WHEN(PROGRAM(ATBSDFMU))

SECURITY MANAGEMENT (RACF)

7

10

2

7

10

10

10

11

3a

3a

5b

9

9

9

9

4

4

6

7

8

6

2

MVS System Commands:

IPCS Commands:

Type 33 Subtype 1

SMF33TPN=MAIL
SMF33LLN=MVSLU01
SMF33PLU=OS2LU01
SMF33TPC=FAST

CTRACE
APPCDATA, ASCHDATA

START APPC,SUB=MSTR,APPC=1A
START ASCH,SUB=MSTR,ASCH=0A

SET APPC=1A
SET ASCH=0A

DISPLAY APPC
DISPLAY ASCH

STOP ASCHINT,A=asid

CANCEL MAIL,A=asid
CANCEL ASCH

SMF Records

3b

3a

9

1

10

Figure 16. System-Wide APPC Connections (Part 2 of 2)

Chapter 2. Planning Overview 29



30 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Part 2. Program management

© Copyright IBM Corp. 1991, 2013 31



32 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Chapter 3. Scheduling Transaction Programs

MVS processes inbound APPC/MVS transaction programs (TPs) differently from
other types of work. To initiate and schedule TPs in response to inbound requests
from their partners, APPC/MVS provides a transaction scheduler separate from the
job entry subsystems.

References:
z/OS MVS System Management Facilities (SMF)

Overview of Transaction Scheduling
In terms of transaction scheduling, there are two distinct types of APPC transaction
programs in MVS, namely outbound and inbound. A transaction program that
initiates a conversation by issuing an allocate request is an outbound transaction
program; a transaction program that receives the allocate request is an inbound
transaction program.

Inbound transaction programs are different from batch jobs and started tasks,
because the transaction programs are introduced into the system by a work
scheduler that is different from the output processor. In contrast, traditional work
is controlled from scheduling to output processing by a job entry subsystem.

APPC/MVS provides a transaction scheduler that initiates and schedules
APPC/MVS TPs in response to inbound allocate requests for conversations.
APPC/MVS also provides system services that let an installation run TPs under a
different transaction scheduler. Those system services are applicable to MVS
subsystems or other application environments that provide their own work
schedulers.

A transaction scheduler commonly has direct control over a number of address
spaces and schedules its applications into these “subordinate” address spaces; the
use of subordinate address spaces allows a transaction scheduler to access APPC
from its own environment for additional performance and function. Each
transaction scheduler may have its own term for these subordinate address spaces;
for example, the APPC/MVS transaction scheduler refers to them as “transaction
initiators.”

See Figure 17 on page 34 for an overview of how multiple transaction schedulers
and their subordinate address spaces operate under APPC/MVS. When
APPC/MVS receives an inbound allocate request for a particular LU, it sends a
message describing the request to the associated transaction scheduler. That
scheduler then initiates the appropriate transaction program.

© Copyright IBM Corp. 1991, 2013 33



Scheduling Characteristics of the APPC/MVS Transaction
Scheduler

When an inbound APPC/MVS transaction program is scheduled by the
APPC/MVS transaction scheduler, it is distinguished from other MVS work as
follows:

Initialization
In response to an inbound allocate request from its partner, a transaction
program is initiated through a program controlled interface, namely the
allocate callable service. If the allocate service follows the LU 6.2 protocol,
it can be issued from a program on the local MVS and from a program in a
different operating system or even in a different network. For information
about the Allocate call and other callable services used in APPC, see z/OS
MVS Programming: Writing Transaction Programs for APPC/MVS.

Definition
Each inbound APPC/MVS transaction program is defined by a TP profile
that is created by the installation and stored in a VSAM key sequenced
data set. The TP profile contains scheduling parameters and a subset of
JCL to define resource requirements. For information about TP profiles, see
Chapter 5, “Controlling the Execution of Transaction Programs,” on page
65. For information about the subset of JCL to use, see “Specific Scheduler
JCL Information for TP Profiles” on page 80

TP
Profile

APPC/MVS
Address
Space

APPC/MVS
Transaction
Scheduler

Transaction
Scheduler

Transaction
Initiator

Transaction
Programs

Transaction
Scheduler Subordinate
Address SpacesVTAM

Inbound
Work

Transaction
Programs

Route To
Scheduler
Associated
With the LU

APPC/MVS Transaction
Scheduler Subordinate
Address Spaces

Message
Routine

Message
Routine

Figure 17. Transaction Program Routing

34 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Output
APPC/MVS-scheduled TPs can use the same JES SYSOUT functions
available to other MVS applications, with the exception that SYSOUT data
sets allocated by TPs are treated as spin data sets. To guarantee that spin
data sets are processed before initiator cleanup, IBM recommends that all
SYSOUT specifications, for both standard and multi-trans TPs, include the
FREE=CLOSE parameter. For more information about SYSOUT processing,
see “Specific Scheduler JCL Information for TP Profiles” on page 80.

If the installation changes the default subsystem for APPC work with the
SUBSYS parameter in an ASCHPMxx parmlib member, then JES services
may be unavailable to APPC/MVS-scheduled TPs.

Performance
Transaction initiators are managed based on response time goals set for
classes. Classes are defined in an ASCHPMxx parmlib member, and a TP is
assigned to a class in its TP profile. More information about classes
appears later in this chapter and in Chapter 4, “Defining Scheduling
Characteristics with ASCHPMxx,” on page 51. Information about how to
set a response time goal appears in “Defining Classes and Response Time
Goals” on page 237.

For information about APPC performance, see Chapter 12, “APPC/MVS
Measurement and Tuning,” on page 231.

Management
System management facilities (SMF) provides records to support
transaction programs running on an z/OS system, and the Resource
Measurement Facility (RMF) reports on this work. For more information
about the support SMF provides, see “Using SMF to Audit APPC Work”
on page 233.

Security
Authority to use a transaction program can be controlled by a security
product. Transaction programs can be made available as a public resource,
or can be limited to particular users or groups of users. For more
information, see Chapter 10, “Setting up Network Security,” on page 151.

Problem Determination
Transaction program processing is logged differently from work scheduled
by a job entry subsystem. Runtime execution messages are written to a TP
message log, the name of which is specified in the TP profile. For more
information about logging, see “Logging Transaction Program Processing”
on page 40.

When APPC/MVS finds errors during processing of inbound requests,
APPC/MVS can send error log information to a partner system or
program. Error log information describes errors that APPC/MVS finds
when it tries to schedule a TP, such as problems with logical unit (LU)
definitions or problems with processing allocate requests. Alternate
transaction schedulers can also send error log information when processing
their inbound requests.

For information about how an alternate scheduler can send error log
information and the format of the variable that is used to send that
information, see the description of the Cleanup_TP service in z/OS MVS
System Messages, Vol 3 (ASB-BPX).

Chapter 3. Scheduling Transaction Programs 35



Using the APPC/MVS Transaction Scheduler
The APPC/MVS transaction scheduler is a startable address space that is initialized
by a START ASCH command at the time the APPC address space is initialized. To
use the APPC/MVS transaction scheduler, both the APPC and ASCH address
spaces must be started. (For information about starting these address spaces, see
“Starting the APPC and ASCH Address Spaces” on page 205.)

When a TP runs under the APPC/MVS transaction scheduler, it can take
advantage of:
v Classes of transaction initiators
v DISPLAY ASCH operator command to monitor scheduling activity
v TP schedule types

Classes of Transaction Initiators
The APPC/MVS transaction scheduler can schedule programs according to classes
that an installation defines in a parmlib member (ASCHPMxx) and assigns to
programs in TP profiles. For each class, the installation can assign a minimum and
maximum number of transaction initiators to be available for initiating programs
and assign a response time goal for each TP in the class.

Classes should be defined based on the characteristics of the TPs that will run in a
particular class. TPs for a particular class should have similar characteristics such
as run-time, priority, schedule-type, and security. The APPC/MVS transaction
scheduler attempts to optimize scheduling within the limits set by the system
programmer, by varying the number of transaction initiators according to the work
load level and reassigning transaction initiators to other classes as the need arises.
For more information about defining classes, see Chapter 4, “Defining Scheduling
Characteristics with ASCHPMxx,” on page 51.

Note: At least one class definition is required for work assigned to the APPC/MVS
transaction scheduler.

DISPLAY Command
The DISPLAY ASCH command can monitor the activity of the APPC/MVS
transaction scheduler. The information displayed and the degree of detail are
controlled through various parameters. It is possible to display the current number
of classes, number of active TPs, queued TPs, and the total number of transaction
initiators as well as the ones that are idle. For more information about the
DISPLAY command, see “Displaying Information about APPC/MVS Work” on
page 207.

TP Schedule Types
Transaction programs initiated by the APPC/MVS transaction scheduler are
divided into two scheduling types: standard and multi-trans. The schedule type
controls how easily the program can be re-invoked.

Standard Schedule Type
When transaction programs are scheduled as standard (the default), APPC/MVS
initializes them for each inbound conversation request and terminates them when
they finish processing. With standard scheduling, a transaction program's resources
are allocated and deallocated for each inbound conversation request. Standard
scheduling provides a clean environment each time the TP is scheduled, and

36 z/OS V2R1.0 MVS Planning: APPC/MVS Management



isolates TPs from each other and from subsequent requests for the same transaction
program. The standard schedule type provides full security, data integrity, and
basic performance for TPs.

Multi-Trans Schedule Type
The multi-trans schedule type causes a transaction program to remain active
between inbound conversation requests, with its resources available. The first
inbound request starts the multi-trans TP. Subsequent requests can use the same
instance of the transaction program and avoid the overhead of repeated resource
allocation and deallocation.

Multi-trans processing is appropriate only for certain types of transaction
programs. As a general rule, when properly implemented, multi-trans processing is
appropriate for transaction programs that are requested often by multiple users,
that have an initial high resource overhead, and that finish processing
comparatively quickly.

For more information about multi-trans processing, see “Multi-Trans Processing”
and z/OS MVS Programming: Writing Transaction Programs for APPC/MVS.

Multi-Trans Processing
A multi-trans program is typically coded with a multi-trans shell, an environment
that performs initialization and termination processing, surrounding the part of the
TP that holds conversations.

Table 1 shows, at a very high level, how a multi-trans TP might work in an
electronic mail application. It also shows how processing costs (resource
responsibility) are divided between the multi-trans shell and individual users.

Table 1. Example of Multi-trans Resource Processing

Action
Resource

Responsibility

1. John is the first person to arrive in the morning, and requests
his electronic mail.

none

2. John's request starts the system's mail log facility, a multi-trans
TP named MLF.

shell

3. MLF performs initialization processing, and loads the notes for
all users from permanent storage to a data space.

shell

4. MLF processes John's request and sends John his notes. John

5. The APPC/MVS transaction scheduler causes MLF to wait. shell

6. Janet requests her mail. MLF immediately sends Janet her
notes.

Janet

7. A new note comes in for John, and MLF is signalled. shell

8. The new note is read from permanent storage to MLF's data
space. John is notified of the new note.

shell

9. John requests his new mail. MLF immediately sends John his
new note.

John

10. MLF ends, and performs clean-up processing. shell

Chapter 3. Scheduling Transaction Programs 37



When the multi-trans program is scheduled in response to an inbound allocate
request, the multi-trans shell gets control first and allocates general resources. It
then calls for the initial inbound request with the Get_Transaction (ATBGTRN)
callable service. When the conversation ends, the shell regains control and uses the
Get_Transaction call again to get the next conversation request on the queue.

Figure 18 gives an overview of initialization and termination processing in a
multi-trans TP.

To use multi-trans scheduling, a TP must define in its TP profile both a schedule
type of multi-trans, and a special user ID (generic ID) for multi-trans shell
processing.

The generic ID contained in the TP profile entry identifies the environment for the
multi-trans shell. The shell runs under this generic ID during initialization, while it
allocates general resources for the TP to use. The generic ID remains in effect until
the first successful Get_Transaction call, when the environment is personalized to
the user ID associated with the inbound request. That personalized environment
covers the entire conversation and remains in effect until the next Get_Transaction
call, or until the shell explicitly returns to its generic environment, typically to
perform cleanup or data set reallocations between conversations. To return to its
generic user ID, the shell can call the Return_Transaction (ATBRTRN) service.

The multi-trans shell can process an initial inbound Allocate request without first
issuing Get_Transaction; in this case, the generic ID— not the user ID associated
with the inbound request— identifies the conversation being processed. Using the
multi-trans shell's generic ID this way can be useful when:
v A trusted, remote partner TP cannot supply a user ID on its inbound Allocate

requests, or

┌───────────────────────────┐
│ │
│ Multi-Trans Shell │
│ │
│ Initialization │
│ allocate data... │
│ │

←─────────────┼─── Call ATBGTRN ←─────┐ │
Get_Transaction │ IF RC > 4 THEN │ │

│ terminate │ │
│ │ELSE │ │
│ │ ┌────────────┐ │ │
│ └─→ │ │ │
│ │Transaction │ │ │

←────────────┼──────┼── │ │ │
Accept_ . │ │ │ │ │
Conversation . │ │ │ │ │

. │ │ │ │ │

. │ └─────┬──────┘ │ │
│ ↓ │ │

←─────────────┼────── Call ATBRTRN │ │
Return_transaction │ ┌───────────────┐ │ │

│ │ clean-up │ │ │
│ │ reallocate... │ │ │
│ └─────┬─────────┘ │ │
│ └───────────┘ │
└───────────────────────────┘

Figure 18. Initialization and Termination in Multi-trans Processing

38 z/OS V2R1.0 MVS Planning: APPC/MVS Management



v The installation wants the work that an APPC/MVS TP processes on behalf of
its partners to run under only one user ID, rather than under several individual
IDs.

SMF Accounting of Multi-Trans Resources
SMF records can account for each phase of multi-trans processing. An installation
can set up account numbers for each user of a multi-trans TP and differentiate
between resources used for each user and resources used during shell processing.

For more information about SMF records in APPC, see “Using SMF to Audit APPC
Work” on page 233 and z/OS MVS System Management Facilities (SMF).

Security for Multi-Trans TPs
Multi-trans programs should be trusted applications. They must do whatever
cleanup is necessary between transaction programs to ensure that resources are
released and programs are isolated from one another and from any resources used
exclusively by the shell.

Except for the cleanup responsibilities, multi-trans scheduling provides the same
security protection as standard scheduling (checking user IDs, passwords, and
profiles passed on each inbound conversation request). Each conversation with a
multi-trans program runs under a personalized security environment, based on the
user ID associated with the inbound request, when the multi-trans shell issues
Get_Transaction and Return_Transaction to process conversations.

Because the generic ID covers processing that typically must be isolated from the
different conversation partners, the generic ID must be secure from unauthorized
specification or modification. To protect the multi-trans TP profile, which contains
the generic ID, you can use RACF to control read and update access to the TP
profile where the generic ID is specified. See “Protecting Multi-Trans TP Profiles”
on page 173.

SYSOUT Processing for Multi-Trans TPs
A multi-trans TP typically must manage user-specific resources such as SYSOUT
data separately for each conversation. If you want a multi-trans TP to process
SYSOUT data for each user, you need to allocate a SYSOUT data set and explicitly
free it for each conversation. If SYSOUT data sets are not deallocated or freed,
SYSOUT data is not processed for users of the multi-trans TP until the entire TP
and its shell environment are terminated.

For SYSOUT recommendations, see “Specific Scheduler JCL Information for TP
Profiles” on page 80.

Assigning Multi-Trans TPs to their own Class
For performance reasons, IBM recommends that each transaction program
scheduled as multi-trans be assigned to a unique class of APPC/MVS transaction
initiators. Those classes are defined in SYS1.PARMLIB member ASCHPMxx and
assigned to transaction programs in the TP profile. Each class consists of a range
(maximum and minimum number) of transaction initiators that are available for
running transaction programs of that class.

Chapter 3. Scheduling Transaction Programs 39



Establishing a Multi-Trans TP that is Always Available
Multi-trans scheduling is especially suitable for transaction programs that must
always be available to handle inbound requests. To ensure that an initiator is
always available to run a multi-trans TP, a system programmer can do the
following:
1. In the TP profile, assign the TP to a unique class
2. In the TP profile JCL, set the TIME parameter to NOLIMIT to prevent the

IEFUTL exit of SMF from receiving control and terminating the address space
that the multi-trans TP is running in.

Note that if a multi-trans TP receives no inbound requests for five minutes, the
multi-trans TP receives a return code of 8 or 28 from Get_Transaction. The
multi-trans TP must either call the Get_Transaction service again to wait for more
work to arrive (if the return code is 8) or end the multi-trans TP (if the return code
is 28). For more information about these return codes, see z/OS MVS Programming:
Writing Transaction Programs for APPC/MVS.

To end or replace such a multi-trans TP, a system programmer can:
1. Set its TP profile inactive to prevent new inbound requests
2. Allow processing of queued requests to finish
3. Activate the TP profile of the new multi-trans TP.

Logging Transaction Program Processing
Logging for transaction program (TP) processing is different from logging for other
MVS work such as batch jobs, because TP processing is done in two phases. Batch
jobs go through the converter/interpreter every time they execute, and all errors
go to the job log. In contrast, TP processing separates the converter/interpreter
phase from the execution phase and places errors from each phase in different logs.

Converter/Interpreter Phase
When the APPC administration utility adds and modifies a TP profile, it
checks the TP profile and its JCL for syntax errors. Output from this phase
consists of TP profile syntax error messages, utility processing messages,
and JCL conversion statements. Logging for messages from this phase is
controlled by the SYSPRINT DD statement for the utility, as shown in the
highlighted SYSPRINT DD statement in the following example of adding a
TP profile. (For more information about the APPC administration utility,
see Chapter 6, “Using the APPC/MVS Administration Utility,” on page 85.)

Execution Phase
When a TP executes, the TP runtime messages, such as allocation and
termination messages, go to a log named in its TP profile. Logging for
messages from this second phase is defined in two places: an ASCHPMxx
parmlib member and the TP profile. An ASCHPMxx parmlib member
defines general message characteristics, and the TP profile defines specific
log data set characteristics, as shown in the three highlighted parameters in
the following example of adding a TP profile.

40 z/OS V2R1.0 MVS Planning: APPC/MVS Management



If your installation uses SMS, you may also specify parameters in the TP profile
that control the allocation of an SMS-managed data set for a TP message log. Even
if you do not specify those parameters, the TP message log might automatically be
an SMS-managed data set anyway, depending on your installation's defaults.

TPs are not scheduled by a job entry subsystem, so the TP message log is not a
system data set, such as JESJCL and JESYSMSG, and no such system data sets are
created for logged TP information. To access the TP message log, use ISPF options
rather than the mechanisms for controlling system data sets.

The TP Message Log
The TP message log can be used for recovery and problem determination when an
error occurs while a TP is processing. You can control the TP message log through
parameters from the TP profile and from the APPC/MVS transaction scheduler
parmlib member (ASCHPMxx). Table 2 shows the parameters used in the TP
message log definition, where the parameters are specified, and where to find
detailed information about coding values for these parameters.

Table 2. Parameters Used in TP Message Log Definition

Parameter Where Specified Coding Details in:

KEEP_MESSAGE_LOG TP profile “Transaction Scheduler Section”
on page 72

MESSAGE_DATA_SET TP profile “Transaction Scheduler Section”
on page 72

DATASET_STATUS TP profile “Transaction Scheduler Section”
on page 72

...

//STEP EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=A
//SYSSDLIB DD DSN=SYS1.APPCTP,DISP=SHR
//SYSSDOUT DD DSN=UTILITY.OUTPUT,
// DISP=(NEW,CATLG),
// UNIT=SYSDA,VOL=SER=ICF003,
// DCB=(RECFM=FB,LRECL=133,BLKSIZE=133),
// SPACE=(TRK,(5,1))
//SYSIN DD DATA,DLM=XX

TPADD
TPNAME(RUN_TEST)
USERID(IBMUSER)
ACTIVE(YES)
TPSCHED_DELIMITER(##)

TAILOR_SYSOUT(YES)
TAILOR_ACCOUNT(YES)
CLASS(A)
TPSCHED_TYPE(STANDARD)
JCL_DELIMITER(END_OF_JCL)

//TEST1 JOB ,IBMUSER
//STEP EXEC PGM=TESTRUN
END_OF_JCL

KEEP_MESSAGE_LOG(ALWAYS)
MESSAGE_DATA_SET(&SYSUID;&SYSWUID;TESTLOG)
DATASET_STATUS(NEW)

##
XX

Figure 19. Example of Adding a TP Profile

Chapter 3. Scheduling Transaction Programs 41



Table 2. Parameters Used in TP Message Log Definition (continued)

Parameter Where Specified Coding Details in:

MSGLIMIT ASCHPMxx z/OS MVS Initialization and
Tuning Reference

MSGLEVEL TP profile JCL or
ASCHPMxx

z/OS MVS JCL Reference or z/OS
MVS Initialization and Tuning
Reference

Deciding Which TP Message Log Values to Use
The default values for TP message log parameters tell APPC/MVS to create a new
message log for each TP instance that ends on error. Depending on the
environment in which the TP will run, and the type of TP, you might specify
different values for the TP message log.

For example, the defaults might be appropriate for a TP running in a production
system; however, you could bypass the message log completely, to reduce I/O and
storage use. If the TP encounters a problem, you can change the parameter values
only when you attempt to re-create the problem and collect diagnostic information.
In contrast, when the TP is running in a test environment, you can use the values
that allow you to collect all messages for all instances of the TP, whether or not
each instance ends successfully.

Table 3 lists the results of each possible combination of TP message log parameters.
As you read through them to determine which combination best suits your needs,
keep these facts in mind:
v Writing all messages for each instance of a TP requires more I/O than writing

messages only on error, or bypassing the log.
v Having a new message log for each instance of a TP requires more storage than

adding messages to a cumulative log, or reusing an existing log. The value of
DATASET_STATUS determines whether the log is new, cumulative, or reused;
this parameter and its possible values are discussed in more detail in “Selecting
the Type of Message Log” on page 43.

v Logging messages for a standard TP differs from logging messages for a
multi-trans TP. The differences mainly affect which value you choose for
MSGLIMIT, which is discussed in more detail in “Choosing a Value for the
MSGLIMIT Parameter” on page 44.

Table 3. Combination of Parameters Used in TP Message Log Definition

KEEP_
MESSAGE_ LOG

MESSAGE_
DATASET

DATASET_
STATUS MSGLIMIT MSGLEVEL

Bypass TP
Message Log
Method 1

NEVER N/A N/A N/A N/A

Bypass TP
Message Log
Method 2

N/A N/A N/A 0 N/A

Create New Log
Each Time

ALWAYS &SYSUID.
&SYSWUID.
&TPDATE.
&TPTIME.
JOBLOG

NEW 0 - 15,000 1,1 (all msgs.)

42 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Table 3. Combination of Parameters Used in TP Message Log Definition (continued)

KEEP_
MESSAGE_ LOG

MESSAGE_
DATASET

DATASET_
STATUS MSGLIMIT MSGLEVEL

Create New Log
Each Time (on
error only)

ERROR &SYSUID.
&SYSWUID.
&TPDATE.
&TPTIME.
JOBLOG

NEW 0 - 15,000 1,0 (msgs. on
error)

Create
Cumulative Log

ALWAYS data set name MOD 0 - 15,000 1,1 (all msgs.)

Create
Cumulative Log
(on error only)

ERROR data set name MOD 0 - 15,000 1,0 (msgs. on
error)

Log Most Recent
TP Instance

ALWAYS data set name OLD 0 - 15,000 1,1 (all msgs.)

Log Most Recent
TP Instance (on
error only)

ERROR data set name OLD 0 - 15,000 1,0 (msgs. on
error)

Selecting the Type of Message Log
If you choose to do anything other than bypass the message log, your choice of
value for the DATASET_STATUS parameter determines the type of message log:

Value Type of TP Message Log

NEW A new log for each TP instance

OLD A log for only the most recent TP instance

MOD A cumulative log

Depending on the type of message log you want to use, you either allow
APPC/MVS to allocate the data set, or allocate it yourself. If you allocate it
yourself, use a record length of 133. (Each message written to the data set is one
133-byte record; messages are either padded with blanks or truncated to fit.)
v For a new log for each TP instance (DATASET_STATUS is NEW):

In this case, APPC/MVS allocates a data set for you, specifying only primary
space. The MSGLIMIT value for the class determines how many messages are
logged for each TP instance, and APPC/MVS allocates a data set large enough
to contain all those messages.
When you specify NEW, the data set is cataloged and kept once it is created. If
you also specified ALWAYS for KEEP_MESSAGE_LOG, you might accumulate
an inordinate number of data sets, because a new one is created for each
instance of a TP.

v For a log of only the most recent TP instance (DATASET_STATUS is OLD):
If you specify a DATASET_STATUS of OLD, you must pre-allocate the data set.
Estimate the amount of space required based on your knowledge of the TP's
processing. You may specify both primary and secondary space. If you specify
secondary space, the system allocates it, up to the extent limit for the type of
data set, when the specified primary space is insufficient for the number of
messages logged. The MSGLIMIT value for the class determines how many
messages are collected in storage for the TP instance; the size of the data set, and
any additional space the system can allow, determine how many of those
messages are written to the data set.

Chapter 3. Scheduling Transaction Programs 43



To make sure you obtain all pertinent diagnostic information, you might have to
adjust the specified amounts of primary and secondary space. If you don't have
enough space allocated, a X'x37' abend results when the system attempts to
write messages to the data set.

v For a cumulative log (DATASET_STATUS is MOD):
If you specify a DATASET_STATUS of MOD, IBM recommends that you
pre-allocate the data set. If you do not, various installation or system defaults
might result in the allocation of a data set that is not large enough for the
amount of messages you want to collect.
Estimate the primary and secondary space required for a cumulative log by
considering the following factors:
– How many messages might be generated by one instance of the TP.
– How many instances of the TP might run before you need to view the

message log.
– The MSGLIMIT value specified for the class in which the TPs run. Remember

that this value applies for each instance of the TP. For example, if the
MSGLIMIT for the class is 50 messages, a cumulative log contains one set of
no more than 50 messages for each TP instance.

Just as you may for a data set with a value of OLD, you may specify both
primary and secondary space. If you specify secondary space, the system
allocates it, up to the extent limit for the type of data set, when the specified
primary space is insufficient for the number of messages logged.
To make sure you obtain all pertinent diagnostic information, you might have to
adjust the specified amounts of primary and secondary space. If you don't have
enough space allocated, a X'x37' abend results when the system attempts to
write messages to the data set.

For multi-trans TPs only, APPC/MVS allows messages to wrap when the
MSGLIMIT value is exceeded, so you can obtain more recent messages for each TP
instance, at the cost of overwriting older messages. For more information about the
MSGLIMIT value, and how it applies for standard versus multi-trans TPs, see
“Choosing a Value for the MSGLIMIT Parameter.”

Choosing a Value for the MSGLIMIT Parameter
The value of the MSGLIMIT parameter determines the maximum number of
messages the system writes into the TP message log for each instance of a TP that
runs within the class. Choosing a value for MSGLIMIT might be a trial-and-error
process, because other factors also affect how many messages can be written: the
type of TPs in the class; TP execution environment and processing; and the
disposition and sometimes the size of the data set.

To calculate a MSGLIMIT value, consider starting with the default of 500 messages,
and increasing that number when:
v The TP is a multi-trans TP or a long-running TP.
v The TP runs in a test, rather than a production, environment.
v The TP message log is cumulative (that is, the value of the DATASET_STATUS

parameter is MOD).

For standard TPs, APPC/MVS does not allow messages to wrap in the TP message
log; if the MSGLIMIT value is exceeded, message ASB082I is written to the log,
and message logging stops. In this case, to make sure you collect all the messages
you need, increase the MSGLIMIT value and re-run the TP.

44 z/OS V2R1.0 MVS Planning: APPC/MVS Management



For multi-trans TPs, APPC/MVS does allow message wrapping, but only when the
system has successfully written all the messages that are generated while the TP
first runs under its shell (that is, the messages generated before the TP issues its
first Get_Transaction call). Once these shell messages have been written, the system
continues writing messages until reaching the MSGLIMIT value; at this point, the
system allows messages wrapping as follows:
1. The system writes ASB080I to the TP message log, placing it immediately after

the last shell message. The system does not overwrite messages generated
while the TP was first running under its shell.

2. Immediately after message ASB080I, the system overwrites existing messages
with new messages until one of the following occurs:
v The system reaches the MSGLIMIT value again. In this case, APPC/MVS

repeats the wrapping process, beginning with overwriting the message that
immediately follows ASB080I. APPC/MVS does not indicate how many
times message wrapping occurs.

v The multi-trans TP stops processing. Message ASB081I marks where
wrapping stopped in the TP message log.

Although message wrapping might be convenient, it does not necessarily result in
adequate diagnostic information; if the MSGLIMIT value is set too low, the
messages you need could have been overwritten several times. Increasing the
MSGLIMIT value increases the probability that valuable diagnostic information
will not be overwritten.

If the MSGLIMIT value is changed while multi-trans TPs are running, the changed
message limit does not affect the multi-trans programs until their environments are
brought down and then restarted.

Figure 20 on page 46 contains a sequence of diagrams that illustrate how message
wrapping can occur in the TP message log for a multi-trans TP. In this example,
message wrapping occurs only once.

Chapter 3. Scheduling Transaction Programs 45



Figure 21 on page 47 contains a sequence of diagrams that illustrate how messages
might appear in a cumulative TP message log for the multi-trans TP in Figure 20.
In this example, the TP has run twice.

MVS System

MVS System
TP message log

TP message log

Multi-trans TP

Multi-trans TP

Initialization

Shell
processing
continues

Initialization msgs

Initialization msgs

Shell msgs

Shell msgs

Msgs for first
inbound request
Msgs for first
inbound request

Last msg before
wrapping started

Msgs for next ...

Msgs for next ...

11

33

MVS System
TP message log

Multi-trans TP

Initialization msgs

Shell msgs

Msgs for first
inbound request

Msgs for next
inbound request

22

TP issues first
Get_Transaction

TP issues next
Get_Transaction

TP issues next
Get_Transaction

ASB080I ...
START OF
MESSAGE WRAP.

MVS System
TP message log

Multi-trans TP

Initialization msgs

Shell msgs

Last msg before
wrapping started

Msgs for current
inbound continue

TP continues
processing
current inbound

44

TP ends its
processing
normally

ASB080I ...
START OF
MESSAGE WRAP.

ASB081I... END OF
MESSAGE WRAP.

APPC/MVS detects
the MSGLIMIT value
has been exceeded

Figure 20. Message Wrapping in a Multi-Trans TP Message Log

46 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Example of Using TP Message Log Parameters
To use a cumulative log for all messages with a limit of 10,000 messages, code the
values for the highlighted parameters as shown in the following examples of a TP
profile and an ASCHPMxx parmlib member.

OS/390 System

OS/390 System11

Cumulative TP message log

Cumulative TP message log

Second instance of
multi-trans TP

First instance of
multi-trans TP

Initialization msgs
Shell msgs

Msgs from older inbound requests

Msgs for most recent inbound requestsInitialization
Shell processing

22

TP ends its processing normally

ASB080I ... START OF MESSAGE WRAP.

ASB081I... END OF MESSAGE WRAP.
TP issues Get_Transaction

TP processes more inbound
requests

Initialization
Shell processing

TP ends its processing normally

TP issues Get_Transaction

TP processes more inbound
requests

Initialization msgs

Initialization msgs

Shell msgs

Shell msgs

Msgs from older inbound requests

Msgs for most recent inbound requests

ASB080I ... START OF MESSAGE WRAP.

ASB081I... END OF MESSAGE WRAP.

Msgs from older inbound requests

Msgs for most recent inbound requests

ASB080I ... START OF MESSAGE WRAP.

ASB081I... END OF MESSAGE WRAP.

Figure 21. Messages in a Cumulative TP Message Log for a Multi-Trans TP

Chapter 3. Scheduling Transaction Programs 47



This example is for a test TP that creates a TP message log that contains all
runtime messages. After a TP is successfully tested, an installation might change
the KEEP_MESSAGE_LOG value to ERROR or NEVER to enhance TP runtime
performance. Writing messages to the TP message log will affect CPU time and the
response time of the TP.

Viewing the TP Message Log During TP Run Time
When you set up the TP message log with the parameters described in the
previous sections, you can access the log only after a TP stops running. If you need
to access the TP message log between job steps, you can invoke program
ASBSCHWL (write log routine) after a job step in the TP profile JCL. This routine
enables you to view messages for the previous job step.

The following example invokes program ASBSCHWL in STEP2 and specifies that
error messages, if any, go to data set IBMUSER.JOBLOG.DATASET.

TPNAME(RUN_TEST)
USERID(IBMUSER)
ACTIVE(YES)
TPSCHED_DELIMITER(##)

TAILOR_SYSOUT(YES)
TAILOR_ACCOUNT(YES)
CLASS(A)
TPSCHED_TYPE(STANDARD)
JCL_DELIMITER(END_OF_JCL)

//TEST1 JOB ,IBMUSER
//STEP EXEC PGM=TESTRUN
END_OF_JCL

KEEP_MESSAGE_LOG(ALWAYS)
MESSAGE_DATA_SET(TEST1.TESTLOG)
DATASET_STATUS(MOD)

##

Figure 22. TP Profile Parameters

CLASSADD
CLASSNAME(A),
MAX(10),
MIN(2),
RESPGOAL(.01),
MSGLIMIT(10000)

TPDEFAULT
REGION(256),
TIME(1,30),
MSGLEVEL(1,1),
OUTCLASS(J)

Figure 23. ASCHPMxx Parameters

48 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Note: If the PARM parameter is omitted in STEP2, JOBLGDCB is the default
joblog DD name.

Write log routines can write messages only if the TP profile parameter
KEEP_MESSAGE_LOG has a value of ALWAYS or ERROR. When
KEEP_MESSAGE_LOG has a value of NEVER, no messages are written to any TP
message log.

In the previous example, the write log routine controls only the TP messages
written in STEP1. Otherwise, the following TP profile defaults apply:

KEEP_MESSAGE_LOG(ERROR)
MESSAGE_DATA_SET(&SYSUID;&SYSWUID;&TPDATE;&TPTIME;JOBLOG)
DATASET_STATUS(NEW)

Assuming that the ASCHPMxx parmlib member also uses defaults, the following
parmlib member defaults apply:

MSGLIMIT(500)
MSGLEVEL(1,0)

Given these defaults, if the TP abnormally ended in STEP3, messages would be
written to the default TP message log data set (&SYSUID.&SYSWUID.&TPDATE.
&TPTIME.JOBLOG), which can be accessed when the TP stops running. &SYSUID
resolves to the user ID that invoked the TP, &SYSWUID resolves to the work unit
identifier for the TP, and &TPDATE and &TPTIME resolve to the date and time the
TP ran. For a multitrans TP, &SYSUID resolves to the generic userid. For a
standard TP, &SYSUID resolves to the userid passed in with the inbound allocate
request, unless security_none is used (no userid passed), and then &SYSUID
resolves to SYSUID.

TPNAME(RUN_TEST)
USERID(IBMUSER)
ACTIVE(YES)
TPSCHED_DELIMITER(##)

TAILOR_SYSOUT(YES)
TAILOR_ACCOUNT(YES)
CLASS(A)
TPSCHED_TYPE(STANDARD)
JCL_DELIMITER(END_OF_JCL)

//TEST JOB ,IBMUSER
//STEP1 EXEC PGM=TEST1
//STEP2 EXEC PGM=ASBSCHWL,PARM=’JOBLOG’
//JOBLOG DD DSN=IBMUSER.JOBLOG.DATASET,DISP=SHR...
//STEP3 EXEC PGM=TEST2
END_OF_JCL
##

Figure 24. Invoking the Write Log Routine

Chapter 3. Scheduling Transaction Programs 49



50 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Chapter 4. Defining Scheduling Characteristics with
ASCHPMxx

The APPC/MVS transaction scheduler initiates and schedules transaction programs
in response to inbound requests for conversations. The ASCHPMxx member of the
parmlib concatenation controls the function of the APPC/MVS transaction
scheduler. Values in the parmlib member define and modify classes, and supply
default TP characteristics when they are missing from the scheduler JCL section of
the TP profile.

References:
z/OS MVS Initialization and Tuning Reference

z/OS MVS System Messages, Vol 3 (ASB-BPX)

z/OS MVS Planning: Operations

ASCHPMxx Parmlib Member
The ASCHPMxx parmlib member primarily contains scheduling information for
the APPC/MVS transaction scheduler using four statement types. The statement
types are:

CLASSADD
Defines a class of transaction initiators to the APPC/MVS transaction
scheduler configuration.

CLASSDEL
Deletes a class of transaction initiators from the APPC/MVS transaction
scheduler configuration.

OPTIONS
Defines the default class for the APPC/MVS transaction scheduler and the
default subsystem for starting transaction initiators.

TPDEFAULT
Supplies default scheduling characteristics when scheduling information is
missing from a TP profile.

Changing Values
An installation can change its scheduling characteristics using different versions of
the ASCHPMxx parmlib member. For example, one parmlib member might contain
setup values, while others contain statements that add new classes of transaction
initiators (CLASSADD) or delete previous classes (CLASSDEL). The parmlib
member may also re-specify statements with new parameter values to modify
previous statements.

Attention: When modifying previous statements by respecifying them, the parmlib
statements have a cumulative effect, and any one parmlib member might not
contain the current scheduling information. If you use the CANCEL command to
terminate the ASCH address space, you must respecify each parmlib member in its
former order to reconstruct the previous scheduling definitions.

When parmlib statements are initially specified, omitted optional parameters
receive default values. When parmlib statements are re-specified, however, omitted

© Copyright IBM Corp. 1991, 2013 51



parameters in the CLASSADD statement assume the defaults, but omitted
parameters in the OPTIONS and TPDEFAULT statements do not assume the
defaults.

For example, a class is defined with specific characteristics by a CLASSADD
statement. When another CLASSADD statement identifies the same class name but
omits the MAX and MIN parameters, MAX assumes the default of 1 and MIN
assumes the default of 0.

Therefore, to guarantee that intended values are not overridden by default values,
re-specify all keywords on modifying statements.

Using Default Values
The following sample parmlib member ASCHPM00 contains the default definitions
for a single APPC/MVS transaction initiator class.

When you take the defaults, you get the following results:

CLASSADD
The defaults are:
v The name of the class of transaction initiators is GENERAL.
v The maximum number of transaction initiators allowed for this class is

one.
v No transaction initiators will be started for this class when the ASCH

address space starts.
v The response time goal for TPs running within this class is one second.

This is system response time, not user response time. For information
about the RESPGOAL parameter, see z/OS MVS Initialization and Tuning
Reference.

v A maximum of 500 messages can be written to the TP message log, each
time a TP within the class runs.

OPTIONS
The defaults are:
v The name of the class in which to run a TP when no class name is

specified in the TP profile is GENERAL.

CLASSADD
CLASSNAME(GENERAL)
MAX(1)
MIN(0)
RESPGOAL(1)
MSGLIMIT(500)

OPTIONS
DEFAULT(GENERAL)

TPDEFAULT
REGION(2M)
TIME(1440)
MSGLEVEL(1,0)
OUTCLASS(A)

Figure 25. ASCHPM00

52 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Note: Because the SUBSYS parameter is omitted from the parmlib
statement, all newly created APPC/MVS transaction initiators are started
under the primary subsystem as defined in IEFSSNxx.

TPDEFAULT
The defaults are:
v The region size assigned to TPs that do not specify a region size in their

TP profile is 2M.
v There is no time limit assigned to TPs that do not specify a time limit in

their TP profile.
v All statements and messages issued during TP profile add and modify

processing will be generated.
Statements and messages issued when a TP profile is accessed to run a
TP will only be generated if the TP abnormally terminates.

v A is the class used as a default MSGCLASS for TPs whose profiles do
not specify the MSGCLASS keyword in their JOB statements. (When the
SYSOUT keyword does not include a specific output class, the value of
MSGCLASS can be used as a default. Thus, OUTCLASS can affect how
SYSOUT is processed.)

Planning Specific Values
The values in the ASCHPMxx parmlib members control APPC/MVS scheduling
characteristics. This section provides guidance for tasks involving installing and
customizing the APPC/MVS transaction scheduler. The tasks described in this
chapter include:
v Defining a class
v Modifying a class
v Deleting a class
v Defining default class options
v Defining default scheduling options.

Defining a Class — CLASSADD Statement
The CLASSADD statement defines a class of transaction initiators to the
APPC/MVS transaction scheduler. CLASSADD defines the following
characteristics for a class:

CLASSNAME(name)
Class name

MAX(number)
Maximum number of transaction initiators

MIN(number)
Minimum number of transaction initiators

RESPGOAL(time)
Response time goal for each TP in the class

MSGLIMIT(number)
Maximum number of messages for the TP message log

At least one class definition is required for work that is assigned to the
APPC/MVS transaction scheduler. If work comes in for a class that is not defined,
the work is rejected.

Chapter 4. Defining Scheduling Characteristics with ASCHPMxx 53



Your installation should define classes based on the characteristics of the
transaction programs that will run in a particular class. Programs in a class should
have similar characteristics such as run-time, priority, schedule-type, and security.
For example, you might define a class of transaction initiators for transaction
programs that require SYSOUT processing. IBM recommends that each multi-trans
program have its own class.

Note: If your installation uses the APPC administration dialog to maintain TP
profiles, add class names to the dialog non-display panel ICQASE00 to keep the
class list current. For more information, see “Customizing the Dialog” on page 103.

Example of defining a class
The following example shows three CLASSADD statements in a parmlib member
named ASCHPM1A. Each of the three classes runs different types of TPs. The class
named FAST is for TPs with a response time goal of under .01 seconds, while the
class named TEST is for testing new TPs before putting them on the production
system. MULTI is a special class for a single, continuously running multi-trans TP.

To activate the APPC/MVS transaction scheduler and these three classes, issue the
START command as follows:

START ASCH,SUB=MSTR,ASCH=1A

If the APPC/MVS transaction scheduler was previously activated, issue the SET
command to add the three classes, as follows:

SET ASCH=1A

To view the status of all classes, issue the DISPLAY ASCH command as follows:
DISPLAY ASCH,ALL

CLASSADD
CLASSNAME(FAST)
MAX(10)
MIN(2)
RESPGOAL(.01)
MSGLIMIT(200)

CLASSADD
CLASSNAME(TEST)
MAX(5)
MIN(1)
RESPGOAL(.5)
MSGLIMIT(300)

CLASSADD
CLASSNAME(MULTI)
MAX(1)
MIN(1)
RESPGOAL(.1)
/* MSGLIMIT will default to 500 */

Figure 26. ASCHPM1A

54 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Modifying a Class — CLASSADD Statement
You can modify any characteristics of an existing class by overriding a previous
CLASSADD statement with another CLASSADD statement that names the existing
class and changes the parameters to be modified. When more than one
CLASSADD statement exists for the same class, the most recently processed
statement is in effect.

You can modify the following characteristics of a class:

CLASSNAME(name)
Class name

MAX(number)
Maximum number of transaction initiators

MIN(number)
Minimum number of transaction initiators

ASB101I 10.35.07 ASCH DISPLAY 209
CLASSES ACTIVE TRANS QUEUED TRANS IDLE INITS TOTAL INITS
00003 00005 00001 00000 00005
REGION TIME MSGLEVEL OUTCLASS SUBSYS
0002M 0001,30 1,0 J JES2

CLASS=FAST STATUS=ACTIVE ACTIVE TRANS=00003 MIN =00002
RESPGOAL=0.010000 QUEUED TRANS=00001 MAX=00010
DEFAULT=NO IDLE INITS=00000

LTPN=PAYROLL
STATUS=ACTIVE WUID=A0000005 ASID=0355
TPST=STANDARD USERID=JOE QT=*NONE*
JOBNAME=PAYROLL

LTPN=PAYROLL
STATUS=ACTIVE WUID=A0000004 ASID=6A22
TPST=STANDARD USERID=MARY QT=*NONE*
JOBNAME=PAYROLL

LTPN=MANAGE
STATUS=ACTIVE WUID=A0000003 ASID=0412
TPST=STANDARD USERID=JOHN QT=*NONE*
JOBNAME=MANAGE5

LTPN=SECURITY
STATUS=QUEUED WUID=A0000002 ASID=0012
TPST=STANDARD USERID=SECURE QT=000.001S
JOBNAME=*NONE*

CLASS=TEST STATUS=ACTIVE ACTIVE TRANS=00001 MIN =00001
RESPGOAL=0.500000 QUEUED TRANS=00000 MAX=00005
DEFAULT=NO IDLE INITS=00000

LTPN=FORMAT
STATUS=ACTIVE WUID=A0000029 ASID=0477
TPST=STANDARD USERID=BARRY QT=*NONE*
JOBNAME=FORMAT

CLASS=MULTI STATUS=ACTIVE ACTIVE TRANS=00001 MIN =00001
RESPGOAL=0.100000 QUEUED TRANS=00000 MAX=00001
DEFAULT=NO IDLE INITS=00000

LTPN=MAIL
STATUS=ACTIVE WUID=A0000001 ASID=0018
TPST=MULTITRANS USERID=DEPT5A QT=*NONE*
JOBNAME=DEPTMAIL

Figure 27. DISPLAY command output

Chapter 4. Defining Scheduling Characteristics with ASCHPMxx 55



RESPGOAL(time)
Response time goal for each TP in the class

MSGLIMIT(number)
Maximum number of messages for the TP message log

Remember that omitted parameters in the CLASSADD statement assume the
defaults, which will override previously defined values. Therefore, to guarantee
that intended values are not overridden by default values, re-specify all keywords
on modifying statements.

Example of modifying a class
To determine whether a class is meeting its response time goal, issue the DISPLAY
ASCH command with a specific class name.

DISPLAY ASCH,ALL,CLASS=FAST

In the previous example, class FAST has 11 queued transaction programs under the
QUEUED TRANS heading. Two transaction programs have queue times
(highlighted in the example) that greatly exceed the response time goal. A response
time goal includes both queue time and run time, but, because the maximum
number of initiators are running, the TPs on the queue cannot run.

To better meet the response time goal for the class, create a parmlib member that
increases both the maximum and minimum number of transaction initiators, as in
the following example.

ASB101I 18.15.49 ASCH DISPLAY 209
CLASSES ACTIVE TRANS QUEUED TRANS IDLE INITS TOTAL INITS
00001 00010 00011 00000 00010
REGION TIME MSGLEVEL OUTCLASS SUBSYS
0002M 0001,30 1,0 J JES2

CLASS=FAST STATUS=ACTIVE ACTIVE TRANS=00010 MIN=00002
RESPGOAL=0.010000 QUEUED TRANS=00011 MAX =00010
DEFAULT=NO IDLE INITS=00000

LTPN=PAYROLL
STATUS=ACTIVE WUID=A0000018 ASID=0219
TPST=STANDARD USERID=STAN QT=*NONE*
JOBNAME=PAYROLL

LTPN=PAYROLL
STATUS=ACTIVE WUID=A0000019 ASID=0B11
TPST=STANDARD USERID=TERI QT=*NONE*
JOBNAME=PAYROLL

LTPN=PAYROLL
STATUS=ACTIVE WUID=A0000021 ASID=0049
TPST=STANDARD USERID=SUE QT=*NONE*
JOBNAME=PAYROLL

...

LTPN=PAYROLL
STATUS=QUEUED WUID=A0000032 ASID=0012
TPST=STANDARD USERID=MARK QT=099.042S
JOBNAME=*NONE*

LTPN=PAYROLL
STATUS=QUEUED WUID=A0000033 ASID=0012
TPST=STANDARD USERID=HELEN QT=092.186S
JOBNAME=*NONE*

...

Figure 28. DISPLAY command output

56 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Activate the parmlib member with the following SET command.
SET ASCH=1M

Deleting a Class — CLASSDEL
The CLASSDEL statement deletes a class of transaction initiators from the
APPC/MVS transaction scheduler. One CLASSDEL statement must be defined for
each class that is deleted.

The CLASSDEL statement contains:

CLASSNAME(name)
Identifies the class

WORKQ(DRAIN|PURGE)
Specifies whether the system drains or purges the work queue

When a CLASSDEL statement is processed, work is either drained or purged,
depending on the option that you specified for the WORKQ keyword. If you
specified the DRAIN option, work that is currently queued for this class is allowed
to complete. The system does not delete the class until all work has been
processed. If you specified the PURGE option, however, work that is currently
queued for this class is rejected. Only work that is already running in an initiator
is processed. If you do not specify either DRAIN or PURGE, the DRAIN default is
used.

Note: If your installation uses the APPC administration dialog to maintain TP
profiles, make sure permanently deleted class names are also deleted from the
dialog non-display panel ICQASE00 to keep the class list current. For more
information, see “Customizing the Dialog” on page 103.

Example of deleting a class
To delete a class (for example, a test class that is no longer needed), code a parmlib
member with the CLASSDEL statement. In the following example, the test class
work queue will be purged.

To activate the parmlib member and delete the class, issue this SET command.
SET ASCH=1D

CLASSADD
CLASSNAME(FAST)
MAX(15)
MIN(10)
RESPGOAL(.01)
MSGLIMIT(200)

Figure 29. ASCHPM1M

CLASSDEL
CLASSNAME(TEST)
WORKQ(PURGE)

Figure 30. ASCHPM1D

Chapter 4. Defining Scheduling Characteristics with ASCHPMxx 57



If you want to see the results of the CLASSDEL, issue the DISPLAY command as
follows:

DISPLAY ASCH,ALL,CLASS=TEST

As long as TPs are running in the class, information about the class is displayed;
however, the status of the class changes from ACTIVE to TERMINATING.

Defining Default Options — OPTIONS
The OPTIONS statement defines class defaults for the APPC/MVS transaction
scheduler:

DEFAULT(name)
Identifies default class

SUBSYS(name)
Identifies default subsystem that does SYSOUT processing and the
subsystem under which APPC/MVS transaction initiators are started

You can modify defaults by overriding a previous OPTIONS statement with
another OPTIONS statement that changes parameter values. When more than one
OPTIONS statement exists, the most recently processed parameter values are in
effect.

Example of Defining a Default Class
To set up a default class for TPs that do not specify a class in their TP profiles,
code a parmlib member with the OPTIONS statement and specify the default class
you want to use. In the following example, class SLOW is added and then defined
as the default class. Because no SUBSYS parameter is specified, this parmlib
member uses the primary JES subsystem as the default.

To activate the default class, issue the SET command as follows:

...

CLASS=TEST STATUS=TERMINATING ACTIVE TRANS=00001 MIN=00001
RESPGOAL=0.500000 QUEUED TRANS=00000 MAX=00005
DEFAULT=NO IDLE INITS=00000

LTPN=FORMAT
STATUS=ACTIVE WUID=A0000029 ASID=0477
TPST=STANDARD USERID=BARRY QT=*NONE*
JOBNAME=FORMAT

Figure 31. DISPLAY command output

CLASSADD
CLASSNAME(SLOW)
MAX(5)
MIN(0)
RESPGOAL(60)
MSGLIMIT(300)

OPTIONS
DEFAULT(SLOW)

Figure 32. ASCHPM2A

58 z/OS V2R1.0 MVS Planning: APPC/MVS Management



SET ASCH=2A

To change the default class or subsystem, create another parmlib member with an
OPTIONS statement that names another default class or subsystem, and issue the
SET command.

Defining Default Scheduler Options — TPDEFAULT
The TPDEFAULT statement supplies default scheduling information when it is
missing from the scheduler JCL section of a TP profile. These scheduling defaults
apply only to TPs scheduled by the APPC/MVS transaction scheduler. TP profile
defaults defined in TPDEFAULT include the following:

REGION(size)
Amount of virtual storage needed for the TP

TIME(time)
CPU time limit for running the TP

MSGLEVEL(level,level)
Level of messages generated

OUTCLASS(name)
Default class for MSGCLASS

To change the default values for TPs, create another parmlib member with a
TPDEFAULT statement, and specify new values for the keyword parameters.

Example of Defining Scheduling Defaults
To provide defaults for TP profiles that do not specify certain scheduling
parameters, code a parmlib member that contains a TPDEFAULT statement.

This TPDEFAULT example specifies that:
v The amount of virtual storage assigned to the TP is 2M.
v TPs that take longer than 1 minute 30 seconds of CPU time will be abnormally

terminated.
v All statements and messages issued during TP profile add and modify

processing will be generated, but statements and messages issued when a TP
profile is accessed to run a TP will be generated only if the TP abnormally
terminates.

v J is the class used as a default MSGCLASS for TPs whose profiles do not specify
the MSGCLASS keyword in their JOB statements. (When the SYSOUT keyword
does not include a specific output class, the value of MSGCLASS can be used as
a default. Thus, OUTCLASS can affect how SYSOUT is processed.)

To activate these values in member ASCHPM3A, issue the SET command as
follows:

TPDEFAULT
REGION(2M)
TIME(1,30)
MSGLEVEL(1,0)
OUTCLASS(J)

Figure 33. ASCHPM3A

Chapter 4. Defining Scheduling Characteristics with ASCHPMxx 59



SET ASCH=3A

Scheduling defaults for the system can be viewed by issuing the following
DISPLAY command:

DISPLAY ASCH,SUMMARY

Examples ssing ASCHPMxx Parmlib members
Because of the cumulative way the ASCHPMxx parmlib members interact, you
might consider creating a separate member for:
v Initial setup
v Each anticipated modification
v Deletion of each class

For example, you could create the following parmlib member for initial setup:

ASB101I 21.28.12 ASCH DISPLAY
CLASSES ACTIVE TRANS QUEUED TRANS IDLE INITS TOTAL INITS
00003 00010 00011 00000 00010
REGION TIME MSGLEVEL OUTCLASS SUBSYS
0002M 0001,30 1,0 J JES2

Figure 34. DISPLAY command output

CLASSADD
CLASSNAME(FAST)
MAX(10)
MIN(2)
RESPGOAL(.01)
MSGLIMIT(200)

CLASSADD
CLASSNAME(SLOW)
MAX(5)
MIN(0)
RESPGOAL(60)
MSGLIMIT(300)

CLASSADD
CLASSNAME(MULTI)
MAX(1)
MIN(1)
RESPGOAL(.1)
MSGLIMIT(500)

OPTIONS
DEFAULT(SLOW)
SUBSYS(JES2)

TPDEFAULT
REGION(2M)
TIME(1,30)
MSGLEVEL(1,0)
OUTCLASS(J)

Figure 35. ASCHPM1S

60 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Along with the initial setup, you might consider creating parmlib members for
anticipated modifications such as:
v Changing the default class for varying system workloads
v Modifying the MAX and MIN parameters of a class for tuning purposes.

For example, you could create the following parmlib member for changing the
default class from FAST to SLOW for second shift:

You could also create the following parmlib member for increasing the MAX and
MIN values for class FAST, and use it to tune scheduler performance:

You might also want to create parmlib members for deleting each class. The
following parmlib members delete each of the classes shown in the CLASSADD
statements listed above.

Tracking Changes in Scheduling Definitions
There are two ways to keep track of changes to the ASCHPMxx parmlib member:

OPTIONS
DEFAULT(SLOW)

Figure 36. ASCHPM2M

CLASSADD
CLASSNAME(FAST)
MAX(15)
MIN(10)
RESPGOAL(.01)
MSGLIMIT(200)

Figure 37. ASCHPM1M

CLASSDEL
CLASSNAME(FAST)

Figure 38. ASCHPM1D

CLASSDEL
CLASSNAME(SLOW)
WORKQ(PURGE)

Figure 39. ASCHPM2D

CLASSDEL
CLASSNAME(MULTI)
WORKQ(DRAIN)

Figure 40. ASCHPM3D

Chapter 4. Defining Scheduling Characteristics with ASCHPMxx 61



v Keep a hardcopy log of every ASCHPMxx member that was activated by using
the LIST option on the START ASCH and SET ASCH commands.

v View the current scheduling configuration by issuing the DISPLAY ASCH,ALL
command.

Keeping a Hardcopy Log
You can define, on the HARDCOPY statement of a CONSOLxx parmlib member, a
hardcopy log that provides a permanent record of ASCHPMxx parmlib activity. For
information about defining the hardcopy log, see z/OS MVS Planning: Operations.

To list the contents of each activated parmlib member to the operator console and
to the hardcopy log, include the LIST option on the START and SET commands.
For example, when starting ASCH using parmlib member ASCHPM1S, issue the
START command as follows:

START ASCH,SUB=MSTR,ASCH=(1S,L)

When changing the configuration with parmlib member ASCHPM1M and
ASCHPM3D, issue the SET command with the LIST option as follows:

SET ASCH=(1M,3D,L)

This command displays the contents of both ASCHPM1M and ASCHPM3D on the
console screen and stores the information in the hardcopy log.

Viewing the current scheduling configuration
A way to get a “snapshot” of the scheduling configuration is with the DISPLAY
command. To view the classes and their workload, issue the DISPLAY command as
follows:

DISPLAY ASCH,ALL

ASB038I ASCHPM1M : CLASSADD
ASB038I ASCHPM1M : CLASSNAME(FAST)
ASB038I ASCHPM1M : MAX(15)
ASB038I ASCHPM1M : MIN(10)
ASB038I ASCHPM1M : RESPGOAL(.01)
ASB038I ASCHPM1M : MSGLIMIT(200)

ASB038I ASCHPM3D : CLASSDEL
ASB038I ASCHPM3D : CLASSNAME(MULTI)
ASB038I ASCHPM3D : WORKQ(DRAIN)

Figure 41. SET command LIST option output

62 z/OS V2R1.0 MVS Planning: APPC/MVS Management



ASB101I 09.22.81 ASCH DISPLAY 209
CLASSES ACTIVE TRANS QUEUED TRANS IDLE INITS TOTAL INITS
00002 00005 00000 00000 00005
REGION TIME MSGLEVEL OUTCLASS SUBSYS
0002M 0001,30 1,0 J JES2

CLASS=FAST STATUS=ACTIVE ACTIVE TRANS=00004 MIN=00002
RESPGOAL=0.010000 QUEUED TRANS=00000 MAX=00010
DEFAULT=NO IDLE INITS=00000

LTPN=PAYROLL
STATUS=ACTIVE WUID=A0000018 ASID=0219
TPST=STANDARD USERID=STAN QT=*NONE*
JOBNAME=PAYROLL

LTPN=PAYROLL
STATUS=ACTIVE WUID=A0000019 ASID=0B11
TPST=STANDARD USERID=TERI QT=*NONE*
JOBNAME=PAYROLL

LTPN=PAYROLL
STATUS=ACTIVE WUID=A0000021 ASID=0049
TPST=STANDARD USERID=SUE QT=*NONE*
JOBNAME=PAYROLL

LTPN=PAYROLL
STATUS=ACTIVE WUID=A0000032 ASID=2568
TPST=STANDARD USERID=MARK QT=*NONE*
JOBNAME=PAYROLL

CLASS=SLOW STATUS=ACTIVE ACTIVE TRANS=00001 MIN=00000
RESPGOAL=0060.000 QUEUED TRANS=00000 MAX=00005
DEFAULT=YES IDLE INITS=00000

LTPN=BATCH5
STATUS=ACTIVE WUID=A0000033 ASID=0012
TPST=STANDARD USERID=IBMUSER QT=*NONE*
JOBNAME=BATCH5

Figure 42. DISPLAY command output

Chapter 4. Defining Scheduling Characteristics with ASCHPMxx 63



64 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Chapter 5. Controlling the Execution of Transaction Programs

Two types of administrative data, a TP profile and side information, help control
the flow of conversations in an APPC/MVS network. A TP profile contains the
scheduling and security information that might be necessary to run a TP in MVS.
Side information contains the translation of a symbolic destination name used by
an MVS local TP when issuing an outbound allocate request. (APPC/MVS servers
can also specify symbolic destination names when registering to receive inbound
conversations.)

Both types of administrative data are stored in VSAM key sequenced data sets
(KSDS), with at least one VSAM file for TP profiles and only one for side
information. The APPC administration utility (ATBSDFMU) maintains the TP
profile and side information files; you submit batch jobs that can add, modify,
retrieve, and delete entries. An interactive panel dialog version of the APPC/MVS
administration utility is available.

For information about the utility, see Chapter 6, “Using the APPC/MVS
Administration Utility,” on page 85, and for information about the dialog, see
Chapter 7, “Using the APPC/MVS Administration Dialog,” on page 95.

This chapter discusses the following aspects of controlling the execution of TPs:

References:
z/OS DFSMS Access Method Services Commands

z/OS MVS JCL Reference

z/OS MVS Installation Exits

Determining Scheduling Characteristics
One of the main purposes of a TP profile is to describe the environment necessary
to schedule and run the TP. This information usually comes from the scheduling
section of the profile. When scheduling information is missing from a TP profile
and the TP is scheduled with the APPC/MVS transaction scheduler, the OPTIONS
and TPDEFAULT statements in an ASCHPMxx parmlib member can provide some
defaults, such as a scheduling class. However, for proper scheduling of TPs
running under the APPC/MVS transaction scheduler, give consideration to each
parameter in the scheduling section of the profile. Each of these parameters is
explained in detail in “Transaction Scheduler Section” on page 72.

Transaction programs on MVS can be scheduled by the APPC/MVS transaction
scheduler (ASCH) or by an installation-defined scheduler. How you define the
scheduling portion of a TP profile depends on the transaction scheduler used.
Before you create profiles, ask the person who determines scheduling policy for the
following information:
v For TPs scheduled by the APPC/MVS transaction scheduler:

– The class name to use for each type of TP. (For example, IBM recommends
that TPs scheduled as standard use a different class from those scheduled as
multi-trans.)

– Whether a default has been established for class in an OPTIONS statement of
ASCHPMxx.

© Copyright IBM Corp. 1991, 2013 65



– Whether default information was established in a TPDEFAULT statement of
ASCHPMxx.

v For TPs scheduled by a scheduler other than the APPC/MVS transaction
scheduler:
– How the TP profile should be adapted to reflect scheduling characteristics of

the transaction scheduler.
– The name of the transaction scheduler exit used to syntax check the TP profile

information.

Defining the VSAM Key Sequenced Data Sets (KSDS)
The VSAM files that contain the TP profiles and side information must be defined
before you can create TP profiles and side information. The number of files you
need to define as well as the size of each file depends on several factors. These
topics are discussed in the following sections.

For general information about VSAM files, see z/OS DFSMS Access Method Services
Commands.

The person who actually defines the VSAM files should be an experienced VSAM
programmer familiar with the restrictions when migrating a VSAM file to another
system, the requirements for changing the size of a pre-defined VSAM file, and the
ability to view a VSAM KSDS online.

Determining How Many Files to Define
All the side information used by a system must be contained in one file that is
named in the SIDEINFO statement of an APPCPMxx parmlib member. TP profiles,
however, can be contained in either a single file or in many files. Files for side
information and TP profiles can be shared by more than one system. Using a
global resource serialization star or ring complex is one method of allowing
systems to safely share these files. See z/OS DFSMS Using Data Sets for more
information about sharing VSAM data sets among systems.

The number of files you need to define for profiles is related to the number of local
LUs in MVS. You can name one TP profile file for each local LU when the LU is
created. You can name a different file for each LU, or name the same file for
several or all LUs. For example, in Figure 43, File-1 is the TP profile file for several
LUs, namely LU-A, LU-B, and LU-C. File-2 is the exclusive TP profile file for
LU-D.

Whether you need many TP profile files or only one might depend on:

Isolation
Although access to the individual TP profiles in a file can be controlled by
level (system, group, and user), an installation might choose to isolate the
communication that passes through a single LU. If so, the LU might need
an exclusive TP profile file.

LU-A }
LU-B } File-1
LU-C }

LU-D } File-2

Figure 43. Relationship of files to LUs

66 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Scheduling
An LU is associated with a single transaction scheduler, and the TP profile
file for that LU should contain profiles for TPs scheduled by that
transaction scheduler. In the previous figure, if LU-A, LU-B, and LU-C are
associated with the APPC/MVS transaction scheduler, and LU-D is
associated with transaction scheduler XYZ, File-1 should contain profiles
for TPs scheduled by the APPC/MVS transaction scheduler and File-2
should contain profiles for TPs scheduled by XYZ.

Testing
An installation might choose to devote an LU to pre-production testing
and associate it with a separate TP profile file that contains only profiles
for TPs to be tested.

Delegation of administrative responsibilities
Files can be associated with departments or groups within an installation
and maintained by different administrators.

Sharing files on more than one system
When systems share files, the files cannot be updated when in use.
Therefore, you might want to create two rotating copies of each file, one to
use and the other to update. For more information, see “Restrictions on
Invoking the APPC/MVS Administration Utility” on page 93.

Basically, many files allow flexibility, but a single file is easier to administer.
Carefully consider whether the multiple files you need for flexibility outweigh the
efficiency of keeping all TP profiles together in one file.

Determining the Size of Each File
Assuming that you separate side information entries from TP profile entries, and
that TP profiles for different transaction schedulers are also separated, you could
hypothetically define three types of files:
v Side information file (1 only)
v TP profile file for the APPC/MVS transaction scheduler (1 or more)
v TP profile file for a scheduler other than the APPC/MVS transaction scheduler

(1 or more)

Side Information File
When planning the size of the side information file, consider the size of each entry
and the number of entries needed. The size of each side information entry does not
vary. The side information key is always 112 bytes, and the remainder of the side
information is 136 bytes, resulting in a total of 248 bytes for each entry. This
number follows the RECORDSIZE keyword in the VSAM file definition.

The number of entries in a side information file depends on the number of partner
LUs and the number of unique TP/logon mode combinations. Outbound requests
can be made to many destinations and each combination of destination/TP/logon
mode needs a separate side information entry and a unique side information key.

Figure 44 on page 68 shows how outbound requests for two TPs (TP1 and TP2)
require five side information entries because of the various combinations of partner
LU/TP/logon mode.

Chapter 5. Controlling the Execution of Transaction Programs 67



Therefore, to estimate the number of entries for a side information file, add
together the number of unique TP/logon mode combinations for each partner LU.

The estimated number of entries is the first number following the RECORDS
keyword in the VSAM file definition. The second number following the RECORDS
keyword is the additional number of entries that can be added for expansion. For
information about how much expansion to allow, see z/OS DFSMS Access Method
Services Commands.

SYS1.SAMPLIB member ATBSIVSM contains a sample VSAM definition for a side
information file.

TP Profile Files for the APPC/MVS Transaction Scheduler
When planning a TP profile file for TPs scheduled by the APPC transaction
scheduler, consider the approximate size of each entry and the number of entries.
The size of each entry varies depending on the size of the JCL portion of the
profile. The TP profile non-JCL portion is 624 bytes, but the JCL portion can range
from 2 records (160 bytes) to 100 records (8000 bytes).

Based on the previous numbers, you can estimate the size of an entry in a TP
profile to be between 3824 bytes (non-JCL of 624 + average JCL of 3200) and 7024
bytes (non-JCL of 624 + maximum JCL of 6400). These numbers follow the
RECORDSIZE keyword in the VSAM file definition.

The number of entries in a TP profile file depends on the number of TPs and the
number of groups and users who have profiles for a TP. TPs can have a single
system-level profile and any number of group- or user-level profiles.

In Figure 46 on page 69, LU-A and LU-B share the same TP profile file. The file
contains four TP profiles for TP-1, two TP profiles for TP-2, and two TP profiles for
TP-3.

┌─────────┐
{ TP-1 ←───── logmode 1 ───────────┤ │

Partner LU-A { TP-1 ←───── logmode 2 ───────────┤ │
{ TP-2 ←───── logmode 1 ───────────┤ │

│ MVS │
│ │

Partner LU-B { TP-1 ←───── logmode 1 ───────────┤ │
{ TP-2 ←───── logmode 1 ───────────┤ │

└─────────┘

Figure 44. Combinations of Partner LUs, TPs, and Logon Modes

Partner LU 1: # unique TP/logon mode combinations
Partner LU 2: # unique TP/logon mode combinations
Partner LU 3: # unique TP/logon mode combinations
Partner LU 4: # unique TP/logon mode combinations
Partner LU 5: # unique TP/logon mode combinations
...
Partner LU n: + # unique TP/logon mode combinations

---------------------------
TOTAL = # of side information entries

Figure 45. Side Information Estimate

68 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Therefore, to estimate the number of entries for a TP profile file, add for each TP
the number of group-level profiles, the number of user-level profiles and, if one
exists, a system-level profile.

The estimated number of entries is the first number following the RECORDS
keyword in the VSAM file definition. The second number following the RECORDS
keyword is the additional number of entries that can be added for expansion. For
information about how much expansion to allow, see z/OS DFSMS Access Method
Services Commands.

SYS1.SAMPLIB member ATBTPVSM contains a sample VSAM definition for a
KSDS for TP profiles scheduled by the APPC/MVS transaction scheduler.

TP Profile Files for Non-APPC/MVS Transaction Schedulers
When planning a TP profile file for TPs not scheduled by the APPC/MVS
transaction scheduler, consider the approximate size of each entry and the number
of entries. The size of each entry can vary depending on the information required
by the transaction scheduler. The TP profile non-JCL information is fixed at 624
bytes.

To analyze the number of entries, follow the procedure for analyzing entries for an
APPC/MVS transaction scheduler file as explained in the previous section.

Using Database Tokens for File Security
As a security aid, you can assign a database token to each file. The database token
is essentially a single variable that represents the file name in a security definition
statement. For example, the database token used in combination with other
information allows a specific security definition for each TP profile in the file.
Being able to single out individual TPs in a file permits a security administrator to
assign security on a TP-by-TP basis.

TP profile file
┌───────────────┐

┌─────┐ │ TP-1 (system) │
│ LU │ ←───────┤ TP-1 (group1) │
│ A │ │ TP-1 (group2) │
└─────┘ │ TP-1 (user1) │

│ │
│ TP-2 (system) │

┌─────┐ │ TP-2 (user2) │
│ LU │ │ │
│ B │ ←───────┤ TP-3 (user3) │
└─────┘ │ TP-3 (user1) │

└───────────────┘

Figure 46. TP Levels in a File

TP 1: (# of groups) + (# of users) + (1 system, if any)
TP 2: (# of groups) + (# of users) + (1 system, if any)
TP 3: (# of groups) + (# of users) + (1 system, if any)
TP 4: (# of groups) + (# of users) + (1 system, if any)
...
TP n: + (# of groups) + (# of users) + (1 system, if any)

-------------------------------------------------
TOTAL = # of TP profile entries

Figure 47. TP Profile Estimate

Chapter 5. Controlling the Execution of Transaction Programs 69



For more information about securing TPs with a database token, see “Controlling
Access to Database Tokens” on page 170.

Creating a TP Profile
A TP profile contains identification, security, and scheduling information for a
target TP that resides in MVS and is scheduled in response to an inbound allocate
request. Every TP in MVS that receives an inbound allocate request and is
scheduled by the APPC/MVS transaction scheduler must have a TP profile. (Note
that inbound requests that are processed by APPC/MVS servers are not normally
scheduled and therefore do not require the use of a TP profile.) Each TP profile
consists of a TP profile key, a program attributes section, and a transaction
scheduler section.

TP Profile Key
The TP profile key uniquely identifies a TP profile within the VSAM file. The key
consists of the TP name and a level.

TPNAME(name)
Indicates one of the following:
v 1- through 64-character name of the transaction program. Valid characters

are those from the 00640 character set and the Type A character set. For
descriptions of these character sets, see Appendix A, “Character Sets,” on
page 259. If the name will be used in the APPC/MVS administration dialog
or in DISPLAY commands, do not use an asterisk (*) in the name.

v 2- to 4-character name of the transaction program (if the transaction program
is an SNA service TP). Although the names can be 2 to 4 characters, they are
normally 4 characters in length. To specify the SNA service TPNAME in the
APPC/MVS administration utility, you must map the 2- to 4-character SNA
TPNAME into the following 7- to 9-character format:

¬X’nn’yyy

where:

nn is two digits that represent hex characters from 00 through 3F,
excluding 0E and 0F. These two digits correspond to the first
character in the SNA TP name.

yyy is 1 to 3 Type A characters. A listing of Type A characters is in
Appendix A, “Character Sets,” on page 259. These 1 to 3 characters
correspond to the last 1 to 3 characters of the SNA TPNAME.

Figure 49 on page 71 shows how the 4-character SNA TPNAME 37,C1,C2,C3
maps into the APPC/MVS administration utility TPNAME ¬X'37'ABC. Because
the last 3 characters of the SNA TPNAME, C1,C2,C3, are TYPE A characters,
you can convert them using the listing in Appendix A, “Character Sets,” on
page 259. The first character in the SNA TPNAME,37, cannot be displayed,
however, so you must map the first character into the fourth and fifth
characters shown in Figure 49 on page 71.

Name of the TP ────────────────→ TPNAME(name)
Level of the TP ───────────────→ SYSTEM|GROUPID(id)|USERID(id)

Figure 48. TP Profile Key

70 z/OS V2R1.0 MVS Planning: APPC/MVS Management



SYSTEM|GROUPID(id)|USERID(id)
Indicates the level of the TP profile. You can customize a TP's processing for
different audiences by creating different profiles for the TP and making each
profile available to a designated audience, such as all users defined to an LU, a
group of users, or an individual user. You identify the audience for a TP by
specifying a level in the TP profile key.

A single TP can have profiles for all three levels; one available for all users on
the system (highest level), one for a specified group of users, and one for an
individual user (lowest level). When APPC/MVS receives an incoming allocate
request for a TP with more than one profile, it uses the TP profile with the
lowest level to which the requestor has access.

When a TP issues an allocate request with a security specification of
security_none, no group or user ID is passed and only system-level TPs can be
searched.

For information about profile access security, see “Controlling User Access to
TP Profiles and Side Information on MVS” on page 168. For more information
about specifying levels, see “Associating TPs and LUs with the Appropriate
Level” on page 239.

Program Attributes Section
The program attributes section of the TP profile contains information about the
program's status and defines a delimiter to mark the beginning and the end of the
transaction scheduler section.

ACTIVE(YES|NO)
Indicates whether the TP can be accessed for scheduling. When a TP profile is

SNA TPNAME

Administration Utility TPNAME

37 C1 C2 C3

Type A Characters
Non-displayable

Character

X ' 3 7 ' A B C

Figure 49. Mapping an SNA TPNAME into an Administration Utility TPNAME

Active Status ──────────────────→ ACTIVE(YES|NO)
Beginning of Scheduler Section ─→ TPSCHED_DELIMITER(delimiter1)

scheduler information

End of Scheduler Section ───────→ delimiter1

Figure 50. Program Attributes Section

Chapter 5. Controlling the Execution of Transaction Programs 71



active, the TP can be scheduled by a transaction scheduler. When a TP profile
is not active, the TP cannot be scheduled until its profile is changed back to
active status. The default is YES, which indicates the TP is active.

The ACTIVE keyword allows an installation to temporarily deactivate a TP
profile when the TP fails for an unknown reason. Deactivation prevents
continued requests for the TP, which would result in repeated failures, and
allows the programmer to read the message log for information about why the
TP failed.

TPSCHED_DELIMITER(delimiter1)
Marks the beginning of the transaction scheduler section and identifies a
delimiter that will be used to mark the end of the transaction scheduler
section. The delimiter can be from 1 through 53 characters but cannot be a
character string that appears within the transaction scheduler section itself.
When the delimiter marks the end of the transaction scheduler section, it must
appear on a line of its own and start in the first column.

Transaction Scheduler Section
The transaction scheduler section contains information about how the program will
be scheduled by the APPC/MVS transaction scheduler. Programs not scheduled by
the APPC/MVS transaction scheduler must provide an exit to syntax check the
format expected by that scheduler.

TPSCHED_EXIT(ASCH|exit name)
Names the exit that syntax checks the scheduler section. This keyword must
appear on the same line as the utility command, after the command name
when adding or modifying TP profiles. For example, when adding a TP profile
that will use the ASCH scheduler exit, you can specify:

TPADD TPSCHED_EXIT(ASCH)

The default is ASCH, so this keyword can be omitted for TPs scheduled by the
APPC/MVS transaction scheduler.

For information about writing an exit to check syntax, see z/OS MVS System
Messages, Vol 3 (ASB-BPX).

Utility command and exit ───────→ Command_name TPSCHED_EXIT(exit name)
... TP profile key ...
... Attributes section ...
Security SYSOUT Update ─────────→TAILOR_SYSOUT(NO|YES)
Security Account Update ────────→TAILOR_ACCOUNT(NO|YES)
Scheduler Class Name ───────────→CLASS(class name)
TP Scheduler Type ──────────────→TPSCHED_TYPE(STANDARD|MULTI_TRANS)
ID for Multi_Trans TPs ─────────→GENERIC_ID(generic userid)
Beginning of TP JCL ────────────→JCL_DELIMITER(delimiter2)

//jobname JOB ...
//stepname EXEC ...

End of TP JCL ──────────────────→delimiter2
Message Log Option ─────────────→KEEP_MESSAGE_LOG(ERROR|ALWAYS|NEVER)
Name of Message Data Set ───────→ MESSAGE_DATA_SET(data set name)
Status of Message Data Set ─────→ DATASET_STATUS(NEW|OLD|MOD)
SMS Storage Class ──────────────→ STORAGE_CLASS(class name)
SMS Management Class ───────────→ MANAGEMENT_CLASS(class name)
SMS Data Class ─────────────────→ DATA_CLASS(class name)

Figure 51. APPC/MVS Transaction Scheduler Section

72 z/OS V2R1.0 MVS Planning: APPC/MVS Management



TAILOR_SYSOUT(NO|YES)
Indicates whether a program tailors each transaction's SYSOUT with additional
SYSOUT information from the requestor's security profile. When the requestor
uses a security specification of security_none on the Allocate call, no SYSOUT
tailoring can occur. The default is NO.

The SYSOUT specification in the TP profile JCL applies to all transaction
instances of the program whether or not tailoring is requested. To guarantee
that output is processed before a TP ends, include the FREE=CLOSE parameter
with the SYSOUT specification. For SYSOUT recommendations, see “Specific
Scheduler JCL Information for TP Profiles” on page 80.

When the RACF security product is used, the SYSOUT information is stored in
the WORKATTR segment of the RACF user profile. For information about the
RACF user profile, see Chapter 10, “Setting up Network Security,” on page
151.

Note: When SYSOUT tailoring is requested, OUTPUT statement keywords
have varying default and override values. See individual OUTPUT keyword
descriptions in z/OS MVS JCL Reference for specific defaults and overrides.

TAILOR_ACCOUNT(NO|YES)
Indicates whether a program tailors each transaction's account with the account
information from the requestor's security profile. If there is no account number
in the requestor's security profile and account tailoring was requested, the
account number passed is 00000000. When the requestor uses a security
specification of security_none on the Allocate call, no account tailoring can
occur. The default is NO.

When no account tailoring is requested, the initial account specification in the
TP profile JCL records applies to all transaction instances of the program.

When the RACF security product is used, the account information is stored in
the WORKATTR segment of the RACF user profile. For information about the
RACF user profile, see Chapter 10, “Setting up Network Security,” on page
151.

When a TP profile indicates that accounts are to be tailored, an installation can
verify each transaction's account number with exit IEFUAV. For information
about IEFUAV, see z/OS MVS Installation Exits.

Note: When account tailoring is requested and account numbers appear in
both the TP profile JCL and the security profile, the security profile's account
number overrides the TP profile's account number.

CLASS(class name)
Names the 1- through 8-character scheduler class into which the TP is
scheduled. Classes set up scheduling characteristics, such as the maximum and
minimum number of transaction initiators for the class, and the response time
for each transaction.

Classes are named by CLASSADD statements in ASCHPMxx parmlib
members. If no class is specified in the TP profile, APPC/MVS administration
searches for a default class named by the OPTIONS statement in an
ASCHPMxx parmlib member. For information about the ASCHPMxx parmlib
member, see Chapter 4, “Defining Scheduling Characteristics with
ASCHPMxx,” on page 51.

Chapter 5. Controlling the Execution of Transaction Programs 73



TPSCHED_TYPE(STANDARD|MULTI_TRANS)
Indicates whether the TP is scheduled as standard or multi-trans. The default
is standard.

When a TP is scheduled as standard, an environment for the transaction is
created, resources are allocated for its use, and the TP is initialized in its
isolated environment. When the transaction completes, the resources are
cleaned up and the TP ends.

When a standard TP issues or receives multiple allocate calls, each call causes
re-allocation of resources and re-initialization of the TP, resulting in a new
instance of the TP.

To enhance performance for TPs that are frequently invoked, you can write a
multi-trans TP and specify a schedule type of multi-trans. Multi-trans
programs assume responsibility for resource cleanup between transaction
requests so that they can remain initialized for subsequent requests.

GENERIC_ID(generic user ID)
Names a generic user ID for a multi-trans program. Because the generic user
ID covers processing that typically must be isolated from the different
conversation partners, it must be secure from unauthorized specification or
modification. To protect the generic user ID, you can use RACF or an
equivalent security product to control read and update access to the TP profile
where the generic user ID is specified. For more information, see “Protecting
Multi-Trans TP Profiles” on page 173.

JCL_DELIMITER(delimiter2)
Marks the beginning of the JCL that will actually schedule and attach the TP,
and identifies a delimiter that will be used to mark the end of the JCL. The
delimiter can be from 1 through 59 characters but cannot be a character string
that appears within the JCL itself. When you use the delimiter to mark the end
of the JCL, it must appear on a line of its own starting in the first column.

JCL records
The JCL by which the TP is scheduled and attached. The JCL allowed in this
section is a subset of all JCL statements. Two statements are required:
v JOB statement, which is the place to specify limits. For tracking purposes,

specify a unique jobname. If resources the TP uses are to be billed to an
account that is not tailored, include an account number.

v EXEC statement, which names the program to invoke the TP.
To print the TP message log, invoke the write log routine ASBSCHWL from
a second EXEC statement. For information about the TP message log, see
“Logging Transaction Program Processing” on page 40.

Note that DD statements, although not required by APPC/MVS, might be
required by the program.

When certain job-related information is not specified, APPC/MVS
administration searches for default information in a TPDEFAULT statement of
an ASCHPMxx parmlib member. For information about TPDEFAULT, see
“Defining Default Scheduler Options — TPDEFAULT” on page 59.

Examples and restrictions appear in “Specific Scheduler JCL Information for TP
Profiles” on page 80.

KEEP_MESSAGE_LOG(ERROR|ALWAYS|NEVER)
Indicates the conditions under which messages are written to the TP message
log data set. If ERROR is specified, messages are written only when an error

74 z/OS V2R1.0 MVS Planning: APPC/MVS Management



occurs. ALWAYS indicates that messages at all times are written, and NEVER
indicates that no messages are written. The default is ERROR.

This keyword works together with a MSGLEVEL keyword parameter that can
be specified in the scheduler JCL section of the TP profile. (A default
MSGLEVEL parameter is provided in the TPDEFAULT statement of the
ASCHPMxx parmlib member.) The MSGLEVEL keyword controls the
generation of messages and KEEP_MESSAGE_LOG controls writing the
messages to the TP message log.

MESSAGE_DATA_SET(data set name)
Names the data set where TP messages are written. When no name is
specified, the name defaults to &SYSUID.&SYSWUID.&TPDATE.
&TPTIME.JOBLOG. The variables resolve to the following:
v For a multi-trans TP, &SYSUID resolves to the generic userid. For a standard

TP, &SYSUID resolves to the userid passed in with the inbound allocate
request, unless security_none is used (no userid passed), and then &SYSUID
resolves to SYSUID.

v &SYSWUID resolves to the work unit identifier
v &TPDATE resolves to the date that the TP ran. &TPDATE is in the form

Dyyyyddd where yyyy is the year and ddd is the day of the year. The initial
D simply identifies the qualifier as being a date.

v &TPTIME resolves to the time that the TP ran. &TPTIME is in the form
Thhmmss where hh is the hour (of a 24-hour clock), mm is the minutes, and
ss is the seconds. The initial T simply identifies the qualifier as being a time.

Note:

1. You can use &SYSUID, &SYSWUID, &TPDATE, and &TPTIME as variables
for any qualifiers in the data set name.

2. When an inbound allocate request has the security specification of
security_none, no user ID is passed with the request, and the system
variable &SYSUID resolves to SYSUID.

DATASET_STATUS(NEW|OLD|MOD)
Indicates the status of the TP message log data set. OLD indicates that a
message log data set already exists and is cataloged. When messages are
written to an old data set, they overwrite previous data. MOD indicates that a
data set will be created and cataloged if it doesn't already exist. If it does exist,
messages are added to the end of the data set. NEW indicates that the data set
does not yet exist. The default is NEW.

Note: When the status of the TP message log is NEW, the disposition is
CATALOG, which means the data set is kept once it is created. If a TP profile
specifies KEEP_MESSAGE_LOG(ALWAYS), a new data set will be created each
time the TP runs and message log data sets will accumulate.

STORAGE_CLASS(class name)
Names the 1- through 8-character storage class used to define a new
SMS-managed message data set. If the message log data set is to be
SMS-managed, this keyword is required. If not specified, dynamic allocation
defaults are used to allocate the message data set.

Note: Use this keyword only when all of the following are true:
v The data set is new.
v SMS is available at your installation.
v You want to create a SMS-managed message data set.

Chapter 5. Controlling the Execution of Transaction Programs 75



MANAGEMENT_CLASS(class name)
Names the 1- through 8-character management class for an SMS-managed
message data set. For data sets already identified as SMS-managed (through a
storage class name), SMS will provide a management class.

Note: Use this keyword only when all of the following are true:
v The data set is new.
v SMS is available at your installation.
v You want to create a SMS-managed message data set.

DATA_CLASS(class name)
Names a 1- through 8-character data class for an SMS-managed message data
set. The specified data class must have a record length of 133 bytes. For data
sets already identified as SMS-managed (through a storage class name), SMS
will provide a data class with a record length of 133 bytes.

Note: Use this keyword only when all of the following are true:
v The data set is new.
v SMS is available at your installation.
v You want to create a SMS-managed message data set.

Summary of TP Profile Keywords
Table 4. Summary of TP Profile Keywords

Keyword Value(s)/Length Default

TPNAME 1-64 Type 00640 characters or Type A
characters or 2-4 characters (for an
SNA service TP)

None

SYSTEM N/A

GROUPID 1-8 (subject to security product's
group ID rules)

None

USERID 1-8 (subject to security product's user
ID rules)

None

TPSCHED_EXIT ASCH | 1-8 Type A characters ASCH

ACTIVE YES | NO YES

TPSCHED_DELIMITER 1-53 characters (can contain any
character combination)

None

CLASS

If omitted, you must define a default
class in an ASCHPMxx parmlib
member.

1-8 Type A characters None

TAILOR_SYSOUT NO | YES NO

TAILOR_ACCOUNT NO | YES NO

TPSCHED_TYPE STANDARD | MULTI_TRANS STANDARD

GENERIC_ID 1-8 Type A characters None

KEEP_MESSAGE_LOG ERROR | ALWAYS | NEVER ERROR

MESSAGE_DATA_SET 1-44 &SYSUID.&SYSWUID.&TPDATE.
&TPTIME.JOBLOG

DATASET_STATUS NEW | OLD | MOD NEW

76 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Table 4. Summary of TP Profile Keywords (continued)

Keyword Value(s)/Length Default

STORAGE_CLASS 1-8 Type A characters None

MANAGEMENT_CLASS 1-8 Type A characters None

DATA_CLASS 1-8 Type A characters None

JCL_DELIMITER 1-59 characters (can contain any
character combination)

None

Creating Side Information
Side information contains the translation of a symbolic destination name that can
be used on outbound allocate requests, or by APPC/MVS servers, when registering
to receive inbound conversations. Programs specify a symbolic destination name
that represents the TP name, logon mode, and partner LU on the Allocate or
Register_for_Allocates call.

Side information consists of the following sections:

DESTNAME(sym_dest_name)
Identifies the 1- through 8-character symbolic destination name for the partner
TP.

TPNAME(name)
Indicates one of the following:
v 1- through 64-character name of the transaction program. Valid characters

are those from the 00640 character set and the Type A character set. For
descriptions of these character sets, see Appendix A, “Character Sets,” on
page 259. If the name will be used in the APPC/MVS administration dialog
or in DISPLAY commands, do not use an asterisk (*) in the name.

v 2- to 4-character name of the transaction program (if the transaction program
is an SNA service TP). Although the names can be 2 to 4 characters, they are
normally 4 characters in length. To specify the SNA service TPNAME in the
APPC/MVS administration utility, you must map the 2- to 4-character SNA
TPNAME into the following 7- to 9-character format:

¬X’nn’yyy

where:

nn is two digits that represent hex characters from 00 through 3F,
excluding 0E and 0F. These two digits correspond to the first
character in the SNA TP name.

Symbolic Destination Name ──────→ DESTNAME(sym_dest_name)

Figure 52. Side Information Key

TP Name ────────────────────────→ TPNAME(name)
Logon Mode Name ────────────────→ MODENAME(mode)
Partner LU Name ────────────────→ PARTNER_LU(name)

Figure 53. Side Information Data

Chapter 5. Controlling the Execution of Transaction Programs 77



yyy is 1 to 3 Type A characters. A listing of Type A characters is in
Appendix A, “Character Sets,” on page 259. These 1 to 3 characters
correspond to the last 1 to 3 characters of the SNA TPNAME.

Figure 54 shows how the 4-character SNA TPNAME 37,C1,C2,C3 maps into the
APPC/MVS administration utility TPNAME ¬X'37'ABC. Because the last 3
characters of the SNA TPNAME, C1,C2,C3, are TYPE A characters, you can
convert them using the listing in Appendix A, “Character Sets,” on page 259.
The first character in the SNA TPNAME,37, is nondisplayable, however, so you
must map the first character into the fourth and fifth characters shown in
Figure 54.

MODENAME(mode)
Names the logon mode for the SNA session connecting the local LU with the
partner LU. If no mode name is specified, a default mode name might be
available. For information about when defaults are available, see “Specifying a
Logon Mode for a Conversation” on page 126.

PARTNER_LU(name)
Identifies the 1- through 17-character name of the partner LU where the
partner TP resides. If no partner LU name is specified, APPC/MVS assumes
the TP resides in the local LU.

This value can be one of the following:
v Network LU name only (1-8 byte Type A character string)
v A VTAM generic resource name (1-8 byte Type A character string). This

value should not be a generic resource name if any APPC/MVS servers use
the LU value from a side information entry for a Register_for_Allocates call.
Register_for_Allocates accepts only a specific LU name.

v Combined network_ID and network LU name (two 1-8 byte Type A
character strings, concatenated by a period): network_ID.network_LUname. The
network LU name can be a VTAM generic resource name.

Example of Side Information
In the following COBOL example, the symbolic destination name USR3NEWS is
used in a CPI Communications outbound Initialize_Conversation call and is
resolved by its side information in the example box.

SNA TPNAME

Administration Utility TPNAME

37 C1 C2 C3

Type A Characters
Non-displayable

Character

X ' 3 7 ' A B C

Figure 54. Mapping an SNA TPNAME into an Administration Utility TPNAME

78 z/OS V2R1.0 MVS Planning: APPC/MVS Management



MOVE "USR3NEWS" TO SYM-DEST-NAME.
CALL "CMINIT" USING CONVERSATION-ID,

SYM-DEST-NAME,
CM-RETCODE.

Summary of Side Information Keywords
Table 5. Summary of Side Information Keywords

Keyword Value(s)/Length Default

DESTNAME 1-8 alphanumeric characters

This value is not case sensitive.

None

TPNAME 1-64 Type 00640 characters or Type A
characters or 2-4 characters (for an SNA
service TP)

None

MODENAME 0-8 Type A characters None

PARTNER_LU 0-17 Type A characters None

Defining TP Profiles and Side Information Early
When an installation must define a large number of TPs, it might be advantageous
to define them early, before the installation has completely migrated to a new
release of MVS. When the TP profiles and side information are defined early, the
TPs are ready to run soon after the new release is installed.

Although the APPC/MVS administration utility (ATBSDFMU) is available with
MVS/ESA SP 4.2, it is possible to install it on a lower level system. The utility can
run on MVS/ESA SP 3.1 or later. The parts that comprise the utility can be moved
to the lower level system from a test system running MVS/ESA SP 4.2 or later.

When installed early, the utility can scan for errors and perform the services for all
side information entries and for TP profile entries of TPs not scheduled by the
APPC/MVS transaction scheduler. However, for TPs scheduled by the APPC/MVS
transaction scheduler, the JCL portion of the TP profile cannot be checked for
correct syntax. If the JCL contains an error, the TP will fail when invoked, and
messages might not define the JCL error.

If you want to ensure that the JCL of a TP profile defined early has correct syntax
before the TP is invoked, you can deactivate the TP profile when defining it, and
activate it with a TPMODIFY. The JCL will then be checked for syntax errors.
Activation of profiles is controlled by the ACTIVE keyword in the attributes
section of the TP profile.

DESTNAME(USR3NEWS)
MODENAME(MODE3)
TPNAME(NEWS)
PARTNER_LU(USER3LU)

Figure 55. Example of Side Information

Chapter 5. Controlling the Execution of Transaction Programs 79



Specific Scheduler JCL Information for TP Profiles
The JCL used in the scheduler section of a TP profile is a subset of all JCL
statements. Two statements are required:

JOB statement
The JOB statement (the first JCL statement) gives the program designer a
place to specify limits for the TP (like maximum PAGES, LINES, BYTES
and CARDS). For retrievability and debugging, use a unique jobname for
each TP. If resources the TP uses will be billed to an account, specify an
account number.

EXEC statement
The EXEC statement names the program that will invoke the TP. If your
installation is running JES2 Version 4.1 or later or JES3 Version 4.2.1 or
later, you can add error control within the EXEC statement by an IF
statement similar to the following:
//MAINTRAN EXEC PGM=APPCTRAN
// IF (MAINTTRAN.RC > 8 OR ABEND=TRUE) THEN
//ERROR EXEC PGM=NOTIFY
/* Inform somebody about the error
//PRNTLOG EXEC PGM=ATBWTL
/* Print information to a log if error occurred
//MSGLOG DD SYSOUT=A,DEST=(NODE5.FRED)
/* Route output to a specific user
// ENDIF

SYSOUT Recommendations
TPs can use the same JES SYSOUT functions available to other MVS applications,
with the exception that SYSOUT data sets allocated by TPs are treated as spin data
sets. As with non-spin batch data sets, TP SYSOUT data sets are processed when
they are unallocated. When FREE=CLOSE is coded in the SYSOUT specifications in
the TP profile JCL, unallocation of the spin data set occurs immediately after it
closes.

When a TP is scheduled as standard, its transaction initiator unallocates data set
resources when the TP ends. When a TP is scheduled as multi-trans, it runs under
a shell which, between requests, does not do the normal cleanup of a transaction
initiator. Thus, the SYSOUT data set is not processed until all requests for the
multi-trans have completed and the multi-trans ends. Multi-trans TPs that create
output must close their SYSOUT data sets after each request completes. To
guarantee processing of SYSOUT data, code FREE=CLOSE on TP profile SYSOUT
specifications, or include the CLOSE macro with the FREE option within the TP.

To guarantee that SYSOUT data sets are processed before initiator cleanup, IBM
recommends that all SYSOUT specifications, for both standard and multi-trans TPs,
include the FREE=CLOSE parameter.

JCL Size Restrictions
The maximum record limit for JCL within TP profiles is approximately 100 records,
depending on the complexity of the records. This maximum record limit includes
the records that are invoked through a JCLLIB statement. An example of a JCLLIB
statement follows in “PROCLIB Restrictions” on page 83.

Unsupported Statements and Restrictions
You cannot use the following statements in the JCL scheduler portion of the TP
profile:

80 z/OS V2R1.0 MVS Planning: APPC/MVS Management



v Job entry control language (JECL) statements. These are the statements
associated with JES2 or JES3; for example:

//*FORMAT
//*MAIN

If JES2 JECL statements are coded, they are detected as JCL errors. If JES3 JECL
statements are coded, they are ignored and appear as comments.

v Internal reader control statements; for example:
/*EOF
/*DEL

v Instream commands:
"// command "
"// COMMAND ’... command text ...’ "

v The XMIT statement:
"// XMIT "

The XMIT JCL statement has no function in an APPC scheduling environment. If
you code an XMIT statement, however, it must be syntactically correct to avoid
JCL errors.

Restrictions on &SYSUID Variable
v Using the variable &SYSUID anywhere in your JCL degrades performance.
v Using the variable &SYSUID on the JOB statement NOTIFY parameter might

result in the failure of an Allocate request. If you code NOTIFY=&SYSUID and
the user ID specified through the Allocate service is longer than seven
characters, the Allocate request will fail. IBM recommends that you avoid using
the NOTIFY parameter in an APPC scheduling environment.

v Using the &SYSUID variable on the DD statement SUBSYS parameter results in
inconsistent symbolic substitution.

v Note that, as described in the following section, you cannot use &SYSUID in a
data set name in the TP profile JCL if the requestor's security specification is
security_none.

v Data sets on a JCLLIB statement should not use the &SYSUID variable.

Data Set Naming Restrictions
Data set names in the TP profile JCL that use the variable &SYSUID cannot be
resolved when the requestor's security specification is security_none. Because no
user ID is passed on the allocate request, the request ends in error.

JOB Statement Restrictions
v The JOB statement MSGLEVEL keyword has limited function in an APPC

scheduling environment. See “Logging Transaction Program Processing” on page
40 for information about using MSGLEVEL in a TP message log definition.

v The following JOB statement keywords have no effect in the APPC scheduling
environment. APPC provides equivalent function elsewhere, except for the
NOTIFY, RD, RESTART, and SECLABEL keywords.

Keyword
Description

USER Identifies job submitter's ID to system

GROUP
Identifies job submitter's GROUP to system

PASSWORD
Identifies job submitter's RACF password to system

Chapter 5. Controlling the Execution of Transaction Programs 81



SECLABEL
Security classification for this job

NOTIFY
TSO user ID notification when job completes (See note 2.)

CLASS
Assigns job to a job class

MSGCLASS
Assigns job log to an output class

RD Options to control job checkpoints and restarting

TYPRUN
Requests special job processing

PRTY Assigns JES selection priority

RESTART
Specifies job restart point

Note:

1. Even though these keywords have no effect, if found within the JCL, they
must be syntactically correct to avoid a JCL error.

2. Coding the NOTIFY parameter might cause a runtime error, as well as a JCL
syntax error; read “Restrictions on &SYSUID Variable” on page 81.

EXEC Statement Restrictions
The EXEC statement RD keyword, which specifies options to control JOB
checkpoints and restarting, has no effect in the APPC scheduling environment.
However, if you code the RD keyword, it must be syntactically correct to avoid a
JCL error.

DD Statement Restrictions
The following DD statement keywords have no effect or function inconsistently in
the APPC scheduling environment:

Keyword
Description

* Specifies in-stream data to follow

DATA Specifies in-stream data to follow

DLM Specifies the delimiter to terminate in-stream data

TERM=TS
Dataset represents Input/Output with a TSO terminal

SUBSYS
Symbolic substitution is inconsistent when you code &SYSUID as a
subparameter.

Note:

1. Even though these keywords have no effect, if found within the JCL, they must
be syntactically correct to avoid a JCL error.

2. Instream DD * or DD DATA statements are processed as JCL statements and
could cause JCL errors. The /* statement (with a blank as the third character) is
ignored.

82 z/OS V2R1.0 MVS Planning: APPC/MVS Management



OUTPUT Statement Restrictions
v The OUTPUT statement OUTDISP keyword has limited effect: In an APPC

scheduling environment, SYSOUT data sets are treated as spin data sets. The
system will process only the normal output disposition. If you code an abnormal
output disposition, the system will check it for syntax and ignore it. If you code
OUTDISP for either output disposition, it must be syntactically correct to avoid a
JCL error.

v The following OUTPUT statement keywords have different default and override
values in an APPC scheduling environment.

ADDRESS
BUILDING
DEPT
NAME
ROOM

See z/OS MVS JCL Reference for specific defaults and overrides.

PROCLIB Restrictions
Although the TP profile can define resources with JCL, it cannot invoke a system
PROCLIB. To specify a procedure in the JCL statements, explicitly include a JCLLIB
statement to specify the dataset name or names where the JCL is to be found. An
example of a JCLLIB statement follows:

//CHECKTP JOB (5523),MSGLEVEL=(1,1)
// JCLLIB ORDER=(FRED.PROCLIB,BILL.PROCLIB,JOE.PROCLIB)

Note: Using JCLLIB statements degrades performance. In addition, if you make
changes to the procedures invoked by a multi-trans TP, the changes do not take
effect until you modify the TP profile and the multi-trans TP stops and restarts.

Chapter 5. Controlling the Execution of Transaction Programs 83



84 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Chapter 6. Using the APPC/MVS Administration Utility

The APPC/MVS administration utility (ATBSDFMU) provides services in the form
of commands that create and maintain TP profiles and side information through a
batch job, an application program, or a REXX exec. Using the utility requires
knowledge of JCL. An installation might choose to create the TP profiles and side
information using the utility, and view and maintain them interactively with the
dialog. For information about the administration dialog, see Chapter 7, “Using the
APPC/MVS Administration Dialog,” on page 95.

Topics covered in this chapter include:

Utility Commands
The utility commands create and maintain TP profile and side information entries
that are stored in VSAM key sequenced data sets. Each entry begins with a key,
which identifies the entry within the file, and is followed by data specific to either
the TP profile or side information. For information about the data within entries,
see “Creating a TP Profile” on page 70 and “Creating Side Information” on page
77.

Utility commands also create and maintain the database tokens used to represent
the VSAM file names in security definition statements.

The following are descriptions of the commands for TP profiles, side information,
and database tokens.

TP Profile Commands
TPADD— TP Profile Addition

Adds a TP profile to a VSAM file. During TP profile addition, the profile is
validated to ensure that it is syntactically correct. If the profile is not
syntactically correct or is already in the file (in either an activated or
deactivated state), the TP profile is not added. When TP profiles are added on
a lower level system than MVS/ESA SP 4.2, the utility cannot check the
scheduler JCL portion for correct syntax.

If the TP is not scheduled by the APPC/MVS transaction scheduler, specify a
scheduler exit with the TPSCHED_EXIT keyword on the same line as TPADD.

TPALIAS— TP Profile Alias Addition
Adds an alias of an existing TP profile to the VSAM file. A TP profile alias
allows a TP to be accessed by a key other than the key in its TP profile. The TP
profile alias is not added when one of the following conditions exist:
v The alias to be added is already in the file
v The existing TP profile is not in the file
v The existing TP profile is an alias of another TP profile.

TPDELETE— TP Profile Deletion
Deletes a TP profile or a TP profile alias from a VSAM file. A user level TP that
is registered for test, however, cannot be deleted.

TPKEYS— TP Profile Keys Retrieval
Retrieves the TP profile keys for all the TP profiles in a VSAM file for which a

© Copyright IBM Corp. 1991, 2013 85



user has access authority. Retrieving TP profile keys provides you with a list of
the profiles to which you have access. The profile keys are placed in a specified
SYSSDOUT data set.

TPMODIFY— TP Profile Modification
Modifies a TP profile that already exists. You can specify one or more keyword
changes for modification. Keywords not specified are not modified. During TP
profile modification, the profile is validated to ensure that it is syntactically
correct. If the profile is not syntactically correct or is not found in the VSAM
file, the TP profile is not modified. When TP profiles are modified on a lower
level system than MVS/ESA SP 4.2, the utility cannot check the scheduler JCL
portion for correct syntax.

TPRETRIEVE— TP Profile Retrieval
Retrieves a TP profile from a VSAM file and places it in a specified SYSSDOUT
data set. Retrieving a TP profile allows you to view the contents of the TP
profile.

Side Information Commands
SIADD— Side Information Addition

Adds side information to a VSAM file. If the side information to be added is
already in the file, the side information is not added.

SIDELETE— Side Information Deletion
Deletes side information from a VSAM file.

SIKEYS— Side Information Keys Retrieval
Retrieves from a VSAM file the side information keys for all of the side
information for which a user has access authority. Retrieving side information
keys provides you with a list of the side information to which you have access.
The side information keys are placed in a specified SYSSDOUT data set.

SIMODIFY— Side Information Modification
Modifies side information that already exists. You can specify one or more
keyword changes for modification. Keywords not specified are not modified.

SIRETRIEVE— Side Information Retrieval
Retrieves side information from a VSAM file and places it in a specified
SYSSDOUT data set. Retrieving side information allows you to view the
contents of the side information.

Database Token Commands
The use of database tokens allows an installation to assign different levels of
security to TPs within a single VSAM file. Each VSAM file can be assigned one
database token. The database token represents the file name in security definitions.

DBRETRIEVE— Database Token Retrieval
Retrieves the database token for a VSAM file and places it in a specified
SYSSDOUT data set. Retrieving a database token allows you to view the
database token for the VSAM file.

DBMODIFY— Data Base Token Modification
Modifies the database token for a VSAM file. If the file does not already
contain a database token, the token is added. The keyword for this command
is DBTOKEN.

Note: Be careful when changing the database token for an existing VSAM file.
Authorization to read and write to entries in VSAM files is associated with the
database token through RACF APPCSI and APPCTP classes or equivalent

86 z/OS V2R1.0 MVS Planning: APPC/MVS Management



classes in other security products. To maintain continued access after changing
a database token, you must ensure that entities within the APPCSI and
APPCTP classes reflect the new database token name to provide equivalent
protection. To make this change with RACF, issue an RDEFINE command with
the FROM keyword, followed by an RDELETE command.

Syntax Requirements
To use the APPC/MVS administration utility to create and maintain TP profiles
and side information, combine the appropriate utility command with the required
TP profile and side information.

Utility commands can be issued in the JCL SYSIN data stream of the batch job that
invokes the APPC/MVS administration utility. Following the command are the TP
profile and side information keys and keywords required for the command. Not all
commands require keys or keywords.

//STEP EXEC PGM=ATBSDFMU
...

//SYSIN DD *
Utility command

Key(parameter)
Keyword(keyword_parameter)
Keyword(keyword_parameter)
Keyword(keyword_parameter)

/*

Information on the same line as the utility command name is ignored except for
the TPSCHED_EXIT keyword for TPADD and TPMODIFY.

Specific commands require specific data. The order of the required data is not
significant except for TPALIAS, in which case the alias TP profile key must appear
before the existing TP profile key. Table 6 maps the required data to the command;
use the figure along with the examples under “Examples” on page 94 to
understand the syntax for specific utility commands.

Table 6. APPC/MVS Administration Utility Commands and Required Data

Command Required Data

TPADD TP profile key, TP profile keywords for TPs scheduled by
the APPC/MVS transaction scheduler:

TPSCHED_DELIMITER

CLASS (if no parmlib default)

JCL_DELIMITER ,

Scheduler JCL JOB and EXEC statements

TPALIAS TP profile key (alias), TP profile key (existing)

TPDELETE TP profile key

TPKEYS None

TPMODIFY TP profile key, TP profile keywords to be modified

TPRETRIEVE TP profile key

SIADD Side information key, side information (all keywords)

SIDELETE Side information key

SIKEYS None

Chapter 6. Using the APPC/MVS Administration Utility 87



Table 6. APPC/MVS Administration Utility Commands and Required Data (continued)

Command Required Data

SIMODIFY Side information key, side information keywords to be
modified

SIRETRIEVE Side information key

DBMODIFY Database token

DBRETRIEVE None

Syntax Rules
The following general rules apply to utility command syntax.
v Blank lines can appear anywhere within the SYSIN data.
v Only one command or keyword is allowed per line.
v No continuation to the next line is allowed for command lines, keyword lines,

and comment lines.
v The system does not recognize command syntax entered in columns 73 through

80, except for JCL records within the JCL_DELIMITER area/keyword.
v Data can start in any column. The exceptions to this rule are the data delimiters

specified by the TPSCHED_DELIMITER keyword and the JCL_DELIMITER
keyword. The specified delimiter must start in the first column.

v Lowercase characters are accepted as equivalent to uppercase when used in
command names, keywords, and most keyword values. An exception to this is
that lowercase and uppercase characters are distinguished in the TPNAME, the
TPSCHED_DELIMITER, and the JCL_DELIMITER keyword values.

v Syntax errors are written as messages to SYSPRINT. After the first error
message, checking of syntax continues until all input is checked.

For Comments
v Comment lines are preceded by /*
v Comments are not allowed on the same line as keywords or utility commands.

A comment must appear on its own line.
v Comment lines and blank lines may appear on any line of the SYSIN data, but

the comment delimiter /* must not begin in column 1.

For Commands
v The first line (not including blank or comment lines) of utility input must name

the utility command.
v Multiple commands are allowed within a single SYSIN data stream.
v A utility command must be followed by all of the keyword lines that are

required for the command before the next command is specified or before the
end of input.

For Keywords
v If a keyword value is not valid, or a keyword is missing, the keyword line is not

valid, and the entire command is not valid.
v Only keywords required or optional for a given command can be specified.
v A keyword cannot be repeated in the context of a single command. (Exception:

The TPNAME keyword does appear twice for the TPALIAS command.)
v Do not code extraneous data (any data that follows the last right parenthesis) on

a keyword line. Extraneous data is ignored but causes a warning message.

88 z/OS V2R1.0 MVS Planning: APPC/MVS Management



v Zero or more blanks are allowed between the keyword and the left parenthesis
in a keyword line.

v Keywords may appear in any order following a command. There are two
exceptions to this rule:
– When the TPALIAS command is specified, all keywords for the alias TP

profile key must appear before any keywords for the existing TP profile key.
– When a transaction scheduler section is present, all of its associated keywords

followed by its corresponding data delimiter must appear separately from any
keywords associated with the TP profile key or attributes section. That is,
keywords from the TP profile key or attributes section cannot appear within
the transaction scheduler section, and vice versa.

Invoking the APPC/MVS Administration Utility
You can invoke the APPC/MVS administration utility through:
v A batch job
v An application program
v A REXX exec

This section explains each method, the restrictions for invoking the utility, and the
return codes you receive after utility processing completes.

If you are using the program access to data sets (PADS) function of RACF to
protect access to TP profiles and side information, see “Giving Program Access to
the APPC/MVS Administration Utility” on page 169 for more information about
using the administration utility in that environment.

Invoking the APPC/MVS Administration Utility from a Batch
Job

The APPC/MVS administration utility is invoked from a batch job by naming
ATBSDFMU on the EXEC statement. The utility commands are issued either in the
SYSIN data stream or from a data set named in the SYSIN DD statement.

//jobname JOB ...
//stepname EXEC PGM=ATBSDFMU,PARM=’TYPRUN=condition’
//SYSSDLIB DD DSN=SYS1.APPCTP,DISP=SHR
//SYSSDOUT DD DSN=UTILITY.OUTPUT,DISP=(NEW,CATLG)
//SYSPRINT DD SYSOUT=A
//SYSIN DD DATA,DLM=XX

Utility command and
TP profile data or
side information data

XX

Figure 56. Example of JCL to Invoke ATBSDFMU Using SYSIN Data

Chapter 6. Using the APPC/MVS Administration Utility 89



Before invoking the utility, read “Restrictions on Invoking the APPC/MVS
Administration Utility” on page 93.

Parameters
jobname

The name of the job that invokes the APPC/MVS administration utility.

stepname
The name of the step that invokes the APPC/MVS administration utility
(ATBSDFMU) and specifies a TYPRUN condition. TYPRUN controls the action
the utility performs on the profile and side information data entered as SYSIN
input.

condition
Indicates one of three TYPRUN actions (on the EXEC statement) for the SYSIN
input:

SCAN Syntax check only the utility command and keywords.

APPC If MVS/ESA SP 4.2 or later has been installed, perform all services. If
MVS/ESA SP 4.2 or later has not been installed, perform all services
except TP profile addition and modification services. TP profile
addition and modification services are scanned only.

RUN Perform all services regardless of the release level. However, if
MVS/ESA SP 4.2 or later has not been installed, the JCL portion of the
transaction scheduler section in TP profiles cannot be validated. If an
attempt is made to run the TP with JCL syntax errors, the TP fails with
no JCL messages to indicate the nature of the problem.

RUN is the default for TYPRUN and the recommended parameter when using
the utility on a lower level system.

SYSSDLIB
Identifies the VSAM KSDS into which definitions will be placed or from which
definitions are retrieved. The VSAM KSDS specified must have been
previously created.

SYSSDOUT
Identifies a data set that will receive output from the APPC/MVS
administration retrieval services. The data set can be previously allocated with
a recommended format of fixed blocked records with a record length of at least
120 bytes.

Retrieved output consists of /* and the command name that requested the
output, the SYSIN input for the service, and a blank line followed by the
requested output. For example, output for a TPRETRIEVE is displayed as
follows:

//jobname JOB ...
//stepname EXEC PGM=ATBSDFMU,PARM=’TYPRUN=condition’
//SYSSDLIB DD DSN=SYS1.APPCTP,DISP=SHR
//SYSSDOUT DD DSN=UTILITY.OUTPUT,DISP=(NEW,CATLG)
//SYSPRINT DD SYSOUT=A
//SYSIN DD DSN=TP.INSTALL,DISP=SHR

Figure 57. Example of JCL to Invoke ATBSDFMU Using a SYSIN Data Set

90 z/OS V2R1.0 MVS Planning: APPC/MVS Management



SYSPRINT
Identifies a data set that can receive general statement and message output
from the APPC/MVS administration utility. The data set can be previously
allocated with a recommended format of fixed blocked records with a record
length of at least 120 bytes.

A SYSPRINT DD statement is required for all administration utility services.
The default message output class for SYSPRINT is SYSOUT=A.

SYSIN
Identifies the input stream or name of a data set in which the APPC/MVS
administration utility command is specified along with the necessary TP profile
or side information data. Some commands, such as the key retrieval
commands, require no TP profile or side information data. Most of the
commands, however, require a part or all of the TP definition.

Note: In case of a severe error returned by the APPC/MVS administration utility,
you can attempt to capture a dump by including one of the following DD
statements:

//SYSABEND DD ...
//SYSMDUMP DD ...
//SYSUDUMP DD ...

For more information, see z/OS MVS JCL Reference.

Invoking the APPC/MVS Administration Utility from an
Application Program

In addition to invoking the administration utility (ATBSDFMU) from a batch job,
you can invoke the utility from within an application program by using the LINK
macro.

Before invoking ATBSDFMU, you must allocate the following files:
v SYSSDIN
v SYSSDLIB
v SYSSDPRT
v SYSSDOUT

┌───┐ ┌────────────────────┬────────────────────┐
│ R1├──>│Addr of TYPRUN Info │ Addr or DDNAME Info│
└───┘ └───────┬────────────┴───────────┬────────┘

│ │
│ │
↓ ↓

┌────────────────────────┐ ┌───────────────────────────┐
│ Length (2 bytes signed)│ │Length (2 Bytes signed) │
├────────────────────────┤ ├───────────────────────────┤
│ TYPRUN=xxxx │ │Reserved for IBM (8 Chars)│
└────────────────────────┘ ├───────────────────────────┤
xxxx=RUN, APPC, SCAN │Reserved for IBM (8 Chars)│

├───────────────────────────┤
│Reserved for IBM (8 Chars)│
├───────────────────────────┤
│Reserved for IBM (8 Chars)│
├───────────────────────────┤
│SYSSDIN │ /* Overrides
├───────────────────────────┤ /* SYSIN
│SYSSDPRT │ /* Overrides
└───────────────────────────┘ /* SYSPRINT

Chapter 6. Using the APPC/MVS Administration Utility 91



You can allocate these files dynamically from within your program, or you can
submit the appropriate JCL as in the following example:

//jobname JOB ...
//stepname EXEC PGM=MYPROG
//SYSSDLIB DD DSN=SYS1.APPCTP,DISP=SHR
//SYSSDOUT DD DSN=MYPROG.OUTPUT,DISP=(NEW,CATLG)
//SYSSDPRT DD DSN=MYPROG.SYSPRINT,DISP=(NEW,CATLG)
//SYSSDIN DD DSN=MYPROG.SYSIN,DISP=SHR

Note that before invoking ATBSDFMU, the caller must either be in supervisor
state, or run with PSW key 0 or 1.

The caller must also build, in key 1 storage, a parameter list that the caller passes
to ATBSDFMU. This parameter list must contain the following:

Because the SYSIN and SYSPRINT parameters are already being used by the
system, you must specify alternate variable names in your parameter list to avoid
any conflicts. In this parameter list, SYSSDIN and SYSSDPRT override SYSIN and
SYSPRINT.

For a complete description of the TYPRUN, SYSIN, and SYSPRINT parameters, see
“Parameters” on page 90.

Invoking the APPC/MVS Administration Utility from a REXX
Program

Instead of invoking the APPC administration utility directly, you can use the REXX
language to invoke ICQASLI0, the interface to the utility. ICQASLI0 requires you
to allocate the following four files:
v SYSSDIN
v SYSSDLIB
v SYSSDPRT
v SYSSDOUT

For more information about these files, see “Parameters” on page 90.

┌───┐ ┌────────────────────┬────────────────────┐
│ R1├──>│Addr of TYPRUN Info │ Addr or DDNAME Info│
└───┘ └───────┬────────────┴───────────┬────────┘

│ │
↓ ↓

┌────────────────────────┐ ┌───────────────────────────┐
│ Length (2 bytes signed)│ │Length (2 Bytes signed) │
├────────────────────────┤ ├───────────────────────────┤
│ TYPRUN=xxxx │ │Reserved for IBM (8 Chars)│
└────────────────────────┘ ├───────────────────────────┤
xxxx=RUN, APPC, SCAN │Reserved for IBM (8 Chars)│

├───────────────────────────┤
│Reserved for IBM (8 Chars)│
├───────────────────────────┤
│Reserved for IBM (8 Chars)│
├───────────────────────────┤
│SYSSDIN │ /* Overrides
├───────────────────────────┤ /* SYSIN
│SYSSDPRT │ /* Overrides
└───────────────────────────┘ /* SYSPRINT

92 z/OS V2R1.0 MVS Planning: APPC/MVS Management



The following example shows a portion of a REXX exec that invokes the APPC
Administration Utility. Because ICQASLI0 sets TYPRUN=RUN (default), you do
not need to specify this parameter.
ADDRESS TSO

"Alloc da(TEMP.SYSSDIN) file(SYSSDIN) shr reuse"
"Alloc da(TEMP.SYSSDOUT) file(SYSSDOUT) shr reuse "
"Alloc da(TEMP.SYSSDPRT) file(SYSSDPRT) shr reuse "
"Alloc da(TEMP.APPCTP) file(SYSSDLIB) shr reuse"

"icqasli0"

if rc ^= 0 then
say "Utility Operation failed."

else
say "Utility Operation succeeded."

’Free f(syssdin syssdlib syssdprt syssdout)’

Restrictions on Invoking the APPC/MVS Administration Utility
During add, delete, modify, or alias command processing, the APPC/MVS
administration utility updates the VSAM KSDS, but it updates in-storage profiles
within only the APPC address space that runs on the same system as the utility. If
other systems share a VSAM KSDS for TP profile or side information, those
systems cannot detect the updates.

When TP profile or side information data sets are shared among systems, IBM
strongly recommends that you do not use the utility to update them. Damage
might result if you use the utility to update a data set while systems are sharing it.
(However, you can safely use the retrieve and key utility commands whether the
data set is shared or is used by only one system.)

To safely update a data set that is shared among systems:
1. Copy the shared data set into another VSAM KSDS
2. Use the utility to update the copy
3. Make the copy available for use by doing the following on each system that

shares the data set:
a. Create an APPCPMxx parmlib member that names the updated data set
b. Issue a SET command to activate the new parmlib member.

Return Codes
APPC/MVS administration utility commands may return the following return
codes in register 15 or display them in the job output. Hexadecimal values are in
parentheses in the following list.

Return Code
Meaning

0 (0) Processing successful.

4 (4) Processing successful. Warning message or messages issued.

8 (8) Processing unsuccessful. At least one request failed.

12 (C) Processing unsuccessful. Severe error; processing terminated.

Chapter 6. Using the APPC/MVS Administration Utility 93



Examples
SYS1.SAMPLIB member ATBUTIL contains several examples that use the
APPC/MVS administration utility to create, maintain, and delete TP profiles and
side information. The examples show how to use utility commands to:
v Add a TP profile for a standard transaction program.
v Add a TP profile for a system-level multi-trans transaction program.
v Add two TP profiles for a non-APPC/MVS transaction scheduler.

In this example, the transaction scheduler name is XYZ, and the XYZ profile has
three defined inputs: TRANSACTION_CODE_NAME, SCHEDULE_CLASS, and
MAX_REGIONS. The TPSCHED_EXIT keyword specifies a parse routine,
XYZEX01, to check input that is specific for the scheduler (if the keyword is
omitted, the APPC/MVS transaction scheduler is assumed).

v Add a TP profile as an alias of an existing TP profile.
v Modify a TP profile by specifying the TP key and the keyword to be modified.
v Modify side information by specifying the side information key and the

keyword to be modified.
v Add side information to a VSAM file.
v Retrieve a TP profile from a VSAM file.

With the following changes, this example can also show how to retrieve side
information:
– Change the TPRETRIEVE command to SIRETRIEVE
– Change the SYSSDLIB data set name to one for side information
– Replace the TP profile key with a side information key.

v Delete side information from a VSAM file.
With the following changes, this example can also show how to delete a TP
profile:
– Change the SIDELETE command to TPDELETE
– Change the SYSSDLIB data set name to one for TP profiles
– Replace the side information key with a TP profile key.

v Retrieve TP profile keys from a VSAM file.
With the following changes, this example can also show how to retrieve side
information keys:
– Change the TPKEYS command to SIKEYS
– Change the SYSSDLIB data set name to one for side information.

v Retrieve the database token from a VSAM file.
For more information about setting the security environment related to RACF
profiles, see Chapter 10, “Setting up Network Security,” on page 151.

v Modify the database token in a VSAM file.
Be careful when changing the database token for an existing VSAM file. See the
note at DBMODIFY– Data Base Token Modification for details.

94 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Chapter 7. Using the APPC/MVS Administration Dialog

The APPC/MVS administration dialog, from here on called the dialog, is a panel
interface to the APPC/MVS administration utility.

When you use the utility, you specify a utility command and keywords through
the SYSIN DD statement of a batch job; with the dialog, you can select comparable
services from panels. The dialog does not require extensive knowledge of JCL, and
it can be used interactively in a TSO/E session.

Topics in this chapter include:

References:
z/OS ISPF User's Guide Vol I

z/OS TSO/E Administration

z/OS TSO/E Customization

Overview of the Dialog
This chapter provides a brief introduction to the dialog and uses a subset of the
panels from the dialog to illustrate their use. Before using the dialog, read
“Restrictions on Invoking the APPC/MVS Administration Utility” on page 93,
which also applies to the dialog.

From the main selection panel of the dialog, you can choose one of three forms of
administration: TP profile, side information, or database token.

The main selection panel leads to the following dialog services; some have
comparable utility command names, but others provide services not available with
the utility.

ICQASE02
APPC Administration

Command ===>

Select one of the following with an "S". Then Enter.
Type information. Then Enter.

_ TP Profile Administration
Current TP Profile

System file . . SYS1.APPCTP__________________________

_ Side Information Administration
Current Side Information

System file . . SYS1.APPCSI__________________________

_ Database Token Administration
Current Database Token

System file . . SYS1.APPCTP________________________________

Note: For a list of file names, add an "*" suffix to the partial data set name.

PF1=Help PF3= Exit PF12= Cancel

© Copyright IBM Corp. 1991, 2013 95



TP Profile Administration
Table 7. TP Profile Administration

Dialog Service Utility Command

List TP names and levels from a TP profile file TPKEYS

Add a new TP profile TPADD

Copy an existing TP profile to create another entry None

Edit an existing TP profile TPMODIFY

Browse a TP profile TPRETRIEVE

Delete a TP profile TPDELETE

Add a TP profile alias TPALIAS

Side Information Administration
Table 8. Side Information Administration

Dialog Service Utility Command

List symbolic destination names from a side information file SIKEYS

Add new side information SIADD

Copy existing side information to create another entry None

Edit existing side information SIMODIFY

Browse side information SIRETRIEVE

Delete side information SIDELETE

Database Token Administration
Table 9. Database Token Administration

Dialog Service Utility Command

Display a database token DBRETRIEVE

Modify a database token DBMODIFY

How to Use the Dialog
The dialog is a set of predefined display images, called panels, from which you can
add and delete information. Each panel contains directions for using the functions
on the panel. If you are unsure about what to do on the panel, you can obtain help
information for each panel by typing help on the command line or by pressing the
HELP PF key.

How you access the dialog depends on where it was installed. For information
about installing the dialog and how to access it, see “Installing the Dialog” on page
99.

Most of the dialog's panels accept user input through a command line, PF keys,
and input fields. In addition, messages appear when an error occurs and when a
function completes.

96 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Using a Command Line
The command line can appear at either the top or the bottom of the screen,
depending on the user's ISPF screen display characteristics. From the command
line, you can issue any ISPF command, a TSO/E command that is prefaced by
“tso”, and the REQAPPC command.

Use the REQAPPC command when the dialog is installed with a level of MVS that
is lower than MVS/ESA SP 4.2. REQAPPC ON and REQAPPC OFF control
whether you require APPC to syntax check the JCL portion of a TP profile. When a
TP profile is added or modified and MVS/ESA SP 4.2 or later has not been
installed, the scheduler JCL cannot be syntax checked. To override the requirement
for syntax-checked JCL, you can type REQAPPC OFF and the TP profile is added
or modified with no syntax checking. The default is REQAPPC ON.

Using PF Keys
Program function (PF) keys are keyboard equivalents to commands. PF keys and
the ENTER key allow a user to move from panel to panel, and to perform
functions more quickly than if they were typed on the command line.

PF key default values for the APPC administration dialog are set in the
non-display panel (ICQASE00). Descriptions of ENTER key processing and default
processing for the PF keys follow:

ENTER key
Processes information typed on the panel and displays the next panel.

Help PF key
Displays a help panel for a functional panel or currently displayed
message.

Exit PF key
Cancels a function (possibly several panels' worth of input) and returns the
user to the most recently viewed primary panel from which the function
was selected. Exit is equivalent to End.

Cancel PF key
Cancels processing on the currently displayed panel and returns the user
to the previously displayed panel.

Using Input Fields
Upon initial display, input fields on the panels contain defaults where applicable. If
you type over the default, the input field retains the new value until the
administrative function is completed or cancelled, after which the default value is
re-displayed. For example, defaults on the first panel for adding a TP profile are
initially displayed as follows:

Chapter 7. Using the APPC/MVS Administration Dialog 97



When the default value in the Active Status field is written over with a NO, that
NO will remain for the duration of adding the TP profile. After the TP profile is
added or if the addition is cancelled from one of the panels, the Active Status field
reverts back to the default YES.

The panel provides information about what each input field can contain. More
information is available from the help panel. For example, one of the help panels
for the Add TP Profile panel provides the following information:

Receiving Messages and Getting Help
If an input field contains incorrect input, or if a function does not process correctly,
a message appears on the panel.

ICQASE08
ADD TP Profile

Command ===> More ...

Type information. Then Enter.

Transaction Scheduler . . ASCH________

To system file . . SYS1.APPCTP_________________________________

TP Name _______________________________________________________________

Level . . . . SYSTEM System/Group/User

ID . . . . . ________ Group ID or User ID
(required for Group or User Level)

Active Status . . YES Yes/No

PF1=Help PF3= Exit PF12= Cancel

ICQBS081
HELP APPC Administration
Command ===> Page 2 of 3

Add TP Profile
(continued)

Enter the following fields:
Notes

TP Name A-Z a-z 0-9 An asterisk (*) is not a
( . < + & * ) ; - / recommended value in this
, % _ > ? ’ = " : field.

Level SYSTEM GROUP USER

ID A-Z 0-9 Required for GROUP or USER
level. For GROUP, the first
character of ID must be A-Z.

Active Status YES NO Y N

When Active Status is YES or Y, the TP can be accessed and run. If the
TP needs to be inactivated because of problems within the TP or in the
resources it uses, you can change the Active Status to NO or N.

Press ENTER for more HELP. Press EXIT to leave HELP.

98 z/OS V2R1.0 MVS Planning: APPC/MVS Management



To obtain more information about the message, press PF1 to display a help panel.

Installing the Dialog
The dialog can be installed as an application under Application Manager in the
Information Center Facility, or as an option from an ISPF menu. In either case,
TSO/E 2.3 or later and the Information Center Facility must be installed before
you install the dialog.

When the dialog is installed under Application Manager:
v The dialog can be restricted to administrators who can access the administrator's

menu, and the dialog can be further restricted within the Application Manager.
v An installation file (ICQFF007) in ICQ.ICQILIB is provided for easy installation

under Application Manager.

ICQASE08
ADD TP Profile

TP Profile already exists. ICQAS506
Command ===> More ...

Type information. Then Enter.

Transaction Scheduler . . ASCH________

To system file . . SYS1.APPCTP_________________________________

TP Name newTP_____________________________________________________________

Level . . . . SYSTEM System/Group/User

ID . . . . . ________ Group ID or User ID
(required for Group or User Level)

Active Status . . YES Yes/No

PF1=Help PF3= Exit PF12= Cancel

ICQ506AS
HELP Message = ICQAS506 Page 1 of 1
Command ===>

TP Profile already exists. ICQAS506

Explanation: The attempt to add a TP profile failed because the TP
profile already exists for the specified combination of "To" system
data file and TP profile identification (TP Name, Level, ID).

Browse the existing TP profile entry and, if necessary, edit the
existing entry or add a new entry under a unique combination of
TP Name, Level, ID and "To" system data file.

Press ENTER for more HELP.
Press EXIT to leave HELP.

Chapter 7. Using the APPC/MVS Administration Dialog 99



For information about installation files, see z/OS TSO/E Administration.

The APPC/MVS administration dialog is shipped with the Information Center
Facility. An installation file is shipped with TSO/E and is provided for installing
the APPC/MVS administration dialog on the Information Center Facility as an
option on the main administrator panel, ICQADMIN. For a description of this
installation process, see z/OS TSO/E Customization.

When the dialog is installed as an option from an ISPF menu:
v The dialog can be made accessible to anyone who uses ISPF.
v No installation file is provided.

The APPC/MVS administration dialog can also be invoked as a REXX exec from
an ISPF panel. The customization requirements (TSO/E and ISPF) for invoking the
APPC/MVS administration dialog directly from an ISPF panel are illustrated in the
examples that follow.

Installing the Dialog under Application Manager
The TSO/E Information Center Facility program ICQASLI0 which is used by the
dialog must be added to the list of names of programs that must be authorized
when called by the TSO/E Service Facility. The same IKJTSOxx member that
follows shows this specification requirement.

100 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Optionally, the default values used for allocation and selection fields in the dialog
may be changed by updating member ICQASE00 in the Information Center Facility
panel library. The sample member that follows illustrates some of the defaults that
may be changed. For a complete description of these specifications, see z/OS TSO/E
Customization.

/*********************************************************************/
/*MVSAPPC */
/* 1. Authorize the command list */
/* 2. Authorize the program list */
/* 3. Identify the list of commands that cannot be issued in the */
/* background. */
/* 4. Create the defaults for SEND command */
/*********************************************************************/

AUTHCMD NAMES( /* AUTHORIZED COMMANDS */ +
RECEIVE /* TSO COMMANDS */ +
TRANSMIT XMIT /* */ +

.

.

.

AUTHPGM NAMES( /* AUTHORIZED PROGRAMS */ +
GIMSMP /* S.M.P./E */ +

.

.

.

NOTBKGND NAMES( /* COMMANDS WHICH MAY NOT BE */ +
/* ISSUED IN THE BACKGROUND */ +

OPER OPERATOR /* */ +
TERM TERMINAL) /* */

AUTHTSF NAMES( /* PROGRAMS TO BE AUTHORIZED WHEN */ +
/* CALLED THROUGH TSO SERVICE FACILITY*/ +

ICQASLI0 /* FOR APPC/MVS DIALOG */ +

.

.

.

SEND /* SEND COMMAND DEFAULTS */ +
OPERSEND(ON) /* */ +

.

.

.

Figure 58. Sample IKJTSOxx PARMLIB member

Chapter 7. Using the APPC/MVS Administration Dialog 101



Installing the Dialog from ISPF
There are two methods of installing the dialog from ISPF: use the TSO/E ICF or
invoke it from an ISPF selection panel.
v Enter TSO ICQASRM0 from any ISPF command line, or
v Invoke the dialog from an ISPF selection panel.

/* NAME: ICQASE00

)BODY
)INIT
/*******************************************************************/
/*The following customizable values are used in the allocation */
/*of the datasets for APPC Administration: */
/* */
/* SYSSDIN - Input to the APPC Administration Utility */
/* SYSSDOUT - Output from the APPC Administration Utility */
/* SYSSDPRT - Output from the APPC Administration Utility */
/* SYSSDATA - JCL for ASCH TP Profile or Non-ASCH scheduler data */
/* */
/*Recommendations: Do not decrease space to less than 50,10 */
/*******************************************************************/
&QASSDIN = ’BLKSIZE(3120) SPACE(50,10)’
&QASSDOUT = ’BLKSIZE(3120) SPACE(50,10)’
&QASSDPRT = ’BLKSIZE(3120) SPACE(50,10)’
&QASSDATA = ’BLKSIZE(3120) SPACE(50,10)’

VPUT (QASSDIN QASSDOUT QASSDPRT QASSDATA) SHARED

...
/*******************************************************************/
/* QASCLASS is a customizable list containing values for the */
/* scheduler class field of an "ASCH" TP Profile. */
/* These values represent the scheduler class when the TP is */
/* attached. */
/*******************************************************************/
&QASCLASS = ’A B’

VPUT (QASCLASS) SHARED

/*******************************************************************/
/* Default dataset name for Model JCL */
/*******************************************************************/
&QASMODDF = ’APPC.TPMODEL.JCL’

VPUT (QASMODDF) SHARED

/*******************************************************************/
/*Default dataset names for the system data files. If the system */
/*file is blank, these names will be substituted. */
/*******************************************************************/
&QASTPDEF = ’APPC.APPCTP’
&QASSIDEF = ’APPC.APPCSI’
&QASDBDEF = ’APPC.APPCTP’

VPUT (QASTPDEF QASSIDEF QASDBDEF) SHARED

...
)PROC
)END

Figure 59. Sample ICQASE00 ICF Member

102 z/OS V2R1.0 MVS Planning: APPC/MVS Management



ISPF 2.3 or later is required to provide support for the dialog. Following are a
sample ISPF selection panel definition and an actual panel that was used to invoke
the dialog from ISPF.

Customizing the Dialog
An installation can customize the dialog by changing the following variables
contained in the non-display panel ICQASE00 in ICQ.ICQPLIB. Variables you can
change and their default values appear in Table 10.

Table 10. Variables in ICQASE00

Variable Contents Default Value

QASSDIN Allocation attributes for the data set used as input to
APPC administration

BLKSIZE(3120) SPACE(50,10)

QASSDOUT Allocation attributes for the data set used for SYSOUT
output from APPC administration

BLKSIZE(3120) SPACE(50,10)

QASSDPRT Allocation attributes for the data set used for SYSPRINT
output from APPC administration

BLKSIZE(3120) SPACE(50,10)

)ATTR DEFAULT(%_)
# type(text) intens(high) color(red)
$ type(text) intens(high) color(yellow)
¢ type(text) intens(low) color(green)
? type(text) intens(non) color(pink)
\ type(text) intens(non) color(blue)

)BODY
%--------¬Software House, Inc. APPC/MVS Development Options----
%OPTION ===>_ZCMD

#APPC - #APPC/MVS Administration Dialog #D - $SDSF
#APPCAST - #APPC Assist Dialog #IPCS - #I.P.C.S.
#APPCTELL - #APPCTELL TP
$
)INIT

.HELP=WSCHMODS
)PROC

&ZSEL=TRANS( TRUNC (&ZCMD,’.’)
/*APPC/MVS Options Follow ****/

APPC,’CMD(%ICQASRM0)’ /* APPC/MVS */
APPCAST,’Panel(APPCAST)’ /* APPCAST */
APPCTELL,’CMD(%APPCTELL)’ /* APPCTELL */
D,’PANEL(ZSDSFOP2) NEWAPPL(ISF)’ /* S.D.S.F. */
IPCS,’PGM(BLSG) PARM(PANEL(BLSPRIM) NEWAPPL(BLSG)’
X,’EXIT’
*,’?’

IF (&ZCMD = ’D’)
&ZSEL = ’PGM(ISFISP) NOCHECK NEWAPPL(ISF)’

&ZTRAIL = .TRAIL
IF (&ZCMS = ’ ’)

IF (.RESP = ENTER)
&ZPARENT = ISR@PRIM

)END

Figure 60. Sample ISPF Panel Definition for APPC/MVS Selections

--------------Software House, Inc. APPC/MVS Development Options----------
OPTION ===>

APPC - APPC/MVS Administration Dialog D - SDSF
APPCAST - APPC Assist Dialog IPCS - I.P.C.S.
APPCTELL - APPCTELL TP

Figure 61. Sample ISPF Selection Panel with APPC/MVS Options

Chapter 7. Using the APPC/MVS Administration Dialog 103



Table 10. Variables in ICQASE00 (continued)

Variable Contents Default Value

QASSDATA Allocation attributes for the data set used to contain the
JCL for an ASCH TP profile or to contain the scheduler
information for a non-ASCH TP profile

BLKSIZE(3120) SPACE(50,10)

QASTSPE A map of transaction scheduler exits. The value on the
left is the value used in the transaction scheduler field
name. The value on the right is the program/module
name of the transaction scheduler exit that is called by
APPC administration to check the syntax of the
scheduler data. For example, if the scheduler name is
XYZ and the exit to check the syntax is XYZEX01,
specify “XYZ,XYZEX01”.

You can have more than one transaction scheduler, but
ASCH,ASCH is required. To specify more than one
transaction scheduler, separate them with a + as in the
following example:

’ASCH,ASCH +
ABC,ABCEXIT +
XYZ,XYZEX01’

ASCH,ASCH

QASCLASS The available classes for a TP scheduled by the
APPC/MVS transaction scheduler. These classes must
have been defined in one or more ASCHPMxx parmlib
members. To allow the user to display a list of available
classes, write the class names as values after this
variable. To keep the list up-to-date, add or delete class
names here when classes are added or deleted.

none

QASMODDF The data set name that contains JCL models. As an aid
to the person adding TP profiles scheduled by ASCH,
sample JCL models can be created and placed in the
data set named here.

ICQ.*.*

QASTPDEF The name of the default VSAM KSDS for TP profile
administration.

SYS1.APPCTP

QASSIDEF The name of the default VSAM KSDS for side
information administration.

SYS1.APPCSI

QASDBDEF The name of the default VSAM KSDS for database token
administration.

SYS1.APPCTP

104 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Part 3. Session management

© Copyright IBM Corp. 1991, 2013 105



106 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Chapter 8. Planning Sessions

To enable and support the flow of conversations between like and unlike systems,
installations must define LUs between which sessions can bind. Planning the LUs
and the sessions for the MVS portion of an APPC network involves certain
decisions, such as how many local LUs to define on MVS. Fewer LUs are easier to
administer, but many LUs allow for flexibility.

Sessions determine where conversations can flow and the way they flow. An
installation can use defaults to determine session characteristics or it can customize
session characteristics.

References:
v z/OS Communications Server: SNA Customization

v z/OS Communications Server: SNA Network Implementation Guide

v z/OS Communications Server: SNA Resource Definition Reference

Determining the Number of Local LUs
The maximum number of local LUs you can define on a z/OS system is 500, of
which up to 200 can be associated with a transaction scheduler. For administration
simplicity, you should define the smallest number of LUs that you need for your
installation. You must define at least one LU before APPC/MVS processing can
take place, even when APPC processing remains on a single system.

Although APPC/MVS requires only one LU to start processing, an installation
might need more than one LU for various reasons:
v Testing applications— Programmers who use a test system might want a

separate LU from which to test applications. The test applications' profiles can
be kept in a separate TP profile file as well. After testing the applications,
programmers can add the applications' profiles to the production TP profile file.

v More than one transaction scheduler— Only one transaction scheduler can be
associated with an LU at a time. If your installation uses a transaction scheduler
in addition to the APPC/MVS transaction scheduler, define a separate LU for
each scheduler.

v Isolation of TPs accessed— An LU can be created to provide exclusive access to
a group of TPs. TPs are accessed from a single TP profile file named to an LU.
To completely isolate a group of TPs from every other LU, place the TP profiles
for the TPs in a separate file from other TP profiles, and associate that TP profile
file with one specific LU.
To further isolate TPs within the file, coordinate the TP level from its TP profile
key with the LU level. For information about levels, see “TP Profile Key” on
page 70.

v Using APPC/MVS Servers— Servers cannot normally receive inbound requests
from LUs that are associated with a transaction scheduler (unless the servers are
associated with the scheduler). If your installation uses one or more APPC/MVS
servers, define at least one LU that is not associated with a transaction
scheduler. Such LUs are called NOSCHED LUs.

© Copyright IBM Corp. 1991, 2013 107



v Outbound Requests When No Scheduler is Active— To allow TPs to flow
outbound allocate requests when no transaction scheduler is active, define one
NOSCHED LU.

Defining the System Base LU
The system base LU is the default LU for handling outbound work not already
associated with a particular LU. The LUADD statements in the active APPCPMxx
parmlib member (or members) determine which LU is the system base LU:
v The system base LU is represented by the last LUADD statement that contains

both the NOSCHED and BASE parameters. This type of system base LU allows
outbound requests to be processed when no transaction schedulers are active.

v If no LUADD statements contain both NOSCHED and BASE, the system base
LU is represented by the last LUADD statement that contains the BASE
parameter and specifies— either explicitly or by default— the APPC/MVS
transaction scheduler (ASCH).

If neither of these types of system base LU are defined in the active configuration,
APPC/MVS rejects Allocate requests for outbound conversations from MVS
programs (TSO/E users, started tasks, and other work requests) that are not
associated with a scheduler or an LU. The Allocate callable service description, in
z/OS MVS Programming: Writing Transaction Programs for APPC/MVS, explains
which local LUs can be specified or used by default for outbound conversations.

MVS TPs that are scheduled in response to incoming allocate requests do not use a
base LU. When an MVS TP receives an incoming allocate request, the request was
sent over a session bound between two LUs, one of which was an MVS LU. When
the MVS TP responds to the allocate request, it is automatically associated with the
same MVS LU through which the request entered the system. Therefore, the only
conversations that need a base LU are outbound conversations from programs not
already associated with an LU.

When defining LUs with LUADD parameters in APPCPMxx parmlib members, it
is advisable to designate one LU per transaction scheduler as the base LU. When
more than one LU is defined as the base LU for a transaction scheduler, the most
recently defined LU is the base LU.

If you are running APPC/MVS applications that expect the system base LU to be
associated with a transaction scheduler, do not define a NOSCHED LU as the
system base LU.

Naming LUs
When naming an MVS local LU, keep in mind that every LU 6.2 node in an SNA
network requires a unique name. Not only does an LU 6.2 on MVS require a name
different from every other LU 6.2 in the network, but the LU name must be
different from names given to other types of SNA nodes, such as PUs, subarea
nodes, and system services control points (SSCPs). An LU name consists of two
parts: a network-ID portion, which is the 1- through 8-byte ID of the network; and
a network-LU-name portion, which is the 1- through 8-byte local LU name. The
entire name can be up to 17 bytes in length, in its network-qualified (or fully
qualified) form, in which both parts are concatenated by a period:
network_id.network_lu_name.

108 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Depending on the level of VTAM and APPC/MVS your installation uses, the
network-LU-name portion of an LU name must be unique either for every single
LU, or only for each LU within one network. The latter case is possible only if
your installation's APPC/MVS LUs are enabled to support network-qualified
names. See “Using Network-Qualified Names Support” for more information about
this support, which allows your installation to more easily manage changes to
interconnected networks.

In addition, your installation can associate a VTAM generic resource name with
APPC/MVS LUs, to improve availability of APPC/MVS resources and, to a certain
extent, balance session workload among APPC/MVS LUs. Using VTAM generic
resources can also reduce the effort, complexity, and cost of managing a distributed
processing environment that includes MVS systems. See “Assigning a VTAM
Generic Resource Name to APPC/MVS LUs” on page 111 for more information.

Using Network-Qualified Names Support
If your installation has VTAM Version 4 Release 4 installed, you can enable
APPC/MVS LUs to support of VTAM network-qualified LU names, which reduces
the effort of changing the distributed processing environment in an installation that
includes several interconnected networks. Previously, if your company merged
with another, and added that company's existing network to your installation,
system programmers or administrators had to rename any LU that did not have a
unique network LU name (the 8-byte local LU name) within the larger installation.
Renaming an LU requires changes to several sources of configuration data on
several systems, which complicates the tasks required only to define an LU on
other systems.

With APPC/MVS support of network-qualified names, renaming LUs is no longer
necessary when your installation adds networks containing z/OS systems. To use
this support, you specify the NQN parameter on the LUADD statement to enable
that APPC/MVS LU to use the entire network-qualified name for partner LUs.
(Without this support, APPC/MVS uses only the network-LU-name portion of an
LU name on outbound Allocate calls. In this case, the results of Allocate calls using
a network-qualified partner LU name are not guaranteed to be established with the
correct partner LU.)

Once your installation changes LUADD statements to make LUs capable of using
the entire LU name, the network ID makes the LU name unique. Then, your
installation's TPs can use network-qualified partner LU names on Allocate calls,
with guaranteed results.

Deciding When to Use Network-Qualified Names
With support for network-qualified names, system management becomes easier for
installations with frequently changing network configurations. Regardless of the
frequency of network changes, consider enabling APPC/MVS LUs to use
network-qualified names if Allocate calls in TPs or side information for your
installation's systems use such names.

If your installation's configuration is relatively stable, however, simpler system
management might not be worth the effects of the following security restrictions:
v Security management is limited to defining LU-to-LU access authority through

RACF APPCLU profiles. RACF APPL and APPCPORT profiles do not support
network-qualified LU names, so your installation must have unique network LU
names for each LU to reliably:
– Limit access to a specific local LU from a specific partner LU, or

Chapter 8. Planning Sessions 109



– Limit access to the local system from a specific partner LU.
v Security management for persistent verification is unpredictable as well, because

only the network-LU-name portion of an LU name is used to verify persistent
verification requests. Without unique network LU names, LUs might, for
example, accept conversations from the wrong partner LUs.
Because of this unpredictability, IBM does not recommend the use of
APPC/MVS support for network-qualified names for those LUs that your
installation uses for persistent verification requests.

Defining LUs to Support Network-Qualified Names
When you decide to allow APPC/MVS LUs to support network-qualified names,
make sure you have VTAM V4R4 installed, and do the following:
1. If your installation uses a security product to define LU-to-LU access authority,

changes are required for those security profiles. For example, if a RACF
APPCLU class defines LU-to-LU access authority, make sure existing or new
APPCLU profiles use the network-qualified name for both the local LU and
partner LU names. In other words, for each LU to be enabled to use
network-qualified names, all APPCLU profiles currently defined for that LU in
the form “local-LU-network-id.local-LU-name.partner-LU-name” must have a
corresponding profile in the form “local-LU-network-id.local-LU-name.partner-
LU-network-id.partner-LU-name”).
You cannot specify network-qualified LU names on any other type of RACF
profiles. For more information about APPCLU changes, see “Defining LU-to-LU
Access Authority with RACF APPCLU Profiles” on page 158.

2. Through an APPCPMxx parmlib member, use an LUDEL statement to delete
each existing, active LU that is to support network-qualified names.

3. Also through an APPCPMxx member, use an LUADD statement with the NQN
parameter for each LU that is to be enabled to support network-qualified LU
names for its partner LUs.

Changes to existing TPs are not necessary; however, consider notifying your
installation's application programmers of the change in APPC/MVS processing of
network-qualified partner LU names, so they can determine what changes, if any,
might be necessary for the TPs they design and maintain.

Displaying APPC/MVS Information
With APPC/MVS support for network-qualified names, you can request the
following information for APPC/MVS TPs or LUs through the DISPLAY APPC
command:
v All partner LUs in only the specified network
v All the partner LUs that share the same specified network_LU_name in all the

networks in the installation
v Only the partner LU that has a network-qualified name that matches the

specified network_ID and network_LU_name
v All partner LUs in all networks.

The values for the PNET parameter, together with those for the PLUN parameter,
determine the information displayed. See “Tracking Changes to the APPC/MVS
Configuration and Workload” on page 217 for examples of DISPLAY output; See
z/OS MVS System Commands for the syntax and parameter descriptions of the
DISPLAY APPC command.

110 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Assigning a VTAM Generic Resource Name to APPC/MVS LUs
If your installation has VTAM Version 4 Release 4 installed, you can use
APPC/MVS support of VTAM generic resources to:
v Improve availability of APPC/MVS resources. If one LU in the generic resource

group or one z/OS system is brought down or fails, APPC/MVS work can
continue because other group members are still available to handle requests that
specify the generic resource name. Work from remote systems is less affected by
the removal of any single APPC/MVS LU or z/OS system. Additionally, changes
in system configuration, capacity, and maintenance have less effect on
APPC/MVS work.

v Provide a single-system image for a multi-system APPC/MVS configuration.
With generic resource names, transaction programs (TPs) from remote systems
can establish conversations with APPC/MVS partner TPs on any z/OS system;
programmers do not need to know specific partner LU names or need to update
TPs whenever the APPC/MVS configuration changes. Note that APPC/MVS TPs
can use generic resource names only for partner LUs, not for local LUs.

v More easily expand the APPC/MVS configuration. Additional APPC/MVS LUs
associated with the same generic resource name can provide immediate
improvement in performance and availability, with few or no required changes
for APPC/MVS TPs or side information.

v Distribute work among two or more active APPC/MVS LUs on a single MVS
system or in a sysplex, so that each LU is used as efficiently as possible. VTAM
and WLM distribute session workload among members of a generic resource
group, thus reducing contention for specific LUs, and improving performance of
systems and TPs.

Perhaps the simplest, most efficient method of using VTAM generic resources is to
copy an existing APPC/MVS LU's definitions for use on the same or additional
z/OS systems. Before using this method, however, you need to decide which LUs
belong in a generic resource group.

Deciding which APPC/MVS LUs should be Members of a Generic
Resource Group
Although the use of generic resource names for APPC/MVS LUs can benefit your
installation, the mix of transaction programs that your installation uses, and the
complexity of the APPC/MVS configuration, affect how easily you achieve those
benefits. For example, your installation's current set-up might include many TPs
that are handled by one APPC/MVS LU on a single z/OS system in a sysplex.
With generic resource support, it is relatively easy to distribute this work among
additional LUs on the same z/OS system, or among additional LUs on other
systems in the sysplex. To do so requires the following steps:
1. With LUADD statements in parmlib member APPCPMxx, define the additional

LUs, using the original LU's specific name as the generic resource name for the
group.

2. Modify the LUADD statement for the original LU, using its original name as
the generic resource name, and supplying a new specific name.

No changes to the TPs are necessary.

For another example, suppose your installation has multiple LUs in the sysplex
that process the same work. In this case, using one generic resource name for the
group of LUs requires more work than the preceding example:
1. Use the specific name of one of the LUs as the generic resource name for the

group.

Chapter 8. Planning Sessions 111



2. Modify the LUADD statement for each LU, adding the generic resource name.
For the one LU, supply a new specific name as well.

3. Modify the TPs and side information for these LUs, replacing specific LU
names with the generic resource name for the group.

Your installation may define more than one generic resource group in its
APPC/MVS configuration, but not all APPC/MVS LUs have to belong to a group.
Those LUs in a group, however, must have access to all the same resources; they
should:
v Have the same, if any, transaction scheduler associated with them.
v Use the same TP profile data set, or use TP profile data sets that contain the

same TPs.

For the TPs running on LUs in a generic resource group, make sure that all the
TPs specify the generic name of the MVS LU on the Allocate request. Otherwise, if
you allow some TPs to use the generic name, and others to use the specific name,
timing becomes the key to successful allocation requests, even for TPs that ran
reliably before.

For example, suppose your installation has set up a configuration like the one in
Figure 62, which shows two TPs that run on the workstation:
v Timecard logs the hours an employee works; it allocates a conversation with a

specific APPC/MVS LU.
v E-Mail retrieves mail from the host system; it allocates a conversation with an

APPC/MVS LU by using a generic name

On the host, two APPC/MVS LUs share a generic resource name: LUA and LUB
are both known by the generic name MVSLU.

To understand the problem with allowing the use of a mix of specific and generic
LU names on Allocate requests, consider the following sequence of events:

OS/390 SystemOS/2 Workstation

LUB

LUA

MVSLU

VTAM

generic resource

group named

E-Mail

CMSPLN (... MVSLU...)...
...

CMALLC

Timecard

CMSPLN (... LUA...)...
...

CMALLC

Parmlib Concatenation

APPCPMxx member

OSLUA

LUADD

LUADD
ACBNAME(LUA)

GRNAME(MVSLU)

ACBNAME(LUB)

GRNAME(MVSLU)...
...

Figure 62. APPC/MVS Configuration with a Mix of Allocate Requests to Specific and Generic
LU Names

112 z/OS V2R1.0 MVS Planning: APPC/MVS Management



1. On Monday, John arrives at work and invokes Timecard to enter the hours he
worked on Friday and over the weekend. Under the covers, a session is
established between the workstation LU and the LU specifically requested on
the Allocate request, LUA.

2. While checking his recollection of the hours he worked, John also invokes
E-Mail to receive his mail. Under the covers, a session is established between
the workstation LU and one of the LUs in the generic group. LUA is not
available, because a session is already established between the workstation LU
and LUA, under its specific name; so LUB is selected for the E-Mail Allocate
request. So both conversations are successfully allocated.

3. On Tuesday, John is worried about input that he is expecting from a co-worker,
so he invokes E-Mail as soon as he arrives at work. A session is established
between the workstation LU and one of the LUs in the generic group— this
time, LUA is selected.

4. While waiting for his mail to arrive, John invokes Timecard to enter the hours
he worked on Monday. Today, Timecard fails, not because of an error in its own
processing, but simply because it wasn't the first TP to allocate to LUA from
this workstation LU. Once the workstation LU establishes a session with LUA
using LUA's generic name, the workstation LU cannot allocate to LUA using
the specific name, while the first session is still bound.

Other timing problems might result because, with generic resource groups, the
system fails the Allocate request when both of the following are true:
v Another TP has already successfully issued an allocation request using the

specific LU name for an LU in the generic resource group
v No other LUs in the generic resource group are available.

To prevent such failures because of timing, make sure you assign several LUs to
the same group, and make sure all the TPs that run on LUs in the group use the
generic resource name on the Allocate request. To reduce the amount of work
required for the latter step, use an existing, specific LU name as the name for the
generic resource group.

Distributing Session Workload: Your installation's goals for workload
distribution also might affect how you define APPC/MVS LUs as VTAM generic
resources. Together with the MVS workload manager (WLM), VTAM can balance
session (not conversation) workload. For session allocation to a generic resource,
VTAM binds the session to one LU in the generic resource group, balancing
sessions among the members of the group based on workload information from
WLM, if possible, or on session counts. Because VTAM balances sessions only
when they are bound, if a particular LU or system becomes constrained, the work
running on that LU cannot be redistributed until the sessions are unbound and
re-established.

To more closely achieve conversation-level workload balancing, your installation
can define LUs as limited resources, as well as defining them as members of a
generic resource group. If the LUs are defined as limited resources, VTAM can
terminate sessions between LUs if those sessions are not active for an
installation-defined time period. For more information about terminating idle
sessions, see z/OS Communications Server: SNA Network Implementation Guide.

As you try to decide which APPC/MVS LUs to assign to a generic resource group,
or to define as limited resources, also keep the following points in mind:
v When an APPC/MVS TP allocates a conversation from a local LU that is a

member of a generic resource group, and other group members reside on the

Chapter 8. Planning Sessions 113



same system, VTAM balances sessions only within the local system, as long as
eligible group members are available. If more than one eligible member is
available, VTAM selects the one with less work. Depending on your installation's
configuration, this selection might constrain a particular system, if other eligible
members of a generic resource group reside on different systems in the sysplex.

v Session workload balancing also varies for generic resource LUs that are
associated with a specific transaction scheduler. For these LUs, workload
balancing varies depending on the transaction scheduler associated with the LU:
– Inbound sessions to ASCH or NOSCHED LUs are balanced by analysis of

two factors: the number of sessions bound and the capacity of each LU's
system

– Inbound sessions to IMS V5R1 LUs are balanced by the same factors as those
for ASCH and NOSCHED LUs, but also by analysis of the actual performance
of each LU compared to the performance goals of the transactions it runs.

– How VTAM balances inbound sessions to alternate transaction schedulers
depends on how the alternate transaction scheduler notifies WLM of the
completion of the scheduler's transactions.

See z/OS MVS Planning: Workload Management for more information about
workload balancing.

The Simplest Approach®: Perhaps the easiest way to assign APPC/MVS LUs to a
generic resource group is to:
1. Review the LUADD statements of existing APPC/MVS LUs to:

v Determine which would serve as good models for members of a specific
group, and

v Decide how many members you want to have in each group, and on what
z/OS system each member will reside.

As you make these decisions, remember the sequence of events in Figure 62 on
page 112, and the points in “Distributing Session Workload” on page 113.

2. For each model LU, consider “swapping” the real name for the generic resource
name; that is:
v Update the LUADD statement to use the specific name as the generic

resource name, which is specified on the GRNAME parameter, and
v Define a new specific name for the LU.
To avoid potential problems, make sure the generic resource name is unique
within a single network. Within a single system, VTAM does not allow the use
of the same name for a USERVAR and a generic resource group. Within a
single network, VTAM does not prohibit the use of a generic resource name
that is the same as a USERVAR, alias, or real LU name, but such duplication
might cause undesired results for Allocation requests, or might make problem
determination more difficult. For example, the use of USERVARs might cause
similar timing problems as described in Step 4 on page 113; once a local LU
establishes a session with a partner LU, using a USERVAR for the partner LU
name, subsequent Allocate requests with the partner's real LU name will fail.
See z/OS Communications Server: SNA Network Implementation Guide for more
information about USERVARs and aliases.

3. Make a copy of the updated LUADD statement for each additional member in
the group, and change the specific name in each copy.

4. Use those copies in the appropriate APPCPMxx parmlib member for the z/OS
systems on which the group members will reside.

114 z/OS V2R1.0 MVS Planning: APPC/MVS Management



With this approach, the migration effort is reduced to changing only LU definitions
in parmlib, rather than changing those definitions and all the Allocate calls issued
by TPs that run at your installation. Allocate calls do not necessarily need to be
changed, because the names they specify for partner LU now might be the generic
resource group names.

See “Defining LUs to a Generic Resource Group” for the procedure for assigning
generic resource names for APPC/MVS LUs.

Alternative Configurations: To reduce the effort required and potential problems,
try to simplify your installation's APPC/MVS configuration by following these
guidelines:
v One is a lonely number: Isolate those specific LUs.

If you have to allow certain TPs to issue Allocate requests with specific LUs, do
not make those LUs part of a generic resource group. For example, in Figure 62
on page 112, removing LUA from the generic group MVSLU would allow both
E-Mail and Timecard to successfully allocate conversations regardless of the
order in which they are invoked.

v Two is not as bad as one: Have at least two active LUs in each generic group.
Using the configuration in Figure 62 on page 112 as an example again, note that,
if LUB fails, LUA is the only LU available to accept work allocated with the
generic name MVSLU. In this case, the failure of Timecard could occur more
frequently, because LUA could be the only available choice in the generic group.
If you add a third LU to the generic group MVSLU, you can reduce the
possibility of allocation failures.

Defining LUs to a Generic Resource Group
To register APPC/MVS LUs as members of a generic resource group, your
installation must:
1. Install VTAM Version 4 Release 4 or later, and meet the requirements

documented for generic resources in z/OS Communications Server: SNA Network
Implementation Guide.
If an earlier level of VTAM is installed, and a generic resource name is
specified on the LUADD statement for an LU, APPC/MVS activates the LU,
but without using the generic resource name. In this case, Allocate requests
specifying the generic resource name will fail.

2. Select an appropriate generic resource name. Refer to “The Simplest
Approach®” on page 114 for guidelines for selecting names.

3. Through the appropriate commands for the installation's security product,
protect LUs in a generic resource group by:
v Defining LU-to-LU access authority (APPCLU profiles)
v Defining which user IDs are authorized to allocate conversations with those

LUs (APPL profiles)
v Prohibiting non-APF-authorized programs from registering with a generic

resource name (VTAMAPPL profiles).
If the LUs in the same generic resource group reside on different MVS systems,
some of these commands must be entered on each system on which the LU
members reside. You cannot specify generic resource names on any other
security profiles. Refer to the appropriate sections of Chapter 10, “Setting up
Network Security,” on page 151 for details about using RACF commands to
protect LUs in a generic resource group.

4. Through an APPCPMxx parmlib member, use an LUDEL statement to delete
each existing, active LU that is to register with a generic resource name.

Chapter 8. Planning Sessions 115



5. Also through an APPCPMxx member, use an LUADD statement with the
GRNAME parameter to define each LU and associate it with a generic resource
name.

After these requirements are met, the installation must complete the following
steps, if the generic resource name chosen was not the specific name of an existing
LU. Until these steps are completed, the installation cannot benefit from using
generic resource names for APPC/MVS LUs.
v Replace specific partner LU names with a generic resource name in side

information. Do not use a generic resource name in side information entries that
APPC/MVS servers use, or an error results.

v Modify existing, or coding new, TPs to specify the generic resource name for the
partner LU on calls to the CPI-C CMSPLN verb, or any version of the
APPC/MVS Allocate callable service.

Displaying APPC/MVS Information for LUs in a Generic Resource
Group
To determine which LUs registered as part of the same generic resource group,
issue the VTAM DISPLAY ID command, specifying a generic resource name. The
resulting display lists the real name for each LU. This command also is useful if
you do not know an LU's real name but you want to use the LU name as a filter
on a DISPLAY APPC command for LU, TP, or server information.

To determine the generic resource name with which a specific LU registered, issue
DISPLAY APPC,LU with a specific LU name. The resulting display lists the LU's
generic resource name.

If necessary, see the following for more information:
v z/OS Communications Server: SNA Operation for syntax and parameter

descriptions of the DISPLAY ID command
v z/OS MVS System Commands for syntax and parameter descriptions of the

DISPLAY APPC command
v “Tracking Changes to the APPC/MVS Configuration and Workload” on page

217 for examples of DISPLAY APPC command output.

Diagnosing Errors Involving LUs in a Generic Resource Group
APPC/MVS issues ATBxxxI messages to indicate the following errors:
v Incorrect syntax or other errors for the GRNAME parameter on the LUADD

statement, including multiple GRNAME parameters on the same LUADD,
incorrect characters in the value for GRNAME, and so on. See z/OS MVS
Initialization and Tuning Reference for coding details for the GRNAME parameter.

v An attempt to dynamically change the value of the GRNAME parameter. To
change the value, you must:
1. Delete the LU by entering a SET APPC command that specifies an

APPCPMxx parmlib member containing an LUDEL statement
2. Alter the GRNAME value on an LUADD statement
3. Add the LU by entering a SET APPC command that specifies an APPCPMxx

parmlib member containing the LUADD statement.
v Incorrect level of VTAM is installed. Unless your installation is using VTAM

V4R4 or later, APPC/MVS activates the LU, but without the association with the
generic resource name. Allocate requests that specify the generic resource name
will fail.

116 z/OS V2R1.0 MVS Planning: APPC/MVS Management



v VTAM rejects the generic resource name. In this case, APPC/MVS cannot
continue processing the LUADD statement, so the LU is not activated. Use the
VTAM return and reason codes in message ATB066I or ATB067I to determine the
cause of the error.

If necessary, see z/OS MVS System Messages, Vol 3 (ASB-BPX) for descriptions of the
messages APPC/MVS issues for errors related to the use of VTAM generic resource
names.

APPC/MVS also reports an error through a reason code for the
Register_For_Allocates service when an APPC/MVS server uses a generic resource
name explicitly on that service call, or implicitly through a side information entry.
The descriptions of the Register_For_Allocates parameters Local_LU_name and
Sym_dest_name, in z/OS MVS Programming: Writing Servers for APPC/MVS, contain
more details about this error condition.

If an APPC/MVS LU is a member of a generic resource group, its generic resource
name appears in the following diagnostic data:
v CONFIGURATION report output for the IPCS APPCDATA subcommand, which

is described in z/OS MVS Diagnosis: Reference.
v Application programming interface (API) trace data, if the LU is being traced.

More information about the API trace facility and its output appears in z/OS
MVS Programming: Writing Transaction Programs for APPC/MVS.

Setting Up a Session for APPC/MVS
Sessions determine where a conversation can flow and the way it flows. An
installation can set up an initial session to establish defaults for APPC/MVS
sessions, or it can set up specific sessions with unique logon modes, session limits,
and contention requirements.

To set up an initial session that accesses the SNA network and establishes defaults:
1. Define a local LU to APPC/MVS
2. Define an APPC logon mode in the VTAM logon mode table, if you want to

define session characteristics other than those for the VTAM default mode
3. Define the local LU to VTAM with an APPL definition statement that also

names the logon mode table containing the APPC logon mode
4. Define a partner LU on the same z/OS system or on a peer system
5. Provide the logon mode name to applications that specify it on the Allocate

call, if you define an APPC logon mode instead of using the VTAM default
mode.

Each of these steps is described in more detail in this section. For information
about setting up specific sessions with unique characteristics, see “Customizing
Sessions for APPC/MVS” on page 125.

Defining a Local LU on MVS
An APPC/MVS local LU is defined in MVS by an LUADD statement in an
APPCPMxx parmlib member. The LUADD names the local LU, associates it with a
transaction scheduler and a TP profile file, and assigns it a level of TP to process.

The following is an example of an LUADD statement that defines an LU named
MVSLU01. MVSLU01 is the base LU for the APPC/MVS transaction scheduler, has
SYS1.APPCTP for a TP profile file, is a USER level LU, which means that it

Chapter 8. Planning Sessions 117



processes all levels (SYSTEM, GROUP, USER) of incoming requests that enter the
LU, and has sessions that persist for 3600 seconds following an interruption.

For more information about an LUADD statement, see Chapter 9, “Controlling
Configuration through APPCPMxx,” on page 137.

Defining an APPC Logon Mode
A logon mode contains a set of parameters and protocols that determines the
communication characteristics of a session. Logon modes are entries in a logon
mode table, a compiled version of which exists in SYS1.VTAMLIB.

To enable LU 6.2 on MVS, you need the VTAM logon mode SNASVCMG that is in
the SYS1.SAMPLIB logon mode table sample named ISTINCLM.

Further requirements depend on the version of VTAM your installation is using:
v With VTAM 4.3 or earlier, you must define at least one logon mode entry other

than SNASVCMG. To define additional logon modes, you may copy
SNASVCMG, rename it and, if desired, alter the values.

v With VTAM 4.4 or later, you may define additional logon modes, but are not
required to do so. However, consider defining additional modes, to ensure that
the system provides the session characteristics that are appropriate for your
installation's APPC/MVS work. If you do not provide any logon modes other
than SNASVCMG, APPC/MVS uses logon mode ATB#MODE, which means that
session characteristics are determined by the value specified, or by the default,
for the DLOGMOD parameter on the VTAM APPL statement.

For an explanation of the parameters in SNASVCMG, and a description of the
DLOGMOD parameter of the APPL statement, see z/OS Communications Server:
SNA Resource Definition Reference.

Figure 64 shows a logon mode that controls session level pacing. Controlling
pacing is especially important for sessions between unlike systems that have
differing processing capabilities.

LUADD
ACBNAME(MVSLU01)
SCHED(ASCH)
BASE
TPDATA(SYS1.APPCTP)
TPLEVEL(USER)
PSTIMER(3600)

Figure 63. Example of an LUADD Statement

*********************************************************************
* LOGON MODE TABLE ENTRY FOR PC SESSIONS *
*********************************************************************
APPCPCLM MODEENT

LOGMODE=APPCPCLM, X
RUSIZES=X’8787’, X
SRCVPAC=X’00’, X
SSNDPAC=X’01’

Figure 64. Example logon mode (APPCPCLM)

118 z/OS V2R1.0 MVS Planning: APPC/MVS Management



The maximum length of data that can be sent over a session is specified by the
RUSIZES parameter. VTAM formats data into RUs and sends those RUs across the
network. Pacing parameter SSNDPAC controls the number of RUs sent before the
sending VTAM waits for a response from the receiver. When the receiver cannot
accept the RUs fast enough, VTAM buffers become flooded with data. By
specifying the appropriate pacing parameters, you can prevent the flooding of
buffers.

Figure 65 shows a logon mode that enables dependent LU support.

In Figure 65, important parameters to note are:

LOGMODE
Specifies the logon mode name to be used as a key for the session parameters
in this table entry. This logon mode name corresponds to the logon mode an
application programmer specifies in side information or in an APPC/MVS
Allocate call.

RUSIZES
Specifies the maximum length of data in bytes that can be sent. The suggested
value of X‘8989’ translates to a maximum length of 4096 bytes of data that can
be sent at a time from each direction. There is no limit on how much total
information can be sent.

SRCVPAC
Specifies the secondary receive pacing count. The suggested value is X‘00’. If
zero, the value of the VPACING operand on the VTAM APPL statement
controls both send and receive pacing for all sessions in all modes. A value of
zero makes it easier to predict pacing results and makes it easier to maintain
pacing definitions.

If non-zero, the VPACING value controls pacing in one direction, and the
SRCVPAC value controls it in the other. LU 6.2 protocols make it difficult to
predict which parameter will be in control at any given time.

SSNDPAC
Specifies the secondary send pacing count. Do not specify zero. If zero is used,
outbound pacing for sessions is disabled, which can result in problems with
IOBUF storage.

For more detailed information about logon mode parameters, see z/OS
Communications Server: SNA Resource Definition Reference.

*************************************************************************
* LOGON MODE TABLE ENTRY FOR PC SESSIONS, DEPENDENT LU *
*************************************************************************
MVSAPPC MODEENT LOGMODE=MVSAPPC, APPC/MVS SESSION - DEPENDENT LU X

TYPE=0, NEGOTIATED BIND X
FMPROF=X’13’, X
TSPROF=X’07’, X
PRIPROT=X’B0’, EX/DEF RESPONSE X
PRIPROT=X’B0’, EX/DEF RESPONSE X
SECPROT=X’B0’, EX/DEF RESPONSE X
COMPROT=X’50A0’, X
SSNDPAC=X’01’, X
SRCVPAC=X’00’, X
RUSIZES=X’8989’, 4096 BYTE MAX RU SIZE BOTH DIR X
PSERVIC=X’060200000000000000000000’ LU TYPE 6.2

Figure 65. Example logon mode (MVSAPPC)

Chapter 8. Planning Sessions 119



Defining the Local LU to VTAM
When VTAM is initialized, LUs are activated based on information contained in
SYS1.VTAMLST. Therefore, all APPC/MVS LUs must be defined to both VTAM
and MVS.

An APPC/MVS local LU is defined to VTAM with a VTAM application (APPL)
definition statement in SYS1.VTAMLST. The APPL statement:
v Names the MVS local LU and identifies it as type 6.2.
v Sets up defaults for the LU's sessions.
v Specifies the name of the logon mode table that contains logon modes used by

the LU.
v Defines security for the LU.

The ATBAPPL member of SYS1.SAMPLIB contains an example that shows how a
VTAM APPL statement might be coded for an APPC/MVS local LU named
MVSLU01. This example includes some of the VTAM APPL statement parameters
that are briefly described in “VTAM APPL Statement Parameters.” To use the
sample APPL contained in the ATBAPPL member of SYS1.SAMPLIB, you need the
following additional members of SYS1.SAMPLIB:

ATBLMODE
Sample source information used to define a VTAM logon mode table.
ATBLMODE defines the following logon modes:

APPCHOST
Table entry for host target

APPCPCLM
Table entry for PC target (see the example shown in Figure 64 on
page 118)

SNASVCMG
Table entry for resources capable of acting as LU 6.2 devices,
required for LU management (see the example in SYS1.SAMPLIB
member ISTINCLM)

ATBLJOB
Sample JCL that assembles and links the sample VTAM logon mode table
ATBLMODE. The MODETAB statement in this file must match the
MODETAB statement in your APPL.

VTAM APPL Statement Parameters
The following list of APPL statement parameters briefly describes those parameters
that you can use for APPC/MVS LUs. Some parameters are used in the example in
SYS1.SAMPLIB member ATBAPPL, which you can copy and modify for your
installation's use. Whether you use the example in member ATBAPPL or code
APPL statements for APPC/MVS LUs from scratch, refer to:
v z/OS Communications Server: SNA Network Implementation Guide for detailed

guidance about APPLs, and
v z/OS Communications Server: SNA Resource Definition Reference for complete

descriptions of APPL statement syntax and parameters.

name
Assigns a name to the local LU. In APPC/MVS, this APPL entry name must
match the value specified on the ACBNAME parameter. This name must be
unique within all interconnected networks, unless the LU will be receiving
Allocate requests from partner LUs that are enabled to support

120 z/OS V2R1.0 MVS Planning: APPC/MVS Management



network-qualified names. (An APPC/MVS LU is enabled for this support
when its LUADD statement in parmlib member APPCPMxx contains the NQN
parameter).

ACBNAME=LUname
Specifies the name of the APPC/MVS local LU as it appears in the LUADD
parmlib statement of an APPCPMxx parmlib member. This name is specified
on the access method control block (ACB) that APPC/MVS uses to identify the
LU to VTAM (through the VTAM OPEN macro). In APPC/MVS, this value
must match the APPL entry name (that is, the value in the name or label field
of the APPL statement). If left blank, it defaults to the entry name.

APPC=YES
Permits APPC/MVS to use the APPC/VTAM functions. This value is required
for all APPC/MVS LUs.

ATNLOSS=value
Specifies whether the ATTN exit for APPC/MVS should be scheduled for
session deactivations. You must specify ATNLOSS=ALL for each APPC/MVS
LU that is to be enabled for protected conversation support.

AUTOSES=n
Specifies the number of contention-winner sessions that VTAM is to activate
automatically before APPC/MVS requests a conversation. VTAM establishes
the specified number of sessions when APPC/MVS issues the first Change
Number of Sessions (CNOS) to APPC/VTAM for a particular partner LU and
logon mode combination.

DMINWNL=n
Specifies the default minimum number of parallel sessions for which VTAM
will negotiate for the local LU to be the contention winner.

DMINWNR=n
Specifies the default minimum number of parallel sessions for which VTAM
will negotiate for the partner LU to be the contention winner.

DDRAINL=NALLOW
Specifies whether the LU is allowed to drain waiting allocation requests when
the session limits have been set to zero. In this case, APPC/MVS does not
support draining; therefore, DDRAINL must be coded with a value of
NALLOW.

DRESPL=NALLOW
Specifies whether the local LU accepts responsibility for deactivating sessions
upon receipt of a CNOS request that names the local LU as the responsible LU.
For all APPC/MVS LUs, DRESPL must be coded with a value of NALLOW so
that VTAM will assign the responsibility for deactivating sessions to the
partner LU that sent the CNOS request.

DSESLIM=n
Specifies the default maximum number of sessions to be allowed between the
local LU and a partner LU on a given logon mode.

EAS=n
Sets the approximate number of concurrent sessions available from this LU.

MODETAB=logon mode table name
Specifies the name of the VTAM logon mode table. This table is composed of a
series of entries, each of which defines a set of session parameters for a
particular logon mode name.

Chapter 8. Planning Sessions 121



SECACPT=NONE|CONV|ALREADYV|PERSISTV|AVPV
Specifies default FMH5 access security information acceptance.

SRBEXIT=YES
Allows VTAM exits to be in branch-entered SRB mode, supervisor state, and
key zero. For APPC/MVS's VTAM exits to execute in the correct environment,
this value must be YES.

SYNCLVL=value
Specifies the synchronization level that the APPC/MVS LU supports.
SYNCLVL=SYNCPT is required for each APPC/MVS LU that is to be enabled
for protected conversation support.

VERIFY=OPTIONAL|REQUIRED
Specifies whether VTAM performs session-level LU-to-LU verification during
session activation.

VPACING=n
Specifies the maximum number of messages that another system can send to
the APPC/MVS local LU during a conversation before waiting to receive a
pacing response.

APPC Configuration in VTAM
APPLs reside in one or more members of the SYS1.VTAMLST system library. Each
APPL must also connect to a logon mode table (MODETAB) and class of service
table (COSTAB).

When APPC/MVS is initializing, it tries to connect each of its LUs to the network
by issuing a VTAM OPEN macro. The OPEN macro tells VTAM to open an ACB
corresponding to the LU name. If VTAM is not yet started, or if the OPEN fails,
APPC/MVS will periodically issue the OPEN until it succeeds or until an
APPCPMxx parmlib member containing an LUDEL statement for that LU is added
to the configuration by a SET APPC operator command.

Figure 66 on page 123 shows the relationship between the various pieces of VTAM
configuration data.

122 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Defining a Partner LU on the Same MVS System
When a conversation exists between two transaction programs on the same z/OS
system, the LUs for the conversation are also on the same system. The
conversation can use a single LU that acts as both local LU and partner LU, or it
can use one LU as the local LU and another as the partner LU.

A conversation that uses a single LU as both local LU and partner LU is an
LU=OWN conversation. When a TP allocates the conversation, it can either
explicitly request the local LU as the partner LU, or leave the partner LU name
blank.

A conversation between two APPC/MVS TPs that uses a local LU and a partner
LU on the same system is an LU=LOCAL conversation.

Note: Requirements for APPC/MVS LUs, and the behavior of LU=OWN and
LU=LOCAL conversations, vary depending on the VTAM release your installation
uses.

Defining a Partner LU on a Peer System
Before an APPC/MVS LU can communicate with a partner across an SNA
network, programmers for non-MVS peer systems have certain responsibilities. In
general, the major responsibilities for peer system programmers are:

MVSAPPLS

.     .     .

.     .     .

COSTAB ISTINCLM

COS

COS

MODENT

MODE01

COS

MODEENDCOSEND

APPCPMxx

LUADD

APPC/MVS PARMLIB MEMBER IN SYS1.PARMLIB

VTAM TABLES IN SYS1.VTAMLIB

ACBNAME(MVSLU01),

APPL
ACBNAME=MVSLU01
MODETAB=ISTINCLM,

MVSLU01

.     .     .

.     .     .

VTAM DEFINITION STATEMENT IN SYS1.VTAMLST

Figure 66. Application Definition to VTAM

Chapter 8. Planning Sessions 123



v Define local LUs on the peer systems that APPC/MVS TPs will code as partner
LUs in Allocate calls and in side information.

v Define MVS local LUs as partner LUs on the peer system. The name of the MVS
LU must be coded as the partner LU name.

v Define logon modes for sessions that are to be bound between the peer system
and MVS. The names of the logon modes should match the names used in MVS.

v Make sure that the conversation security levels defined for local LUs allow their
partners to send the proper security information. If a TP on the partner LU
attempts to allocate a conversation, specifying a security type that sends security
fields that the local LU cannot support, the system downgrades the allocate
request. In such a case, the local LU receives less security information than the
TP was designed to send, so the results might not be what you expected for this
conversation.
To check the conversation security levels for APPC/MVS LUs, review either:
– The SECACPT parameter of the VTAM APPL definition statement, or

– The CONVSEC field in the SESSION segment of the RACF APPCLU profile,
if such a profile exists for this LU. RACF APPCLU profiles override the
values in a VTAM APPL definition statement.

For more information, see:
– “Defining the Local LU to VTAM” on page 120, for details about the VTAM

APPL statement.
– Chapter 10, “Setting up Network Security,” on page 151, for details about

RACF APPCLU class profiles.
– z/OS MVS Programming: Writing Transaction Programs for APPC/MVS, for

descriptions of security fields sent on Allocate requests, depending on the
value specified for the Security_type parameter.

Session requirements for specific systems can be obtained from the following
references.

AS/400®:
v AS/400 APPC Programmer's Guide

v OS/400 Communications Configuration Reference

VM:
v VM/ESA V2R1.0 Connectivity

Providing the Logon Mode Name to Applications
An application that uses the APPC/MVS callable services can specify a logon
mode in its Allocate call. In the following COBOL example, the Mode_name
parameter is pre-initialized to MODE01 before the Allocate call is issued.

124 z/OS V2R1.0 MVS Planning: APPC/MVS Management



When a symbolic destination name replaces the need for specifying the logon
mode, the logon mode must be named in the side information for that symbolic
destination name. In the COBOL example that follows, the symbolic destination
name USR3NEWS is used in the CPI Communications Initialize_Conversation
(CMINIT) call, which initializes conversations. The symbolic destination name is
resolved by its side information in the example box where the logon mode name
MODE01 is specified.

For more information about providing a logon mode through an Allocate call or
side information, see “Specifying a Logon Mode for a Conversation” on page 126.

Customizing Sessions for APPC/MVS
When sessions are bound between an MVS LU and any partner LU, VTAM
determines session characteristics from a combination of:
v VTAM session defaults
v Logon modes as specified in:

– APPL statements
– Allocate calls

When more than one parameter refers to the same characteristic, certain
parameters override others, as illustrated in Figure 70 on page 126. A logon mode
specified in an Allocate call overrides the parameters specified in the APPL
statement. Both the logon mode and the APPL statement override VTAM defaults.

MOVE "MODE01" TO MODE_NAME.
CALL "ATBALC2" USING

CONVERSATION_TYPE,
SYM_DEST_NAME,
PARTNER_LU_NAME,
MODE_NAME,
...
RETURN_CODE.

Figure 67. COBOL example of an ATBALC2 call using a logon mode name

MOVE "USR3NEWS" TO SYM_DEST_NAME.
CALL "CMINIT" USING CONVERSATION_ID,

SYM_DEST_NAME,
CM_RETCODE.

Figure 68. COBOL example of a CMINIT call using a symbolic destination name

DESTNAME(USR3NEWS)
MODENAME(MODE01)
TPNAME(NEWS)
PARTNER_LU(USER3LU)

Figure 69. Side Information for USR3NEWS

Chapter 8. Planning Sessions 125



When the local LU and its partner have conflicting definitions, VTAM negotiates
the differences and resolves them internally.

To customize sessions and override defaults, define additional logon mode entries
in the VTAM logon mode table for use in Allocate calls.

Defining Additional Logon Mode Entries
An installation can create logon modes with varying communication
characteristics. These additional logon modes must be entries in a logon mode
table contained in SYS1.VTAMLIB. All the logon modes used by an LU should be
contained in the table specified in the LU's APPL definition statement.

When an LU uses a number of different logon modes, it might be worthwhile to
place those logon modes in a separate logon mode table specifically for the LU.
SYS1.SAMPLIB member ATBLMODE contains an example logon mode table with
three logon modes, including SNASVCMG, which is required by APPC/MVS.

If you create a new logon mode table, specify the table name after the MODETAB
parameter in the LU's APPL statement.

For more information about logon mode tables and logon mode entries, see z/OS
Communications Server: SNA Resource Definition Reference. For information about
specific session characteristics, such as pacing and controlling the amount of data
to pass, see z/OS Communications Server: SNA Network Implementation Guide.

Specifying a Logon Mode for a Conversation
The Allocate call or side information can specify the logon mode that will control
the session characteristics for the conversation. If a number of logon modes with
varying communication characteristics have been defined, a programmer has a
choice of session types for the TP.

Using APPC/MVS Protected Conversations Support
To improve data integrity in a distributed processing environment, APPC/MVS,
together with RRS, participates in the two-phase commit protocol to provide
recovery for transaction programs. The two-phase commit protocol is a set of
actions that resource managers and a syncpoint manager perform to ensure that a
program's updates to distributed resources are coordinated. Through this protocol,

VTAM Defaults

APPL Statements

Logon Mode

(in Allocates)

Figure 70. Overriding Session Defaults

126 z/OS V2R1.0 MVS Planning: APPC/MVS Management



a series of resource updates are treated as an atomic action; that is, the updates are
either all made (committed) or not made (backed out).

In z/OS, your installation can enable APPC/MVS logical units (LUs) to act as
resource managers. The resources they manage, or protect, are the conversations
established between APPC/MVS transaction programs and their partner TPs. To
identify their conversations as protected resources, the TPs allocate the
conversations with a synchronization level of syncpt. When one of the TPs is ready
to commit or back out its changes for a particular unit of work, the TP issues
either the Commit or Backout callable service to begin a syncpoint operation.
During this operation, the local and partner LUs work with system syncpoint
managers to coordinate the changes; RRS is the system syncpoint manager for
APPC/MVS LUs.

To allow APPC/MVS TPs and their partner TPs to establish protected
conversations, your installation must meet the following requirements:
v Set up and start RRS for resource recovery. For specific RRS requirements, see

z/OS MVS Programming: Resource Recovery.
v Install and activate VTAM Version 4 Release 4.
v Set up the APPC/MVS configuration as described in the following topics:

– “LU Capability and Mode Name Restrictions”
– “Defining APPC/MVS LUs as Syncpoint Capable”
– “Defining a Log Stream for APPC/MVS” on page 129

v Update existing, or code new, APPC/MVS TPs to allocate protected
conversations and request syncpoint services. To do so, refer to:
– z/OS MVS Programming: Callable Services for High-Level Languages for general

concepts about the two-phase commit protocol and resource recovery, and for
coding details for the z/OS commit and backout syncpoint services.

– z/OS MVS Programming: Writing Transaction Programs for APPC/MVS for
information about allocating protected conversations, using syncpoint
services, and other related updates to the APPC/MVS callable services.

Once your installation has met these requirements, APPC/MVS is enabled to
support protected conversations, and to participate in resource recovery. Managing
this APPC/MVS configuration and workload requires an understanding of the
issues described in “Managing APPC/MVS Resources for Protected Conversations”
on page 132.

LU Capability and Mode Name Restrictions
APPC/MVS rejects any outbound or inbound requests for protected conversations
whenever the partner LU is single-session capable only.

Syncpoint-capable LUs accept both inbound and outbound protected conversations,
as long as the mode name used for the Allocate call is a value other than
SNASVCMG.

Defining APPC/MVS LUs as Syncpoint Capable
An installation defines the characteristics and resources for APPC/MVS LUs
through APPL definition statements in SYS1.VTAMLST, and LUADD statements in
APPCPMxx parmlib members.

To define new, or alter existing, LUs to make them syncpoint capable, complete the
steps in the following checklist:

Chapter 8. Planning Sessions 127



1. Make sure that each LU's APPL definition statement contains the SYNCLVL
parameter with a value of SYNCPT. This parameter value defines the LU as
capable of accepting conversations with any of the following synchronization
levels: syncpt, confirm, or none.

2. Make sure that each LU's APPL definition statement contains the ATNLOSS
parameter with a value of ALL.

3. Check LUADD statements to make sure the values match what you want for
specific syncpoint-capable LUs. If you want to restrict the LU to process
protected conversations only, for example, check the TPDATA parameter to
ensure that the TP profile data set is one containing only TPs that allocate
protected conversations.

If you need additional information about VTAM resource definitions, refer to:
v z/OS Communications Server: SNA Network Implementation Guide for detailed

guidance about APPLs, and
v z/OS Communications Server: SNA Resource Definition Reference for complete

descriptions of APPL statement syntax and parameters.

For additional details about LUADD statements, refer to “Adding a Local LU —
LUADD Statement” on page 138, “Modifying a Local LU — LUADD Statement”
on page 140, and z/OS MVS Initialization and Tuning Reference.

After completing the checklist, the LUs and, by extension, the schedulers and
APPC/MVS servers associated with them, are capable of handling protected
conversations. Changes to alternate transaction schedulers and APPC/MVS servers
are not necessary; however:
v Alternate transaction schedulers may use the new Identify service to have

APPC/MVS request a privately managed context for that scheduler. For details,
refer to z/OS MVS System Messages, Vol 3 (ASB-BPX).

v Depending on the model, APPC/MVS servers might require changes to handle
protected conversations. For details, refer to z/OS MVS Programming: Writing
Servers for APPC/MVS.

Syncpoint Capabilities Supported by APPC/MVS
This section describes the level of sync point support that APPC/MVS supports in
relation to the SYNCPT architecture.

An APPC LU negotiates the level of syncpoint support with a partner using the
Exchange Log Name (X'1211') GDS Variable. The format of this record is
documented in SNA Formats. The level of syncpoint support by an LU is expressed
in one byte in the exchange log name GDS variable. The following is how APPC
sets byte 5 of the Exchange Log Name (X'1211') GDS Variable:

Table 11. How APPC sets byte 5 of the Exchange Log Name (X'1211') GDS Variable

Bit Value Meaning

0 0 Does not support RECOVERY_LEVEL(RESTART)

1 1 The LU name of the creator of the conversation correlator is
present in Compare States

2 1 Byte 2 of the PS header contains flags and X'08240001' sense
code is accepted in FMH-7

3 0 Does not support presumed abort protocols

4 1 Supports PLNA protocols

5 1 Does not require partner log name validation on a warm start

128 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Table 11. How APPC sets byte 5 of the Exchange Log Name (X'1211') GDS
Variable (continued)

Bit Value Meaning

6 0 Does not support extended capabilities

7 - Not used for syncpoint capability negotiation

Defining a Log Stream for APPC/MVS
To provide resource recovery for protected conversations, APPC/MVS requires the
names of local and partner LU logs, and the negotiated syncpoint capabilities for
each local/partner LU pair. This information needs to be available and accurate for
successful resynchronization after a failure. To store this information, APPC/MVS
uses a system logger log stream that your installation must set up.

To set up an APPC/MVS log stream, your installation follows the same procedure
that is required for other system logger applications:
1. Plan for and set up the APPC/MVS log stream.
2. Plan and set up DASD space needed for APPC/MVS log data sets and staging

data sets.
3. Define the APPC/MVS log and staging data sets to global resource serialization

in the GRSRNLxx parmlib member.
4. Define authorization to system logger resources for APPC/MVS.
5. Format the LOGR couple data set, identify it to the sysplex, and make it

available.
6. Add, update, or delete APPC/MVS policy data (the APPC/MVS log stream

and its associated coupling facility structure) in the LOGR policy using the
IXCMIAPU utility. APPC/MVS supports DASD ONLY configuration for its log
stream in a single system environment.

7. Update the CFRM sysplex couple data set with information on the coupling
facility structure associated with the APPC/MVS log stream.

8. Activate the LOGR subsystem.

While doing the setup for an APPC/MVS log stream in a parallel sysplex
environment, keep in mind that if an APPC/MVS log stream is defined with
DASD ONLY configuration, APPC/MVS from only one system can connect to the
log stream. Only APPC/MVS from this one system processes protected
conversations. Other systems in a parallel sysplex fail to process protected
conversations and issue message ATB203I to document the return and reason codes
received from the system logger IXGCONN service.

For more information about these steps, refer to the topic about system logger
applications in z/OS MVS Setting Up a Sysplex, after reading through the following
topics:
v “Determining the Size of Each Coupling Facility Structure” on page 130
v “Develop a Naming Convention for System Logger Resources” on page 130
v “Plan DASD Space for System Logger” on page 131
v “Managing Log Data: How Much? For How Long?” on page 131
v “Define Authorization to System Logger Resources” on page 132

Chapter 8. Planning Sessions 129



These topics contain APPC/MVS-specific details that you need to know before you
define APPC/MVS policy data in the LOGR policy. The topic headings match
topics in z/OS MVS Setting Up a Sysplex, where you can find general information
about LOGR policy data.

Determining the Size of Each Coupling Facility Structure: Your installation may
decide to place the APPC/MVS log stream in its own coupling facility list
structure, or in a list structure containing multiple log streams with the same
attributes. In either case, as you gather information about the coupling facility
structure, and the log streams that map to the structure, note the following
APPC-specific information related to parameters in the LOGR policy:

AVGBUFSIZE
The APPC/MVS log stream contains one log block for both of the
following:
v Each local/partner LU pair that has established sessions with protected

conversations
v Each LU pair, if any, that has outstanding resynchronization work.

Each log block is the same size: 248 bytes. Use 248 as the value for the
average size of APPC/MVS log blocks.

MAXBUFSIZE
APPC/MVS requires a buffer size of at least 65276 bytes. If you use a
MAXBUFSIZE value that is less than 65276, APPC/MVS issues message
ATB209I and does not allow APPC/MVS LUs to handle any protected
conversations, until the buffer size is corrected and the LUs restarted.

ResidencyTime
You may use a relatively low value for residency time, because
APPC/MVS writes to the log stream infrequently.

Develop a Naming Convention for System Logger Resources: As part of
developing a naming convention for system logger resources, your installation
determines the names of log streams. The APPC/MVS log-stream name will
depend on the option chosen in APPC’s started procedure.

If you want the capability of having more than one APPC log stream per sysplex,
then specify LOGGING = RRSGNAME on the APPC PROC statement:
//APPC PROC APPC=&APPC,LOGGING=RRSGNAME...

If RRSGNAME is specified, the APPC log stream name will need to be
‘ATBAPPC.LU.gname’, where gname is the RRS GNAME as defined in the RRS
started procedure definition. If the gname keyword is not specified, RRS defaults
the log group name to the sysplex name. The RRS group name is a way RRS
allows multiple logs to be defined in a sysplex. The RRSGNAME value tells APPC
to have its logs coincide with a particular RRS log group. For further information
about RRS’s GNAME, see z/OS MVS Programming: Resource Recovery.

If you do not want the capability of having more than one APPC log stream per
sysplex, then specify LOGGING = LEGACY on the APPC PROC statement or
simply omit the LOGGING keyword completely from the APPC PROC statement:
//APPC PROC APPC=&APPC,LOGGING=LEGACY

or
//APPC PROC APPC=&APPC,...

130 z/OS V2R1.0 MVS Planning: APPC/MVS Management



If LEGACY is specified (explicitly or by default), then the APPC log stream name
will need to be ‘ATBAPPC.LU.LOGNAMES’.

Based on the LOGGING option specified, APPC will attempt to connect to a log
stream with the corresponding name designation selected (either
ATBAPPC.LU.rrsgname or ATBAPPC.LU.LOGNAMES) when an LU is initialized
that is configured to support APPC protected conversations.

The installation is responsible for defining a log stream matching one of these two
names, depending on the LOGGING option specified. The failure to define the log
stream name correctly will result in APPC being unable to allocate or receive any
protected conversations using this LU.

Considerations when using the APPC LOGGING keyword: When you are using the
APPC LOGGING keyword consider the following:
v RRS keeps track of the APPC logs tream name when APPC initializes itself with

RRS for each LU that is configured to accept protected conversations. Before
APPC can change its log stream name, it is necessary to remove the old APPC
log stream name from RRS’s recollection. In order to accomplish this, it is
necessary to cold start RRS. For example, when changing the APPC LOGGING
option to LEGACY (the default value) to RRSGNAME, RRS must be cold started
first before APPC can be started with this new value.
See z/OS MVS Programming: Resource Recovery for more information on deleting
and redefining RRS log streams.

v When LOGGING=RRSGNAME on the APPC PROC, RRS and APPC will both
have the same GNAME as one of the qualifiers in their log stream names. If RRS
comes down and is restarted with a different GNAME than in the previous
instance of RRS, then APPC will need to be recycled to have its log stream name
match the new RRS GNAME.

Plan DASD Space for System Logger: Your installation is not required to use
staging data sets for APPC/MVS log data. However, if a system or coupling
facility failure causes the loss of APPC/MVS log data, warm/cold mismatches
between local and partner LUs result. To resolve such mismatches, your
installation might have to:
1. Bring down APPC/MVS (see Chapter 11, “Operating APPC/MVS,” on page 205

for recommended methods of stopping APPC/MVS work cleanly)
2. Use RRS ISPF panels to remove the expressions of interest that APPC/MVS

LUs have in units of recovery For more information, see z/OS MVS
Programming: Resource Recovery.

3. Restart APPC/MVS.

This manual intervention might be more costly than the potential performance
impact of using staging data sets. Because APPC/MVS infrequently writes to its
log, the performance impact should be relatively slight; so consider defining the
APPC/MVS log stream with STG_DUPLEX(YES) and DUPLEXMODE(UNCOND).

Managing Log Data: How Much? For How Long?: When your installation
defines the APPC log stream, make sure that AUTODELETE=NO and RETPD=0
are specified (or use the AUTODELETE and RETPD parameter defaults which are
NO and 0, respectively).

Also, if your installation uses the LIKE keyword when defining the APPC log
stream, make sure that the log stream specified on the LIKE keyword is not
defined with AUTODELETE=YES and RETPD other than zero.

Chapter 8. Planning Sessions 131



Define Authorization to System Logger Resources: If you start APPC/MVS on
more than one MVS image in a sysplex, each of those MVS images must have
access to the APPC/MVS log stream.

Managing APPC/MVS Resources for Protected Conversations
After your installation sets up RRS and APPC/MVS for resource recovery,
installation personnel need to know how to manage this new work. APPC/MVS
provides system commands and messages that indicate the status of APPC/MVS
workload and configuration, so that installation personnel may:
v Display information related to APPC/MVS participation in resource recovery, for

LUs, TPs, and units of recovery (URs)
v Change the APPC/MVS configuration or workload, and track those changes
v Resolve error conditions related to resynchronization processing, when

intervention is required to restore protected conversation support.

In addition, several tools allow the installation to collect and view diagnostic
information for system errors related to protected conversations.

Displaying Information: Through variations of the DISPLAY command, operators
or system programmers can determine the status of APPC/MVS resources related
to protected conversations:
v The DISPLAY APPC,LU command output contains the resource manager name

for LUs that are registered with RRS, and indicates whether each LU is
syncpoint capable

v The DISPLAY APPC,TP command output contains the following for each of the
TP's conversations:
– The logical work unit identifier (LUWID)
– An indication of whether the conversation is protected or unprotected
– An indication of whether a syncpoint operation is in progress.

v The DISPLAY APPC,UR command output contains information about each unit
of recovery associated with a protected conversation.

DISPLAY APPC,SERVER command output does not contain information about
served TPs' protected conversations. To obtain such information, use the DISPLAY
APPC,TP command.

For a summary of DISPLAY APPC commands and various sample commands and
output, see “Tracking Changes to the APPC/MVS Configuration and Workload” on
page 217. For DISPLAY APPC command syntax and parameter descriptions, see
z/OS MVS System Commands. An installation can also use RRS ISPF panels to
display APPC unit of work activity. For more information, see z/OS MVS
Programming: Resource Recovery.

Changing the APPC/MVS Configuration or Workload: You can use a number of
MVS and VTAM commands to control APPC/MVS LUs, schedulers, servers, and
TPs. Topics in Chapter 11, “Operating APPC/MVS,” on page 205 describe the
effects of these commands on protected conversations, if the effects are different
from those on unprotected conversations.

One task related to APPC/MVS operations, however, is worth emphasizing here:
When you need to stop an APPC/MVS LU, make sure you first use LUDEL to
terminate the LU and quiesce its work. IBM recommends using LUDEL before
using any other method that stops one or more LUs, but its use is even more
important when your installation has enabled protected conversations support.

132 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Unless you first allow an LU to quiesce its work, thereby allowing active protected
conversations to end normally, incomplete units of recovery (URs) might result. If
so, the system defers resynchronization processing for these incomplete URs, until
the LU is re-activated on the same system. This delay might cause the programs
associated with the incomplete URs to hang until the LU is restarted.

In addition, if your installation defines a syncpoint-capable LU as a member of a
VTAM generic resource group, and an operator issues the CANCEL APPC
command before issuing LUDEL first, the system cannot correctly clean up LU
session affinity (associated with VTAM generic resources) and the APPC/MVS log
stream. This situation might result in unbalanced workload sessions for LUs in a
generic resource group, and incorrect log stream contents, once APPC is restarted.

Resolving Error Conditions
Because resource recovery processing might involve many applications, resource
managers, and syncpoint managers, your installation's operators and programmers
might have to resolve error conditions resulting from application, system, or
network failures. APPC/MVS attempts to resolve error conditions whenever
possible, but manual intervention is sometimes required for the following
situations. APPC/MVS notifies your installation of these situations by issuing
ATB2xx messages, which are described in z/OS MVS System Messages, Vol 3
(ASB-BPX).

RRS failures or other errors: If RRS is not available or notifies APPC/MVS of an
error condition, APPC/MVS is not able to participate in resource recovery. To
minimize the effect of these errors on APPC/MVS work, APPC/MVS allows the
LU to become active or continue processing, but does not allow it to accept
Allocate requests for protected conversations. In some cases, RRS might notify
APPC/MVS that the error has been resolved; then APPC/MVS allows the LU to
begin accepting protected conversations again. In other cases, manual intervention,
such as a cold start of the LU, might be required to restore protected conversations
support.

Logging failures detected during LU initialization or restart: If the system logger
is not available or logger services return non-zero codes, APPC/MVS is not able to
use its installation-defined log stream to record information about its resource
recovery partners. To minimize the effect of this error on APPC/MVS work,
APPC/MVS allows the LU to become active, but does not allow it to accept
Allocate requests for protected conversations. When you correct the logging
problems, you must restart the LU to enable it to accept protected conversations.

Errors that prevent log name exchange from completing successfully: As part of
participation in resource recovery, an APPC/MVS LU must exchange its log name
with its partner resource managers. The LU might detect an error during the
exchange log name transaction with the partner. To minimize the effect of these
errors on APPC/MVS work, APPC/MVS periodically retries the exchange.
Meanwhile, the LU is able to process only unprotected conversations.

Most of these errors require communication between the support groups for the
applications involved in the exchange. Consider providing procedures for the
installation's operators to follow, to resolve the error. For example, using an
incorrect RRS GNAME when starting RRS would cause a log name mismatch to be
detected by a partner LU. Ensure that the correct RRS GNAME is used from one
RRS warm start to another.

Chapter 8. Planning Sessions 133



Warm/cold log status mismatch: If, during an exchange log name transaction, the
local LU or partner LU detects a warm/cold log status mismatch, APPC/MVS
issues operator message ATB210E. Messages ATB70052I and ATB80129I may be
returned to the TP.

The log status mismatch may be caused by:
v The wrong level of log data at the local or partner LU, or
v A cold log start at one of the partners. In this case, you might consider manually

forcing some units of work at the warm partner to resolve the problem.

If the cold log status is valid for one of the logical units, and if the warm partner is
an APPC/MVS managed logical unit of work, then to resolve the warm/cold
mismatch, take one of the following actions against the warm partner (listed in
order of increasing potential disruption):
1. Restart the warm APPC/MVS LU after removing all interests for the

APPC/MVS LU using the RRS ISPF panels.
Attention: Before removing incomplete logical units of work, determine
whether the incomplete logical units of work can be manually forced or
discarded without resynchronization being performed.
a. Delete the LU from the APPC/MVS configuration by issuing a SET

command for a parmlib member with an LUDEL statement for the LU.
b. Remove all interests for the cold status partner using the RRS ISPF panels.

This prevents APPC/MVS from carrying out any resynchronization to the
cold status partner for the removed incomplete logical units of work.
The LU is known to RRS as a resource manager. The resource manager
naming convention for APPC/MVS LUs is:
ATB.network-qualified-network-name.IBM

where fully-qualified-name is the fully-qualified name of the local LU, For
example, if the fully-qualified name is IBMUSM00.Z0C4AP03, the resource
manager name to be specified on the RRS ISPF panels is:
ATB.IBMUSM00.Z0C4AP03.IBM

For information on using the RRS ISPF panels, see z/OS MVS Programming:
Resource Recovery.

c. Add the LU to the APPC/MVS configuration by issuing a SET command
for a parmlib member with an LUADD statement for the LU. The
APPC/MVS LU will now restart (however, this will be without incomplete
logical units of work).

d. Attempt to initiate a protected conversation between the affected LUs.

Important: The following action affects all protected conversations. Take this
action only if the previous action does not resolve the problem.

2. Delete and redefine the APPC/MVS LU log stream. This will erase
APPC/MVS's knowledge of all partners' log information and syncpoint
capabilities, not just the cold status partner affected by the problem. For specific
information on adding the log stream correctly, see “Defining a Log Stream for
APPC/MVS” on page 129.

Important: The following action affects all resource managers, including all
syncpoint LUs, and any other resource managers that are registered with RRS.
Take this action only if the previous actions do not resolve the problem.

3. Cold start RRS. See z/OS MVS Programming: Resource Recovery.

134 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Log name mismatch: If, during an exchange log name transaction, the local LU or
partner LU detects a log name mismatch, APPC/MVS issues operator message
ATB211E. Messages ATB70053I and ATB80130I may be returned to the TP.

The log name mismatch may be caused by:
v The incorrect system log being used on the local or partner system.
v An internal error in APPC/MVS logging or in the logging function of the

partner system.

If an incorrect system log caused the problem, consider taking the following steps:
1. Attempt to correct the log name mismatch problem on the partner system

using the partner system's local log name mismatch recovery procedures. After
the recovery procedures for the partner system have been performed
successfully, use the RRS ISPF panels to remove all incomplete interests
associated with the affected LU pair. See z/OS MVS Programming: Resource
Recovery. After removing incomplete interests, restart the APPC/MVS LU.

2. Cause the APPC/MVS LU to initiate purge log name affinity (PLNA)
processing. Both the partner and local systems must support PLNA. No
incomplete units of work may exist between the partner LUs, and all work
must be quiesced in order for the PLNA transaction to be successful.
To initiate a purge log name affinity transaction from the APPC/MVS LU, do
the following:
Attention: Before cold starting an LU, determine whether the incomplete
logical units of work can be manually forced or discarded without
resynchronization being performed.
a. Delete the LU from the APPC/MVS configuration by issuing a SET

command for a parmlib member with an LUDEL statement for the LU.
The LUDEL operation will initiate an PLNA transaction with the partner
LU.

b. Determine if any incomplete logical units of work exist between the affected
LUs. To do this, issue a D APPC,UR using the LLUN, PNET and PLUN
filtering options to restrict the output to the affected LUs.
If the display shows 0 units of recovery for the affected LUs, there are no
incomplete units of work for the affected pair.
If the display shows that incomplete units of work exist between the LU
pair,

c. Remove all interests for the LU using the RRS ISPF panels. The resource
manager naming convention for APPC/MVS LUs is:
ATB.network-qualified-network-name.IBM

where fully-qualified-name is the fully-qualified name of the local LU, For
example, if the fully-qualified name is IBMUSM00.Z0C4AP03, the resource
manager name to be specified on the RRS ISPF panels is:
ATB.IBMUSM00.Z0C4AP03.IBM

For information on using the RRS ISPF panels, see z/OS MVS Programming:
Resource Recovery.

d. Add the LU to the APPC/MVS configuration by issuing a SET command
for a parmlib member with an LUADD statement for the LU. The
APPC/MVS LU will now restart (however, this will be without incomplete
logical units of work).

Chapter 8. Planning Sessions 135



e. If incomplete units of work existed in step 2b on page 135 and incomplete
units of recovery had to be deleted as part of step 2c on page 135, then
steps 2a on page 135 through 2d on page 135 must be repeated.

f. Attempt to initiate a protected conversation between the affected LUs.
3. Cold start the partner LU

Important: The following action affects all protected conversations. Take this
action only if the previous action does not resolve the problem.

4. Delete and redefine the APPC/MVS LU log stream. This will erase
APPC/MVS's knowledge of all partners' log information and syncpoint
capabilities, not just the cold status partner affected by the problem. For specific
information on adding the log stream correctly, see “Defining a Log Stream for
APPC/MVS” on page 129.

Important: The following action affects all resource managers, including all
syncpoint LUs, and any other resource managers that are registered with RRS.
Take this action only if the previous actions do not resolve the problem.

5. Cold start RRS. See z/OS MVS Programming: Resource Recovery.

Obtaining Diagnostic Information: For errors that installations cannot resolve
without IBM support, IBM provides:
v A new APPC/MVS component trace option, RR, for tracing events related to

APPC/MVS participation in resource recovery for protected conversations. New
options for the IPCS CTRACE subcommand filter the resulting trace records. For
more information, see the SYSAPPC topic in z/OS MVS Diagnosis: Tools and
Service Aids.

v The IPCS APPCDATA subcommand for formatting SVC dumps that accompany
the X'EC7' system abends that APPC/MVS issues. The APPCDATA
CONFIGURATION and CONVERSATION reports contain information related to
protected conversations.
For information about APPCDATA subcommand syntax and parameters, see
z/OS MVS IPCS Commands. For sample APPCDATA subcommand output, see
z/OS MVS Diagnosis: Reference.

136 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Chapter 9. Controlling Configuration through APPCPMxx

The APPCPMxx member of the parmlib concatenation controls the communication
functions for the APPC address space. Values in the parmlib member define local
LUs, name administrative VSAM KSDSes, and optionally modify session
characteristics between local LUs and partner LUs.

References:
z/OS MVS Initialization and Tuning Reference

z/OS MVS Planning: Operations

z/OS MVS System Messages, Vol 3 (ASB-BPX)

APPCPMxx Parmlib Member
The APPCPMxx parmlib member contains a combination of three statement types
that define or modify the configuration of APPC/MVS LUs. The statement types
are:

LUADD
Defines a local LU for the APPC/MVS configuration.

LUDEL
Deletes a local LU and its defined sessions from the APPC/MVS
configuration.

SIDEINFO
Specifies the VSAM KSDS name that contains side information for an
installation.

Changing Values
An installation can control its APPC/MVS configuration with different versions of
the APPCPMxx parmlib member. One member might contain start-up values and
other members contain customized values. An APPCPMxx parmlib member can
contain statements that delete previous statements (LUDEL deletes a previous
LUADD) or the parmlib member can reissue statements with new parameter
values that modify previous statements.

Examples of parmlib members used to delete and modify configurations appear
throughout this chapter.

Note: When modifying previous statements by reissuing them, the parmlib
statements have a cumulative effect; that is, any one parmlib member might not
reflect the current configuration. If you use the CANCEL command to terminate
the APPC address space, you must re-specify each parmlib member in its former
order to reconstruct the previous configuration.

Default Values
When APPCPMxx statements omit optional parameters, the system usually
supplies default values. When the statement is issued for the first time, the system
always supplies default values for omitted optional parameters. When the
statement modifies a previous statement, the system overrides all previously

© Copyright IBM Corp. 1991, 2013 137



specified values with default values except for the SCHED, TPDATA, TPLEVEL,
USERVAR and ALTLU parameters of the LUADD statement.

Note: To guarantee that intended values are not overridden by default values,
re-specify all parameters on modifying statements.

When an LU is added and certain parameters are omitted, those parameters
receive default values. For example, the following LUADD statement supplies only
the name of the new LU.

LUADD
ACBNAME(MVSLU04)

The remaining keyword parameters receive default values so the LUADD
statement is equivalent to the following:

LUADD
ACBNAME(MVSLU04)
SCHED(ASCH)
TPDATA(SYS1.APPCTP)
TPLEVEL(SYSTEM)

IBM does not supply a default APPCPMxx parmlib member; however, a sample
member that you can modify is in the APPCPMXX member of SYS1.SAMPLIB.

Planning Specific Values
The values in APPCPMxx parmlib members control the APPC/MVS
communication configuration. This section gives some guidance on the following
tasks involving installing and customizing the communication aspects of
APPC/MVS.
v Adding a local LU
v Modifying a local LU
v Deleting a local LU
v Specifying the VSAM KSDS for side information
v Modifying the name of the VSAM KSDS for side information.

For specific coding details for the APPCPMxx parmlib member, see z/OS MVS
Initialization and Tuning Reference.

Adding a Local LU — LUADD Statement
The LUADD statement defines a local APPC/MVS LU that is to be added to the
APPC configuration. Each LU on MVS must be defined with an LUADD statement
that specifies a name for the LU, through the ACBNAME parameter. Other
LUADD statement parameters are:

SCHED(name) or NOSCHED
Indicates whether the LU is associated with a transaction scheduler

BASE Specifies whether the LU is a base LU

PSTIMER
Indicates the length of time that the sessions persist

TPDATA(name)
Identifies the TP profile file associated with the LU

TPLEVEL(level)
Identifies the level of TP for which the LU searches

138 z/OS V2R1.0 MVS Planning: APPC/MVS Management



ALTLU and USERVAR
Pass optional, installation-supplied data to an alternate transaction
scheduler

GRNAME(genericname)
Specifies a VTAM generic resource name to be associated with the LU

NQN or NONQN
Specifies whether the LU is enabled to use a network-qualified partner LU
name when first allocating an outbound conversation.

When an installation uses the APPC/MVS transaction scheduler exclusively, only
one LU is required. If other transaction schedulers are used, each scheduler
requires a separate LU. An installation might also choose to define additional LUs
for use with APPC/MVS servers, or to isolate TPs for security or testing.

Example of Adding LUs
The following example shows four LUADD statements in a parmlib member
named APPCPM1A. The first LU is similar to the default LU provided in the
sample APPCPMXX member in SYS1.SAMPLIB. It is a member of the VTAM
generic resource group MVSLU1, and is enabled for network-qualified names
support. The second LU is one in a generic resource group of test LUs that access
group and system-level profiles from a special test TP profile file. The third LU
accesses user, group, and system-level profiles from the TP profile file SYS1.XYZTP.
Following an interruption, sessions in this LU would persist for 3600 seconds (1
hour). If service is not restored within 3600 seconds the LU becomes unavailable.
The USERVAR and ALTLU keywords are used to pass data to scheduler XYZ. This
XYZ scheduler is a scheduler other than the APPC/MVS transaction scheduler
(ASCH). The fourth LU is a NOSCHED LU from which APPC/MVS servers will
receive inbound conversations. This LU accesses only the database token from TP
profile file SYS1.APPCTP.

Chapter 9. Controlling Configuration through APPCPMxx 139



To activate the LUs, issue the START command if APPC was not previously
started; otherwise issue the SET command. Examples of each command follow.

START APPC,SUB=MSTR,APPC=1A

SET APPC=1A

Modifying a Local LU — LUADD Statement
You can modify an LU by overriding a previous LUADD statement with another
LUADD statement that names the existing LU and changes the definition. The LU
definitions you can modify are:

BASE Whether the LU is base

TPDATA(name)
TP profile file associated with the LU

TPLEVEL(level)
Level of TP for which the LU searches

PSTIMER
Length of time that the sessions persist

To change other parameter values that define an existing LU, you must delete the
LU with an LUDEL statement and re-identify the LU with a new LUADD with
different values for those parameters. The two statements, the LUDEL and the new

LUADD
ACBNAME(Z098AP01)
SCHED(ASCH)
GRNAME(MVSLU1)
NQN
TPDATA(SYS1.APPCTP)
TPLEVEL(SYSTEM)

LUADD
ACBNAME(Z098AP02)
SCHED(ASCH)
GRNAME(MVSTEST)
NQN
TPDATA(SYS1.APPCTEST)
TPLEVEL(GROUP)

LUADD
ACBNAME(Z096AP02)
SCHED(XYZ)
BASE
NQN
TPDATA(SYS1.XYZTP)
TPLEVEL(USER)
PSTIMER(3600)
USERVAR(scheduler-supplied value)
ALTLU(scheduler-supplied value)

LUADD
ACBNAME(Z096AP03)
NOSCHED
GRNAME(SERVLU)
NQN
TPDATA(SYS1.APPCTP)
TPLEVEL(SYSTEM)

Figure 71. APPCPM1A

140 z/OS V2R1.0 MVS Planning: APPC/MVS Management



LUADD, cannot be in the same parmlib member; and, if in two parmlib members,
the two parmlib members cannot be specified in the same SET command.

Modifying previous LUADD statements is useful when an installation needs to
specify a different configuration for the same LU on a regular basis. For example,
the installation might need one LU definition for a particular kind of work during
first shift, and another definition for the same LU for another kind of work during
second shift. The installation can keep each definition in a separate parmlib
member.

Examples of Modifying an LU
In the following example, the first LUADD statement in parmlib member
APPCPM2A defines LU Z098AP01, and the second LUADD statement in
APPCPM2M changes the TP profile file for the LU.

Assuming that parmlib member APPCPM2A is already active, you can modify the
LU by issuing the SET command as follows:

SET APPC=2M

You can also modify the level of an LU through a parmlib member that contains
the original LUADD statement with a different TPLEVEL parameter. The following
LUADD modifies the level of the LUADD in parmlib member APPCPM2A from
SYSTEM to USER.

LUADD
ACBNAME(Z098AP01)
SCHED(ASCH)
GRNAME(MVSLU1)
NQN
TPDATA(SYS1.APPCTP)
TPLEVEL(SYSTEM)

Figure 72. APPCPM2A

LUADD
ACBNAME(Z098AP01)
SCHED(ASCH)
GRNAME(MVSLU1)
NQN
TPDATA(SYS1.NEWTP)
TPLEVEL(SYSTEM)

Figure 73. APPCPM2M

LUADD
ACBNAME(Z098AP01)
SCHED(ASCH)
GRNAME(MVSLU1)
NQN
TPDATA(SYS1.APPCTP)
TPLEVEL(USER)

Figure 74. APPCPM3M

Chapter 9. Controlling Configuration through APPCPMxx 141



Regardless of whether parmlib member APPCPM2A or APPCPM2M is active, to
make the change, issue the SET command as follows:

SET APPC=3M

If after several modifications, you are unsure of what your configuration looks like,
issue the following DISPLAY APPC command.

DISPLAY APPC,LU,ALL

Assuming you created and modified LUs using the previous examples and
sessions were bound, you would see the following:

Deleting a Local LU — LUDEL Statement
To delete an APPC/MVS local LU from an APPC configuration, use the LUDEL
statement, specifying the LU name through the ACBNAME parameter.

Other LUDEL statement parameters are:

PERSIST or NOPERSIST
Indicates whether APPC/MVS should deactivate persistent sessions
between the LU and its partners.

ATB121I 15.55.45 APPC DISPLAY FRAME 1 F E SYS=SY1
ACTIVE LU’S OUTBOUND LU’S PENDING LU’S TERMINATING LU’S

00006 00000 00000 00000
SIDEINFO=SYS1.APPCSI

LLUN=Z098AP01 SCHED=ASCH BASE=NO NQN=YES
STATUS=ACTIVE PARTNERS=00001 TPLEVEL=USER SYNCPT=NO
GRNAME=MVSLU1 RMNAME=*NONE*
TPDATA=SYS1.APPCTP

PLUN=USIBMY0.MVSLU1
LLUN=Z098AP02 SCHED=ASCH BASE=NO NQN=YES

STATUS=ACTIVE PARTNERS=00000 TPLEVEL=GROUP SYNCPT=NO
GRNAME=MVSTEST RMNAME=*NONE*
TPDATA=SYS1.APPCTEST

LLUN=Z096AP02 SCHED=XYZ BASE=YES NQN=YES
STATUS=ACTIVE PARTNERS=00001 TPLEVEL=USER SYNCPT=NO
GRNAME=*NONE* RMNAME=*NONE*
TPDATA=SYS1.XYZTP

PLUN=USIBMZ0.MVSLU4
LLUN=Z096AP03 SCHED=*NONE* BASE=NO NQN=YES

STATUS=ACTIVE PARTNERS=00003 TPLEVEL=SYSTEM SYNCPT=NO
GRNAME=SERVLU RMNAME=*NONE*
TPDATA=SYS1.APPCTP

PLUN=USIBMY0.MVSLU
PLUN=USIBMZ0.MVSLU
PLUN=USIBMZ0.MVSLU4
LLUN=Z098AP04 SCHED=ASCH BASE=NO NQN=YES

STATUS=ACTIVE PARTNERS=00000 TPLEVEL=SYSTEM SYNCPT=NO
GRNAME=*NONE* RMNAME=*NONE*
TPDATA=SYS1.APPCTP

LLUN=Z096AP04 SCHED=ASCH BASE=NO NQN=YES
STATUS=ACTIVE PARTNERS=00001 TPLEVEL=SYSTEM SYNCPT=NO
GRNAME=MVSLU RMNAME=*NONE*
TPDATA=SYS1.APPCTP

PLUN=USIBMY0.MVSLU1

Figure 75. DISPLAY command output

142 z/OS V2R1.0 MVS Planning: APPC/MVS Management



When an LUDEL statement is processed, new allocation requests to the named LU
are rejected; however, all existing conversations are allowed to continue until
completed. The LU is removed only after all existing conversations have ended. At
that point, you may use an LUADD to bring up the LU again.

Before deleting an LU, be aware of the network implications of removing the LU.
Do peer systems depend on the LU as a partner LU? Is the MVS LU name defined
in their communications setup and should they be notified of the deletion? What is
the impact on network communications when the LU is deleted? See “Stopping
APPC/MVS Work” on page 208 for more information about the effects of stopping
APPC/MVS LUs.

Examples of Deleting an LU
To delete an LU (such as, a test LU that is no longer needed) code a parmlib
member that contains the LUDEL statement followed by the name of the LU to be
deleted.

To activate the parmlib member containing the LUDEL, issue the SET command as
follows:

SET APPC=1D

In the following example, the LU Z098AP02 has been added to the APPC
configuration with a PSTIMER value. The LUDEL statement in parmlib member
APPCPM2D deletes LU Z098AP02 from the APPC configuration, but does not
delete any persistent sessions.

To activate the parmlib member containing the LUDEL, issue the SET command as
follows:

SET APPC=2D

When this LU is now addeed back into the APPC configuration, all the sessions
between this LU and all of its partners will not be disrupted. See “Optimize
LU-to-LU Sessions” on page 243 for more information about persistent sessions.

Specifying a VSAM KSDS for Side Information — SIDEINFO Statement
The SIDEINFO statement specifies the VSAM key sequenced data set (KSDS) in
which side information entries are kept. The SIDEINFO statement contains the
name of the side information file— DATASET(name).

If you do not specify the SIDEINFO statement, no default side information file
name is activated.

LUDEL
ACBNAME(Z098AP02)

Figure 76. APPCPM1D

LUDEL
ACBNAME(Z098AP02) PERSIST

Figure 77. APPCPM2D

Chapter 9. Controlling Configuration through APPCPMxx 143



Unlike TP profile files, only one side information file is allowed per z/OS system.
The VSAM file must have be previously defined and be cataloged in either a user
catalog or the master catalog.

You can name a different VSAM KSDS as the system side information file by
overriding the DATASET parameter with another DATASET parameter.

For a sample VSAM file definition, see SYS1.SAMPLIB member ATBSIVSM.

Examples Using APPCPMxx Parmlib Members
Because of the cumulative way the APPCPMxx parmlib members function, you
might consider creating a separate member for:
v Initial APPC setup
v Each anticipated modification
v Deletion of each LU and each unique session.

Initial APPC Setup
In the following example, an initial APPC setup might consist of three LUs, one
unique session definition, and one side information definition.

Anticipated Modifications
When an installation needs to change its LU configuration regularly, parmlib
members can be pre-coded with the changes. For example, if an installation needs
two system-level production LUs during third shift, LU Z096AP02 can be changed

LUADD
ACBNAME(Z098AP01)
SCHED(ASCH)
GRNAME(MVSLU1)
NQN
TPDATA(SYS1.APPCTP)
TPLEVEL(SYSTEM)

LUADD
ACBNAME(Z098AP02)
SCHED(ASCH)
GRNAME(MVSTEST)
NQN
TPDATA(SYS1.APPCTEST)
TPLEVEL(GROUP)

LUADD
ACBNAME(Z096AP02)
SCHED(XYZ)
BASE
NQN
TPDATA(SYS1.XYZTP)
TPLEVEL(USER)
PSTIMER(3600)
USERVAR(scheduler-supplied value)
ALTLU(scheduler-supplied value)

SIDEINFO
DATASET(SYS1.APPCSI)

Figure 78. APPCPM1A

144 z/OS V2R1.0 MVS Planning: APPC/MVS Management



every evening from a user-level LU to a system-level production LU. The
installation can code two parmlib members— one to change the LU to system level
and one to change it back to user level.

Parmlib member APPCPM3S changes LU Z096AP02 to a system-level LU and
member APPCPM1S changes it back to a user-level LU. When the installation
wants LU Z096AP02 to be system level for third shift, the operator issues SET
APPC=3S. When the installation wants LU Z096AP02 to be user level again, the
operator issues SET APPC=1S.

Note that during third shift, there is no one parmlib member that reflects the
configuration. Rather, the configuration is a combination of two parmlib members,
APPCPM1A and APPCPM3S.

Deletions
If an installation needs to delete an LU from the configuration or delete a
previously specified unique session definition, it can have available pre-coded
parmlib members, each of which contains a delete.

The following examples are parmlib members that delete each of the LUs and the
one unique session in APPCPM1A.

LUADD
ACBNAME(Z096AP02)
SCHED(XYZ)
BASE
NQN
TPDATA(SYS1.XYZTP)
TPLEVEL(SYSTEM)
PSTIMER(3600)
USERVAR(scheduler-supplied value)
ALTLU(scheduler-supplied value)

Figure 79. APPCPM3S

LUADD
ACBNAME(Z096AP02)
SCHED(XYZ)
BASE
NQN
TPDATA(SYS1.XYZTP)
TPLEVEL(USER)
PSTIMER(3600)
USERVAR(scheduler-supplied value)
ALTLU(scheduler-supplied value)

Figure 80. APPCPM1S

LUDEL
ACBNAME(Z098AP01)

Figure 81. APPCPM1D

Chapter 9. Controlling Configuration through APPCPMxx 145



When the installation needs to delete an LU or the unique session, an operator can
issue a SET APPC command followed by the identifier of the parmlib member
containing the delete.

Tracking Changes in the Configuration
There are two ways to keep track of parmlib changes:
v Keep a hardcopy log of every APPCPMxx member that was activated by using

the LIST option on the START APPC and SET APPC commands.
v View the current communication configuration by issuing the DISPLAY APPC

LU,ALL command.

Keeping a Hardcopy Log
You can define on the HARDCOPY statement of a CONSOLxx parmlib member, a
hardcopy log that provides a permanent record of APPC parmlib activity. For
information about defining the hardcopy log, see z/OS MVS Planning: Operations.

To list the contents of each activated parmlib member to the operator console and
to the hardcopy log, include the LIST option on the START and SET commands.
For example, when starting APPC using parmlib member APPCPM1A, issue the
START command as follows:

START APPC,SUB=MSTR,APPC=(1A,L)

When changing the configuration with parmlib member APPCPM3S and
APPCPM2D, issue the SET command with the LIST option as follows:

SET APPC=(3S,2D,L)

This displays the contents of both APPCPM3S and APPCPM2D on the console
screen and stores the information in the hardcopy log.

LUDEL
ACBNAME(Z098AP02)

Figure 82. APPCPM2D

LUDEL
ACBNAME(Z096AP02)

Figure 83. APPCPM3D

146 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Viewing the Current Configuration
A way to get a "snapshot" of the current configuration is with the DISPLAY
command. To view the LU configuration, issue the DISPLAY command as follows:

DISPLAY APPC,LU,ALL

ASB038I APPCPM3S : LUADD
ASB038I APPCPM3S : ACBNAME(Z096AP02)
ASB038I APPCPM3S : SCHED(XYZ)
ASB038I APPCPM3S : BASE
ASB038I APPCPM3S : NQN
ASB038I APPCPM3S : TPDATA(SYS1.XYZTP)
ASB038I APPCPM3S : TPLEVEL(SYSTEM)
ASB038I APPCPM3S : PSTIMER(3600)
ASB038I APPCPM3S : USERVAR(scheduler-supplied value)
ASB038I APPCPM3S : ALTLU(scheduler-supplied value)

ASB038I APPCPM2D : LUDEL
ASB038I APPCPM2D : ACBNAME(Z098AP02)

Figure 84. SET command LIST option output

ATB121I 15.48.39 APPC DISPLAY FRAME 1 F E SYS=SY2
ACTIVE LU’S OUTBOUND LU’S PENDING LU’S TERMINATING LU’S

00003 00000 00000 00000
SIDEINFO=SYS1.APPCSI

LLUN=Z098AP01 SCHED=ASCH BASE=NO NQN=YES
STATUS=ACTIVE PARTNERS=00000 TPLEVEL=SYSTEM SYNCPT=NO
GRNAME=MVSLU1 RMNAME=*NONE*
TPDATA=SYS1.APPCTP

LLUN=Z098AP02 SCHED=ASCH BASE=NO NQN=YES
STATUS=ACTIVE PARTNERS=00001 TPLEVEL=GROUP SYNCPT=NO
GRNAME=MVSTEST RMNAME=*NONE*
TPDATA=SYS1.APPCTEST

PLUN=USIBMY0.MVSLU1
LLUN=Z098AP04 SCHED=ASCH BASE=NO NQN=YES

STATUS=ACTIVE PARTNERS=00002 TPLEVEL=SYSTEM SYNCPT=NO
GRNAME=*NONE* RMNAME=*NONE*
TPDATA=SYS1.APPCTP

PLUN=USIBMY0.MVSLU1
PLUN=USIBMY0.Z096AP02

Figure 85. DISPLAY command output

Chapter 9. Controlling Configuration through APPCPMxx 147



148 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Part 4. Security management

© Copyright IBM Corp. 1991, 2013 149



150 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Chapter 10. Setting up Network Security

APPC/MVS provides a number of security mechanisms that you can use to
maintain network security in a cooperative processing environment. This chapter
describes those mechanisms and ways to select and implement them based on the
needs of your applications and installation. The audience for this chapter is system
programmers and security administrators.

References:
z/OS Security Server RACF System Programmer's Guide

z/OS Security Server RACF Security Administrator's Guide

z/OS Security Server RACF Command Language Reference

z/OS Security Server RACF Messages and Codes

z/OS Communications Server: SNA Resource Definition Reference

z/OS Communications Server: SNA Operation

z/OS MVS System Messages, Vol 3 (ASB-BPX)

APPC/MVS Security Requirements
This chapter assumes that you are using Resource Access Control Facility (RACF)
as your installation's security product. You could use an equivalent security
product instead of RACF. You must activate the security product when you IPL
your system.

Note: All TP profile names that you want to protect with RACF must be in
uppercase. RACF does not process lowercase TP profile names.

Most of the APPC/MVS security support is optional or automatic. The only
security requirement that must be met before using APPC/MVS is ensuring that
the APPC and ASCH started procedures can access the resources that they need.

Giving the APPC and ASCH Started Procedures Access to
Resources

Before you can start APPC and the APPC/MVS transaction scheduler (ASCH), the
APPC and ASCH started procedures must have read-only access to the parmlib
concatenation.

Your installation probably limits access to the parmlib concatenation to only
authorized users. If so, you must refer to security product documentation for
protecting and authorizing started procedures. If your installation uses RACF, see
z/OS Security Server RACF Security Administrator's Guide for information about
giving read access to the APPC and ASCH started procedures.

Although your installation might also limit access to TP profile and side
information data sets, you do not have to explicitly authorize the APPC and ASCH
procedures to access those data sets. Because the APPC and ASCH started
procedures reside in an authorized library, no additional security authorization is
required for them to access TP profiles and side information.

© Copyright IBM Corp. 1991, 2013 151



The rest of this chapter describes the APPC/MVS security mechanisms, starting
with a brief review of cooperative processing and its security implications.

Why Security for APPC?
Cooperative processing allows application programs to establish communications
with partner programs on other systems, and to share work, data, and services
between systems and across networks. This ability to access other programs and all
the resources at their disposal poses special security considerations for installations
that use cooperative processing.

APPC/MVS is a cooperative processing interface on MVS/ESA. With APPC/MVS,
transaction programs (TPs) on MVS can initiate (allocate) conversations with
partner programs on systems throughout an SNA network. The partner programs
can likewise allocate conversations with TPs on MVS. In an unprotected network,
all a TP has to know to start a conversation is the name of an inbound TP and the
logical unit (LU) on which the inbound TP is located. Unless certain precautions
are taken, it is possible for unauthorized conversations to take place. To protect
your z/OS system from unauthorized conversation requests, you might want to
take some of the following steps:
v Limit the logical units from which conversation requests can enter your system
v Ensure that inbound requests for conversations with your system contain

security information such as a user ID and password
v Limit, by user ID, those users who can request a particular TP on your system
v Limit the administrators who can define TPs to APPC/MVS
v Ensure that TPs on MVS run in the appropriate security environment, one that

represents the requester of the MVS TP.
v Minimize the flow of passwords across the network.

This chapter discusses these and other security mechanisms for cooperative
processing and describes how you can implement them using APPC/MVS and
RACF.

An APPC Application Example
Figure 86 on page 153 depicts a typical APPC application. The application consists
of two transaction programs, TPA and TPB, which hold a conversation between
different systems in an SNA network. Their conversation occurs across a session
between their logical units, LU01 and LU02, which represent points of entry into
the network from their systems. This example is repeated and adapted throughout
the chapter to illustrate the different mechanisms for LU and conversation security.

152 z/OS V2R1.0 MVS Planning: APPC/MVS Management



In the example, TPA is the outbound TP, which starts (allocates) the conversation.
The conversation is considered outbound from TPA. TPB is the inbound TP; it
receives and processes the conversation request from TPA. From TPB's point of
view, the conversation is inbound.

Most of the APPC/MVS security mechanisms protect inbound TPs and LUs on
MVS, such as TPB and LU02, from unauthorized inbound requests.

Planning for APPC Security
Any plan for APPC security must begin with the APPC applications that you have
installed or plan to install. The applications themselves, and the sensitivity of the
data and resources that they use, will dictate the level of security that you need. If
the TPs do not involve sensitive data, or if they communicate between two equally
trusted systems, you might not need to use any of the APPC security mechanisms.
If, however, a TP on MVS uses sensitive data or functions, or processes requests
from partner TPs at remote workstations, you might want to activate some or all of
the security mechanisms to protect the application.

The APPC applications themselves can provide a basis for security by passing
security information on the allocate request that starts the conversation. The system
where the inbound TP is located can verify the inbound security information (a
combination of user ID, password, and security profile name), can permit or deny
the conversation request accordingly and, in the case of MVS, can schedule the
inbound TP to run in a security environment based on the inbound security
information.

Determining the Application's Security Type
The first step in protecting an application is to determine what security
information, if any, the inbound TP requires. APPC applications that you write or
install will provide one of three types of security, as specified on the Allocate call:

NONE
The outbound TP passes no security information. The conversation cannot
use conversation security mechanisms.

SAME The outbound TP indicates that the inbound TP should have the same
security as the outbound TP. APPC provides the following security
information, if any is available, from the outbound TP to the inbound:
v A user ID
v A security profile name, which APPC/MVS treats as a group ID

GET_CONV

TPA TPB

ALLOC

TPB,LU02

LU02LU01

SNA NETWORK

Partner System

Conversation between TPs (Transaction Programs)

Session between LUs (Logical Units)

OS/390 System

Figure 86. Sample APPC/MVS Conversation

Chapter 10. Setting up Network Security 153



v An already verified (AV) indicator.
This security information is obtained from a number of different sources,
depending on the current execution environment and the input
parameters specified. If the user is authorized, uses an MVS-specific
Allocate service (for example, ATBALC5), and specifies a valid
User_Token parameter, APPC will use this to obtain a user ID and, if
available, a profile name. If this is not specified, APPC will send the user
ID associated with the current application work context, if this is
available. Otherwise, APPC will send the user ID and, if available, a
profile name that is associated with the current executing task, or if
unavailable, from the current address space.

If no security information is available for the outbound TP, or the inbound
system does not support already verified, no security information is passed
and the security type is treated as NONE.

(If an allocate request is made from MVS using CMALLC, the CPI
Communications Allocate call, the security type is always SAME.)

PGM The outbound TP specifies a user ID, password and optional security
profile name, which RACF treats as a group ID. The outbound TP passes
these to the inbound system for verification.

An alternative to specifying both a user ID and a password is to specify a
user ID only, provided that the TP specifying the user ID has the necessary
surrogate authority to the specified user ID. Requests that use this
technique will send the already verified (AV) indicator to the inbound TP.

For a general description of surrogate user authorization, see z/OS Security
Server RACF Security Administrator's Guide. The specific steps needed to set
up surrogate authorization for APPC/MVS are as follows:
1. Identify the user ID associated with the address space in which the TP

is issuing the Allocate request. For batch jobs and TSO/E sessions, a
user ID is already associated with the address space. For started tasks,
the security administrator needs to associate a user ID with the address
space of the started task, using the STARTED class in RACF, the RACF
started procedure table (SPT), or both (recommended).

2. For each user ID that needs to use PGM security without a password,
define a resource profile in the SURROGAT class as follows:
RDEFINE SURROGAT ATBALLC.userid UACC(NONE)

If generic profile checking for the SURROGAT class has been activated
by the RACF security administrator, you can also create generic profiles
to allow APPC/MVS surrogate authorization for multiple users. If
SURROGAT profiles named ATBALLC.* and ATBALLC.FRED both
existed, ATBALLC.FRED would control APPC/MVS surrogate
authorization for FRED, and ATBALLC.* would control APPC/MVS
surrogate authorization for all other users. For more information on
activating generic profile checking in RACF, see z/OS Security Server
RACF Security Administrator's Guide.

3. Give the APPC TP that needs surrogate authorization READ access to
the ATBALLC.userid profile created in the previous step:
PERMIT ATBALLC.userid CLASS(SURROGAT) ID(userid-of-the-APPC-TP) ACCESS(READ)

where

userid is the user ID that the TP specifies on the Allocate call without
a password.

154 z/OS V2R1.0 MVS Planning: APPC/MVS Management



userid-of-the-APPC-TP
is the user ID associated with the address space in which the
TP is issuing the Allocate request.

4. For this APPC/MVS support to function, you must activate the
SURROGAT class. In addition, APPC/MVS requires that the
SURROGAT class be RACLISTed:
SETROPTS CLASSACT(SURROGAT) RACLIST(SURROGAT)

At this point, the user ID associated with the TP has authorization to
specify a user ID other than its own without specifying a password.

When the inbound TP resides on MVS, each field of security information (user ID,
password, and optional security profile) on an allocate request must not exceed 8
non-blank characters in length. If any of the characters are lowercase, APPC/MVS
changes them to uppercase before user verification.

Figure 87 shows an example of providing security information on an allocate
request. In the figure, TPA specifies a security type of PGM and passes a user ID
and password. TPB's system uses RACF security mechanisms to verify that
information, verify access to TPB, and set up TPB's security environment. If TPA
specified a security type of SAME, APPC itself would extract and pass any
available security information on the allocate request.

If you have an APPC application with a inbound TP on MVS, once you know what
security information the outbound TP is passing on its allocate request, you can
decide how you want to verify and use that information. In other words, you can
decide what RACF security mechanisms to use to protect the inbound TP and its
LU.

The security mechanisms are divided into two categories:
v LU security to protect APPC/MVS logical units
v Conversation security to protect APPC/MVS transaction programs.

LU Security Mechanisms
APPC/MVS provides the following security mechanisms to protect logical units
assigned to APPC/MVS:
v Specifying VTAM security keywords
v Allowing LU-to-LU security verification
v Controlling the use of VTAM ACBs.

For more information about these LU security mechanisms, see “LU Security:
Protecting APPC/MVS Logical Units” on page 156.

GET_CONV

TPA TPB
ALLOC TPB,LU02

SECURITY_PGM

USERID,PW01

LU02LU01

SNA NETWORK

Partner System OS/390 System

Figure 87. Passing Security_PGM Information on an Allocate Request

Chapter 10. Setting up Network Security 155



Conversation Security Mechanisms
In addition to LU security mechanisms, for APPC applications whose security type
is SAME or PGM (for which a user ID is passed on the allocate request),
APPC/MVS provides the following conversation security mechanisms as well:
v Establishing a TP security environment on MVS
v Controlling user access to LUs
v Controlling user access from LUs
v Controlling user access to TP profiles and side information, and tailoring TP

work attributes
v Controlling the ability to collect API trace data for conversations
v Persistent verification (PV)

For more information about these conversation security mechanisms, see
“Conversation Security: Protecting APPC/MVS TPs” on page 164.

Remember, the APPC/MVS security mechanisms primarily protect MVS and the
TPs that run on it. Other operating systems that support APPC, such as Microsoft
Windows, Sun Solaris, AIX, OS/400, OS/2, and VM, generally offer their own
security mechanisms to protect TPs at their end of a conversation. If your
cooperative processing applications include TPs on systems other than MVS,
consult that system's documentation for information on protecting those TPs.

LU Security: Protecting APPC/MVS Logical Units
Before APPC applications can communicate, you must define logical units (LUs) to
VTAM. You define the LUs to VTAM by coding VTAM APPL statements, as
described in Chapter 8, “Planning Sessions,” on page 107. The LUs represent
nodes, or points of entry into the network; each transaction program is associated
with an LU.

As the point of entry for APPC communications into your system, an LU might
require special protection. There are several steps you can take to protect
APPC/MVS LUs from unauthorized access:
v Specifying security keywords on VTAM APPL statements

You can include security information on the VERIFY and SECACPT keywords of
the APPL statement to make VTAM verify LU-to-LU session requests and accept
default levels of conversation security between LUs

v Allowing LU-to-LU security verification with APPCLU profiles
For each LU on MVS, you can specify the partner LUs with which it can hold
sessions, through a session key that VTAM verifies. And for each pair of LUs,
you can specify the levels of security that you will allow on conversations that
cross their sessions.

v Controlling the use of VTAM ACBs
You can ensure that an LU is defined to VTAM from the APPC address space
only, using RACF VTAMAPPL profiles.

Coding Security Keywords on the VTAM APPL Statement
When you code a VTAM APPL statement to define an LU to VTAM, you can
specify:
v The level of TP security that VTAM will accept in conversation requests for TPs

at the LU (SECACPT keyword)

156 z/OS V2R1.0 MVS Planning: APPC/MVS Management



v Whether VTAM is to verify the identity of partner LUs (VERIFY keyword).

Specifying the Level of Conversation Security for VTAM
As described in Chapter 8, “Planning Sessions,” on page 107, conversation security
is a factor in planning LUs and defining them to VTAM. On the VTAM APPL
statement that defines an LU to VTAM, you must specify the greatest level of
security to be allowed on inbound conversation requests for TPs at the LU. You do
this by specifying one of the following values on the APPL statement's SECACPT
keyword:

Value Means VTAM will accept:

NONE
Requests that contain no security information (the default)

CONV
Requests with security information specified

ALREADYV
Requests with security information specified, and requests with an
indication that security information is already verified (includes CONV).
Use only between trusted LUs.

PERSISTV
Requests with security information specified, and requests with an
indication of persistent verification. For more information about persistent
verification, see “Using Persistent Verification (PV)” on page 178.

AVPV Requests with security information specified, and requests with indications
of already verified or persistent verification.

The value you specify in the SECACPT keyword must be appropriate for the TPs
that are to use the LU. SECACPT must allow the type of security information that
the TPs expect to receive. For example, the following SECACPT value would be
appropriate for LU02 and TPB as shown in Figure 88:
APPL ACBNAME=LU02... SECACPT=CONV

The above statement tells VTAM to accept conversation requests for LU02 that
have security information (user ID and password) such as TPA specifies.

Suppose the APPL definition for LU02 specified SECACPT=NONE instead of
CONV, and TPA issues the same Allocate call, as shown in Figure 88. The security
information for the outbound TP is greater than the SECACPT value of the partner
LU. In such cases, the system downgrades or removes security information from
the outbound Allocate request, so that the request matches the minimum security
requirements for the partner LU. The results might not be what you expected for
this conversation.

GET_CONV

TPA TPB
ALLOC TPB,LU02

SECURITY_PGM

USERID,PW01

LU02LU01

SNA NETWORK

Partner System OS/390 System

Figure 88. Sending Security Information through VTAM

Chapter 10. Setting up Network Security 157



The SECACPT value that you specify on the VTAM APPL statement provides the
default level of acceptable conversation security. You can override that level using
the RACF APPCLU profiles, as described in “Defining Conversation Security
Levels that Sessions Allow” on page 162.

Requesting that VTAM Verify Partner LUs
When your installation codes a VTAM APPL statement to define an LU to VTAM,
you must specify whether you want VTAM to verify the identity of partner LUs
that attempt to establish sessions with the LU. To do so, set the APPL statement's
VERIFY keyword to one of the following values:

Value Meaning

NONE
VTAM should not verify partner LUs (the default)

OPTIONAL
VTAM should verify those partner LUs that have defined LU-to-LU
passwords (session keys), as described in z/OS Communications Server: SNA
Resource Definition Reference

REQUIRED
VTAM should verify every partner LU.

If you request verification, VTAM verifies partner LUs by means of an associated
session key. You can use the RACF APPCLU class to specify the session key for
each LU, as described in “Defining LU-to-LU Session Keys” on page 161.

Defining LU-to-LU Access Authority with RACF APPCLU
Profiles

After you decide which LUs may hold conversations, you can create RACF profiles
to define more security characteristics for LUs and for conversations between the
LUs. To do so, create RACF profiles in the APPCLU class. These profiles differ,
depending on whether the LU is a member of a VTAM generic resource group:
v For information about protecting LUs that are not members of a generic resource

group, see “Defining LU-to-LU Access Authority for a Specific LU.”
v For information about protecting LUs that are members of a generic resource

group, see “Defining LU-to-LU Access Authority for LUs in a VTAM Generic
Resource Group” on page 160.

You may also define session keys and conversation security levels for LU-to-LU
security; see:
v “Defining LU-to-LU Session Keys” on page 161, or
v “Defining Conversation Security Levels that Sessions Allow” on page 162.

Defining LU-to-LU Access Authority for a Specific LU
To define LU-to-LU access authority for a specific LU and one or more of its
partners, use the RDEFINE command for the APPCLU class. The syntax for
RDEFINE depends on whether the LU is enabled to support network-qualified
names (that is, whether the NQN parameter is specified on the LUADD statement
in parmlib member APPCPMxx):
v If the LU is enabled to support network-qualified names (NQN is specified on

the LUADD statement), the RDEFINE syntax is:
RDEFINE APPCLU lnetwork-id.local-lu-name.pnetwork-id.partner-lu-name

UACC(NONE)

158 z/OS V2R1.0 MVS Planning: APPC/MVS Management



If you are enabling an existing LU to use network-qualified names, you must
complete these APPCLU definitions before issuing the SET command for the
parmlib member that contains the LUADD statement with the NQN parameter.
See “Using Network-Qualified Names Support” on page 109 for a list of the
steps required to enable network-qualified names support.

v If the LU is not enabled to support network-qualified names (NONQN is
specified on, or used as the default for, the LUADD statement), the RDEFINE
syntax is:
RDEFINE APPCLU lnetwork-id.local-lu-name.partner-lu-name

UACC(NONE)

In the RDEFINE syntax, variables are defined as follows:

lnetwork-id or pnetwork-id
Is the network ID for the network on which the local LU or partner LU resides.
This value is 1 through 8 characters, and matches the value coded for the
VTAM start option NETID. RACF requires this value to be in discrete form
(that is, the value cannot contain any wildcard characters).

local-lu-name
Is the network name of the local LU. This value is 1 through 8 characters, and
matches the application name coded on the APPL statement. RACF requires
this value to be in discrete form (that is, the value cannot contain any wildcard
characters).

partner-lu-name
Is the network name of the partner LU; that is, the 1- through 8-byte
network-LU-name portion of their network-qualified names. RACF accepts this
value in generic form (that is, the value can contain wildcard characters).

On the partner LU's system, you need a corresponding definition of the two LUs.
If RACF is installed on the partner system, define a corresponding APPCLU profile
there, with the proper network id and with the LU names in reverse order. For
example, if LU01 and LU02 are both enabled for network-qualified names, and
reside on network USIBMZ0, you would need to specify the following commands
on the LUs' respective systems:
RDEFINE APPCLU USIBMZ0.LU01.USIBMZ0.LU02 UACC(NONE)

RDEFINE APPCLU USIBMZ0.LU02.USIBMZ0.LU01 UACC(NONE)

If LU01 were on network USIBMZ0, and LU02 were on network USIBMZ3, you
would specify, on their respective systems:
RDEFINE APPCLU USIBMZ0.LU01.USIBMZ3.LU02 UACC(NONE)

RDEFINE APPCLU USIBMZ3.LU02.USIBMZ0.LU01 UACC(NONE)

If LU01 and LU02 are not enabled for network-qualified names, and reside on
network USIBMZ0, you would need to specify the following commands on the
LUs' respective systems:
RDEFINE APPCLU USIBMZ0.LU01.LU02 UACC(NONE)

RDEFINE APPCLU USIBMZ0.LU02.LU01 UACC(NONE)

Next, you can define session keys for the corresponding LUs as described in
“Defining LU-to-LU Session Keys” on page 161.

If the partner system is OS/400, see AS/400 APPC Programmer's Guide.

Chapter 10. Setting up Network Security 159



Defining LU-to-LU Access Authority for LUs in a VTAM Generic
Resource Group
If the LUs are members of a VTAM generic resource group, you have a choice
about defining APPCLU profiles for them:
v You can define many APPCLU profiles, one for each LU that is a member of a

VTAM generic resource group. These profiles have names that include
local-lu-name, as described in “Defining LU-to-LU Access Authority for a
Specific LU” on page 158.

v You can define one APPCLU profile for each VTAM generic resource group, as
described in this section. These profiles have names that include
generic-resource-group-name, as shown in the examples to follow.
Migration Note: If you originally have APPCLU profiles for specific LUs (with
local-lu-name in the profile names), and you later add APPCLU profiles for LUs
that are in VTAM generic resource groups (with generic-resource-group-name
in the profile names), you must delete the APPCLU profiles for specific LUs. If
both kinds of APPCLU profiles exist, only the profiles for specific LUs are used.
To determine which specific LUs are in a VTAM generic resource group, issue
the following command:
DISPLAY NET,ID=generic-resource-group-name

For example, if the VTAM generic resource group name is GENERNAM, issue:
d net,id=genernam

If the output is:
JOB 2 IST097I DISPLAY ACCEPTED
JOB 2 IST075I NAME = GENERNAM, TYPE = GENERIC RESOURCE
IST1359I MEMBER NAME OWNING CP SELECTABLE APPC
IST1360I NETA.APPCAP06 SSCP2A YES YES
IST1360I NETA.APPCAP05 SSCP1A YES YES
IST1393I GENERIC RESOURCE NAME RESOLUTION EXIT IS ISTEXCGR
IST314I END

To cause VTAM to refresh updated RACF profiles for generic name
GENERNAM, issue MODIFY PROFILES,ID=APPCAP05 on the SSCP1A host
where APPCAP05 resides, and MODIFY PROFILES,ID=APPCAP06 on the
SSCP2A host where APPCAP06 resides.

A further consideration relates to network-qualified names:
v If the LUs in the group are enabled to support network-qualified names (NQN

is specified on each LUADD statement), the RDEFINE syntax is:
RDEFINE APPCLU lnetwork-id.generic-resource-group-name.pnetwork-id.partner-lu-name

UACC(NONE)

v If the LUs are not enabled to support network-qualified names (NONQN is
specified on, or used as the default for, each LUADD statement), the RDEFINE
syntax is:
RDEFINE APPCLU lnetwork-id.generic-resource-group-name.partner-lu-name UACC(NONE)

In the RDEFINE syntax, variables are defined as follows:

lnetwork-id or pnetwork-id
Is the network ID for the network on which the local LU or partner LU resides.
This value is 1 through 8 characters, and matches the value coded for the
VTAM start option NETID. RACF requires this value to be in discrete form
(that is, the value cannot contain any wildcard characters).

generic-resource-group-name
Is the generic resource name associated with the LUs. This value is 1 through 8

160 z/OS V2R1.0 MVS Planning: APPC/MVS Management



characters, and matches the name coded on the GRNAME parameter of the
LUADD statements for the LUs. RACF requires this value to be in discrete
form (that is, the value cannot contain any wildcard characters).

partner-lu-name
Is one of the following:
v The network name of the partner LU; that is, the 1- through 8-byte

network-LU-name portion of their network-qualified names.
v The generic resource name associated with the partner LU. This value is 1

through 8 characters.

RACF accepts this value in generic form (that is, the value can contain
wildcard characters).

After creating or changing APPCLU profiles, make sure that the APPCLU class has
been activated using the SETROPTS CLASSACT(APPCLU) command. To cause
VTAM to refresh its in-storage copies of the updated RACF APPCLU profiles for
the LUs in a generic resouce group, you must issue the MODIFY PROFILES
command for each LU in the generic resource group. For example, if there are two
LUs named APPCAP06 and APPCAP05 in generic resource group GENERNAM,
issue MODIFY PROFILES,ID=APPCAP05 on the host where APPCAP05 resides,
and MODIFY PROFILES,ID=APPCAP06 on the host where APPCAP06 resides.

If the partner LUs reside on different systems, you need a corresponding definition
of the LUs on each partner's system. If RACF is installed on the partner system,
define a corresponding APPCLU profile there, with the proper network ID and
with the LU names in reverse order.

Defining LU-to-LU Session Keys
For VTAM to verify LU-to-LU security, you need to specify an LU's session key in
the APPCLU profile. The session key is a 1- through 16-digit hexadecimal value for
the SESSKEY keyword, following the SESSION operand. For example:
RDEFINE APPCLU AA1.LU01.AA1.LU02 UACC(NONE) SESSION(SESSKEY(1234CD5))

If the partner LU is also on a RACF-protected system, you need to specify the
same session key on the APPCLU profile for the partner LU; for example:
RDEFINE APPCLU AA1.LU02.AA1.LU01 UACC(NONE) SESSION(SESSKEY(1234CD5))

You can include other SESSION keywords to specify the following:

NOSESSKEY
Delete an unneeded session key.

LOCK
Lock a profile to prevent sessions from being established for this LU.

NOLOCK
Unlock a locked profile to allow sessions to be established.

INTERVAL(n)
Set an interval (the number of days the session key is valid) where n is in the
range 1 through 32767 and does not exceed a global limit specified by the
SETROPTS SESSIONINTERVAL command.

NOINTERVAL
Specify no limit on the number of days the key is valid.

NOSESSION
Delete the SESSION segment.

Chapter 10. Setting up Network Security 161



You can change existing APPCLU profiles using the RALTER command. For more
information about specifying SESSION keywords on the RDEFINE or RALTER
commands, see z/OS Security Server RACF Command Language Reference.

When VTAM receives requests to establish a session with an LU that has an active
session key, VTAM verifies that the requesting LU has a matching session key. If
the requesting LU does not have a matching session key, VTAM and RACF send
appropriate messages.

Defining Conversation Security Levels that Sessions Allow
With VTAM 3.4 or higher, the CONVSEC field in the SESSION segment of the
RACF APPCLU profile lets you specify the level of security that the local LU will
accept from its partner LU. CONVSEC overrides the protection set by the
SECACPT keyword of the VTAM APPL statement, which specifies the level of
security allowed in conversation requests to an LU from anywhere in the network.
CONVSEC narrows that level down to one allowed in a session between two
specific LUs.

The CONVSEC values correspond to those of the SECACPT keyword:

Value Means the local LU will accept:

NONE
Requests that contain no security information

CONV
Requests with security information specified.

ALREADYV
An indication that the user ID and password are already verified by the
partner LU, and the partner is to be trusted (includes CONV).

PERSISTV
Persistent verification (PV) requests. With PV, MVS verifies an inbound
password the first time it arrives, then accepts the associated user ID
without a password on subsequent Allocate requests in the same session
(includes CONV).

AVPV Requests with user ID and password already verified and persistent
verification indicators.

For example, to allow conversation requests that include security information or an
already verified indicator, you could specify:
RDEFINE APPCLU AA1.LU02.AA1.LU01 SESSION(SESSKEY(1234CD5)

CONVSEC(ALREADYV))

To allow conversation requests that include security information or a persistent
verification indicator, you could specify:
RDEFINE APPCLU AA1.LU02.AA1.LU01 SESSION(SESSKEY(1234CD5)

CONVSEC(PERSISTV))

To delete the conversation security parameters, you can specify NOCONVSEC on
the RALTER command. NOCONVSEC tells RACF to ignore conversation security
levels when sessions are being established between LUs, and defaults to the value
of the SECACPT keyword on the APPL statement.

For more information about specifying conversation security parameters for
APPCLU profiles, see z/OS Security Server RACF Command Language Reference.

162 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Activating RACF Protection with APPCLU Profiles
When you are ready to start using the protection defined in the APPCLU profiles
for each LU, the security administrator should activate the APPCLU class by
issuing the RACF SETROPTS command on each system on which the APPCLU
profile will be used. For example:
SETROPTS CLASSACT(APPCLU)

Any time an APPCLU profile is changed, use the following VTAM command to
refresh the profile so that the change takes effect:
F procname,PROFILES,ID=local-lu-name

where procname represents the procedure name used to start VTAM. The profile
changes do not take effect until you issue this command, and the sessions between
the local and partner LUs have been terminated and are to be re-established. See
z/OS Communications Server: SNA Operation for more information about acceptable
values for procname on MODIFY commands.

When receiving inbound Allocate requests for conversations at an LU that has an
active CONVSEC value, the system verifies that the conversation request contains
allowed security parameters.

Controlling the Use of VTAM ACBs
As described in Chapter 8, “Planning Sessions,” on page 107, one of the first steps
in setting up an APPC/MVS environment is defining APPC LUs to VTAM by
specifying them on VTAM APPL statements. Corresponding access method control
blocks (ACBs) are then opened from the APPC address space when APPC is
started on your MVS system.

Each LU has a name that is unique in the network. All requests for conversations
with a particular TP include the name of the LU where the inbound TP resides. For
example, in Figure 87 on page 155, TPA specifies LU02 in its allocate request for a
conversation with TPB.

To prevent non-APF-authorized programs from opening an ACB for a specific LU,
or from registering as a member of a VTAM generic resource group, and thus
perhaps intercepting requests addressed to that LU name, you can define the LU
names in the RACF VTAMAPPL resource class with a universal access of NONE.

To create the RACF profiles and protect the APPC LUs, do the following:
1. Gather the names of the APPC LUs, as they are specified in the ACBNAME

parameter on VTAM APPL statements and, if necessary, give them to your
security administrator.

2. For each LU to be protected, the security administrator should create a RACF
profile in the VTAMAPPL class, with the profile name matching the
ACBNAME specified on the VTAM APPL statement, and give a universal
access of NONE, for example:
RDEFINE VTAMAPPL acbname UACC(NONE)

The ACB for that LU can then be opened only by APPC/MVS and other
APF-authorized programs.

3. If the LUs are also members of a VTAM generic resource group, the security
administrator should create a RACF profile in the VTAMAPPL class, with the
profile name matching the generic resource name specified on the GRNAME
parameter in LUADD statements for the LUs. For example:
RDEFINE VTAMAPPL generic-name UACC(NONE)

Chapter 10. Setting up Network Security 163



This VTAMAPPL definition protects against unauthorized use of only the
generic resource name; it does not protect specific LUs in the generic resource
group. To protect those LUs, you need to use the VTAMAPPL definition shown
in Step 2 on page 163.

If you were creating VTAMAPPL profiles for the LUs shown in Figure 89, you
would substitute LU02 for acbname in an RDEFINE command on that z/OS system.
If the partner system was also protected by RACF, you could protect LU01 with a
similar command on its system.

When you are ready to start using the protection defined in the VTAMAPPL
profiles for each LU, the security administrator should activate the VTAMAPPL
class and activate SETROPTS RACLIST processing for the class. For example:
SETROPTS CLASSACT(VTAMAPPL) RACLIST(VTAMAPPL)

Any time a VTAMAPPL profile is changed, SETROPTS RACLIST processing for
the VTAMAPPL class must be refreshed for the change to take effect:
SETROPTS RACLIST(VTAMAPPL) REFRESH

Conversation Security: Protecting APPC/MVS TPs
For APPC applications in which the outbound TP passes a user ID on an allocate
request for an inbound TP on MVS, APPC/MVS provides the following
conversation security mechanisms:
v Establishing a TP security environment on MVS
v Controlling user access to LUs
v Controlling user access from LUs
v Controlling user access to TP profiles and side information
v Controlling the ability to collect API trace data for conversations
v Obtaining TP work attributes from RACF user profiles
v Using persistent verification

The following sections describe these mechanisms in detail.

Establishing a Security Environment for Inbound TPs on MVS
When an inbound allocate request for a TP on MVS has a security type of SAME
or PGM and includes a user ID that is defined to RACF, APPC/MVS automatically
uses the RACF user profile for that ID to create the security environment for the
TP to run in. The TP can then access any data or resources that the user is allowed
to access. The RACF profile can also provide individualized SYSOUT and
accounting information for the TP to use. If there is no RACF profile available for
the user ID, the inbound allocate request is rejected.

GET_CONV

TPA TPB
ALLOC TPB,LU02

SECURITY_PGM

USERID,PW01

LU02LU01

SNA NETWORK

Partner System OS/390 System

Figure 89. Security for LU01 and LU02

164 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Figure 90 shows how APPC/MVS uses the RACF profile to establish a security
environment when allocate requests include a user ID for which there is a RACF
user profile on MVS.

For all inbound TPs on MVS, the security administrator must ensure that a RACF
user profile exists for each user ID that the outbound TP might pass on the allocate
request. If the outbound TP also passes a security profile name, the security
administrator must also:
1. Create a RACF group with that name
2. Connect the user to the group.

When an inbound TP on MVS is allocated with a security type of NONE, the
inbound TP runs without a user ID and can only access resources that are available
with universal access.

Controlling User Access to LUs
One of the conversation security mechanisms you can implement is controlling
access, by user ID, to specific APPC/MVS LUs. Such control is useful when an LU
represents a group of related TPs or a transaction scheduler. Through the APPL
class, you can control access to an LU through one of two ways:
1. By granting access to only specific users or groups

This method provides the most restrictive security for the LU, because you
begin by prohibiting any access to the LU, and then gradually grant access to
specific users on an as-needed basis. Depending on how your installation has
defined security profiles for users or groups, and when you determine a user's
need to access the LU, this method might require frequent updates to the LU's
security information.

2. By prohibiting security_none Allocate requests
This method provides security for the LU by accepting only those Allocate
requests associated with a user ID. As in the first method, you begin by
prohibiting any access to the LU, but then grant access to all user IDs at once,
through only two commands. In effect, this method prohibits requests with a
security_type of security_none from entering the system.

You may use either method to control access to individual LUs, or to all LUs in a
VTAM generic resource group. If an LU is a member of a generic resource group,
you must use its generic resource name, instead of its specific name, on the
RDEFINE command for the APPL class.

GET_CONV

TPA TPB

RACF profile
for USER01

ALLOC TPB,LU02
SECURITY_PGM
USERID,PW01

LU02LU01

SNA NETWORK

Partner System MVS System

Figure 90. Setting Security Environment from the RACF Profile

Chapter 10. Setting up Network Security 165



Also, you may use RACF variables in the APPL definitions, to simplify the task of
controlling user access to LUs.

Granting Access to Only Specific Users or Groups
Granting access to an LU by specific user or group IDs consists of the following
steps:
1. Defining the LU profile in a RACF APPL class (RDEFINE command)

Use profiles in the RACF APPL class to define which local user IDs may
allocate conversations with TPs on an MVS LU. APPL profiles use the same 1-
through 8-character name as the local LU specified on the VTAM APPL
statement. For example:
RDEFINE APPL luname UACC(NONE)

To protect the MVS LU shown in Figure 90 on page 165, for example, you
could specify:
RDEFINE APPL LU02 UACC(NONE)

Specifying RDEFINE with UACC(NONE) prohibits anyone from accessing that
LU.

2. Allowing access to the LU by user or group ID (PERMIT command)
To allow access to the LU, enter the PERMIT command to grant READ access
to the LU for specific users or groups. For example,
PERMIT LU02 CLASS(APPL) ID(userid or groupid) ACCESS(READ)

3. Activating the changes to an APPL class profile (SETROPTS command)
When you are ready to start using the protection defined in the APPL profiles
for each LU, the security administrator should activate the APPL class and
activate SETROPTS RACLIST processing for the class. For example:
SETROPTS CLASSACT(APPL) RACLIST(APPL)

Any time an APPL profile is changed, SETROPTS RACLIST processing for the
APPL class must be refreshed for the change to take effect:
SETROPTS RACLIST(APPL) REFRESH

After you issue RDEFINE, PERMIT, and SETROPTS as illustrated, APPC/MVS
verifies that all inbound allocate requests addressed to LU02 are permitted to
access it. APPC/MVS verifies the user ID, password, and security profile, if any,
provided on the request.

Prohibiting Security_None Allocate Requests
Protecting an LU by prohibiting security_none Allocate requests consists of these
steps:
1. Defining the LU profile in a RACF APPL class (RDEFINE command)

As in Step 1 under “Granting Access to Only Specific Users or Groups,” use
this RDEFINE command for LU02:
RDEFINE APPL LU02 UACC(NONE)

Specifying RDEFINE with UACC(NONE) prohibits anyone from accessing that
LU.

2. Allowing access to the LU (PERMIT command)
Again, as in Step 2 under “Granting Access to Only Specific Users or Groups,”
use a PERMIT command for LU02 with one key difference: the value specified
for ID.
PERMIT LU02 CLASS(APPL) ID(*) ACCESS(READ)

166 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Specifying ID(*) allows only Allocate requests with a security_type of
security_pgm or security_same to be accepted for this LU.

3. Activating the changes to an APPL class profile (SETROPTS command)
As in Step 3 on page 166 under “Granting Access to Only Specific Users or
Groups” on page 166, the security administrator should activate the APPL class
and activate SETROPTS RACLIST processing for the class by issuing:
SETROPTS CLASSACT(APPL) RACLIST(APPL)

Any time an APPL profile is changed, SETROPTS RACLIST processing for the
APPL class must be refreshed for the change to take effect:
SETROPTS RACLIST(APPL) REFRESH

After you issue RDEFINE, PERMIT, and SETROPTS as illustrated, APPC/MVS
rejects all inbound requests for that LU that have a security type of security_none
because those requests are not associated with a user ID.

Controlling User Access to LUs in a VTAM Generic Resource
Group
The procedures listed in “Granting Access to Only Specific Users or Groups” on
page 166 and “Prohibiting Security_None Allocate Requests” on page 166 illustrate
how to control user access to an individual LU. To control access to LUs that are
members of the same VTAM generic resource group, the procedures are the same,
except for the name you specify. Instead of using the LU name that matches the
local LU name on the VTAM APPL statement, specify the same name as the
generic resource name on the GRNAME parameter on the LUADD statements for
the LUs. For example:
RDEFINE APPL generic-name UACC(NONE)
PERMIT generic-name CLASS(APPL) ID(userid or groupid) ACCESS(READ)

Using RACF Variables for the APPL Class
Instead of issuing a set of RACF commands for each individual LU, as illustrated
in “Granting Access to Only Specific Users or Groups” on page 166 and
“Prohibiting Security_None Allocate Requests” on page 166, you may use RACF
variables to secure multiple LUs with a single set of commands. For example, the
following commands use a RACF variable for multiple LUs that are not part of a
VTAM generic resource group:
RDEFINE RACFVARS &LUS UACC(NONE) ADDMEM(LLU1 LLU2 LLU3)
RDEFINE APPL &LUS UACC(NONE)
PERMIT &LUS CLASS(APPL) ID(USER1) ACCESS(READ)
PERMIT &LUS CLASS(APPL) ID(USER2) ACCESS(READ)...
SETROPTS CLASSACT(APPL RACFVARS) RACLIST(RACFVARS)

You may use RACF variables for LUs in a VTAM generic resource group as well;
simply use the generic resource name as a value for the ADDMEM operand.

Any time a RACFVARS profile is changed, SETROPTS RACLIST processing for the
RACFVARS class must be refreshed for the change to take effect.

Controlling User Access from LUs
You can further control a user's access to APPC/MVS LUs by controlling which LU
the user's request can come from.

Use RACF profiles in the APPCPORT class to define which user IDs may access
the system from a given LU (APPC port of entry). APPCPORT profile names are of

Chapter 10. Setting up Network Security 167



the form partner-lu-name, where partner-lu-name is the locally known name of the
partner LU (1 through 8 characters). For example:
RDEFINE APPCPORT luname UACC(NONE)

PERMIT luname CLASS(APPCPORT) ID(userid or groupid) ACCESS(READ)

If the APPCPORT class is active, APPC/MVS requires that the user have at least
READ access to the APPCPORT profile in order to access the system.

Look again at Figure 90 on page 165. To permit USER01 to initiate MVS TPs such
as TPB by request from LU01, you could use the following definition on LU02's
system:
RDEFINE APPCPORT LU01 UACC(NONE)

PERMIT LU01 CLASS(APPCPORT) ID(USER01) ACCESS(READ)

When you are ready to start using the protection defined in the APPCPORT
profiles for each LU, the security administrator should activate the APPCPORT
class and activate SETROPTS RACLIST processing for the class. For example:
SETROPTS CLASSACT(APPCPORT) RACLIST(APPCPORT)

Any time an APPCPORT profile is changed, SETROPTS RACLIST processing for
the APPCPORT class must be refreshed for the change to take effect:
SETROPTS RACLIST(APPCPORT) REFRESH

Controlling User Access to TP Profiles and Side Information
on MVS

On MVS, side information and TP profiles contain routing and scheduling
information that MVS uses to find and initiate TPs in response to allocate requests
from other TPs. These TP profiles are distinct from RACF profiles.

APPC/MVS administrators on MVS must create the TP profiles and side
information before users can invoke the TPs named in the TP profiles and side
information. Special security mechanisms let you control access to side information
and TP profiles on MVS. By controlling access to TP profiles on MVS, you control
access to the TPs themselves. Figure 91 on page 169 shows the role of side
information and TP profiles in establishing conversations.

To illustrate the use of side information on MVS, Figure 91 on page 169 shows TPA
on an z/OS system. In this case, TPA uses a symbolic destination name
(SYMDES1) to identify the inbound TP, and APPC/MVS checks the side
information file to determine the actual names of the inbound TP and LU.
Figure 91 on page 169 also shows a TP profile for TPB. The TP profile contains
scheduling information that MVS uses to initiate TPB.

168 z/OS V2R1.0 MVS Planning: APPC/MVS Management



APPC administrators create and maintain TP profiles and side information by
using the APPC/MVS administration utility (ATBSDFMU), or the APPC/MVS
administration dialog (an interactive front-end to ATBSDFMU). The TP profiles and
side information entries are stored in VSAM key-sequenced data sets (KSDS). To
protect a KSDS and its individual entries, do the following:
v Define a data set profile for the KSDS with UACC(NONE), then give

ATBSDFMU program access to the RACF profile
v Use the APPC/MVS administration utility or dialog to create database security

tokens (database tokens) to associate with the data set
v Create RACF profiles in the APPCTP and APPCSI classes to control access to

individual entries (TP profiles and side information entries) in each KSDS.

Giving Program Access to the APPC/MVS Administration Utility
To ensure that TP profiles and side information files are accessed only through the
APPC/MVS administration utility (ATBSDFMU), the system security administrator
may use the program access to data sets (PADS) function of RACF for the data sets
specified in the SYSSDLIB DD statement. For a PADS environment, the
administrator must define certain programs to the RACF PROGRAM class; those
programs vary, depending on the method used to invoke the utility:
v For a batch job, define the following:

– ATBSDFMU entry points ATBINMIG, ATBSDEPE, ATBSDFMU, ATBSDFCS,
and ATBSDFM1

– SYS1.LINKLIB members that ATBSDFMU calls to check the syntax of JCL
v For an application program, define the programs listed for a batch job, and any

programs that are loaded before the ATBSDFMU utility is invoked.
v For a REXX program, define the programs listed for a batch job, the TSO/E

Information Center Facility program ICQASLI0, and any programs that are
loaded before the ATBSDFMU utility is invoked.

For example, to give administrators in the ADMIN01 group access, use the
following commands:
RDEFINE PROGRAM ATBINMIG ADDMEM(’SYS1.MIGLIB’/volser) UACC(NONE)

RDEFINE PROGRAM ATBSDEPE ADDMEM(’SYS1.MIGLIB’/volser) UACC(NONE)

SNA NETWORK

Partner System MVS System

GET_CONV

TPB

RACF profile
for USER01

TPA
ALLOC TPB,LU02
SECURITY_PGM
USERID,PW01

TP profile
TPB
//job...

Side Info
SYMDES1
LU02
TPB

LU02LU01

Figure 91. TP Profiles and Side Information

Chapter 10. Setting up Network Security 169



RDEFINE PROGRAM ATBSDFMU ADDMEM(’SYS1.MIGLIB’/volser) UACC(NONE)

RDEFINE PROGRAM ATBSDFCS ADDMEM(’SYS1.MIGLIB’/volser) UACC(NONE)

RDEFINE PROGRAM ATBSDFM1 ADDMEM(’SYS1.MIGLIB’/volser) UACC(NONE)

RDEFINE PROGRAM * ADDMEM(’SYS1.LINKLIB’/volser/NOPADCHK) UACC(NONE)

PERMIT ATBSDFMU CLASS(PROGRAM) ID(ADMIN01) ACCESS(READ)

ADDSD ’data.set.name’ GENERIC UACC(NONE)

PERMIT ’data.set.name’ ID(ADMIN01) WHEN(PROGRAM(ATBSDFMU)) ACCESS(UPDATE)

If you encounter messages ATB369I or ICH408I after defining these programs,
follow the procedure in z/OS Security Server RACF Diagnosis Guide for obtaining
traces for PADS errors. This procedure helps identify additional programs that
require definition to the RACF PROGRAM class.

If the APPC/MVS administration dialog is used as the interface to the utility, and
PADCHK is specified in any of the members defined in the PROGRAM class
profile, then all programs that are loaded under the TCB must be included in the
conditional access list for all data sets being opened. Additionally, ICQASLI0 must
be in the conditional access list of any data sets being opened. The following
command may be used:

PERMIT dataset_profile_name ID (ADMIN01) WHEN(PROGRAM(ICQASLIO))
ACCESS(UPDATE)

Note: Program control must be active on the system for this access control to take
effect. For more information about controlling program access to data sets, see z/OS
Security Server RACF Security Administrator's Guide.

Controlling Access to Database Tokens
Each data set containing TP profiles or side information entries can have a
database token assigned to it. The database token is a 1 through 8-character name
from character set Type A that represents the file name in security definitions. If a
TP profile or side information entry has no database token, APPC/MVS does not
call RACF to verify access requests.

To create and maintain database tokens, APPC/MVS administrators use the
APPC/MVS administration utility's DBMODIFY command. For more information
about that command, see Chapter 6, “Using the APPC/MVS Administration
Utility,” on page 85.

To control administrator access to database tokens, you can define the
APPCMVS.DBTOKEN profile in RACF's FACILITY class and give UPDATE access
to the appropriate APPC/MVS administrators. For example:
RDEFINE FACILITY APPCMVS.DBTOKEN UACC(NONE)

PERMIT APPCMVS.DBTOKEN CLASS(FACILITY) ID(userid or groupid) ACCESS(UPDATE)

Controlling User Access to Side Information
Authority to administer individual entries in the side information file is provided
by RACF profiles in the APPCSI class. APPCSI profile names are of the form
dbtoken.SYS1.symbolic-destination-name, where:
v dbtoken is the database token associated with the side information file (1

through 8 characters).

170 z/OS V2R1.0 MVS Planning: APPC/MVS Management



v symbolic_destination_name is the symbolic destination name (1 through 8
characters) associated with the side information entry.

For example:
RDEFINE APPCSI dbtoken.SYS1.symdname UACC(NONE)

APPC/MVS administrators need READ access to view side information entries and
UPDATE access to create, modify, and delete side information entries.

For example, assuming TPA in Figure 91 on page 169 is on MVS, and the side
information file has a database token of TOKEN1, you could use the following
commands to permit ADMIN01 to view the entry for SYMDES1:
RDEFINE APPCSI TOKEN1.SYS1.SYMDES1 UACC(NONE)

PERMIT TOKEN1.SYS1.SYMDES1 CLASS(APPCSI) ID(ADMIN01) ACCESS(READ)

You could use the following command to allow ADMIN01 to modify the entry for
SYMDES1, for example, when moving TPB to another LU:
PERMIT TOKEN1.SYS1.SYMDES1 CLASS(APPCSI) ID(ADMIN01) ACCESS(UPDATE).

Users who use symbolic destination names on outbound allocate requests do not
require access to APPCSI profiles.

When you are ready to start using the protection defined in the APPCSI profiles,
the security administrator should activate the APPCSI class and activate
SETROPTS RACLIST processing for the class. For example:
SETROPTS CLASSACT(APPCSI) RACLIST(APPCSI)

Any time an APPCSI profile is changed, SETROPTS RACLIST processing for the
APPCSI class must be refreshed for the change to take effect:
SETROPTS RACLIST(APPCSI) REFRESH

Controlling User Access to TPs
For each MVS image on which APPC/MVS is started, your installation can define
one or more TP profiles for a given TP. These profiles may have different levels
(SYSTEM, GROUPID, or USERID), as defined in “Creating a TP Profile” on page
70. By defining RACF profiles in the RACF APPCTP class, and then permitting
access to those RACF profiles, you can control which user IDs may access the
APPC/MVS TP profiles and execute the associated TPs.

Defining RACF APPCTP Profiles: APPCTP profile names are of the form
dbtoken.level.tpname, where:
v dbtoken is the database token associated with the TP profile file (1 through 8

characters).
v level is one of the following:

– SYS1 if the transaction program is available to all users who can access the
LU.

– The group ID if the transaction program is available to a group.
– The user ID if the transaction program is for a specific user.

v tpname is the name of the transaction program (1 through 64 characters from the
00640 character set, or the Type A character set, or 7-9 characters for an SNA
service TP.)

For example:

Chapter 10. Setting up Network Security 171



RDEFINE APPCTP dbtoken.level.tpname UACC(NONE)

If tpname contains periods, RACF treats them as qualifiers. For a TP called
JOE.MAIL.PGM, you could have a profile such as:
RDEFINE APPCTP dbtoken.level.JOE.MAIL.PGM UACC(NONE)

If generic security checking is active for the APPCTP class, asterisks act as generic
characters anywhere in the APPCTP resource name. For example, to create one
APPCTP profile for all TP names beginning with JOE for a given database token
and level, you could specify:
RDEFINE APPCTP dbtoken.level.JOE* UACC(NONE)

To create one APPCTP profile for all system-level TP profiles that have a database
token of TOKEN1, you could specify:
RDEFINE APPCTP TOKEN1.SYS1* UACC(NONE)

Permitting Access to RACF APPCTP Profiles: APPC/MVS administrators need
READ access to view TP profiles and UPDATE access to create, modify, and delete
TP profiles. APPC users need EXECUTE access to a TP profile to run the associated
transaction program. For example, assume TPB in Figure 91 on page 169 is in a
system-level TP profile with a database token of TOKEN2, protected with the
following command:
RDEFINE APPCTP TOKEN2.SYS1.TPB UACC(NONE)

v To give administrator ADMIN01 access to view the contents of the TP profile for
TPB:
PERMIT TOKEN2.SYS1.TPB CLASS(APPCTP) ID(ADMIN01) ACCESS(READ)

v To give administrator ADMIN02 access to change the contents of the TP profile
for TPB, for example, to add some JCL:
PERMIT TOKEN2.SYS1.TPB CLASS(APPCTP) ID(ADMIN01) ACCESS(UPDATE)

v To give user USER01 access to run TPB:
PERMIT TOKEN2.SYS1.TPB CLASS(APPCTP) ID(USER01) ACCESS(EXECUTE)

To protect TP profiles and the inbound TPs they represent, collect the following
information and, if necessary, give it to your security administrator:
v A list of all TP profiles to be protected, in the form dbtoken.level.tpname
v A list of user IDs of APPC users needing EXECUTE access to each TP profile
v A list of user IDs of APPC/MVS administrators needing READ or UPDATE

access to each TP profile.

The security administrator should create an APPCTP profile for each of the TP
profiles, using generic characters where appropriate, and give the appropriate
access to each user.

When you are ready to start using the protection defined in the APPCTP profiles,
the security administrator should activate the APPCTP class and activate
SETROPTS RACLIST processing for the class. For example:
SETROPTS CLASSACT(APPCTP) RACLIST(APPCTP)

Any time an APPCTP profile is changed, SETROPTS RACLIST processing for the
APPCTP class must be refreshed for the change to take effect.
SETROPTS RACLIST(APPCTP) REFRESH

172 z/OS V2R1.0 MVS Planning: APPC/MVS Management



To protect TPs that do not have a TP profile, define an APPCTP profile that has a
level of SYS1.

Understanding Access Checking of an Inbound Allocate Request for a TP: The
values you specify in RDEFINE and PERMIT commands for APPCTP profiles
affect how the system verifies user access, but in combination with the values in
the APPC/MVS TP profiles, the RACF APPCTP profile, and the APPCPMxx
parmlib member. To determine which values are most efficient, you need a general
understanding of how the system performs security checks. When an inbound
Allocate request for a TP arrives, the system:
1. Verifies the user, through the Userid and Password parameter values on the

Allocate request.
2. Searches for the most restrictive RACF profile for which the verified user has

EXECUTE or higher authority. To accomplish this, the system searches TP
profiles in the following order, beginning with the level specified in the
APPCPMxx parmlib member:
a. USER level TP profiles
b. GROUP level TP profiles
c. SYSTEM level TP profiles
For USER level TP profiles, the system compares the Userid parameter value on
the Allocate request with the RACF user ID verified in Step 1.
For GROUP level TP profiles, the system compares the Profile parameter value
on the Allocate request with the group ID value specified in the TP profile. If
both the local and partner TPs run on MVS, these values can, but do not have
to, represent a RACF group. If the Allocate request does not contain a Profile
parameter value, the GROUP level TP profiles cannot be used.

Protecting Multi-Trans TP Profiles
There are special security considerations for TPs that have a TP schedule type of
multi-trans. Multi-trans TPs are inbound TPs on MVS that run on behalf of
multiple users in sequence and remain active between conversations. In each
conversation, multi-trans TPs run in a security environment based on the caller's
user ID or group ID, if passed.

Moreover, during initialization, multi-trans TPs run under a user ID that is
specified in the GENERIC_ID keyword of the TP profile. Therefore, the generic
user ID also must be permitted to access any RACF-protected resources that the
multi-trans TP might need while running under that ID. For example, if the TP is
running under the generic user ID and an inbound allocate request arrives from an
LU protected by an APPCPORT profile, the generic user ID must be permitted to
that resource. Likewise, if a multi-trans TP is running under a generic user ID and
allocates a conversation to an LU protected by an APPL profile, the generic user ID
must be permitted to that resource.

Protecting the Generic User ID at Installation Time: Because the generic user ID
applies to processing that must be isolated from the different conversation users,
the generic user ID must be secure from unauthorized specification and
modification in the TP profile. At the time of installation, your RACF administrator
must use the APPCMVS.TP.MULTI.genusrid profile in the RACF FACILITY class to
protect the generic user ID and control access to TP profiles for multi-trans TPs.
The command shown in Figure 92 on page 174 prevents all users from adding or
modifying multi-trans TP profiles with any generic user ID.

Chapter 10. Setting up Network Security 173



After issuing the RDEFINE command shown in Figure 92, your RACF
administrator can permit individual users to define multi-trans profiles with a
specific user ID. For example, if Bob needs to create a multi-trans TP profile with
the generic user ID ADMIN, he must first get permission from a RACF
administrator. Your RACF administrator would then issue the command shown in
Figure 93.

After receiving RACF UPDATE access, Bob can use the TPADD command to create
a multi-trans profile with a generic user ID of ADMIN. For more information
about the TPADD command see Chapter 6, “Using the APPC/MVS Administration
Utility,” on page 85.

Granting the Appropriate Level of Access to a Multi-Trans TP: Access to
multi-trans TP profiles should be limited to administrators who have the same
authority as the security administrator or as a system programmer who is
responsible for updating authorized libraries. These administrators need READ
access to view TP profiles for multi-trans TPs and UPDATE access to create,
update, or delete TP profiles for multi-trans TPs. Note that to run a multi-trans TP
you only need EXECUTE access to the RACF profile for the TP in the APPCTP
class. For more information about providing execute access, see “Controlling User
Access to TPs” on page 171.

Controlling Ability to Collect API Trace Data
The APPC/MVS application programming interface (API) trace facility allows
programmers to more easily diagnose problems with APPC/MVS TPs, by
collecting data about APPC/MVS or CPI-C calls that an APPC/MVS TP issues.
Through the ATBTRACE REXX exec, programmers can start tracing activity for
only specific TPs or users, or for many TPs, many conversations, and many users.
They can stop or list the status of tracing activity through the exec, as well.

Security-related issues for the API trace facility include:
v Restricting access to API trace resources
v Allowing a system administrator to control API tracing activity
v Restricting API tracing activity to specific users or conversations
v Allowing API tracing activity for security_none conversations.

If necessary, see z/OS MVS Programming: Writing Transaction Programs for
APPC/MVS for more information about using the API trace facility.

Restricting Access to API Trace Resources
Your installation might want to restrict access to API trace resources to prevent
unauthorized users from viewing service calls and data passed between critical
transaction programs. Also, depending on the number of active API traces, the
performance of APPC/MVS TPs might be adversely affected. In a test system, this
possible performance impact might be acceptable; however, in a production
system, performance degradation is not acceptable. To limit the possible

RDEFINE FACILITY APPCMVS.TP.MULTI.* UACC(NONE)

Figure 92. Protecting the Generic User ID

RDEFINE FACILITY APPCMVS.TP.MULTI.ADMIN UACC(NONE)
PERMIT APPCMVS.TP.MULTI.ADMIN CLASS(FACILITY) ID(BOB) ACCESS(UPDATE)

Figure 93. Permitting Update Access to a Multi-trans TP

174 z/OS V2R1.0 MVS Planning: APPC/MVS Management



performance impact, and to control access to sensitive data transmitted between
TPs, consider using the RACF FACILITY class to restrict access to API trace data.

Using RACF FACILITY class profiles, your installation may control which
conversations may be traced, and which users are allowed to start and stop API
traces. The class profile values for LU and TP should match the LU and TP values
specified on ATBTRACE requests to start or stop tracing. To do so:
1. Define a FACILITY class profile for the resource

ATBTRACE.netid.lu_name.tp_name in which:

ATBTRACE
Identifies the high-level qualifier for the API trace security resource.

netid Identifies the network ID portion of the network-qualified LU name. To
collect trace data for local TPs, use the ID of the local network. For
tracing to begin, ATBTRACE START requests for these local TPs may
contain either an unqualified or network-qualified name of a local LU.
To collect trace data for remote TPs, use the ID of the remote network.
For tracing to begin, ATBTRACE START requests for the remote TPs
must specify the network-qualified name of the remote LU. To
successfully collect trace data for both local and remote TPs, you must
define more than one FACILITY class profile: one with the local
network ID, and another with the remote network ID.

lu_name
Identifies the network-LU-name portion of the network-qualified LU
name, where the TP identified by tp_name will run.

tp_name
Identifies the TP whose conversation is to be traced.

2. Grant READ access to users that need the ability to start and stop API traces.
3. If necessary, refresh SETROPTS RACLIST processing for the FACILITY class, for

the change to take effect.

If the FACILITY class is active, APPC/MVS requires a security profile that protects
the ATBTRACE.netid.lu_name.tp_name resource; APPC/MVS rejects a START or
STOP request if either of the following conditions are true:
v The FACILITY class profile for ATBTRACE is not defined.
v The user submitting the START or STOP request does not have access to the

profile.

For general information about the RACF FACILITY class, see z/OS Security Server
RACF Security Administrator's Guide. For RACF command options and operands,
see z/OS Security Server RACF Command Language Reference.

Allowing a System Administrator to Control API Tracing Activity
IBM recommends that the installation allow a system administrator to control API
tracing activity on each z/OS system, even when tracing is restricted to only a few
other users or for only a limited number of conversations. For example, to allow
only tracing START and STOP requests issued from user ID ADMIN1, for all
conversations for all TPs that run on any LU in the system, use these commands:
RDEFINE FACILITY ATBTRACE.*.*.* UACC(NONE)
PERMIT ATBTRACE.*.*.* CLASS(FACILITY) ID(ADMIN1) ACCESS(READ)
SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)
SETROPTS RACLIST(FACILITY) REFRESH

Chapter 10. Setting up Network Security 175



These commands prevent any trace activity on the system; you could use them for
a production system, changing the access only when an error occurs and you want
to collect trace data to diagnose the problem.

Restricting API Tracing Activity to Specific Users or
Conversations
The following sets of RACF commands illustrate several variations of restricting
the ability to collect API trace data.
v To allow any user to start or stop tracing for any conversation on the system:

RDEFINE FACILITY ATBTRACE.*.*.* UACC(READ)
SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)
SETROPTS RACLIST(FACILITY) REFRESH

v To allow any user to start or stop tracing for only those conversations for the TP
named COMPANY.MAIL that runs on the LU named NET01.LU01:
RDEFINE FACILITY ATBTRACE.NET01.LU01.COMPANY.MAIL UACC(NONE)
PERMIT ATBTRACE.NET01.LU01.COMPANY.MAIL CLASS(FACILITY) ID(*)

ACCESS(READ)
SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)
SETROPTS RACLIST(FACILITY) REFRESH

v To allow only tracing START and STOP requests issued from user ID JOE, for
only those conversations for the TP JOE.MAIL.PGM running on LU
NET02.LU02:
RDEFINE FACILITY ATBTRACE.NET02.LU02.JOE.MAIL.PGM UACC(NONE)
PERMIT ATBTRACE.NET02.LU02.JOE.MAIL.PGM CLASS(FACILITY) ID(JOE)

ACCESS(READ)
SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)
SETROPTS RACLIST(FACILITY) REFRESH

In this case, no other user is allowed to start or stop trace for these
conversations.

v To allow only tracing START and STOP requests issued from user ID FRED, for
only those conversations for the TP FRED.MAIL.PGM running in network
NET02, on any LU in the VTAM generic resource group GEN02:
RDEFINE FACILITY ATBTRACE.NET02.GEN02.FRED.MAIL.PGM UACC(NONE)
PERMIT ATBTRACE.NET02.GEN02.FRED.MAIL.PGM CLASS(FACILITY) ID(FRED)

ACCESS(READ)
SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)
SETROPTS RACLIST(FACILITY) REFRESH

v To allow only tracing START and STOP requests issued from user ID MYUSER,
for all conversations for all TPs that run on LU NET99.LU99:
RDEFINE FACILITY ATBTRACE.NET99.LU99.* UACC(NONE)
PERMIT ATBTRACE.NET99.LU99.* CLASS(FACILITY) ID(MYUSER) ACCESS(READ)
SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)
SETROPTS RACLIST(FACILITY) REFRESH

Allowing API Tracing Activity for Security_None Conversations
When APPC/MVS receives inbound Allocate requests with a Security_type of
security_none, you have to grant access to the FACILITY class only when
ATBTRACE START and STOP requests are invoked from either:
v The TP's profile JCL, or
v A call issued by the TP itself.

For example, suppose an APPC/MVS TP named COMPANY.NEWS, which runs on
LU NET01.LU01, invokes the ATBTRACE REXX exec to start tracing. For this
START request to be successful, issue the following commands before APPC/MVS
schedules the TP in response to an Allocate with a Security_type of security_none:

176 z/OS V2R1.0 MVS Planning: APPC/MVS Management



RDEFINE FACILITY ATBTRACE.NET01.LU01.COMPANY.NEWS UACC(READ)
SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)
SETROPTS RACLIST(FACILITY) REFRESH

Obtaining SYSOUT and Account Information from RACF User
Profiles

RACF allows you to specify SYSOUT and account number information in a RACF
user profile, to be used when a TP is run on behalf of that user. To store the
SYSOUT and account information in the RACF user profile, specify any of the
following keywords on the WORKATTR segment of the RACF ADDUSER and
ALTUSER commands. Include single quotes around any values containing blanks.

WANAME
Specifies the name of the user that SYSOUT information is to be delivered to.
Up to sixty EBCDIC characters may be specified.

WABLDG
Specifies the building that SYSOUT information is to be delivered to. Up to
sixty EBCDIC characters may be specified.

WADEPT
Specifies the department that SYSOUT information is to be delivered to. Up to
sixty EBCDIC characters may be specified.

WAROOM
Specifies the room that SYSOUT information is to be delivered to. Up to sixty
EBCDIC characters may be specified.

WAADDR1 through WAADDR4
Specifies up to four more address lines for SYSOUT delivery. Up to sixty
EBCDIC characters may be specified for each line.

WAACCNT
Specifies an account number for APPC/MVS processing. Up to 255 EBCDIC
characters may be specified.

Note: The WAACCNT value overrides an account number in the job statement.

For example, you could use a command such as the following to add SYSOUT and
account information to the RACF profile for user ID USER01:
ALTUSER USER01 WORKATTR (WANAME(’SAMMY CHARLES’) WABLDG(’BUILDING 999’)
WADEPT(’DEPARTMENT 101A’) WAROOM(’ROOM 1001’) WAADDR1(’POKTOWN NY’)
WAACCNT(549300PFG10))

For more information about specifying SYSOUT and account information in a
RACF user profile, including syntax of the RACF ADDUSER command, see z/OS
Security Server RACF Command Language Reference.

Extracting SYSOUT and Account Information from RACF User
Profiles
For any inbound TPs on MVS that require personalized SYSOUT and account
information for each user, you need to tell APPC to extract that information from
the user's RACF profile. To cause APPC/MVS to extract the SYSOUT and account
information from the user's RACF profile, an APPC/MVS administrator must use
the APPC/MVS administration dialog or utility to specify YES on the
TAILOR_SYSOUT and TAILOR_ACCOUNT keywords for the appropriate TP. For
more information about those keywords, see Chapter 6, “Using the APPC/MVS
Administration Utility,” on page 85.

Chapter 10. Setting up Network Security 177



If you don't use these procedures to extract SYSOUT and account information from
the RACF profile, any SYSOUT or account information specified in the TP profile
will be in effect for all users of the TP.

Because APPC/MVS administrators can best provide the necessary information,
the security administrator can give APPC/MVS administrators update access to
WORKATTR segments in RACF user profiles through RACF's field-level access
checking.

Using Persistent Verification (PV)

Programming Interface Information

With VTAM 3.4 or later and RACF installed, APPC/MVS can receive persistent
verification requests. Persistent verification (PV) is an option that LUs can specify
on outbound allocate (attach) requests. Persistent verification is an application
security mechanism that maintains lists of verified user IDs and reduces the flow
of passwords across the network.

APPC/MVS LUs can receive but cannot send persistent verification requests.

To use persistent verification on your system, you must:
v Allow it between the appropriate LUs by specifying the PERSISTV or AVPV

values in either:
– The VTAM APPL statement's SECACPT keyword, as described in “Specifying

the Level of Conversation Security for VTAM” on page 157, or

– The RACF APPCLU profile SESSION segment, through the CONVSEC
keyword, as described in “Defining Conversation Security Levels that
Sessions Allow” on page 162.

If you specify conversation security values in both the VTAM APPL statement
and the RACF APPCLU profile, the RACF value overrides the VTAM value.

v Make sure the RACF subsystem is available to handle persistent verification
requests. Refer to z/OS Security Server RACF System Programmer's Guide for more
information about the RACF subsystem.

v Make sure the network LU names of participating LUs are unique across
interconnected networks. If your installation is using APPC/MVS support of
network-qualified names to ensure that LU names are unique, the results of
persistent verification requests are unpredictable.
A network-qualified name is a 17-byte name in the form
network_id.network_lu_name, where the network-ID portion uniquely identifies an
LU when the network-LU-name portion is identical to LU names on other
networks in the installation. With persistent verification, the network ID is not
used to verify PV requests. If network LU names themselves are not unique,
LUs might, for example, accept conversations from the wrong partner LUs.
Because of this unpredictability, IBM does not recommend the use of
APPC/MVS support for network-qualified names for those LUs that your
installation uses for persistent verification requests.

On sessions that allow persistent verification, the following sequence of events
establishes persistent verification for user IDs passed on that session:
v The outbound LU adds a user ID to its own signed-on-to list and sends security

information like a user ID and password on an outbound allocate request, with
a PV sign-on indicator in the function management header 5 (FMH-5).

178 z/OS V2R1.0 MVS Planning: APPC/MVS Management



v If the inbound system (possibly MVS) successfully verifies the security
information in the FMH-5 sent from the partner LU, the inbound system enters
the user ID in a “signed-on-from list”. The signed-on-from list contains a list of
user IDs signed on for persistent verification from that outbound LU.

v On subsequent allocate requests containing that user ID and a PV signed-on
indicator, information that validates the user's identity is not included.

v The inbound system receives the subsequent allocate requests and verifies that
the user is in the signed-on-from list.

v The user ID normally remains on the list for the duration of the session.
Operator action or communication failure can cause the user ID to be dropped
from the list.

MVS operators can use the RACF #DISPLAY SIGNON command to display the
signed-on-from list and the #SIGNOFF command to remove entries from the
signed-on-from list while a session is active.

For example, the following command would search the signed-on-from list for user
USER01 to see if that user is signed on for persistent verification from LU01. If
USER01 is signed on from that specific port of entry (POE), a list is returned to the
operator console.
#DISPLAY SIGNON,APPL(LU02),POE(LU01),USER(USER01),GROUP(*)

The following operator command would remove user USER01 from the
signed-on-from list of LU02:
#SIGNOFF APPL(LU02),POE(LU01),USER(USER01),GROUP(*)

See z/OS Security Server RACF Command Language Reference for more information
about these commands.

When the operator removes an entry from the signed-on-from list, RACF grants
control to the persistent verification verb exit, which sends a request to the partner
LU to remove the entry from the signed-on-to list. When the request is complete,
the operator receives RACF message IRRE006I, which contains a return and reason
code. The return and reason codes are documented in z/OS Security Server
RACROUTE Macro Reference. The return and reason codes for the persistent
verification verb exit are:

Table 12. Persistent Verification Verb Exit Return and Reason Codes

Return Code Reason Code Meaning and Action

Hexadecimal
(Decimal)

Hexadecimal
(Decimal)

Meaning

00 (00) -- Processing completed successfully.

0C (12) 04 (04) The request code passed to the persistent verification verb
exit was not correct.

08 (08) APPC/MVS is not active.

0C (12) An internal error occurred.

10 (16) An internal error occurred.

If you are using a security product other than RACF, the persistent verification
verb exit return and reason codes may be different from those listed above.

Chapter 10. Setting up Network Security 179



Diagnosing PV Problems

There are some situations in which signed-on-to and signed-on-from lists might
not be identical, possibly causing an erroneous return code of security_not_valid
from an allocate request. For example, a partner application might have two
windows, one that starts a conversation with a “sign-on” request, and a second
that starts another conversation to the same LU and passes a “signed-on” indicator.
If for some reason the second allocate reached the inbound LU first, the user ID
would not be found on the signed-on-from list yet, and the “signed-on” request
would be rejected. The user would need to try that request again later.

See SNA LU 6.2 Reference: Peer Protocols for more information about using persistent
verification.

End of Programming Interface Information

Diagnosing Security Problems
When an outbound TP's allocate request includes inadequate security information
to access its partner LU or TP on MVS, APPC/MVS passes a return code of
security_not_valid on a call following the allocate call. For more information about
that return code, see z/OS MVS Programming: Writing Transaction Programs for
APPC/MVS. RACF messages on the inbound system indicate any errors in the
specification of RACF profile information. APPC/MVS messages indicate errors in
specifying security information in TP profiles and side information. For
explanations of the diagnostic messages, see z/OS Security Server RACF Messages
and Codes and z/OS MVS System Messages, Vol 3 (ASB-BPX).

As an aid to debugging access problems and detecting security exposures, you can
use RACF auditing to keep track of access to RACF profiles. For example, you can
audit all attempted accesses, all successful accesses, and all failed accesses to a
particular profile or class of RACF profiles.

You can also use APPC component trace options to collect and diagnose the
security information that crosses the network in an allocate request. See z/OS MVS
Diagnosis: Tools and Service Aids for information about requesting and formatting
FMH-5 data with APPC component trace.

Maintaining MVS Passwords in an APPC Environment

Programming Interface Information

The passwords associated with RACF user profiles periodically expire and must be
updated by the user. An installation that uses APPC to communicate with TPs
running on MVS may want to use APPC to update MVS passwords.

APPC/MVS provides a TP (X'06F3F0F1') that makes it possible to update RACF
passwords on MVS, and two sample TPs (ATBMINO and COMUPASS) that aid in
managing passwords:

X'06F3F0F1'
SIGNON/Change password (SNA name X'06F3F0F1') is an internal
implementation of an SNA service transaction program that maintains
passwords on APPC/MVS. The program is invoked through an APPC
attach. For more information, see “What is the SIGNON/Change Password
TP?” on page 181.

180 z/OS V2R1.0 MVS Planning: APPC/MVS Management



ATBMINO
The source code for ATBMINO is a sample implementation of SNA
program X'30F0F5F2'. The expired password notification TP (SNA name
X'30F0F5F2') has not been implemented in APPC/MVS. The sample
implementation of this program (ATBMINO) runs on a workstation. A
request to attach X'30F0F5F2' indicates expiration of the password for the
user ID specified in an FMH-5 passed from the partner LU running
APPC/MVS. If an installation chooses to implement a version of this TP on
an z/OS system, APPC/MVS will allow the TP to run with an expired
password. The source code for ATBMINO is located in
SYS1.SAMPLIB(ATBMINOS). The executable code for ATBMINO is located
in SYS1.SAMPLIB(ATBMINO).

COMUPASS
This is an example of a program that allows APPC users to specify a new
MVS password. The source code for the sample implementation of the
program is located in SYS1.SAMPLIB(ATBMIPWS). The executable code is
located in SYS1.SAMPLIB(COMUPASS).

The ATBMINO and COMUPASS password maintenance TPs comprise examples of
how a partner LU can communicate with APPC/MVS to maintain passwords.
These examples are shipped with MVS, and may be downloaded to the system
running on the partner LU. For instructions on how to download and use these
programs, see “Using Sample Programs to Maintain User Passwords on a Partner
LU” on page 188.

As an alternative to modifying the sample programs to maintain APPC/MVS
passwords, partner systems can use the SIGNON/Change password TP as
described in 2c on page 135. This can avoid the rejection of an allocate (attach)
request due to an expired user password.

What is the SIGNON/Change Password TP?
The SIGNON/Change password SNA service TP (SNA name X'06F3F0F1') runs on
APPC/MVS and does the following:
v Signs on users to a server LU to support LU 6.2 persistent verification (PV).

A requestor LU can invoke this function on behalf of a user to ensure that the
user's password has not expired before sending an attach request to a server LU.
If the SIGNON/Change password TP indicates that the password is expired, the
LU can prompt the user for a new password and invoke the SIGNON/Change
password TP again to change the user's MVS password.
After the SIGNON/Change password TP confirms that the user is signed on
with an unexpired password, and the requestor LU receives a generalized data
stream (GDS) variable indicating that the user is signed on, the LU can add the
user to the signed-on-to list and send the user's original attach request. For more
information on the SIGNON/Change password GDS variable, see “Description
of SIGNON/Change Password GDS Variable” on page 184.
This process may be implemented with an application TP, or it may be used in
an implementation of PV for an LU. With PV, SIGNON/Change password
should be invoked only once for all of a user's conversations in a session. The
sending LU may check its own signed-on-to list and invoke the
SIGNON/Change password TP if the user is not in the list.

v Signs on users to a server LU and changes user passwords on the server LU.

Chapter 10. Setting up Network Security 181



How to Create Partner LU Communication for the
SIGNON/Change Password TP

Figure 94 shows an example of how a partner LU can use the SIGNON/Change
password TP to verify that a user's password has not expired on APPC/MVS
before flowing an attach request:

Figure 95 on page 183 shows an example of how a partner LU can use the
SIGNON/Change password TP to prevent rejection of an attach request due to the
expiration of a user's password:

Partner LU APPC/MVS
(partner LU interface) SIGNON/Change Password
┌─────────────────────┐ ┌─────────────────────┐
│ �1� │ │ │
│TP A allocates a con-│ │ │
│versation with TP B. │ │ │
│ │ │ │
│ �2� │ │ │
│ The system holds │ │ │
│ the request to │─────────────── FMH-5 ─────────────────→│ │
│ attach TP B. │ �3� The system sends a request to │ │
│ │ attach SIGNON/Change password TP. │ │
│ │ │ │
│ │───────────────────────────────────────→│ │
│ │ �4� The system sends a GDS variable │ │
│ │ containing the sign-on data. │ │
│ │ │ �5� │
│ │ │ SIGNON/Change pass- │
│ │ │ word TP accepts the │
│ │ │request and calls the│
│ │ │MVS security product │
│ │ │ to verify password. │
│ │ │ The password is │
│ │ │ valid (unexpired). │
│ │ │ │
│ │ │ �6� │
│ │ │ SIGNON/Change pass- │
│ │ │ word signs the user │
│ │←───────────────────────────────────────│ on to APPC/MVS. │
│ │ �7� SIGNON/Change password TP sends a │ │
│ │ GDS variable confirming the sign-on. │ │
│ �8� │ │ │
│The partner LU signs │ │ │
│ the user on to the │ │ │
│ partner system. │───────────────────────────────────────→│ │
│ │ �9� The system sends the original │ │
│ │ request to attach TP B (the request │ │
│ │ made in step #1 above). │ │
└─────────────────────┘ └─────────────────────┘

Figure 94. Signing a User On to APPC/MVS (Unexpired Password)

182 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Note: APPC/MVS rejects the attach request if the SIGNON/Change password TP
is invoked with a conversation security level other than security (none).

When creating a partner system interface to the SIGNON/Change password TP for
an installation, the system programmer should follow these guidelines:
v In multi-tasking systems, where it is possible for more than one TP to start on

parallel sessions, the code that handles user allocate requests should also
serialize the process of signing users on to the system. This causes an allocate for
a second process to wait for completion of a SIGNON initiated for the first
process.

v When a user issues an allocate request after a PV sign-off, the LU should
serialize the sign-on process and sign the user on to the system again.

v The mode name for the SIGNON/Change password TP should be the same as
the mode name specified on the user allocate request.

v If PV is used, the signed-on-to list must be accessible from the LU that requests
the user sign-on.

Partner LU APPC/MVS
(partner LU interface) SIGNON/Change Password
┌─────────────────────┐ ┌─────────────────────┐
│ �1� │ │ │
│TP A allocates a con-│ │ │
│versation with TP B. │ │ │
│ │ │ │
│ �2� │ │ │
│ The system holds │ │ │
│ the request to │─────────────── FMH-5 ─────────────────→│ │
│ attach TP B. │ �3� The system sends a request to │ │
│ │ attach SIGNON/Change password TP. │ │
│ │ │ │
│ │───────────────────────────────────────→│ │
│ │ �4� The system sends a GDS variable │ │
│ │ containing the sign-on data. │ │
│ │ │ �5� │
│ │ │ SIGNON/Change pass- │
│ │ │word accepts the re- │
│ │ │ quest and calls the │
│ │ │MVS security product │
│ │ │ to verify password. |
│ │ │The security product │
│ │ │rejects the password │
│ │←───────────────────────────────────────│ as expired. │
│ │ �6� The SIGNON/Change password TP │ │
│ │ sends a GDS variable indicating that │ │
│ │ the password is expired. │ │
│ �7� │ │ │
│ The partner LU uses │ │ │
│ COMUPASS or a simi- │ │ │
│lar program to prompt│ │ │
│ the user for a new │ │ │
│ password. │─────────────── FMH-5 ─────────────────→│ │
│ │ �8� The system sends a request to │ │
│ │ attach the SIGNON/Change password TP │ │
│ │ and change the user’s password. │ │
│ │ │ �9� │
│ │ │ SIGNON/Change pass- │
│ │ │ word calls the MVS |
│ │ │ security product to │
│ │ │ update the password │
│ │ │ in the user profile │
│ │←───────────────────────────────────────│and sign the user on.│
│ │ �10� SIGNON/Change password TP notifies│ │
│ │ the LU that the password is changed. │ │
│ │ (GDS variable). │ │
│ �11� │ │ │
│ The LU notifies the │ │ │
│user of the password │ │ │
│ change. │─────────────── FMH-5 ─────────────────→│ │
│ │ �12� The system sends the original │ │
│ │ request to attach TP B (the request │ │
│ │ made in step #1 above). │ │
└─────────────────────┘ └─────────────────────┘

Figure 95. Signing a User On to APPC/MVS (Changing an Expired Password)

Chapter 10. Setting up Network Security 183



Description of SIGNON/Change Password GDS Variable
The SIGNON/Change password GDS variable contains information needed for a
requestor LU to send a sign-on request or sign-on with a password change request to
a server LU, or information needed for a server LU to send a reply to those
requests.

General GDS Variable Format: Table 13 shows the general format of the header
of the SIGNON/Change password GDS variable. The remaining tables in this
section show the sub-fields that are required on the SIGNON/Change password
GDS variable for each type of request or reply.

Table 13. General Format of SIGNON/Change Password GDS Variable

Byte(s) Value Description of Contents

0-1 xxxx xxxx - The length of the entire GDS variable,
including the length of this field.

2-3 X'1221' The SIGNON/Change password GDS variable
identifier.

4-5 yyyy yyyy is the length of this field, plus the length of all
the fields that follow this field in the GDS variable
(the length of the nested data structure).

6-7 zzzz zzzz is one of the following:

X'FF00' The request is to sign a user on. The
allocate request flows from the requestor
LU to the server LU. See Table 14 for the
sub-fields that accompany this request.

X'FF01' The request is to sign the user on and
change the user's password. The allocate
request flows from the requestor LU to the
server LU. See Table 15 on page 185 for the
sub-fields that accompany this request.

X'FF02' The server LU sends a reply to the
requestor LU that contains the results of a
“sign-on” or “sign-on and change
password” request. See Table 16 on page
185 for the sub-fields that accompany this
request.

Format for Sign-on (FF00) Sub-fields: The following sub-fields follow byte 5 in
Table 13 when a partner LU sends a request is to sign a user on (FF00):

Table 14. Format of GDS Variable Sub-fields For A Sign-on Request

Field Length Identifier Description of Contents

3-12 X'00' User security profile name (optional)

3-12 X'01' User ID

3-12 X'02' Password

Format for SIGNON/Change Password (FF01) Sub-fields: The following
sub-fields follow byte 5 in Table 13 when a partner LU sends a request to sign a
user on and change the user's password (FF01):

184 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Table 15. Format of GDS Variable Sub-fields For A Sign-on and Change Password Request

Field Length Identifier Description of Contents

3-12 X'00' User security profile name (optional)

3-12 X'01' User ID

3-12 X'02' Old (expired) password

3-12 X'06' New password

Format for SIGNON Reply Data (FF02) Sub-fields: The following sub-fields
follow byte 5 in Table 13 on page 184 when the SIGNON/Change password TP
sends a reply to a request from the partner LU (FF02):

Table 16. Format of GDS Variable Sub-fields For SIGNON/Change Password Reply

Field Length Identifier Description of Contents

3 X'00' SIGNON/Change password status value (see
“SIGNON/Change Password Status Values” on page
186)

4 X'01' SIGNON request formatting error; this sub-field is
present only with status value 6

Example GDS Variable - Input to SIGNON/Change Password TP
The following is an example of a GDS variable that a system programmer can
create as input to the SIGNON/Change password TP. In the figure, sub-field blocks
5-7, 8-10, 11-13, and 14-16 can appear in any order. Sub-field block 5-7 is optional.

Table 17. Example GDS Variable (SIGNON/Change password TP input)

Field Number
Length
Byte(s) Value Description of Contents

1 2 xxxx xxxx - The length of the entire GDS
variable, including the length of this field.

2 2 X'1221' The SIGNON/Change password GDS
variable identifier.

3 2 xxxx Length of field 3, plus the length of all the
fields that follow this field in the GDS
variable (length of nested data structure)

4 2 FF01 Request identifier indicating a request to
sign a user on and change the user's
password

5 1 xx Length of fields 5-7

6 1 X'00' Identifier for profile field

7 x C'profname' profname - user profile name

8 1 xx Length of fields 8-10

9 1 X'01' Identifier for user ID

10 x C'userid' userid - User ID for user issuing the
allocate request

11 1 xx Length of fields 11-13

12 1 X'02' Identifier for old (expired) password

13 x C'oldpass' oldpass - User's old (expired) password

14 1 xx Length of fields 14-16

Chapter 10. Setting up Network Security 185



Table 17. Example GDS Variable (SIGNON/Change password TP input) (continued)

Field Number
Length
Byte(s) Value Description of Contents

15 1 X'06' Identifier for new password (required field,
only allowed with request identifier FF01)

16 x C'newpass' newpass - User's new password

GDS Variable - Output from SIGNON/Change Password TP
The following figure shows the GDS variable that APPC/MVS returns to the
partner LU to indicate the response of the SIGNON/Change password TP. Fields
8-10 are present only when the status value in field 7 is X'06'.

Table 18. GDS Variable Structure (SIGNON/Change password TP output)

Field Number
Length
Byte(s) Value Description of Contents

1 2 xxxx xxxx - The length of the entire GDS
variable, including the length of this field.

2 2 X'1221' The SIGNON/Change password GDS
variable identifier.

3 2 xxxx Length of field 3, plus the length of all the
fields that follow this field in the GDS
variable (length of nested data structure)

4 2 FF02 SIGNON/Change password reply
identifier

5 1 xx Length of fields 5-7

6 1 X'00' SIGNON/Change password status value
identifier

7 1 xx SIGNON/Change password status value
(see “SIGNON/Change Password Status
Values” for a list of status values)

8 1 xx Length of fields 8-10

9 1 X'01' SIGNON/Change password request
formatting error identifier

10 2 xxxx SIGNON/Change password request
formatting error value described in
“SIGNON/Change Password Request
Formatting Errors” on page 187 (this value
only appears when status value 6 appears
in field 7)

SIGNON/Change Password Status Values
Table 19 on page 187 lists the password status values that the SIGNON/Change
password TP returns in the GDS variable, to indicate the status of a password
change request to the partner system. For additional diagnostic information, the
table also includes the return code that APPC/MVS receives from the security
product.

186 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Table 19. SIGNON/Change Password TP Status Values

Status Value Description Return Code

00 APPC/MVS successfully processed the request. The user is
signed on. If a password change was requested, the
password is changed.

00

01 The user ID is not known to APPC/MVS. The user profile
is not defined to the security product on MVS.

04

02 The user ID is valid, but the password is incorrect. 08

03 The old password is correct but it has expired. 0C

04 The user ID is valid and the password is correct, but the
new password is not acceptable to the security product on
MVS.

10

05 This value is expected when one of the following is true:

v The security product on MVS is either not installed or
not active

v An error occurred in the SIGNON/Change password TP

v For X'FF00' requests only, the security product on MVS is
not set up correctly for persistent verification.

Undetermined

06 Incorrect data format. The specific error is contained in the
SIGNON/Change password TP request formatting error
field described in “SIGNON/Change Password Request
Formatting Errors.”

N/A

07 General security error. Other

08 The SIGNON/Change password TP successfully completed
a password change, but could not add the user to the
signed-on-from list.

If you are not using persistent verification, receiving this
status value is equivalent to receiving a status value of 00;
no corrective action is necessary.

Otherwise, status value 08 is expected when the security
product on MVS is not set up correctly for persistent
verification. Refer to the security product documentation to
determine what must be corrected. If your installation is
using RACF, the RACF subsystem must be available to
handle persistent verification requests. Refer to z/OS
Security Server RACF System Programmer's Guide for more
information about the RACF subsystem.

Undetermined

SIGNON/Change Password Request Formatting Errors
The SIGNON/Change password TP returns one of the following request
formatting errors in the GDS variable (see Table 16 on page 185) when a status
value of 6 appears in field 7 of the GDS variable:

Table 20. SIGNON/Change Password Request Formatting Errors

Format Error Description

0000 Undefined error

0001 Required structure absent

0002 Precluded structure present

0003 Multiple occurrences of a non-repeatable structure

0006 Length outside specified range

0007 Length exception - length arithmetic is out of balance

000C Required combination of structures is absent

Chapter 10. Setting up Network Security 187



For more information on how to create a partner system interface to the
SIGNON/Change password TP, see SNA Formats and SNA LU 6.2 Reference: Peer
Protocols

Using Sample Programs to Maintain User Passwords on a
Partner LU

IBM provides two sample programs that can help you create a password
management system for end users of APPC/MVS applications. The sample
programs, called ATBMINO and COMUPASS, enable end users of APPC/MVS
applications to update passwords on a partner LU running APPC/MVS.
Specifically, the sample programs do the following:
v Display a panel on a remote workstation to notify a user of an expired

APPC/MVS password
v Allow a user to enter a new password
v Send a request to update a password in the MVS security product user profile.

Without the sample programs, APPC/MVS users must access MVS through an
environment such as an LU2 Time Sharing Option Extensions (TSO/E) session to
change a password on a partner LU running APPC/MVS. If the user does not
update the password on both systems, APPC/MVS rejects further Allocate (attach)
requests from the user.

With password maintenance sample programs like those shipped with MVS/ESA,
APPC/MVS users no longer need to be defined to an interactive LU2 host
environment, and may not need an LU2 terminal emulation connection if they
used it only to change their password.

To use the password maintenance sample programs, the RACF component of the
z/OS Security Server or an equivalent security product must be installed. The
sample programs were designed to run on OS/2, but you can tailor them to work
on any operation system.

Note: The sample programs do not update passwords in the workstation's local
security database.

ATBMINO and COMUPASS Sample Programs
To maintain passwords remotely, you may install the ATBMINO and COMUPASS
sample programs on your platform. While these samples are designed to run on an
OS/2 workstation, they can modified to meet the needs of any platform or
installation. For information on how to install the sample programs, see “How to
Install the Sample Programs that Maintain Passwords” on page 198.

The ATBMINO and COMUPASS programs are described below:

ATBMINO
A SNA service transaction program (TP) that does the following:
v Accepts notification of an expired MVS password from a server LU

running APPC/MVS
v Notifies the user of an expired password by displaying a pop-up panel

on the workstation.
v Invokes the COMUPASS sample program, if the user decides to change

an expired password immediately.

The ATBMINO sample program is an implementation of SNA service TP
X'30F0F5F2'.

188 z/OS V2R1.0 MVS Planning: APPC/MVS Management



COMUPASS
A TP that does the following:
v Prompts the user for information needed to change the user's password

in the security product database on APPC/MVS
v Requests that the partner LU change the password in its security

database.

Users can use the COMUPASS program to update an APPC/MVS password at any
time, whether the password has expired or not.

A Typical Scenario - Changing an Expired Password
Figure 96 on page 190 shows a typical scenario in which an expired APPC/MVS
password is updated. In the figure, the ATBMINO sample program is an
implementation of the expired password notification SNA service TP X'30F0F5F2'.

Chapter 10. Setting up Network Security 189



Changing a Password that Has Not Expired
To change an APPC/MVS password that has not yet expired, a user can enter the
COMUPASS command on the command line using the following syntax:
COMUPASS userid plualias mode_name old_password new_password

In the command text:

userid The userid associated with the password to be changed.

Workstation APPC/MVS
┌────────────────┐ ┌────────────────┐
│ │ │ │
│ │──────────────────── FMH-5 ──────────────────────→│ │
│ │ �1� TP A tries to allocate a conversation │ │
│ │ with TP B, specifying a conversation │ �2� │
│ │ security level of SAME or PGM. │ APPC/MVS calls │
│ │ │the MVS security│
│ │ │product to veri-│
│ │ │fy password; it │
│ │←─────────────────── FMH-7 ───────────────────────│ has expired. │
│ │ �3� APPC/MVS does not attach the TP. APPC/MVS │ │
│ │ notifies the requestor LU of the attach failure. │ │
│ │ │ │
│ │←─────────────────── FMH-5 ───────────────────────│ │
│ │ �4� APPC/MVS sends a request to the requestor │ │
│ │ LU to attach the X’30F0F5F2’ program. │ │
│ �5� │ │ │
│Communications │ │ │
│product on │ │ │
│workstation │ │ │
│invokes ATBMINO.│ │ │
│ │ │ │
│ �6� │ │ │
│ATBMINO displays│ │ │
│expired password│ │ │
│ panel on │ │ │
│ workstation. │ │ │
│ │ │ │
│ �7� │ │ │
│ATBMINO invokes │ │ │
│ COMUPASS. │ │ │
│ │ │ │
│ �8� │ │ │
│ User enters a │ │ │
│password change │ │ │
│ request using │──────────────────── FMH-5 ──────────────────────→│ │
│ COMUPASS. │ �9� COMUPASS sends a request to attach │ │
│ │ X’06F3F0F1’ (SIGNON/Change password TP). │ │
│ │─────────────────────────────────────────────────→│ │
│ │ �10� COMUPASS sends a GDS variable containing │ │
│ │ password update information to │ │
│ │ X’06F3F0F1’ (SIGNON/Change password TP). │ │
│ │ │ �11� │
│ │ │ X’06F3F0F1’ │
│ │ │ (SIGNON/Change │
│ │ │password TP) up-│
│ │ │ dates password │
│ │←─────────────────────────────────────────────────│in the security │
│ │ �12� X’06F3F0F1’ returns a GDS variable │ database. │
│ │ to COMUPASS. The GDS variable indicates the │ │
│ �13� │ result of the password change request. │ │
│ COMUPASS dis- │ │ │
│plays the result│ │ │
│of the password │ │ │
│change request. │ │ │
│ │ │ │
│ �14� │ │ │
│The user updates│ │ │
│local password │ │ │
│workstation sec-│ │ │
│urity database. │──────────────────── FMH-5 ──────────────────────→│ │
│ │ �15� The user requests TP A to retry the │ │
│ │ original allocate of TP B. │ │
└────────────────┘ └────────────────┘

Figure 96. Changing an Expired Password

190 z/OS V2R1.0 MVS Planning: APPC/MVS Management



plualias
The partner LU alias for the system on which the password is to be
changed.

mode_name
The transmission service mode name for the partner LU.

old_password
The expired partner LU password.

new_password
The new partner LU password. The maximum length of passwords that
COMUPASS will accept is ten. However, the password length must be
acceptable to the partner LU security product. APPC/MVS limits the
password length to eight characters.

The COMUPASS program prompts the user for parameters that are not supplied
on the command invocation. Because the parameters are positional, if the user
omits a parameter from the command invocation, all parameters that follow the
omitted parameter must also be omitted from the command invocation.

Diagnosing Problems when Using the Password Maintenance
Sample Programs

This section shows you how to diagnose errors that occur when running the
ATBMINO and COMUPASS programs. Users receive error messages from
APPC/MVS in the following forms:
v ATBMINO error panels
v COMUPASS error panels
v COMUPASS user messages.

ATBMINO Error Panels
The ATBMINO program displays the following panels on the OS/2 workstation
when ATBMINO cannot notify the user of an expired password:

This error message indicates that a failure occurred in the conversation with the
partner LU. For descriptions of the primary and secondary return codes, see the

In attempting to notify you of an

expired password on a partner logical

Press ESCAPE (ESC) to remove this

window.

ATBMINO

Failed APPC verb name

Primary return code

Secondary return code

verb name

primary rc

secondary rc

:

:

:

APPC verb which failed.

Contact installation support personnel

with the following information:

unit, program has issued the

Figure 97. APPC Error Notification Panel

Chapter 10. Setting up Network Security 191



communication product's APPC documentation.

This error message indicates that a failure occurred in a call to DOS. For
descriptions of possible DOS error codes, see PC DOS Command Reference and Error
Messages.

COMUPASS Error Panels
The COMUPASS program displays panels on the workstation when an error occurs
during password-change processing. The text following each panel explains and
provides responses for the error condition.

If COMUPASS receives status value 03 from the SIGNON/Change password TP on
the partner LU, it is likely that COMUPASS was incorrectly modified. Contact your
system administrator, who can diagnose the problem using Table 19 on page 187.

In attempting to notify you of an

expired password on a partner logical

Press ESCAPE (ESC) to remove this

window.

ATBMINO

Failed DOS function

DOS error code

function

error code

:

:

call to DOS function which failed.

Contact installation support personnel

with the following information:

unit, program has issued the

Figure 98. DOS Error Notification Panel

03 .

Contact installation support personnel with

the following information:

SIGN-ON SNA service TP status value :

Your password is not changed on partner LU.

Press ’END’ key to end COMUPASS.

192 z/OS V2R1.0 MVS Planning: APPC/MVS Management



COMUPASS receives this SIGN-ON SNA service TP status value when the partner
LU security product is not installed or not active. Contact your system
administrator, who can diagnose the problem using Table 19 on page 187.

COMUPASS receives this SIGN-ON SNA service TP status value when an error
occurred in the MVS security product. In this case, specify a valid userid, or
password, or both. If the error occurs again, contact your system administrator,
who can diagnose the problem using Table 19 on page 187.

05 .

Security function failure on partner LU.

Contact installation support personnel with

the following information:

SIGN-ON SNA service TP status value :

Your password is not changed.

Press ENTER to retry or press ESCAPE (ESC)

to terminate password update.

General security failure on partner LU.

Contact installation support personnel with

the following information:

SIGN-ON SNA service TP status value: 07 .

Your password is not changed.

Press ’END’ key to end COMUPASS.

Chapter 10. Setting up Network Security 193



This panel indicates that the format of the GDS variable, which COMUPASS uses
to pass information about a password change request to the partner LU, was
changed in the COMUPASS program. The format is no longer acceptable to the
MVS security product.

In the panel text:

format_error
The SIGN-ON service TP format error code. For an explanation of the
code, see the communication product's APPC documentation.

Contact the system programmer to change the code in the COMUPASS program so
it passes a GDS variable with the correct format. For the correct GDS variable
format, see Table 13 on page 184.

COMUPASS received an unexpected status value from the SIGN-ON SNA service
TP. Provide that status value to the APPC/z/OS system administrator, who can
diagnose the problem using Table 19 on page 187.

format_error.

Incorrect data format in Generalized Data

Stream (GDS) variable sent to partner LU.

Contact installation support personnel with

the following information:

SIGN-ON SNA service TP format error

code :

Your password is not changed.

Press ’END’ key to end COMUPASS.

xx.

Unrecognized status value is received from

partner LU.

Contact installation support personnel with

the following information:

SIGN-ON SNA service TP status value :

Your password may not be changed.

Press 'END' key to end COMUPASS.

194 z/OS V2R1.0 MVS Planning: APPC/MVS Management



This panel indicates that a failure occurred while setting up, allocating, or sending
data in the conversation with the partner LU. For descriptions of the verbs and
primary and secondary return codes, see the communication product's APPC
documentation.

This panel indicates that a failure occurred while COMUPASS was waiting to
receive data from the partner LU. For descriptions of the verb and primary and
secondary return codes, see the communication product's APPC documentation.

Contact installation support personnel with

the following information:

verb name

alias

primary rc

secondary rc

:

:

:

:

Failed APPC verb name

PLU Alias

Primary return code

Secondary return code

Your password was not changed.

Press ’END’ key to end COMUPASS.

Contact installation support personnel with

the following information:

RECV_AND_WAIT

alias

primary rc

secondary rc

:

:

:

:

Failed APPC verb name

PLU Alias

Primary return code

Secondary return code

Your password may not be changed.

Press ’END’ key to end COMUPASS.

Chapter 10. Setting up Network Security 195



This panel also indicates that a failure occurred while COMUPASS was waiting to
receive data from the partner LU. For descriptions of the verb and primary and
secondary return codes, see the communication product's APPC documentation.

This panel indicates that a failure occurred while COMUPASS was ending its
conversation with the partner LU. For descriptions of the verb and primary and
secondary return codes, see the communication product's APPC documentation.

COMUPASS Messages
The COMUPASS program displays messages on the workstation to indicate the
status of a password change request. Most of the following COMUPASS messages
display information about user errors, but some may require system administrator
intervention.

The following are the COMUPASS messages, listed in alphabetical order:

Enter valid userid for partner LU or
press ESCAPE (ESC) to terminate
password update:

Explanation: One of the following occurred when the
user tried to run COMUPASS:

v The user did not specify a userid.

v The user specified a userid that was not valid.

User response: Enter a valid userid. Press ENTER.

Enter valid partner LU alias or press
ESCAPE (ESC) to terminate password
update:

Explanation: One of the following occurred when the
user tried to run COMUPASS:

v The user did not specify a partner LU alias.

v The user specified a partner LU alias that was not
valid.

User response: Enter a valid partner LU alias. Press
ENTER.

Contact installation support personnel with

the following information:

RECV_AND_WAIT

alias

primary rc

secondary rc

:

:

:

:

Failed APPC verb name

PLU Alias

Primary return code

Secondary return code

Press ’END’ key to end COMUPASS.

Contact installation support personnel with

the following information:

TP_ENDED

alias

primary rc

secondary rc

:

:

:

:

Failed APPC verb name

PLU Alias

Primary return code

Secondary return code

Press 'END' key to end COMUPASS.

196 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Enter valid mode name or press
ESCAPE (ESC) to terminate password
update:

Explanation: One of the following occurred when the
user tried to run COMUPASS:

v The user did not specify a mode name.

v The user specified a mode name that was not valid.

User response: Enter a valid mode name. Press
ENTER.

Enter valid old password for partner LU
or press ESCAPE (ESC) to terminate
password update:

Explanation: One of the following occurred when the
user tried to run COMUPASS:

v The user did not specify an old password.

v The user specified an old password that was not
valid.

User response: Enter a valid old password. Press
ENTER.

Enter valid new password for partner
LU or press ESCAPE (ESC) to terminate
password update:

Explanation: One of the following occurred when the
user tried to run COMUPASS:

v The user did not specify a new password.

v The user specified a new password that was not
valid.

User response: Enter a valid new password. Press
ENTER. When the COMUPASS prompts you with
Enter new password for partner LU again:, enter the
same password again to verify it.

You did not specify the same new
password both times.

Explanation: A new password does not match the
previously entered new password.

User response: Enter a valid new password. Press
ENTER.

The supplied userid for partner LU is
incorrect.

Explanation: When trying to run COMUPASS, the
user specified a userid that is not valid on the partner
LU.

System action: The COMUPASS program prompts the
user to enter a valid userid.

User response: Enter a userid with a character length
that is valid on the partner LU. Press ENTER.

The supplied partner LU alias is
incorrect.

Explanation: When trying to run COMUPASS, the
user specified a partner LU alias that is not valid on
the partner LU.

System action: The COMUPASS program prompts the
user to enter a valid partner LU alias.

User response: Enter a partner LU alias with a
character length that is valid on the partner LU. Press
ENTER.

The supplied mode name is incorrect.

Explanation: When trying to run COMUPASS, the
user specified a mode name that is not valid on the
partner LU.

System action: The COMUPASS program prompts the
user to enter a valid mode name.

User response: Enter a mode name with a character
length that is valid on the partner LU. Press ENTER.

The supplied old password for partner
LU is incorrect.

Explanation: When trying to run COMUPASS, the
user specified an old password that was not valid on
the partner LU.

System action: The COMUPASS program prompts the
user to enter a valid old password.

User response: Enter an old password with a
character length that is valid on the partner LU. Press
ENTER.

The supplied new password for partner
LU is incorrect.

Explanation: When trying to run COMUPASS, the
user specified a new password that is not valid on the
partner LU.

System action: The COMUPASS program prompts the
user to enter a valid new password.

User response: Enter a new password with a character
length that is valid on the partner LU. Press ENTER.

Your password is not changed. Mode
name or partner LU alias is not valid.

Explanation: APPC/MVS rejected one of the
following:

v The mode name.

v The partner LU alias.

System action: The COMUPASS program prompts the
user to enter a valid mode name or partner LU alias.

Chapter 10. Setting up Network Security 197



User response: Enter a valid partner LU alias or mode
name. Press ENTER.

Password change completed on partner
LU LU alias Press 'END' key to end
COMUPASS. NOTE : Please also update
your local security data (APPC
Conversation Security and/or UPM).

Explanation: SIGNON/Change password successfully
completed a password change.

In the message text:

LU alias
The partner LU alias.

User response: Press the END key to end
COMUPASS. Update the local security database with
the new password.

The supplied userid is not valid on
partner LU.

Explanation: The userid is not defined to the MVS
security product.

System action: The COMUPASS program prompts the
user to enter a valid userid for the partner LU.

User response: Enter a valid userid. Press ENTER. If
the error message continues to appear, contact your
system administrator.

Programmer response: Contact the MVS security
administrator to define the user profile to the MVS
security manager.

The supplied old password is not valid
on partner LU.

Explanation: When trying to run COMUPASS, the
user specified an old password that is not valid on the
partner LU.

System action: The COMUPASS program prompts the
user to enter a valid old password.

User response: Enter a valid old password. Press
ENTER.

The supplied new password is not valid
on partner LU.

Explanation: When trying to run COMUPASS, the
user specified a new password that is not acceptable to
the MVS security product.

System action: The COMUPASS program prompts the
user to enter a valid new password.

User response: Enter a valid new password. Press
ENTER.

How to Install the Sample Programs that Maintain Passwords
This chapter describes how to install the ATBMINO and COMUPASS sample
programs.

MVS Data Sets
IBM provides MVS data sets that contain both the source and executable code for
the sample programs. Download the source code for the sample programs if you
wish to modify them to meet the needs of your installation. Download the
executable code for the sample programs if you wish to run the programs without
modifying them.

The source code for the sample programs is contained in the following data set
members:

SYS1.SAMPLIB(ATBMINOS)
SYS1.SAMPLIB(ATBMIPWS)

The executable code for the sample programs is contained in the following data
set members:

SYS1.SAMPLIB(ATBMINO)
SYS1.SAMPLIB(COMUPASS)

198 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Installation Procedure for Source Code
Install the sample programs (source code) using the following procedure:

Task Reference

Compile the programs using the C compiler
with the appropriate include files.

“Compiling the Sample Programs (Source
Code Only)”

Define the ATBMINO program to the APPC
communications product as a remotely
attachable TP.

“Defining the ATBMINO Program to APPC
on the Workstation”

Create a conversation security profile, or
define an entry in the security product, for
the user.

“Defining Conversation Security” on page
200

Installation Procedure for Executable Code
Install the sample programs (executable code) using the following procedure:

Task Reference

Download the executable code from
APPC/MVS.

“Downloading the Sample Programs
(Executable Code)”

Define the ATBMINO program the APPC
communications product as a remotely
attachable TP.

“Defining the ATBMINO Program to APPC
on the Workstation”

Create a conversation security profile, or
define an entry in the security product, for
the user.

“Defining Conversation Security” on page
200

Downloading the Sample Programs (Executable Code)
If you are using OS/2 you can download the executable code for the sample
programs as is, without any modifications. When doing this, ensure that the
COMUPASS program is placed in a directory that is currently defined in the
CONFIG.SYS file on the OS/2 workstation.

Compiling the Sample Programs (Source Code Only)
Because these sample programs were originally written in IBM C/2 for OS/2, you
must modify all of the OS/2-specific invocations so that they run on the particular
platform you are supporting. If you are compiling on OS/2, the sample programs
will probably compile with little or no modifications.

In addition, you will need to make sure that the necessary APPC data structures
that the program accesses are available on your system. See the APPC
programming documentation for the platform you are writing this application on
for further details.

When linking the program, you will probably need to link the appropriate APPC
run-time libraries with the sample programs. See the APPC programming
documentation for the platform you are writing this application on for further
details.

Defining the ATBMINO Program to APPC on the Workstation
This section describes how to define the ATBMINO password expiration
notification program to the workstation. Perform this procedure only if the user
requires password expiration notification.

Chapter 10. Setting up Network Security 199



1. Go to the TP definition section of the APPC communications product you are
using.

2. Specify the TP Profile name as a SNA service TP name of X'30',052. See the
APPC configuration documentation for further details on SNA Service TP
profile names.

3. If the APPC communications product allows you to specify a Sync Level,
specify None.

4. If the APPC communications product allows you to specify a Conversation
Type, specify Basic.

5. If the APPC communications product allows you to specify a Conversation
Security value, specify Yes.

Again, see the APPC configuration documentation for the workstation you are
installing this TP on for more details on defining TPs on

Defining Conversation Security
Most APPC communication products allow you to define a list of userids and
passwords that are valid for incoming allocation requests, or allow you to consult
the security product for the password validation. See the APPC configuration
documentation on your platform for further details.

End of Programming Interface Information

Encrypting Data and Security Information
To ensure the security and integrity of all application information that crosses the
network, your installation can use a product that allows encryption and decryption
of data and security information on the systems on which conversing TPs run. One
such product for use on z/OS systems is the Integrated Cryptographic Service
Facility/MVS (ICSF/MVS). With ICSF/MVS, your installation can either:
v Design conversing TPs to use the high-level language callable service interface of

ICSF/MVS to encrypt data before sending and decrypt data after receiving it
through a conversation. APPC/MVS will send and receive encrypted data and
security information without affecting it.

v Use VTAM to encrypt and decrypt all data that flows across the session, with no
action required by the conversing TPs. For more information about using VTAM
to encrypt and decrypt data, see z/OS Communications Server: SNA Programming.

If you use a program such as ICSF/MVS, you need to have compatible
cryptographic products available on the non-MVS partner systems for the partner
TPs to use. For details on setting up ICSF/MVS on an z/OS system, see z/OS
Cryptographic Services ICSF System Programmer's Guide.

Summary
APPC/MVS and RACF provide a number of security mechanisms to protect
APPC/MVS TPs and the z/OS system in a cooperative processing environment.
The mechanisms that you use depend on the APPC applications you install and
the extent to which you want to protect them.

APPC applications may provide for security by passing security information,
including user IDs and passwords, on allocate requests from the outbound to the
inbound TP. Table 21 on page 201 shows what LU or conversation security
mechanisms you can implement, based on the security information passed.

200 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Table 21. Security Mechanisms Available, based on Application Security Types

Application Security LU Security Mechanisms
Conversation Security
Mechanisms

NONE Supported Not supported

SAME Supported Supported

PGM Supported Supported

You can use the LU security mechanisms for any application, including those that
pass no security information. The LU security mechanisms protect APPC/MVS
logical units, by verifying the authority of other LUs to establish communication
sessions with them, and the level of security needed on any conversation that
crosses the session. You can also ensure that specific LU names are defined to
VTAM by APPC only.

You can use the conversation security mechanisms for applications that pass a user
ID on the allocate request. The conversation security mechanisms provide a
security environment for TPs running on MVS, and they let you control access, by
user ID, to LUs, from LUs, and to TPs and related information.

Finally, for higher security in a cooperative processing environment, you can use a
cryptographic product such as IBM's Integrated Cryptographic Service
Facility/MVS to encrypt and decrypt data and security information that crosses the
network between TPs in an APPC application.

Table 22 summarizes RACF classes and resource names, and how they affect APPC.

Table 22. Summary of RACF Classes and Resource Names

RACF class and profile naming convention Function

In class APPCLU, profiles with the following names:

lnetwork-id.local-lu-name.pnetwork-id.partner-lu-name
lnetwork-id.local-lu-name.partner-lu-name
lnetwork-id.generic-name.pnetwork-id.partner-lu-name
lnetwork-id.generic-name.partner-lu-name

Define LU-LU security.

See “Defining LU-to-LU Access Authority
with RACF APPCLU Profiles” on page 158

In class APPCPORT, profiles with the following names:

luname

Control which LU the user's request can come
from.

See “Controlling User Access from LUs” on
page 167

In class APPCSERV, profiles with the following names:

dbtoken.tpname

Control server access to clients.

See z/OS MVS Programming: Writing Servers
for APPC/MVS.

In class APPCSI, profiles with the following names:

dbtoken.SYS1.symdname

Control the user's access to side information.

See “Controlling User Access to Side
Information” on page 170

In class APPCTP, profiles with the following names:

dbtoken.level.tpname

Control the user's access to TP profiles.

See “Controlling User Access to TPs” on page
171

Chapter 10. Setting up Network Security 201



Table 22. Summary of RACF Classes and Resource Names (continued)

RACF class and profile naming convention Function

In class APPL, profiles with the following names:

luname

or

genericname

Control use of local LUs.

See “Controlling User Access to LUs” on page
165

In class FACILITY, a profile with the following name:

APPCMVS.DBTOKEN

Controls the user's access to database tokens.

See “Controlling Access to Database Tokens”
on page 170

In class FACILITY, profiles with the following names:

APPCMVS.TP.MULTI.generic-userid

Control the user's access to multi-trans TP
profiles.

See “Protecting Multi-Trans TP Profiles” on
page 173

In class FACILITY, profiles with the following names:

ATBTRACE.netid.lu_name.tp_name

Controls the user's ability to collect API trace
data.

See “Controlling Ability to Collect API Trace
Data” on page 174

In class PROGRAM, profiles with the following names:

ATBINMIG

or

ATBSDEPE

or

ATBSDFMU

Protect TP profile data sets and side
information data sets.

See “Giving Program Access to the
APPC/MVS Administration Utility” on page
169

In class VTAMAPPL, profiles with the following names:

acbname

Protect ACBs.

See “Controlling the Use of VTAM ACBs” on
page 163.

202 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Part 5. System management

© Copyright IBM Corp. 1991, 2013 203



204 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Chapter 11. Operating APPC/MVS

MVS system commands, the APPC/MVS administration utility and dialog, and
VTAM commands allow you to display information about, alter, or cancel the
APPC/MVS environment and workload, as described in this section.

Only a few VTAM commands are briefly described here. Because VTAM
commands cause varying degrees of network disruption, make sure you
understand the implications of issuing them. See z/OS Communications Server: SNA
Operation and, if necessary, z/OS Communications Server: SNA Network
Implementation Guide for more information about all VTAM commands and their
effects on a network.

References:
z/OS MVS System Commands

z/OS MVS System Messages, Vol 3 (ASB-BPX)

z/OS MVS System Management Facilities (SMF)

z/OS Communications Server: SNA Network Implementation Guide

z/OS Communications Server: SNA Operation

Starting the APPC and ASCH Address Spaces
IBM supplies procedures in SYS1.PROCLIB that support starting the APPC and
APPC/MVS transaction scheduler (ASCH) address spaces with the START
command. You can modify these procedures to meet your installation's data
processing requirements; for example, you may use names other than APPC and
ASCH for the started procedures or for the jobnames of the APPC and ASCH
address spaces. If you do so, however, remember that you must use these different
procedure names or jobnames, instead of “APPC” or “ASCH”, on subsequent
START and CANCEL commands. Renaming the address spaces might cause
problems if APPC/MVS tries to automatically restart one of its address spaces; see
“Restarting APPC/MVS” on page 206 for more information about restart attempts.

The EXEC statements in the APPC and ASCH procedures shipped in
SYS1.PROCLIB specify REGION=0K. If the installation does not modify the
specified REGION=0K in an installation exit such as IEALIMIT or IEFUSI, the
system gives the job step all the requested storage available below and above 16
megabytes. The resulting size of the region below and above 16 megabytes is
unpredictable.

The IBM-supplied procedures specify REGION=0K because the APPC workload
and configurations that each installation plans to run determine the amount of
private storage that APPC requires. See “Considering APPC/MVS Storage
Requirements” on page 232 for information about APPC/MVS storage usage.

To limit the region size of APPC/MVS, modify the REGION=0K parameter on the
EXEC statement in the APPC and ASCH procedures.

To start the APPC and ASCH address spaces for APPC/MVS, issue the START (S)
command to initialize each address space as follows:

© Copyright IBM Corp. 1991, 2013 205



START APPC,SUB=MSTR,APPC=xx
START ASCH,SUB=MSTR,ASCH=xx

If you renamed the APPC or ASCH started procedures, specify the actual
procedure name, instead of “APPC” or “ASCH” immediately after “START”.

The xx represents the identifier for the parmlib member that contains initializing
parameters. When no identifier is specified, the default for APPC is APPCPM00,
and the default for ASCH is ASCHPM00. IBM does not supply default members
with these names; however, sample APPCPMXX and ASCHPMXX members are in
SYS1.SAMPLIB.

To specify more than one parmlib member after the START command, issue the
commands as follows:

START APPC,SUB=MSTR,APPC=(xx,yy,...)
START ASCH,SUB=MSTR,ASCH=(xx,yy,...)

To start the APPC and ASCH address spaces automatically at IPL, an installation
can add these START commands to the COMMNDxx member of the parmlib
concatenation. The parmlib members used in the commands must be coded before
the IPL.

Restarting APPC/MVS
If APPC/MVS encounters an unrecoverable error when starting either of its two
address spaces, APPC or ASCH, it attempts to restart the address space
automatically. If your installation is using different names for the APPC or ASCH
started procedure, APPC/MVS cannot use that name in its restart attempt; it uses
“APPC” or “ASCH”, which means that:
v The restart attempt fails if you have deleted or renamed the original APPC or

ASCH procedure (instead of using a copy for your modifications), or
v The restart attempt successfully starts the address space, but through a

procedure that you did not want to use. In this case, you may cancel the address
space, and re-enter the START command, specifying the actual procedure name.

If you code a time on the PSTIMER parameter of the LUADD statement, VTAM
keeps LU-to-LU sessions active during interruptions in APPC/MVS service. Even
though APPC/MVS has been deactivated, the VTAM persistent sessions remain
active for the length of time that you specify on the PSTIMER parameter. For an
APPC/MVS LU that handles protected conversations, however, sessions on which
syncpoint operations were in progress do not persist. All other sessions still have
the persistent attribute. In this case, the session is unbound so that outstanding
resynchronization work can proceed when the LU is reactivated.

If APPC/MVS could not restart the APPC address space automatically (indicated
by message ATB006I), or if the address space was stopped by a CANCEL or
FORCE command (message ATB010I or ATB012I, respectively), do the following to
restart the APPC address space:
v Wait for the system to issue message ATB002I indicating that APPC has

completed end processing.
v Enter a START APPC command.

If APPC/MVS could not restart the APPC/MVS transaction scheduler (ASCH)
address space automatically (indicated by message ASB051I), or if the address
space was stopped by a CANCEL or FORCE command (message ASB059I), do the
following to restart the ASCH address space:

206 z/OS V2R1.0 MVS Planning: APPC/MVS Management



v Wait for the system to issue message ATB053I indicating that ASCH has
completed end processing.

v Enter a START ASCH command.

Note that each time you cancel APPC and ASCH, the system marks the address
spaces in which they were running as non-reusable until the next IPL. Therefore,
do not cancel and then restart them unnecessarily.

See “Recovering from APPC problems” on page 227 for more information on
recovery from APPC problems.

Displaying Information about APPC/MVS Work
An operator can display detailed information about APPC/MVS work running in
the system by using the DISPLAY APPC (D APPC) and DISPLAY ASCH (D ASCH)
commands. The information requested appears as ATB1xxI or ASB1xxI messages,
respectively, which are described in z/OS MVS System Messages, Vol 3 (ASB-BPX).
For the syntax of the DISPLAY command, see z/OS MVS System Commands.

The DISPLAY APPC command displays information about the status of TPs,
APPC/MVS servers, and LUs. The DISPLAY ASCH command displays information
about the status of the APPC/MVS transaction scheduler and the work it manages.
Tables in “Tracking Changes to the APPC/MVS Configuration and Workload” on
page 217 summarize the types of information you can display with various
DISPLAY commands.

Dynamically Changing the APPC/MVS Environment
Through the SET command, your installation can add to or modify parmlib
specifications for the APPC and ASCH address spaces, which affect side
information files, and logical unit and scheduling characteristics. Also, through
VTAM commands, you can alter the characteristics of APPC/MVS LUs.

Changing Parmlib Specifications through the SET Command
You can use the SET command to:
v Change APPC address space parameters

SET APPC=xx

v Change APPC/MVS transaction scheduler parameters
SET ASCH=xx

When you want to include more than one parmlib member's specifications,
separate each parmlib indicator with a comma and enclose them in parentheses.

SET APPC=(xx,yy,...) ASCH=(xx,yy,...)

When you use the SET command to change specifications for the APPC and ASCH
address spaces, the parmlib member specified in the SET command does not cancel
a previous parmlib member, but modifies it. When more than one parmlib member
has been specified, the parmlib statements have a cumulative effect; that is, any
one parmlib member might not reflect the current configuration.

For example, two parmlib members APPCPM1A and APPCPM2A contain
parameters to add LUs.

Chapter 11. Operating APPC/MVS 207



If the parmlib member APPCPM1A is initialized on the START command when
APPC is started, it is still in effect when APPCPM2A is initialized later by a SET
command. Neither parmlib member reflects the current APPC configuration,
because the configuration is a combination of the two parmlib members.

For more information about modifying the system environment with parmlib
members, see:
v “Stopping One or More LUs with the SET or VARY Command” on page 211,
v “Examples Using APPCPMxx Parmlib Members” on page 144,
v “Examples ssing ASCHPMxx Parmlib members” on page 60, and
v “Tracking Changes to the APPC/MVS Configuration and Workload” on page

217.

Changing LU Characteristics through VTAM Commands
You can use VTAM commands to change the status of network resources. The
MODIFY CNOS command, for example, changes the session limits between an
APPC/MVS LU and its partner LU. If you decrease the session limits between
LUs, you might impact the performance of transaction programs that use those
LUs.

See z/OS Communications Server: SNA Operation for more information about
MODIFY CNOS and other VTAM commands.

Stopping APPC/MVS Work
You can stop APPC/MVS work directly or indirectly in a variety of ways, which
include:
v Deactivating a TP through its TP profile
v Stopping an initiator address space with the STOP command
v Stopping a class of transaction programs with the SET command
v Stopping an LU with the SET or VARY command
v Stopping a TP or APPC/MVS address space with the CANCEL command
v Stopping VTAM with the HALT command

LUADD
ACBNAME(LU1)
SCHED(ASCH)
BASE
TPDATA(SYS1.APPCTP)
TPLEVEL(SYSTEM)

Figure 99. APPCPM1A

LUADD
ACBNAME(LU2)
SCHED(ASCH)
TPDATA(SYS1.TESTTP)
TPLEVEL(USER)

Figure 100. APPCPM2A

208 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Some methods gradually stop (quiesce) the work, while others immediately stop
the work. Depending on the circumstances, you might want to use several
methods in sequence, to ensure work is stopped as cleanly or quickly as possible.

Table 24 on page 215 summarizes the methods of stopping APPC/MVS work.

Deactivating a Transaction Program through its TP Profile
You can control the running of a transaction program from its TP profile. To
prevent a transaction program from being scheduled or to stop new requests for a
TP, run the APPC administration utility with the TPMODIFY command to change
the active status of the TP to NO. You can also modify a TP profile by using the
APPC administration dialog.

Active status is controlled by the ACTIVE keyword in the TP profile; its value can
be either YES or NO. The following example shows the TPMODIFY utility
command that deactivates a TP named MAIL.

If the TP is running when you change its active status from YES to NO, the TP
instance that is running is allowed to complete, and all queued requests are also
allowed to complete. No new requests for the TP, however, are allowed.

For information about the APPC administration utility, see Chapter 6, “Using the
APPC/MVS Administration Utility,” on page 85.

Stopping an Initiator Address Space with the STOP Command
The STOP command stops an APPC/MVS transaction initiator through its address
space name (ASCHINT) and address space identifier. All initiators for the
APPC/MVS transaction scheduler use the name ASCHINT.

STOP ASCHINT,A=asid

To find out the address space identifier of the TP's transaction initiator, issue the
DISPLAY command as follows. This example assumes the local TP name is MAIL.

DISPLAY APPC,TP,LIST,LTPN=MAIL

This command results in output that might look like the following:

...
//STEP EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=A
//SYSSDLIB DD DSN=SYS1.APPCTP,DISP=SHR
//SYSSDOUT DD SYSOUT=*
//SYSIN DD DATA

TPMODIFY
TPNAME(MAIL)
SYSTEM
ACTIVE(NO)

/*

Figure 101. Example of Deactivating a TP

Chapter 11. Operating APPC/MVS 209



To make sure the TP is actually running in a transaction initiator and is not
queued, check the ASNAME keyword. If the value is ASCH, the TP is queued. If
the TP is not queued, note the address space identifier value following the ASID
keyword. Use this value in the STOP command, as follows:

STOP ASCHINT,A=0039

Note:

1. If there is a problem within the TP, you might need to cancel the TP by issuing
a CANCEL command. For information about the CANCEL command, see
“Stopping a TP or APPC/MVS Address Space with the CANCEL Command”
on page 213.

2. Another initiator might be created for the next TP request depending on the
MIN/MAX ratio.

3. To end both the initiator and the TP, issue a STOP command and a CANCEL
command. For information about the CANCEL command, see “Stopping a TP
or APPC/MVS Address Space with the CANCEL Command” on page 213.

Stopping a Class of Transaction Programs with the SET
Command

A way to stop a class of transaction programs is to issue a SET command
specifying an ASCHPMxx parmlib member that deletes the class definition.

When you delete a class, APPC/MVS:
v Rejects new inbound and outbound Allocate requests for TPs in the class
v Either quiesces or immediately stops existing work:

– When the CLASSDEL statement does not contain the WORKQ keyword, or
contains WORKQ=DRAIN, the work is quiesced. That is, the TP currently
running and all TPs on the work queue for the class are allowed to complete
their processing before APPC/MVS deletes the class.

– When CLASSDEL contains WORKQ=PURGE, all TPs on the work queue are
rejected; only the currently running TP is allowed to complete its processing.

For example, to delete a class named TEST and drain its work queue, create a
parmlib member ASCHPM4D with the following information:

To activate the parmlib member and delete the class, issue the following SET
command:

SET ASCH=4D

ATB122I 09.22.15 APPC DISPLAY 206
LOCAL TP’S INBOUND CONVERSATIONS OUTBOUND CONVERSATIONS

00023 00020 00003
LTPN=MAIL

LLUN=MVSLU02 WUID=A0000067 CONVERSATIONS=00001 ASID=0039
SCHED=ASCH ASNAME=MAIL TPID=06B4529800000012

Figure 102. Sample DISPLAY Output

CLASSDEL
CLASSNAME(TEST)

Figure 103. ASCHPM4D

210 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Stopping One or More LUs with the SET or VARY Command
You can stop an LU, and the work associated with it, by issuing the SET command
to specify an APPCPMxx parmlib member that contains an LUDEL statement, or
by issuing VTAM's VARY command. You might want to stop an LU in the
following situations:
v The LU is not functioning properly (for example, because of a VTAM error).
v You wish to move a particular LU to another system in the sysplex for workload

balancing, to perform maintenance on a system without a disruption in service,
or for other availability reasons.

v Your installation has designated a certain TP_Profile file to be used by one or
more LUs, and you want to stop the TPs defined in that data set.

v You want to stop a particular scheduler.

Issuing the SET command quiesces the APPC work for the LU; issuing the VARY
command immediately stops the work.

Using the SET Command to Quiesce Work
To use this method of stopping APPC work, issue the SET command to specify an
APPCPMxx parmlib member that contains one LUDEL statement for each LU to be
deleted. For example, if you wanted to delete an LU named MYLU, you would
first code a parmlib member such as APPCPM1D in the following example.

After coding the parmlib member, issue the following SET command.
SET APPC=1D

After you activate the parmlib member through the SET command, APPC/MVS:
v Rejects any new conversations (that is, inbound or outbound Allocate requests)

to or from the LU specified in the LUDEL statement.
v Allows each existing conversation to continue without interruption. Existing

conversations are those for which — at the very least — one LU has successfully
sent and its partner LU has successfully received the Allocate request.

v Issues message ATB051I to hardcopy, to indicate that the LU has been deleted
from the configuration.

v Deletes the LU's association with a VTAM generic resource name, if any.
v Closes the ACB for the LU, as soon as existing conversations have ended. If the

LU handles protected conversations, APPC/MVS defers resynchronization
processing for incomplete units of recovery, if any.

By adding the PERSIST keyword on the LUDEL statement for a LU, APPC/MVS
will not deactivate any persistent sessions between the LU and its partners. This
will allow you to add this LU back into the configuration later, yet not lose any of
the sessions that were active at the time of the LUDEL. This assumes that the LU is
added back before the persistent sessions time limit expires that was specified on
the PSTIMER keyword on the LUADD statement.

At this point, you may restart the LU by issuing a SET command that specifies an
LUADD statement for this LU.

LUDEL
ACBNAME(MYLU)

Figure 104. APPCPM1D

Chapter 11. Operating APPC/MVS 211



Note:

If the PERSIST keyword was specified on the previous LUDEL, you must start the
LU with the same NQN capability as the original LUADD for this LU. Failure to
do so could cause the LU to not become active and an ATB052E error message
with a Reason Code of X'78'.

You may choose to re-add this LU to another image in your sysplex, as long as
you have the equivalent VTAM definitions and connectivity, and access to an
equivalent TP Profile data set and scheduler.

If you have configured your sysplex to support Multi-Node Persistent Sessions
(MNPS), you can add this LU on a different image in the sysplex AND still keep
all previous sessions the LU had prior to issuing the LUDEL with the PERSIST
keyword.

Because LUDEL processing quiesces work, rather than stopping it immediately,
APPC/MVS might not close the ACB for the LU as quickly as you want. To avoid
delays, you may eliminate queued work or stop running work before issuing the
SET command to process an LUDEL statement. For example, you may stop a class
of TPs as described in “Stopping a Class of Transaction Programs with the SET
Command” on page 210.

If LUDEL processing has already started, but is proceeding too slowly, you can
issue VTAM's VARY TERM command to accelerate the process by terminating one
or more sessions for the LU.

Using the VARY Command to Stop Work Immediately
VTAM's VARY TERM and VARY INACT commands allow you to shut down an
LU and its work almost immediately. For APPC/MVS LUs, IBM recommends that
you use these commands in sequence:
1. Issue VARY TERM to terminate all sessions for a specified APPC/MVS LU.

When you issue VARY TERM, all TPs involved in existing conversations that
are processed through VTAM receive control.
This interruption prevents TPs from hanging, if they are waiting for an
outstanding APPC/MVS or CPI-C call (for example, a TP might be waiting for
its partner TP's response to a Confirm call).

2. Issue VARY INACT without the TYPE parameter to deactivate the specified
APPC/MVS LU. When you issue VARY INACT:
v Either VTAM or APPC/MVS rejects new conversations for the LU
v APPC/MVS issues message ATB051I to hardcopy, to indicate that the LU has

been deleted from the configuration.
v APPC/MVS immediately closes the ACB for the LU. If the LU handles

protected conversations:
– Units of recovery for those conversations are put into backout-required

state;
– APPC/MVS defers resynchronization processing for incomplete units of

recovery, if any; and
– APPC/MVS unregisters the LU with RRS.

At this point, you may reactivate the LU, so it can begin to process new
conversations. Once the LU re-registers with RRS, the LU can resume
resynchronization processing for incomplete units of recovery, if any.

212 z/OS V2R1.0 MVS Planning: APPC/MVS Management



If you issue VARY INACT without VARY TERM, or issue VARY INACT with the
TYPE operand, work is stopped quickly, but not as cleanly. If any TPs are waiting
for an outstanding APPC/MVS or CPI-C call, they might hang indefinitely. For
VARY INACT with TYPE=IMMED or TYPE=UNCOND, APPC/MVS cannot return
control to such TPs, so you risk more than hanging some work; data loss and
resource contention are only some of the possible consequences. Use VARY TERM
and VARY INACT in sequence, to make sure you stop work quickly but cleanly.

For VARY command syntax, see z/OS Communications Server: SNA Operation.

Stopping a TP or APPC/MVS Address Space with the CANCEL
Command

The CANCEL (C) command immediately stops either:
v A single instance of a TP
v The APPC or ASCH address space.

If you cannot cancel an APPC TP and it is imperative that you stop it, you can
issue the FORCE command. Before issuing FORCE, refer to z/OS MVS System
Commands for a list of restrictions concerning this command.

Stopping a Single Instance of a TP
To immediately stop a particular TP running in a particular address space, you
must know the jobname for the TP and its address space identifier (ASID). If you
know the TP name (for example, MAIL) and the user ID that invoked it (for
example, JOHN), you can issue one of the following DISPLAY commands to find
out the jobname and the ASID.

DISPLAY ASCH,ALL,LTPN=MAIL

DISPLAY ASCH,ALL,USERID=JOHN

These DISPLAY commands produce output like the following:

To immediately stop the TP that is processing John's mail, use these values in the
CANCEL command:

CANCEL D12MAIL,A=0044

Stopping the APPC and ASCH Address Spaces
Because the APPC and ASCH address spaces are started by cataloged procedures
specified on a START command, you can immediately stop them with the
CANCEL command, as follows:

ASB101I 08.21.45 ASCH DISPLAY 209
CLASSES ACTIVE TRANS QUEUED TRANS IDLE INITS TOTAL INITS
00001 00001 00004 00000 00001
REGION TIME MSGLEVEL OUTCLASS SUBSYS
0002M 0001,30 1,0 J JES2
CLASS=A STATUS=ACTIVE ACTIVE TRANS=00001 MIN=00001

RESPGOAL=1.000000 QUEUED TRANS=00004 MAX=00001
DEFAULT=NO IDLE INITS=00000

LTPN=MAIL
STATUS=ACTIVE WUID=A0000007 ASID=0044
TPST=MULTITRANS USERID=JOHN QT=*NONE*
JOBNAME=D12MAIL

Figure 105. Sample DISPLAY Output

Chapter 11. Operating APPC/MVS 213



CANCEL APPC

CANCEL ASCH

If your installation is using different jobnames for the APPC and ASCH address
spaces, specify the actual jobname on the CANCEL command.

Note:

1. Cancelling the ASCH address space immediately ends all running or queued
TPs scheduled through the APPC/MVS transaction scheduler. Outbound
Allocate requests from address spaces not associated with ASCH can be
processed only if a NOSCHED system base LU exists.

2. Cancelling the APPC address space immediately ends all APPC/MVS TPs,
schedulers, servers, and LUs, which can have drastic results.

3. Each time you cancel APPC and ASCH, the system marks the address spaces in
which they were running as non-reusable until the next IPL. Therefore, do not
cancel and then restart them unnecessarily.

Stopping VTAM with the HALT Command
Although other methods of stopping APPC/MVS work also might affect partner
systems, VTAM's HALT command affects the entire network, which is much more
disruptive. Do not issue a HALT command when your sole objective is to stop
APPC/MVS work. z/OS Communications Server: SNA Network Implementation Guide
describes the circumstances under which you may issue a HALT command; read
the sections on halting and cancelling VTAM to make sure you thoroughly
understand the implications of using HALT.

Unlike other methods of stopping work, a HALT command affects all of the
APPC/MVS LUs that are defined to VTAM, not just selected LUs. Table 23
describes how each type of HALT command affects APPC/MVS work.

Table 23. VTAM's HALT Command and Its Effect on APPC/MVS Work

When you
issue: This is what happens to APPC/MVS work:

HALT v APPC/MVS closes the LU's ACB immediately.

v New conversations are rejected.

v All TPs involved in existing conversations that are processed through
VTAM receive control; this interruption prevents TPs from hanging, if
they are waiting for an outstanding APPC/MVS or CPI-C call.

v If the LU handles protected conversations:

– Units of recovery for those conversations are put into
backout-required state;

– APPC/MVS defers resynchronization processing for incomplete units
of recovery, if any; and

– APPC/MVS unregisters the LU with RRS.

Issuing HALT allows you to cleanly end existing work, and to restart the
LU as soon as you have restarted VTAM. Once the LU re-registers with
RRS, it can resume resynchronization processing for incomplete units of
recovery, if any.

214 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Table 23. VTAM's HALT Command and Its Effect on APPC/MVS Work (continued)

When you
issue: This is what happens to APPC/MVS work:

HALT QUICK v APPC/MVS closes the LU's ACB immediately.

v New conversations are rejected.

v Existing conversations that are processed through VTAM fail when a TP
issues the next APPC/MVS or CPI-C service call that requires
APPC/MVS and VTAM interaction. If any TPs are waiting for an
outstanding APPC/MVS or CPI-C call to complete processing, they
might not have control returned to them. Such TPs might hang
indefinitely.

v If the LU handles protected conversations:

– Units of recovery for those conversations are put into
backout-required state;

– APPC/MVS defers resynchronization processing for incomplete units
of recovery, if any; and

– APPC/MVS unregisters the LU with RRS.

Issuing HALT QUICK is similar to issuing VARY INACT with the TYPE
parameter: it accelerates the process of closing the LU, but might not allow
conversations to end cleanly. Thus, you benefit from the quickness of close
processing — you can restart LUs immediately after you bring up VTAM
again. The possible risk is indefinitely hanging existing APPC/MVS work.

HALT
CANCEL

v APPC/MVS closes the LU's ACB immediately.

v New conversations are rejected.

v Existing conversations that are processed through VTAM fail when a TP
issues the next APPC/MVS or CPI-C service call that requires
APPC/MVS and VTAM interaction. If any TPs are waiting for an
outstanding APPC/MVS or CPI-C call, they cannot have control
returned to them.

v If the LU handles protected conversations:

– Units of recovery for those conversations are put into
backout-required state;

– APPC/MVS defers resynchronization processing for incomplete units
of recovery, if any; and

– APPC/MVS unregisters the LU with RRS.

Issuing HALT CANCEL is similar to HALT QUICK in that you may
restart APPC/MVS LUs immediately after bringing up VTAM again.
However, for HALT CANCEL, APPC/MVS is unable to end its work
cleanly, so you risk more than hanging some existing work. Because TPs
do not receive control again, data loss and resource contention are some of
the possible consequences of stopping VTAM this abruptly.

Summary of Methods of Stopping APPC/MVS Work
Table 24. Stopping APPC/MVS Work

When you want to:
Use one of the
following: Which affects: By:

Prevent a
transaction program
(TP) from running

APPC/MVS utility
or dialog to
deactivate a TP
through its profile

All new conversations for one
specific TP

Rejecting inbound Allocate requests for
the TP

Chapter 11. Operating APPC/MVS 215



Table 24. Stopping APPC/MVS Work (continued)

When you want to:
Use one of the
following: Which affects: By:

Stop a currently
running TP

CANCEL command The currently running
instance of a TP, and its
partner TPs

Abnormally ending the TP

STOP command Same as for CANCEL Abnormally ending the initiator address
space in which the TP is running

Stop a class of TPs SET ASCH
command, with
ASCHPMxx that
contains CLASSDEL
with
WORKQ=DRAIN

All TPs defined to a specific
class

Quiescing running or queued TPs, and
deleting the class after the running and
queued TPs have ended

SET ASCH
command, with
ASCHPMxx that
contains CLASSDEL
with
WORKQ=PURGE

Same as for CLASSDEL with
WORKQ=DRAIN

Rejecting all queued TPs, allowing only
the currently running TP to finish its
processing, and deleting the class after
the one TP has ended

Stop a logical unit
(LU)

SET APPC
command, with
APPCPMxx that
contains LUDEL

All inbound or outbound
conversations for the LU

Rejecting new conversations, but
allowing active or queued (that is,
existing) conversations to continue
processing without interruption

VARY TERM
command, followed
by VARY INACT
command

All inbound or outbound
conversations for the LU

Rejecting new conversations and
interrupting all TPs involved in existing
conversations that are processed
through VTAM

VARY INACT
command, with the
TYPE operand

Same as for VARY TERM with
VARY INACT

Rejecting new conversations, and failing
existing conversations on the next
APPC/MVS or CPI-C service that
requires APPC/MVS and VTAM
interaction. Not recommended, because
TPs waiting for an outstanding call to
complete might hang indefinitely. IBM
recommends that you issue the VARY
TERM command before issuing VARY
INACT to avoid hanging TPs.

Stop the ASCH
address space

CANCEL ASCH
command

All conversations for TPs
scheduled through the
APPC/MVS scheduler

Immediately ending all running or
queued TPs scheduled through the
APPC/MVS transaction scheduler.
Outbound Allocate requests from
address spaces not associated with
ASCH can be processed only if a
NOSCHED system base LU exists.

Stop the APPC
address space

CANCEL APPC
command

All APPC/MVS work on this
MVS system

Immediately ending all APPC/MVS
TPs, schedulers, servers, and LUs

216 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Table 24. Stopping APPC/MVS Work (continued)

When you want to:
Use one of the
following: Which affects: By:

Stop VTAM HALT command All TPs, regardless of the
operating system on which
they reside, that require
VTAM services to
communicate

Rejecting new conversations and
interrupting all TPs involved in existing
conversations that are processed
through VTAM

HALT QUICK
command

Same as for HALT Rejecting new conversations and failing
existing conversations that are processed
through VTAM on the next APPC/MVS
or CPI-C service that requires
APPC/MVS and VTAM interaction. If
any TPs are waiting for an outstanding
APPC/MVS or CPI-C call, they might
hang.

HALT CANCEL
command

Same as for HALT Same as for HALT QUICK, except that
TPs waiting for outstanding calls do not
receive control again.

Tracking Changes to the APPC/MVS Configuration and Workload
During APPC/MVS initialization and processing, the system issues ASBxxx and
ATBxxx messages to the master console, or a console with master authority. These
messages primarily report only errors, or status changes that might require
operator intervention. Messages that report successful processing generally are
routed to hardcopy, thus reducing message traffic on the console. z/OS MVS System
Messages, Vol 3 (ASB-BPX) describes the ASBxxx and ATBxxx messages.

This message design, along with the cumulative effects of parmlib members and
possible command processing delays, might require you to rely on the DISPLAY
command to obtain current, detailed information about the APPC/MVS
configuration and workload. To tailor information to your specific needs, enter the
DISPLAY APPC and DISPLAY ASCH commands, as shown in summary tables
beginning with “Displaying TP Status,” with operands that filter the information
returned to the console. The underlined keywords are defaults; you can omit them
when you issue the command.

To monitor SET command changes to APPC/MVS parmlib members, you can also
review the contents of SMF type 90 records. Every time a SET command is issued,
SMF records the parmlib information associated with the SET. The SMF type 90
record is useful for tracking changes to the APPC configuration. z/OS MVS System
Management Facilities (SMF) describes the format and contents of type 90 records.

Displaying TP Status
Table 25. Displaying TP Status

To Display Issue Command

Number of local TPs and number of inbound and
outbound conversations

DISPLAY APPC,TP,SUMMARY

Number of local TPs, number of inbound and outbound
conversations, and specific information about each local
TP

DISPLAY APPC,TP,LIST

Chapter 11. Operating APPC/MVS 217



Table 25. Displaying TP Status (continued)

To Display Issue Command

Number of local TPs, number of inbound and outbound
conversations, specific information about each local TP,
and specific information about each partner TP and its
local conversation.

DISPLAY APPC,TP,ALL

Local TP in a particular address space DISPLAY APPC,TP,[LIST|ALL], ASID=asid

Inbound or outbound conversations DISPLAY APPC,TP,[LIST|ALL], DIR=[IN|OUT]

Conversations with idle time equal to or greater than a
time specified in seconds

DISPLAY APPC,TP,[LIST|ALL], IT=sssss

Conversations using a particular local LU DISPLAY APPC,TP,[LIST|ALL], LLUN=lluname

Information about a particular local TP DISPLAY APPC,TP,[LIST|ALL], LTPN=ltpname

TPs running because of an allocate request from a
particular user ID.

DISPLAY APPC,TP,[LIST|ALL], USERID=userid

Conversations using a particular partner LU that resides
on a particular network

DISPLAY APPC,TP,[LIST|ALL], PNET=pnetid,
PLUN=pluname

Information about a particular partner TP DISPLAY APPC,TP,[LIST|ALL], PTPN=ptpname

TPs scheduled by a particular transaction scheduler DISPLAY APPC,TP,[LIST|ALL], SCHED=schedname

TPs not associated with a particular transaction
scheduler

DISPLAY APPC,TP,[LIST|ALL], SCHED=*NONE*

Information about a particular served TP DISPLAY APPC,TP,[LIST|ALL], STPN=stpname

Information about a particular non-served TP DISPLAY APPC,TP,[LIST|ALL], LTPN=ltpname

Displaying UR Status
Table 26. Displaying UR Status

To Display Issue Command

Number of URs related to protected conversations
between APPC/MVS TPs and their partner TPs

DISPLAY APPC,UR,SUMMARY

Number of URs related to protected conversations
between APPC/MVS TPs and their partner TPs, followed
by one list of information for each unit of recovery,
represented by a UR identifier (URID)

DISPLAY APPC,UR,LIST

Number of URs related to protected conversations
between APPC/MVS TPs and their partner TPs, followed
by one list of information for each unit of recovery,
which includes another list of information about each
APPC/MVS expression of recoverable interest for that
UR

DISPLAY APPC,UR,ALL

Information about URs represented by a URID. DISPLAY APPC,UR,[LIST|ALL], URID=urid

Information about a particular UR, represented by a
logical unit of work identifier (LUWID)

DISPLAY APPC,UR,[LIST|ALL], LUWID=luwid

Number of URs related to protected conversations
between APPC/MVS TPs and their partner TPs, for a
particular partner LU that resides on a particular
network

DISPLAY APPC,UR,[LIST|ALL], PNET=pnetid,
PLUN=pluname

Number of URs related to protected conversations
between APPC/MVS TPs and their partner TPs, for a
particular local LU

DISPLAY APPC,UR,[LIST|ALL], LLUN=lluname

218 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Displaying Server Status
Table 27. Displaying Server Status

To Display Issue Command

Number of servers, number of allocate queues, and total
number of queued allocate requests in the system.

DISPLAY APPC,SERVER,SUMMARY

Number of servers, number of allocate queues, total
number of queued allocate requests in the system, and
specific information about each allocate queue.

DISPLAY APPC,SERVER,LIST

Number of servers, number of allocate queues, total
number of queued allocate requests in the system,
specific information about each allocate queue, and
specific information about server.

DISPLAY APPC,SERVER,ALL

Information about a server with a given address space
identifier, or ASID.

DISPLAY APPC,SERVER,[LIST|ALL], ASID=asid

Information about a server with a given address space
name, or ASNAME.

DISPLAY APPC,SERVER,[LIST|ALL], ASNAME=asname

Allocate queues serving and servers registered for a
particular local LU.

DISPLAY APPC,SERVER,[LIST|ALL], LLUN=lluname

Allocate queues serving and servers registered for a
particular TP name.

DISPLAY APPC,SERVER,[LIST|ALL], STPN=stpname

Displaying LU Status
Table 28. Displaying LU Status

To Display Issue Command

Number of active, outbound, pending, and terminating
LUs, and the side information file name

DISPLAY APPC,LU,SUMMARY

Number of active, outbound, pending, and terminating
LUs, the side information file name, and specific
information about local LUs

DISPLAY APPC,LU,LIST

Number of active, outbound, pending, and terminating
LUs; the side information file name; specific information
about local LUs; and partner LU names

DISPLAY APPC,LU,ALL

Information about a particular local LU DISPLAY APPC,LU,[LIST|ALL], LLUN=lluname

Information about local LUs for which session limits
have been established with a particular partner LU that
resides on a particular network

DISPLAY APPC,LU,[LIST|ALL], PNET=pnetid,
PLUN=pluname

LUs controlled by a particular transaction scheduler DISPLAY APPC,LU,[LIST|ALL], SCHED=schedname

LUs that are not associated with a particular transaction
scheduler.

DISPLAY APPC,LU,[LIST|ALL], SCHED=*NONE*

Displaying Scheduling Status
Table 29. Displaying Scheduling Status

To Display Issue Command

Number of classes, active and queued transactions, idle
and total initiators; and default scheduling information
specified in an ASCHPMxx parmlib member

DISPLAY ASCH,SUMMARY

Chapter 11. Operating APPC/MVS 219



Table 29. Displaying Scheduling Status (continued)

To Display Issue Command

In addition to the information displayed when you use
the SUMMARY keyword, this displays specific
information about each class

DISPLAY ASCH,LIST

In addition to the information displayed when you use
the LIST keyword, this displays specific information
about each active and queued TP in each class

DISPLAY ASCH,ALL

Scheduling information about a local TP in a particular
address space

DISPLAY ASCH,[LIST|ALL], ASID=asid

Scheduling information about a particular class DISPLAY ASCH,[LIST|ALL], CLASS=classname

Scheduling information about local TPs with a queue
time equal to or greater than a time specified in seconds

DISPLAY ASCH,[LIST|ALL], QT=sssss

Scheduling information about local TPs running due to
an allocate request from a particular user ID

DISPLAY ASCH,[LIST|ALL], USERID=userid

Scheduling information about local TPs with a schedule
type of standard or multi-trans

DISPLAY ASCH,[LIST|ALL],
TPST=[STANDARD|MULTITRANS]

Examples Using the DISPLAY Command
The following examples illustrate the results of DISPLAY APPC commands with
various keywords and filters.

DISPLAY APPC,LU

To show the current configuration of APPC/MVS LUs, enter the following
command on one system:

D APPC,LU,ALL

This command produces output like the following:

220 z/OS V2R1.0 MVS Planning: APPC/MVS Management



According to the output:
v The last two LUs are capable of handling protected conversations, as illustrated

by the display field SYNCPT=YES. These LUs are registered with RRS as
resource managers, with the resource manager names shown in the RMNAME
field. You can use these RMNAME values on the RRS ISPF panel interface when
you want to:
– Obtain the resource manager token and state.
– Obtain a list of units of recovery (URs) for the resource manager. (An

alternative method of obtaining UR information is using the DISPLAY
APPC,UR command with LLUN as a filter keyword.)

– Remove a resource manager's expression of interest in a UR.
v Two LUs, the first and fourth, are members of the same VTAM generic resource

group named MVSLU1.

ATB121I 15.55.45 APPC DISPLAY FRAME 1 F E SYS=SY1
ACTIVE LU’S OUTBOUND LU’S PENDING LU’S TERMINATING LU’S

00008 00000 00000 00000
SIDEINFO=SYS1.APPCSI

LLUN=Z098AP01 SCHED=ASCH BASE=NO NQN=YES
STATUS=ACTIVE PARTNERS=00001 TPLEVEL=SYSTEM SYNCPT=NO
GRNAME=MVSLU1 RMNAME=*NONE*
TPDATA=SYS1.APPCTP

PLUN=USIBMY0.MVSLU1
LLUN=Z098AP02 SCHED=ASCH BASE=NO NQN=YES

STATUS=ACTIVE PARTNERS=00000 TPLEVEL=SYSTEM SYNCPT=NO
GRNAME=*NONE* RMNAME=*NONE*
TPDATA=SYS1.APPCTP

LLUN=Z096AP02 SCHED=*NONE* BASE=NO NQN=YES
STATUS=ACTIVE PARTNERS=00001 TPLEVEL=SYSTEM SYNCPT=NO
GRNAME=*NONE* RMNAME=*NONE*
TPDATA=SYS1.APPCTP

PLUN=USIBMZ0.MVSLU4
LLUN=Z096AP03 SCHED=ASCH BASE=YES NQN=YES

STATUS=ACTIVE PARTNERS=00003 TPLEVEL=SYSTEM SYNCPT=NO
GRNAME=MVSLU1 RMNAME=*NONE*
TPDATA=SYS1.APPCTP

PLUN=USIBMY0.MVSLU
PLUN=USIBMZ0.MVSLU
PLUN=USIBMZ0.MVSLU4
LLUN=Z098AP04 SCHED=ASCH BASE=NO NQN=YES

STATUS=ACTIVE PARTNERS=00000 TPLEVEL=SYSTEM SYNCPT=NO
GRNAME=*NONE* RMNAME=*NONE*
TPDATA=SYS1.APPCTP

LLUN=Z096AP04 SCHED=ASCH BASE=NO NQN=YES
STATUS=ACTIVE PARTNERS=00001 TPLEVEL=SYSTEM SYNCPT=NO
GRNAME=MVSLU RMNAME=*NONE*
TPDATA=SYS1.APPCTP

PLUN=USIBMY0.MVSLU1
LLUN=Z0A4AP03 SCHED=ASCH BASE=NO NQN=YES

STATUS=ACTIVE PARTNERS=00001 TPLEVEL=SYSTEM SYNCPT=YES
GRNAME=*NONE* RMNAME=ATB.USIBMY0.Z0A4AP03.IBM
TPDATA=SYS1.APPCTP

PLUN=USIBMY0.Z0A4AP04
LLUN=Z0A4AP04 SCHED=ASCH BASE=NO NQN=YES

STATUS=ACTIVE PARTNERS=00002 TPLEVEL=SYSTEM SYNCPT=YES
GRNAME=*NONE* RMNAME=ATB.USIBMY0.Z0A4AP04.IBM
TPDATA=SYS1.APPCTP

PLUN=USIBMX0.Z0B4AP01
PLUN=USIBMX0.Z0B4AP04

Figure 106. Sample DISPLAY Output for System SY1 on Network USIBMY0

Chapter 11. Operating APPC/MVS 221



v The fourth LU, Z096AP03, has partners that are also members of different
generic resource groups. As shown by their network-qualified names, some of
those partners reside on another system, USIBMZ0.

To display information about the partners on the USIBMZ0 system, issue the same
command on USIBMZ0:

D APPC,LU,ALL

This command produces output like the following:

According to this output, LUs on the two systems share the same TP profile and
side information data sets. Some restrictions apply to sharing these data sets
among systems; see “Restrictions on Invoking the APPC/MVS Administration
Utility” on page 93 in Chapter 6, “Using the APPC/MVS Administration Utility,”
on page 85 for further details.

DISPLAY APPC,TP

To investigate existing APPC/MVS work, you can issue the DISPLAY APPC
command to see all TPs currently executing or awaiting execution.

DISPLAY APPC,TP,ALL

This command produces output like the following:

ATB121I 15.48.39 APPC DISPLAY FRAME 1 F E SYS=SY2
ACTIVE LU’S OUTBOUND LU’S PENDING LU’S TERMINATING LU’S

00003 00000 00000 00000
SIDEINFO=SYS1.APPCSI

LLUN=Z098AP01 SCHED=ASCH BASE=NO NQN=YES
STATUS=ACTIVE PARTNERS=00000 TPLEVEL=SYSTEM SYNCPT=NO
GRNAME=*NONE* RMNAME=*NONE*
TPDATA=SYS1.APPCTP

LLUN=Z098AP02 SCHED=ASCH BASE=YES NQN=NO
STATUS=ACTIVE PARTNERS=00001 TPLEVEL=SYSTEM SYNCPT=NO
GRNAME=MVSLU RMNAME=*NONE*
TPDATA=SYS1.APPCTP

PLUN=USIBMY0.MVSLU1
LLUN=Z098AP04 SCHED=ASCH BASE=NO NQN=NO

STATUS=ACTIVE PARTNERS=00002 TPLEVEL=SYSTEM SYNCPT=NO
GRNAME=MVSLU4 RMNAME=*NONE*
TPDATA=SYS1.APPCTP

PLUN=USIBMY0.MVSLU1
PLUN=USIBMY0.Z096AP02

Figure 107. Sample DISPLAY Output for System SY2 on Network USIBMZ0

222 z/OS V2R1.0 MVS Planning: APPC/MVS Management



According to the output:
v All of the TPs have protected conversations with their partner TPs.
v For one outbound conversation, a syncpoint operation (either Commit or

Backout) is in progress.

DISPLAY APPC,UR

To determine whether any APPC/MVS protected conversations require or are
undergoing resynchronization processing, enter the following command:

D APPC,UR,ALL

This command produces output like the following:

D APPC,TP,ALL
ATB122I 19.26.54 APPC DISPLAY 422

LOCAL TP’S INBOUND CONVERSATIONS OUTBOUND CONVERSATIONS
00003 00002 00002

LTPN=*UNKNOWN*
LLUN=Z0A4AP03 WUID=*UNKNOWN* CONVERSATIONS=00001 ASID=0016
SCHED=*NONE* ASNAME=DBUTLERA TPID=0622891000000002

PTPN=TBDRIVER
PLUN=USIBMZ0.MVSLU4
PROTECTED=YES USERID=DBUTLER DIRECTION=OUTBOUND
VERBS=00000006 IT=040.662S
MODE=TRANPAR VTAMCID=01000005 SYNC POINT IN PROG=YES
LUWID=USIBMY0.Z0A4AP03 4AAE3101D784 0001

LTPN=TBDRIVER
LLUN=Z0A4AP04 WUID=A0000001 CONVERSATIONS=00002 ASID=0022
SCHED=ASCH ASNAME=VSTEST TPID=06228A7000000004

PTPN=*UNKNOWN*
PLUN=USIBMZ0.Z0A4AP03
PROTECTED=YES USERID=DBUTLER DIRECTION=INBOUND
VERBS=00000003 IT=*NONE*
MODE=TRANPAR VTAMCID=01000006 SYNC POINT IN PROG=NO
LUWID=USIBMY0.Z0A4AP03 4AAE3101D784 0001

PTPN=TBDRIVER
PLUN=USIBMZ0.MVSLU3
PROTECTED=YES USERID=*NONE* DIRECTION=OUTBOUND
VERBS=00000003 IT=*NONE*
MODE=TRANPAR VTAMCID=0100000B SYNC POINT IN PROG=NO
LUWID=USIBMZ0.Z0A4AP03 4AAE3101D784 0001

LTPN=TBDRIVER
LLUN=Z0A4AP03 WUID=A0000002 CONVERSATIONS=00001 ASID=0041
SCHED=ASCH ASNAME=VSTEST TPID=06228BD000000006

PTPN=*UNKNOWN*
PLUN=USIBMZ0.MVSLU4
PROTECTED=YES USERID=*NONE* DIRECTION=INBOUND
VERBS=00000002 IT=*NONE*
MODE=TRANPAR VTAMCID=0100000C SYNC POINT IN PROG=NO
LUWID=USIBMY0.Z0A4AP03 4AAE3101D784 0001

Figure 108. Sample DISPLAY Output

Chapter 11. Operating APPC/MVS 223



According to the output:
v The first unit of recovery, which represents the outbound conversation that

appears in “DISPLAY APPC,TP” on page 222, does not require resynchronization
processing.

v The URID and logical work unit identifier (LUWID) values can serve as input
for the RRS ISPF panel interface.

DISPLAY APPC,SERVER

To investigate APPC work processed by APPC/MVS servers, enter the following
command:

DISPLAY APPC,SERVER,ALL

This command produces output like the following:

ATB104I 19.33.55 APPC DISPLAY 431
APPC UR’S EXPRESSIONS OF INTEREST

00003 00004
URID=AC964AAE7F36A0000000000101010000

EXPRESSION OF INTEREST COUNT=00001 SYNC POINT IN PROG=YES
LUWID=USIBMZ0.Z0A4AP03 4AAE3101D784 0001

LTPN=*UNKNOWN*
PTPN=TBDRIVER

CONV CORRELATOR=062313F800000001
PLUN=USIBMZ0.MVSLU4 LLUN=Z0A4AP03 DIRECTION=OUTBOUND
RESYNC REQUIRED=NO IMPLIED FORGET=NO

URID=AC964ABD7F36A2280000000201010000
EXPRESSION OF INTEREST COUNT=00002 SYNC POINT IN PROG=NO
LUWID=USIBMZ0.Z0A4AP03 4AAE3101D784 0001

LTPN=TBDRIVER
PTPN=TBDRIVER

CONV CORRELATOR=06231CC800000005
PLUN=USIBMZ0.MVSLU3 LLUN=Z0A4AP04 DIRECTION=OUTBOUND
RESYNC REQUIRED=NO IMPLIED FORGET=NO

LTPN=TBDRIVER
PTPN=*UNKNOWN*

CONV CORRELATOR=062313F800000001
PLUN=USIBMZ0.Z0A4AP03 LLUN=Z0A4AP04 DIRECTION=INBOUND
RESYNC REQUIRED=NO IMPLIED FORGET=NO

URID=AC964AD07F36A4500000000301010000
EXPRESSION OF INTEREST COUNT=00001 SYNC POINT IN PROG=NO
LUWID=USIBMZ0.Z0A4AP03 4AAE3101D784 0001

LTPN=TBDRIVER
PTPN=*UNKNOWN*

CONV CORRELATOR=06231CC800000005
PLUN=USIBMZ0.MVSLU4 LLUN=Z0A4AP03 DIRECTION=INBOUND
RESYNC REQUIRED=NO IMPLIED FORGET=NO

Figure 109. Sample DISPLAY Output

224 z/OS V2R1.0 MVS Planning: APPC/MVS Management



According to the output, two APPC/MVS servers (shown by ASNAME) are
running on the system: RMILLER1 and RMILLER2.

For RMILLER1, the output shows that the server:
v Has registered to serve allocate requests from the LOOKUP TP (shown by

STPN=) that arrive on LU Z01BAP03.
v Has received 1 allocate request.

For RMILLER2, the output shows that the server:
v Registered to serve allocate requests from the UPDATE TP that arrive on LU

Z01BAP03.
v Has not received any allocate requests for processing.

To view server processing from the perspective of the served TPs, enter the
following command:

DISPLAY APPC,TP,ALL

This command produces output like the following:

ATB100I 14.27.48 APPC DISPLAY FRAME LAST F E SYS=MVS520
ALLOCATE QUEUES SERVERS QUEUED ALLOCATES

00002 00002 00000
STPN=LOOKUP

LLUN=Z01BAP03 PLUN=* USERID=*
PROFILE=* REGTIME=12/07/1995 19:05:56 QUEUED=00000
OLDEST=*NONE* LAST RCVD=00.21.02 TOT ALLOCS=00000001
SERVERS=00001 KEEP TIME=0000 TIME LEFT=*N/A*

ASNAME=RMILLER1
ASID=001C REGTIME=12/07/1995 19:05:56 TOT RCVD=00000001
RCVA ISS=19:05:56 RCVA RET=19:06:46

STPN=UPDATE
LLUN=Z01BAP03 PLUN=* USERID=*
PROFILE=* REGTIME=12/07/1995 19:04:25 QUEUED=00000
OLDEST=*NONE* LAST RCVD=*NONE* TOT ALLOCS=00000000
SERVERS=00001 KEEP TIME=0000 TIME LEFT=*N/A*

ASNAME=RMILLER2
ASID=000F REGTIME=12/07/1995 19:04:25 TOT RCVD=00000000
RCVA ISS=19:04:25 RCVA RET=19:04:25

Figure 110. Sample DISPLAY Output

ATB122I 14.26.53 APPC DISPLAY
LOCAL TP’S INBOUND CONVERSATIONS OUTBOUND CONVERSATIONS

00003 00001 00001
LTPN=UPDATE

LLUN=Z01BAP03 WUID=*UNKNOWN* CONVERSATIONS=00000 ASID=000F
SCHED=*NONE* ASNAME=RMILLER2 TPID=034ECC2800000001

STPN=LOOKUP
LLUN=Z01BAP03 WUID=*UNKNOWN* CONVERSATIONS=00001 ASID=001C
SCHED=*NONE* ASNAME=RMILLER1

PTPN=*UNKNOWN*
PLUN=USIBMZ0.Z01BAP01
PROTECTED=NO USERID=*NONE* DIRECTION=INBOUND
VERBS=00000001 IT=*NONE* LCID=034E2330
MODE=TRANPAR VTAMCID=*NONE* SYNC POINT IN PROG=NO
LUWID=*NONE*

Figure 111. Sample DISPLAY Output

Chapter 11. Operating APPC/MVS 225



Note that the TP ID field does not appear in the D APPC,TP,ALL output for
RMILLER1 because RMILLER1 has received an inbound request. The TP ID
appears for the server in address space RMILLER2 because it is not currently
processing any allocate requests. Also, the TP running in address space RMILLER2
is also listed in the LTPN= field.

Managing Use of the APPC/MVS API Trace Facility
Using the application programming interface (API) trace facility, your installation
can collect data about APPC/MVS and CPI-C calls that an APPC/MVS TP issues.
With this data, your installation can diagnose not only errors that occur during a
specific call, but also problems with the conversation flow between the TP and its
partners. This diagnostic capability is useful in both testing and production
environments.

z/OS MVS Programming: Writing Transaction Programs for APPC/MVS contains the
following information about using the API trace facility:
v Planning topics, such as possible security requirements for trace data sets; trace

data set characteristics; and how to avoid losing trace data through wrapping or
resource contention.

v How to select values for the ATBTRACE START request, to ensure that
APPC/MVS collects the trace data required to either verify in TP processing, or
diagnose errors.

v How to invoke the ATBTRACE REXX exec, including programming
considerations, output, invocation methods, syntax diagrams, and parameter
descriptions for each type of ATBTRACE request.

v General descriptions and examples of trace data set entries, with suggestions for
sorting and reading the entries.

Because you might have to start, stop, or list tracing activity yourself, you should
be familiar with all the information about the API trace facility in z/OS MVS
Programming: Writing Transaction Programs for APPC/MVS.

Planning for the Use of API Trace Data Sets
To use the API trace facility, programmers invoke the ATBTRACE REXX exec start,
stop, or list tracing activity. Successful START and STOP requests require
pre-allocated, sequential data sets to contain the trace entries and, depending on
your installation's security policies, appropriate access to the data sets and
APPC/MVS resources. APPC/MVS limits the number of API trace data sets per
z/OS system to reduce the possible impact on performance.

Because of this limit and other contributing factors, such as the number of
application programmers at your installation, you might have to decide how to set
up the trace data sets for your installation. If so, read the information about trace
data sets in z/OS MVS Programming: Writing Transaction Programs for APPC/MVS,
which documents:
v Characteristics to select when you allocate the data sets
v Techniques for avoiding loss of data through wrapping
v Techniques for avoiding loss of data when APPC/MVS suspends tracing activity.

In general, a system programmer or administrator should have authority to start
and stop tracing activity on any z/OS system. This ability is particularly
advantageous for emergency situations in a production environment.

226 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Restoring API Tracing Capability
The API trace facility issues programmer messages to report:
v Successful and unsuccessful completion of an ATBTRACE START, STOP, or LIST

request.
v Allocation or other problems with the data set specified on START and STOP

requests.
v Timing or sequence problems (for example, delays in processing requests, START

requests issued before STOP processing completes, and so on).
v Suspension or termination of API tracing activity by APPC/MVS. These

conditions might result in the loss of trace data.

When APPC/MVS terminates API tracing activity, APPC/MVS issues message
ATB499I to the operator. You cannot restore tracing capability without bringing
down APPC/MVS itself. Because this process is so disruptive to workload,
consider it only as a last resort. If tracing activity is absolutely critical on this
system, and you must restore the API trace facility by bringing down APPC/MVS
and restarting it, make sure you follow these steps:
1. Use a SET APPC command to specify a parmlib member containing LUDEL

statements for the APPC/MVS LUs
2. Allow the system some time to drain (or quiesce) APPC/MVS work
3. Only if necessary, use the methods in “Using the VARY Command to Stop

Work Immediately” on page 212 to accelerate the process.

Recovering from APPC problems
Advanced Program-to-Program Communications (APPC) attempts to restart
automatically when it encounters an unrecoverable error. APPC contains two
address spaces, APPC and the APPC/MVS transaction scheduler (ASCH). Both
address spaces attempt to restart independently of each other so that, if the
APPC/MVS transaction scheduler abnormally ends, APPC can continue normal
processing.

For both address spaces you must perform recovery actions for the following:
v Initialization problems
v Abnormal ending with restart
v Abnormal ending without restart

Recovery for the APPC Address Space
If the APPC address space detects an unrecoverable error, it attempts to restart
itself. The system prevents continually recurring restarts as follows: If the APPC
address space abnormally ends and attempts to restart twice in one hour, the
system abnormally ends the APPC address space rather than restarting it again.

APPC Initialization Problems
If APPC cannot be initialized, the system issues message ATB008E. In this case,
APPC will not perform properly if the operator enters a START APPC command.

Recovery Actions for APPC Initialization Problems
1. Report the problem to the system programmer.
2. When the problem is fixed, reIPL the system.

Chapter 11. Operating APPC/MVS 227



Abnormal End of the APPC address space with restart
If the system detects an unrecoverable error and abnormally ends the APPC
address space, and APPC automatically restarts, message ATB005I indicates that
APPC is restarting. In addition, the following occurs:
v The cross-system coupling facility (XCF) notifies the members of APPC's XCF

group that APPC is unavailable.
v The system shuts down all active logical units (LU).
v The system does not save or restore active APPC conversations, either local and

remote. The conversations will be lost and the system will notify the invoking
applications.

v The system will not read the APPCPMxx parmlib member during restart. The
parmlib members that were in effect prior to the restart will still be in effect
following the restart.

v The system deletes the cache of TP profiles and side information. Following
restart, the system refills the cache during normal processing.

v If APPC component trace is active before APPC abnormally ends, the system
dumps the trace records when APPC abnormally ends and the APPC trace will
not be active following restart.

v The system does not save or restore information regarding schedulers when
APPC abnormally ends and restarts.

v XCF notifies the members of the APPC's XCF group that APPC is available once
it restarts.

Recovery Actions for APPC Abnormal Ending with Restart
1. Have applications redrive the system data file manager (SDFM)

activate/deactivate TP profile interface to reset the TP profile information
following the restart.

2. Restart APPC component trace and all APPC conversations that were active
before the error when APPC services are again available.

3. Have schedulers re-identify themselves after APPC has restarted.

Abnormal end of the APPC address space without restart
If the APPC address space ends due to either an operator CANCEL or FORCE
command (messages ATB010I or ATB012I, respectively) or APPC/MVS cannot
restart the APPC address space (message ATB006I), the following occurs:
v XCF notifies the members of APPC's XCF group that APPC is unavailable.
v The system shuts down all active LUs.
v The system does not save or restore active APPC conversations, either local and

remote. The conversations are lost and the system notifies the invoking
applications.

v FMH-5 requests that have been received, but not passed to the appropriate
scheduler, are sent an FMH-7 notifying the partner TP of the error.

Recovery Actions for APPC Abnormal Ending without Restart
1. Wait for the system to issue message ATB002I, indicating that the APPC

address space has ended.
2. Enter a START APPC command to restart the APPC address space.

228 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Recovery for the APPC/MVS Transaction Scheduler (ASCH)
address space

Like the APPC address space, if the APPC/MVS transaction scheduler (ASCH)
detects an unrecoverable error, it attempts to restart itself. The system prevents
continually recurring restarts as follows: If the APPC/MVS transaction scheduler
abnormally ends and attempts to restart twice in one hour, the system abnormally
ends the APPC/MVS transaction scheduler rather than restarting it again.

Abnormal Ending of the APPC/MVS Transaction Scheduler with
Restart
If the APPC/MVS transaction scheduler abnormally ends and automatically
restarts, as indicated by message ASB050I, the following occurs:
v The system does not read the ASCHPMxx parmlib member during restart. The

parmlib settings that were in effect prior to the restart are still in effect following
the restart.

v The system marks all APPC initiators for deletion. The system deletes all waiting
initiators immediately. The system deletes the initiators of active TPs as the TPs
complete.

Recovery Actions for Abnormal Ending with Restart

No recovery actions are necessary. The APPC/MVS transaction scheduler will
restart automatically.

Abnormal Ending of the APPC/MVS Transaction Scheduler
without Restart
If the APPC/MVS transaction scheduler ends due to an operator CANCEL or
FORCE command, or if it is unable to restart as indicated by message ASB051I,
reason code X'00000001', the following occurs:
v The system marks all APPC initiators for deletion. The system deletes all waiting

initiators immediately and deletes the initiators of active TPs as the TPs
complete.

Recovery Actions for Abnormal Ending without Restart
1. Wait for the system to issue message ASB053I, indicating that the APPC/MVS

transaction scheduler address space has completed its ending process.
2. Enter a START ASCH command to restart the APPC/MVS transaction

scheduler address space.

Chapter 11. Operating APPC/MVS 229



230 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Chapter 12. APPC/MVS Measurement and Tuning

APPC/MVS transaction programs can be identified as a separate type of work in
an z/OS system. To integrate this work with existing work and to balance system
resources, follow the suggestions provided in this chapter.

References

This chapter assumes you are using Resource Measurement Facility (RMF) as the
monitoring product. You could use an equivalent monitoring product instead of
RMF.

z/OS RMF Report Analysis

z/OS MVS Initialization and Tuning Guide

z/OS MVS Initialization and Tuning Reference

z/OS MVS Installation Exits

z/OS MVS System Commands

z/OS MVS System Management Facilities (SMF)

z/OS MVS System Messages, Vol 3 (ASB-BPX)

z/OS MVS Programming: Writing Transaction Programs for APPC/MVS

z/OS RMF User's Guide

Managing APPC Work in the System
Managing any work in the system requires a set of performance objectives in terms
of resources used, response goals, and service requirements. To achieve these
objectives, an installation monitors how work is running in the system and then
tunes the system to try to meet the performance objectives.

Incorporating new work, such as APPC, into a tuned system can affect system
performance. The purpose of this chapter is to provide guidance to help you get
the best performance possible for APPC work without upsetting the balance of
existing work in the system.

The steps for measuring the effect of APPC work in your system and for tuning
the system are listed below. Each step is described in more detail in the sections
that follow.
1. Consider the storage requirements of APPC/MVS

2. Monitor APPC performance

a. If resources used by TPs are charged to accounts, use SMF to audit APPC
work.

b. Use RMF reports to measure the performance of APPC as a whole, by class,
by account number, or by single transaction program.

c. Use the DISPLAY APPC and DISPLAY ASCH operator commands to take a
“snapshot” of APPC work in the system.

3. Improve performance by program design and administration

a. Make efficient use of callable services.
b. Be aware of keywords that cause performance degradation in the TP

profile's JCL.

© Copyright IBM Corp. 1991, 2013 231



c. Consider using multi-trans scheduling to enhance performance.
d. Define classes for APPC work with appropriate response time goals.
e. Put each multi-trans TP in its own class.
f. Associate TPs to LUs with the appropriate level of access to eliminate

unnecessary searching.
g. Eliminate unnecessary use of the TP message log.

4. Improve performance through system changes

a. Consider the amount of buffer storage needed for received data.
b. Improve verification performance of RACF by using VLF. For complete

information, see z/OS Security Server RACF System Programmer's Guide.
c. Eliminate unnecessary SMF recording.
d. Improve network performance.
e. Minimize use of APPC component tracing.

Considering APPC/MVS Storage Requirements
Additional storage is used when processing APPC/MVS work. APPC/MVS
requires storage for message buffers, internal control blocks, and in-storage copies
of the TP profiles and side information. These storage structures are allocated in
the APPC and ASCH address spaces, and additional data is kept in the MASTER
address space. These three address spaces need 1-2 megabytes to start and run one
of the sample transaction programs supplied with APPC/MVS. Executing a low
rate of APPC/MVS transaction programs requires approximately 3 megabytes of
processor storage in these address spaces. A large mainframe processor, such as an
IBM 3090/300J executing only APPC/MVS transaction programs, requires
approximately 12 megabytes of processor storage for the APPC and ASCH address
spaces and the additional data kept in the MASTER address space. In all cases,
you must also include the processor storage that the transaction programs require.

Idle APPC/MVS transaction initiators have approximately the same storage
requirements as JES initiators. When these initiators are executing an APPC
transaction program, the storage requirements depend on the requirements of the
application.

Because of its need for increased processor storage, APPC/MVS may require
additional auxiliary storage and paging space. For information about buffer storage
limits, which is related to paging requirements, see “Controlling Buffer Limit Size”
on page 240.

Changing the Maximum for the System Workload
The MAXUSER parameter in IEASYSxx defines the total number of jobs and
started tasks that can run concurrently in the system. To enable APPC work to run
concurrently with existing work in the system, increase the MAXUSER value by
the number of APPC initiators that will be running in the system. You can
calculate the number of APPC initiators based on the type of APPC transaction
scheduler classes and the number of initiators defined to those classes.

For example, assume your installation has three APPC/MVS transaction scheduler
classes, A, B, and C. During peak production, classes A and B are likely to
schedule their maximum number of initiators, but class C is not active until third
shift when not much else is running. If class A has a maximum number of 25

232 z/OS V2R1.0 MVS Planning: APPC/MVS Management



initiators and class B has a maximum of 50, you would add 75 to the MAXUSER
parameter to enable the APPC work to run with existing work during peak
production.

Monitoring APPC Performance
There are several ways you can define APPC work and monitor its status in the
system. You can assign account numbers to transaction programs and to users of
transaction programs for SMF auditing. You can view the measurable performance
and accounting of APPC work in various RMF reports. In addition, the DISPLAY
APPC and DISPLAY ASCH operator commands provide “snapshots” of LU
configurations, scheduling classes, and the local and partner TPs in the system.

These techniques are discussed in the following sections.

Using SMF to Audit APPC Work
For every job that issues APPC/MVS callable services, SMF writes summary
conversation information in a type 30 record. This record reflects the total
conversation activity for a particular job's address space. In addition, SMF writes a
type 33, subtype 1 record specifically for APPC inbound work scheduled by the
APPC/MVS transaction scheduler, and a type 33, subtype 2 record for individual
APPC/MVS conversations (inbound and outbound) on the system.

To use APPC conversation information and APPC transaction records, your
installation must customize its accounting packages that read the SMF records.

Information that SMF Records for APPC/MVS Work
The following table briefly summarizes the information that SMF provides for
APPC/MVS.

Table 30. SMF Records for APPC/MVS

SMF Record When Written Contents of Record

Type 30 (address
space/time based)

For every job that uses
APPC/MVS callable
services

Routine type 30 information plus conversation
information such as:

# of conversations

# of send and receive calls

Amount of data sent and received

Type 33, Subtype 1
(inbound transaction
based)

For an inbound
conversation scheduled
by the APPC/MVS
transaction scheduler
and for each multi-trans
Get_Transaction and
Return_Transaction call

Conversation information similar to that written
by the type 30 record, but specific to the
transaction. TP information such as:

TP name

Local and partner LU names

User and account numbers

I/O statistics

Scheduling information such as:

Schedule class

Schedule type

Specific dates and times work was received,
queued, started, and ended.

Chapter 12. APPC/MVS Measurement and Tuning 233



Table 30. SMF Records for APPC/MVS (continued)

SMF Record When Written Contents of Record

Type 33, Subtype 2
(conversation based)

For all conversations on
the system (inbound and
outbound), including
inbound conversations
scheduled by the
APPC/MVS transaction
scheduler or processed
by an APPC/MVS
server, as well as all
outbound conversations.

Detailed information about each conversation on
the system, such as:

Conversation ID

Name of the TP that issued the conversation
request

Local and partner LU name

Number of sends and receives

Amount of data sent and received.

When inbound conversations are processed by
APPC/MVS servers, subtype 2 records also
contain information about server processing, such
as the specific dates and times that the
conversation was:

Received by APPC/MVS

Added to the server's allocate queue

Received by the server for subsequent
processing

Deallocated.

A single APPC/MVS outbound or inbound transaction program generates at least
one set of SMF type 30 records for job accounting. If the transaction program is
inbound and is scheduled as standard, it generates the set of SMF type 30 records
and a type 33 record (subtypes 1 and 2). If the transaction program is inbound and
scheduled as multi-trans, it generates the set of SMF type 30 records for the TP as
a whole, an SMF 33, subtype 1 record for shell initiation and another SMF type 33,
subtype 1 record for shell termination, an SMF type 33 subtype 1 record for each
Get_Transaction and Return_Transaction call, and an SMF type 33, subtype 2
record at the end of each conversation (when either partner program deallocates
the conversation).

For more information about SMF records for APPC/MVS, see z/OS MVS System
Management Facilities (SMF).

Assigning Account Numbers to Transactions
The account number for inbound work comes from one of two places depending
on whether the account is tailored. If the account is not tailored (the TP profile
specifies TAILOR_ACCOUNT(NO)), the account number comes from the TP profile
JCL JOB statement section as shown in the following example.

TPNAME(MIKES_TP)
TPSCHED_DELIMITER(+++)

CLASS(A)
TAILOR_ACCOUNT(NO)
JCL_DELIMITER(%%%)

//MYTP JOB ’MIKE’,...
//STEP1 EXEC PGM=MYTP ...

...
%%%
+++

Figure 112. Example of a TP Profile for No Account Tailoring

234 z/OS V2R1.0 MVS Planning: APPC/MVS Management



If the account is tailored (the TP profile specifies TAILOR_ACCOUNT(YES)),
account numbers come from each user's security profile. Each new account number
is retrieved from the WORKATTR segment of a RACF ADDUSER or ALTUSER
command, as shown in one of the following examples.

For information about RACF user profiles, see Chapter 10, “Setting up Network
Security,” on page 151. For information about how SMF audits APPC resources,
see z/OS MVS System Management Facilities (SMF).

TPs that tailor account numbers can charge resources to a different account number
for each instance of the TP. As account numbers change, an installation might want
to validate the changed numbers. Exit IEFUAV allows for account validation before
a new instance of a program runs. For information about IEFUAV, see z/OS MVS
Installation Exits.

Using RMF Reports
RMF measures selected areas of system activity and presents information in
printed reports or display reports.

To review the performance of APPC as a whole, by class, by account number, or by
single transaction, you can request an RMF workload activity report. For a TP, you
will need to provide the subsystem under which the TP is running, which is ASCH
by default. For information about the workload activity report and other reports
that RMF generates, see z/OS RMF Report Analysis.

Using the DISPLAY Operator Command
To see APPC configurations, issue variations of the DISPLAY APPC and DISPLAY
ASCH commands as described below. These are particularly useful when you
notice a problem or when people call the help desk with problems. Keep in mind,
however, that if you repeatedly issue the DISPLAY command, you can degrade
performance.

TPNAME(MAIL)
TPSCHED_DELIMITER(+++)

CLASS(A)
TAILOR_ACCOUNT(YES)
JCL_DELIMITER(%%%)

//MAIL JOB ’DEPT5A’ ...
//STEP1 EXEC PGM=MAILBAG ...

...
%%%
+++

Figure 113. Example of a TP Profile for Account Tailoring

ALTUSER USER22 WORKATTR (WANAME(’LINDA MEYERS’) WABLDG(’BUILDING 9’)
WADEPT(’DEPARTMENT 5A’) WAROOM(’ROOM 22’) WAADDR1(’HOMEVILLE, NY’)
WAACCNT(’22LMD5A’))

Figure 114. Example of a RACF User Profile for Account Tailoring

Chapter 12. APPC/MVS Measurement and Tuning 235



DISPLAY APPC,TP

This command displays general TP status in terms of number of local TPs and
numbers of inbound and outbound conversations. When you add parameters to
the command, you get more detailed displays. The ALL parameter provides the
most detail.

DISPLAY APPC,LU

This variation of the DISPLAY command displays LU status, such as the number of
active, outbound, pending, and terminating LUs. The most detailed information
results when you add the ALL parameter.

DISPLAY APPC,SERVER

This command displays information about APPC/MVS servers and the allocate
queues they are serving. The most detailed information results when you add the
ALL parameter.

DISPLAY ASCH

The DISPLAY ASCH command displays the scheduling status for the APPC/MVS
transaction scheduler. You can obtain the most detailed scheduling information
with the ALL parameter.

For more information about the DISPLAY command, see Chapter 11, “Operating
APPC/MVS,” on page 205. z/OS MVS System Messages, Vol 3 (ASB-BPX) and z/OS
MVS System Commands contain additional information.

Improving Performance Through Program Design and Administration
The program design of a cooperative application for APPC/MVS can affect how
efficiently it runs. After the TP is designed and coded, you can maximize its
performance in the way you define it to the system. The following sections
describe some of the programming and administrative steps you can take to
improve the performance of APPC/MVS transaction programs.

Making Efficient Use of Callable Services
The APPC/MVS callable services are not alike in terms of performance. For
example, services that call VTAM or use I/O have a greater number of instructions
than services that call an internal MVS function. Although using these services is
often necessary, you can minimize their use or combine operations to be more
efficient.

To see a table of performance considerations for individual APPC/MVS callable
services and for a list of specific suggestions, see z/OS MVS Programming: Writing
Transaction Programs for APPC/MVS.

Avoiding Certain JCL Keywords
Using the following keywords in the JCL section of a TP profile affects
performance:
v The system variable &SYSUID in a data set name causes performance

degradation.
v JCLLIB statements also cause performance degradation.

236 z/OS V2R1.0 MVS Planning: APPC/MVS Management



v Using DISP=OLD for data sets accessible by more than one user can cause
contention and degrade performance. If possible, use DISP=SHR instead.

v When using temporary data sets, avoid the use of &&DSNAME wherever
possible. Specifying no data set name for temporary data sets allows the system
to create a unique name and avoids contention between transaction programs
for the same data set name.

Using the Multi-Trans Schedule Type
The multi-trans schedule type can offer performance enhancements to TPs that are
designed to take advantage of its scheduling benefits. For example, multi-trans TPs
can do initiator start-up processing just once in the shell for the benefit of each
multi-trans request. The multi-trans shell can also do some general cleanup
processing when the initiator ends.

Another scheduling benefit occurs when multi-trans TPs allocate and open files in
the shell. Thus, each request doesn't have to security check, allocate, open, and
close each file.

Because the multi-trans shell remains active for only five minutes while waiting for
a request, it is not recommended for applications where the anticipated rate of
inbound requests is less than one every five minutes.

For more information about the multi-trans schedule type, see “Multi-Trans
Schedule Type” on page 37.

Defining Classes and Response Time Goals
Defining APPC/MVS transaction initiator classes allows an installation to set
scheduling algorithms for different types of transaction programs. Classes are
defined in an ASCHPMxx parmlib member with the CLASSADD statement.
Keywords in the CLASSADD statement define the minimum number of
transaction initiators (MIN), the maximum number of transaction initiators (MAX),
and the desired response time goal (RESPGOAL).

The APPC/MVS transaction scheduler starts and maintains at least the minimum
number of transaction initiators for a class regardless of the amount of work in
that class. Depending on the RESPGOAL, as more work comes in, more initiators
may be started until the maximum is reached. Therefore you can control the
number of initiators guaranteed to be available for a class and the upper limit of
initiators available for the class. The APPC/MVS transaction scheduler, through
calculating the response time goal you set for the class, determines the actual
number of active initiators, using the MIN and MAX limits.

If you set MIN too high, system resources that may be needed elsewhere are left
idle. If you set the MIN too low, the scheduler may waste time and resources
creating and deleting transaction initiators. Similarly, if you set MAX too high,
system resources that may be needed elsewhere are not available. If you set MAX
too low, transaction programs will wait on the queue until an existing initiator
becomes available, jeopardizing the response time goal for the class.

To optimize performance while still meeting resource goals, specify MIN and MAX
values for transaction initiators that are percentages of the greatest number of
anticipated transactions running in the class at any given time. You can determine
the exact percentages after considering the number of transaction initiators
available for all classes and experimenting with various values until one meets
performance requirements.

Chapter 12. APPC/MVS Measurement and Tuning 237



The RESPGOAL is the total time in seconds that you want to allow for queueing
and running a transaction program in a particular class. The APPC/MVS
transaction scheduler begins calculating the response time from the moment the
attach request for the transaction program enters the system. Figure 115 shows
what the RESPGOAL keyword controls in terms of total end user response time.

To determine transaction run times and queue times, you can use RMF reports and
SMF type 33 records. The APPC/MVS transaction scheduler can reduce the queue
time by creating transaction initiators, but has no control over attach processing
time and TP run time. Therefore, to set the RESPGOAL, determine the average run
time for transactions in the class and add attach processing time and an allowable
queue delay time. The additional queue delay time provides the APPC/MVS
transaction scheduler with some control to attempt to optimize overall system
overhead associated with creating and deleting transaction initiators.

Putting Multi-Trans TPs in their Own Class
In general, it is a good idea to group TPs with similar characteristics in the same
class. Therefore, place TPs with the same response time goals, with the same
SYSOUT requirements, and with the same schedule type in the same class.

For multi-trans TPs, however, IBM recommends that each TP scheduled as
multi-trans be assigned to a unique class of transaction initiators. If multi-trans TPs
are mixed in a class with other multi-trans TPs or with TPs scheduled as standard,
the minimum set of transaction initiators available for that class of TPs might
change frequently depending on the type of transaction that needs to be processed.
If a multi-trans TP takes a long time to initialize, other TPs in the class might be
forced to wait for initiators.

APPC

TP 1

System 1 System 2

APPC ASCH
INIT

TP 2

End User Response Time

Network Attach Queue Execute

RESPGOAL

Time Request Time Time

V
T
A
M

V
T
A
M

Figure 115. Response Time in an APPC/MVS Environment

238 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Associating TPs and LUs with the Appropriate Level
The use of levels for TP profiles and LUs allows an installation to control access to
its TPs. Because the use of levels involves searching, you can reduce processing
overhead and DASD I/Os by associating the appropriate level of TP with the
appropriate LU.

A single TP can have profiles for three levels:

System TP profile
One available for all users on the system (highest level)

Group TP profile
One for a specified group of users

User TP profile
One for an individual user (lowest level).

When APPC/MVS receives an incoming allocate request for a TP with more than
one profile, it uses the TP profile with the lowest level to which the requestor has
access.

Local LUs are also defined with a system, group, or user level to control the level
of TP that runs in APPC/MVS.

System
An LU with a TP level of system allows only requests for system TP
profiles. A request passing through this LU can access only system-level TP
profiles.

Group An LU with a TP level of group allows requests for group and system TP
profiles. A request passing through this LU first attempts to access
group-level TP profiles and then system-level TP profiles.

User An LU with a TP level of user allows requests for user, group, and system
TP profiles. A request passing through this LU first attempts to access
user-level, then group-level, and finally system-level TP profiles.

The results of attempting to access a particular level of TP profile through an LU
defined to a specific level are shown in Table 31. The search starts at the lowest
level of access and stops as soon as a match is found.

Table 31. Local LU and TP profile level interactions

TP Level of
LU Profiles Searched Profiles Not Searched

System System TP profiles Group and User TP profiles

Group Group then System TP profiles User TP profiles

User User then Group then System TP
profiles

None

To prevent unnecessary searching, assign system level TPs to system level LUs and
avoid mixing system level TPs with user and group level TPs.

Limiting Use of the TP Message Log
The TP message log can be used for recovery and problem determination when an
error occurs while a TP is processing. You can control the TP message log through
parameters from the TP profile and from the APPC/MVS transaction scheduler

Chapter 12. APPC/MVS Measurement and Tuning 239



parmlib member (ASCHPMxx). Some parameters control how much I/O is
required to write messages to the log, and how much storage APPC/MVS uses.
Once a TP is in production, you might want to alter the parameter values to limit
the use of logs. For a description of the parameters and possible values, see
“Logging Transaction Program Processing” on page 40.

Improving Performance through System Changes
A system programmer can make system changes to improve the overall
performance of APPC. Some suggested changes follow.

Controlling Buffer Limit Size
When a TP sends data to a partner TP on an z/OS system, the data is stored in
buffers in the APPC address space until the partner TP receives it. When TPs send
large amounts of data and their partners are slow to receive it, more and more
buffers of data fill up virtual storage. This situation can cause a shortage of buffer
space for other TPs and for the system itself.

APPC/MVS provides two functions that allow you to control the amount of buffer
space that TPs use in the APPC address space:
v Buffer size control:

This function controls the amount of buffer storage in the APPC address space
that is available to all TPs. Use this function to prevent buffer storage from
becoming so large that it causes an auxiliary storage shortage when it is paged
out, which can cause the system to go into a disabled wait.

v Conversation-level pacing:

This function controls the amount of buffer space that any one conversation can
use at a particular time. Use this function when one or more conversations are
using so much buffer space that they prevent other conversations from obtaining
required buffer space. With conversation-level pacing, APPC/MVS allows data
to flow into the buffer at a consistent rate, never allowing the data to exceed the
buffer space limit for a conversation. APPC/MVS paces the conversation so it
cannot use so much storage that it creates a shortage for other conversations.
Pacing controls the rate of transmission of data to prevent overrun or
congestion.

The following sections describe several methods that you can use to enable the
functions listed above.

Buffer Size Control
To control the buffer limit size, use the BUFSTOR parameter in the APPC start
procedure in SYS1.PROCLIB. Specify the buffer storage limit in megabytes. Use
one of the following methods:
v Specify the buffer storage limit of 88 megabytes used for MVS/ESA SP 4.2, if it

is appropriate for your system. (The BUFSTOR parameter was not available in
MVS/ESA SP 4.2, so systems were required to use the default buffer storage
limit of 88 megabytes for that release.) Set BUFSTOR=88 in the PROC statement:
// APPC PROC APPC=00,BUFSTOR=88

In the EXEC statement, set BUFSTOR=&BUFSTOR, as follows:
// EXEC PGM=ATBINITM,PARM=’APPC=&APPC,BUFSTOR=&BUFSTOR...’

If you use this method, you can specify BUFSTOR=xx on the START APPC
command to change the BUFSTOR value.

240 z/OS V2R1.0 MVS Planning: APPC/MVS Management



v Define a fixed value for the BUFSTOR parameter, from 0 to 2048, on the EXEC
statement. For example, if you want to set 48 megabytes as the buffer storage
limit, specify the following:
// EXEC PGM=ATBINITM,...PARM=’APPC=&APPC,BUFSTOR=48’

v Let APPC/MVS calculate a value based on your auxiliary storage. If you do not
include the BUFSTOR parameter in the EXEC statement, APPC/MVS calculates
a value that is approximately one third of the amount of free auxiliary storage
your system has at the time APPC starts.
// EXEC PGM=ATBINITM,PARM=’APPC=&APPC...’

Each time the operator enters the START APPC command, the system
re-calculates the buffer storage limit value.

When specifying the buffer storage limit on the BUFSTOR parameter, keep the
following in mind:
v The value must be a decimal value between 0 and 2048. If you specify 0 or a

value greater than 2048, the system sets the buffer storage limit to the maximum
of 2048.

v If you specify a value less than or equal to 8, the system uses a value of 8. If you
specify a value greater than 8, the system rounds the value down to the nearest
multiple of 8.

v If you use a constant buffer storage limit value, you might want to calculate it
from an RMF page/swap data set activity report taken at a peak period. Use
numbers from the report in the following equations:
# available slots = (# slots allocated) - (max slots used)

MB of available storage = (# available slots)/256

Your buffer storage limit value should not exceed the MB of available storage
that results from the second equation.

Conversation Level Pacing
To control the amount of buffer space available to any one conversation, use the
CONVBUFF parameter in the APPC start procedure in SYS1.PROCLIB. Specify the
amount of buffer space in kilobytes. Use one of the following methods:
1. Specify a value for the for the CONVBUFF parameter on the PROC statement.

For example, if you want to set 2000 kilobytes as the maximum amount of
buffer space that any one conversation can use at one time, specify the
following:
// APPC PROC APPC=00,CONVBUFF=2000

In the EXEC statement, set CONVBUFF=&CONVBUFF, as follows:
// EXEC PGM=ATBINITM,PARM=’APPC=&APPC,CONVBUFF=&CONVBUFF...’

If you use this method, you can specify CONVBUFF=xx on the START APPC
command to change the CONVBUFF value.

2. Define a fixed value for the CONVBUFF parameter on the EXEC statement. For
example, if you want to set 2000 kilobytes as the maximum amount of buffer
space that any one conversation can use at one time, specify the following:
// EXEC PGM=ATBINITM,PARM=’APPC=&APPC,CONVBUFF=2000...’

3. Let APPC/MVS use the default value for CONVBUFF, which is 1000 kilobytes.
Code the exec statement as follows:
// EXEC PGM=ATBINITM,PARM=’APPC=&APPC...’

When specifying the amount of buffer space available to any one conversation on
the CONVBUFF parameter, keep the following in mind:

Chapter 12. APPC/MVS Measurement and Tuning 241



v The maximum value you can specify is 2097152 kilobytes (decimal).
v If you do not specify a value, or if you specify a value of zero, APPC/MVS uses

the default value of 1000 kilobytes.
v If you specify a value between 1 and 39 on the CONVBUFF parameter, the

system uses a value of 40 (because APPC/MVS requires a minimum of 40
kilobytes of storage per conversation).

v If you specify a value that is not a multiple of four kilobytes (decimal), the
system rounds the value of CONVBUFF up to the next highest multiple of four.
For example, if you specify CONVBUFF=1023, the system makes 1024 kilobytes
of buffer storage available to one conversation.

v If you specify a value on CONVBUFF that is greater than the buffer storage limit
(which is either the default value calculated by APPC/MVS or the value
specified on the BUFSTOR parameter), the system does the following:
– Issues message ATB017I
– Uses the buffer storage limit.
For example, the system performs the actions listed above if you enter the
following command (which specifies a CONVBUFF value that is greater than the
BUFSTOR value):
S APPC,SUB=MSTR,BUFSTOR=8,CONVBUFF=2097148

Minimizing Use of APPC Component Trace
APPC component trace, although beneficial for diagnostic information, degrades
performance. To limit APPC tracing to abnormal events only, you can invoke
component trace as follows:

TRACE CT,ON,COMP=SYSAPPC

When prompted for a reply, respond with:
REPLY id,END

Even this minimum amount of tracing can affect performance; to achieve
maximum performance after APPC work is stable, turn APPC component trace off
as follows:

TRACE CT,OFF,COMP=SYSAPPC

For more information about APPC component trace, see z/OS MVS Diagnosis: Tools
and Service Aids.

Controlling SMF Type 33 Recording for APPC
Because each Get_Transaction and Return_Transaction call creates an SMF type 33
record, multi-trans programs can greatly increase the amount of data sent to the
SMF data set. On the other hand, it is the type 33 record that contains the
accounting information for APPC/MVS transaction programs.

If you need to conserve the amount of data sent to the SMF data set and do not
need specific accounting for TPs scheduled as standard or multi-trans, turn off
SMF recording for the SMF type 33 record. SMF recording is controlled by the
TYPE and NOTYPE parameters in the SMFPRMxx parmlib member.

For more information about controlling SMF recording, see the SMFPRMxx
description in z/OS MVS Initialization and Tuning Reference.

242 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Improving Network Performance
Although network performance is difficult to control, here are suggestions for
maximizing response time.

Minimize Remote Communication Calls
Remote conversations almost always have longer response times than local
conversations on a single system due to the communication calls that must pass
from one system to another. The guidelines mentioned in “Making Efficient Use of
Callable Services” on page 236 apply especially to remote conversations. Therefore
to improve response times, keep the network communication calls to a minimum
and follow the list of suggestions from z/OS MVS Programming: Writing Transaction
Programs for APPC/MVS.

Optimize LU-to-LU Sessions
To keep LU-to-LU sessions active during interruptions in either APPC/MVS or
VTAM service, and to preserve new conversation requests until APPC/MVS
service resumes, use VTAM persistent sessions. Single-node persistent sessions
(SNPS) helps provide continuity of service to APPC/MVS TPs in situations where
the APPC address space is cancelled, forced, terminated, or automatically restarted.
The sessions also persist during interruptions in scheduler service. Multi-node
persistent sessions (MNPS) extends persistence to sessions across VTAM failures as
well and gives you the option to start the same LU on another system in the
sysplex with all of its LU-to-LU sessions still intact.

If APPC/MVS or scheduler service is interrupted, new conversation requests
targeted to LUs that were deactivated by the interruption will be queued until
service returns or the PSTIMER time limit expires, whichever comes first. For
MNPS, even if VTAM service is interrupted, VTAM will queue the new inbound
conversation requests until the LU is reactivated on any system in the sysplex.

For an APPC/MVS LU that handles protected conversations, however, persistent
sessions are not preserved if the LU fails while a syncpoint operation is in
progress. Sessions on which syncpoint operations were in progress do not persist.
All other sessions still have the persistent attribute. In this case, the session is
unbound so that outstanding resynchronization work can proceed when the LU is
reactivated.

With MNPS, persistent sessions go beyond the scope of just keeping sessions active
when various services go down. An installation may choose to move a particular
LU to another system in the sysplex. This can be done:
v to redistribute workload in the sysplex
v to move all work off of one system so that maintenance can be performed.
v to satisfy other availability issues.

Since the sessions associated with the LU move with the LU, this provides a
non-disruptive mechinism to shift the current workload.

The PSTIMER parameter in the APPCPMxx LUADD statement controls whether
persistent sessions are in effect for a particular local LU and how long the sessions
persist. For more information about coding the PSTIMER parameter, see the
APPCPMxx parmlib member description in z/OS MVS Initialization and Tuning
Reference.

Chapter 12. APPC/MVS Measurement and Tuning 243



SNPS support requires ACF/VTAM Version 3 Release 4. MNPS requires eNetwork
Communications Server Release 5. For general information about persistent
sessions, see z/OS Communications Server: SNA Network Implementation Guide.

Maximum number of APPC active conversations
Each APPC conversation on the system uses a small amount of APPC system
resources in order to execute. If a single address space has a serious programmatic
or logical error or if the workload volume is enormous, a tremendous number of
active conversations within a single address space could result. Consequently, vast
quantities of APPC system resources could be consumed, exhausting the ability of
APPC to start up conversations in other address spaces. APPC on z/OS provides a
mechanism which will notify an installation of such an event, and allow them to
take the appropriate actions to fix this potentially crippling situation.

This function defines the maximum number of APPC active conversations that can
be active in any particular address space at one time. The system either writes a
critical action message to the console whenever an address space exceeds this
maximum, or optionally, halts all new conversations within the address space
when the limit has been reached.

To define the maximum number of active conversations, use the CONVMAX
parameter in the APPC started procedure in specify the value for the maximum
number of active conversations. Use one of the following methods:
1. Specify a value for the CONVMAX parameter on the PROC statement.

For example, if you want to set maximum of APPC active conversation as 3000,
specify the following:

// APPC PROC APPC=00,CONVMAX=3000

In the exec statement set, CONVMAX=&CONVMAX as follows:
// EXEC PGM=ATBINITM,PARM="APPC=&APPC,CONVMAX=&CONVMAX....."

If you use this method, you can specify CONVMAX=xx on the START APPC
command to change the CONVMAX value.

2. Define a fixed value for the CONVMAX parameter on the EXEC statement. For
example, if you want to set 3000 as the maximum number of APPC active
conversations, specify the following:

// EXEC PGM=ATBINITM,PARM="APPC=&APPC,CONVMAX=3000..."

3. Let APPC/MVS use the default value for CONVMAX, which is 2000. Code the
exec statement as follows:

// EXEC PGM=ATBINITM,PARM="APPC=&APPC..."

When specifying the maximum number of APPC active conversations on the
CONVMAX parameter, keep the following in mind:
v The value must be a decimal value between 100 and 20000. If you specify a

value greater than 20000, the system sets the maximum number of active
conversations threshold to 20000. If you specify a value between 1 and 99,
the system sets the maximum APPC conversations threshold to 100.

v If you specify a value of 0 (zero) the system will not monitor the total
number of active conversations for an address space, regardless of the
quantity.

244 z/OS V2R1.0 MVS Planning: APPC/MVS Management



To define the action appc should take when the CONVMAX limit has been
reached, use the CMACTION parameter in the APPC started procedure in
SYS1.PROCLIB. There are two possible values for the CONVMAX action
parameter:
v MSGONLY - cuts a critical action message whenever the number of active

conversations in a single address space exceeds the CONVMAX value in effect
on the system. APPC will not take any action on preventing new conversations
from being started inside the affected address space. This is the default value.

v HALTNEW - prevents new conversations from being started inside an address
space once the CONVMAX value has been reached. A critical action message is
also sent to the console to inform the installation that no new conversations will
be allowed to be started until the until the number of active conversations
within the address space decreases.

Specify one of two possible values for the CMACTION parameter using one of the
following methods:
1. Specify a value of the CMACTION parameter on the PROC statement to either

MSGONLY or HALTNEW. For example, specify the following if you want
APPC to halt all new conversations in an address space when the CONVMAX
has been reached for that address space:

// APPC PROC APPC=00,CMACTION=HALTNEW

Then, in the exec statement, set CMACTION=&CMACTION as follows:
// EXEC PGM=ATBINITM,PARM=’APPC=&APPC,

CMACTION=&CMACTION...’

This method allow you to specify CMACTION=cmaction_value on the START
APPC command to change the CMACTION value.

2. Define a fixed value for the CMACTION parameter on the EXEC statement. For
example, if you want only to be informed when the number of APPC active
conversations has been exceeded, specify the following:
// EXEC PGM=ATBINITM,PARM=’APPC=&APPC,

CMACTION=MSGONLY...’

3. Let APPC/MVS use the default value for CMACTION, which is HALTNEW. To
do this, code the EXEC statement as follows:
// EXEC PGM=ATBINITM,PARM=’APPC=&APPC...’

Chapter 12. APPC/MVS Measurement and Tuning 245



246 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Part 6. Installation checklists

© Copyright IBM Corp. 1991, 2013 247



248 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Chapter 13. Installing an APPC Application

When you install the MVS part of a cooperative application, you have different
considerations depending on whether the MVS TP initiates an outbound
conversation or responds to an inbound conversation request. In either situation, it
is advisable to install the application first on a test system. After the application is
running on the test system, you can add the security requirements. For information
about security, see Chapter 10, “Setting up Network Security,” on page 151.

In addition to security considerations, you should also consider authorization. For
the installation to work properly, your system should have an APF-authorized
miglib data set in the LNKLST concatenation. If necessary, refer to z/OS MVS
Initialization and Tuning Referencefor information about APF authorization for
LNKLST data sets.

This chapter describes the basic install requirements for an outbound request and
for an inbound request; each description refers to other chapters for more detail.

SYS1.SAMPLIB contains examples showing how to install and run APPC
applications. The examples are contained in the SYS1.SAMPLIB members whose
names begin with ATBCA and ATBLA. See the ATBALL member of SYS1.SAMPLIB
for descriptions of the examples.

Installing a TP that Initiates an Outbound Request
The following steps are a suggested checklist for installing in MVS a TP that
initiates an outbound request. Under each step is a specific example of how a
programmer named Fred installs a cooperative application that is a distributed
application between an z/OS server and an OS/2 workstation.

After the TP is loaded onto the host according to the directions supplied with the
application, follow these steps to provide the support necessary to run the TP.

1. Start APPC
1. Create an LU in an APPCPMxx parmlib member with an LUADD statement.

(See “Adding a Local LU — LUADD Statement” on page 138.)

2. Define a VSAM KSDS for side information. (See “Defining the VSAM Key
Sequenced Data Sets (KSDS)” on page 66.)

Fred decides to take all the defaults on his test run. He codes a parmlib member named
APPCPM10 and codes only the LU name on the LUADD statement. Fred's APPCPM10 parmlib
member looks something like this:

LUADD
ACBNAME(MVSTEST)

Figure 116. Example

© Copyright IBM Corp. 1991, 2013 249



3. Specify the VSAM KSDS name. (See “Specifying a VSAM KSDS for Side
Information — SIDEINFO Statement” on page 143.)

4. Code a VTAM APPL definition statement for the LU. (See “Defining the Local
LU to VTAM” on page 120.)

5. Define at least one LU 6.2 logon mode. (See “Defining an APPC Logon Mode”
on page 118).

6. Depending on whether the APPC address space was started, do one of the
following:
v If the APPC address space was not yet started, issue the START command.

(See “Starting the APPC and ASCH Address Spaces” on page 205.)

v If the APPC address space was already started, issue the SET command. (See
“Dynamically Changing the APPC/MVS Environment” on page 207.)

Fred has no idea how large to make the side information file, so he uses the sample definition he
found in SYS1.SAMPLIB(ATBSIVSM).

Figure 117. Example

Because Fred used the sample VSAM definition, the name of his VSAM KSDS is SYS1.APPCSI.
This is also the default name in the SIDEINFO statement. To activate the default, the SIDEINFO
statement must be coded. Fred adds the SIDEINFO statement to parmlib member APPCPM10, so
the member now looks like this:

LUADD
ACBNAME(MVSTEST)

SIDEINFO

Figure 118. Example

Fred uses the example APPL statement in SYS1.SAMPLIB member ATBAPPL and changes both
the APPL name and the name of the LU to MVSTEST.

Figure 119. Example

Because Fred's distributed application moves data from MVS to an OS/2 workstation, he needs a
logon mode that controls pacing between unlike systems. He uses the sample for PC sessions
(APPCPCLM) found in Figure 64 on page 118 and gives it to the installation's VTAM
programmer to add to the VTAM logon mode table.

Figure 120. Example

From an operator's console, Fred issues the following START command:

START APPC,SUB=MSTR,APPC=10

Figure 121. Example

From an operator's console, Fred issues the following SET command:

SET APPC=10

Figure 122. Example

250 z/OS V2R1.0 MVS Planning: APPC/MVS Management



2. Start ASCH

Note: Although outbound TPs do not necessarily use the APPC/MVS transaction
scheduler, the ASCH address space must be started for APPC/MVS to work
properly.

If the ASCH address space was not yet started, issue the START command. (See
“Starting the APPC and ASCH Address Spaces” on page 205.)

3. Configure the peer system

For details, see information about the peer system.
1. Create a local LU.

Note: This local LU name is the partner LU name used in the MVS side
information entry.

2. Define the MVS logon modes on the peer system.

3. Create a partner LU.

Note: This partner LU name must match the MVS local LU name.

4. Create a TP profile for the application according to the instructions that came
with it and the requirements of the peer system.

From an operator's console, Fred issues the following START command:

START ASCH,SUB=MSTR

Figure 123. Example

Fred uses Communication Manager to create an APPC LU profile for a local LU named
PS2TEST. He gives this LU name to his installation's VTAM programmer for use in the VTAM
cross system configuration.

Figure 124. Example

Logon modes are called transmission service modes in OS/2. Fred defines a transmission service
mode for APPCPCLM, using the same name and the same parameter values for the OS/2
parameters as was used in the original VTAM definition.

Figure 125. Example

Using the MVS local LU name MVSTEST, Fred creates an APPC partner LU profile on OS/2.
He adds the name of the transmission service mode to the profile.

Figure 126. Example

Fred creates a TP profile for the part of the distributed application that is installed on MVS. For
specific values, he refers to the instructions that came with the application.

Figure 127. Example

Chapter 13. Installing an APPC Application 251



4. Create side information
1. Define a side information entry. (See “Creating Side Information” on page 77.)

2. Add the side information entry to the side information file. (See Chapter 6,
“Using the APPC/MVS Administration Utility,” on page 85 and Chapter 7,
“Using the APPC/MVS Administration Dialog,” on page 95.)

Installing a TP that Responds to an Inbound Request
The following steps are a suggested checklist for installing a TP that responds to
an inbound request. Under each step is a specific example of how a programmer
named Jane installs a cooperative application that is a database accessing program
between MVS and OS/2.

After the TP is loaded onto the system according to the directions supplied with
the application, follow these steps to provide the support necessary to run the TP.

1. Start APPC
1. Create an LU in an APPCPMxx parmlib member with an LUADD statement.

(See “Adding a Local LU — LUADD Statement” on page 138.)

2. Define a VSAM KSDS for TP profile information. (See “Defining the VSAM Key
Sequenced Data Sets (KSDS)” on page 66

3. Specify the VSAM KSDS name in the APPCPMxx LUADD statement following
the TPDATA keyword parameter. (See “Adding a Local LU — LUADD

The part of Fred's distributed application that is installed on MVS is named Broadcast. Rather
than create side information entries for all the workstations his program will communicate with,
Fred creates a single entry for testing purposes. His entry looks like this:

DESTNAME(TESTSITE)
MODENAME(APPCPCLM)
TPNAME(BROADCAST)
PARTNER_LU(PS2TEST)

Figure 128. Example

Fred chooses to use the APPC administration utility because the APPC administration dialog was
not yet installed in TSO/E. He issues an SIADD based on the example he found in
SYS1.SAMPLIB member ATBUTIL.

Figure 129. Example

Jane decides to take all the defaults on her test run. She codes a parmlib member named
APPCPM22 and only codes the LU name on the LUADD statement. Jane's APPCPM22 parmlib
member looks something like this:

LUADD
ACBNAME(MVSLU)

Figure 130. Example

Jane has no idea how large to make the TP profile file, so she uses the sample definition she found
in SYS1.SAMPLIB(ATBTPVSM).

Figure 131. Example

252 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Statement” on page 138.)

4. Code a VTAM APPL definition statement for the LU. (See “Defining the Local
LU to VTAM” on page 120.)

5. Depending on whether the APPC address space was started, do one of the
following:
v If the APPC address space was not yet started, issue the START command.

(See “Starting the APPC and ASCH Address Spaces” on page 205.)

v If the APPC address space was already started, issue the SET command. (See
“Dynamically Changing the APPC/MVS Environment” on page 207.)

2. Start ASCH
1. Create a class in an ASCHPMxx parmlib member with a CLASSADD

statement. (See “Defining a Class — CLASSADD Statement” on page 53.)

Because Jane used the sample VSAM definition, the name of her VSAM KSDS is SYS1.APPCTP.
This is also the default name in the LUADD statement. Therefore, Jane does not need to add
anything to her parmlib member APPCPM22.

Figure 132. Example

Jane uses the example APPL statement in SYS1.SAMPLIB member ATBAPPL, and changes both
the APPL name and the name of the LU to MVSLU.

Figure 133. Example

From an operator's console, Jane issues the following START command:

START APPC,SUB=MSTR,APPC=22

Figure 134. Example

From an operator's console, Jane issues the following SET command:

SET APPC=22

Figure 135. Example

Jane's program is a multi-trans TP that she wants to run continuously in a class by itself. The
expected response time goal for the TP is 1/2 second. Jane codes a parmlib member named
ASCHPM11 and defines the class like this:

CLASSADD
CLASSNAME(DATA)
MAX(3)
MIN(1)
RESPGOAL(.5)
MSGLIMIT(1000)

OPTIONS
DEFAULT(DATA)

Jane includes the OPTIONS statement with DATA as the default class.

Figure 136. Example

Chapter 13. Installing an APPC Application 253



2. Depending on whether the ASCH address space was started, do one of the
following:
v If the ASCH address space was not yet started, issue the START command.

(See “Starting the APPC and ASCH Address Spaces” on page 205.)

v If the ASCH address space was already started, issue the SET command. (See
“Dynamically Changing the APPC/MVS Environment” on page 207.)

3. Configure the peer system

For details, see information about the peer system.
1. Create a local LU.

Note: This local LU name is an MVS partner LU name.

2. Define the MVS logon modes on the peer system.

3. Create a partner LU.

Note: This partner LU name must match the MVS local LU name.

4. Create a TP profile
1. Define a TP profile entry. (See “Creating a TP Profile” on page 70.)

From an operator's console, Jane issues the following START command:

START ASCH,SUB=MSTR,ASCH=11

Figure 137. Example

From an operator's console, Jane issues the following SET command:

SET ASCH=11

Figure 138. Example

Jane uses Communication Manager to create an APPC LU profile for a local LU named PS2LU.
She gives this LU name to her installation's VTAM programmer for use in the VTAM cross
system configuration.

Figure 139. Example

Logon modes are called transmission service modes in OS/2. Jane defines a transmission service
mode for APPCPCLM, using the same name and the same parameter values for the OS/2
parameters as was used in the original VTAM definition.

Figure 140. Example

Using the MVS local LU name MVSLU, Jane creates an APPC partner LU profile on the OS/2.
She adds the name of the transmission service mode to the profile.

Figure 141. Example

254 z/OS V2R1.0 MVS Planning: APPC/MVS Management



2. Add the TP profile to the TP profile file. (See Chapter 6, “Using the
APPC/MVS Administration Utility,” on page 85 and Chapter 7, “Using the
APPC/MVS Administration Dialog,” on page 95

Jane defines a TP profile entry that takes the defaults except for the parameters dealing with a
multi-trans program. Her TP profile looks like this:

TPNAME(TESTDATA)
TPSCHED_DELIMITER(##)

CLASS(DATA)
TPSCHED_TYPE(MULTI_TRANS)
GENERIC_ID(JANE)
JCL_DELIMETER(XX)

//TESTDATA JOB ’JANE’,RWP,....
//STEP EXEC PGM=TESTDATA
//INPUT DD DSN=DATABASE.DATA,....
XX
##

Figure 142. Example

Jane chooses to use the APPC administration utility because the APPC administration dialog was
not yet installed in TSO/E. She issues a TPADD based on the multi-trans example she found in
SYS1.SAMPLIB member ATBUTIL.

Figure 143. Example

Chapter 13. Installing an APPC Application 255



256 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Part 7. Appendixes

© Copyright IBM Corp. 1991, 2013 257



258 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Appendix A. Character Sets

APPC/MVS makes use of character strings composed of characters from one of the
following character sets:
v Character set 01134, which is composed of the uppercase letters A through Z and

numerals 0-9.
v Character set Type A, which is composed of the uppercase letters A through Z,

numerals 0-9, national characters (@, $, #), and must begin with either an
alphabetic or a national character.

v Character set 00640, which is composed of the uppercase and lowercase letters A
through Z, numerals 0-9, and 19 special characters. Note that APPC/MVS does
not allow blanks in 00640 character strings.

These character sets, along with hexadecimal and graphic representations, are
provided in the following table:

Table 32. Character Sets 01134, Type A, and 00640

Hex
Code Graphic Description

Character Set

01134 Type A 00640
40 Blank
4B . Period X
4C < Less than sign X
4D ( Left parenthesis X
4E + Plus sign X
50 & Ampersand X
5B $ Dollar sign X (Note 1)
5C * Asterisk X (Note 2)
5D ) Right parenthesis X
5E ; Semicolon X
60 – Dash X
61 / Slash X
6B , Comma X (Note 3)
6C % Percent sign X
6D _ Underscore X
6E > Greater than sign X
6F ? Question mark X
7A : Colon X
7B # Pound sign X (Note 1)
7C @ At sign X (Note 1)
7D ' Single quote X
7E = Equals sign X
7F " Double quote X
81 a Lowercase a X
82 b Lowercase b X
83 c Lowercase c X
84 d Lowercase d X
85 e Lowercase e X
86 f Lowercase f X
87 g Lowercase g X
88 h Lowercase h X
89 i Lowercase i X

© Copyright IBM Corp. 1991, 2013 259



Table 32. Character Sets 01134, Type A, and 00640 (continued)

Hex
Code Graphic Description

Character Set

01134 Type A 00640
91 j Lowercase j X
92 k Lowercase k X
93 l Lowercase l X
94 m Lowercase m X
95 n Lowercase n X
96 o Lowercase o X
97 p Lowercase p X
98 q Lowercase q X
99 r Lowercase r X
A2 s Lowercase s X
A3 t Lowercase t X
A4 u Lowercase u X
A5 v Lowercase v X
A6 w Lowercase w X
A7 x Lowercase x X
A8 y Lowercase y X
A9 z Lowercase z X
C1 A Uppercase A X X X
C2 B Uppercase B X X X
C3 C Uppercase C X X X
C4 D Uppercase D X X X
C5 E Uppercase E X X X
C6 F Uppercase F X X X
C7 G Uppercase G X X X
C8 H Uppercase H X X X
C9 I Uppercase I X X X
D1 J Uppercase J X X X
D2 K Uppercase K X X X
D3 L Uppercase L X X X
D4 M Uppercase M X X X
D5 N Uppercase N X X X
D6 O Uppercase O X X X
D7 P Uppercase P X X X
D8 Q Uppercase Q X X X
D9 R Uppercase R X X X
E2 S Uppercase S X X X
E3 T Uppercase T X X X
E4 U Uppercase U X X X
E5 V Uppercase V X X X
E6 W Uppercase W X X X
E7 X Uppercase X X X X
E8 Y Uppercase Y X X X
E9 Z Uppercase Z X X X
F0 0 Zero X X X
F1 1 One X X X
F2 2 Two X X X
F3 3 Three X X X
F4 4 Four X X X
F5 5 Five X X X
F6 6 Six X X X
F7 7 Seven X X X
F8 8 Eight X X X

Character Sets

260 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Table 32. Character Sets 01134, Type A, and 00640 (continued)

Hex
Code Graphic Description

Character Set

01134 Type A 00640
F9 9 Nine X X X

Note:

1. Avoid these characters because they display differently depending on the
national language code page in use.

2. Avoid using the asterisk in TP names because it causes a subset list request
when entered on panels of the APPC administration dialog and in DISPLAY
APPC commands.

3. Avoid using the comma in TP names because it acts as a parameter delimiter
when entered in DISPLAY APPC commands.

Character Sets

Appendix A. Character Sets 261



Character Sets

262 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Appendix B. Coding the APPCLOG Utility

APPCLOG is a regular load module that is packaged and shipped in the system
data set SYS1.MIGLIB.

Parameters
A set of input parameters read in through SYSIN DD control the functions that the
APPCLOG utility can perform. Each parameter has its own record. If a parameter
is not specified, a default value will be used. The format of the parameter record is
as follows:

KEYWORD=VALUE

The parameter keyword, immediately followed by the '=' character, is immediately
followed by the parameter value with no spaces in-between. The keyword and its
value can be either uppercase or lowercase.

For example, if you want APPCLOG to read the log stream from the youngest
block to the oldest block, add the following parameter record to SYSIN DD:
DIRECTION=YTO

The following are the input parameter keywords that APPCLOG understands and
the default values accepted by these keywords:

HEXDUMP
The HEXDUMP keyword controls whether a hexadecimal dump of the
PPLU is generated. This hexadecimal dump immediately follows the
formatted PPLU dump.

The possible values for the HEXDUMP keyword are:
v NO - No hexadecimal dump is produced. This is the default value.
v YES - The hexadecimal dump is produced.

Example:
HEXDUMP=YES

STREAM
The STREAM keyword specifies the name of the log stream to read. If this
parameter is not specified, the default value is:
ATBAPPC.LU.LOGNAMES

Example:
STREAM=APPCTEST.LOGSTREAM

DIRECTION
Log streams can be read from the youngest block ID to the oldest block ID
or from the oldest to the youngest. The DIRECTION keyword specifies
which direction APPCLOG reads the log stream.

The possible values for DIRECTION are:
v OTY - Read the log stream from the oldest block ID to the youngest

block ID. This is the default value.

© Copyright IBM Corp. 1991, 2013 263



v YTO - Read the log stream from the youngest block ID to the oldest
block ID.

Example:
DIRECTION=YTO

MAX The MAX keyword controls the maximum number of blocks (PPLUs) to
process. The value specified for the MAX keyword should be a decimal
value of the number of blocks the user wants to dump and format. For
example, if you want to process 17 PPLUs, specify:
MAX=17

The default value is to process all the blocks in the log stream.

REPS The REPS keyword controls the number of times the log stream is read
and dumped. The value specified for the REPS keyword should be a
decimal number. For example, if you want to read the log stream 10 times,
specify:
REPS=10

The default value for the REPS keyword is 1.

SCRATCH
The SCRATCH keyword controls whether the log stream scratch pad is
dumped out.

The possible values for the SCRATCH keyword are:
v NO - The scratch pad is not dumped. This is the default value.
v YES - The scratch pad is dumped.

Example:
SCRATCH=YES

ANAYLYZE
The ANAYLYZE keyword controls whether the APPCLOG utility analyzes
the log stream and scratch pad data for correctness and consistency.

The possible values for the ANAYLYZE keyword are:
v NO - No analysis is done on the log stream or scratch pad data. This is

the default value.
v YES - Analysis is done on the log stream and scratch pad data. Results

of the analysis are printed out along with the rest of the APPCLOG
output.

Example:
ANAYLYZE=YES

HELP The HELP keyword controls whether the help text for APPCLOG is
printed out.

The possible values for the HELP keyword are:
v NO - No help text is printed. This is the default value.
v YES - The help text is printed. No other processing will be done.

Example:
HELP=YES

DEBUG
The DEBUG keyword controls whether diagnostic information is printed

264 z/OS V2R1.0 MVS Planning: APPC/MVS Management



by APPCLOG when it is processing. The DEBUG should be used only to
diagnose problems with the APPCLOG utility.

The possible values for the DEBUG keyword are:
v NO - No diagnostic information is printed. This is the default value.
v YES - Diagnostic information is printed.

Example:
DEBUG=YES

Examples of using the APPCLOG Utility

Sample output
APPCLOG can perform the following tasks:
v Read the log stream file that is generated and used by APPC.
v Dump and format the APPC PPLU entries and scratch pad entries
v Write these entries out to a file or spool file, depending on how the DD card in

the JCL is coded.

The following example is the formatted entries for a PPLU and scratch pad:

APPCLOG Formatted Dump
---------- APPCLOG Input Parms ----------
DEBUG=YES
SCRATCH=YES
ANAYLYZE=YES
HEXDUMP=YES

---------- APPC Logstream Report ----------
DEBUG: Issuing IXGCONN request=CONNECT
Dumping Log Stream: ATBAPPC.LU.LOGNAMES

DEBUG: Issuing IXGBRWSE request=START OLDEST...
DEBUG: Reading Logstream ...
DEBUG: Direction=OLDTOYOUNG...
DEBUG: Browse Service Elasped 00:00:00.000251
>>> PPLU ENTRY 00000001

PPLU Field Name Address Value
---------------------- -------- --------------------------
Atbpplu 00006298 ATBPPLU
Version number 000062A0 01
FLink - Forward link 000062A4 00000000
BLink - Backward link 000062A8 00000000
Partner LU Name 000062AC USIBMZ0.Z0A0AP04
Synpt capabilities 000062BF 6C
Log name 000062C0 ATR.C451337F19628DA3.IBM

//IXCAPPCL JOB
//STEP1 EXEC PGM=APPCLOG
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSUDUMP DD SYSOUT=*
//REPORT DD SYSOUT=*,DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)
//HELP DD DSN=SYS1.SAMPLIB(APPCLOGH),DISP=SHR
//PARMS DD DUMMY
/*

Figure 144. Example of JCL to Use the APPCLOG Utility

Appendix B. Coding the APPCLOG Utility 265



Log name Length 00006300 00000018
Flags 00006305 00010000

Xln Status 00006305 Xln_Complete, ’01’X
Init_Restart_Resync 00006306 OFF
Block IsA Duplicate 00006306 OFF
Initiating Plna 00006306 OFF

Latch 00006308 Set Token = 7F38EC00000000BD
Set Number = 0000001C

Local Xln Latch 00006314 Set Token = 7F38EC00000000BD
Set Number = 0000001A

Remote Xln Latch 00006320 Set Token = 7F38EC00000000BD
Set Number = 0000001B

ResyncCount 0000632C 00000000
Valid Block Id 00006338 00000000 00000000
ReWritten Block Id 00006340 00000000 00000000
LDeleted Block Id 00006348 00000000 00000000
Chained Block Id 00006350 00000000 00000000
ResyncLatch 00006358 Set Token = 7F38EC00000000BD

Set Number = 0000001D
Local LU Name 00006364 USIBMZ0.Z097AP03
Partner ptr 00006378 0082F828
Correlator Name 0000637C USIBMZ0.Z0A0AP04
-- Hex Dump of PPLU --
+00000000 C1E3C2D7 D7D3E440 F0F10000 00000000 *ATBPPLU 01 *
+00000010 00000000 E4E2C9C2 D4E9F04B E9F0C1F0 * USIBMZ0.Z0A0*
+00000020 C1D7F0F4 4000006C C1E3D94B C3F4F5F1 *AP04 %ATR.C451*
+00000030 F3F3F7C6 F1F9F6F2 F8C4C1F3 4BC9C2D4 *337F19628DA3.IBM*
+00000040 40404040 40404040 40404040 40404040 * *
+00000050 40404040 40404040 40404040 40404040 * *
+00000060 40404040 40404040 00000018 00010000 * *
+00000070 7F38EC00 000000BD 0000001C 7F38EC00 *"Ö } "Ö *
+00000080 000000BD 0000001A 7F38EC00 000000BD * } "Ö }*
+00000090 0000001B 00000000 00000000 00000000 * ? *
+000000A0 00000000 00000000 00000000 00000000 * *
+000000B0 00000000 00000000 00000000 00000000 * *
+000000C0 7F38EC00 000000BD 0000001D E4E2C9C2 *"Ö } USIB*
+000000D0 D4E9F04B E9F0F9F7 C1D7F0F3 40000000 *MZ0.Z097AP03 *
+000000E0 0082F828 E4E2C9C2 D4E9F04B E9F0C1F0 * b8USIBMZ0.Z0A0*
+000000F0 C1D7F0F4 40000001 *AP04 *
DEBUG: Reading Logstream ...
DEBUG: Direction=OLDTOYOUNG...
DEBUG: Browse Service Elasped 00:00:00.000319
>>> PPLU ENTRY 00000002

PPLU Field Name Address Value
---------------------- -------- --------------------------
Atbpplu 00006398 ATBPPLU
Version number 000063A0 01
FLink - Forward link 000063A4 00000000
BLink - Backward link 000063A8 00000000
Partner LU Name 000063AC USIBMZ0.Z097AP03
Synpt capabilities 000063BF 6C
Log name 000063C0 ATR.C451337F19628DA3.IBM
Log name Length 00006400 00000018
Flags 00006405 00010000

Xln Status 00006405 Xln_Complete, ’01’X
Init_Restart_Resync 00006406 OFF
Block IsA Duplicate 00006406 OFF
Initiating Plna 00006406 OFF

Latch 00006408 Set Token = 7F38EC00000000BD
Set Number = 00000020

Local Xln Latch 00006414 Set Token = 7F38EC00000000BD
Set Number = 0000001E

Remote Xln Latch 00006420 Set Token = 7F38EC00000000BD
Set Number = 0000001F

ResyncCount 0000642C 00000000
Valid Block Id 00006438 00000000 00000000
ReWritten Block Id 00006440 00000000 00000000

266 z/OS V2R1.0 MVS Planning: APPC/MVS Management



LDeleted Block Id 00006448 00000000 00000000
Chained Block Id 00006450 00000000 00000000
ResyncLatch 00006458 Set Token = 7F38EC00000000BD

Set Number = 00000021
Local LU Name 00006464 USIBMZ0.Z0A0AP04
Partner ptr 00006478 0082F88C
Correlator Name 0000647C USIBMZ0.Z097AP03
-- Hex Dump of PPLU --
+00000000 C1E3C2D7 D7D3E440 F0F10000 00000000 *ATBPPLU 01 *
+00000010 00000000 E4E2C9C2 D4E9F04B E9F0F9F7 * USIBMZ0.Z097*
+00000020 C1D7F0F3 4000006C C1E3D94B C3F4F5F1 *AP03 %ATR.C451*
+00000030 F3F3F7C6 F1F9F6F2 F8C4C1F3 4BC9C2D4 *337F19628DA3.IBM*
+00000040 40404040 40404040 40404040 40404040 * *
+00000050 40404040 40404040 40404040 40404040 * *
+00000060 40404040 40404040 00000018 00010000 * *
+00000070 7F38EC00 000000BD 00000020 7F38EC00 *"Ö } "Ö *
+00000080 000000BD 0000001E 7F38EC00 000000BD * } �"Ö }*
+00000090 0000001F 00000000 00000000 00000000 * � *
+000000A0 00000000 00000000 00000000 00000000 * *
+000000B0 00000000 00000000 00000000 00000000 * *
+000000C0 7F38EC00 000000BD 00000021 E4E2C9C2 *"Ö } ?USIB*
+000000D0 D4E9F04B E9F0C1F0 C1D7F0F4 40000000 *MZ0.Z0A0AP04 *
+000000E0 0082F88C E4E2C9C2 D4E9F04B E9F0F9F7 * b8ðUSIBMZ0.Z097*
+000000F0 C1D7F0F3 40000002 *AP03 *
DEBUG: Reading Logstream ...
DEBUG: Direction=OLDTOYOUNG...
DEBUG: Browse Service Elasped 00:00:00.000317
>>> PPLU ENTRY 00000003

PPLU Field Name Address Value
---------------------- -------- --------------------------
Atbpplu 00006498 ATBPPLU
Version number 000064A0 01
FLink - Forward link 000064A4 00000000
BLink - Backward link 000064A8 7EEDABA0
Partner LU Name 000064AC USIBMZ0.Z0B0AP04
Synpt capabilities 000064BF 6C
Log name 000064C0 ATR.C451337F19628DA3.IBM
Log name Length 00006500 00000018
Flags 00006505 00010000

Xln Status 00006505 Xln_Complete, ’01’X
Init_Restart_Resync 00006506 OFF
Block IsA Duplicate 00006506 OFF
Initiating Plna 00006506 OFF

Latch 00006508 Set Token = 7F38EC00000000BD
Set Number = 00000024

Local Xln Latch 00006514 Set Token = 7F38EC00000000BD
Set Number = 00000022

Remote Xln Latch 00006520 Set Token = 7F38EC00000000BD
Set Number = 00000023

ResyncCount 0000652C 00000000
Valid Block Id 00006538 00000000 00000000
ReWritten Block Id 00006540 00000000 00000000
LDeleted Block Id 00006548 00000000 00000000
Chained Block Id 00006550 00000000 00000001
ResyncLatch 00006558 Set Token = 7F38EC00000000BD

Set Number = 00000025
Local LU Name 00006564 USIBMZ0.Z097AP03
Partner ptr 00006578 0082F8F0
Correlator Name 0000657C USIBMZ0.Z0B0AP04
-- Hex Dump of PPLU --
+00000000 C1E3C2D7 D7D3E440 F0F10000 00000000 *ATBPPLU 01 *
+00000010 7EEDABA0 E4E2C9C2 D4E9F04B E9F0C2F0 * USIBMZ0.Z0B0*
+00000020 C1D7F0F4 4000006C C1E3D94B C3F4F5F1 *AP04 %ATR.C451*
+00000030 F3F3F7C6 F1F9F6F2 F8C4C1F3 4BC9C2D4 *337F19628DA3.IBM*
+00000040 40404040 40404040 40404040 40404040 * *
+00000050 40404040 40404040 40404040 40404040 * *
+00000060 40404040 40404040 00000018 00010000 * *

Appendix B. Coding the APPCLOG Utility 267



+00000070 7F38EC00 000000BD 00000024 7F38EC00 *"Ö } "Ö *
+00000080 000000BD 00000022 7F38EC00 000000BD * } "Ö }*
+00000090 00000023 00000000 00000000 00000000 * *
+000000A0 00000000 00000000 00000000 00000000 * *
+000000B0 00000000 00000000 00000000 00000001 * *
+000000C0 7F38EC00 000000BD 00000025 E4E2C9C2 *"Ö }
USIB*
+000000D0 D4E9F04B E9F0F9F7 C1D7F0F3 40000000 *MZ0.Z097AP03 *
+000000E0 0082F8F0 E4E2C9C2 D4E9F04B E9F0C2F0 * b80USIBMZ0.Z0B0*
+000000F0 C1D7F0F4 40000003 *AP04 *
DEBUG: Reading Logstream ...
DEBUG: Direction=OLDTOYOUNG...
DEBUG: Browse Service Elasped 00:00:00.000557
>>> PPLU ENTRY 00000004

PPLU Field Name Address Value
---------------------- -------- --------------------------
Atbpplu 00006598 ATBPPLU
Version number 000065A0 01
FLink - Forward link 000065A4 00000000
BLink - Backward link 000065A8 00000000
Partner LU Name 000065AC USIBMZ0.Z097AP03
Synpt capabilities 000065BF 6C
Log name 000065C0 ATR.C451337F19628DA3.IBM
Log name Length 00006600 00000018
Flags 00006605 00010000

Xln Status 00006605 Xln_Complete, ’01’X
Init_Restart_Resync 00006606 OFF
Block IsA Duplicate 00006606 OFF
Initiating Plna 00006606 OFF

Latch 00006608 Set Token = 7F38EC00000000BD
Set Number = 00000028

Local Xln Latch 00006614 Set Token = 7F38EC00000000BD
Set Number = 00000026

Remote Xln Latch 00006620 Set Token = 7F38EC00000000BD
Set Number = 00000027

ResyncCount 0000662C 00000000
Valid Block Id 00006638 00000000 00000000
ReWritten Block Id 00006640 00000000 00000000
LDeleted Block Id 00006648 00000000 00000000
Chained Block Id 00006650 00000000 00000000
ResyncLatch 00006658 Set Token = 7F38EC00000000BD

Set Number = 00000029
Local LU Name 00006664 USIBMZ0.Z0B0AP04
Partner ptr 00006678 0082F954
Correlator Name 0000667C USIBMZ0.Z097AP03
-- Hex Dump of PPLU --
+00000000 C1E3C2D7 D7D3E440 F0F10000 00000000 *ATBPPLU 01 *
+00000010 00000000 E4E2C9C2 D4E9F04B E9F0F9F7 * USIBMZ0.Z097*
+00000020 C1D7F0F3 4000006C C1E3D94B C3F4F5F1 *AP03 %ATR.C451*
+00000030 F3F3F7C6 F1F9F6F2 F8C4C1F3 4BC9C2D4 *337F19628DA3.IBM*
+00000040 40404040 40404040 40404040 40404040 * *
+00000050 40404040 40404040 40404040 40404040 * *
+00000060 40404040 40404040 00000018 00010000 * *
+00000070 7F38EC00 000000BD 00000028 7F38EC00 *"Ö } "Ö *
+00000080 000000BD 00000026 7F38EC00 000000BD * } "Ö }*
+00000090 00000027 00000000 00000000 00000000 * *
+000000A0 00000000 00000000 00000000 00000000 * *
+000000B0 00000000 00000000 00000000 00000000 * *
+000000C0 7F38EC00 000000BD 00000029 E4E2C9C2 *"Ö } USIB*
+000000D0 D4E9F04B E9F0C2F0 C1D7F0F4 40000000 *MZ0.Z0B0AP04 *
+000000E0 0082F954 E4E2C9C2 D4E9F04B E9F0F9F7 * b9èUSIBMZ0.Z097*
+000000F0 C1D7F0F3 40000004 *AP03 *
DEBUG: Reading Logstream ...
DEBUG: Direction=OLDTOYOUNG...
DEBUG: Browse Service Elasped 00:00:00.003549
End of Logstream
Dumping Scratch Pad: Start

268 z/OS V2R1.0 MVS Planning: APPC/MVS Management



SCRATCH PAD CREATED SUCCESSFULLY
Scratch Pad Field Name Address Value
---------------------- -------- --------------------------
ScratchPad_Id 00015000 ATBSCRPD
OldestBlockid 00015008 00000000 00000000
RewrittenBlockid 00015010 00000000 00000000
LocalLuEntries 00015018 0000
LogDelBlockEntries 0001501A 0000
Dumping Scratch Pad: End
DEBUG: Issuing IXGCONN request=DISCONNECT...

APPCLOG Analysis Dump
The following is an example of the analysis report APPCLOG generates when the
ANAYLYZE=YES parm is specified. In this example, APPCLOG has discovered the
errors described in the list below:
v PPLU number 1 has an invalid eye catcher.
v The version number for PPLU number 1 is not correct.
v The fields Logically Deleted BlockId and Rewritten Block Id in PPLU number 1

have incompatible values.
v The field Partner LU Name in PPLU number 1 contains an invalid character.
v The field Logname in PPLU number 1 contains an invalid character.
v The field Local LU Name in PPLU number 1 contains an invalid character.
v The field Correlator Name in PPLU number 1 contains an invalid character.
v PPLU number 1 and PPLU number 2 are duplicates, meaning that both have the

same values in their Partner LU Name and Local LU Name fields.
v PPLU number 2 and PPLU number 1 are duplicates, a repeat of the error found

earlier.
v The Scratch Pad has and invalid eye catcher.

Note: The examples of the Formatted dump and Analysis dump were created from
different log streams.
---------- APPCLOG Analyze Data ----------
PPLU number 00000001 has an eyecatcher which is not ’ATBPPLU ’
PPLU number 00000001 has a version number which is not 01
PPLU number 00000001

Has a Logically Deleted BlockId: 00000000 00000020
and the Rewritten BlockId: 00000000 00000010
They cannot both be non-zero

PPLU number 00000001 the field ’Partner LU Name ’
has an invalid character in postion 00000003

PPLU number 00000001 the field ’Logname ’
has an invalid character in postion 00000006

PPLU number 00000001 the field ’Local LU Name ’
has an invalid character in postion 00000010

PPLU number 00000001 the field ’Correlator Name ’
has an invalid character in postion 00000005

PPLU number 00000001 is a duplicate of PPLU entry 00000002
PPLU number 00000002

Has a Logically Deleted BlockId: 00000000 00000020
and the Rewritten BlockId: 00000000 00000010
They cannot both be non-zero

PPLU number 00000002 is a duplicate of PPLU entry 00000001
The Scratch Pad has an eyecatcher which is not ’ATBSCRPD’

To see the actual invalid data refer, see “APPCLOG Formatted Dump” on page 265
and find the appropriate PPLU and field. For example, the error message
PPLU number 00000001 has an eyecatcher which is not ’ATBPPLU ’

Appendix B. Coding the APPCLOG Utility 269



would be generated if you saw the following eye catcher value.
>>> PPLU ENTRY 00000001

PPLU Field Name Address Value
---------------------- -------- --------------------------
Atbpplu 00006298 ATBPXXX

270 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Appendix C. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1991, 2013 271

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/


exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 \* FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* \* FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

272 z/OS V2R1.0 MVS Planning: APPC/MVS Management



(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix C. Accessibility 273



274 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1991, 2013 275



IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS™, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

276 z/OS V2R1.0 MVS Planning: APPC/MVS Management



for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming Interface Information
This document primarily documents information that is NOT intended to be used
as a Programming Interface of z/OS.

This document also documents information that is intended to be used as a
Programming Interface. This information is identified where it occurs, either by an
introductory statement to a chapter or section or by the following marking:

Programming Interface Information

End of Programming Interface Information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).

Notices 277

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml


278 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Glossary

This glossary defines technical terms and
abbreviations used in APPC/MVS documentation.
If you do not find the term you are looking for,
refer to the index of the appropriate APPC/MVS
book or view the IBM Glossary of Computing
Terms, located on the Internet at:
http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from
American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standard (ANSI).
Copies may be purchased from the American
National St Institute, 11 West 42nd Street, New
York, New York 10036.

A

access method control block (ACB)
A control block that links an application
program to an access method such as
VSAM or VTAM.

access method
A software component in a processor for
controlling the flow of information.

adjacent nodes
Nodes that are connected to a given node
by one or more links with no intervening
nodes.

Advanced Program-to-Program Communication
(APPC)

A set of inter-program communication
services that support cooperative
transaction processing in a SNA network.
APPC is the implementation, on a given
system, of SNA's logical unit type 6.2. See
also logical unit type 6.2 and APPC/MVS.

allocate queue
In APPC, a structure containing elements
that represent requests to allocate (start) a
conversation with an APPC/MVS server.
APPC/MVS queues allocate requests on a
first-in, first-out (FIFO) basis until they
are selected (received) by an APPC/MVS
server.

allocate queue keep time
An APPC/MVS server can specify a keep
time for an allocate queue for which it is
registered. Keep time is the number of

seconds APPC/MVS maintains an allocate
queue when there are no servers for an
allocate queue. For example, keep time
would take effect when the last server of
an allocate queue unregisters.

allocate queue token
When an APPC/MVS server registers to
serve inbound allocate requests,
APPC/MVS returns an allocate queue
token to the server. This token uniquely
identifies the queue of allocate requests
(or allocate queue) to be served. On
subsequent calls to APPC/MVS services,
the server uses the allocate queue token
to indicate the allocate queue upon which
a requested function is to be performed.

allocate request
In APPC, a request from a transaction
program to allocate (start) a conversation
with another transaction program. The
request may be inbound (arriving from
the network for a local transaction
program) or outbound (going from a local
transaction program onto the network).

APPC See Advanced Program-to-Program
Communication.

APPC component
The component of MVS that is
responsible for extending LU 6.2 and CPI
Communications services to applications
running in any MVS address space.
Includes APPC conversation and
scheduling services.

APPC/MVS
The implementation of SNA's LU 6.2 and
related communication services in the
MVS base control program.

APPC/MVS server
In APPC, an MVS application program
that uses the APPC/MVS
Receive_Allocate callable service to
process work requests on behalf of one or
more requestor programs (client TPs). An
APPC/MVS server can serve multiple
client TPs serially or concurrently.

APPC/MVS transaction scheduler
A program supplied by APPC/MVS that
is responsible for scheduling, initiating,

© Copyright IBM Corp. 1991, 2013 279

http://www.ibm.com/software/globalization/terminology/


and terminating MVS TPs in response to
inbound work requests.

APPC/VM
The implementation of APPC on a VM
system.

APPC/VTAM
The implementation of APPC on VTAM.

Application-to-application communication
A set of inter-program communication
services that support cooperative
transaction processing in an SNA
network. See also logical unit type LU 6.2.

application
A collection of software components, or
programs, used to perform specific types
of user-oriented work on a computer.
Compare with distributed application.

B

backout
The process of restoring data changed by
an application program to the state at its
last sync point. Synonymous with rollback
and abort

base logical unit
In APPC/MVS, the default logical unit for
outbound work. When a transaction
program allocates a conversation but
leaves the Local_LU_name parameter
blank, the system can use a base LU to
handle the conversation. A base LU can
be associated with a transaction scheduler,
or it can be a NOSCHED LU.

See also system base LU.

basic conversation
A type of conversation in which programs
exchange data records in an SNA-defined
format. This format is a stream of data
containing 2-byte length prefixes that
specify the amount of data to follow
before the next prefix. Contrast with
mapped conversation.

bind In SNA, a request to activate a session
between two logical units.

boundary function
A capability of a subarea node to provide
protocol support for attached peripheral
nodes.

C

call See communication call.

change number of sessions
This is a set of verbs provided by SNA
that allow an application to change the
(LU,mode) session limit, which controls
the number of LU-LU sessions per mode
name that are available between two LUs
for allocation to conversations.

class of service
A designation of the path control network
characteristics, such as path security,
transmission priority, and bandwidth, that
apply to a particular session.

client A functional unit that receives shared
services from a server.

client/server
The model of interaction in distributed
data processing in which a program at
one site sends a request to a program at
another site and awaits a response. The
requesting program is called a client; the
answering program is called a server.

CNOS See change number of sessions.

commit
To end the current scope of recovery and
begin a new one.

To make all changes permanent that were
made to one or more database files since
the last commit or backout operation, and
make the changed records available to
other users.

committed change
A database change that will not be backed
out during system failure. Changes made
by a logical unit of work are committed
when the sync point at the end of the
logical unit of work is complete.

Common Programming Interface
Provides languages, commands and calls
that allow the development of
applications that are more easily
integrated and moved across multiple
environments.

communication call
A conversation statement that transaction
programs can issue to communicate
through the LU 6.2 protocol boundary.
The specific calls that a transaction

280 z/OS V2R1.0 MVS Planning: APPC/MVS Management



program can issue are determined by the
program's current conversation state. See
also verb.

communication controller node
A subarea node that contains a network
control program.

communications interface
A uniform set of calls within the Common
Programming Interface that different
systems use to request services. See also
communication call and verb.

configuration
The arrangement of a computer system or
network as defined by the nature,
number, and chief characteristics of its
functional units.

contention loser
When the LUs at both ends of a session
request to allocate a conversation
simultaneously, the contention loser is the
LU that must request and receive
permission from the session partner LU to
allocate the conversation. Contrast with
contention winner.

contention winner
When the LUs at both ends of a session
request to allocate a conversation
simultaneously, the contention winner is
the LU that can allocate the conversation
without requesting permission from the
session partner LU. Contrast with
contention loser.

conversation
A logical connection between two
programs over an LU type 6.2 session that
allows them to communicate with each
other while processing a transaction. See
also basic conversation and mapped
conversation.

conversation characteristics
The attributes of a conversation that
determine the functions and capabilities
of programs within the conversation.

conversation_ID
An 8-byte identifier, used in
Get_Conversation calls, that uniquely
identifies a conversation. It is returned
from APPC/MVS on the CMINIT,
ATBALC2, ATBALLC, ATBGETC, and
ATBRAL2 calls and is required as input
on subsequent APPC/MVS calls.

conversation partner
One of the two programs involved in a
conversation.

conversation state
The condition of a conversation that
reflects what the past action on that
conversation has been and that
determines what the next set of actions
may be.

coupling services
In a sysplex, the functions of XCF that
transfer data and status among members
of a group residing on one or more MVS
systems in the sysplex.

CPI See Common Programming Interface.

cross-system coupling facility (XCF)
XCF provides the MVS coupling services
that allow programs on MVS systems in a
multisystem environment to communicate
(send and receive data) with programs on
MVS systems.

D

database token
In APPC/MVS, a 1- through 8-character
name used in a security definition to
represent a TP profile or side information
file name.

data channel
A device that connects a processor and
main storage with I/O control units.

data link control protocol
Specifications for interpreting control data
and transmitting data across a link.

directory services
Services for resolving user identifications
of network components to network
routing information.

domain
A system services control point (SSCP)
and the resources that it can control.

E

end user
The ultimate source or destination of data
flowing through an SNA network. An end
user can be an application program or a
workstation operator.

event queue
Each APPC/MVS server can be associated

Glossary 281



with an event queue. A server can request
to be notified of events related to an
allocate queue for which it is registered.
When such an event occurs, APPC/MVS
places an element on the server's event
queue. The server can determine which
event occurred by examining the element
(through the Get_Event service).

F

FMH-5
Functional Management Header 5 -- an
SNA data structure that APPC uses to
pass requests to allocate transaction
program conversations between logical
units.

fully qualified name
Synonym for network-qualified name.

G

generic resource name
A name that represents multiple
APPC/MVS logical units (LUs) that
provide the same function in order to
handle session distribution and balancing.

generic userid
In APPC/MVS, a userid, specified in the
TP profile, that provides the initial
security environment for a multi-trans TP.
The generic userid covers the TP's initial
processing until a successful
Get_Transaction call is made. The generic
userid also covers termination processing,
and any processing following a
Return_Transaction call until a subsequent
successful Get_Transaction call.

H

half-duplex protocol
A communications protocol where only
one communications partner can send
data at a time.

host node
A subarea node that contains a system
services control point.

I

inbound request
A request arriving at a logical unit (LU)
from a partner transaction program. The
LU must establish the environment and

start the local transaction program that is
to handle the request. See also allocate
request.

inbound transaction program
A transaction program on MVS that is
initiated and scheduled in response to an
inbound request from a partner
transaction program. Contrast with
outbound transaction program.

J

JCL See Job Control Language.

JECL See Job Entry Control Language.

Job Control Language
A problem-oriented language designed to
express statements in a job that identify
the job or describe its requirements to an
operating system.

Job Entry Control Language
A problem-oriented language designed to
express statements in a job that describe
its requirements to an operating system's
job entry subsystem.

jobid See job identifier.

job identifier
The job identifier is a unique value that
can be used to uniquely identify a JES job.

K

keep time
see allocate queue keep time

L

layer A layer is a grouping of related functions
that are logically separate from other
functions; the implementation of the
functions in one layer can be changed
without affecting functions in other
layers.

link A link is a transmission medium and data
link control component that together
transmit data between adjacent nodes.

local transaction program
The program being discussed within a
particular context. Contrast with partner
transaction program.

logical unit
A port providing formatting, state
synchronization, and other high-level

282 z/OS V2R1.0 MVS Planning: APPC/MVS Management



services through which an end user
communicates with another end user over
an SNA network.

logical unit of work
The processing a program performs from
one sync point to the next.

logical unit type 6.2
The SNA logical unit type that supports
general communication between
programs in a cooperative processing
environment; the SNA logical unit type
on which CPI communications and
APPC/MVS TP conversation services are
built.

logon mode
A logon mode contains the parameters
and protocols that determine a session's
characteristics. Logon modes are defined
in VTAM's mode table in SYS1.VTAMLIB.

LU See logical unit.

LU=local
In APPC/MVS, a situation in which a
pair of communicating transaction
programs are on the same MVS system.

LU=own
In SNA terms, a situation in which a pair
of communicating transaction programs
are defined to the same logical unit (LU).

M

management services
In SNA, functions distributed among
network components to operate, manage,
and control the network.

mapped conversation
A type of conversation in which programs
exchange data records with arbitrary data
formats agreed upon by the applications
programmers. Mapped conversations use
mapped verbs that do not require the
prefix information used in basic verbs.
Contrast with basic conversation.

mode name
A symbolic name for a set of session
characteristics. For LU 6.2, a mode name
and a partner LU name together define a
session or a group of parallel sessions
having the same characteristics.

multi-trans
Multi-trans scheduling allows properly
designed TPs to remain active between

conversations and handle multiple
inbound conversations in sequence,
without having to deallocate and
reallocate resources. Because they can be
accessed by multiple users, multi-trans
TPs are responsible for the security of
their resources and conversations.
Contrast with standard.

multi-trans shell
The outer level of a transaction program
with a TP_schedule_type of multi-trans,
which sets up an environment and
accepts inbound conversation requests in
sequence by calling the Get_Transaction
(ATBGTRN) service. The shell may also
call the Return_Transaction (ATBRTRN)
service to restore its shell environment for
other processing between conversations.
For more information, see
TP_Schedule_Type.

N

network addressable unit
A logical unit, physical unit, or system
services control point.

network-qualified name
A name that uniquely identifies a specific
resource (such as an LU) within a specific
network. It consists of a network
identifier and a resource name, each of
which is a 1- to 8-byte symbol string.
Synonymous with fully qualified name.

node An end point of a link, or a junction
common to two or more links in a
network. Nodes can be processors,
controllers, or workstations. Nodes can
vary in routing and other functional
capabilities.

NOSCHED logical unit (LU)
In APPC/MVS, a logical unit (LU) that is
not associated with a transaction
scheduler. Such LUs do not require a
transaction scheduler to be started to be
active. NOSCHED LUs are used by
outbound transaction programs and
APPC/MVS servers.

O

one-way-half duplex
The format of APPC communications
between two transaction programs. One
transaction program is in ‘send’ state and
the other is in ‘receive’ state.

Glossary 283



outbound request
A request arriving at a logical unit (LU)
from a local transaction program. The LU
must place the request on the SNA
network. See also allocate request.

outbound transaction program
In APPC, a transaction program that
requests a conversation with a partner
(inbound) transaction program. The
outbound TP issues an allocate request to
allocate (start) the conversation. Contrast
with inbound transaction program.

P

pacing
A technique by which a receiving
component controls the rate of
transmission by a sending component to
prevent overrun or congestion.

partner
See conversation partner.

partner transaction program
The program at the other end of a
conversation with respect to the local
program. Contrast with local program.

peripheral node
A node that uses local addresses and
therefore is not affected by changes in
network addresses. A peripheral node
requires boundary function assistance
from an adjacent subarea node.

persistent sessions
The option for VTAM persistent sessions
allows LU-LU sessions to remain active
during interruptions in APPC/MVS
service and preserves conversation
requests until APPC/MVS service
resumes. The PSTIMER parameter in the
APPCPMxx parmlib member's LUADD
statement controls whether sessions
persist and for how long.

persistent verification
Persistent verification (PV) is a way of
reducing the number of password
transmissions, by eliminating the need to
provide a userid and password on each
attach (allocate) during multiple
conversations between a user and a
remote LU. The user is verified during
the sign-on process and remains verified
until the user has been signed-off the
remote LU.

physical unit
The component that manages and
monitors the resources of a node as
requested by a system services control
point.

privilege
An identification that a product or
installation defines in order to
differentiate SNA service transaction
programs from other programs, such as
application programs.

protected conversation
An LU 6.2 conversation that has a
synchronization level of syncpt, and that
supports two-phase commit protocols for
resource recovery and resynchronization
protocols. Contrast with unprotected
conversation.

protected resource
A resource defined to RACF for the
purpose of controlling access to the
resource. Some of the resources that can
be protected by RACF are DASD and tape
data sets, DASD volumes, tape volumes,
terminals, and any other resources
defined in the class descriptor table.

A resource (for example, a database) that
can be modified only in accordance with
two-phase commit protocols.

protocol
The meaning of, and the sequencing rules
for, requests and responses used for
managing a network, transferring data,
and synchronizing the states of network
components.

protocol boundary
A software connection between nodes that
provides program-to-program
communication through either a set of
conversation verbs or high-level language
subroutine calls.

PU See physical unit.

R

receive state
The condition of a conversation in which
a transaction program can receive data.

registered transaction program
A transaction program that performs a
specialized function on behalf of an LU.

284 z/OS V2R1.0 MVS Planning: APPC/MVS Management



resource
Any facility of a computing system or
operating system required by a job or
task, and including main storage,
input/output devices, the processing unit,
data sets, and control or processing
programs.

S

SDLC See Synchronous Data Link Control.

SDSF See System Display and Search Facility.

security information
For APPC/MVS, a userid, password, and
security profile name passed on an
allocate request from a transaction
program to its partner. The partner's
system can verify the information and
permit or deny the request accordingly.

security profile
For APPC/MVS, an optional character
string passed as security information on
an allocate request from a transaction
program to its partner. When the partner
is on MVS with RACF protection, the
system treats the security profile as a
RACF groupid, and can verify that the
requester has access to that group.

send state
The condition of a conversation in which
a transaction program can send data or
request resource synchronization.

served transaction program (TP)
In APPC/MVS, a transaction program
that is processed by an APPC/MVS
server, rather than by a partner TP that
has been scheduled by a transaction
scheduler.

server A functional unit that provides shared
services to workstations over a networks;
for example, a file server, a print server, a
mail server. See also APPC/MVS server.

session
A logical connection between two logical
units that can be activated, tailored to
provide various protocols, and
deactivated as requested.

shell, multi-trans
See multi-trans shell.

shell, test
See test shell.

side information
A collection of system-defined values for
transaction programs whose partners call
them by symbolic destination names
(sym_dest_names). When a transaction
program calls its partner by a
sym_dest_name, APPC uses the
associated values to establish a
conversation between them.

SJF See scheduler JCL facility.

SNA See Systems Network Architecture

SNA service transaction program
An IBM-supplied transaction program
running in an LU that provides utility
services to application transaction
programs or that manages LUs.

SPI See systems programming interface.

SSCP See system services control point.

SSI See subsystem interface.

standard
The standard TP_Schedule_Type for
APPC/MVS. TPs that are scheduled as
standard are initialized and terminated
for each inbound conversation. Contrast
with multi-trans.

standard transaction program
See transaction program.

state See conversation state.

state transition
The act of moving from one conversation
state to another.

subarea
A portion of an SNA network that
consists of a subarea node, and any
attached links and peripheral nodes.

subordinate address space
An address space, managed by a
transaction scheduler, in which a
transaction program runs.

subsystem interface
The subsystem interface (SSI) is the means
by which MVS system routines request
services of the master subsystem, a job
entry subsystem, or any subsystem
defined to MVS through the subsystem
definition process.

symbolic destination name
A variable that specifies the symbolic
name of the destination LU and partner

Glossary 285



program, as well as the mode name for
the session carrying the conversation. The
symbolic destination name is provided by
the transaction program and points to an
entry in the side information.

Synchronous Data Link Control
A discipline for managing synchronous,
code-transparent, serial-by-bit,
information transfer over a link. SDLC
conforms to subsets of the Advanced Data
Communication Control Procedures
(ADCCP) of the American National
Standards Institute and High-level Data
Link Control (HDLC) of the International
Standards Organization.

sync point
An intermediate or end point during
processing of a transaction at which an
update or modification to one or more of
the transaction's protected resources is
logically complete and error free.
Synonymous with synchronization point,
commit point, and point of consistency.

sync point manager (SPM)
The component of the node that
implements two-phase commit and
resynchronization processing. In an MVS
system, the component is RRS.

SYSOUT
A system output stream; also, an indicator
used in data definition statements to
signify that a data set is to be written on
a system output unit.

sysplex
A sysplex (systems complex) is the set of
one or more MVS systems that is given
an XCF sysplex name and in which
programs in the systems can then use
XCF services.

system base LU
A logical unit that is the default LU for
outbound work requests from MVS
programs (TSO/E users, started tasks,
and other work) that are not associated
with a scheduler or an LU. The system
base LU is either:
v An LU defined with the NOSCHED

and BASE parameters, or
v If a base NOSCHED LU is not defined,

the LU defined as the base LU for the
APPC/MVS transaction scheduler.

System Display and Search Facility
The System Display and Search Facility is
a program product that acts as a system
management aid allowing users to
efficiently analyze and control the
operation of an MVS/JES2-based system.

system services control point
A focal point within an SNA network for
managing the configuration, coordinating
network operator and problem
determination requests, and providing
directory services and other session
services for end users of a network.
Multiple SSCPs, cooperating as peers with
one another, can divide the network into
domains of control, with each SSCP
having a hierarchical control relationship
to the physical units and logical units
within its own domain.

Systems Network Architecture (SNA)
A description of the logical structure,
formats, protocols, and operational
sequences for transmitting information
units through, and controlling the
configuration and operation of networks.

systems programming interface (SPI)
Provides languages, commands and calls
that allow the development of
applications that are more easily
integrated and moved across multiple
environments.

T

telecommunication link
A physical medium, such as a wire or
microwave beam, that is used to transmit
data.

test shell
A program that sets up an environment to
test transaction programs in its own
address space, using APPC/MVS Test
services. The TSO/E TEST command is an
example of a test shell.

TP See transaction program.

TP instance
A copy of a transaction program (TP) on
MVS, scheduled and initiated in response
to an inbound allocate request. A TP
instance differs from a TP in that a TP is a
program using communication functions
and a TP instance is the actual processing
of those functions in MVS. Multiple

286 z/OS V2R1.0 MVS Planning: APPC/MVS Management



instances of the same TP can run
simultaneously, each in response to a
separate request and on behalf of a
different user.

See also TP_ID.

TP message log
A log that contains runtime messages for
a transaction program. The parameters
that define the TP message log are in the
program's TP profile and in an
ASCHPMxx parmlib member.

TP profile
The information required to establish the
environment for and attach a transaction
program on MVS, in response to an
inbound allocate request for that
transaction program.

TP_ID Transaction Program Identifier: a unique
8-character token that APPC/MVS assigns
to each instance of a transaction program.
When multiple instances of a transaction
program are running simultaneously, they
have the same transaction program name,
but each has a unique TP_ID.

TP_Schedule_Type
A type of transaction program, based on
attributes provided by the transaction
programmer. Those attributes can
influence the performance of the
transaction program, and must be
reflected in the TP profile. For more
information about specific
TP_Schedule_Types in APPC/MVS, see
standard and multi_trans.

transaction
A unit of work performed by one or more
transaction programs, involving a specific
set of input data and initiating a specific
process or job.

transaction initiator
A program that runs in a subordinate
address space of the APPC/MVS
transaction scheduler and initiates an
APPC transaction program in response to
an inbound request.

transaction program (TP)
A program used for cooperative
transaction processing within an SNA
network. For APPC/MVS, any program
on MVS that issues APPC/MVS or CPI
Communication calls, or is scheduled by
the APPC/MVS transaction scheduler.

transaction scheduler
A scheduler program that is responsible
for job management of incoming work
requests from cooperative transaction
programs. The default transaction
scheduler for APPC/MVS is the
APPC/MVS transaction scheduler;
however, an installation can define and
use alternative transaction schedulers for
specific applications.

two-phase commit
The protocol that permits updates to
protected resources to be committed or
backed out as a unit. During the first
phase, resource managers are asked if
they are ready to commit. If all resource
managers respond positively, they are
asked to commit their updates. Otherwise,
the resource managers are asked to back
out their updates.

The protocols used by the sync point
manager to accomplish a commit
operation.

U

unit of recovery
A sequence of operations within a unit of
work between sync points.

unit_of_work_id
An 8-character ID assigned by a
transaction scheduler to an inbound
allocate request. The APPC/MVS
transaction scheduler uses this value as
the job ID when the inbound TP is
initiated on MVS.

unprotected conversation
An LU 6.2 conversation that has a
synchronization level of none or confirm.
If conversation errors or failures occur, the
resources used by the application might
be in inconsistent states. Contrast with
protected conversation.

userid (1) A symbol identifying a system user. (2)
A code that uniquely identifies a user to
the system.

user token
A collection of identity and security
information that represents a user or a
job. The token contains a userid, groupid,
security class, origin node, and session

Glossary 287



type, where session type is TSO/E logon,
started task, batch job, operator, or trusted
computing base.

UTOKEN
See user token.

V

verb The SNA term for a conversation function
that transaction programs can use to
communicate with each other through the
LU 6.2 protocol boundary. The SNA verbs
provide similar functions but are
implemented differently on the different
systems (MVS, VM, OS/2 and OS/400)
that support them. See also communication
call.

W

work_unit_identifier (WUID)
See unit_of_work_id.

X

XCF See cross-system coupling facility.

288 z/OS V2R1.0 MVS Planning: APPC/MVS Management



Index

Special characters
&SYSUID 49, 75
&SYSWUID 49, 75
&TPDATE 49, 75
&TPTIME 49, 75

Numerics
00640 character set

contents 259
01134 character set

contents 259

A
ACBNAME parameter

in a VTAM APPL statement 120
accessibility 271

contact IBM 271
features 271

account information
extracting from RACF user

profiles 177
used in SMF records 234

account number
from TP profiles 73, 74, 234
tailoring 73, 234

administration dialog
checking scheduler JCL syntax 97
customizing 103
database token administration 96
description 95
getting help information 99
installing 99
receiving messages 98
side information administration 96
TP profile administration 96
using the panel interface 95

input fields 97
issuing commands 97
PF keys 97
REQAPPC OFF 97
REQAPPC ON 97

administration utility
adding a database token 86
adding a TP profile 85
adding a TP profile alias 85
adding side information 86
commands 85

DBMODIFY command 86
DBRETRIEVE command 86
required data 87
SIADD command 86
SIDELETE command 86
SIKEYS command 86
SIMODIFY command 86
SIRETRIEVE command 86
syntax rules 88
TPADD command 85
TPALIAS command 85

administration utility (continued)
commands (continued)

TPDELETE command 85
TPKEYS command 85
TPMODIFY command 86
TPRETRIEVE command 86

deleting a TP profile 85
deleting side information 86
description 85
examples

adding a multi-trans TP
profile 94

adding a standard TP profile 94
adding a TP profile alias 94
adding a TP profile for a

non-APPC scheduler 94
adding side information 94
deleting side information 94
modifying a database token 94
modifying a TP profile 94
modifying side information 94
retrieving a database token 94
retrieving a TP profile 94
retrieving side information 94
retrieving side information

keys 94
retrieving TP profile keys 94

giving program access 169
invoking 89

from application program 91
from REXX program 92
type of invocation 90

JCL (job control language) 89
modifying a database token 86
modifying a TP profile 86
modifying side information 86
retrieving a database token 86
retrieving a TP profile 86
retrieving side information 86
retrieving side information keys 86
retrieving TP profile keys 85
return codes 93
syntax requirements 87

administrative system file
defining 66
relation to LUs 66
side information

number of files to define 66
overview 15

size of each 67
TP profile

number of files to define 66
overview 15

Advanced Program-to-Program
Communication 188

allocate queue service
description 14

allocate request
inbound

definition 8

allocate request (continued)
outbound

definition 8
API trace facility

ATBTRACE REXX exec
starting, stopping, and listing trace

activity 226
managing use

planning for trace data sets 226
restoring tracing capability 227

overview 226
security requirements

for security_none
conversations 176

for trace resources 174
APPC (Advanced Program-to-Program

Communication)
overview 3
overview of password

maintenance 188
planning overview 23

APPC address space
immediately stopping 213
starting with the START

command 205
APPC data

buffer size
changing 240

APPC environment
maintaining MVS passwords

from 180
APPC/MVS

administration dialog 95
administration utility 85
callable services

overview 12
definition 11
management tasks

program management 26
security management 26
session management 26
system management 26

measurement 231
performance 231
planning 23
relation to APPC/VTAM 11
restarting 206
security mechanisms 155
security requirements 151
server 17
setting up a session 117
starting 206
stopping APPC/MVS work

summary 215
transaction scheduler 17, 36
tuning 231

APPC/MVS (Advanced
Program-to-Program
Communication/MVS)

abend 228
address space 227

© Copyright IBM Corp. 1991, 2013 289



APPC/MVS (Advanced
Program-to-Program
Communication/MVS) (continued)

initialization problem 227
recovery

address space 227
transaction scheduler 229

transaction scheduler 229
APPC/MVS allocate queue services

description 14
APPC/MVS environment

changing 207
changing with the SET

command 207
changing with VTAM commands 208
tracking changes

ASBxxx and ATBxxx
messages 217

SMF type 90 records 217
APPC/MVS server 17

displaying status 219
appclog utility 263
APPCLU class

activating 163
defining profiles in 158

APPCMVS.DBTOKEN profile in
FACILITY class 170

APPCMVS.TP.MULTI profile in
FACILITY class 173

APPCPMxx parmlib member
changing with the SET

command 207
controlling configuration

through 137
default values 137
description 137
examples using 144
hardcopy log of activity 146
LUADD statement 138, 140
LUDEL statement 142
SIDEINFO statement 143
starting with the START

command 206
tracking changes 146
values

changing 137
planning specific 138

APPCPORT class
activating 168
defining profiles in 167

APPCSI class
activating 171
defining profiles in 170

APPCTP class
activating 172
defining profiles in 171

APPL statement
example 120
parameter description 121

ASBSCHWL write log routine 48
ASCH address space

immediately stopping 213
starting with the START

command 205
ASCHPMxx parmlib member

changing scheduling
characteristics 51

ASCHPMxx parmlib member (continued)
changing with the SET

command 207
CLASSADD statement 53, 55
CLASSDEL statement 57
default scheduling characteristics 51
defining a class 53

example 54
defining a default class 58

example 58
defining default scheduler options 59

example 59
deleting a class 57

example 57
description 51
examples using 60
hardcopy log of activity 62
modifying a class 55

example 56
OPTIONS statement 58
planning values 53
starting with the START

command 206
TPDEFAULT statement 59
tracking changes 61

assistive technologies 271
ATBMINO 181
ATBMINO sample program

compile procedure 199
defining to Communications

Manager 199
description 188
diagnosis 191
download procedure (executable

code) 199
error panel 191
installation overview 198
installation procedure 199
MVS data set 199

ATBMINOS 181
ATBMIPWS 181
ATBSDFMU administration utility 85

invoking 89
ATBTRACE REXX exec

starting, stopping, and listing trace
activity 226

B
buffer

for APPC received data
changing 240

BUFSTOR parameter 240

C
callable services

overview 12
CANCEL command

stopping a single instance of a
TP 213

stopping the APPC and ASCH
address spaces 213

character set
used in APPC/MVS 259

class of transaction initiators
defining 53
defining a default 58
deleting 57, 210
description 36
improving performance 238
modifying 55

CLASSADD statement 53, 55
CLASSDEL statement 57
command

administration utility 85
DBMODIFY command 86
DBRETRIEVE command 86
SIADD command 86
SIDELETE command 86
SIKEYS command 86
SIMODIFY command 86
SIRETRIEVE command 86
TPADD command 85
TPALIAS command 85
TPDELETE command 85
TPKEYS command 85
TPMODIFY command 86
TPRETRIEVE command 86

system
CANCEL command 213
DISPLAY command 36, 62, 147,

207, 220
FORCE command 213
SET command 207, 210
START command 205
STOP command 209

VTAM
MODIFY command 208
VARY command 208

COMUPASS 181
COMUPASS sample program

changing an unexpired
password 190

command syntax 190
compile procedure 199
description 188
diagnosis 191
download procedure (executable

code) 199
error panel 192
installation overview 198
installation procedure 199
MVS data set 199
user message 196

configuration
controlling through APPCPMxx 137
tracking changes 146
viewing the current 147

contention between LUs
definition 11
loser 11
winner 11

conversation
definition for APPC 7
flow diagram

one-way conversation 6
inbound

definition 8
overview 19

outbound
definition 8

290 z/OS V2R1.0 MVS Planning: APPC/MVS Management



conversation (continued)
outbound (continued)

overview 18
security for API tracing 174
security levels 162
security mechanisms 156
specifying a logon mode 126
state

definition 8
conversation_ID

definition 7
CPI (Common Programming Interface)

Communications
programming scenario 6
relation to APPC 5

D
database token 170

adding 86
controlling access to 170
modifying 86
retrieving 86
using to define levels of security 172

DBMODIFY utility command 86
DBRETRIEVE utility command 86
default class

definition in ASCHPMxx 58
default scheduling options

definition in ASCHPMxx 59
default value

for APPCPMxx 137
for ASCHPMxx 51

diagnosis
errors in APPC/MVS TPs 226
for password maintenance sample

program 191
using the TP message log 42

DISPLAY command 62, 147
APPC/MVS transaction scheduler

option 36
monitoring APPC/MVS work 207

E
encryption

of APPC data and security
information 200

error log information
sending to a partner system 35

example
adding LUs 139
defining a class of transaction

initiators 54
defining a default class 58
defining scheduling defaults 59
defining TP message log

parameters 47
deleting a class of transaction

initiators 57
deleting LUs 143
DISPLAY command output 220
installing a TP that responds to an

inbound request 252
installing a TP that responds to an

outbound request 249

example (continued)
modifying a class of transaction

initiators 56
modifying LUs 141
multi-trans processing 37
side information 78
system support structure for

APPC/MVS 26
using APPCPMxx parmlib

members 144
using ASCHPMxx parmlib

members 60
exit

IEFUAV for account validation 235
TP scheduler exit to check syntax 72

F
FACILITY class

restricting access to API trace
resources 174

flow diagram of APPC conversation
one-way conversation 6

FORCE command 213

G
GDS variable

for SIGNON/Change password
TP 184

generic characters
specifying in RACF APPCTP profile

names 172
generic ID

protecting with RACF 173
using with multi-trans TPs 38, 39

H
hardcopy log

keeping for parmlib activity 62, 146

I
IEFUAV installation exit 235
inbound

allocate request 8
conversation 8

initiator address space
stopping with the STOP

command 209
ISTINCLM sample logon mode

table 118

J
JCL in a TP profile 80

restrictions 80
SYSOUT recommendations 80

joblog 40

K
keyboard

navigation 271
PF keys 271
shortcut keys 271

L
level of access

combination of TP profile and
LU 239

in a TP profile 71, 239
of LUs 239
performance implications 239

local LU
definition 8

local transaction program
definition 6

log
keeping a hardcopy of parmlib

activity 62, 146
TP message log

ASBSCHWL write log routine 48
defining in TP profile 40
description 40
options 42
parameters 41
performance implications 48

log name mismatch 135
logical unit 107
logical unit type 6.2 (LU 6.2)

relation to APPC 3
logon mode

defining an additional 126
defining for APPC/MVS 118
definition 11
example, dependent LU 119
example, independent LU 118
name

providing to applications 124
SNASVCMG logon mode 118
specifying for a conversation 126

LU (logical unit)
controlling user access from 167
controlling user access to 165
defining a system base LU 108
definition 8
displaying status 219
example of adding 139
example of deleting 143
example of modifying 141
level of access 239
local

adding with the LUADD
statement 138

defining 117
defining to VTAM 120
definition 8
deleting with LUDEL

statement 142
determining the number 107
modifying with LUADD

statement 140
naming

general rules for APPC/MVS 108
generic resource name 111

Index 291



LU (logical unit) (continued)
naming (continued)

network-qualified name 109
partner

defining on a peer z/OS
system 123

defining on the same z/OS
system 123

definition 8
requesting VTAM verification 158
security 158

prohibiting security_none
requests 165

protecting 156
security for 156

LU 6.2 (logical unit type 6.2)
relation to APPC 3

LU=LOCAL conversation 123
LU=OWN conversation 123
LUADD statement

adding a local LU 138
example 118
modifying a local LU 140

LUDEL statement
deleting a local LU 142

M
maximum number of APPC active

conversations 244
measurement

of APPC/MVS performance 231
mismatch

log name mismatch 135
warm/cold log status mismatch 134

mismatches
warm/cold mismatches between local

and partner LUs 131
multi-trans schedule type

alternative use 38
assigning to own class 39
establishing a TP that is always

available 40
processing description 37
protecting TP profiles for 173
security 39
shell 37
SYSOUT processing 39
using for transaction programs 37
using to improve performance 237

N
navigation

keyboard 271
Notices 275

O
operations for APPC/MVS 205
OPTIONS statement 58
outbound

allocate request 8
conversation 8

output 39

P
parmlib concatenation

APPCPMxx member 137
ASCHPMxx member 51

parmlib member
APPCPMxx 137
ASCHPMxx 51

partner
transaction program 6

partner LU (logical unit)
definition 8

password maintenance
ATBMINO sample program

compile procedure 199
defining to Communications

Manager 199
description 188
diagnosis 191
download procedure (executable

code) 199
error panel 191
installation overview 198
installation procedure 199
MVS data set 199
SNA service TP name 189

COMUPASS sample program
changing an unexpired

password 190
command syntax 190
compile procedure 199
description 188
diagnosis 191
download procedure (executable

code) 199
error panel 192
installation overview 198
installation procedure 199
MVS data set 199
user message 196

expired password scenario 189
overview 188

passwords
maintaining MVS passwords in an

APPC environment 180
TPs used to update OS/2

passwords 181
ATBMINO 181

performance of APPC 231
controlling SMF recording for

APPC 242
improving by limiting TP message

log 239
improving by using appropriate

levels 239
improving network performance 243
improving through program

design 236
minimizing use of APPC component

trace 242
monitoring with RMF 235
problem-solving with DISPLAY 235
using the BUFSTOR parameter 240

persistent sessions
PSTIMER keyword 138
PSTIMER parameter 140
using to optimize LU-LU

sessions 243

persistent verification 156, 157, 162
using 178

physical unit
definition 9

planning
APPC security 153

printed output 39
problem determination

using the TP message log 42
processor storage

for APPC/MVS address spaces 232

R
RACF

APPCLU profile
activating 163
defining LU-to-LU access

authority 158
defining session keys 161

APPCMVS.TP.MULTI profile 173
APPCPORT class 167
APPCPORT profile

activating 168
APPCSI class 170
APPCSI profile

activating 171
APPCTP class 171
APPL class 165
diagnosing problems 180
extracting SYSOUT and account

information 177
FACILITY class 170

restricting access to API trace
resources 174

persistent verification 178
VTAMAPPL class 163
VTAMAPPL profile

activating 164
WORKATTR segment of RACF

ADDUSER, ALTUSER
commands 177

recovery
APPC address space 227
APPC problems 227
APPC/MVS transaction scheduler

address space 227
ASCH address space 227
using the TP message log 42

REQAPPC command 97
return codes

for the administration utility 93
RMF (Resource Measurement Facility)

to review APPC performance 235

S
schedule type

multi-trans 74
standard 74

scheduler 33
definition 17

security for APPC
access to database tokens 170
administration utility 169
APPCLU profile 158, 161

292 z/OS V2R1.0 MVS Planning: APPC/MVS Management



security for APPC (continued)
activating 163

APPCMVS.TP.MULTI profile 173
APPCPORT class 167
APPCPORT profile

activating 168
APPCSI class 170
APPCSI profile

activating 171
APPCTP class 171
APPL class 165
coding on the VTAM APPL

statement 156
controlling user access from LUs 167
controlling user access to LUs 165
conversation 164

defining security levels 162
determining the security type 153
for API tracing 174
level for VTAM to accept 157
mechanisms 156
passing on an allocate

request 155
conversations 153
defining session keys 161
diagnosing problems with 180
encryption of APPC data 200
environment for inbound TPs on

MVS 164
FACILITY class 170
for protecting LUs 156
generic ID 173
LU-to-LU access authority 158
maintaining MVS passwords in an

APPC environment 180
mechanisms

for protecting APPC/MVS
TPs 164

multi-trans programs 39
multi-trans TPs 173
partner LU 158
persistent verification 178
planning 153
problems

diagnosing for APPC 180
prohibiting security_none

requests 165
RACF user profile

extracting SYSOUT and account
information 177

using database tokens 172
using VTAM ACBs 163
VTAM ACBs 163
VTAMAPPL profile

activating 164
WORKATTR segment of RACF

ADDUSER, ALTUSER
commands 177

sending comments to IBM xv
server 17
session

customizing for APPC/MVS 125
defining conversation security

levels 162
definition 9
pacing 118
parallel 10

session (continued)
planning 107
setting up for APPC/MVS 117

SET command
changing the APPC/MVS

environment 207
stopping a class of transaction

programs 210
shell

used in multi-trans 37
shortcut keys 271
SIADD utility command 86
side information

adding 86
contents 77
controlling user access 168

with APPCSI RACF class 170
data 77
defining early 79
deleting 86
description 65
entry size 67
example 78
file

naming in APPCPMxx 143
number of files to define 66
size 67

key 77
modifying 86
overview 15
retrieving contents 86
retrieving keys 86
SIDEINFO statement

in APPCPMxx 143
summary of keywords 79
symbolic destination name 77

SIDEINFO statement
specifying a VSAM KSDS for side

information 143
SIDELETE utility command 86
SIGNON/Change password 181
SIGNON/Change password request

formatting error
description 187
list 187

SIGNON/Change password SNA service
TP status value

description 187
SIKEYS utility command 86
SIMODIFY utility command 86
SIRETRIEVE utility command 86
SMF (system management facilities)

obtaining account numbers for APPC
work 234

record types for APPC work 233
recording changing parmlib

members 217
recording multi-trans programs 39

SNA (systems network architecture)
relation to APPC 3

SNA service TP
naming 70, 77

SNASVCMG logon mode
example 118

standard schedule type
using for transaction programs 36

START command
starting APPC and ASCH 205

STOP command
stopping an initiator address

space 209
subordinate address space

definition 21
Summary of changes xvii
surrogate user authorization for

Allocate 154
symbolic destination name 77
syntax

checking JCL on a lower level
system 79, 90

checking TP profile JCL syntax 72
for administration utility

commands 88
SYS1.PARMLIB 51, 137
SYS1.SAMPLIB

examples using the administration
utility 94

SYS1.SAMPLIB(ATBMINO) 198
SYS1.SAMPLIB(ATBMINOS) 198
SYS1.SAMPLIB(ATBMIPWS) 198
SYS1.SAMPLIB(COMUPASS) 198
SYS1.VTAMLIB 126
SYS1.VTAMLST 120
SYSOUT (system output for TPs)

extracting information from RACF
user profiles 177

for multi-trans TPs 39
recommendations for TP profiles 80

system base LU
definition 108

system command
for APPC/MVS 205

system management facilities 39
system workload

changing for APPC/MVS 232
using the MAXUSER parameter 232

systems network architecture (SNA)
relation to APPC 3

T
token

database 170
TP 107
TP message log

ASBSCHWL write log routine 48
defining in TP profile 40
description 40
example of defining 47
options 42
parameters 41
performance implications 48, 239

TP profile
activating 71
adding a profile 85
adding a profile alias 85
assigning a schedule type 74
contents 70
controlling user access 168

with APPCTP RACF class 171
deactivating 71
deactivating a transaction

program 209

Index 293



TP profile (continued)
defining early 79
deleting a profile 85
description 65
estimated entry size 68
file

naming in APPCPMxx 138
number of files to define 66
size 68

JCL records 74
JCL statements allowed 80
key 70
keyword summary 76
level of access 71, 239
modifying 86
overview 15
program attributes 71
retrieving contents 86
retrieving keys 85
scheduling information 65
syntax checking scheduler

information 72
tailoring account numbers 73
transaction scheduler section 72

TP profile key
contents 70

TP_ID
definition 7

TPADD utility command 85
TPALIAS utility command 85
TPDEFAULT statement 59
TPDELETE utility command 85
TPKEYS utility command 85
TPMODIFY utility command 86
TPRETRIEVE utility command 86
trademarks 277
transaction initiator

classes 36
definition 21

transaction program
characters used in name 259
controlling their execution 65
controlling user access with APPCTP

RACF class 171
deactivating through its TP

profile 209
definition 6
displaying status 217
immediately stopping 213
inbound TPs on MVS

establishing a security
environment 164

installing a TP that responds to an
inbound request

example 252
installing a TP that responds to an

outbound request
example 249

level of access
in a TP profile 71, 239

local, definition 6
logging 40
partner, definition 6
scheduling

characteristics 34
description 34
determining characteristics 65

transaction program (continued)
security 164
TP profile JCL 80

transaction schedule type
multi-trans 37

alternative use 38
establishing a TP that is always

available 40
example of processing 37
processing description 37
security 39
SYSOUT (system output) 39

standard 36
transaction scheduler

APPC/MVS 51
classes 36
default scheduling values 51
defining scheduling

characteristics 51
displaying status 219
planning values 53
schedule types 36
tracking changing definitions 61
using 36
using default values 52
viewing current configuration 62

changing scheduling
characteristics 51

definition 17
interface, overview 17
non APPC/MVS

system services 33
overview 33

transmission service mode 251, 254
type A character set

contents 259

U
UR (unit of recovery)

displaying status 218
user interface

ISPF 271
TSO/E 271

V
variable

&SYSUID 49, 75
&SYSWUID 49, 75
&TPDATE 49, 75
&TPTIME 49, 75

verb
SNA definition 7

VSAM KSDS (key sequenced data set)
defining for APPC administrative

files 66
size of each 67

examples
modifying a database token 94
retrieving a database token 94

modifying in parmlib member
APPCPMxx 140

naming in parmlib member
APPCPMxx 138, 143

VSAM KSDS (key sequenced data set)
(continued)

using a database token
adding 86
modifying 86
retrieving 86

VTAM (Virtual Telecommunications
Access Method)

ACBs
controlling the use 163

APPC/MVS configuration 122
APPL statement

coding security keywords 156
example 120
parameter description 121

command
MODIFY 208
VARY 208

defining the local LU 120
dynamically changing the APPC/MVS

environment 208
logon mode

example 118, 126
relation to APPC 4

VTAMAPPL class
activating 164
defining profiles in 163

W
warm/cold log status mismatch 134
work unit identifier 75
WORKATTR segment of RACF

ADDUSER, ALTUSER commands
to obtain APPC SYSOUT and account

information 177

Z
z/OS system

defining a partner LU on a peer 123
defining a partner LU on the

same 123

294 z/OS V2R1.0 MVS Planning: APPC/MVS Management





����

Product Number: 5650-ZOS

Printed in USA

SA23-1388-00


	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	Where to find more information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Part 1. Introduction
	Chapter 1. Introduction to APPC/MVS
	APPC Overview
	How APPC Relates to SNA, LU 6.2, VTAM, and CPI-C

	APPC Concepts and Commonly Used Terms
	Programming Terms
	Network Terms

	What is APPC/MVS?
	Programming Support for APPC/MVS Callable Services
	Administrative System Files

	z/OS System Support
	Specific APPC/MVS Support

	Overview of an APPC/MVS Outbound Request
	Overview of an APPC/MVS Inbound Request


	Chapter 2. Planning Overview
	Levels of Connections
	Physical Connections
	Program Connections
	Logical Connections and APPC/MVS Management

	APPC Management Tasks
	System-Wide APPC Connections


	Part 2. Program management
	Chapter 3. Scheduling Transaction Programs
	Overview of Transaction Scheduling
	Scheduling Characteristics of the APPC/MVS Transaction Scheduler

	Using the APPC/MVS Transaction Scheduler
	Classes of Transaction Initiators
	DISPLAY Command
	TP Schedule Types
	Standard Schedule Type
	Multi-Trans Schedule Type


	Multi-Trans Processing
	SMF Accounting of Multi-Trans Resources
	Security for Multi-Trans TPs
	SYSOUT Processing for Multi-Trans TPs
	Assigning Multi-Trans TPs to their own Class
	Establishing a Multi-Trans TP that is Always Available

	Logging Transaction Program Processing
	The TP Message Log
	Deciding Which TP Message Log Values to Use
	Selecting the Type of Message Log
	Choosing a Value for the MSGLIMIT Parameter
	Example of Using TP Message Log Parameters
	Viewing the TP Message Log During TP Run Time



	Chapter 4. Defining Scheduling Characteristics with ASCHPMxx
	ASCHPMxx Parmlib Member
	Changing Values
	Using Default Values

	Planning Specific Values
	Defining a Class — CLASSADD Statement
	Example of defining a class

	Modifying a Class — CLASSADD Statement
	Example of modifying a class

	Deleting a Class — CLASSDEL
	Example of deleting a class

	Defining Default Options — OPTIONS
	Example of Defining a Default Class

	Defining Default Scheduler Options — TPDEFAULT
	Example of Defining Scheduling Defaults

	Examples ssing ASCHPMxx Parmlib members
	Tracking Changes in Scheduling Definitions
	Keeping a Hardcopy Log
	Viewing the current scheduling configuration



	Chapter 5. Controlling the Execution of Transaction Programs
	Determining Scheduling Characteristics
	Defining the VSAM Key Sequenced Data Sets (KSDS)
	Determining How Many Files to Define
	Determining the Size of Each File
	Side Information File
	TP Profile Files for the APPC/MVS Transaction Scheduler
	TP Profile Files for Non-APPC/MVS Transaction Schedulers
	Using Database Tokens for File Security


	Creating a TP Profile
	TP Profile Key
	Program Attributes Section
	Transaction Scheduler Section
	Summary of TP Profile Keywords

	Creating Side Information
	Example of Side Information
	Summary of Side Information Keywords

	Defining TP Profiles and Side Information Early
	Specific Scheduler JCL Information for TP Profiles
	SYSOUT Recommendations
	JCL Size Restrictions
	Unsupported Statements and Restrictions
	Restrictions on &SYSUID Variable
	Data Set Naming Restrictions
	JOB Statement Restrictions
	EXEC Statement Restrictions
	DD Statement Restrictions
	OUTPUT Statement Restrictions
	PROCLIB Restrictions



	Chapter 6. Using the APPC/MVS Administration Utility
	Utility Commands
	TP Profile Commands
	Side Information Commands
	Database Token Commands

	Syntax Requirements
	Syntax Rules

	Invoking the APPC/MVS Administration Utility
	Invoking the APPC/MVS Administration Utility from a Batch Job
	Parameters

	Invoking the APPC/MVS Administration Utility from an Application Program
	Invoking the APPC/MVS Administration Utility from a REXX Program
	Restrictions on Invoking the APPC/MVS Administration Utility
	Return Codes

	Examples

	Chapter 7. Using the APPC/MVS Administration Dialog
	Overview of the Dialog
	TP Profile Administration
	Side Information Administration
	Database Token Administration

	How to Use the Dialog
	Using a Command Line
	Using PF Keys
	Using Input Fields
	Receiving Messages and Getting Help

	Installing the Dialog
	Installing the Dialog under Application Manager
	Installing the Dialog from ISPF

	Customizing the Dialog

	Part 3. Session management
	Chapter 8. Planning Sessions
	Determining the Number of Local LUs
	Defining the System Base LU
	Naming LUs
	Using Network-Qualified Names Support
	Deciding When to Use Network-Qualified Names
	Defining LUs to Support Network-Qualified Names
	Displaying APPC/MVS Information

	Assigning a VTAM Generic Resource Name to APPC/MVS LUs
	Deciding which APPC/MVS LUs should be Members of a Generic Resource Group
	Defining LUs to a Generic Resource Group
	Displaying APPC/MVS Information for LUs in a Generic Resource Group
	Diagnosing Errors Involving LUs in a Generic Resource Group


	Setting Up a Session for APPC/MVS
	Defining a Local LU on MVS
	Defining an APPC Logon Mode
	Defining the Local LU to VTAM
	VTAM APPL Statement Parameters
	APPC Configuration in VTAM
	Defining a Partner LU on the Same MVS System
	Defining a Partner LU on a Peer System
	Providing the Logon Mode Name to Applications


	Customizing Sessions for APPC/MVS
	Defining Additional Logon Mode Entries
	Specifying a Logon Mode for a Conversation
	Using APPC/MVS Protected Conversations Support
	LU Capability and Mode Name Restrictions
	Defining APPC/MVS LUs as Syncpoint Capable
	Syncpoint Capabilities Supported by APPC/MVS
	Defining a Log Stream for APPC/MVS
	Managing APPC/MVS Resources for Protected Conversations
	Resolving Error Conditions



	Chapter 9. Controlling Configuration through APPCPMxx
	APPCPMxx Parmlib Member
	Changing Values
	Default Values

	Planning Specific Values
	Adding a Local LU — LUADD Statement
	Example of Adding LUs

	Modifying a Local LU — LUADD Statement
	Examples of Modifying an LU

	Deleting a Local LU — LUDEL Statement
	Examples of Deleting an LU

	Specifying a VSAM KSDS for Side Information — SIDEINFO Statement
	Examples Using APPCPMxx Parmlib Members
	Initial APPC Setup
	Anticipated Modifications
	Deletions

	Tracking Changes in the Configuration
	Keeping a Hardcopy Log
	Viewing the Current Configuration


	Part 4. Security management
	Chapter 10. Setting up Network Security
	APPC/MVS Security Requirements
	Giving the APPC and ASCH Started Procedures Access to Resources

	Why Security for APPC?
	An APPC Application Example

	Planning for APPC Security
	Determining the Application's Security Type
	LU Security Mechanisms
	Conversation Security Mechanisms

	LU Security: Protecting APPC/MVS Logical Units
	Coding Security Keywords on the VTAM APPL Statement
	Specifying the Level of Conversation Security for VTAM
	Requesting that VTAM Verify Partner LUs

	Defining LU-to-LU Access Authority with RACF APPCLU Profiles
	Defining LU-to-LU Access Authority for a Specific LU
	Defining LU-to-LU Access Authority for LUs in a VTAM Generic Resource Group
	Defining LU-to-LU Session Keys
	Defining Conversation Security Levels that Sessions Allow
	Activating RACF Protection with APPCLU Profiles

	Controlling the Use of VTAM ACBs

	Conversation Security: Protecting APPC/MVS TPs
	Establishing a Security Environment for Inbound TPs on MVS
	Controlling User Access to LUs
	Granting Access to Only Specific Users or Groups
	Prohibiting Security_None Allocate Requests
	Controlling User Access to LUs in a VTAM Generic Resource Group
	Using RACF Variables for the APPL Class

	Controlling User Access from LUs
	Controlling User Access to TP Profiles and Side Information on MVS
	Giving Program Access to the APPC/MVS Administration Utility
	Controlling Access to Database Tokens
	Controlling User Access to Side Information
	Controlling User Access to TPs
	Protecting Multi-Trans TP Profiles

	Controlling Ability to Collect API Trace Data
	Restricting Access to API Trace Resources
	Allowing a System Administrator to Control API Tracing Activity
	Restricting API Tracing Activity to Specific Users or Conversations
	Allowing API Tracing Activity for Security_None Conversations

	Obtaining SYSOUT and Account Information from RACF User Profiles
	Extracting SYSOUT and Account Information from RACF User Profiles

	Using Persistent Verification (PV)

	Diagnosing Security Problems
	Maintaining MVS Passwords in an APPC Environment
	What is the SIGNON/Change Password TP?
	How to Create Partner LU Communication for the SIGNON/Change Password TP
	Description of SIGNON/Change Password GDS Variable
	Example GDS Variable - Input to SIGNON/Change Password TP
	GDS Variable - Output from SIGNON/Change Password TP
	SIGNON/Change Password Status Values
	SIGNON/Change Password Request Formatting Errors

	Using Sample Programs to Maintain User Passwords on a Partner LU
	ATBMINO and COMUPASS Sample Programs
	A Typical Scenario - Changing an Expired Password
	Changing a Password that Has Not Expired

	Diagnosing Problems when Using the Password Maintenance Sample Programs
	ATBMINO Error Panels
	COMUPASS Error Panels
	COMUPASS Messages

	How to Install the Sample Programs that Maintain Passwords
	MVS Data Sets
	Installation Procedure for Source Code
	Installation Procedure for Executable Code
	Downloading the Sample Programs (Executable Code)
	Compiling the Sample Programs (Source Code Only)
	Defining the ATBMINO Program to APPC on the Workstation
	Defining Conversation Security


	Encrypting Data and Security Information
	Summary

	Part 5. System management
	Chapter 11. Operating APPC/MVS
	Starting the APPC and ASCH Address Spaces
	Restarting APPC/MVS

	Displaying Information about APPC/MVS Work
	Dynamically Changing the APPC/MVS Environment
	Changing Parmlib Specifications through the SET Command
	Changing LU Characteristics through VTAM Commands

	Stopping APPC/MVS Work
	Deactivating a Transaction Program through its TP Profile
	Stopping an Initiator Address Space with the STOP Command
	Stopping a Class of Transaction Programs with the SET Command
	Stopping One or More LUs with the SET or VARY Command
	Using the SET Command to Quiesce Work
	Using the VARY Command to Stop Work Immediately

	Stopping a TP or APPC/MVS Address Space with the CANCEL Command
	Stopping a Single Instance of a TP
	Stopping the APPC and ASCH Address Spaces

	Stopping VTAM with the HALT Command
	Summary of Methods of Stopping APPC/MVS Work

	Tracking Changes to the APPC/MVS Configuration and Workload
	Displaying TP Status
	Displaying UR Status
	Displaying Server Status
	Displaying LU Status
	Displaying Scheduling Status
	Examples Using the DISPLAY Command


	Managing Use of the APPC/MVS API Trace Facility
	Planning for the Use of API Trace Data Sets
	Restoring API Tracing Capability

	Recovering from APPC problems
	Recovery for the APPC Address Space
	APPC Initialization Problems
	Abnormal End of the APPC address space with restart
	Abnormal end of the APPC address space without restart

	Recovery for the APPC/MVS Transaction Scheduler (ASCH) address space
	Abnormal Ending of the APPC/MVS Transaction Scheduler with Restart
	Abnormal Ending of the APPC/MVS Transaction Scheduler without Restart



	Chapter 12. APPC/MVS Measurement and Tuning
	Managing APPC Work in the System
	Considering APPC/MVS Storage Requirements
	Changing the Maximum for the System Workload

	Monitoring APPC Performance
	Using SMF to Audit APPC Work
	Information that SMF Records for APPC/MVS Work
	Assigning Account Numbers to Transactions

	Using RMF Reports
	Using the DISPLAY Operator Command

	Improving Performance Through Program Design and Administration
	Making Efficient Use of Callable Services
	Avoiding Certain JCL Keywords
	Using the Multi-Trans Schedule Type
	Defining Classes and Response Time Goals
	Putting Multi-Trans TPs in their Own Class
	Associating TPs and LUs with the Appropriate Level
	Limiting Use of the TP Message Log

	Improving Performance through System Changes
	Controlling Buffer Limit Size
	Buffer Size Control
	Conversation Level Pacing

	Minimizing Use of APPC Component Trace
	Controlling SMF Type 33 Recording for APPC
	Improving Network Performance
	Minimize Remote Communication Calls
	Optimize LU-to-LU Sessions


	Maximum number of APPC active conversations

	Part 6. Installation checklists
	Chapter 13. Installing an APPC Application
	Installing a TP that Initiates an Outbound Request
	Installing a TP that Responds to an Inbound Request

	Part 7. Appendixes
	Appendix A. Character Sets
	Appendix B. Coding the APPCLOG Utility
	Parameters
	Examples of using the APPCLOG Utility
	Sample output
	APPCLOG Formatted Dump
	APPCLOG Analysis Dump


	Appendix C. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z


