
z/OS

MVS Programming: Authorized Assembler
Services Guide
Version 2 Release 2

SA23-1371-05

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 871.

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures xi

Tables xiii

About this information xv
Who should use this information xv
How to use this information xvi
z/OS information xvi

How to send your comments to IBM xvii
If you have a technical problem xvii

Summary of changes xix
Summary of changes for z/OS Version 2 Release 2
(V2R2), as updated March, 2016 xix
Summary of changes for z/OS Version 2 Release 2
(V2R2), as updated December, 2015 xix
Summary of changes for z/OS Version 2 Release 2 xx
z/OS Version 2 Release 1 summary of changes . . xx

Chapter 1. Introduction 1

Chapter 2. Subtask creation and control 7
Creating a new task (ATTACH or ATTACHX macro) 7
Ensuring that a process completes (STATUS macro) . 8
Communicating with a program (EXTRACT, QEDIT) 8

Providing an EXTRACT answer area 11

Chapter 3. Program management . . . 13
Residency and addressing mode of programs . . . 13

Placement of modules in storage 14
Addressing mode 14

Specifying where the module is to be loaded (LOAD
macro) 14
Synchronous exits (SYNCH or SYNCHX macro) . . 15
Using checkpoint/restart 16
Using re-entrant modules. 17
Using LLACOPY to refresh LLA directories. . . . 17
Changing the LNKLST concatenation. 18

Changing the current LNKLST set 18
Monitoring dynamic LPA processing 18

Listing contents of dynamic LPA with
CSVDLPAU 22

Monitoring dynamic exits processing 24
Monitoring fetch and unfetch processing 27

Chapter 4. Serialization. 33
Choosing a serialization service. 33
Providing ENQ resource information on DISPLAY
GRS command 37
Locking 38

Categories of locks 38
Types of locks 39

Locking hierarchy 40
CML lock considerations 40
Obtaining, releasing, and testing locks
(SETLOCK) 41
Suspend lock instrumentation data 41

Using the must-complete function (ENQ/DEQ) . . 42
Characteristics of the must-complete function . . 43
Programming notes. 43

Shared direct access storage devices (shared DASD) 44
Volume/device status 44
Volume handling 45
Macros used with shared DASD (RESERVE,
EXTRACT, GETDSAB). 45

Serializing parallel tasks (WAIT and POST) 53
Asynchronous cross memory POST 53
Synchronous cross memory post 54
Bypassing the POST routine 54
Waiting for event completion (EVENTS) 55

Writing POST exit routines 55
Identifying and deleting exit routines. 56
Initializing extended ECBs and ECB extensions 56
POST interface with exit routines 57
Re-entry to POST from a POST exit 58

Branch entry to the POST service routine 58
Branch entry to the WAIT service routine 60
Serializing RB processing 61

Suspending an RB until an event completes
(SUSPEND) 61
Using the CALLDISP macro 63
Resuming execution of a suspended RB 64

Synchronizing unit of work (tasks or SRBs) 65
Pause elements and pause element tokens . . . 66
Using the services 68
PE ownership and cleanup 71

Global resource serialization latch manager 72
Overview 72
How to use the callable services 73

Planning to use the latch manager callable services 74
Including a latch manager interface definition file
(IDF) 75
Loading the linkage assist routines 75
Providing recovery for the latch manager . . . 76

Guide to the latch manager callable services . . . 78
Creating a latch set (ISGLCRT and ISGLCR64
services) 79
Specifying a latch's identity or usage 80
Obtaining a latch (ISGLOBT and ISGLOB64
services) 82
Releasing a latch (ISGLREL and ISGRE64
services) 83
Purging one or more latches (ISGLPRG and
ISGLPR64 services) 84
Purging one or more latches in a group of latch
sets for a group of requestors (ISGLPBA and
ISGLPB64 services) 84

© Copyright IBM Corp. 1988, 2016 iii

||
||

Chapter 5. Reporting system
characteristics 87
Collecting information about resources and their
requestors (ISGQUERY and GQSCAN macros) . . 87

How GQSCAN returns resource information . . 88
How global resource serialization determines the
scope of an ENQ or RESERVE request 92

Using the SRM reporting interface to measure
subsystem activity 93
Obtaining dispatchability data about address spaces
(IEAMRMF3 macro) 93

Chapter 6. Tracing applications using
component trace 95
Planning an application trace 96

Trace activities 97
Executable macros for component tracing . . . 98
Operator commands for component tracing. . . 99
IPCS subcommands for component tracing . . . 99
Exit routines for component tracing 99
Data areas and mapping macros for component
tracing 100
Parmlib members for component tracing . . . 100
When to trace 100
Where and what to trace 101
Creating trace buffers. 102
Using multiple traces 104
Setting up user-defined options 104
Starting, stopping and changing the trace . . . 105
Using parmlib members 105
Externalizing trace data in a dump 107
Externalizing trace data through the external
writer 108

Coding macros for application traces 111
Using the CTRACE macro to define the
application to component trace 111
Using CTRACECS to manage trace buffer status 117
Deleting the application from component trace 120

Coding a start/stop exit routine 120
Exit routine environment 120
Exit routine processing 121
Programming considerations 123
Start/stop exit routine communications. . . . 125
Entry specifications 127
Return specifications 128

Coding a display trace exit routine 129
Exit routine environment 130
Exit routine processing 130
Programming considerations 131
Exit routine communications 131
Entry specifications 131
Return code specifications 132

Creating trace entries 133
Understanding the fields in a CTE 134
Organizing variable data in CTEs 134

Chapter 7. Communication 137
Interprocessor communication 137
Writing and Deleting Messages (WTO, WTOR, and
DOM Macros) 137

Routing the Message 137
Altering Message Text 139
Writing a Multiple-Line Message 139
Embedding Label Lines in a Multiple-Line
Message 139
Issuing a Message and Loading a Wait State
(WTO and LOADWAIT Macros) 140
Using the Wait State Macro (LOADWAIT) . . . 140
Non-restartable and Restartable Wait States . . 140
Invoking the LOADWAIT Macro 141
Deleting Messages Already Written 143
Writing to the System Log 143

Issuing an internal START or REPLY command
(MGCR) 143
Issuing operator commands from a program
(MGCRE macro) 145
Issuing a command response message 145

Rules for a command response WTO 146
Old code conversion 146
Where to get the information 147
Assembler example with CIB control block . . 147
Assembler example with CMDX control block,
multi-line WTO. 148

Controlling command flooding (IEECMDS macro) 149
Routing commands in a sysplex (CPF macro). . . 149

Assigning a prefix 150
Persistence of the prefix 151

What is an extended MCS console? 151
Activating an extended MCS console 153
Receiving messages and command responses,
and issuing commands 158
Deactivating extended MCS consoles 163
Removing extended MCS consoles 163
Example of managing an extended MCS console
session 163

Chapter 8. Listening for system
events 167
Establishing a listen request 167

Qualifying events 167
nn filtering events 171

Coding the listener user exit routine. 172
Non-SRBEXIT routine 172
SRBEXIT routine 174

Passing parameters to a listener user exit routine 175
Ending the listener user exit routine 176
ENF event codes and meanings 176
ENF sample programs 193

SMFLSTEN - Sample ENF listener 193
Listening for global resource serialization-related
system events 198

Monitoring contention changes 198

Chapter 9. Using a service request
block (SRB) 203
What is an SRB? 203
Why would you use an SRB? 203
Scheduling and managing SRBs 204
Specifying the addressing environment of the SRB
routine 205

iv z/OS V2R2 MVS Authorized Assembler Services Guide

Using the ENV parameter on IEAMSCHD. . . 205
Using the MODE parameter on SCHEDULE . . 206

Characteristics and restrictions of SRB routines . . 206
Implications of running in SRB mode 207
Environment of the SRB routine at entry . . . 208

Scheduling an SRB (IEAMSCHD or SCHEDULE
macro). 208

Scheduling an SRB using IEAMSCHD 208
Scheduling an SRB using SCHEDULE 209

Purging an SRB (PURGEDQ macro) 211
Identifying the SRB to be purged 212
The resource manager termination routine
(RMTR) 213
Scenario of scheduling and purging an SRB . . 214

Serializing SRB processing 216
Suspending an SRB until an event completes
(SUSPEND macro). 216
Resuming or purging a suspended SRB
(RESUME macro) 218
Scenario of suspending and resuming an SRB 218
Recovery responsibilities for a suspended SRB 219

Terminating a preemptable SRB 220
Calling an SRB to run synchronously 220
Transferring control for SRB processing (TCTL
macro). 220

Chapter 10. Virtual storage
management. 221
Allocating and freeing virtual storage (GETMAIN,
FREEMAIN and STORAGE macros) 222

Comparison of GETMAIN/FREEMAIN macros
with the STORAGE macro 222
Specifying branch entry to GETMAIN and
FREEMAIN services 223
Obtaining storage in another address space . . 223
Obtaining and using disabled reference (DREF)
storage 223

Using cell pool services (CPOOL macro) 224
Selecting the right subpool for your virtual storage
request 225

Program authorization 226
Tracking virtual storage allocation (CPOOL BUILD,
GETMAIN, and STORAGE OBTAIN macros) . . . 239
Obtaining information about the allocation of
virtual storage (VSMLIST) 240

Using the VSMLIST work area 240
Using IARQD — The page status interface routine 248

Decide which entry point you want to use . . 249
Obtain storage and load register 1 249
Use NUCLKUP to find the address of the entry
point you want to use 250
Invoke the entry point 251

Chapter 11. Accessing the scheduler
work area 253
Using the IEFQMREQ and the SWAREQ macros 253

The SWAREQ macro 254
How to invoke SWAREQ 254
The IEFQMREQ macro 256

Chapter 12. The virtual lookaside
facility (VLF) 259
Deciding when to use VLF 259
Planning to use VLF 260

Data objects and classes 261
Data integrity 264
Recovery 264

Using the VLF macros 265
Defining a class of VLF objects 266
Identifying an end user to VLF 267
Retrieving a VLF object 268
Creating a VLF object 269
Notifying VLF of a change 271
Removing a VLF end user 272
Purging a VLF class 272
Modifying VLF 272

Chapter 13. Data-in-virtual 275
When to use data-in-virtual 275

Factors affecting performance 276
Creating a linear data set 276

Using the services of data-in-virtual 277
Identify 277
Access. 278
Map 278
Save, Savelist, and Reset. 279
Unmap 280
Unaccess 280
Unidentify 280

The IDENTIFY service 280
The ACCESS service 281
The MAP service 284
The SAVE service 289
The SAVELIST service 291
The RESET service 291

Effect of RETAIN mode on RESET 292
The UNACCESS and UNIDENTIFY services . . . 294
Sharing data in an object 294
DIV macro programming examples 295

Executing an application 295
Processing a data-in-virtual object 295

Chapter 14. Sharing application data
(name/token callable services) 301
Levels for name/token pairs 301

Determining what your program can do with
name/token pairs 301

Checking authorization when retrieving a token 302
Deciding what name/token level you need . . . 302

Primary-level name/token pair 303
System-level name/token pair 304

Owning and deleting name/token pairs 306
Example of using the name/token services . . 306

Chapter 15. Processor storage
management. 309
Fixing/freeing virtual storage contents 310
Protecting a range of virtual storage pages . . . 311
PGFIX/PGFREE completion considerations . . . 312

Contents v

Input to page services 313
Virtual subarea list (VSL) 313
Page service list (PSL) 313
Short page service list (SSL) 313

Branch entry to page services 314
Cross memory mode 314
Non-cross memory mode 315

Chapter 16. Sharing data in virtual
storage (IARVSERV macro) 317
Understanding the concepts of sharing data with
IARVSERV 318
Storage you can use with IARVSERV 318
Obtaining storage for the source and target . . . 319
Defining storage for sharing data and access . . . 320
Changing storage access 321
How to share and unshare data 322
Accessing data in a sharing group 323
Example of sharing storage with IARVSERV . . . 323
Use with data-in-virtual (DIV macro) 325
Use with page services (PGSER macro) 325
Diagnosing problems with shared data 325
Converting a central to virtual storage address
(IARR2V macro) 326

Chapter 17. The nucleus. 327
Linking to routines in the DAT-OFF nucleus
(DATOFF) 327

Using system provided DAT-OFF routines
(DATOFF) 328
Writing user DAT-OFF routines 330
Placing user DAT-OFF routines in the DAT-OFF
nucleus 330

Obtaining information about CSECTs in the
DAT-ON nucleus (NUCLKUP) 331
Customizing the nucleus region 332

The NMLDEF macro 333
Removing existing routines from IEANUC0x 333

Chapter 18. Providing recovery. . . . 335
Understanding general recovery concepts 336

Deciding whether to provide recovery 337
Understanding errors in MVS 338
Understanding recovery routine states 339
Understanding the various routines in a
recovery environment 340
Choosing the appropriate recovery routine . . 341
Understanding recovery routine options . . . 344
Understanding how routines in a recovery
environment interact 345

Writing recovery routines 347
Understanding what recovery routines do . . . 348
Understanding the means of communication 356
Special considerations for ESTAE-type recovery
routines 365
Special considerations for FRRs 371

Understanding the recovery environment 373
Register contents 373
Other environmental factors in recovery . . . 381

Understanding recovery through a coded example 397

Understanding advanced recovery topics 399
Providing recovery with minimal processor
overhead (FESTAE macro) 400
Invoking RTM 400
Providing multiple recovery routines 403
Providing recovery for recovery routines . . . 409
Providing recovery for multitasking programs 410
Using resource managers 410

Using STAE/STAI routines 415

Chapter 19. Processing program
interruptions (SPIE, ESPIE) 421
Interruption types 422

Chapter 20. Dumping virtual storage
(SDUMPX, SDUMP, and IEATDUMP
macros) 425
SVC dumps 425

Deciding when to request an SVC dump . . . 426
Understanding the type of SVC dump that MVS
produces 427
Coding parameters that produce a synchronous
dump 427
Designing a program to handle a synchronous
dump 428
Coding parameters that produce a scheduled
dump 428
Designing a program to handle a scheduled
dump 428
Synchronizing your program through an ECB or
SRB 428
Designing your program to run asynchronously
with dump processing 429
Identifying the data set to contain the dump 429
Defining the contents of the dump 430
Identifying the address spaces or data spaces to
be dumped 430
Customizing the contents of the SVC dump . . 431
Requesting the summary dump 431
Suppressing SVC dumps that duplicate previous
SVC dumps 432
Providing symptom information through the
SDUMPX macro 432
Requesting dumps on other systems in a
sysplex 433
Using dynamic exits to control dumps in a
sysplex 433
IEASDUMP.QUERY dynamic exit. 433
IEASDUMP.GLOBAL and IEASDUMP.LOCAL
dynamic exits 437
IEASDUMP.SERVER dynamic exit 441

Transaction dumps 444
Deciding when to request a transaction dump 445
Understanding the type of transaction dump
that MVS produces 445
Identifying the data set to contain the dump 445
Defining the contents of the dump 446
Customizing the contents of the transaction
dump 446
Requesting the summary dump 446

vi z/OS V2R2 MVS Authorized Assembler Services Guide

Suppressing transaction dumps that duplicate
previous transaction dumps 446
Providing symptom information through the
IEATDUMP macro 446
Requesting dumps of other systems 447

Chapter 21. Protecting the system 449
System integrity 449

Documentation on system integrity 449
Installation responsibility 449
Elimination of potential integrity exposures . . 449

Authorized programs. 453
Using APF to restrict access to system functions 454

Guidelines for using APF 454
APF-authorized libraries. 455
APF-authorized library list 456
Requesting APF list services (CSVAPF macro) 456
Restricting the use of SVC routines 457
Restricting load module access 457
Assigning APF authorization to a load module 458
Overriding an authorization code - SETCODE
statement. 458
Authorization results under various conditions 458

Resource Access Control Facility (RACF) 459
System Authorization Facility (SAF) 459

MVS router 460
Interface to the MVS router (RACROUTE). . . 460
SAF interface to an external security product 462

Using the command authorization service 464
Command resource names 465

Changing system status (MODESET) 467
Generating an SVC 467
Generating inline code 467

Chapter 22. Exit routines 469
Using asynchronous exit routines. 469

Using the SCHEDIRB macro to initialize and
schedule an IRB 470
Using the SCHEDIRB macro to schedule an IRB 470
Using the CIRB macro to initialize an IRB . . . 471
Using the SCHEDXIT macro to schedule an IRB 473
System processing to run an asynchronous exit 474

Establishing a timer disabled interrupt exit . . . 474
DIE characteristics 476
Timer queue element control 478

Using dynamic exits services 479
CSVDYNEX terminology 480
Defining an exit 482
Calling an exit routine or routines 484
Associating an exit routine with an exit . . . 488

Chapter 23. User-written SVC routines 491
Writing SVC routines 491

Type 6 SVC routines 491
Non-preemptable SVC routines 492
Programming conventions for SVC routines . . 492

Inserting SVC routines into the control program 496
Standard SVC routines 496
Extended SVC routines 499

Subsystem SVC screening 499

Chapter 24. Accessing unit control
blocks (UCBs) 503
Scanning for UCBs 503
Obtaining UCB addresses 503

UCB Common Segment 504
UCB Common Extension 504
UCB Prefix Extension. 504
UCB Prefix Area 504
UCB details 504

Ensuring that UCBs are not deleted 506
Pinning and unpinning UCBs 506
When pinning is required 507
When pinning is not required 509

Requesting notification of I/O configuration
changes 509

Using the CONFCHG macro 510
Coding a configuration change user exit routine 510
Coded example: CONFCHG macro invocation
of configuration change user exit 513

Detecting I/O configuration changes 515
Retrieving the current MIH time interval 516
Retrieving information about I/O hardware on an
I/O path 516

Length of the CDR area 517
How IOSCDR retrieves the CDR 517
Time that IOSCDR performs I/O 518

Validating I/O paths 518
Obtaining device information for an allocation
request 518
Configuring a channel path online or offline . . . 518
Obtaining UCB information (general methods) . . 519

Obtaining UCB addresses for a specified device
number 519
Scanning UCBs 520
Examples: Using the UCB macros 520
Determining if the UCB macros (general
methods) are available 521

Obtaining UCB information (limited method) . . 522
The UCB scan service 522
Invoking the UCB scan service 522
Obtaining the subchannel number for a unit
control block (UCB) 526

Accessing above 16-megabyte UCBs 526

Chapter 25. Dynamic allocation. . . . 529
An allocation overview 529

Choosing the type of allocation for your
program 530
When to avoid using dynamic allocation . . . 530
Programming considerations for using the
DYNALLOC macro 531
Selecting the type of allocation based on
program requirements 532

Dynamic allocation functions 533
Using dynamic allocation functions in either a
batch or interactive environment 533
Using dsname or pathname allocation 534
Deallocating resources 541
Concatenating resources 544
Deconcatenating resources 545

Contents vii

Obtaining allocation environment information 545
Using dynamic allocation functions in an
interactive environment 546
In-use attribute 546
Control limit 547
Permanently allocated attribute 548
Convertible attribute 548
Using ddname allocation 548

Installation options for DYNALLOC macro
functions 550

Using default values 550
Mounting volumes and bringing devices online 550
Installation input validation routine for dynamic
allocation. 551

Chapter 26. Requesting dynamic
allocation functions 553
Building the SVC 99 parameter list 553

Coding a dynamic allocation request 554
Obtaining storage for the parameter list . . . 555
Mapping storage for the parameter list 556
Setting up the request block pointer 557
Setting up the request block 557
Setting up the text units 563
Setting up the text unit pointer list 564

Processing messages and reason codes from
dynamic allocation 565

Setting up the request block extension 565
Processing messages from dynamic allocation 590

Interpreting DYNALLOC return codes 596
Interpreting information reason codes from
DYNALLOC 597
Interpreting error reason codes from
DYNALLOC 601

SVC 99 parameter list verb codes and text units, by
function 636

Coding a dsname allocation text unit 637
JCL DD statement parameters and equivalent
text units 637
Using system symbols in text units 638
Dsname allocation text units 642
JCL DD statement DCB subparameters and
equivalent text units 675
DCB attribute text units 677
Non-JCL dynamic allocation functions 689
Dynamic unallocation text units 704
Dynamic concatenation text units. 709
Dynamic deconcatenation text units 711
Text units for removing the in-use attribute
based on task ID 711
Ddname allocation text units 712
Dynamic information retrieval text units . . . 713

Example of a Dynamic Allocation Request. . . . 732

Chapter 27. Dynamic output 735
Creating and naming output descriptors 736

System generated names 736
Job step considerations 736
Output descriptors and text units. 736
Deleting output descriptors. 746

Specifying SYSOUT without an output
descriptor 747
Dynamic output programming example . . . 749

Chapter 28. Scheduler JCL facility
(SJF) 755
Understanding SJF terms 756

The SJF environment 757
Retrieving output descriptor information
(SJFREQ macro with RETRIEVE) 757
Merging SWBTUs (SJFREQ macro with
SWBTU_MERGE) 758
Validating and building text units (SJFREQ
macro with VERIFY) 759
SJFREQ VERIFY functions 759
Preparing to use VERIFY for validating and
building text units 760
Examples of using SJFREQ VERIFY functions 763
Freeing the SJF environment (SJFREQ macro
with TERMINATE) 766

Understanding the OUTDES statement 767
Operand and keyword operand abbreviations 767
Comments and line continuation 767
Delimiters 767
Rules for parsing data with and without
quotation marks 768
OUTDES statement syntax 768

Chapter 29. Processing user trace
entries in the system trace table . . . 781
Formatting a USRn trace table entry 781
Replacing a USRn TTE formatting routine 781

Parameters passed to the USRn formatter . . . 782
Return codes from the USRn formatter 782
Printing the trace output buffer contents . . . 783
Handling errors during TTE formatting . . . 783

Chapter 30. Using system logger
services. 787
What is system logger? 787

The log stream 788
The system logger configuration 791

The system logger component 792
Overview of authorized system logger services . . 793

Summary of system logger services 793
Coding a system logger complete exit for
IXGBRWSE, IXGWRITE, and IXGDELET . . . 794
Using ENF event code 48 in system logger
applications 797

IXGCONN: Connecting to and disconnecting from
a log stream 798

Connecting as a resource manager 799
Using ENF event 48 when a connect request is
rejected 800
Coding a resource manager exit for IXGCONN 800

IXGDELET: Deleting log blocks from a log stream 804
Delete requests and resource manager exit
processing 804

Setting up the system logger configuration . . . 804
Writing an ENF event 48 listen exit 804

viii z/OS V2R2 MVS Authorized Assembler Services Guide

Logger server address space availability
considerations 807

ENF 48 and system logger initialization . . . 807
ENF 48 event code scenarios 807
Considerations for logger resources temporarily
unavailable 808
Considerations for logger log stream
disconnected 810

When things go wrong: Recovery scenarios for
system logger 813

When a resource manager fails 813

Chapter 31. System REXX 815
Planning to use system REXX 817
Security 821
Argument and variable processing 821
Input/output files 824
Functions. 824
Time limits and canceling a request 829
Error handling 829
Examples 830

Chapter 32. z/OS FBA services 835
z/OS Distributed Data Backup (zDDB) 835
z/OS FBA devices 836

Controlling access to z/OS FBA devices . . . 837
z/OS FBA services 837

Querying and allocating FBA devices 838
Reading from and writing to z/OS FBA devices 843
Erasing data on z/OS FBA devices 845
Unallocating z/OS FBA devices 845
Improving performance when using IOSFBA
services 846
Providing a recovery or resource manager. . . 847

Appendix A. Using the unit
verification service 849
Functions. 849

Check groups - Function code 0 849
Check units - Function code 1 850
Return unit name - Function code 2 850
Return unit control block (UCB) addresses -
Function code 3 850
Return group ID - Function code 4 850
Indicate unit name is a look-up value - Function
code 5 850
Return look-up value - Function code 6 . . . 850
Convert device type to look-up value - Function
code 7 850
Return attributes - Function code 8 850
Check units with no validity bit - Function code
9 851
Specify subpool for returned storage - Function
code 10 851
Return unit names for a device class - Function
code 11 851
Callers of IEFEB4UV 851
Callers of IEFGB4UV or IEFAB4UV 851

Appendix B. Accessibility 867
Accessibility features 867
Consult assistive technologies 867
Keyboard navigation of the user interface 867
Dotted decimal syntax diagrams 867

Notices 871
Policy for unsupported hardware. 872
Minimum supported hardware 873
Programming interface information 873
Trademarks 873

Index 875

Contents ix

x z/OS V2R2 MVS Authorized Assembler Services Guide

Figures

1. EXTRACT ECB Address, CIB Address, and
Program Token. 9

2. EXTRACT Answer Area Fields 12
3. Example of an Interlock Environment 48
4. Example of Subroutine Issuing RESERVE and

DEQ Using GETDSAB 52
5. Bypassing the POST Routine 55
6. Pause and Release Example 69
7. Release and Pause Example 70
8. Transfer without Pause Example 71
9. Work Area Contents for GQSCAN with a

Scope of STEP, SYSTEM, SYSTEMS, or ALL . . 90
10. Work Area Contents for GQSCAN with a

Scope of LOCAL or GLOBAL 92
11. Structure of Multiple Traces for an

Application 113
12. Trace Features 114
13. Structure of Multiple Traces for an

Application 115
14. Setting up Multiple Traces with CTRACE

DEFINE 116
15. Managing Buffer Status 117
16. Tracing with Component Trace. 123
17. Information Passed to the Start/Stop Exit

Routine Through GPR 1 128
18. Information Passed to the Display Trace Exit

Routine Through GPR 1 132
19. Component Trace Entry in a Trace Buffer 133
20. LOADWAIT Example for Defining and

Initializing a Parameter List 141
21. WTO Example for Issuing a Message with a

WSPARM parameter 141
22. LOADWAIT Example for Defining Storage for

a Parameter List 142
23. LOADWAIT Example for Modifying an

Existing Parameter List 142
24. WTO Example for Issuing a Message and

Loading a Wait State 142
25. LOADWAIT Example for Adding a Reason

Code to a Parameter List and Changing the
Type of Wait State 142

26. WTO Example of a Message with a WSPARM
Parameter. 142

27. Setting Up the Buffer for MGCR 145
28. MDB Structure 160
29. Managing an Extended MCS Console Session

Overview 164
30. Authorized Program without QUAL and

QMASK 169
31. Qualifier for a Program Check 170
32. Authorized Programs with QUAL and

QMASK 171
33. Example of Scheduling an SRB. 215
34. Suspending and Resuming an SRB 219
35. Low and High Private Storage Allocation 228
36. Task Structure Within an Address Space 233

37. Allocated Storage Information for Subpools in
a Specified Area 243

38. Format of Subpool Descriptor 244
39. Format of Allocated Block Descriptor 244
40. Allocated Storage Information for the Private

Area 245
41. Allocated Storage Information for a Subpool

List 246
42. Format of Free Space Information 246
43. Format of Free Space Descriptor 246
44. Unallocated Storage Information for CSA and

PVT Subpools 247
45. Format of Region Descriptor 248
46. Format of Unallocated Block Descriptor 248
47. Retrieving an Object for an End User 266
48. Mapping from an Address Space 284
49. Mapping from a Data Space or Hiperspace 285
50. Multiple Mapping 286
51. Using the Primary Level in a Cross-Memory

Environment 303
52. Using the System Level in a Multiple Address

Space Environment 305
53. Data Sharing with IARVSERV 318
54. Sharing Storage with IARVSERV 324
55. Virtual Storage Map of DAT-ON Nucleus 332
56. Mainline Routine with One Recovery Routine 346
57. Mainline Routine with Several Recovery

Routines 347
58. Passing Parameters to an ARR 370
59. Routing control to recovery routines, example

1 405
60. Routing control to recovery routines, example

2 406
61. Routing control to recovery routines, example

3 407
62. Assigning Authorization via SETCODE 458
63. Asynchronous Exit Data Area Configuration 471
64. UCB Segments 503
65. Comparison of CDRLEN to CDRSIZE 517
66. Device Classes 524
67. Structure of the SVC 99 Parameter List 555
68. Structure of Input Parameter List to IEFDB476 592
69. Example of a Dynamic Allocation Request 732
70. Parameter List Resulting from Dynamic

Allocation Example 733
71. Text Units and Text Unit Pointers 737
72. Sample OUTPUT JCL Statement 738
73. COPIES Keyword and its Dynamic Output

Text Units. 739
74. Sample OUTDES Statement for Which an

Application Wants Text Units 763
75. OUTDES Statement with Pointers Indicating

Values To Be Processed 764
76. OUTDES Statement with New Pointers

Indicating Values To Be Processed 765

© Copyright IBM Corp. 1988, 2016 xi

77. OUTDES Statement with Adjusted Pointers
Indicating Values To Be Processed 765

78. OUTDES Statement with Adjusted Pointers
for Values To Be Processed 766

79. Sample Code for Formatting USRn Trace
Table Entries 784

80. System Logger Log Stream 788
81. Log Stream Data on the Coupling Facility and

DASD 789
82. Log Stream Data in Local Storage Buffers and

DASD Log Data Sets 790
83. A Complete Coupling Facility Log Stream

Configuration 791
84. A DASD-Only Configuration 792
85. Issuing ENFREQ to Listen for ENF Event

Code 48 798
86. z/OS FBA for data transfer 835
87. z/OS Distributed Data Backup. 836
88. Visual representation of IOSFBA query 839
89. Visual representation of IOSFBA allocation 840
90. FBADL with three device entries 842
91. Mapping of output area from IOSFBA

QUERY and IOSFBA ALLOCATE 843
92. Visual representation of reading or writing to

z/OS FBA devices 844
93. Controls blocks needed for FBA I/O 845
94. Visual representation of unallocating z/OS

FBA devices 846
95. Input Parameter List 852
96. Requesting Function Code 0 (Check Groups) 854
97. Requesting Function Code 1 (Check Units) 855
98. Requesting Function Code 2 (Return Unit

Name) 855
99. Output from Function Code 2 (Return Unit

Name) 856

100. Requesting Function Code 3 (Return UCB
Addresses) 856

101. Output from Function Code 3 (Return UCB
Addresses) 856

102. Requesting Function Code 4 (Return Group
ID) 857

103. Output from Function Code 4 (Return Group
ID) 858

104. Requesting Function Code 5 (Indicate Unit
Name is a Look-up Value) 858

105. Requesting Function Code 6 (Return Look-up
Value) 859

106. Output from Function Code 6 (Return
Look-up Value) 859

107. Requesting Function Code 7 (Convert Device
Type to Look-up Value) 860

108. Output from Function Code 7 (Convert
Device Type to Look-up Value) 860

109. Requesting Function Code 8 (Return
Attributes) 861

110. Requesting Function Code 10 (Specify
Subpool for Returned Storage) 862

111. Requesting Function Code 11 (Return Unit
Names for a Device Class) 862

112. Output from Function Code 11 (Return Unit
Names for a Device Class) 863

113. Input for Function Codes 0 and 1 864
114. Output from Function Codes 0 and 1 864
115. Input for Function Codes 3 and 10 865
116. Output from Function Codes 3 and 10 865
117. Input for Function Codes 1 and 5 865
118. Output from Function Codes 1 and 5 866

xii z/OS V2R2 MVS Authorized Assembler Services Guide

Tables

1. Assembler Definition of AMODE/RMODE 14
2. Summary of available serialization services 34
3. Summary of program serialization techniques 35
4. Comparison of serialization services 36
5. Summary of Locking Characteristics 39
6. Valid Volume Characteristic and Device Status

Combinations 44
7. ECB Extension (ECBE) 56
8. POST Function and Branch Entry Points 59
9. POST Branch Entry Input 59

10. POST Branch Entry Output 59
11. Pause, Release, and Transfer callable services 65
12. Pause Element (PE) and Event Control Block

(ECB) 66
13. Latch Manager IDFs 75
14. Latch Manager Services 78
15. Summary of Possible Results of Calls to

Latch_Obtain 83
16. GQSCAN Results with a Scope of STEP,

SYSTEM, SYSTEMS, or ALL 89
17. GQSCAN Results with a Scope of LOCAL or

GLOBAL 91
18. Conditions Determining When Start/Stop

Routine Runs 124
19. Valid Character Set 150
20. Valid EOT and EOM parameter combinations 176
21. ENF macro event codes 177
22. Qualifier / QMASK combinations for

contention data 199
23. Qualifier / QMASK combinations for RNL

change data 201
24. Qualifier / QMASK combinations for Global

Resource Serialization Mode changes . . . 201
25. Comparing IEAMSCHD to SCHEDULE 208
26. Supervisor State and PSW Key 0 Callers and

Subpool 0 226
27. A Comparison of Private and Common

Storage 227
28. Storage Keys for Selectable Key Subpools 229
29. How the System Determines the Input TCB

for Task Owned Storage 232
30. Choosing Storage Ownership 234
31. Subpools Grouped by Attributes 235
32. Storage Subpools and Their Attributes 236
33. Description of VSMLIST Work Area 240
34. Return and Reason Codes for IARQD 251
35. When VLF Notification is Automatic 263
36. Summary of What Programs Do with

Name/Token Pairs 302
37. Allowed Source/Target View Combinations

for Share (Requested Target View) 321
38. DAT-OFF Routines Available to Users 327
39. Summary of Recovery Routine States 344
40. Contents of GPR 0 on Entry to a Retry

Routine 355

41. Restoring Quiesced Restorable I/O
Operations 368

42. Where to Find Register Content Information 374
43. Register Contents—ESTAE-Type Recovery

Routine With an SDWA 374
44. Register Contents—ESTAE-Type Recovery

Routine Without an SDWA 375
45. Register Contents—FRR 376
46. Register Contents—Retry from an

ESTAE-Type Recovery Routine Without an
SDWA (General Purpose Registers) 378

47. Register Contents—Retry from an
ESTAE-Type Recovery Routine Without an
SDWA (Access Registers). 378

48. Register Contents—Retry from an
ESTAE-Type Recovery Routine With an
SDWA, RETREGS=NO, and FRESDWA=NO
(General Purpose Registers) 379

49. Register Contents—Retry from an
ESTAE-Type Recovery Routine With an
SDWA, RETREGS=NO, and FRESDWA=NO
(Access Registers) 379

50. Register Contents—Retry from an
ESTAE-Type Recovery Routine With an
SDWA, RETREGS=NO, and FRESDWA=YES
(General Purpose Registers) 379

51. Register Contents—Retry from an
ESTAE-Type Recovery Routine With an
SDWA, RETREGS=NO, and FRESDWA=YES
(Access Registers) 379

52. Register Contents—Retry from an
ESTAE-Type Recovery Routine With an
SDWA and RETREGS=YES (General Purpose
Registers) 380

53. Register Contents—Retry from an
ESTAE-Type Recovery Routine With an
SDWA and RETREGS=YES (Access Registers) . 380

54. Register Contents—Retry from an
ESTAE-Type Recovery Routine With an
SDWA and RETREGS=64 in z/Architecture
mode (General Purpose Registers) 380

55. Register Contents—Retry from an
ESTAE-Type Recovery Routine With an
SDWA and RETREGS=64 in z/Architecture
mode (Access Registers) 380

56. Register Contents—Retry from an FRR
(General Purpose Registers) 381

57. Register Contents—Retry from an FRR
(Access Registers) 381

58. Register Contents—Retry from an FRR with
RETREGS=64 in z/Architecture mode
(General Purpose Registers) 381

59. Register Contents—Retry from an FRR with
RETREGS=64 in z/Architecture mode (Access
Registers) 381

© Copyright IBM Corp. 1988, 2016 xiii

60. Environments of ESTAE-Type Recovery
Routines and their Retry Routines 388

61. Environment on Entry to FRRs. 391
62. Retry to SETFRR Environment (Specifying

SETRP RETRY=FRR) 394
63. SDUMPX Parameters and the Type of

Summary Dump They Produce 431
64. Authorization Rules 459
65. Input Parameters to the External Security

Product Router 463
66. Programming Conventions for SVC Routines 492
67. Comparison of macros that return addresses

of UCB segments 505
68. Dynamic Allocation Functions in a Batch or

Interactive Environment 533
69. JCL DD Statement Facilities Not Supported

by Dynamic Allocation 535
70. Minimum Amount of Storage for a Dynamic

Allocation Request 556
71. S99FLG11 — First byte of S99FLAG1 558
72. S99FLG12 — Second byte of S99FLAG1 559
73. Example of Using the S99GDGNT bit of the

S99FLAG1 field 559
74. Relationship of S99NOMNT, S99OFFLN and

S99MOUNT 562
75. Relationship of S99NOMNT, S99OFFLN and

S99MOUNT 563
76. DYNALLOC Return Codes 596
77. Class 2 error reason codes (unavailable

system resource - ENVIRONMENTAL
ERROR) 602

78. Class 3 error reason codes (invalid parameter
list - PROGRAM ERROR) 611

79. Class 4 Error Reason Codes (Environmental
Error) 616

80. Class 7 Error Reason Codes (System Routine
Error) 625

81. JCL DD Statement Parameters and Equivalent
Text Units. 638

82. Verb Code 01 (Dsname Allocation) – Text
Unit Keys, Mnemonics, and Functions . . . 642

83. DALPOPT Options 667
84. DALPMDE Attributes. 668
85. JCL DD Statement DCB Subparameters and

Equivalent Text Units 676
86. –Verb Code 01 (DCB Attributes) Text Unit

Keys, Mnemonics, and Functions 677
87. Verb code 01 (non-JCL dynamic allocation

functions) – Text units, mnemonics, and
functions 690

88. Verb code 02 (dynamic unallocation) – Text
unit keys, mnemonics, and functions. . . . 704

89. Verb code 03 (dynamic concatenation) – Text
unit keys, mnemonics, and functions. . . . 710

90. Verb code 04 (dynamic deconcatenation) –
Text unit key, mnemonic, and function . . . 711

91. Verb Code 05 (Remove In-Use Processing
Based on Task-ID) – Text Unit Keys,
Mnemonics, and Functions 712

92. Verb Code 06 (Ddname Allocation) – Text
Unit Keys, Mnemonics, and Functions . . . 712

93. Verb Code 07 (Dynamic Information
Retrieval) – Text Unit Keys, Mnemonics, and
Functions 714

94. DINRPOPT Options 726
95. DINRPMDE Attributes 727
96. Dynamic Output Text Units and their JCL

Equivalents 740
97. Alternate Sources of SYSOUT Processing

Options 748
98. Values for Normal- and Abnormal-Output-

Disp 776
99. IxgenfUnion1 variation when IXGENF bit set

to 1 805
100. Logger services with "temporary unavailable

type reason codes" and expected related ENF
48 events 808

xiv z/OS V2R2 MVS Authorized Assembler Services Guide

About this information

This information describes the authorized services that the MVS™ operating system
provides; that is, services available only to authorized programs. An authorized
program must meet one or more of the following requirements:
v Running in supervisor state
v Running under PSW key 0-7
v Running APF authorized.

Some of the services included in this information are not authorized, but are
included because they are of greater interest to the system programmer than to the
general applications programmer. The functions of these services are of such a
nature that their use should be limited to programmers who write authorized
programs. Services are also included if they have one or more authorized
parameters — parameters available only to authorized programs.

To use an MVS service, the program issues a macro. The following set of
companion documents provides the detailed information necessary to code the
macros.
v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

Some of the topics described in this document are also described in z/OS MVS
Programming: Assembler Services Guide, z/OS MVS Programming: Assembler Services
Reference ABE-HSP and z/OS MVS Programming: Assembler Services Reference
IAR-XCT. However, those documents do not include the authorized services and
macros.

Who should use this information
This information is for the programmer who is using assembler language to code a
systems program, and who needs to become familiar with the MVS operating
system and the services that programs running under it can invoke.

Programmers using this information should have a knowledge of the computer, as
described in z/Architecture: Principles of Operation, as well as a knowledge of
assembler language programming.

System macros require High Level Assembler. Assembler language programming is
described in the following information:
v HLASM Programmer's Guide

v HLASM Language Reference

Using this information also requires you to be familiar with the operating system
and the services that programs running under it can invoke.

© Copyright IBM Corp. 1988, 2016 xv

How to use this information
This information is one of the set of programming documents for MVS. This set
describes how to write programs in assembler language or high-level languages,
such as C, FORTRAN, and COBOL. For more information about the content of this
set of documents, see z/OS V2R2 Information Roadmap.

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS V2R2 Information Roadmap.

To find the complete z/OS® library, go to IBM Knowledge Center
(http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

xvi z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

How to send your comments to IBM

We appreciate your input on this documentation. Please provide us with any
feedback that you have, including comments on the clarity, accuracy, or
completeness of the information.

Use one of the following methods to send your comments:

Important: If your comment regards a technical problem, see instead “If you have
a technical problem.”
v Send an email to mhvrcfs@us.ibm.com.
v Send an email from the "Contact us" web page for z/OS (http://www.ibm.com/

systems/z/os/zos/webqs.html).

Include the following information:
v Your name and address
v Your email address
v Your phone or fax number
v The publication title and order number:

z/OS V2R2 MVS Authorized Assembler Services Guide
SA23-1371-05

v The topic and page number or URL of the specific information to which your
comment relates

v The text of your comment.

When you send comments to IBM®, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one or more of the following actions:
v Visit the IBM Support Portal (support.ibm.com).
v Contact your IBM service representative.
v Call IBM technical support.

© Copyright IBM Corp. 1988, 2016 xvii

mailto:mhvrcfs@us.ibm.com
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://support.ibm.com/

xviii z/OS V2R2 MVS Authorized Assembler Services Guide

Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations for the current edition
are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 2 (V2R2), as updated
March, 2016

The following changes are made for z/OS Version 2 Release 2 (V2R2), as updated
March, 2016. In this revision, all technical changes for z/OS V2R2 are indicated by
a vertical line to the left of the change.

New
v Information about insulated DDs has been added in “Insulated DD attribute” on

page 549 and new text unit key X'0079' in:
– “Dynamic allocation facilities without JCL equivalents” on page 535
– “Characteristics prohibited in your request” on page 537
– “Interpreting error reason codes from DYNALLOC” on page 601
– “Non-JCL dynamic allocation functions” on page 689

- “Insulated DD request - Key = '0079'” on page 701
– “Dynamic unallocation text units” on page 704

- “Insulated DD request - Key = '0079'” on page 708
– “Dynamic concatenation text units” on page 709

- “Insulated DD request - Key = '0079'” on page 710
– “Dynamic deconcatenation text units” on page 711

- “Insulated DD request - Key = '0079'” on page 711
– “Return dynamic allocation attribute specification - Key = '000C'” on page 719

v Information about bypass security processing text unit key X'007A' has been
added in:
– “Non-JCL dynamic allocation functions” on page 689

- “Bypass security processing - Key = '007A'” on page 702
– “Dynamic unallocation text units” on page 704

- “Bypass security processing - Key = '007A'” on page 708
v Information about function AXRWTOR for System REXX has been added in

“Functions” on page 824.

Summary of changes for z/OS Version 2 Release 2 (V2R2), as updated
December, 2015

The following changes are made for z/OS Version 2 Release 2 (V2R2), as updated
December, 2015. In this revision, all technical changes for z/OS V2R2 are indicated
by a vertical line to the left of the change.

New
v New text units related to IEFOPZ processing have been added in “Non-JCL

dynamic allocation functions” on page 689.

Changed
v “Using the services” on page 68 is modified to add two callable services for

Pause_Multiple_Elements, IEAVPME2 and IEA4PME2.

© Copyright IBM Corp. 1988, 2016 xix

Summary of changes for z/OS Version 2 Release 2
The following information is new, changed, or deleted in z/OS Version 2 Release 2
(V2R2).

New

The following information has been added:
v “Monitoring dynamic exits processing” on page 24
v “Monitoring fetch and unfetch processing” on page 27

Changed

The following information has been changed:
v Modified event code 78 of ENF event codes and meanings to reference JES

instead of JES2. See “ENF event codes and meanings” on page 176.

Deleted

The following information has been removed:
v Removed (JES2 only) from DOOUTDB and DOOUTDC of OUTDISP of Table 96

on page 740.

z/OS Version 2 Release 1 summary of changes
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

xx z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 1. Introduction

MVS controls the flow of work through the system so that all programs obtain a
fair share of the processing. To make efficient use of the system, you must
understand the services that the system provides and observe the programming
conventions for their use.

Most services described in this information can be used by authorized programs
only. An authorized program is a program that runs with APF authorization, or
runs in supervisor state, or runs with a PSW key of 0-7.

Some of the services can be used by any program, including those that run
without APF authorization, or in problem program state, or with a PSW key of 8-F.
Unless your program is authorized, you should use these services only if you have
the approval of your installation‘s management.

The services, which you invoke by issuing macros or callable services, are
described in the following information:

Subtask Creation and Control:
Occasionally, you can have your program executed faster and more
efficiently by dividing parts of it into subtasks that compete with each
other and with other tasks for execution time. This topic includes
information about task creation, using an internal START, and
communication with a problem program.

Program Management:
You can use the system to aid communication between segments of a
program. This topic includes information about the residency and
addressing mode of a module, loading a module, synchronous exits,
checkpoint/restart, and re-entrant modules.

Serialization:
Portions of some tasks depend on the completion of events in other tasks,
which requires planned task synchronization. Planning is also required
when more than one program uses a serially reusable resource. Locking,
the must-complete function, shared direct access storage devices, waiting
for an event to complete, and indicating event completion are discussed in
this topic. This topic also includes information about the global resource
serialization latch manager, which authorized programs can use to serialize
resources within an address space or within a single MVS system.

Reporting System Characteristics:
This topic describes collecting information about resources and their
requestors, using the SRM reporting interface, and obtaining
dispatchability data about address spaces.

Tracing Applications Using Component Trace:
Component trace provides common services for defining and collecting
diagnostic information about components, subsystems, or applications.

Communication:
This information discusses several different forms of communication:
v Interprocessor communication
v Writing operator messages

© Copyright IBM Corp. 1988, 2016 1

v Issuing operator commands
v Routing operator commands in a sysplex environment
v Extended MCS consoles.

Listening for System Events:
The event notification facility (ENF) allows an authorized program to listen
for the occurrence of a specific system event. For example, a program
could listen for a software record being written to the logrec data set.
When the system writes the record to the logrec data set, control passes to
a specified listener user exit routine. For a list of the system events that an
authorized program can listen for, see “ENF event codes and meanings” on
page 176.

Using a Service Request Block (SRB):
Asynchronous inter-address space communication is available through the
use of an SRB and its associated SRB routine. This topic describes how you
use the macros that initiate the running of an SRB routine and provide its
recovery. It also describes how you can serialize the processing of an SRB
routine and how to transfer control from an SRB to a TCB.

Virtual Storage Management:
Virtual storage allows you to write large programs without the need for
complex overlay structures. This topic describes how to use the GETMAIN,
FREEMAIN, and STORAGE macros to allocate and free virtual storage. It
also includes descriptions of the VSM functions, available through the use
of the VSMLIST, VSMLOC, and VSMREGN macros.

Accessing the Scheduler Work Area (SWA):
The SWA contains information about jobs that are currently in the system.
This topic explains how to write a program that can access the information
that the system stores in the SWA.

Virtual Lookaside Facility (VLF):
VLF is intended for use by authorized subsystems or major applications
that perform repeated DASD operations on behalf of end users. VLF is a
set of services that provide an alternate fast-path method of making
frequently used, named data objects available to many users. This topic
will help you decide whether to use VLF and will help you plan your use
of the VLF macros.

Using the Cross-System Coupling Facility (XCF):
This topic, which contains information about the cross-system coupling
facility, now appears in z/OS MVS Programming: Sysplex Services Guide.

Data-In-Virtual:
Data-in-virtual enables you to create, read, or update external storage data
without the traditional GET and PUT macros. The data, which is not
broken up into individual records, appears in your virtual storage as a
string of contiguous bytes. You can access the data by using any
instruction that you normally use to access data in your virtual storage.
This technique also provides better performance than the traditional access
methods for many applications.

Sharing Application Data (Name/Token Callable Services):
Name/token callable services allow a user to share data between two
programs running under the same task, or between two or more tasks or
address spaces. This topic includes descriptions of the levels of

2 z/OS V2R2 MVS Authorized Assembler Services Guide

name/token pairs, ownership and deletion of the pairs, description of the
levels for the cross memory uses of the name/token services, and an
example of using the services.

Processor Storage Management:
The system administers the use of processor storage (that is, central and
expanded storage) and directs the movement of virtual pages among
auxiliary, expanded, and central storage in page size blocks. The services
provided allow you to release virtual storage contents, load virtual storage
areas into central storage, make virtual storage pages read-only or
modifiable, and page out virtual storage areas from central storage.

Sharing Data in Virtual Storage (IARVSERV Macro):
This topic describes the IARVSERV macro, which provides services that
allow programs to share virtual storage in address spaces or data spaces.
The topic also includes information about the IARR2V macro, which
converts a central storage address to a virtual storage address.

The Nucleus:
This topic includes descriptions of the functions available through the use
of the DATOFF and NUCLKUP macros.

Providing Recovery:
When your program encounters an error, the program might end
abnormally unless you provide recovery. To recover from errors, you can
write routines called recovery routines that get control when the error
occurs. These routines can attempt to correct the error and allow your
program to resume normal processing. This topic explains recovery
concepts and how to write recovery routines.

Processing Program Interruptions:
The system offers many services to detect and process abnormal conditions
during system processing. Some conditions encountered in a program
cause program interruptions or program exceptions. This topic includes
how to specify user exit routines, using the SPIE or ESPIE macros, and
function performed in user exit routines.

Dumping Virtual Storage (SDUMPX and SDUMP Macros):
This topic describes how to obtain SVC dumps using the SDUMPX and
SDUMP macros. It includes deciding when to request a dump, using the
SYS1.DUMPnn data set, defining the contents of the dump, and
suppressing duplicate dumps.

Protecting the System:
This topic includes the maintenance of system integrity, the use of the
authorized programming facility, the use of the resource access control
facility, changing system status, and protecting low storage.

Exit Routines:
This topic contains information about asynchronous exit routines, timer
disabled interrupt exit routines, and dynamic exits services. Dynamic exits
services allow you to define exits and control their use within a program
using the CSVDYNEX macro.

User-Written SVC Routines:

This topic contains information needed to write SVC routines. It includes
the characteristics of the SVC routines, program conventions for SVC
routines, and ways to insert SVC routines into the control program.

Chapter 1. Introduction 3

Accessing Unit Control Blocks (UCBs):
This topic describes how to obtain and use information about unit control
blocks (UCBs) and about configuration changes in the system.

Dynamic Allocation:
This topic describes the functions provided by dynamic allocation. It
describes installation options you can use to control the processing of
dynamic allocation.

Requesting Dynamic Allocation Functions:
The topic includes a description of the parameter list used to request
dynamic allocation functions, the return codes, error codes, and
information codes.

Dynamic Output:
This topic explains how to use the JES2 and JES3 4.2.1 or later dynamic
output facility. This facility enables a program to dynamically describe a
system output data set's processing options and to dynamically allocate
that data set.

Scheduler JCL Facility (SJF):
This topic describes how to use the Scheduler JCL Facility to manipulate
text unit data that represents processing options for system output (sysout)
data sets.

Processing User Trace Entries in the System Trace Table:
This topic describes formatting a USRn trace table entry, interpreting return
codes from the formatter, and handling errors.

Using the Unit Verification Service:
This topic describes using the unit verification service to obtain
information from the eligible device table.

Note: IMPORTANT -------- READ THIS

Keep in mind how the information uses the following terms:
v The term registers means general purpose registers. If general purpose registers

might be confused with other kinds of registers (such as access registers), the
information uses the longer term general purpose registers.

v Unless otherwise specified, the address space control (ASC) mode of a program
is primary mode.

v Many MVS macro services support callers in both primary ASC and access
register (AR) ASC mode. Some of these services provide two macros that
perform the same function; one macro can generate code and addresses
appropriate for callers in primary mode, and the other macro can generate code
and addresses appropriate for callers in AR mode.
The names of the two macros are the same, except the macro that supports the
AR mode caller ends with an “X”. These pairs of macros are called X-macros.
SNAPX is an example of an X-macro. SNAP is for primary mode callers and
SNAPX is for primary or AR mode callers. As you use the X-macros, keep in
mind the following information:
– A parameter or function might apply only to the X-macro. (For example, the

DSPSTOR parameter is valid only on SNAPX, not SNAP.)
– Most of the parameters are available on both the X-macro and the

non-X-macro.

4 z/OS V2R2 MVS Authorized Assembler Services Guide

Macro descriptions in the z/OS MVS Programming: Assembler Services Reference
ABE-HSP and the z/OS MVS Programming: Assembler Services Reference IAR-XCT
help you use the X-macros correctly.

Chapter 1. Introduction 5

6 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 2. Subtask creation and control

The control program creates a task when it initiates execution of the job step; this
task is the job step task. You can create additional tasks in your program. If you do
not, however, the job step task is the only task in a job being executed. The
benefits of a multiprogramming environment are still available even with only one
task in the job step; work is still being performed for other jobs when your task is
waiting for an event, such as an input operation, to occur.

The advantage in creating additional tasks within the job step is that more of your
tasks are competing for control than the single job step task. When a wait
condition occurs in one of your tasks, it is not necessarily a task from some other
job that gets control; it might be one of your tasks, a portion of your job.

The general rule is that you should choose parallel execution of a job step (that is,
more than one task in a job step) only when a significant amount of overlap
between two or more tasks can be achieved. Both the amount of time the control
program takes to establish and control additional tasks and your increased effort to
coordinate the tasks and provide for communications between them must be taken
into account.

You can also use tasks in enclaves. An enclave is a transaction that can span
multiple tasks and/or SRBs in one or more address spaces and is managed and
reported as a unit. A task can join or leave an enclave. While a task is joined to an
enclave, any subtasks created also belong to the enclave. For more information
about using tasks in enclaves, see z/OS MVS Programming: Workload Management
Services.

Most of the information concerning subtask creation and control appears in z/OS
MVS Programming: Assembler Services Guide, z/OS MVS Programming: Assembler
Services Reference ABE-HSP and z/OS MVS Programming: Assembler Services Reference
IAR-XCT. This topic provides additional information about:
v Creating a task (ATTACH or ATTACHX macro)
v Ensuring that a process completes (STATUS macro)
v Communicating with a problem program (EXTRACT and QEDIT macros)

Creating a new task (ATTACH or ATTACHX macro)
To create a new task, use the ATTACH or ATTACHX macro. Programs running in
primary ASC mode or programs running in access register ASC mode can use
either ATTACH or ATTACHX. IBM recommends, however, that programs running
in access register ASC mode use ATTACHX. The ATTACH and ATTACHX services
for programs that run in problem program state are described in the z/OS MVS
Programming: Assembler Services Guide and the z/OS MVS Programming: Assembler
Services Reference ABE-HSP.

When you attach a subtask, you have the option of setting its dispatchability. The
DISP parameter of the ATTACH and ATTACHX macros enables you to set the
attached subtask to be dispatchable (DISP=YES) or non-dispatchable (DISP=NO).
You can reset tasks that you attached with the DISP=NO parameter to dispatchable
by issuing ATTACH or ATTACHX again with the DISP=RESET parameter.

© Copyright IBM Corp. 1988, 2016 7

Ensuring that a process completes (STATUS macro)
Complex programs, such as database managers, often include processes that use
critical resources and that must complete quickly. While it is possible to prevent
delays by running the program disabled, disabled programs have certain
restrictions, such as not being able to perform I/O and not being able to reference
pageable storage. If your program cannot run with the restrictions of a disabled
program, and it cannot tolerate a process delay, issue the STATUS macro with the
SET,MC,PROCESS parameter, taking into consideration the restrictions discussed
later in this topic. Issuing STATUS SET,MC,PROCESS puts the program in
process-must-complete mode.

Issuing STATUS SET,MC,PROCESS at the start of a process postpones delays from
certain events. The macro allows a process using critical resources to complete but
allows all other tasks in the address space to continue running. Examples of events
that cause delays that the STATUS macro can postpone are:
v Asynchronous exits
v Status stops (by issuing the STATUS macro with the STOP option)
v Timer exits
v Dumping
v Swapping
v Attention exits

Process-must-complete mode also prevents the CANCEL command from stopping
a program that is already running. Issuing STATUS SET,MC,PROCESS does not,
however, postpone external interrupts or interrupts from I/O.

There are other restrictions to consider when deciding whether to place a process
in process-must-complete mode. While in process-must-complete mode, a task
cannot:
v Issue STATUS STOP,SRB or STATUS START,SRB.
v Request the LOCAL lock unconditionally
v Issue an SVC or invoke services that issue SVCs
v Issue the WAIT macro or invoke services that issue WAITs.

Remaining in process-must-complete mode for an extended period of time will
degrade the performance of other programs waiting to use global resources that
the program in this mode holds. Ensure that the process that issues STATUS
SET,MC,PROCESS really must complete without delay, and that you end
process-must-complete mode as soon as the program releases the resource.

To end process-must-compete mode, issue the STATUS macro with the
RESET,MC,PROCESS parameter.

STATUS also stops started subtasks and restarts them as described in z/OS MVS
Programming: Assembler Services Guide.

Communicating with a program (EXTRACT, QEDIT)
The operator can pass information to the started program by issuing a STOP or a
MODIFY command. In order to accept these commands, the program must be set
up in the following manner.

8 z/OS V2R2 MVS Authorized Assembler Services Guide

The program must issue the EXTRACT macro to obtain a pointer to the
communications ECB and a pointer to the first command input buffer (CIB) on the
CIB chain for the task. The ECB is posted whenever a STOP or a MODIFY
command is issued. The EXTRACT macro is written as follows, and returns what
is indicated in Figure 1.
EXTRACT answer area,FIELDS=COMM

The CIB contains the information specified on the STOP, START, or MODIFY
command. If the job was started from the console, the EXTRACT macro will point
to the START CIB. If the job was not started from the console, the address of the
first CIB will be zero. For more information on the contents of the command input
buffer (CIB) and mapping macro IEZCIB, see z/OS MVS Data Areas in the z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

If the address of the START CIB is present, use the QEDIT macro to free this CIB
after any parameters passed in the START command have been examined. The
QEDIT macro is written as follows:
QEDIT ORIGIN=address of pointer to CIB,BLOCK=address of CIB

Note:

1. The address of the pointer to the CIB is the contents of the answer area plus 4
bytes, as shown in Figure 1.

2. The address of the CIB must be the exact address returned by EXTRACT, not
an address generated from copying the CIB to another location.

The CIB counter should then be set to allow CIBs to be chained and MODIFY
commands to be accepted for the job. This is also accomplished by using the
QEDIT macro:
QEDIT ORIGIN=address of pointer to CIB,CIBCTR=n

The value of n is any integer value from 0 to 255. If n is set to zero, no MODIFY
commands are accepted for the job. However, STOP commands are accepted for
the job regardless of the value set for CIBCTR. After a STOP command is issued,
the system sets the value of CIBCTR to zero to prevent more modify CIB‘s from
being chained. To continue processing modify‘s after a STOP command, you must
use the QEDIT macro to set the CIBCTR to non-zero.

Note: When using the address or addresses returned from the EXTRACT macro as
input to the QEDIT macro, you must establish addressability through the COM
data area (mapped by IEZCOM), based on the address returned by the EXTRACT.
For a description of the COM data area, see z/OS MVS Data Areas in the z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

For the duration of the job, your program can wait on or check the
communications ECB at any time to see if a command has been entered for the

0

4

8

ECB address

CIB address

program token

Address of the

communication area

Answer area

Figure 1. EXTRACT ECB Address, CIB Address, and Program Token

Chapter 2. Subtask creation and control 9

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

program. Check the verb code in the CIB to determine whether a STOP or a
MODIFY command has been entered. After processing the data in the CIB, issue a
QEDIT macro to free the CIB.

The communications ECB is cleared by QEDIT when no more CIBs remain. Care
should be taken if multiple subtasks are examining these fields. Any CIBs not freed
by the task are unchained by the system when the task is terminated. The area
addressed by the pointer obtained by the EXTRACT macro, the communications
ECB, and all CIBs are in protected storage and may not be altered.

The portion of the program follows the procedure outlined in the preceding
paragraphs. It shows how you can code the EXTRACT and QEDIT macros to
accept MODIFY and STOP commands. The full example would use reentrant code.
R1 EQU 1
R7 EQU 7
R9 EQU 9
R10 EQU 10
R14 EQU 14

USING *,R10 MODULE ADDRESSABILITY
LA R9,COMADDR GET COMMUNICATIONS AREA

* ADDRESS AT COMADDR
--
* OBTAIN ADDRESS OF THE CIB *
--

EXTRACT (R9),FIELDS=COMM,MF=(E,EXTRACT)
* EXTRACT THE COMMUNICATIONS AREA

L R9,COMADDR GET ADDRESS OF THE AREA
USING COM,R9 USE R9 AS BASE ADDRESS OF COMM AREA
ICM R7,15,COMCIBPT GET CIB ADDRESS FROM COM AREA
BZ NOCIB NO CIB, TASK WAS NOT STARTED
BAL R14,DOCIB PROCESS THE CIB

NOCIB DS 0H
QEDIT ORIGIN=COMCIBPT,CIBCTR=5 SET MODIFY LIMIT TO 5
L R1,COMECBPT GET ADDRESS OF THE COMMUNICATION ECB
O R1,HIBITON SET HIGH BIT - LAST ECB IN LIST
ST R1,MODECB PUT ADDR OF MODIFY ECB IN LIST

*
*
*
WAIT DS 0H

WAIT ECBLIST=ECBS WAIT FOR A MODIFY/STOP
*
* WHEN POSTED HERE, A MODIFY OR STOP HAS BEEN ISSUED

ICM R7,15,COMCIBPT GET CIB ADDRESS FROM COM AREA
USING CIB,R7 BASE CIB MAPPING
CLI CIBVERB,CIBMODFY WAS IT A MODIFY?
BNE NOTMDFY NO, GO FREE CIB
BAL R14,DOCIB IT WAS A MODIFY, GO PROCESS COMMAND

*
*
*
*-- *
* FREE THE CIB *
*-- *
NOTMDFY DS 0H

BAL R14,DELCIB FREE CIB
CLI CIBVERB,CIBSTOP WAS IT A STOP?
BE EXITRTN BRANCH TO ROUTINE HANDLING ERRORS
B WAIT WAIT FOR ANOTHER MODIFY

* .
* .
DELCIB DS 0H
* USE QEDIT TO FREE THE CIB
* QEDIT WILL ALSO CLEAR THE ECB

10 z/OS V2R2 MVS Authorized Assembler Services Guide

*
QEDIT ORIGIN=COMCIBPT,BLOCK=(R7) FREE THE CIB
BR R14

DOCIB DS 0H

* YOUR ROUTINE TO HANDLE CIB PROCESSING WOULD GO HERE. *

*
*
*

* CONSTANTS *

DS 0F FULLWORD ALIGNMENT
HIBITON DC X’80000000’ USED TO TURN HIGH ORDER BIT ON

* FIELDS REQUIRED IN DYNAMIC STORAGE *

ECBS DS 0CL4 ECB LIST FOR WAIT
MODECB DS A ADDR(MODIFY/STOP ECB)
COMADDR DS F ADDR(COMAREA) FROM EXTRACT
SV DS 18F SAVE AREA
EXTRACT EXTRACT MF=L EXTRACT PARAMETER LIST

* REQUIRED DSECTs *

COM DSECT

IEZCOM , COM AREA
CIB DSECT

IEZCIB , CIB
END

Providing an EXTRACT answer area
The EXTRACT macro provides TCB information for either the active task or one of
its subtasks. Figure 2 on page 12 shows the order in which the information from
the requested fields is returned. If the information from a field is not requested, the
associated fullword is omitted. See z/OS MVS Programming: Authorized Assembler
Services Reference EDT-IXG for a description of the EXTRACT answer area fields.

Chapter 2. Subtask creation and control 11

You must provide an answer area consisting of contiguous fullwords, one for each
of the codes specified in the FIELDS parameter, with the exception of ALL. If ALL
is specified, you must provide a 7-word area to accommodate the GRS, FRS,
reserved, AETX, PRI, CMC, and TIOT fields. The ALL code does not include the
COMM, TSO, PSB, TJID, and ASID fields.

Most of the addresses are returned in the low-order three bytes of the fullword,
and the high-order byte is set to zero; the fields for AETX, TIOT, and PSB could
have a nonzero first byte. Fields for which no addresses or values are specified in
the task control block are set to zero.

For example, if you code FIELDS=(TIOT,GRS,PRI,TSO,PSB,TJID) you must provide
a 6-fullword answer area, and the extracted information appears in the same
relative order as shown in Figure 2. (That is, GRS is returned in the first word, PRI
in the second word, TIOT in the third word, and so forth.)

If FIELDS=(ALL,TSO,PSB,COMM,ASID) is coded, you need an 11-fullword answer
area, and the extracted information appears in the answer area in the relative order
shown above.

00 00

00

00

00

00

Value

Address

Address

Address

Address

Address

Value

Completion Code

Address

Address

Value

Value

1 Byte 1 Byte 1 Byte 1 Byte

00

00

00

00

00

00

00

00

00ASID

TJID

PSB

COMM

TSO

TIOT

CMC

PRI

AETX

FRS

GRS

Not an intended
programming
interface

Answer Area Address

Figure 2. EXTRACT Answer Area Fields

12 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 3. Program management

You can specify whether you want a program loaded into storage above or below
16 megabytes and whether you want a program loaded at a specific address. This
information along with a description of synchronous exits, the use of checkpoint
restart, the use of re-entrant modules, refreshing library lookaside facility (LLA)
directories, changing the LNKLST concatenation for the system, and specifying
modules to be added to or deleted from LPA after IPL is described in this topic.

Load module structures, methods of passing control between programs, and the
use of associated macros are described in z/OS MVS Programming: Assembler
Services Guide,z/OS MVS Programming: Assembler Services Reference ABE-HSP. and
z/OS MVS Programming: Assembler Services Reference IAR-XCT.

Residency and addressing mode of programs
The control program ensures that each load module is loaded above or below 16
megabytes as appropriate and that it is invoked in the correct addressing mode
(24-bit or 31-bit). The placement of the module above or below 16 megabytes
depends on the residency mode (RMODE) that you define for the module.
Whether a module executes in 24-bit or 31-bit addressing mode depends on the
addressing mode (AMODE) that you define for the module.

The addressing modes have the following meanings:
v When a program is running in 24-bit addressing mode, the system treats both

instruction and data addresses as 24-bit addresses. This allows programs
running in 24-bit addressing mode to address the first 16 megabytes (16,777,216
bytes) of storage in an address space.

v When a program is running in 31-bit addressing mode, the system treats both
instructions and data addresses as 31-bit addresses. This allows a program
running in 31-bit addressing mode to address the first 2 gigabytes (2,147,483,648
bytes or 128x16 megabytes) of storage.

v The system handles a program in 64-bit addressing mode differently. A program
does not get control in 64-bit addressing mode. It starts running in either 24- or
31-bit addressing mode. To change its addressing mode, it uses the SAM64
Assembler instruction. While in 64-bit addressing mode, it continues to run
below the 2-gigabyte address of the address space. However, it can access data
that exists above the 2-gigabyte address. To give you an idea of the size of the
64-bit address space, consider that a 64-bit address space is 8 billion times the
size of a 31-bit address space.

z/OS MVS Programming: Assembler Services Guide provides detailed information
concerning the AMODE and RMODE of modules of storage. z/OS MVS
Programming: Extended Addressability Guide provides more information about how
programs use the 64–bit address space.

You can define the residency mode and the addressing mode of a program in the
source code. Table 1 on page 14 shows an example of the definition of the AMODE
and RMODE attributes in the source code. This example defines the addressing
mode of the load module as 31 and the residence mode of the load module as 24.
Therefore, the program will receive control in 31-bit addressing mode and will
reside below 16 megabytes in 24-bit addressable storage.

© Copyright IBM Corp. 1988, 2016 13

Table 1. Assembler Definition of AMODE/RMODE

SAMPLE CSECT
SAMPLE AMODE 31
SAMPLE RMODE 24

The assembler places the AMODE and RMODE in the output object module for
use by the linkage editor. The linkage editor passes this information on to the
control program through the directory entry for the partitioned data set that
contains the load module. You can also specify the AMODE/RMODE attributes of
a load module by using linkage editor control cards. See z/OS MVS Program
Management: User's Guide and Reference and z/OS MVS Program Management:
Advanced Facilities for information concerning these control cards.

Placement of modules in storage
The control program uses the RMODE attribute from the directory entry for the
module to load the program above or below 16 megabytes. The RMODE attribute
can have one of the following values:
v 24-specifies that the program must reside in 24-bit addressable storage
v ANY-specifies that the program can reside anywhere in virtual storage

Addressing mode
The AMODE attribute, located in the directory entry for the module, specifies the
addressing mode of the module. Bit 32 of the program status word (PSW) indicates
the addressing mode of the program that is executing. The system supports
programs that execute in 24-bit, 31-bit, or 64-bit addressing mode.

The AMODE attribute can have one of the following values:
v 24-specifies that the program is to receive control in 24-bit addressing mode
v 31-specifies that the program is to receive control in 31-bit addressing mode
v ANY-specifies that the program is to receive control in either 24-bit or 31-bit

addressing mode

Specifying where the module is to be loaded (LOAD macro)
When a program in supervisor state uses the LOAD macro to bring a copy of the
load module into virtual storage, it can use one of three parameters to specify
where the control program is to load the module:
v Use the ADDR parameter to load a module in an APF-authorized library at a

specified address. You must first allocate storage for the module in your key.
v Use the ADRNAPF parameter to load a module in an unauthorized library at a

specified address. You must first allocate storage for the module in your key.
v Use the GLOBAL parameter on LOAD to load the module into either fixed or

pageable CSA.
– GLOBAL=(YES,P) or GLOBAL=YES requests storage in the pageable CSA.
– GLOBAL=(YES,F) requests storage in fixed CSA.
When you use GLOBAL=YES, you can use the EOM parameter to specify when
the control program is to delete the module. EOM=NO (the default) requests
deletion at task termination. EOM=YES requests deletion at address space
termination.

14 z/OS V2R2 MVS Authorized Assembler Services Guide

The GLOBAL=YES and GLOBAL=(YES,F) parameters should be used only by
programs running in address spaces that never terminate or to load non-executable
load modules. A module is loaded into global storage so it can be shared among
tasks in different address spaces. If the address space containing the program that
loaded the module terminates, the loaded module is deleted and other users of this
module could attempt to run a program that is no longer in storage.

Note: If you determine the amount of storage required to hold a loaded module
using the module length returned from the BLDL macro in the PDS2 data area
field PDS2STOR, this will no longer work for program objects exceeding 16
megabytes. The PDS2STOR field is only 3 bytes in length, and it cannot denote any
program length greater than 16 megabytes. You can determine if a program object
exceeds 16 megabytes by inspecting the PDS2BIG bit of the PDS2 data area. If the
PDS2BIG bit is set on, the program object is greater than 16 megabytes, and the
4-byte PDS2VTSR field contains the amount of storage required to hold a loaded
program object greater than 16 megabytes. If the PDS2BIG bit is set off, use the
PDS2STOR field to determine the size of storage required.

If you do not use ADDR, ADRNAPF, or GLOBAL=YES (that is, you use
GLOBAL=NO or take the default), the control program loads the module in
subpool 244 or subpool 251, unless the following three conditions are true:
v The module is reentrant
v The library is authorized
v You are not running under TSO/E test

In this case, the control program places the module in subpool 252. When choosing
between subpools 244 and 251. the control program uses:
v Subpool 244 only when within a task that was created by ATTACHX with the

KEY=NINE parameter
v Subpool 251in all other cases

Subpool 244 is not fetch protected and has a storage key equal to your PSW key.
Subpool 251 is fetch protected and has a storage key equal to your PSW key.
Subpool 252 is not fetch protected and has storage key 0.

When a program is in problem state, the control program brings the copy of the
load module in subpool 251, with one exception. If the module is reentrant, the
library is authorized, and you are not running under TSO TEST, the control
program places the module in subpool 252.

Synchronous exits (SYNCH or SYNCHX macro)
In general, the SYNCH or SYNCHX macro is used when a program in supervisor
state gives temporary control to a processing program routine (not necessarily
running in supervisor state) where the processing program is expected to return
control to the supervisor state program. The program to which control is given
must be in virtual storage when the macro is issued.

When the processing program returns control, the supervisor state bit, the PSW
key bits, the system mask bits, and the program mask bits of the program status
word are restored to the settings they had before execution of the SYNCH or
SYNCHX macro.

When a program is SYNCHed to, it will receive control with the caller's Floating
Point Registers and Floating Point Control register. The S/390® linkage convention

Chapter 3. Program management 15

applies. For more information on the S/390 linkage convention, see "Linkage
Conventions" in z/OS MVS Programming: Assembler Services Guide.

When the target program is AMODE 24 or AMODE 31, the SYNCH or SYNCHX
macro is similar to the BALR in that you can use register 15 for the entry point
address. When the target routine is AMODE 64, the SYNCH or SYNCHX macro is
similar to LINKX or ATTACHX in that you are expected to use relative branching
and register 15 contains a value that can be used to determine the addressing
mode of the issuer of the SYNCH or SYNCHX macro as follows:
v Issuer AMODE 24: X'FFFFF000'
v Issuer AMODE 31: X'FFFFF002'
v Issuer AMODE 64: X'FFFFF004'

Note: For assistance in converting a program to use relative branching, refer to the
IEABRC and IEABRCX macros.

SYNCH or SYNCHX processing does not save or restore registers when control is
returned to the caller unless RESTORE=YES is specified. If you specify
RESTORE=NO explicitly or by default, the register contents are unpredictable.
When an authorized program uses SYNCH or SYNCHX to invoke an exit in an
unauthorized program, the general registers returned from the exit might not
contain expected data or correct addresses. Therefore, the authorized program
must save the registers in a protected save area and then restore them, or validate
the contents of the returned registers, or code RESTORE=YES.

Using checkpoint/restart
When issuing checkpoints and then restarting a task, the restarted task must
request control of all resources required to continue processing. Resources are not
automatically returned to the task upon restart.

You can use the checkpoint/restart facility with the following restrictions:
v A routine that is restricted from issuing SVCs is also restricted from establishing

checkpoints because programmer-designated checkpoints require the use of the
checkpoint SVC.

v An exit routine other than the end-of-volume exit routine cannot request a
checkpoint.

v A routine invoked by a program call (PC) cannot request checkpoints because
the system environment might be different at the time of the restart from what it
was at the time of the checkpoint. This could lead to unpredictable results on the
return linkage (PT).

v A routine with a PCLINK STACK request outstanding cannot establish a
checkpoint.

v Subsystems that use the TCB subsystem affinity service cannot issue
checkpoints.

v A program that has selected a data in virtual object using the IDENTIFY service
cannot request a checkpoint until it invokes the corresponding UNIDENTIFY
service.

For additional information concerning the restrictions and use of the
checkpoint/restart facility see z/OS DFSMSdfp Checkpoint/Restart.

16 z/OS V2R2 MVS Authorized Assembler Services Guide

|
|

Using re-entrant modules
When link editing modules as re-entrant, be sure that all the modules and the
macros they call are re-entrant. In a multiprocessing system this is important
because:
v Two tasks in the same address space, or in different address spaces such as a

program in LPA or common storage, making use of the module might cause the
module to be executed simultaneously on two different processors.

v Asynchronous appendages can operate on one processor simultaneously with an
associated task on another processor.

v Enabled recovery routines can execute on any processor, not necessarily on the
one on which the error was detected.

The CSECTs must be unchanged during execution or their critical sections must be
explicitly serialized. The general method for ensuring re-entrance of macros is to
use the LIST and EXECUTE forms of the macros with a dynamically acquired
parameter list.

Using LLACOPY to refresh LLA directories
To enhance performance by reducing I/O overhead, a subsystem (such as CICS®)
can keep copies of directories in storage. This allows the subsystem to quickly
access modules instead of using I/O to search the directories on DASD.

The LLACOPY macro enables the subsystem to manage the subsystem libraries. It
allows the subsystem to keep the library lookaside facility (LLA) directory
synchronously updated with the subsystem copy of the data set directory. For
information about LLA, see z/OS MVS Initialization and Tuning Guide.

LLACOPY synchronously refreshes the LLA directory and returns the new
directory entries to the caller. It has the same parameters as the BLDL macro.
LLACOPY obtains the requested directory entries from DASD by using BLDL.

If LLACOPY finds the directory entries for the requested names, it fills the caller's
BLDL list with those entries. If LLACOPY cannot find a particular member, it does
not fill in the entry area in the BLDL list for that member.

If LLACOPY finds the requested names in LLA-managed libraries, it changes the
LLA directory by either adding the directory entry (if new) or updating the
existing directory entry.

LLACOPY can also inform LLA of members that have been removed from
datasets. If LLACOPY does not find the member name in the DASD directory, but
the member name is in the LLA directory, LLACOPY removes the LLA directory
entry.

LLACOPY returns directory entries to the caller but does not refresh the LLA
directory when any of the following instances occur:
v An abend (LLACOPY may not return directory entries).
v The version of MVS installed is prior to Version 3 Release 1.3.
v LLA is not active. There was no LLA directory to update.
v You executed LLACOPY against non-LLA-managed datasets.

For additional information concerning the restrictions and use of LLACOPY, see
z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU.

Chapter 3. Program management 17

Changing the LNKLST concatenation
You can use the CSVDYNL macro in an authorized program to change the
LNKLST concatenation for associated jobs and address spaces. You can perform the
following functions with CSVDYNL:
v Define a LNKLST set by name (REQUEST=DEFINE). A LNKLST set defines the

data sets for the LNKLST concatenation.
v Add data sets to the LNKLST set (REQUEST=ADD) or delete data sets from the

LNKLST set (REQUEST=DELETE).
v Remove the definition of a LNKLST set (REQUEST=UNDEFINE).
v Test to determine if a module can be located in a LNKLST set

(REQUEST=TEST).
v Obtain a list of LNKLST sets and users in the system (REQUEST=LIST).
v Update jobs and address spaces to use the LNKLST set that the system is

currently using, called the current LNKLST set (REQUEST=UPDATE).
v Query information about support for LNKLST services

(REQUEST=QUERYDYN).

You can perform almost all of the same functions through PROGxx LNKLST
statements in SYS1.PARMLIB and dynamically through the SETPROG LNKLST
command. For information about PROGxx, see z/OS MVS Initialization and Tuning
Reference. For information about SETPROG LNKLST, see z/OS MVS System
Commands.

Changing the current LNKLST set
PROGxx defines the LNKLST sets that can be used by the system. At IPL, you can
specify a PROGxx member that activates the current LNKLST set to be used by
jobs and address spaces. In PROGxx, you can also specify alternate data sets for
SYS1.LINKLIB, SYS1.MIGLIB, SYS1.CSSLIB, SYS1.SIEALNKE, or SYS1.SIEAMIGE
to appear at the beginning of the LNKLST concatenation. Unless overridden by
these alternates, SYS1.LINKLIB, SYS1.MIGLIB, SYS1.CSSLIB, SYS1.SIEALNKE, and
SYS1.SIEAMIGE always occur at the beginning of every LNKLST set as part of the
LNKLST concatenation.

You can activate the LNKLST set dynamically through the SET PROG=xx or
SETPROG LNKLST ACTIVATE commands. (You cannot use CSVDYNL to activate
a LNKLST set.) If the current LNKLST set is dynamically changed, any job or
address space associated with the previous LNKLST set continues to use the data
sets until the job or address space finishes processing. Thus, a previously current
LNKLST set might be active or in use by a job or address space even though a
new current LNKLST set has been activated. Jobs or address spaces that are started
after the new current LNKLST set is activated use the new current LNKLST set.

For a description and examples of CSVDYNL functions, see z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN.

Monitoring dynamic LPA processing
Dynamic LPA services allow modules to be added to or deleted from LPA after
IPL. Because any product can own LPA modules and have an interest in updating
their control structures, an exit (CSVDYLPA) is provided from dynamic LPA
services. Providing lists of modules added to or deleted from LPA, the exit is
intended to be used as a notification mechanism so that products can update
internal control structures with the new module addresses.

18 z/OS V2R2 MVS Authorized Assembler Services Guide

The system takes no action as a result of exit routine processing.

CSVDYLPA routine processing. The CSVDYLPA routine, if defined, receives control
when the system processes a dynamic LPA services request, either via
v the CSVDYLPA macro,
v the SETPROG LPA operator command, or
v an LPA statement within PROGxx referenced by the SET PROG=xx operator

command.

Dynamic LPA services are documented in z/OS MVS Programming: Authorized
Assembler Services Reference ALE-DYN. The CSVDYLPA exit routine can be used to
update control structures that had captured the addresses of particular LPA
modules, upon replacement of a module within LPA.

Installing CSVDYLPA. Use the CSVDYNEX macro to connect a routine to the
dynamic LPA processing. For example:

CSVDYNEX REQUEST=ADD, X
EXITNAME=THEEXIT, X
MODNAME=THEMOD

.

.

.
THEEXIT DC CL16’CSVDYLPA’
THEMOD DC CL8’DYLPARTN’

The exit routine must be reentrant and AMODE 31.

See “Using dynamic exits services” on page 479 for a description of CSVDYNEX
processing.

CSVDYLPA routine environment. The routine receives control in the following
environment:
v In supervisor state with PSW key 0.
v In dispatchable unit mode of task, running under the address space, task and

request block of the caller of CSVDYLPA.
v In cross memory mode of PASN=HASN=SASN.
v In AMODE 31.
v In primary ASC mode.
v Enabled for I/O and external interrupts.
v With no locks held.
v With parameter areas in the primary address space. The parameter list is

described below. The module information area pointed to by the parameter list
is mapped by the CSVLPRET macro.

v In the address space in which CSVDYLPA REQUEST=ADD was issued, or the
master scheduler address space for the SETPROG or SET PROG operator
commands.

v The exit uses fastpath=yes for CSVDYNEX REQUEST=CALL, and will retry
(continue calling) on an exit routine error.

v With ENQ resource SYSZCSV.CSVDYLPA held exclusive.
v The programmer should not use CSVDYLPA REQUEST=ADD or CSVDYLPA

REQUEST=DELETE within the exit routine.

Chapter 3. Program management 19

CSVDYLPA routine recovery. The routine should provide its own recovery, using
ESTAE, ESTAEX, or SETFRR EUT=YES. If the exit routine ends abnormally, its
recovery routine will get control before the recovery routine established by the
CSVDYLPA service.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted under the
following conditions:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
v The system allows a retry, that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system disables the exit routine when it abends on two consecutive
calls.

Programming considerations. The programmer should include the CSVLPRET
macro which maps one of the input parameters and provides equate symbols for
use by the exit routine.

Code the exit routine to be reentrant, and to have AMODE 31.

The exit routine should not modify the parameter areas.

Registers at entry to CSVDYLPA routine. The contents of the registers on entry to
a CSVDYLPA routine are:

Register
Contents

0 Contains no information for use by the exit routine

1 Address of parameter area

2-12 Contains no information for use by the exit routine

13 Address of 72-byte standard save area

14 Return address

15 Entry point address

Parameter area at entry to CSVDYLPA routine.

Word 1
Address of fullword containing 0 (symbol CsvdylpaFunctionAdd) if
processing an ADD request or 1 (symbol CsvdylpaFunctionDelete) if
processing a DELETE request.

Word 2
Address of fullword containing the number of module entries in the area
pointed to by parameter list word 3.

Word 3
Address of module information entries. The entries are contiguous, each
mapped by DSECT LPMEA in macro CSVLPRET. The entries are not
sorted. Only entries with bit LpmeaSuccess on should be processed; others
should be skipped. When processing a delete request, the information
presented for a deleted entry indicates information about the now-current

20 z/OS V2R2 MVS Authorized Assembler Services Guide

copy of the entry. If, after the deletion, the entry still exists in LPA, the
LpmeaEntryPointAddr, LpmeaLoadPointAddr, and LpmeaModlen fields
are provided, if available. If no entry still exists in LPA, then a value of
X'7FFFFFFF' is presented in the LpmeaEntryPointAddr field, and the
LpmeaLoadPointAddr and LpmeaModlen fields do not contain valid data
The exit routine must not modify this area, as doing so would compromise
the information provided to subsequent exit routines called for the same
event.

Word 4
Address of 512-byte work area on a doubleword boundary. This area can
be used as a dynamic area by the module, possibly allowing it to avoid
doing GETMAIN/FREEMAIN on entry/exit.

Word 5
Address of 12-byte area that is the DDNAME (bytes 0-7) and DCB (bytes
8-11) address used for the ADD request. The DDNAME will be 0s for the
following cases:
v a DELETE request;
v an ADD request that specified BYADDR=YES; or
v an ADD request that specified DCB, DCBPTR, MASKDCB, or

MASKDCBPTR.

The DCB address will be 0s for the following cases:
v a DELETE request or
v an ADD request that specified BYADDR=YES.

The DDNAME and/or DCB address could be used to locate the name of
the data set from which the module was fetched, using field
LpmeaSuccessConcatNum to identify the number of the data set within the
allocated concatenation.

At the time the exit routine is called, the DDNAME will still be allocated
and the DCB will still be open.

Registers at exit from CSVDYLPA routine. Upon return from CSVDYLPA
processing, the register contents must be:

Register
Contents

0-1 Need not contain any particular value

2-13 Restored to contents at entry

14 Need not contain any particular value

15 0

Disassociating CSVDYLPA. Disassociate the routines from CSVDYLPA when they
should no longer receive control. Use the CSVDYNEX macro to disassociate the
routines. For example:

CSVDYNEX REQUEST=DELETE, X
EXITNAME=THEEXIT X
MODNAME=THEMOD

.

.

.
THEEXIT DC CL16’CSVDYLPA’
THEMOD DC CL8’DYLPARTN’

Chapter 3. Program management 21

Coded example
EXITRTN CSECT
EXITRTN AMODE 31
EXITRTN RMODE ANY
*
* entry linkage
*

STM R14,R12,12(R13)
LR R12,R15
USING EXITRTN,R12

*
* Processing
*

L R2,0(R1) Get address of function code
CLC 0(4,R2),FUNCDEL Is this DELETE?
BE DONE Yes, Done
L R2,4(R1) Get address of number of entries
ICM R2,15,0(R2) Get number of entries
BZ DONE No entries, done
L R3,8(R1) Address of module information area
USING LPMEA,R3 Establish using

TOP DS 0H TOP of loop
TM LPMEAOUTPUTFLAGS0,LPMEASUCCESS Is this entry valid?
BZ NEXT No, move on to next
CLC LPMEANAME,MYMODULE Is this my module?
BNE NEXT No, move on to next

*
* Put code here possibly to move field LpmeaEntryPointAddr to
* your own data area
*
NEXT DS 0H Continue loop

LA R3,LPMEA_LEN(R3) Point to next entry
DROP R3 Release using
BCT R2,TOP Decrement, see if done

DONE DS 0H
*
* exit linkage
*

LM R14,R12,12(R13)
SLR R15,R15
BR R14

MYMODULE DC CL8’MODULEA’
FUNCDEL DC A(CSVDYLPAFUNCTIONDELETE)
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

CSVLPRET
END

Listing contents of dynamic LPA with CSVDLPAU
You can use CSVDLPAU utility to list the modules that comprise the Link Pack Area
(LPA). You can choose to display just the modules added by the dynamic LPA
facility, or those modules plus the modules that are part of active LPA (for
example, MLPA, FLPA, and device support modules) or all of LPA.

Invoking CSVDLPAU
You can invoke CSVDLPAU using the following sample JCL:

22 z/OS V2R2 MVS Authorized Assembler Services Guide

//jobname JOB ...
//stepname EXEC PGM=CSVDLPAU,PARM=p
//SYSPRINT DD SYSOUT=s

Lower case text reflects the data that you must change.

EXEC statement parameters:
Replace p in the sample with one of the following values:

Value Meaning

D Display only the dynamic LPA modules (this is the default if no
parameter is provided).

A Display dynamic LPA and active LPA (for example, MLPA, FLPA, and
device support) modules.

L Display all LPA modules (dynamic LPA, active LPA, PLPA).

DD statement information

SYSPRINT statement
This DD defines where the output from the program is sent. Replace s
in the sample with a sysout class that meets your needs and is
supported by your installation. Output could instead go to a sequential
data set with attributes of RECFM=FBA, LRECL=133, and BLKSIZE=0.

Return codes

When CSVDLPAU ends, one of the following return codes is placed in general
purpose register 15:

Code Meaning

0 Successful completion.

4 Bad input parameter or could not open SYSPRINT DD.

8 Unexpected error from the CSVINFO service. Message CSVD002W is
also written to the SYSPRINT DD file. See “CSVD002W” on page 24.

Output from CSVDLPAU

CSVD001I title
FLAGS* MODULE ENTRY PT LOAD PT LENGTH
xfp modname1 entrypt1 loadpt1 length1
xfp modname2 entrypt2 loadpt2 length2
...
* FLAGS EXPLANATION

D = DYNAMIC LPA
A = ACTIVE LPA
L = (P)LPA
P = ENTIRE MODULE PAGE PROTECTED
F = (PAGE) FIXED

where the values are as follows:

title One of the following values:
v DYNAMIC LPA MODULE DISPLAY
v DYNAMIC AND ACTIVE LPA MODULE DISPLAY
v LPA MODULE DISPLAY

xfp Identifies three individual flags:

Flag Meaning

x Indicates one of the following:

Chapter 3. Program management 23

D Dynamic LPA

A Active LPA

L PLPA

f Either F to indicate the module is page-fixed or blank to
indicate the module is not page-fixed

p Either P to indicate that the entire module is page-protected or
blank

modnameN
The name of a module

entryptN
The entry point address of the module

loadptN
The load point address of the module

lengthN
The length of the module

CSVD002W CSVINFO WAS NOT SUCCESSFUL.
RC=rc RSN=rsn.

Explanation: The CSVINFO service used by
CSVDLPAU did not complete successfully.

In the message text:

rc The hexadecimal return code from CSVINFO.

rsn The hexadecimal reason code from CSVINFO.

Monitoring dynamic exits processing
Dynamic exits services allow exit routines to be associated with (add) or
disassociated from (delete) an exit. Because any product can own exits and have an
interest in learning about exit routines for their exit, an exit (CSVDYNEX) is
provided from dynamic exits services. It provides information about the exit
routine and exit being processed. The exit is primarily intended to be used as a
notification mechanism so that products can learn quickly of changes that might
affect whether or not they should make an exit call.

The system takes no action as a result of exit routine processing.

CSVDYNEX exit routine processing

The CSVDYNEX exit routine, if defined, receives control when the system
processes a dynamic exit services Add, Modify, Replace, or Delete request, in one
of the following ways:
v The CSVDYNEX macro
v The SETPROG EXITS operator command
v An EXIT statement within PROGxx referenced by the SET PROG=xx operator

command

Dynamic exits services are documented in z/OS MVS Programming: Authorized
Assembler Services Reference ALE-DYN. The CSVDYNEX exit routine can be used to
update control structures that track whether or not there are exit routines
associated with a given exit.

CSVD002W

24 z/OS V2R2 MVS Authorized Assembler Services Guide

|

|
|
|
|
|
|
|

|

|

|
|
|

|

|

|
|

|
|
|
|

Installing CSVDYNEX

Use the CSVDYNEX macro to connect an exit routine to the dynamic exits
processing. For example:

CSVDYNEX REQUEST=ADD, X
EXITNAME=THEEXIT, X
MODNAME=THEMOD

.

.

.
THEEXIT DC CL16’CSVDYNEX’
THEMOD DC CL8’DYNEXRTN’

The exit routine must be reentrant and AMODE 31.

See “Using dynamic exits services” on page 479 for a description of CSVDYNEX
processing.

CSVDYNEX exit routine environment

The exit routine receives control in the following environment:
v In supervisor state with PSW key 0.
v In dispatchable unit mode of task, running under the task and request block of

the caller of CSVDYNEX.
v In cross memory mode of PASN=HASN=SASN.
v In AMODE 31.
v In primary ASC mode.
v Enabled for I/O and external interrupts.
v With no locks held.
v With parameter areas in the primary address space.
v The parameter list is described below.
v In the address space in which CSVDYNEX REQUEST=ADD was issued, or the

master scheduler address space for the SETPROG or SET PROG operator
commands.

v With ENQ resource SYSZCSV.CSVDYNEX held exclusive.

Do not use CSVDYNEX services within the exit routine.

CSVDYNEX exit routine recovery

The exit routine should provide its own recovery, using ESTAEX or SETFRR
EUT=YES. If the exit routine ends abnormally, its recovery routine will get control
before the recovery routine established by the CSVDYNEX service.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted under the
following conditions:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
v The system allows a retry, that is, the recovery routine is entered with bit

SDWACLUP off.

Chapter 3. Program management 25

|

|
|

|
|
|
|
|
|
|
|

|

|
|

|

|

|

|
|

|

|

|

|

|

|

|

|
|
|

|

|

|

|
|
|

|
|
|
|

|
|

|
|

By default, the system disables the exit routine when it abends on two consecutive
calls.

Programming considerations
v Invoke CSVDYNEX MF=L to get a mapping of the input parameters and equate

symbols for use by the exit routine.
v Code the exit routine to be reentrant and to have AMODE 31.
v The exit routine should not modify the parameter areas.

Registers at entry to CSVDYNEX exit routine: The contents of the registers on
entry to a CSVDYNEX exit routine are:

Register
Contents

0 Contains no information for use by the exit routine
1 Address of a parameter list of 1 word.

Parameter List 1st word: address of a copy of the CSVDYNEX parameter
list being used. Use CSVDYNEX MF=L to get a mapping of this area.

2-12 Contains no information for use by the exit routine
13 Address of 72-byte standard save area
14 Return address
15 Entry point address

Registers at exit from CSVDYNEX exit routine: Upon return from CSVDYNEX
processing, the register contents must be:

Register
Contents

0-1 Need not contain any particular value
2-13 Restored to contents at entry
14 Need not contain any particular value
15 0

Dynamic exits parameter list data

The fields of primary interest are expected to be (assume that CSVDYNEX
MF=(L,PL),PLISTVER=MAX is used, which will cause field names to begin with
“PL_”):
v The request type (byte PL_XRequest) with values identified by equates such as

PL_XRequest_Add, PL_XRequest_Modify, PL_XRequest_Replace,
PL_XRequest_Delete.

v The exit name (16-character field PL_XExitName).
v The service mask (8-character field PL_xServiceMask). This field is valid only

when bit PL_Keyused_ServiceMask in byte PL_xAMRFlags is on, which in turn
is possible only for the request types that accept ServiceMask (it is not valid for
a delete request).

Disassociating CSVDYNEX

Disassociate the exit routine from CSVDYNEX when it should no longer receive
control. Use the CSVDYNEX macro to disassociate the exit routines. You can
DELETE the exit routine or you can MODIFY the exit routine to an inactive state.
For example:

26 z/OS V2R2 MVS Authorized Assembler Services Guide

|
|

|

|
|

|

|

|
|

|
|
||
||

|
|
||
||
||
||

|
|

|
|
||
||
||
||

|

|
|
|

|
|
|

|

|
|
|
|

|

|
|
|
|

CSVDYNEX REQUEST=DELETE, X
EXITNAME=THEEXIT X
MODNAME=THEMOD

.

.

.
THEEXIT DC CL16’CSVDYNEX’
THEMOD DC CL8’DYLPARTN’

Example
EXITRTN CSECT
EXITRTN AMODE 31
EXITRTN RMODE ANY
*
* entry linkage
*

STM R14,R12,12(R13)
LR R12,R15
USING EXITRTN,R12
USING DYNEX_PARMLIST,R1

*
* Processing
*

CLC DYNEXPL_XEXITNAME,EXITNAME Our exit?
JNE DONE No, Done
CLI DYNEXPL_XREQUEST,DYNEXPL_XREQUEST_DELETE DELETE?
JE DELETE Yes, Process Delete

*
* Process Add/Modify/Replace, perhaps set a flag indicating that there is
* an exit routine associate with your exit so that it is now necessary
* to call the exit (since someone may be listening)
*

J DONE
DELETE DS 0H
* Process DELETE
DONE DS 0H
*
* exit linkage
*

LM R14,R12,12(R13)
SLR R15,R15
BR R14

EXITNAME DC CL16’MY_EXIT’
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
DYNEX_PARMLIST DSECT

CSVDYNEX MF=(L,DYNEXPL),PLISTVER=MAX
END

Monitoring fetch and unfetch processing
The CSVFETCH exit provides information about the fetching (or unfetching) of a
module. The exit is primarily intended to be used as part of monitoring (whether
for reporting or debugging). The exit will be called holding the local lock. The exit
routine must not release the local lock.

For fetch events, the exit is called after the module has been fetched. For unfetch
events, the exit is called before the module is unfetched.

Chapter 3. Program management 27

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

The system takes no action as a result of exit routine processing.

These are the conditions under which the exit routine will be called and the
ServiceID that will be specified on that call:
v Fetch: Increment of module use count, not z/OS UNIX

ServiceID: x'00000001_00000000' if module storage is obtained, first copy of
major name now in use, x'00000002_00000000' if module storage already existed
on job pack queue and is being used)

v Unfetch: Delete or Task Termination or RB Termination, decrement of module
use count
ServiceID: x'0000000_00000001' if no copy still in use, module storage freed,
x'00000000_00000002' if a copy is still in use, module storage not freed

v Fork child processing, “creation” of child module
ServiceID: x'00000080_00000000'

v z/OS UNIX fetch (using “load” or “xctl”)
ServiceID: x'00000004_00000000' if module storage is obtained, first copy of
major name now in use), x'00000008_00000000' if module storage already existed
on job pack queue and is being used

v Fetch of module from LPA
ServiceID: x'00000010_00000000'

v Delete of module from LPA
ServiceID: x'0000000_00000010'

v Fetch for Load with Address
ServiceID: x'00000020_00000000' The parameter area will identify that this was a
load-with-address

v z/OS UNIX fetch with address
ServiceID: x'00000040_00000000' The parameter list will identify that this was a
load-with-address

Data presented to exit routine:

Fetch event:
v Module name or Path name
v UCB address plus CCHH of the fetch (when available)
v Address of CDE (may be minor with address of major, or major with address of

XTLST) so can locate the extents
v DCB address or indication of LNKLST
v Other options that might have been requested such as load with address,

global=yes, global=(yes,fixed)

Unfetch (Delete) event:
v Module name or Path name
v Address of CDE (can be minor with address of major, or major with address of

XTLST, as indicated by bit CDMIN)
v Entry point address

Note:

v For a load with address, there will be a “fetch” event but there will be no
“unfetch” event

28 z/OS V2R2 MVS Authorized Assembler Services Guide

|

|
|

|

|
|
|

|
|

|
|

|

|

|

|
|
|

|

|

|

|

|

|
|

|

|
|

|

|

|

|

|
|

|

|
|

|

|

|
|

|

|

|
|

v For a load from LPA, if there is no explicit delete, there will be no “unfetch”
event

v For a load into private storage, if there is no explicit delete, there could be a
single unfetch event covering all the uses of the module

Termination considerations:

v When the system implicitly deletes/unfetches at task termination, there may be
a single unfetch event covering all the uses of the module. And that unfetch
event could be done using the “major name” rather than for each individual
“alias” that might have been loaded. You cannot necessarily "pair off" individual
entries for "fetch" with entries for "unfetch". But you could pair off a fetch entry
that obtained the storage for the module (according to the major name) and an
unfetch entry that freed the storage (according to the major name).

v For memory termination there will be no unfetch events (so no way to "pair
off").

v When a job has an LPA module loaded and terminates without deleting there is
no event

Considerations regarding alias and major:

v If you load an “alias”, the system creates entries for the alias and the major
name. You would get a fetch event for the alias, and the CDE for the alias would
give you access to the CDE for the major which in turn would have the
information about the module storage. If this was the load for which the module
storage was obtained, the “fetch_GetStore” event would be indicated; otherwise
the “fetch_JPQ” event would be indicated

v If you load a reentrant usable “major” and then subsequently load an “alias” of
that major, the alias would be considered to be found on the job pack queue
(because the module was indeed already loaded) and the “fetch_JPQ” event
would be indicated.

v If you delete an “alias” and there are still uses of the “major” (or of another alias
of that major), the CDE for the “alias” will remain in place. When there are no
more uses of the module, the module storage is freed and the CDEs that are
were built (both “major” and “alias”) are freed.

CSVFETCH exit routine processing

The CSVFETCH exit routine, if defined, receives control on fetch and unfetch
events. The CSVFETCH exit should be considered performance-sensitive, so the
exit routine should do as little as possible.

Installing CSVFETCH

Use the CSVDYNEX macro to connect an exit routine to the dynamic exits
processing. For example:

CSVDYNEX REQUEST=ADD, X
EXITNAME=THEEXIT, X
MODNAME=THEMOD

.

.

.
THEEXIT DC CL16’CSVFETCH’
THEMOD DC CL8’FTCHXRTN’

The exit routine must be reentrant and AMODE 31.

Chapter 3. Program management 29

|
|

|
|

|

|
|
|
|
|
|
|

|
|

|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|

|

|
|

|
|
|
|
|
|
|
|

|

See “Using dynamic exits services” on page 479 for a description of CSVDYNEX
processing.

CSVFETCH exit routine environment

The exit routine receives control in the following environment:
v In supervisor state with PSW key 0.
v In dispatchable unit mode of task, running under the task and request block of

the fetch or unfetch processing.
v In cross memory mode of PASN=HASN=SASN.
v In AMODE 31.
v In primary ASC mode.
v Enabled for I/O and external interrupts.
v With the local lock held (the exit routine must not release the local lock)
v With parameter areas in the primary address space. The parameter list is

described below.
v In the address space in which the fetch or unfetch was initiated
v Under the task in which the fetch or unfetch was initiated

CSVFETCH exit routine recovery

The exit routine should provide its own recovery, using SETFRR. If the exit routine
ends abnormally, its recovery routine will get control before the recovery routine
established by the system.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted under the
following conditions:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
v The system allows a retry, that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system disables the exit routine when it abends on two consecutive
calls.

Programming considerations
v Code the exit routine to be reentrant, and to have AMODE 31.
v The exit routine should not modify the parameter areas other than the 1024-byte

workarea.
v Because the CSVFETCH exit is called with ServiceIDs, you can use ServiceMask

to indicate for which events you want the exit routine to get control. For
example, to get control only for non-UNIX non-LPA fetches and for unfetches, a
service mask of C0000000C0000000 can be used (ORing together the values for
each event)

Registers at entry to CSVFETCH exit routine: The contents of the registers on
entry to a CSVFETCH exit routine are:

Register
Contents

30 z/OS V2R2 MVS Authorized Assembler Services Guide

|
|

|

|

|

|
|

|

|

|

|

|

|
|

|

|

|

|
|
|

|
|
|
|

|
|

|
|

|
|

|

|

|
|

|
|
|
|
|

|
|

|
|

0 Contains no information for use by the exit routine

1 Address of parameter area

2-12 Contains no information for use by the exit routine

13 Address of 144-byte standard save area

14 Return address

15 Entry point address

Registers at exit from CSVFETCH exit routine: Upon return from CSVFETCH
processing, the register contents must be:

Register
Contents

0-1 Need not contain any particular value

2-13 Restored to contents at entry

14 Need not contain any particular value

15 0

Parameter area at entry to CSVFETCH exit routine:

Word 0
Address of 1024-byte work area on a doubleword boundary. This area can
be used as a dynamic area by the module, possibly allowing it to avoid
doing GETMAIN/FREEMAIN on entry or exit.

Word 1
Address of an area mapped by macro CSVFTCHX

Disassociating CSVFETCH

Disassociate the exit routine from CSVFETCH when it should no longer receive
control. Use the CSVDYNEX macro to disassociate the exit routines. You can
DELETE the exit routine or you can MODIFY the exit routine to an inactive state.
For example:

CSVDYNEX REQUEST=DELETE, X
EXITNAME=THEEXIT X
MODNAME=THEMOD

.

.

.
THEEXIT DC CL16’CSVFETCH’
THEMOD DC CL8’FTCHXRTN’

Chapter 3. Program management 31

||

||

||

||

||

||

|
|

|
|

||

||

||

||

|

|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|
|
|
|

|

32 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 4. Serialization

Note: In this topic, the term program refers to a task or service request block (SRB)
routine.

In a multi-tasking, multi-processing environment, resource serialization is needed
to coordinate access to resources that are used by more than one program. An
example of why resource serialization is needed occurs when one program is
reading from a data set and another program needs to write to the data set. To
maintain data integrity, the program that needs to write must wait until the
program that is reading the data set is finished. Both programs need serialization
to coordinate access to the data set.

z/OS provides resource serialization services that programs can use to serialize
access to resources. The following examples describe other situations that require
serialization:
v Using data in subpools that are shared between programs
v Using data that is referenced by more than one program (for example, attached

tasks can execute at the same time as the attaching task on different processors)
v Accessing data sets that are shared among programs in the same address space,

if the programs update the data
v Concurrent queue manipulation by programs.

In addition to the serialization function, some of the serialization services provided
on MVS can be used to:
v Synchronize the execution of programs that depend on the completion of events

in other programs
v Synchronize the execution of programs with minimal overhead.
v Ensure that a routine that owns a critical resource can complete processing of

the resource without interruptions that could cause the routine to end.

This information describes the resource serialization services that are available on
MVS and the functions that each service performs, and provides guidelines for
choosing a serialization service that is appropriate for your application.

Choosing a serialization service
The serialization service that you choose depends on factors such as the type of
processing you need to perform and the scope of your application. For example,
your application might require that you serialize resources:
v Within a single address space
v Across several address spaces within a single z/OS system
v Across multiple z/OS systems.

Other requirements for your serialization service might include support for SRB
mode callers or cross memory capability.

Table 2 on page 34 shows the resource serialization services that are available, the
functions that each service can perform, and where to find more information about
each service.

© Copyright IBM Corp. 1988, 2016 33

Table 2. Summary of available serialization services

Service Function Reference

ISGENQ, ENQ/DEQ/RESERVE v ISGENQ: Obtain, change, and release
user-defined logical resources (ENQs) and
direct access storage device (DASD) Reserves.

Serialize resources (such as data sets) within a
single address space, single z/OS system or
across multiple z/OS systems.

ISGENQ fully supports 64-bit callers.

v ENQ/DEQ: Obtain, change, and release
user-defined logical resources (ENQs).

IBM recommends using the ISGENQ service
over ENQ/DEQ/RESERVE.

Serialize resources (such as data sets) within a
single address space, single z/OS system or
across multiple z/OS systems.

Ensure that a routine can complete its use of
a resource without interruptions that could
cause the routine to end (must-complete
function).

v RESERVE: Allow multiple systems (need not
be all z/OS systems) to share direct access
storage device (DASD).

IBM recommends using the ISGENQ service
over ENQ/DEQ/RESERVE.

Note: Information regarding requests made to
the preceding services can be gathered by
ISGQUERY or GQSCAN. Also, ISGADMIN can
be used to control certain aspects of the
preceding services. See ISGADMIN information
in z/OS MVS Programming: Authorized Assembler
Services Reference EDT-IXG.

v For the ISGENQ macro, see
z/OS MVS Programming:
Authorized Assembler Services
Reference EDT-IXG.

For guidance information, see
z/OS MVS Programming:
Assembler Services Guide and
z/OS MVS Planning: Global
Resource Serialization.

v For the ENQ and DEQ
macros, see z/OS MVS
Programming: Assembler
Services Reference ABE-HSP.

For guidance information, see
z/OS MVS Programming:
Assembler Services Guide.

For the must-complete
function, see “Using the
must-complete function
(ENQ/DEQ)” on page 42.

v “Macros used with shared
DASD (RESERVE, EXTRACT,
GETDSAB)” on page 45

Latch Manager Callable
Services: ISGLCRT, ISGLCR64,
ISGLOBT, ISGLOB64, ISGLREL,
ISGLRE64, ISGLPB64, ISGLPRG,
ISGLPR64, ISGLID, ISGLID 64

Serialize resources (such as control blocks or
data sets) within a single address space or
across several address spaces in a single system
with minimal overhead.

Authorized programs only.

Synchronize the execution of programs.

“Global resource serialization
latch manager” on page 72

Locking (SETLOCK macro) Serialize system resources (such as MVS system
queues or control blocks) within a single system
or address space.

“Locking” on page 38

IXLLOCK Enables authorized applications to obtain shared
or exclusive serialization on user-defined logical
resources. You can also implement your own
locking protocols through the inclusion of user
data.

IXLLOCK is specific to Sysplex environments
and provides high speed cross sysplex sharing.
The cost is that it is much harder to use then
ENQ and provides less external controls

For guidance information, see
z/OS MVS Programming: Sysplex
Services Guide.

For the programming
environment, see z/OS MVS
Programming: Sysplex Services
Reference.

34 z/OS V2R2 MVS Authorized Assembler Services Guide

If you need to synchronize the execution of programs, Table 3 can help you
determine which services to choose. The table compares the attributes of the Pause,
Transfer, and Release callable services, the WAIT and POST macros, and the
SUSPEND and RESUME macros.

Table 3. Summary of program serialization techniques

Pause, release, and transfer WAIT and POST SUSPEND and RESUME

Can change the dispatchability of a
task or SRB.

Can change the dispatchability of a
task but not an SRB.

Can change the dispatchability of a
task or SRB.

Can be called from TCB mode or SRB
mode. The interfaces are the same for
both modes, and the caller of the
services does not need to know
whether it is in TCB or SRB mode.

WAIT can only be issued in TCB
mode. POST can be issued in TCB or
SRB mode. The interfaces used in
each mode may be different.

Can be used in both TCB and SRB
mode. The invoking program must
know if it is in task or SRB mode.

Can release a task or SRB before it is
paused

Can post a task before it waits. Cannot resume either a task or SRB
before it is suspended.

An authorized caller can release any
task or SRB in the system.

Requires the ECB and task being
posted to be in the current primary
address space for a non-cross
memory post.

No control element is needed.

A task or SRB can only pause on a
single Pause Element (PE) at a time.

A task may wait on multiple ECBs. If
the wait count numbers are posted,
the task is made ready.

Not applicable.

The Transfer service can
simultaneously pause one task or
SRB and release another.

There is no single service with
comparable capability for WAIT and
POST.

There is no single service with
comparable capability for SUSPEND
and RESUME.

The Transfer service can release a
task or SRB and immediately pass
control to the released task or SRB.

There is no single with comparable
capability for WAIT and POST.

There is not single service with
comparable capability for SUSPEND
and RESUME.

Both authorized and unauthorized
callers can use the services.

Both authorized and unauthorized
callers can use the macros.

Only authorized callers can use the
macros.

The system ensures that pause
elements are not reused improperly,
thus avoiding improper releases
caused by unexpected termination or
asynchronous ABENDs.

Callers can incorrectly post a task out
of the wrong wait due to post, or
even the wrong task, if managed
improperly, through task termination.

Callers can resume the wrong task or
resume a task from the wrong
suspend. Because no control element
serializes SUSPENDs and RESUMEs,
neither the system nor the user can
easily detect any reuse problems.

Local lock is not used by the services;
therefore, its usage has no negative
effect on local lock contention.

Services using local lock can cause
additional contention.

Services may use local lock, and
cause some additional contention.

Control the parallel execution of units
of work (task or SRB) within the
same address space or across address
spaces. Allow programs to wait
(pause) until one event (RELEASE or
TRANSFER) has completed.

Control the parallel execution of
tasks. Allow programs to wait until
one or more events have completed
(event completion function).

Control the parallel execution of
request blocks (RBs) and SRBs within
a single system or address space.

If you need to serialize resources across multiple z/OS systems, you must use the
ISGENQ macro or the ENQ/DEQ/RESERVE macro. However, if your application
requires resources that reside in a single address space or z/OS system, you can
choose one of the following services: the CMS lock, ISGENQ, ENQ/DEQ macros,
latch manager, the local lock, or IXLLOCK. Table 4 on page 36 can help you
determine which of the serialization services is most appropriate for your
application.

Chapter 4. Serialization 35

|
|

Table 4. Comparison of serialization services

Capability CMS lock Local lock Latch manager ENQ/DEQ
macros

ISGENQ macro

Number of items
you can serialize
individually

One One Many Many Many

Access allowed Exclusive Exclusive Exclusive and
shared

Exclusive and
shared

Exclusive and
shared

Scope Single system Address space Single system or
address space

Address space,
single system, or
multiple systems

Address space,
single system, or
multiple systems

Cross-memory
environment

Any PASN, any
HASN, any
SASN

Any PASN, any
HASN, any
SASN

Any PASN, any
HASN, any
SASN

Any PASN, any
HASN, any
SASN

Any PASN, any
HASN, any
SASN.

Unit of work Task or SRB
routine

Task or SRB
routine

Task or SRB
routine

Task Task

Minimum
authorization

Supervisor state
and PSW key 0

Supervisor state
and PSW key 0

Supervisor state
or PSW key 0-7

Problem state
with any PSW
key, supervisor
state or PSW key
0-7 or
APF-authorized
for certain types
of requests

Problem state
with any PSW
key, supervisor
state or PSW key
0-7 or
APF-authorized
for certain types
of requests

Setup required None None Application must
create one or
more latch sets

None None

Default recovery
action

Release owned
and pending
requests

Release owned
and pending
requests

Release pending
requests, but not
owned requests

Release owned
and pending
requests

Release owned
and pending
requests

Other techniques, such as those that make use of the compare and swap (CS),
compare double and swap (CDS), and test and set (TS) instructions, are provided
to perform specialized serialization. For information about those instructions, see
Principles of Operation.

The following list explains the capabilities listed in Table 4:

Number of items you can serialize individually
The latch manager and ISGENQ allow your application more control over
the way it divides resources into individual units and assigns serialization
to those resources. This increased control allows you to reduce contention
for resources and improve the overall performance of the application. For
example, an application can use several latches to serialize resources within
an address space, instead of using the address space local lock (of which
there is only one) to serialize those resources.

Access allowed
Granting shared access minimizes resource contention because several
requestors can read a resource at the same time. The CMS and local locks
do not provide shared access to resources. Each unit of work that requests
the CMS or the local lock must obtain exclusive access, even though shared
access might be enough. The latch manager and the ISGENQ macro allow
programs to request shared or exclusive access to resources.

36 z/OS V2R2 MVS Authorized Assembler Services Guide

Scope The CMS lock and the latch manager can be used to serialize resources
only within a single z/OS system. The local lock is restricted to a single
address space. The ISGENQ macro can be used to serialize resources across
multiple z/OS systems (as well as a single z/OS system).

Cross-memory environment
With a cross memory environment established, your application can use
the CMS lock, latch manager, or local lock to serialize resources across
address spaces within a single z/OS system. When the latch manager is
being used in a cross memory environment, the current latch set must
reside in the primary address space.

Unit of work
The CMS lock, local lock, and latch manager are available to programs that
run in task or SRB mode. The ISGENQ macro is available only to programs
that run in task mode (SRB routines cannot issue ENQ/DEQ).

Minimum authorization
Programs must run in supervisor state and PSW key 0 to obtain the CMS
or local lock, and supervisor state or PKM 0-7 to obtain a latch. The
ISGENQ macro is available to programs running in problem state with any
PSW key. Supervisor state, PSW key 0-7, or APF authorization is required
for certain types of ISGENQ requests.

Setup required
The CMS lock, local lock, and the ISGENQ macro do not require
applications to perform any set-up; the system creates the required
structures. Before your application can use the latch manager to serialize
resources, the application must create one or more latch sets.

Default recovery action
For the local and CMS locks, the system releases owned and pending
serialization requests when the last functional recovery routine (FRR)
percolates. For the ISGENQ macro the system releases owned or pending
serialization requests during task or address space termination. (See
"Releasing the Resource" in z/OS MVS Programming: Assembler Services
Guide for more discussion about what happens when a task associated with
an ENQ terminates before the ENQ is released.)

For performance reasons, and because SRBs might not want to release
owned latches when errors occur, the system does not release owned latch
requests during task or address space termination. The system does,
however, release pending latch requests when the requestor's home address
space terminates.

In all cases, the application programmer needs to understand the default
recovery action for the service that is used. For more information on how
to create a recovery environment, see the information that discusses
recovery and termination.

Providing ENQ resource information on DISPLAY GRS command
The ENQ API issuer provides a qname, rname, and scope to identify the resource
to serialize; this all that the DISPLAY GRS command can use to present
information about the resource. In many cases, it is hard for the operator or
systems programmer to understand what these values represent. As such, global
resource serialization provides the ISGDGRSRES installation exit to allow the
application to add additional information for a given resource on the DISPLAY

Chapter 4. Serialization 37

GRS output. See the 'ISGDGRSRES - Display global resource serialization resource
exit' in z/OS MVS Installation Exits for more details on how to use the exit.

Note: The additional description information which is gotten by calling the exit
may be used in other cases beyond the display GRS command where the
information can provide additional diagnostic information.

z/OS Automatic Tape Switching (ATS STAR) provides a good example of the
ISGDGRSRES exit's use. ATS STAR obtains an ENQ to serialize access to a tape
device. Next, the ENQ uses the ATS STAR QNAME of SYSZATS and an RNAME
equal to the device's unique node element descriptor (NED). A NED is not in a
human readable format, so ATS STAR uses the ISGDGRSRES exit to add the device
type and number to the DISPLAY GRS command output.

In the following DISPLAY output, the field: “ADDITIONAL RESOURCE
INFORMATION FROM:” was added as a result of ATS STAR's ISGDGRSRES exit
translating the RNAME NED into a readable format.
ISG343I 09.13.24 GRS STATUS 539
S=SYSTEMS SYSZATS NED 003490B40VSSGA05B8000002A9
SYSNAME JOBNAME ASID TCBADDR EXC/SHR STATUS
SY1 ALLOC4 0027 006FF448 EXCLUSIVE OWN
ADDITIONAL RESOURCE INFORMATION FROM: ALLOCAS IEFAIRSX
349S AT UNIT ADDRESS 05B8 (AUTOSWITCH)

Locking
A locking mechanism serializes access to resources. This locking technique is only
effective, however, if all programs that depend on a resource use the same locking
mechanism. Each type of serially reusable resource is assigned a lock. The system
controls a hierarchical locking structure with multiple types of locks to synchronize
the use of serially reusable resources. The system also handles all functions related
to the locks. These functions include obtaining or releasing locks and checking the
status of a particular lock on a processor. Use of these functions is restricted to
programs running in supervisor state with a PSW key of 0. This prevents
unauthorized problem programs from interfering with the system serialization
process.

Categories of locks
There are two categories of locks:
v Global locks -- protect serially reusable resources related to more than one

address space.
v Local locks -- protect the resources assigned to a particular address space. When

the local lock is held for an address space, the owner of the lock has the right to
manipulate the queues and control blocks associated with that address space.

Note: The term CML (cross memory local) lock means the local lock of an address
space other than the home address space. LOCAL lock means the local lock of the
home address space. When written in lower case, local lock means any local-level
lock, either the LOCAL or a CML lock.

The CPU and CMS locks are global locks. These global locks provide system-wide
services or use control information in the common area and must serialize across
address spaces. The local level locks, on the other hand, do not serialize across
address spaces, but serialize functions executing within the address space. Table 5
on page 39 summarizes the characteristics of MVS locks.

38 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 5. Summary of Locking Characteristics

lock global local spin suspend single multiple
(class)

CPU X X X

CMS X X X

CML X X X

LOCAL X X X

Note: The CPU lock has no real hierarchy except that once a user obtains it, the
user cannot obtain a suspend lock. The CPU lock could be considered a pseudo
spin lock. It could also be considered multiple because there is one per processor
and any number of requestors can hold it at the same time.

Types of locks
The type of lock determines what happens when a function on one processor in an
MP system makes an unconditional request for a lock that is held by another unit
of work on another processor. There are two major types of locks: spin and
suspend. The CPU lock is in a category by itself but could be considered a pseudo
spin lock. Descriptions of these types of locks follow:
v Spin lock -- prevents the requesting function on one processor from doing any

work until the lock is freed on another processor. A spin lock causes
disablement.

v CPU lock -- provides MVS-recognized (valid) disablement for I/O and external
interrupts. MVS-recognized disablement refers to disablement that is obtained
through a SETLOCK OBTAIN TYPE=CPU request. While a requestor holds the
CPU lock, the requestor is physically disabled for I/O and external interrupts.
Certain macros require the caller to be disabled for I/O and external interrupts.
Unless otherwise specified, this means that the caller must have obtained
MVS-recognized disablement. MVS does not guarantee preservation of the
interrupt status of programs that explicitly disable for I/O and external
interrupts through the STNSM instruction.
Multiple requests can be made by a unit of work for the CPU lock. The CPU
lockword contains the cumulative count of requestors who hold the CPU lock.
Obtaining the CPU lock increases the ownership count of the CPU lock by 1;
releasing the CPU lock decreases the ownership count by 1.

v Suspend locks -- prevent the requesting program from doing work until the lock
is available, but allow the processor to continue doing other work. The requestor
is suspended and other work may be dispatched on that processor. Upon release
of the lock, the suspended requestor is given control with the lock or is
redispatched to retry the lock obtain.

v If the caller issues a SETLOCK macro to obtain a spin lock, the caller must
reference only page fixed, fixed, or DREF storage.

Examples of lock types
The CPU lock can be considered a pseudo spin lock. The LOCAL, CML, and CMS
locks are suspend locks. Their owners receive control enabled and can be
interrupted to run higher priority work. If there is another request for the lock
while it is held, the requestor is suspended and other work is dispatched.

NOT Programming Interface Information

The local lockword contains the ID of the processor on which its owner is

Chapter 4. Serialization 39

dispatched or an indication that the owner is suspended or interrupted. The CMS
lockword contains the ASCB address of the locally locked address space that owns
the lock. Special IDs are placed in the local lockword whenever the owner of the
local lock is not currently executing on a processor because of an interruption or
suspension.

End NOT Programming Interface Information

The CMS lock is an enabled global lock because some functions require significant
amounts of time under the lock and could impact the responsiveness of the
system. By running these functions enabled under the lock, responsiveness is
retained at the expense of some increased contention for the lock.

The CPU lock is a disabled spin lock because the functions that run under the lock
are of short duration and cannot tolerate interruptions. The cost in system
overhead to perform the status saving necessary to accept interruptions and allow
switching would offset the gain in responsiveness.

If a lock is unconditionally requested, the lock is unconditionally obtained. If the
lock is conditionally requested, the requestor is given the lock if it is available; if
the lock is unavailable, control is returned to the caller without the lock. (See the
COND and UNCOND parameters on the SETLOCK macro in z/OS MVS
Programming: Authorized Assembler Services Reference SET-WTO.)

Locking hierarchy
The locks are arranged in a hierarchy to prevent a deadlock between functions on
the processor(s).

A function on a processor can request unconditionally only those locks that are
higher in the hierarchy than the locks it currently holds, thus preventing
deadlocks. The hierarchy is shown in Table 5 on page 39, with the first lock listed
being the highest lock. The CPU lock is higher in hierarchical order than any of the
suspend locks. Therefore once you obtain the CPU lock, you cannot obtain any
suspend lock. The CML and LOCAL locks are equal to each other in the hierarchy.

The locks provided by the system in hierarchical order are:
v CPU (processor lock) -- serializes on the processor level, providing

system-recognized (valid) disablement.
v CMS (general cross memory services lock) -- serializes on more than one address

space where this serialization is not provided by one or more of the other global
locks.

v CML (cross memory local lock) -- serializes resources in an address space other
than the home address space.

v Local storage lock (LOCAL) -- serializes functions and storage used by the local
supervisor within an address space. There is one lock for each address space.

You must hold a local lock, either CML or LOCAL, when requesting the CMS lock.
You cannot release the local lock while holding the cross memory services lock.

CML lock considerations
The cross memory local lock (CML) is provided to allow cross memory services to
serialize resources in an address space that might not be the home address space.
It has the same attributes as the LOCAL lock. (The LOCAL lock refers only to the

40 z/OS V2R2 MVS Authorized Assembler Services Guide

home address space pointed to by PSAAOLD.) The owner of a CML lock can be
suspended for the same reasons as the owner of the LOCAL lock, such as CMS
lock suspension or page fault suspension.

In a multi-tasking environment, it is possible for more than one task or SRB in an
address space to obtain a local level lock. For example, task A might own the
LOCAL lock of its address space while task B in the same address space owns the
CML lock of address space C.

To prevent possible system deadlocks, only one lock at the local level can be held
at one time by a unit of work. If a CML lock is requested while owning the
LOCAL lock, the requestor will be abended. The same is true if the LOCAL lock is
requested while owning a CML lock.

Either a CML lock or the LOCAL lock must be held to request the cross memory
services lock (CMS).

The requestor of a CML lock must have authority to access the specified address
space prior to the lock request. This is accomplished by setting the primary or
secondary address space to that specified on the lock request. The specified
address space must be non-swappable prior to the obtain request.

Note: The CML lock of the master scheduler address space cannot be obtained.
The master scheduler address space lock can only be obtained as a LOCAL lock.

Obtaining, releasing, and testing locks (SETLOCK)
Use the SETLOCK macro to obtain, release, or test a specified lock or set of locks
(using the OBTAIN, RELEASE, and TEST parameters). To use SETLOCK, you must
be executing in supervisor state with a PSW key of 0. Users of SETLOCK can also
be executing in SRB mode, in cross memory mode, in access register or primary
address space control (ASC) mode.

Disabled/enabled state for obtain
When the CPU lock is successfully obtained, control returns to the caller with the
processor disabled for I/O and external interruptions.

When a suspend type lock is successfully obtained via an unconditional request,
control returns to the caller with the processor enabled for I/O and external
interruptions.

If a disabled caller unconditionally requests a suspend type lock that is not
immediately available, the caller is abnormally terminated.

Disabled/enabled state for release
When the CPU lock is released, control returns to the caller enabled for I/O and
external interruptions if there are no more CPU lock requests outstanding (that is,
the CPU lock use count is zero).

When a suspend type lock is released, control returns disabled for I/O and
external interruptions if the caller was disabled on entry. Otherwise, control returns
to the caller enabled for I/O and external interruptions.

Suspend lock instrumentation data
For the following system suspend locks:
v CMSSMF

Chapter 4. Serialization 41

v CMSEQDQ
v CMSLATCH
v CMS
v Address space local (and CML) locks

the system maintains lock instrumentation data to help debug scalability issues
related to lock contention. Although the CMSSMF, CMSEQDQ, and CMSLATCH
locks are not programming interfaces, the system collects lock instrumentation data
on those locks to aid debugging performance problem related to those locks.

Lock instrumentation data is defined in mapping macro IHALOCKI. Lock
instrumentation data is kept by the lock owner and the home address space of the
lock requestor when it is different than the lock owner. All suspend locks noted
above have a Common Lock Instrumentation Block (LockInst_Comm) and could
point to a Unique Lock Instrumentation Block (LockInst_Uniq). Generally, the
following set of lock instrumentation data is kept for each lock:
v Number of suspends
v Number of suspends when there was some other unit of work already

suspended on the lock requested. This is a subset of the previous count and can
be used to get an idea of the frequency multiple work units are suspended for
the lock.

v Time suspended.

CMS locks are owned by the system so the lock instrumentation data is kept at the
system level. The system Common Lock Instrumentation Block for each CMS lock
is pointed to by the ECVT (mapped by IHAECVT) which represents the total CMS
lock contention seen on the system. CMS Lock instrumentation data is also kept in
the home address space of the work unit that requested the CMS lock. Each
address space has a Common Lock Instrumentation Block pointed to by the ASSB
(mapped by IHAASSB) for each CMS lock. These blocks represents the contention
encountered on CMS locks for units of work from a given address space.

Address space local (and CML) lock instrumentation data is associated with an
address space. The Common Lock Instrumentation block for the local lock is
pointed to by the ASSB (mapped by IHAASSB). The common block contains lock
instrumentation data for suspends on the local lock by units of work in that
address space.

Each address space's local lock can be requested from another address space as a
CML lock. CML lock instrumentation is kept in a Unique Lock Instrumentation
Block called LockInst_Uniq_CML. When a CML lock is requested, two address
spaces are involved, so each LockInst_Uniq_CML contains two sets of lock
instrumentation data; one for the owner and one for the requestor. For CML lock
contention, lock instrumentation data will be updated in the LockInst_Uniq_CML
block that owns the CML lock and in the LockInst_Uniq_CML block of the home
address space that requested the CML lock.

Using the must-complete function (ENQ/DEQ)
Routines operating under a storage protection key of zero often update and/or
manipulate system resources such as system data sets, control blocks, and queues.
These resources contain information critical to continued operation of the system.
The task requesting this serialization must successfully complete its processing of
the resource. Otherwise, the resource might be left incomplete or might contain
erroneous information.

42 z/OS V2R2 MVS Authorized Assembler Services Guide

The ENQ service routine ensures that a routine queued on a critical resource(s) can
complete processing of the resource(s) without interruptions leading to
termination. ENQ places other tasks in a non-dispatchable state until the
requesting task -- the task issuing an ENQ macro with the set must-complete
(SMC) parameter -- has completed its operations on the resource. The requesting
task releases the resource and terminates the must-complete condition by issuing a
DEQ macro with the reset must-complete (RMC) parameter.

Because the must-complete function serializes operations to some extent, its use
should be minimized -- use the function only in a routine that processes system
data whose validity must be ensured. Just as the ISGENQ or the ENQ function
serializes use of a resource requested by many different tasks, the must-complete
function serializes execution of tasks.

Characteristics of the must-complete function
The must-complete function can be used only at the step level, where only the
current task in an address space is allowed to execute. All other tasks are made
non-dispatchable.

When the must-complete function is requested, the requesting task is marked in
“must complete mode” when the resource(s) queued upon are available. All
asynchronous exits from the requesting task are deferred. Tasks external to the
requesting task are prevented from initiating procedures that will cause
termination of the requesting task. Other external events, such as a CANCEL
command issued by an operator, or a job step time expiration, are also prevented
from terminating the requesting task.

The failure of a task that owns a must-complete resource results in the abnormal
termination of the entire job step. The programmer and the operator receive a
message stating that the failure occurred while the step was in must-complete
mode.

Programming notes
1. All data used by a routine that is to operate in the must-complete mode should

be checked for validity to ensure against a program-check interruption.
2. If a routine that is already in the must-complete mode calls another routine, the

called routine also operates in the must-complete mode. An internal count is
maintained of the number of SMC requests; an equivalent number of RMC
requests is required to reset the must-complete function.

3. Interlock conditions can arise with the use of the ENQ function. Additionally,
an interlock might occur if a routine issues an ENQ macro while in the must
complete mode. Also, a task that is non-dispatchable, because of a
must-complete request, might already be queued on the requested resource. In
this case, an enabled wait occurs. An enabled wait can be broken by an
operator's action (such as the use of the FORCE command).

4. There are some considerations to be aware of when using enclaves for tasks
that serialize resources using the ENQ macro. For details, see “Using
ENQ/DEQ or Latch Manager Services With Enclaves” in z/OS MVS
Programming: Workload Management Services.

5. The macros ATTACH, ATTACHX, LINK, LINKX, LOAD, XCTL, and XCTLX
should not be used (unless extreme care is taken) by a routine operating in the
must-complete mode. An interlock condition results if a serially reusable
routine requested by one of these macros either has been requested by one of

Chapter 4. Serialization 43

the tasks made non-dispatchable by the use of the SMC parameter or was
requested by another task and has been only partially fetched.

6. The time a routine is in the must-complete mode should be kept as short as
possible -- enter at the last moment and leave as soon as possible. One
suggested way is to:
a. ENQ (on desired resource(s))
b. ENQ (on same resource(s)),RET=HAVE,SMC=STEP
Step (a) gets the resource(s) without putting the routine into the must-complete
mode. Later, when appropriate, issue the ENQ with the must-complete request
(Step b). Issue a DEQ macro to terminate the must complete mode as soon as
processing is finished. Tasks set non-dispatchable by the corresponding ENQ
macro are made dispatchable and asynchronous exits from the requesting task
are enabled.

Shared direct access storage devices (shared DASD)
The shared DASD facility allows systems to share direct access storage devices.
Systems can share common data and consolidate data when necessary. No change
to existing records, data sets, or volumes is necessary to use the facility. However,
the installation must write its applications to share DASD, and the reorganization
of volumes might be desirable to achieve better performance.

Exercise careful planning in accessing shared data sets or shared data areas. Data
integrity can not be assured without proper intersystem communication. For more
information about how shared DASD relates to macros, see “Macros used with
shared DASD (RESERVE, EXTRACT, GETDSAB)” on page 45. Similarly,
appropriate security procedures must be performed on each of the multiple
systems involved in the sharing of DASD before data can be regarded as secure.
Data sets that are intended to be protected via passwords or RACF® should be
initially protected on each system before sensitive data is placed in them. This
topic, as it refers to password protection, is discussed further under “System
Configuration”.

Volume/device status
The shared DASD facility requires that certain combinations of volume
characteristics and device status be in effect for shared volumes or devices. Table 6
shows the combinations that must be in effect for a volume or device:

Table 6. Valid Volume Characteristic and Device Status Combinations

System A Systems B, C, D

Permanently resident Permanently resident
Reserved Reserved
Removable Offline - Non-JES3 devices
Removable Removable - JES3 - managed devices
Offline Removable, reserved, or permanently resident (In

JES2, if a device is removable in one system, it
must be offline in all others.)

If a volume or device is marked removable on any one system, the device must be
either in offline status or removable status on all other systems. The mount
characteristic of a volume and/or the status of a device can be changed on one
system as long as the resulting combination is valid for other systems sharing the
volume or device. No other combinations of volume characteristics and device
status are supported.

44 z/OS V2R2 MVS Authorized Assembler Services Guide

Volume handling
Volume handling with the shared DASD option must be clearly defined because
operator actions on the sharing system must be performed in parallel. The
following rules should be in effect when using the shared DASD option:
v Operators should initiate all shared volume mounting and demounting

operations. The system will dynamically allocate devices unless they are in
reserved or permanently resident status, and only the former can be changed by
the operator.

v Mounting and demounting operations must be done in parallel on all sharing
systems. A VARY OFFLINE must be issued on all systems before a device can be
demounted.

v Valid combinations of volume mount characteristics and device status for all
sharing systems must be maintained. To IPL a system, a valid combination must
be established before device allocation can proceed. This valid combination is
established either by specifying mount characteristics of shared devices in
VATLST, or varying all devices that can be shared offline before issuing START
commands and then following parallel mount procedures.

Macros used with shared DASD (RESERVE, EXTRACT,
GETDSAB)

When using shared DASD, IBM recommends that your application issue ISGENQ
SCOPE=SYSTEMS RESERVEVOLUME=YES or ENQ SCOPE=SYSTEMS and define
the resource name on which you are serializing, rather than use the RESERVE
macro. However, to ensure successful serialization of shared DASD, you can use
RESERVE if one of the following is true:
v Global resource serialization is not active

– ISGENQ services are not available until the Global Resource Serialization
address space is initialized. This is very unlikely and only true if your code
runs very early in the IPL processing (prior to the Global Resource
Serialization address space being initialized). The Global Resource
Serialization address space is created and available in all Global Resource
Serialization modes and therefore all z/OS environments.

v Your installation is not using SMS to manage the DASD.
– The RESERVE application programming interfaces, either through the

RESERVE or ISGENQ macros, can result in a DASD RESERVE or an ENQ
being obtained, or both. In all cases, an ENQ is obtained that is defined by
the caller through the QNAME/RNAME. The scope of the ENQ and whether
the hardware RESERVE is issued by the system is controlled by several
factors:
- A hardware RESERVE is not issued when one of the following is true:

1. The volume is not defined as being SHARED through the IODF.
2. The volume is mapped by Virtual I/O (VIO).
3. The current Global Resource Serialization RNL indicates that the

RESERVE should be converted to a SYSTEMS level ENQ (The resource
does not match an entry in the SYSTEMS EXCLUSION RNL and does
match an entry in the RESERVE Conversion RNL)

4. The RESERVE is converted by the ISGNQXITBATCH exit, or
ISGNQXITBATCHCND exit, or both.

- The scope of the ENQ originates as SYSTEMS:
1. If the above volume attributes indicate that the system should issue the

hardware RESERVE, the associated ENQ can be changed to SYSTEM

Chapter 4. Serialization 45

(local ENQ) when the QNAME/RNAME match an entry in the
exclusion RNL. In general, this would be the case when the installation
wants the RESERVE to occur and therefore does not require the
associated SYSTEMS ENQ. The SYSTEM ENQ in this case would
serialize the device across multiple users on the same system. The
RESERVE serialized the device across systems.

2. The ENQ can stay as a SYSTEMS ENQ in cases where the RESERVE is
not issued due to the conversion RNL. In this case, the ENQ serializes
the resource across z/OS systems.

All of these factors are generally not a concern of the caller of the RESERVE
service. The caller is using RESERVE because it supports serialization of the
volume across systems through hardware reserve. The installation controls the
factors defined above based on its requirements.

You can also use the ENQ, DEQ, EXTRACT, and GETDSAB macros when working
with shared DASD.

To obtain the address of a task input/output table (TIOT) entry, from which you
can obtain the unit control block (UCB) address of a device, you can use the
GETDSAB macro or the EXTRACT macro. Your installation may have installed
products that require the use of the GETDSAB macro to obtain the address of the
product's TIOT entries. If you plan to use the EXTRACT macro, first check the
documentation for the related product to ensure that the product does not require
the use of the GETDSAB macro.
v The RESERVE macro reserves a device for use by a particular system. You

identify the device you want reserved by its symbolic resource name and UCB
address. For a 31-bit address, you must specify the LOC=ANY parameter. Each
task that needs exclusive use of a device must issue the RESERVE macro. When
RESERVE is in effect for a device, MVS first ensures that the device is reserved
for the appropriate system.

Note:

1. The set-must-complete (SMC) parameter of the ENQ macro can also be used
with RESERVE.

2. If a checkpoint restart occurs when a RESERVE is in effect for devices, the
system does not restore the RESERVE; the user's program must reissue the
RESERVE.

v The SYSDSN major name must be in the GRSRNL inclusion list. See z/OS MVS
Planning: Global Resource Serialization for information about GRSRNL and
dynamically changing GRSRNL. See z/OS MVS Initialization and Tuning Reference
for information about the GRSRNL parmlib member.

v When the task issues a DEQ for the resource named on the RESERVE macro, the
system reduces the count in the UCB. When this count reaches zero, the system
ensures that the device is unreserved.

v If global resource serialization is active, ISGENQ, ENQ, and DEQ with
SCOPE=SYSTEMS specified, can serialize on a particular shared DASD data set
without reserving the entire device. See z/OS MVS Planning: Global Resource
Serialization for details.

v The EXTRACT macro returns the address of the task input/output table (TIOT)
from which the UCB address can be obtained. “Finding the UCB address for the
RESERVE macro” on page 48 explains this procedure. EXTRACT provides
information; it does not actually serialize a resource.

46 z/OS V2R2 MVS Authorized Assembler Services Guide

v The GETDSAB macro returns the address of the data set association block
(DSAB) associated with a DD name. The DSAB contains the address of the task
input/output table (TIOT) entry for the DD name, from which the UCB address
can be obtained. GETDSAB provides information; it does not actually serialize a
resource.
The macro has been enhanced to include a LOC parameter. This controls
whether the search for the address of the DSAB should be restricted to those
which reside below the 16Mb line (LOC=BELOW) or should examine both above
and below the line DSABs (LOC=ANY). The default is to restrict the search to
below the 16 Mb line.

Releasing devices
The DEQ macro is used with RESERVE just as it is used with ENQ. It must
describe the same resource as the RESERVE and its scope must be stated as
SYSTEMS. However, the UCB= parameter is only allowed if the DEQ macro is
issued by a task that has previously reserved a device. If the DEQ macro is not
issued by a task that has previously reserved a device, the system frees the device
when the task is terminated. For a 31-bit UCB address, you must specify the
LOC=ANY parameter.

Preventing interlocks
The greater the number of device reservations occurring in each sharing system,
the greater the chance of interlocks occurring. Allowing each task to reserve only
one device minimizes the exposure to interlock. The system cannot detect
interlocks caused by a program's use of the RESERVE macro and therefore, enabled
wait states can occur on the system. Global resource serialization can also be used
to prevent interlocks by suppressing the hardware RESERVE or simply issuing a
global ISGENQ to serialize the resource. See z/OS MVS Planning: Global Resource
Serialization for additional information on this topic.

Timing contention
You can set a timer with ECB and also use the ECB option on ISGENQ, ENQ, and
RESERVE services to measure the amount of time you want to wait for the
resource to become available. First, you wait on both ECBs. When one ECB is
posted, check if the posted ECB was for the timer or for the GRS service. If the
timer expired first, use DEQ or ISGENQ REQUEST=RELEASE to release the GRS
resource. For an ENQ resource, before you use DEQ to release the resource, you
might consider using the ISGECA service to determine the possible blocker or
blockers of the resource. The amount of time that you wan to wait depends on the
tolerance of your application. The time cannot be determined in some cases. See
z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG and z/OS
MVS Programming: Authorized Assembler Services Reference LLA-SDU for more
information about the ECB option on ISGENQ, ENQ and RESERVE services.

Volume assignment
Because exclusive control is by device, not by data set, consider which data sets
reside on the same volume. In this environment it is quite possible for two tasks in
two different systems -- processing four different data sets on two shared volumes
-- to become interlocked. (If global resource serialization is active and RESERVEs
are converted to global ENQs, an interlock does not occur.) For example, as shown
in Figure 3 on page 48, data sets A and B reside on device 124, and data sets D and
E reside on device 236. A task in system 1 reserves device 124 in order to use data
set A; a task in system 2 reserves device 236 in order to use data set D. Now the
task in system 1 tries to reserve device 236 in order to use data set E and the task
in system 2 tries to reserve device 124 in order to use data set B. Neither can ever
regain control, and neither will complete normally. When the system has job step

Chapter 4. Serialization 47

time limits, the task, or tasks, in the interlock will be abnormally terminated when
the time limit expires. Moreover, an interlock could mushroom, encompassing new
tasks as these tasks try to reserve the devices involved in the existing interlock.

Program libraries
When assigning program libraries to shared volumes, take care to avoid interlock.
For example, SYS1.LINKLIB for system 1 resides on volume X, while
SYS1.LINKLIB for system 2 resides on volume Y. A task in system 1 invokes a
direct access device space management function for volume Y, causing that device
to be reserved. A task in system 2 invokes a similar function for volume X,
reserving that device. However, each load module transfers to another load
module via XCTL. Because the SYS1.LINKLIB for each system resides on a volume
reserved by the other system, the XCTL macro cannot complete the operation. An
interlock occurs; because no access to SYS1.LINKLIB is possible, both systems will
eventually enter an enabled wait state. (If global resource serialization is active and
RESERVEs are converted to global ENQs, an interlock does not occur.)

Using different serialization techniques for the same volume
A task interlock can occur within a global resource serialization complex when two
tasks reserve the same volume and some of the RESERVEs specify resource names
that suppress the hardware reserve while other RESERVEs are hardware reserves
that lock up the entire volume. The UCB count of outstanding reserves for that
volume is manipulated only for the hardware RESERVEs.

If you code a RESERVE macro, the hardware reserve is suppressed when the
resource name appears in the reserve conversion resource name list (RNL). See
z/OS MVS Planning: Global Resource Serialization for additional information about
RNLs and about preventing interlocks.

Finding the UCB address for the RESERVE macro
When using shared DASD, IBM recommends that your applications issue ENQ
SCOPE=SYSTEMS and define the resource name on which you are serializing,
rather than using the RESERVE macro. However, to ensure successful serialization
of shared DASD, you need to use RESERVE if one of the following is true:
v Global resource serialization is not active

Reserves

E

DA

B

Interlock

Reserves

Task X Task Y

Device 124 Device 236

Figure 3. Example of an Interlock Environment

48 z/OS V2R2 MVS Authorized Assembler Services Guide

v Your installation is not using SMS to manage the DASD.

This topic explains procedures for finding a particular UCB among those that are
allocated to the current address space for use by the RESERVE macro. To search
other UCBs, you can issue certain other macros but it is unreliable unless you
serialize those accesses. While your data sets remain allocated, the UCBs will not
disappear. It also shows a sample assembler language subroutine that issues the
RESERVE and DEQ macros and can be called by routines written in higher level
languages.

Using the GETDSAB macro to find the UCB address: This procedure can be
used by application programs that are the only task running in an address space,
for either non-concatenated DD statements or data sets that reside on a single
volume.

To find the UCB address for a DD name without an Open DCB, you can provide a
DD name, an open DCB or ACB or a known data set association block (DSAB)
address or request the first DSAB address. From this address, calculate the address
of the associated TIOT entry, and the corresponding UCB address.

Procedures: For any allocated data set:
1. Invoke the GETDSAB macro, specifying the name of the desired DD. The

system returns the pointer to the DSAB associated with the required TIOT
entry. This procedure works only for allocations that did not use the XTIOT or
UCB nocapture options of dynamic allocation.

2. Use the IHADSAB macro to map the DSAB. Get the word in DSABTIOT. It is
at offset 16. It is a pointer to the TIOT entry.

3. Use the IEFTIOT1 macro to map the TIOT entry, which begins at TIOELNGH.
The first UCB address is the 3-byte field at TIOEFSRT. It is at offset 17.

4. Issue the RESERVE macro, specifying the address obtained in step 3 as the
parameter of the UCB keyword. Do not code the LOC=ANY option because
this UCB address is 24-bit.

Using the IEFDDSRV macro to find the UCB address: This procedure can be
used for any DD statement.

To get a list of UCB addresses for the DD name, invoke the IEFDDSRV macro.

Procedures: For any allocated data set:
1. Invoke the IEFDDSRV macro. You can specify the name of the desired DD, the

address of an open DCB or ACB or the address of the DSAB. If you want to
support the XTIOT or UCB nocapture option of dynamic allocation (which is
recommended), also code LOC=ANY on the macro call. This results in
returning a list of the UCB addresses for the DD.

2. Issue the RESERVE macro, specifying one of the addresses obtained in step 1 as
the parameter of the UCB keyword.

Using the EXTRACT macro to find the UCB address: This procedure can only be
used by application programs that are the only task running in an address space,
for either non-concatenated DD statements or data sets that reside on a single
volume. This procedure works only for allocations that did not use the XTIOT or
UCB nocapture options of dynamic allocation.

Use the EXTRACT macro to obtain information from the task control block (TCB).
The address of the TIOT can be obtained from the TCB in response to an

Chapter 4. Serialization 49

EXTRACT macro. Before issuing an EXTRACT macro, set up an answer area to
receive the requested information. One fullword is required for each item to be
provided by the control program. If you want to obtain the TIOT address, you
must specify FIELDS=TIOT in the EXTRACT macro.

The control program returns the address of the TIOT, right adjusted, in the
fullword answer area.

Procedures:

1. Issue the EXTRACT macro with the FIELDS=TIOT parameter to extract the
TIOT from the TCB.

2. Search the TIOT for the DD name associated with the shared data set.
3. When you find the entry for the required DD name, obtain the UCB address

from field TIOEFSRT.
4. Issue the RESERVE macro specifying the address obtained in step 3 as the

parameter of the UCB keyword.

Using the DEB and the DCB to find the UCB address: You can also obtain the
UCB address via the data extent block (DEB) and the data control block (DCB).
The DCB contains data pertinent to the current use of the data set. After the DCB
has been opened, field DCBDEBA contains the DEB address. The DEB contains an
extension of the information in the DCB. Each DEB is associated with a DCB and
the two point to each other.

The DEB contains information about the physical characteristics of the data set and
other information that the control program uses. A device-dependent section for
each extent is included as part of the DEB. Each such extent entry contains the
UCB address of the device to which that portion of the data set has been allocated.
In order to find the UCB address, you must locate the extent entry in the DEB for
which you intend to issue the RESERVE macro. (In disk addresses of the form
MBBCCHHR, the M indicates the extent number starting with 0.)

Procedures:

v For opened data sets:
1. Load the DEB address from the DCB field labeled DCBDEBA.
2. The DEB is mapped by the IEZDEB macro. Load the address of the field

labeled DEBUCBA. The result is a pointer to the UCB address in the DEB.
3. Test the DEB31UCB bit before issuing the RESERVE macro with the address

of the word obtained in step 2 as the parameter of the UCB keyword. If that
bit is zero, issue RESERVE without LOC=ANY. This informs RESERVE that
the UCB address is 24-bit. If DEB31UCB is one, code LOC=ANY on the
RESERVE macro because the UCB address is four bytes and might point
above the line.

v For BDAM data sets, you can reserve the device at any point in the processing
in the following manner:
1. Open the data set.
2. Convert the block address used in the READ/WRITE macro to an actual

device address of the form MBBCCHHR.
3. Load the DEB address from the DCB field labeled DCBDEBA.
4. Load the address of the field labeled DEBBASND in the DEB.
5. Shift the number 1 left by the value in the DEBEXSCL byte. It is the extent

scale and is the power of two that indicates the length of each extent
description. For DASD, the extent scale currently is 4.

50 z/OS V2R2 MVS Authorized Assembler Services Guide

6. Multiply the “M” of the actual device address (step 2) by the result of the
previous step that currently is 16.

7. The sum of steps 4 and 5 is the address of the correct extent entry in the
DEB for the next READ/WRITE operation. The sum is also a pointer to the
UCB address for this extent.

8. Issue the RESERVE macro specifying the address obtained in step 6 as the
parameter of the UCB keyword.

v For information concerning how to find the UCB address when using the VSAM
access method, see z/OS DFSMS Using Data Sets.

RESDEQ subroutine using IEFDDSRV: The assembler language subroutine in
Figure 4 on page 52 can be used by assembler language programs to issue the
RESERVE and DEQ macros. Parameters that must be passed to the RESDEQ
routine, if the RESERVE macro is to be issued, are:

DDNAME - the eight character name of the DD statement for the device to be
reserved.

QNAME - an eight character name.

RNAME LENGTH - one byte (a binary integer) that contains the RNAME length
value.

RNAME - a name from 1 to 255 characters in length.

The DEQ macro does not require the UCB=ucb addr as a parameter. If the DEQ
macro is to be issued, a fullword of binary zeroes must be placed in the leftmost
four bytes of the DDNAME field before control is passed.

Chapter 4. Serialization 51

RESDEQ CSECT
RESDEQ AMODE 24
RESDEQ RMODE 24

SAVE (14,12),T SAVE REGISTERS
BALR 12,0 SET UP ADDRESSABILITY
USING *,12
ST 13,SAVE+4
LA 11,SAVE ADDRESS OF MY SAVE AREA IS

* STORED IN THIRD WORD OF CALLER’S
ST 11,8(13) SAVE AREA
LR 13,11 ADDRESS OF MY SAVE AREA
LR 9,1 ADDRESS OF PARAMETER LIST
L 3,0(9) DDNAME PARAMETER OR WORD OF ZEROES
CLC 0(4,3),=F’0’ WORD OF ZEROS IF DEQ IS REQUESTED
BE WANTDEQ

*PROCESS FOR DETERMINING THE UCB ADDRESS USING IEFDDSRV.
IEFDDSRV RETRIEVE,DEVENTRY,DDNAME=(3),LOC=ANY, X

DEVAREA=DDINFO INVOKE IEFDDSRV USING DDNAME
LTR 15,15 CHECKS RETURN CODE
BZ FINDUCB BRANCH IF RETURN CODE IS ZERO
ABEND 200,DUMP DDNAME IS NOT IN TIOT, ERROR

FINDUCB L 11,DDINFO ADDRESS OF DD INFORMATION
USING DVAR,11

L 8,DVAR_DEVLST_ADDR ADDRESS OF AN ENTRY
USING DVAR_DEVICE_LIST,8

*PROCESS FOR DETERMINING THE QNAME REQUESTED
WANTDEQ L 7,4(9) ADDRESS OF QNAME

MVC QNAME(8),0(7) MOVE IN QNAME
*PROCESS FOR DETERMINING THE RNAME AND THE LENGTH OF RNAME

L 7,8(9) ADDRESS OF RNAME LENGTH
MVC RNLEN+3(1),0(7) MOVE BYTE CONTAINING LENGTH
L 7,RNLEN
STC 7,RNAME STORE LENGTH OF RNAME IN THE

* FIRST BYTE OF RNAME PARAMETER
* FOR RESERVE/DEQ MACROS

L 6,12(9) ADDRESS OF RNAME REQUESTED
BCTR 7,0 SUBTRACT ONE FROM RNAME LENGTH
EX 7,MOVERNAM MOVE IN RNAME
CLC 0(4,3),=F’0’
BE ISSUEDEQ
RESERVE (QNAME,RNAME,E,0,SYSTEMS),UCB=DVAR_DEV_ADDR
* FREE THE AREA RETURNRF BY IEFDDSRV.
SR 0,0 PREPARE FOR IC
IC 0,B’0111’,DVAR_LENGTH GET AREA LENGTH
SR 8,8
DROP 8
IC 8,DVAR_SUBPOOL GET SUBPOOL
STORAGE RELEASE,LENGTH=(0),ADDR=(11),SUBPOOL=(8)
DROP 11
B RETURN

ISSUEDEQ DEQ (QNAME,RNAME,0,SYSTEMS)
RETURN L 13,SAVE+4 RESTORE REGISTERS AND RETURN

RETURN (14,12),T
MOVERNAM MVC RNAME+1(0),0(6)
SAVE DS 18F STANDARD SAVE AREA
DDINFO DS A ADDRESS OF DD INFORMATION
QNAME DS 2F MAJOR NAME FOR RESERVE AND DEQ MACROS
RNAME DS CL256 MINOR NAME
RNLEN DC F’0’ LENGTH OF MINOR NAME

END

Figure 4. Example of Subroutine Issuing RESERVE and DEQ Using GETDSAB

52 z/OS V2R2 MVS Authorized Assembler Services Guide

Serializing parallel tasks (WAIT and POST)
Use WAIT and POST to control the parallel execution of tasks as a means of
serialization. The basic WAIT/POST services that are available to both authorized
and unauthorized programs are explained in the z/OS MVS Programming: Assembler
Services Guide. The additional forms of WAIT and POST that are available only to
authorized programs are explained in this topic. The additional forms are:
v Cross memory post (ASCB parameter specified).
v Directly posting an ECB without invoking POST.
v A branch entry for the EVENTS service.
v POST exit routine defined by extended ECBs.
v A branch entry for the POST service.
v A branch entry for the WAIT service.

Asynchronous cross memory POST
The POST macro signifies the completion of an event by one routine to another.
Usually the system posts the completion of the event in the user's address space.
The user can, however, cause the system to post completion of the event in another
address space.

The authorized user (executing in supervisor state, under protection key 0-7, or
APF-authorized) of the POST macro can use the ASCB and ERRET parameters to
perform a POST in an address space other than the user's own. If the caller is
authorized to specify the ASCB and ERRET parameters, no check is made to
determine if the requested address space is the issuing address space. This use of
the POST macro is sometimes known as “asynchronous cross memory post”.

Note: Do not issue asynchronous cross memory Post more frequently than
necessary. Large numbers of cross memory Posts can consume excessive amounts
of system resources.

The ERRET routine is given control when POST detects an error after control has
been returned to the issuer of POST. If the ERRET routine does not functionally
need to do anything, use CVTBRET or CVTRCZRT in the CVT data area as the
ERRET routine.

When LINKAGE=SYSTEM is not specified
If MEMREL=YES is coded (or defaulted) on the POST macro, the ERRET routine is
given control in the issuer's home address space. If MEMREL=NO is coded on the
POST macro, the ERRET routine is given control in ASID 1.

When LINKAGE=SYSTEM is specified
The ERRET routine is given control in the issuer's primary address space.

The routine executes in supervisor state and PSW key 0. It receives control
enabled, unlocked, in SRB mode, and with the following register contents:

Register
Contents

0 ECB address

1 ASCB address (address specified for ASCB keyword)

2 completion code specified on POST invocation

3 system completion code that indicates why the POST request failed

Chapter 4. Serialization 53

4-13 used as a work register by the system

14 return address

15 ERRET address

The ERRET routine will receive control in the addressing mode of the caller of the
cross memory POST, and the ERRET routine will run in a cross memory
environment where home, primary, and secondary address spaces are all equal.
The ERRET routine must return control to the address in register 14, unlocked and
enabled.

If cross-memory post is being used, a synchronization problem arises when it
becomes necessary to eliminate an ECB that is a potential target for a cross
memory post request. To ensure that all outstanding cross memory post requests
for the ECB have completed, the user must invoke the SPOST macro. The ECB
might or might not be posted, depending on existing conditions.

Synchronous cross memory post
You can specify LINKAGE=SYSTEM on a cross-memory POST. If you do, the
system performs a synchronous POST, if possible. If it is not possible to do the
POST synchronously, the system schedules an asynchronous POST. A synchronous
POST means that the POST process completes before the system returns control to
your program. A synchronous POST is possible only when the ECB is not an
extended ECB (see “Writing POST exit routines” on page 55) or an EVENTS ECB
and the target address space is swapped in and its LOCAL lock is available. A
synchronous POST runs faster. However, in the event of an error condition, the
system does not give the ERRET routine control and abnormally ends your
program.

Return code 0 from POST with the LINKAGE=SYSTEM parameter indicates that
the POST was synchronous. Return code 4 indicates that the POST was
asynchronous. Return code 8 indicates that the POST was asynchronous, but that
the ERRET routine can not be utilized.

The serialization method used to control modifications to an ECB depends on
whether or not the ECB is waiting. If the ECB is not waiting (the high order bit of
the ECB is off), it may be quick posted via the compare-and-swap instruction using
the technique described in “Bypassing the POST routine.” If the ECB is waiting
(the high order bit of the ECB is on), the LOCAL lock serializes updates to the
ECB.

Bypassing the POST routine
You can bypass the POST routine whenever the corresponding WAIT has not yet
been issued if the wait bit is not on. In this case, a compare-and-swap (CS)
instruction can be used to quick post the ECB. The compare operand should reflect
the ECB content with the wait and post bits off, and the swap operand should
have the post bit on and contain the desired post code. If the wait bit is on in the
ECB, the CS will fail (giving a non-zero condition code), and the normal POST
routine must be executed. If the wait bit is not on, the CS will, in effect, post the
completion of the event. Note that holding the LOCAL lock does not eliminate the
requirement to use the CS instruction. Figure 5 on page 55 demonstrates an
example of how to quick post an ECB.

54 z/OS V2R2 MVS Authorized Assembler Services Guide

Waiting for event completion (EVENTS)
The EVENTS macro allows a user to wait for the completion of one of a series of
events and be directly informed by the system which of the events have
completed. Branch entry to this function, which is more efficient than SVC entry, is
available to users executing in key 0, supervisor state, and holding only the
LOCAL lock.

Branch entry is specified by coding BRANCH=YES on the EVENTS macro. If this
parameter is used, the branch entry routine performs all normal WAIT processing
and ECB initialization. You can specify BRANCH=YES in conjunction with either
WAIT=YES, WAIT=NO, or ECB=.
v If you specify WAIT=YES, control will later be returned to the system, even

though there might be ECBs posted to the EVENTS table. EVENTS frees the
LOCAL lock. Before issuing the EVENTS macro with the WAIT=YES option, you
must establish the return environment by setting the following:
– RBOPSWA - Set with the PSW, which contains the address of the routine that

is to receive control when the event completes
– TCBGRS - Set to the general purpose registers (GPRs)

EVENTS returns, in register 1, the address of the first processed event table
entry or zero. (This service is not available to Type 1 SVCs or SRBs.)

v If you do not specify WAIT=YES, control returns to you. EVENTS does not free
the LOCAL lock.

Writing POST exit routines
The POST exit function provides authorized routines with a service that allows
them to receive control immediately upon each completion of an outstanding event
(other POST functions can be used by unauthorized routines). Thus, the user can
write a routine that receives control between the time the ECB is marked
completed and the return by POST to the caller.

This function defines a special type of ECB known as an extended ECB. When
initialized, these extended ECBs identify potential work requests rather than
waiting tasks. A purpose of an extended ECB is to notify a process (for example, a
subsystem) of an additional work request. Thus when an extended ECB is posted,
a subroutine of the process receives control and updates a queue to identify the
current work request.

When using the POST exit function, your routine must follow this sequence:
v Identify POST exit routines.

L RX,ECB Get contents of ECB.
N RX,=X’3FFFFFFF’ Turn off wait and post bits
L RY,=X’40000000’ Post bit and post code
CS RX,RY,ECB Compare and swap to post ECB
BZ POSTDONE Branch if CS is successful
LTR RX,RX Wait bit on?
BM DOPOST If yes, then execute POST
N RX,=X’40000000’ Is ECB posted?
BNZ POSTDONE If yes, do not execute POST

DOPOST POST ECB
POSTDONE EQU *

Figure 5. Bypassing the POST Routine

Chapter 4. Serialization 55

v Initialize extended ECBs and ECB extensions.
v Wait for work requests.
v Delete POST exit routines before terminating.

Identifying and deleting exit routines
Exit identification and deletion is performed through a function code that indicates
whether the input exit address should be added to or deleted from the POST exit
address queue for the current address space. A function code of 4 indicates an exit
creation request, while 8 indicates an exit deletion request. Details of this interface
are in “Branch Entry to the POST Service Routine”.

A 24-bit caller of the POST-exit-delete function can only delete an exit below 16
megabytes; a 31-bit caller must pass a valid 31-bit address and can delete an exit
above or below 16 megabytes.

The process that establishes a POST exit is responsible for deleting that exit before
its normal or abnormal termination.

Initializing extended ECBs and ECB extensions
The user must obtain and initialize the extended ECBs and ECB extensions. A
system service is not available to perform these functions.

The ECB extension must be obtained and initialized before the initialization of the
extended ECB. This sequence avoids the possibility of an initialized extended ECB
being posted before the initialization of the ECB extension.

The ECB extension is two words long, begins on a word boundary, and can be
from any subpool. However, the POST routine must be able to read from the ECB
extension in the PSW key of the issuer of the POST macro. The ECB extension
must also be accessible in the addressing mode of the POST's caller. More than one
extended ECB can point to it. The mapping for the ECB extension is available via
the EXT=YES parameter on the IHAECB mapping macro. The ECB extension has
the format shown in Table 7:

Table 7. ECB Extension (ECBE)

ECB extension format

VALUE
(1 byte)

MODE
(1 byte)

RESERVED
(2 bytes)

POST DATA
(4 bytes)

The fields in the ECBE are:

VALUE
is one byte containing a value of 1 to 255. A value of 1 indicates that the
POST exit function is being requested.

MODE
The first bit of this byte indicates the addressing mode of the exit routine.
If the byte contains X'80', the exit routine will receive control in 31-bit
addressing mode. If the byte contains X'00', the exit routine will receive
control in 24-bit addressing mode.

56 z/OS V2R2 MVS Authorized Assembler Services Guide

POST DATA
This field contains the address of the exit routine to be given control when
the POST occurs.

The extended ECB must conform to current requirements for ECBs and be
initialized as shown below. The extended ECB must be initialized only after it is
eligible for posting. The extended ECB must be initialized using a
compare-and-swap (CS) instruction. Holding the LOCAL lock does not eliminate
the requirement to use the CS instruction to initialize the ECB because the ECB
could be quick posted by a routine, using CS, that does not hold the LOCAL lock. It
is unnecessary to hold the LOCAL lock to initialize an extended ECB. Compare
and swap is necessary and sufficient to initialize the extended ECB. The meaning
of the bits in the extended ECB follows:

Bits Meaning

0 If one, indicates initialized ECB.

1-29 Bits 1-29 of the address of the associated ECB extension.

30-31 If ones, indicates an extended ECB.

If the compare and swap fails and if the ECB is pre-posted, the user should
perform the appropriate POST exit functions in order to replace those ordinarily
performed by the already concluded POST processing.

POST interface with exit routines
Before giving the exit control, POST checks to ensure that the user's exit routine
address identified in the ECB extension denotes a valid POST exit routine. Even
though POST thereby makes sure that a valid system exit receives control, the exit
routine must ensure that an unauthorized routine has not counterfeited the
extended ECB/ECB extension pair (by keeping the ECB/ECB extension pair in
system key storage, for example).

The user's exit routine receives control from POST with the LOCAL lock in
supervisor state, key zero. The routine must not release the LOCAL lock and
should be able to process in both SRB and TCB mode. The register contents at
entry to the user exit routine are:

Register
Contents

0 Address of the currently posted ECB

1 Address of related ECB extension

2-13 Unpredictable

14 Return address

15 Exit routine entry point address

Registers 11 and 14 must remain unchanged upon return to POST from the user's
routine.

The user's exit routine must return control in supervisor state, PSW key zero and
with the LOCAL lock still held.

Chapter 4. Serialization 57

For performance reasons, the user's routine should not cause page faults (that is,
the routine's code and the data that it references should be in fixed or DREF
storage when the routine receives control).

When you use an extended ECB on the POST macro and HASN (the home address
space) doesn't equal PASN (the primary address space), use LINKAGE=SYSTEM
with the ERRET parameter. The POST service then assumes that the extended ECB
is in the primary address space and schedules an asynchronous cross-memory
POST. The only way that such a POST can inform the requestor of an error
condition is through an ERRET routine.

When you specify LINKAGE=SYSTEM, the POST macro service issues a return
code. Return code 4 indicates that the system will perform the POST
asynchronously. If you specified the ERRET parameter on the POST macro and an
error occurs during asynchronous POST processing, MVS invokes the routine
identified on the ERRET parameter. If your program is unauthorized and you
specify ERRET, the POST is done asynchronously, but the error routine will not get
control in the event of an error. Return code 8 indicates this condition.

Re-entry to POST from a POST exit
A POST exit routine cannot post another extended ECB unless it does so by
specifying a cross memory post. Any attempt to activate another POST exit before
the completion of the current exit causes a X'702' abend. If you must post another
extended ECB from a POST exit routine, you should either have your routine issue
a cross memory post or schedule your own SRB so that your routine enters POST
by branching to it.

Branch entry to the POST service routine
Branch entry to the POST service routine provides, through LINKAGE=BRANCH,
all the normal ECB and RB POST processing. To use the entry points, shown in
Table 8 on page 59, you must write your own code. In general, the caller must hold
the LOCAL lock and be in supervisor state, PSW key zero. Upon completion of the
POST process, control returns to the caller in supervisor state, PSW key zero with
the LOCAL lock.

Note: CML (cross memory local) lock means the local lock of an address space
other than the home address space. LOCAL lock means the local lock of the home
address space. When written in lower case, local lock means any local-level lock,
either the local or a CML lock.

You can use branch entry to the POST service routine in cross memory mode for
cross memory POST. If you hold the LOCAL lock of the home address space and if
bit 0 of register 12 is 0, then the current address space must be the home address
space and registers 0-9 and 14 are preserved. If you do not hold home's LOCAL
lock or if bit 0 of register 12 is 1, then the current address space can be any address
space and only registers 9 and 14 are preserved.

Note: If the high-order bit of register 12 is 0 and an error routine is invoked, the
error routine is dispatched in the home address space. The error routine is also
dispatched in the home address space when you use MEMREL=YES on the POST
macro. However, if the high-order bit of register 12 is 1 (which is equivalent to
coding MEMREL=NO on a POST macro), then the error routine is dispatched in
ASID 1.

58 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 8 shows the POST function and the branch entry points through which those
functions can be performed. Table 9 shows the input parameters to POST. Table 10
shows the output parameters from POST.

Table 8. POST Function and Branch Entry Points

Functions Entry Points

LINKAGE=BRANCH CVT0PT02 CVT0PT03* CVT0PT0E

Local ECB POST X X X

Cross memory
POST

X** X

Post exit
creation/deletion

X

* This entry point performs processing identical to entry point POST macro
linkage=BRANCH. It is designed for use only by POST exit routines (that
is, routines that receive control from POST as the result of having
established that exit via entry point CVT0PT0E).

** The local lock does not need to be held for a cross memory POST at this
entry point.

Table 9. POST Branch Entry Input

Registers CVT0PT02 CVT0PT03 CVT0PT0E

0 ECB storage protect key(1) Function Code

1 Exit Routine Address

10 Completion Code Completion Code(2)

11 ECB Address ECB Address(3)

12 Error Routine
Address(4)

13 ASCB Address(4)

14 Return Address Return Address Return Address

15 Entry Point Address Entry Point Address Entry Point Address

Note:

1. If cross memory post, optionally contains the storage protection key of the ECB
in bits 24-27.

2. If cross memory post and the storage protection key of the ECB is supplied in
register 0, then the high order bit must be set to one.

3. If local POST, ensure high order bit of register is zero; if cross memory POST,
set high-order bit of register to 1.

4. Only necessary when performing cross memory POST. If performing a cross
memory POST and the high order bit in register 12 is on, only registers 9 and
14 are retained, and the error routine executes in the master scheduler's address
space.

Table 10. POST Branch Entry Output

Entry Points/Options Registers Saved and Restored

LINKAGE=BRANCH and ASCB not specified 0-9, 12, 13

Chapter 4. Serialization 59

Table 10. POST Branch Entry Output (continued)

Entry Points/Options Registers Saved and Restored

LINKAGE=BRANCH and ASCB specified

v Local lock held and MEMREL=YES

v Local lock not held or MEMREL=NO

0-9
9

CVT0PT02 0-9, 12-14

CVT0PT03 0-14

CVT0PT0E 2-14

Branch entry to the WAIT service routine
Branch entry to the WAIT service routine, which is not available to Type 1 SVCs or
SRBs, provides all the normal ECB and RB WAIT processing. IBM does not
recommend branch entry into the WAIT service routine because the caller must
manually save the environment to be restored. A better choice might be to use the
LINKAGE=SYSTEM parameter statement with the WAIT macro. See z/OS MVS
Programming: Assembler Services Reference IAR-XCT for details on the
SYSTEM=LINKAGE parameter with the WAIT macro.

While holding home's LOCAL lock and before branching to WAIT, the caller must
establish the PSW and register return environment in its RB and TCB by setting
the following:
v RBOPSWA - Set to the first and second half of the PSW, includes the key and

mask bits as well as the address of the next instruction after the WAIT macro
v TCBGRS - Set to the general purpose registers (GPRs)

When WAIT is invoked, the caller should hold only the LOCAL lock. WAIT
performs the following functions:
v Stores the ECB/ECBLIST address into the register 1 location of the TCB register

save area (TCBGRS1). User data cannot be passed through this field or register.
v Releases home's LOCAL lock.
v Returns control to the system (control does not return to the caller even though

all previously pending events have already occurred). The system ensures that
all FRRs have been deleted.

The following registers contain parameters for branch entry to WAIT:

Register
Contents

0 The wait count in the low order byte. When the high order bit is one, it
indicates long-wait (the LONG=YES specification).

1 The ECB pointer value. If only one ECB is being waited on, place that ECB
address in register 1. If a list of ECBs is being waited on, place the
complemented ECBLIST address in register 1.

15 The branch entry address to WAIT (obtained from the CVT field
CVTVWAIT).

You can use branch entry to the WAIT service routine in cross memory mode if
you hold the LOCAL lock of the home address space and if the current address
space is the home address space.

60 z/OS V2R2 MVS Authorized Assembler Services Guide

Serializing RB processing
For request blocks (RBs) and service request blocks (SRBs), alternate serialization
methods are available. Usually, these alternate methods provide better performance
than do WAIT and POST processing. To serialize an RB routine, use the SUSPEND,
CALLDISP, and RESUME macros. The SUSPEND macro identifies the RB that is to
be suspended until an expected event occurs. The CALLDISP macro enables a
routine that has suspended the current RB to call the system to have other work
dispatched. After issuing the CALLDISP macro, the RB routine is suspended.
When the event occurs that the suspended RB is waiting for, use the RESUME
macro to tell the system that the suspended RB is again eligible to execute.

Serializing an SRB is described in “Serializing SRB processing” on page 216.

Suspending an RB until an event completes (SUSPEND)
The SUSPEND macro with the RB parameter provides an efficient way for an RB
to wait for an event to complete. It is similar to the WAIT macro; the
SUSPEND-RESUME sequence can be compared to the WAIT-POST sequence.

The SUSPEND macro does not have an immediate effect on the issuer as the WAIT
macro does. Instead, the effect is delayed, depending on the type of suspension the
macro user requests. If the previous RB is suspended, the effect takes place when
the current RB returns to the system. If the current RB is suspended, the
suspended state occurs when the RB passes control to the system.

RBs that issue the SUSPEND macro with the RB=CURRENT option should hold
the suspended state time to a minimum. As soon as possible after SUSPEND
completion, the RB that issues a SUSPEND RB=CURRENT should issue a
CALLDISP macro with the BRANCH=YES option. Using the SUSPEND macro this
way minimizes potential performance problems because the RB in this case must
either be disabled or must hold the LOCAL lock or a CML lock. Minimizing
suspension time also minimizes other potential problems the program might
experience by limiting the time in which the RB is unable to cause any
synchronous interrupts (such as SVCs and page faults) or provide interfaces to the
WAIT, POST, or EVENTS macros.

RBs that issue SUSPEND RB=PREVIOUS, on the other hand, do not require the
same synchronization because they are operating on behalf of another RB. The
suspension of the previous RB does not require disabled execution or the holding
of the LOCAL lock or a CML lock.

The following scenarios show typical SUSPEND macro sequences:

Scenario 1:
SUSPEND RB=PREVIOUS
1. Type 2 SVC routine receives control from a macro issuer.
2. The SVC routine suspends (through SUSPEND) the macro issuer's RB.
3. The process that will eventually issue the RESUME is started.
4. The SVC completes processing and exits.
5. Event completion occurs; process started in step 3 resumes (through RESUME)

the issuer of the macro.
6. The macro issuer's task resumes (at return from the SVC routine).

Chapter 4. Serialization 61

Scenario 2:
SUSPEND RB=CURRENT
1. User acquires the LOCAL lock or a CML lock.
2. The macro suspends processing of the current RB.
3. The process that will eventually issue the RESUME is started.
4. Caller issues CALLDISP BRANCH=YES, which releases the LOCAL lock or

CML lock.
5. Event completion occurs; process started in step 3 resumes issuer of the macro.
6. Normal processing resumes.

Considerations when suspending an RB
When using the SUSPEND macro with the RB parameter, there are several factors
to consider:

General considerations:

v The SUSPEND macro can be issued in cross memory mode.
v Only a routine running in supervisor state with PSW key 0 can issue SUSPEND.
v The SUSPEND macro requires that the CVT mapping macro be included.
v Only task-related users can issue SUSPEND to suspend an RB, and then only for

the current task.
v The SUSPEND function user must ensure that the SUSPEND and RESUME

sequence takes place in proper order. The user must issue SUSPEND, then event
completion must occur, and then the RESUME function must take place. One
way to ensure proper sequencing is to issue SUSPEND before scheduling the
asynchronous process on which the RB must wait.

v Do not intermix the SUSPEND and RESUME sequence with the WAIT and
POST sequence on a single RB. Because the SUSPEND-RESUME sequence is a
restricted-use function, it does only minimal validity checking. For example, if
an RB were already waiting on 255 events and someone issued a SUSPEND
against it, one POST or RESUME could make the RB dispatchable.

v An RB can have only one SUSPEND outstanding at a time. There can be no
subsequent SUSPEND macros issued until a RESUME occurs for the outstanding
SUSPEND macro.

RB=PREVIOUS considerations:

v When the issuer requests (explicitly or by default) the SUSPEND RB=PREVIOUS
option, there must be a previous RB on the chain to prevent a task abend.

v SUSPEND RB=PREVIOUS is intended for use by Type 2, 3, and 4 SVCs to place
the issuer of the SVC in a suspended state.

RB=CURRENT considerations:

v When using the SUSPEND RB=CURRENT option, the issuer must hold the CPU
lock, LOCAL lock, or a CML lock. The issuer must remain in this state until the
program initiates the stimulus for event completion in order not to lose control,
which could result in never being redispatched. Because the issuer must also
coordinate the SUSPEND and RESUME sequence, the event completion must not
occur until after the SUSPEND RB=CURRENT macro takes effect. The caller that
is in PSW key 0 supervisor state and EUT (enabled unlocked task) mode and
that uses a local lock to serialize the SUSPEND and RESUME processing
sequence can issue CALLDISP FRRSTK=SAVE. The CALLDISP routine releases
the local lock, which serialized the SUSPEND/RESUME processing of the caller.
Because an EUT FRR exists, the current FRR stack is saved.

62 z/OS V2R2 MVS Authorized Assembler Services Guide

v When a Type 1 or Type 6 SVC issues a SUSPEND RB=CURRENT, the top RB
(the caller of the SVC) is suspended. Whenever the SVC exits (via EXIT
PROLOGUE or T6EXIT), the caller is suspended until RESUME occurs. A TYPE
1 SVC must not issue the CALLDISP macro or release the LOCAL lock, and it
must exit via its exit mechanism. A Type 6 SVC must not issue the CALLDISP
macro or become enabled, and it also must exit via its exit mechanism.

v When a TYPE 2, 3, or 4 SVC issues a SUSPEND RB=CURRENT, the top RB (the
SVC itself) is suspended. The SUSPEND routine returns control to the SVC. The
SVC can continue to execute as long as it remains locally locked or disabled.
Once the SVC releases the LOCAL lock or enables, an interrupt or a CALLDISP
invocation suspends the SVC until it is resumed. While the SVC is enabled and
before it is resumed, it cannot incur a page fault, issue an SVC, or branch enter
any supervisor service that makes local work ready or places the caller in a wait
state (for example, WAIT, POST, EVENTS, or STATUS).

v A program that is using a local lock or a CML lock to serialize SUSPEND
RB=CURRENT must not release the lock before it issues CALLDISP. A program
that uses the CPU lock to serialize SUSPEND RB=CURRENT must release the
CPU lock immediately before it issues CALLDISP.

Using the CALLDISP macro
Routines that suspend the current RB can use the CALLDISP macro with the
BRANCH=YES option to enter the suspended state. The BRANCH=YES option
allows an issuer of the SUSPEND macro with its RB=CURRENT option to exit
while leaving the current RB in the wait state. This option causes the system to
save status and dispatches the next ready dispatchable unit.

Some considerations for using the BRANCH=YES option on the CALLDISP macro
are:
v The issuer of CALLDISP must be executing in supervisor state with PSW key

zero.
v The issuer must be in task mode.
v The issuer can be in cross memory mode.
v The BRANCH=YES option requires inclusion of the IHAPSA mapping macro.
v The FIXED=YES or FIXED=NO option can be specified with BRANCH=YES.
v When FRRSTK=SAVE is specified:

– If the caller holds the LOCAL or CML lock, an enabled unlocked task (EUT)
FRR must exist.

– If any EUT FRRs exist, the current FRR stack is saved and the caller may hold
either the LOCAL or CML lock. CALLDISP releases the lock.

v When FRRSTK=NOSAVE is specified:
– The current FRR stack is purged.
– The caller may hold either the LOCAL or CML lock. CALLDISP releases the

lock.

Note:

1. A type 1 and type 6 SVC must not issue the CALLDISP macro.
2. The LOCAL or CML lock can be used to serialize the SUSPEND processing and

establish the RESUME processing.

Chapter 4. Serialization 63

Resuming execution of a suspended RB
The RESUME macro, which is supported in cross memory mode, provides an
efficient means for indicating the completion of an event. The RESUME macro
specifies the TCB and RB that were previously suspended by the SUSPEND macro.
The specified TCB and RB must be addressable in the currently addressable
address space. Only routines executing in supervisor state and PSW key zero can
issue the RESUME macro.

The RESUME macro and the service routine it calls must serialize the use of the
task that is being resumed. This serialization might require the local lock of the
task's address space, called the target address space. Because disabled or locked
callers of RESUME are not allowed to obtain a local lock, the RESUME macro has
the MODE and ASYNC options to handle these types of situations.

Note: The ASYNC parameter for the RESUME macro is spelled differently from
similar parameters on other macros.

The MODE option specifies whether or not the RESUME operation must complete
(MODE=UNCOND) or not (MODE=COND).

The ASYNC option specifies whether or not RESUME can schedule an SRB to
perform the resume if necessary. These RESUME options can be combined in four
ways:
v MODE=UNCOND and ASYNC=N

– RESUME attempts to obtain the necessary task serialization to complete the
function synchronously. If it can obtain serialization, RESUME completes its
function and returns to its caller. If it cannot obtain serialization, RESUME
requests the local lock of the target address space to serialize the operation.
The caller of RESUME must be able to obtain the target address space's local
lock or already hold it when RESUME is issued. This means that, with one
exception, the caller of RESUME must either be running enabled and
unlocked or must hold the target address space's local lock when the
RESUME is issued. The exception is the disabled caller that resumes the TCB
under which it is running, that is, the currently executing TCB. This situation
could occur if, for example, a routine became disabled, executed a SUSPEND
RB=CURRENT macro, and then determined that there was more work to be
done. The disabled, unlocked routine could issue a RESUME macro for the
TCB and RB to counteract the SUSPEND.
If the local lock is required but not available, the caller will be suspended
waiting for the local lock. Control returns to the caller after the RESUME has
occurred.

– Disabled interrupt exits cannot issue the RESUME macro with the
MODE=UNCOND and ASYNC=N options.

– The RETURN=N option on the RESUME macro is allowed only with this
combination of options. The RETURN=N option cannot be used with the
ASCB parameter. To use RETURN=N, the caller must be running in SRB
mode, must be in primary ASC mode where primary=home, and must not
hold any locks. If these three conditions are met, the system transfers control
to the task that was just resumed. If these three conditions are not met, that
caller is abended with an X'070' abend code.

v MODE=UNCOND and ASYNC=Y

64 z/OS V2R2 MVS Authorized Assembler Services Guide

– RESUME attempts to obtain the necessary task serialization and complete the
function synchronously. If RESUME cannot obtain serialization, RESUME does
not obtain the local lock. RESUME unconditionally schedules an SRB to
complete the RESUME asynchronously.

– The caller can be enabled or disabled.
v MODE=COND and ASYNC=N

– RESUME attempts to obtain the necessary task serialization to complete the
function synchronously. If serialization is available, the task is resumed and
control returns to the caller. If serialization is not available, RESUME returns
to the caller without completing the RESUME operation.

– The caller can either be enabled or disabled and can hold any combination of
locks. RESUME does not attempt to obtain any locks. The caller must be
prepared to handle the situation when the RESUME operation cannot be
performed because the necessary serialization is not available.

v MODE=COND and ASYNC=Y
– RESUME attempts to obtain the necessary serialization to complete the

function synchronously. If serialization is available, the task is resumed and
control returns to the caller. If serialization is not available, RESUME might
schedule an SRB to complete the RESUME asynchronously.

– The caller can be either enabled or disabled, and can hold any combination of
locks. RESUME does not attempt to obtain any locks. The caller must be
prepared to handle the situation when the RESUME operation cannot be
performed because the necessary serialization is not available and the
RESUME could not be processed asynchronously.

RESUME provides return codes in register 15 to indicate the result of the RESUME
attempt. See the RESUME macro in z/OS MVS Programming: Authorized Assembler
Services Reference LLA-SDU for details on the return codes.

The RESUME macro requires that you include the IHAPSA mapping macro. If the
ASCB option is not specified, then the MODE=UNCOND and ASYNC=Y
combination requires that you include the CVT mapping macro.

Synchronizing unit of work (tasks or SRBs)
Pause, Release, and Transfer are callable services that enable you to synchronize
task or SRB processing with minimal overhead. If you have, for example, an
application that requires two tasks to trade control back and forth, these services
provide efficient transfers of control.

These services, which are available to both unauthorized and authorized callers in
Assembler as well as C or C++, use a system-managed object called a pause
element to synchronize processing of tasks or SRBs. The services provide the
following functions:

Table 11. Pause, Release, and Transfer callable services

Callable service
64-bit version callable
service Description

IEAVAPE, IEAVAPE2 IEA4APE, IEA4APE2 Obtains a pause element token (PET), which uniquely
identifies a pause element (PE).

IEAVDPE, IEAVDPE2 IEA4DPE, IEA4DPE2 Frees a pause element (PE) that is no longer needed.

IEAVPSE, IEAVPSE2 IEA4PSE, IEA4PSE2 Pauses the current task or SRB.

IEAVPME2 IEA4PME2 Pauses the current task or SRB using multiple PETs.

Chapter 4. Serialization 65

|||

Table 11. Pause, Release, and Transfer callable services (continued)

Callable service
64-bit version callable
service Description

IEAVRLS, IEAVRLS2 IEA4RLS, IEA4RLS2 Releases a paused task or SRB.

IEAVRPI, IEAVRPI2 IEA4RPI, IEA4RPI2 Retrieves information about a pause element (PE).

IEAVTPE IEA4TPE Tests a pause element (PE) and determines its state.

IEAVXFR, IEAVXFR2 IEA4XFR, IEA4XFR2 Releases a paused task and, when possible, gives it immediate
control, while optionally pausing the task under which the
Transfer request is made.

The services use a system-managed pause element (PE) rather than an
application-managed control block, such as an event control block (ECB), thus
reducing the possibility of error that might come from improper reuse of the
control block.

As a PE is much like an ECB, the Pause service is much like the WAIT macro, and
the Release service is much like the POST macro. Just as you can use POST to keep
a task from waiting by "preposting", you can use Release to keep a task or SRB
from pausing by "prereleasing".

The Transfer service can both release a paused task or SRB and pass control
directly to the released task or SRB. The Transfer service can also pause the task or
SRB that calls the service. Thus, Transfer enables quick dispatches, saving the
overhead of work search. It also allows two dispatchable units to trade control
back and forth with minimal overhead.

To understand how to use the services, you need to know more about pause
elements (PEs) and the pause element tokens (PETs) that identify them.

Pause elements and pause element tokens
A pause element (PE) is a system-managed object used to pause and release a
work unit, which can be either a task or SRB. Like an ECB, a PE is used by the
system to control whether or not a work unit is dispatchable. You can use a PE,
like an ECB, to prerelease a work unit before it is paused. There are, however,
significant differences between an ECB and a PE. Table 12 compares the two.

Table 12. Pause Element (PE) and Event Control Block (ECB)

Pause Element (PE) Event Control Block (ECB)

Managed by the system. Managed by application programs.

Identified by a pause element token (PET). Identified by a simple address.

Can change the dispatchability of the task or SRB in any
address space.

Unless specifically allocated in common storage, can
change the dispatchability of only a task in the same
address space as the ECB. Even when allocated in
common storage, can change the dispatchability of only a
task, not an SRB.

Cannot be reused once invalidated by an asynchronous
ABEND.

Can be reused after a task is removed from the wait state
by an asynchronous ABEND (or other RTM
dispatchability management), although reuse requires
very complicated programming.

66 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 12. Pause Element (PE) and Event Control Block (ECB) (continued)

Pause Element (PE) Event Control Block (ECB)

To prevent errors related to reuse, a PET can be used
only once to identify a PE. Once a task or SRB is paused
and released, an updated PET is needed to identify the
PE. The system returns the updated PET to the caller
through the Pause or Transfer service.

There is no control on the reuse of an ECB; the same
ECB address can be used over and over.

PEs are allocated and deallocated through calls to system
services.

ECBs are allocated by application programs.

The total number of PEs available to all unauthorized
programs in a system is limited to 130560.

The system imposes no limits on the number of ECBs.

PEs are addressable only through PETs. The user of a PE
does not know its actual address and cannot modify it
except through the use of system services.

ECBs can be modified at will by application programs.

A PE allocated by an unauthorized caller can be used to pause and release any
work unit in the caller's home address space. An unauthorized caller cannot pause
or release using a PE allocated with auth_level=IEA_AUTHORIZED or
pause_element_auth_level=IEA_AUTHORIZED.

When a PE is allocated with auth_level=IEA_AUTHORIZED (callable services
IEAVAPE and IEA4APE) or pause_element_auth_level=IEA_AUTHORIZED
(callable services IEAVAPE2 and IEA4APE2), the PE can be used to pause and
release any task or SRB in the system. The same PE can be used, for example, to
pause a task in address space 10. After being released, the same PE can be used to
pause an SRB in, say, address space 23. There is, however, a small performance
penalty imposed when a PE is used to pause a task or SRB in one space and then
reused to pause a task or SRB in another space. This cost is accrued upon each
space transition.

The following services (IEAVAPE2, IEAVDPE2, IEAVPME2, IEAVPSE2, IEAVRLS2,
IEAVRPI2, IEAVXFR2, IEA4APE2, IEA4DPE2, IEA4PME2, IEA4PSE2, IEA4RLS2,
IEA4RPI2, and IEA4XFR2) have a 'LINKAGE=' keyword that specifies whether the
caller is authorized (LINKAGE=BRANCH requires the caller to be in key 0
supervisor state). The authorization of the PET is not specified, except when it is
allocated via the IEAVAPE2 (or IEA4APE2) service. Instead, the authorization of
the PET is implied. Authorized users can use any PET, but unauthorized users
only can use a PET that was allocated for unauthorized use.

When an authorized program is passed a PET from an unauthorized program, the
authorized program must ensure that the PET is valid to be used by the
unauthorized program. The authorized program can validate this by invoking the
IEAVRPI2 (or IEA4RPI2) service and specifying a special value for the linkage
parameter. When an authorized program needs to validate that a PET can be used
by an unauthorized program, add IEA_UNTRUSTED_PET to the value specified
for LINKAGE and invoke the IEAVRPI2 service. The data returned by the
IEAVRPI2 service identifies whether the unauthorized caller is able to use the PET:
v Return_code must be 0.
v Pause_element_auth_level must be IEA_PET_UNAUTHORIZED.

A PE can be used to pause only one task or SRB at a time; the system does not
allow more then one dispatchable unit to be paused under a single PE.

Chapter 4. Serialization 67

|
|
|
|
|
|
|
|

Pause elements are not supported by checkpoint/restart. However, support has
been added with APAR OA19821 to permit the allocation of pause elements that
can allow a successful checkpoint/restart. This is possible for applications that can
tolerate the fact that the pause element will not be restored upon a restart after a
checkpoint. An application can tell if this support is available by checking if
CVTPAUS4 has been set in the CVT. A new type is introduced for the auth_level
parameter of the Allocate Pause Element service. The new level is created by
adding the value of the new type (IEA_CHECKPOINTOK) to the existing value (at
one time, only IEA_AUTHORIZED or IEA_UNAUTHORIZED can be specified).
When pause elements are allocated, a checkpoint is accepted only if all
encountered pause elements have been allocated indicating the
IEA_CHECKPOINTOK type.

Using the services
There are 28 callable services available for task synchronization:
v Allocate_Pause_Element – IEAVAPE, IEAVAPE2, IEA4APE, or IEA4APE2
v Deallocate_Pause_Element – IEAVDPE, IEAVDPE2, IEA4DPE, or IEA4DPE2
v Pause – IEAVPSE, IEAVPSE2, IEA4PSE, or IEA4PSE2
v Pause_Multiple_Elements– IEAVPME2 or IEA4PME2
v Release – IEAVRLS, IEAVRLS2, IEA4RLS, or IEA4RLS2
v Retrieve_Pause_Element_Information - IEAVRPI, IEAVRPI2, IEA4RPI, or

IEA4RPI2
v Test_Pause_Element - IEAVTPE or IEA4TPE
v Transfer – IEAVXFR, IEAVXFR2, IEA4XFR, or IEA4XFR2

To use Pause, Release, and Transfer, a program must first allocate a PE by calling
the Allocate_Pause_Element service. In response, the system allocates a PE and
returns a pause element token (PET) that identifies the pause element (PE).

You use the PET returned from Allocate_Pause_Element to identify the allocated
PE until either:
v The PE has been used to pause (through Pause or Transfer) and release (through

Release or Transfer) a work unit
v A paused work unit has been released through an asynchronous ABEND.

When you are finished with the PE, call the Deallocate_Pause_Element service to
return the PE to the system. If a work unit is asynchronously ABENDed while it is
paused, the system itself invalidates the PE, and it cannot be reused for pause
requests. Thus, return an invalidated PE to the system as soon as possible by a call
to Deallocate_Pause_Element.

Though the PE remains allocated until you deallocate it, you can use a PET only
once, to pause and release a work unit. When you specify a PET on a successful
call to the Pause service or to pause a work unit through a successful call to the
Transfer service, the system invalidates the input PET and returns an updated PET
to identify the PE. Use the updated PET to reuse the PE or to deallocate the PE.

Figure 6 on page 69 shows, in pseudocode, the sequence of calls to allocate a PE,
pause the current work unit, release the work unit, and deallocate the PE.

68 z/OS V2R2 MVS Authorized Assembler Services Guide

|

|

The Pause, Release, and Transfer services also provide a release code field that is
particularly useful when a dispatchable unit might be released before it is paused.
The program that calls the Release service can set a release code.

Release code is returned to the invoker of Pause and can be used to communicate
the reason for the release.

Figure 7 on page 70 shows, in pseudocode, the sequence of calls needed to allocate
a PE, prerelease a work unit, and deallocate the PE

/* Common variables */ |
|

Dcl PET char(16); |
|

Workunit #1 | Workunit #2
|

/* Workunit #1 variables */ | /* Workunit #2 variables */
Dcl Auth1 fixed(32); | Dcl Auth2 fixed(32);
Dcl RC1 fixed(32); | Dcl RC2 fixed(32);
Dcl Updated_pet char(16); | Dcl RelCode binary(24);
Dcl RetRelCode binary(24); |

|
Auth1 = IEA_AUTHORIZED; | Auth2 = IEA_AUTHORIZED;

. | .

. | .

. | .
/* Allocate a Pause Element */ |
Call IEAVAPE (RC1,Auth1,PET); |

|
/* Pause Workunit #1 */ |
Call IEAVPSE (RC1,Auth1,PET, |

Updated_PET,RetRelCode); |
|

/*processing pauses until released*/ | RelCode = ’123’;
| /* Release Workunit #1 */
| Call IEAVRLS (RC2,Auth2,PET,

. | RelCode);

. |

. |
/* Deallocate the pause element */ |
Call IEAVDPE (RC1,Auth1, |

Updated_PET); |

Figure 6. Pause and Release Example

Chapter 4. Serialization 69

If you make a release request (through Release or Transfer) specifying a PET that
identifies a PE that has not yet been used to pause a task or SRB, the system marks
the PE as a prereleased PE. If a program tries to pause a work unit using a
prereleased PE, the system returns control immediately to the caller; it does not
pause the work unit. Instead, it resets the PE. As soon as a PE is reset, it can be
reused for another Pause and Release, but, as stated earlier, you use the returned
updated PET for each subsequent reuse of the PE.

The Pause and Release services are very similar to the WAIT and POST macros,
but the Transfer service provides new function. You can use Transfer to either:
v Release a paused dispatchable unit and transfer control directly to the released

dispatchable unit
v Pause the current dispatchable unit, release a paused dispatchable unit, and

transfer control directly to the released dispatchable unit

Figure 8 on page 71 shows an example of using the Transfer service to release a
dispatchable unit without pausing the current work unit.

Because the Transfer service can affect multiple units of work, using Transfer
requires you to work with three PETs:
1. The current pause element token (CurrentDuPet in Figure 8 on page 71)

identifies the allocated pause element that Transfer is to use to pause the
current dispatchable unit (the caller of the Transfer service). When you do not
need to pause the current dispatchable unit, you set this token to binary zeros,
as shown in Figure 8 on page 71.

/* Common variables */ |
|

Dcl PET char(16); |
|

Workunit #1 | Workunit #2
|

/* Workunit #1 variables */ | /* Workunit #2 variables */
Dcl Auth1 fixed(32); | Dcl Auth2 fixed(32);
Dcl RC1 fixed(32); | Dcl RC2 fixed(32);
Dcl Updated_PET char(16); | Dcl RelCode binary(24);
Dcl RetRelCode binary(24); |

|
Auth1 = IEA_AUTHORIZED; |

|
/* Allocate a Pause Element */ |
Call IEAVAPE (RC1,Auth1,PET); |

. | Auth2 = IEA_AUTHORIZED;

. | RelCode=’123’;

. |
| /* Release Workunit #1 */
| Call IEAVRLS (RC2,Auth2,PET,
| RelCode);

/* Pause Workunit #1 */ | .
Call IEAVPSE (RC1,Auth1,PET, | .

Updated_PET,RetRelCode); | .
|

/*check release code and continue */ |
. |
. |
. |

/* Deallocate the pause element */ |
Call IEAVDPE (RC1,Auth1, |

Updated_PET); |

Figure 7. Release and Pause Example

70 z/OS V2R2 MVS Authorized Assembler Services Guide

2. The updated pause element token (UPET2 in Figure 8), which the system
returns when you specify a current pause element token. You need this
updated token to reuse the pause element on a subsequent Pause or Transfer or
to deallocate the pause element. If you set the current token to binary zeros, as
done in Figure 8, the contents of the updated pause element token are not
meaningful.

3. The target token (TargetDuPET in Figure 8) identifies the allocated pause
element that Transfer is to use to release a dispatchable unit. In Figure 8, it
contains the PET that identifies the PE used to pause Workunit #1.

A current release code and a target release code are also available on the call to
Transfer. Whether or not each code contains valid data depends on conventions set
by the different parts of your program.

PE ownership and cleanup
A PE has an address space relationship used to define when PEs are automatically
deallocated by the system. When a PE is originally allocated, it is owned by the
home address space at the time of the call. When an authorized caller pauses a
task or SRB, the ownership of the PE moves to the home address space of the task
or SRB that is being paused. This change in ownership occurs even if the PE has
been prereleased. When the highest level task in an address space terminates, the
system automatically deallocates all of the PEs the address space owned.

/* Common variables */ |
|

Dcl PET char(16); |
|

Workunit #1 | Workunit #2
|

/* Workunit #1 variables */ | /* Workunit #2 variables */
Dcl Auth1 fixed(32); | Dcl Auth2 fixed(32);
Dcl RC1 fixed(32); | Dcl RC2 fixed(32);
Dcl UPET1 char(16); | Dcl CurrentDuRelCode char(3);
Dcl RetRelCode binary(24); | Dcl CurrentDuPET binary(24);

. | Dcl UPET2 char(16);

. | Dcl TargetDuPET char(16);

. | Dcl TargetDuRelCode binary(24);
Auth1 = IEA_AUTHORIZED; |
/* Allocate a Pause Element */ | Auth2 = IEA_AUTHORIZED;
Call IEAVAPE (RC1,Auth1,PET); | .

| .
/* Pause Workunit #1 */ | .
Call IEAVPSE (RC1,Auth1,PET,UPET1, | TargetDuRelCode = ’123’;

RetRelCode); | /* no pause-set token to zeros */
| CurrentDuPet =’’;
| TargetDuPET = PET

/*processing pauses until transfer*/ |
| /* Transfer to Workunit #1 */
| Call IEAVXFR (RC2,Auth2,
| CurrentDuPET,UPET2,
| CurrentDuRelCode,
| TargetDuPET,
| TargetDuRelCode);

/*processing continues */ | .
| .

/* Deallocate the Pause Element */ | .
Call IEAVDPE (RC1,Auth1,UPET1); |

Figure 8. Transfer without Pause Example

Chapter 4. Serialization 71

Because PEs allocated by unauthorized callers cannot move between address
spaces, the ownership defined at allocation time remains unchanged for the life of
the PE.

Global resource serialization latch manager
The global resource serialization latch manager is a service that authorized
programs can use to serialize resources within an address space or, using cross
memory capability, within a single MVS system. Programs can call the latch
manager services while running in task or service request block (SRB) mode.

The latch manager functions are callable services for all systems application
architecture (SAA) high level languages. The callable services allow applications to
efficiently serialize shared or exclusive access to resources. For example, an
application can use several latches to serialize resources within an address space,
instead of using the address space local lock to serialize those resources. Other
features, such as high speed, make the latch manager a flexible alternative to the
ENQ/DEQ macros and the locking function. For a comparison of these
serialization services, see “Choosing a serialization service” on page 33.

This information contains the following topics:
v An overview of the function of the latch manager
v Planning to use the latch manager
v A guide to the latch manager callable services.

Overview

Note: In this topic, the term program refers to a task or service request block (SRB)
routine.

The main advantage to using the latch manager is that you can reduce contention
for resources by dividing them into smaller segments and assigning individual
latches to those segments. Your application can assign latches to resources in
whatever way it desires. The more you can divide resources and assign individual
latches to them, the more likely it is that you will reduce contention for those
resources and increase the overall performance of your application.

For example, if a requestor needs to update a data structure that contains several
sub-structures, and those sub-structures are used by several programs running
concurrently in the same address space, the requestor could obtain the address
space local lock to serialize access to the entire data structure. Because there is only
one address space local lock, the system suspends other requestors until the lock is
released. On the other hand, if your application were to assign a latch to each
sub-structure (there is no system-imposed limit on the number of latches you can
assign to resources), requestors could serialize access to individual sub-structures
within the data structure at the same time.

“How to use the callable services” on page 73 explains how to use the latch
manager services to serialize resources that your application uses. Before reading
the information, understand the following terms:

Latch A structure that the latch manager uses to track and handle requests to
obtain, release, and purge latches. The application associates each latch

72 z/OS V2R2 MVS Authorized Assembler Services Guide

with a resource, then requests access to the resource by calling the
Latch_Obtain or the 64-bit Latch_Obtain service with the appropriate latch
number.

Latch identity
An attribute that consists of thresholds, a printable description of the
latch's usage, and other attributes as defined by the latch identity entry in
the appropriate language related macro - ISGLMC, ISGLMASM, or
ISGLMPLI.

Latch set
A set of latches that an application can use to serialize its required
resources. The application calls the Latch_Create or the 64-bit Latch_Create
service to create a latch set.

Latch set creator
An application that calls the Latch_Create or the 64-bit Latch_Create
service to create a set of latches. Programs that run as part of the
application can use the latches to serialize required resources.

Latch set token
An 8-byte area that identifies a latch set. The latch manager returns the
latch set token to the caller of the Latch_Create or the 64-bit Latch_Create
service.

Latch token
An 8-byte area that identifies an individual latch request. The latch
manager returns the latch token to the caller of the Latch_Obtain or the
64-bit Latch_Obtain service.

Requestor
A program that calls a latch manager callable service to:
v Request ownership of a latch, or
v Release an owned latch, or a pending request to obtain ownership of a

latch.

How to use the callable services
To use the latch manager, your application should call the latch manager services
in the following sequence:
1. Create a latch set. Your application begins by calling the Latch_Create service

to create a set of latches in the current primary address space. Each latch can
then be used to serialize resources. Your application can assign latches to
resources in whatever way it desires.

2. Provide latch identities for latches. You might choose to use the latch identity
service (ISGLID/ISGLID64) to create latch identities and other attributes for
your latches. Latches whose attributes are not changed by the usage of the
obtainer can be created right after the latch set is created. Latches whose
attributes are changed by usage of obtainer can still be initialized to a "not in
use state" right after the latch set is created. The attributes of latches changed
by obtainers should be updated or replaced by ISGLID/ISGLID64 before and
after usage with appropriate values.

3. Request ownership of latches. Programs that run as part of your application
can call the Latch_Obtain service to request exclusive or shared ownership of
latches associated with required resources. If there is no contention for a latch
at the time of the Latch_Obtain request, the latch manager can grant ownership

Chapter 4. Serialization 73

of the latch immediately. The caller of Latch_Obtain specifies a parameter that
tells the latch manager what to do when a latch is not immediately available,
which is one of the following:
v Queue the request and suspend the requestor until the latch manager

eventually grants ownership of the latch to the requestor
v Do not queue the request; return control to the requestor
v Queue the request, return control to the requestor, then post an event control

block (ECB) when the latch manager grants ownership of the latch to the
requestor.

When a requestor obtains ownership of a latch, the requestor can read or
modify the associated resource, depending on the type of ownership that was
requested (shared or exclusive).

4. Release ownership of owned latches or pending latch requests. After a
requestor finishes using the resource, it calls the Latch_Release service to
release the latch so other requestors can use the resource. Requestors can also
call Latch_Release to release a pending request to obtain ownership of a latch
that has been queued by the latch manager.

5. If an error occurs, purge all owned latches and pending requests for a
particular requestor. Latch_Purge, which is similar to Latch_Release, is a
convenient way to purge all granted and pending requests for a specific
requestor within a specific latch set. The latch manager provides the
Latch_Purge service for use by an application's termination resource manager.

“Planning to use the latch manager callable services” describes how to set up your
application to use the latch manager callable services.

Planning to use the latch manager callable services
Before using the latch manager to serialize resources for your application, you
should perform the following tasks:

Task Reference

1. Determine how the application is to serialize
resources using the latch manager services:

a. Identify the resources that your
application needs to serialize.

b. Assign latches to those resources in
such a way that contention for
those resources is minimized.

Determine the latch attributes to use for each
latch set and when the attribute needs to be
changed.

Determine if any latch deadlock detections
should be specified for each latch set and
what level the detection is.

“Creating a latch set (ISGLCRT and
ISGLCR64 services)” on page
79“Specifying a latch's identity or
usage” on page 80

2. Include or copy the appropriate latch
manager interface definition file (IDF) into
programs that invoke the latch manager
services.

“Including a latch manager
interface definition file (IDF)” on
page 75

74 z/OS V2R2 MVS Authorized Assembler Services Guide

Task Reference

3. Linkedit a linkage assist routine into each
module that calls the latch manager services
(optional).

“Loading the linkage assist
routines”

4. Provide recovery for the latch manager.
“Providing recovery for the latch
manager” on page 76

There are some considerations to be aware of when using enclaves for tasks that
serialize resources using the latch manager callable services. For details, see “Using
ENQ/DEQ or Latch Manager Services With Enclaves” in z/OS MVS Programming:
Workload Management Services.

Once you have completed the tasks, you can begin to use the latch manager
services described in “Guide to the latch manager callable services” on page 78.

Including a latch manager interface definition file (IDF)
The latch manager provides files, called IDFs, that define variables and values for
the parameters used with latch manager services. IDFs are available for different
languages. You can include or copy an IDF from a central library into programs
that invoke the latch manager services.

The following IDFs are available on MVS:

Table 13. Latch Manager IDFs

Language Contained in Member

Assembler H SYS1.MACLIB ISGLMASM

C/370™ SYS1.SAMPLIB ISGLMC

PL/I SYS1.SAMPLIB ISGLMPLI

IBM does not provide IDFs for COBOL, Pascal, or FORTRAN.

Loading the linkage assist routines
Your application can linkedit the latch manager linkage assist routines into each
module that calls the latch manager services. Alternatively, your application can
load the linkage assist routines to obtain their entry points, and then branch
directly to them.

The following linkage assist routines are contained in SYS1.CSSLIB:
v ISGLCRT
v ISGLCR64
v ISGLID
v ISGLID64
v ISGLOBT
v ISGLOB64
v ISGLREL
v ISGLRE64
v ISGLPRG
v ISGLPR64

Chapter 4. Serialization 75

Providing recovery for the latch manager
When you use the latch manager to serialize resources, your application must
provide recovery to handle errors that can occur when the application code or the
latch manager is in control. For performance reasons, and because SRB routines
might not want to release owned latches when errors occur, the system does not
release owned latch requests during task or address space termination. The system
does, however, release pending latch requests when the requestor's home address
space terminates. The recovery you provide can be either an ESTAE-type or a
functional recovery routine (FRR). The following example shows pseudocode for
an application that calls the latch manager services and its associated FRR.

Guideline: The procedure that follows shows the exact method for ensuring
recovery for the Latch_Obtain and Latch_Release functions.

For information about how to provide a resource manager recovery routine, see
Chapter 18, “Providing recovery,” on page 335.

Steps for providing recovery for the latch manager
About this task

Before you begin: You must use this procedure to ensure recovery for the
Latch_Obtain and Latch_Release functions. Not following this exact procedure can
risk the loss of serialization during recovery.

In the “Program mainline example” on page 77, which follows this procedure, the
mainline program performs the following tasks:

Procedure
1. Issue the SETFRR macro to establish the recovery routine.
2. Initialize:

a. Initialize the latch_token to zeroes as a guide to knowing if the latch
manager has potentially obtained the latch. The latch manager will place a
latch token value into the area specified on the latch_token parameter by
the caller of the Latch_Obtain service. However, unless the service returns,
the recovery routine does not know if the latch was definitely obtained.

Note: A nonzero latch token value does not necessarily indicate that the
caller has definitely obtained the latch, it indicates that there is a potential
for holding the latch.

b. Initialize the updating_resource flag to null. This is the bit that indicates
whether or not you definitely hold the latch and whether you started to
potentially perform incomplete updates to the serialized data.

c. Initialize the init_complete flag, which indicates whether the values set by
the application are valid and can be trusted by the recovery routine. The
init_complete flag must reside in storage that was initialized to zeroes
before the program is called or before the recovery routine is established.

3. Set the obtain_option field to ISGLOBT_SYNC (value of 1). If the latch manager
cannot immediately grant ownership of the latch, the latch manager suspends
the requestor, and returns control to the requestor when ownership of the latch
is eventually granted.

Note: The latch manager sets the latch token value prior to waiting for the
latch to become available, so the token can be nonzero in recovery cases when
the latch is not actually held.

76 z/OS V2R2 MVS Authorized Assembler Services Guide

4. Call the Latch_Obtain service to obtain a latch. At this point, if recovery is
entered due to an error in Latch_Obtain services, it is still uncertain if the latch
is held.

5. Turn the updating_resource flag “on” to indicate that the latch is now definitely
held and that the program is about to update the resource associated with the
obtained latch.

6. Update the resource.
7. Turn the updating_resource flag “off” to indicate that the resource update is

complete and the Latch_Release service is about to be called. Once this flag is
turned off, there is uncertainty about whether the latch is definitely held.

8. Set the release_option field to ISGLREL_UNCOND (value of 0). If the original
caller of Latch_Obtain no longer owns the latch, this value tells the system to
abnormally end the caller of Latch_Release. The abend is desired because the
resource was potentially updated without the proper serialization and
consequently corrupted.

9. Call the Latch_Release service to release the latch. The latch token should have
the value that was returned from the obtain services. Note that the
Latch_Release service does not reset the token to zero.

FRR tasks
In the “FRR example” on page 78, which follows this procedure, the FRR performs
the following tasks:
1. Tests the init_complete flag to determine if the updating_resource and

latch_token variables are initialized.
2. Tests the updating_resource flag. If the flag is “on”, the latch is definitely held

and the FRR can repair the resource associated with the currently obtained
latch. This is how the FRR knows if the resource is serialized.

3. Tests the latch_token to see if it is a non-zero value. If so, the FRR assumes that
the program might have obtained the latch; therefore, the FRR should call
Latch_Release with the ISGLREL_COND (value of 1) option to ensure the latch
is no longer held. ISGLREL_COND (value of 1) indicates that the latch manager
should return control to the requestor with a return code instead of issuing an
abend if the latch is not held.

Program mainline example: Use this example to help set up recovery for the
latch manager.
SETFRR /* Establish recovery routine */
latch_token=Zeroes; /* Clear latch token */
updating_resource=OFF; /* Clear resource update flag */
init_complete=ON; /* Set initialization flag */
CALL ISGLOBT(latch_set_token, /* Obtain the latch associated */

latch_number, /* with resource to be updated */
requestor_ID,
ISGLOBT_SYNC, /* Indicates the resource should */
ISGLOBT_EXCLUSIVE, /* wait for the resource to be */
ECB_address, /* available
latch_token, /* see note 1 below */
work_area, /* see note 2 below */
return_code);

updating_resource=ON; /* Indicate that the program is */
. /* about to update the resource */

< Update resource > /* Code for resource update */
.

updating_resource=OFF; /* Resource update complete */
CALL ISGLREL(latch_set_token, /* Release the latch */

Chapter 4. Serialization 77

latch_token,
ISGLREL_UNCOND, /* You want ISGLREL to abend */
work_area, /* if the latch was not owned */
return_code);

Note:

1. An ABEND can occur prior to the service returning, consequently the latch
token might be set by the service even when the latch is not obtained.

2. Zero is the only possible return code for the ISGLOBT_SYNCH option, so you
know that you definitely hold the latch.

FRR example
Example: Use this example to help set up recovery for the latch manager.
IF init_complete=ON THEN /* Is initialization complete? */
DO
IF updating_resource=ON THEN /* Resource possibly updated? */

DO /* Note: If updating_resource */
. /* bit is on, the latch is held */
.

< Repair Resource > /* Code for restoring resource */
.

END;
IF latch_token ¬= 0 THEN /* Is latch owned? (the latch */

DO /* could still be held, or the */
. /* request could still be queued)*/

ISGLREL(latch_set_token, /* Release the latch, if owned */
latch_token, /* Use conditional release option*/
ISGLREL_COND, /* since latch may not be owned */
work_area,
return_code);

.
END;

END;
< Continue recovery > /* Continue as appropriate */

Guide to the latch manager callable services
This information introduces the latch manager services, describes the information
you must provide when calling each service, and offers suggestions about when to
use each service.

The latch manager provides the following callable services for all SAA high level
languages:

Table 14. Latch Manager Services

Service Call Name Description

Latch_Create ISGLCRT Create a set of latches.

Latch_Create ISGLCR64 Create a set latches in 64-bit mode.

Latch_Identify ISGLID Identify a latch.

Latch_Identify ISGLID64 Identify a latch in 64-bit mode.

Latch_Obtain ISGLOBT Obtain exclusive or shared control of a
latch.

Latch_Obtain ISGLOB64 Obtain exclusive or shared control of a latch
in 64-bit mode.

Latch_Release ISGLREL Release ownership of an owned latch or a
pending request to obtain a latch.

78 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 14. Latch Manager Services (continued)

Service Call Name Description

Latch_Release ISGLRE64 Release ownership of an owned latch or a
pending request to obtain a latch in 64-bit
mode.

Latch_Purge ISGLPRG Purge all granted and pending requests for
a particular requestor within a specific latch
set.

Latch_Purge ISGLPR64 Purge all granted and pending requests for
a particular requestor within a specific latch
set while in 64-bit mode.

The syntax for calling the latch manager callable services in assembler language is:
CALL routine_name,(parm1,parm2,...return_code)

Note: This information references equate symbols and associated numeric values
that are defined in the latch manager interface definition files (IDFs). (IDFs define
variables and values for the parameters used with latch manager services.) Each
equate symbol is followed by its numeric equivalent; for example,
“ISGLREL_COND (value of 1)” indicates the equate symbol ISGLREL_COND and
its associated value, 1. You may specify either the equate symbol or its associated
value when coding the latch manager callable services. For more information about
latch manager IDFs, see “Including a latch manager interface definition file (IDF)”
on page 75.

Creating a latch set (ISGLCRT and ISGLCR64 services)
Applications can call the Latch_Create service to create a latch set during
initialization or whenever latches are required. The system keeps each latch set in
storage with a protection key that matches the PSW key of the caller of
Latch_Create.

The caller of Latch_Create must specify:
v The number of latches to be contained in the latch set (see “Specifying the

number of latches in a latch set” on page 80).
v A name that uniquely identifies the latch set within the current primary address

space (see “Identifying latch sets” on page 80).

If you want the latch obtain services to detect some simple latch deadlock
situations, you can specify the ISGLCRT_DEADLOCKDET1 or
ISGLCRT_DEADLOCKDET2 option on the ISGLCRT service. The following
deadlock situations can be detected:
v The work unit requests exclusive ownership of a latch that the work unit already

owns exclusively.
v The work unit requests shared ownership of a latch that the work unit already

owns exclusively.
v The work unit requests exclusive ownership of a latch for which the work unit

already holds a shared ownership.

See z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG for
instructions about how to use the two deadlock detection options.

Once you create a latch set, the latch set remains in place for the life of the job or
address space. You cannot delete a latch set.

Chapter 4. Serialization 79

Specifying the number of latches in a latch set
The number of latches that you include in each latch set depends on the number of
latches that your application requires and the number of latch sets you decide to
create. For example, if you estimate that your application will require 100 latches,
you could create a single latch set that contains all the required latches, two latch
sets that contain 50 latches each, and so on. You should create your latch sets and
assign latches to resources so as to minimize contention for those resources.

If you find that your application requires more latches after you have created one
or more latch sets, you must create an additional latch set to add the latches; you
cannot add latches to an existing latch set.

If you need to associate latches with an extremely large number of resources, you
can create a large latch set and use a hashing routine to associate the resources
with latches. You may want to use this method if you have resources that can
dynamically change, such as data sets, programs, or address spaces.

The amount of storage consumed by a latch set in the latch set creator's address
space varies depending on the z/OS release level, the highest number of
concurrent outstanding latch obtains, and the latch set create options. The
following values are approximate for z/OS V1R9 and for planning purposes only:
v Each latch set is 128 bytes plus 32 bytes per latch and 110 bytes per outstanding

latch obtain request. Additional working storage is used to enhance performance
when the system uses the default latch set create option (that is, when the
ISGLCRT_LOWSTGUSAGE create option is not specified). The amount of
additional working storage used by each latch set varies with the number of
configured processors.

v If the ISGLCRT_LOWSTGUSAGE create option is used instead of the default
option, less working storage is consumed at the expense of performance.
Consider using the ISGLCRT_LOWSTGUSAGE option and fewer latches when
the latch set creator's address space is constrained by private storage.

Identifying latch sets
When calling Latch_Create, your application must specify a name for the latch set
to be created. The latch set name uniquely identifies the latch set within the
current primary address space. If you specify a latch set name that already exists
in the current primary address space, the Latch_Create service sets the return code
to indicate that the latch set name already exists, and provides the latch set token
for the existing latch set.

IBM recommends that you use a standard naming convention for the latch set
name. To avoid using the names IBM uses for its products, do not begin the latch
set name with the character string "SYS." Also, ensure that the latch set name will
be readable when it is listed in output from the DISPLAY GRS command and
interactive problem control system (IPCS). Use of national characters ('@', '$', '#') is
discouraged because those characters display differently on different national code
pages. For more information about displaying latch information with DISPLAY
GRS, see z/OS MVS System Commands. For more information about using IPCS to
display latch contention information and statistics, see z/OS MVS IPCS Commands.

Specifying a latch's identity or usage
The resource manager of the application can call the ISGLID and ISGLID64 service
to identify how an individual latch is being used at any point in time. The ISGLID
and ISGLID64 service provide a latch set creator with the ability to attach a latch
identity array (in ISGLMASM or ISGLMC) to the latch set. By using a LIDArray,

80 z/OS V2R2 MVS Authorized Assembler Services Guide

individual latch usage attributes including a description and thresholds can be
identified. The latch attributes are defined by the latch owner. Depending on the
dynamic nature of each latch, the latches usage attributes might never change and
are assigned once or are initiated to not in use, changed after obtaining the latch,
and reset to not in use before releasing the latch. The effect on performance should
always be evaluated when using dynamic latch attributes. Ensure that LIDArray is
in the primary space.

After the LIDArray has been attached to the latch set, it cannot be deleted.
However the Latch Identity Pointer Array can be replaced by calling the service
again and specifying a new array. To change the Latch identity for a particular
latch, allocate a new latch identity block, fill it out, and update the corresponding
array entry. Then the program is free to delete the previous latch identity block.

The Latch identity provides attributes that are related to the current usage of a
given latch. The attribute includes threshold values and a printable description of
the usage of the latch. The description is displayed on the D
GRS,ANALYZE,LATCH command to provide the meaning of a specific latch usage.
The thresholds are used by the system to determine when contention or hold times
are abnormal. Non-zero threshold values should be carefully planned as users of
the D GRS,ANALYZE,LATCH command may not see latches reported as in
contention until the specified latch threshold values have been exceeded.

The identity can also be used to find more detailed component information about
the latches usage. Any displayable text can be used. See z/OS MVS Diagnosis:
Reference for how other components have provide diagnosis information for the
latches.

See the following example for how to specify the thresholds and printable string.
LIDHOLDTHRESHOLD DS F

The time in seconds that is not normal for this latch to be held. With this field, a
value of X'00000000' is deemed to mean "take the default". This allows users to not
have to specify the default value of X'FFFFFFFF' in every entry. The default value
indicates that no matter how long this latch is held, it should not be treated as an
exception. An example usage of this field would be for an application to issue a
message if it were to find a latch held for a time period longer than that specified
here, even if no contention exists.
LIDCONTTHRESHOLD DS F

The time in seconds that is not normal for this latch to be in contention. For
example, when D GRS,ANALYZE,LATCH,BLOCKER and D
GRS,ANALYZE,LATCH,WAITER process this element, it will be ignored unless the
current longest waiter’s wait time exceeds this threshold. A value greater than
X'1D55600' (one year) will be treated by these commands as an indication to never
display this latch.
LIDPRINTABLESTRING@ DS AD

Address of printable (EBCDIC) string
LIDPRINTABLESTRINGLENGTH DS H

Length of printable (EBCDIC) string

Chapter 4. Serialization 81

For more information about how to use the ISGLID service, see the ISGLID and
the ISGLID64 topics in z/OS MVS Programming: Authorized Assembler Services
Reference EDT-IXG.

Obtaining a latch (ISGLOBT and ISGLOB64 services)
Once your application creates one or more latch sets, requestors can call the
Latch_Obtain service to obtain latches for exclusive or shared access to resources.
Requestors must call Latch_Obtain from the same primary address space from
which the Latch_Create service was called to create the associated latch set.

When a requestor calls Latch_Obtain, the latch manager does one of the following:
v If the latch is available, grants ownership to the requestor immediately
v If the latch is not immediately available, performs an action specified by the

requestor (see “Specifying an obtain option” for descriptions of the various
actions).

In cases where the latch manager finds contention for a requested latch, the
Latch_Obtain service performs more slowly than in cases where latch manager can
grant ownership of the latch to the requestor immediately.

Specifying the number of a requested latch
When your application creates a latch set that contains the latch you wish to
obtain, the latch manager assigns a number to each latch in the latch set. Callers of
the Latch_Obtain service must specify this number when requesting ownership of
a specific latch.

The system numbers the latches starting from zero. The requestor specifies the
requested latch on the latch_number parameter on the call to Latch_Obtain. The
highest numbered latch is the total number of latches in the latch set minus one.

Specifying an obtain option
When a requestor calls the Latch_Obtain service to request ownership of a latch,
the latch manager cannot grant control of the latch immediately if contention exists
because either:
v Exclusive ownership of the latch was requested (Latch_Obtain was called with an

access option of ISGLOBT_EXCLUSIVE, value of 0), and an exclusive or shared
request (either owned or pending) already exists for the latch

v Shared ownership of the latch was requested, (Latch_Obtain was called with an
access option of ISGLOBT_SHARED, value of 1), and an exclusive request
(either owned or pending) already exists for the latch.

When either situation occurs, the value specified on the obtain_option parameter
indicates how the latch manager is to handle the request, which is one of the
following:
v ISGLOBT_SYNC (value of 0): Queue the request and suspend the requestor;

when the latch manager eventually grants ownership of the latch to the
requestor, return control to the requestor

v ISGLOBT_COND (value of 1): Do not queue the request; return control to the
requestor

v ISGLOBT_ASYNC_ECB (value of 2): Queue the request and return control to
the requestor; post an ECB when the latch manager eventually grants ownership
of the latch to the requestor.

82 z/OS V2R2 MVS Authorized Assembler Services Guide

Summary of results of calls to Latch_Obtain
The following table summarizes the results of calls to the Latch_Obtain service:

Table 15. Summary of Possible Results of Calls to Latch_Obtain
Situation Obtain Option Access Option Resulting Actions for

Caller of Latch_Obtain
Outcome of Request to Obtain Latch

Latch is not owned Any Any Return control to caller Ownership granted immediately; if
obtain option ISGLOBT_ASYNC_ECB
(value of 2) is specified, ECB is not
posted

Only shared requestors
own latch

Any ISGLOBT_SHARED
(value of 1)

Return control to caller Ownership granted immediately; if
obtain option ISGLOBT_ASYNC_ECB
(value of 2) is specified, ECB is not
posted

Only shared requestors
own latch

ISGLOBT_SYNC (value
of 0)

ISGLOBT_EXCLUSIVE
(value of 0)

Suspend caller Request queued, ownership granted
when latch available

Only shared requestors
own latch

ISGLOBT_COND (value
of 1)

ISGLOBT_EXCLUSIVE
(value of 0)

Return control to caller Request not queued

Only shared requestors
own latch

ISGLOBT_ASYNC_ECB
(value of 2)

ISGLOBT_EXCLUSIVE
(value of 0)

Return control to caller Request queued, ECB posted when
ownership granted

An exclusive requestor
owns or is waiting for
the latch

ISGLOBT_SYNC (value
of 0)

Any Suspend caller Request queued, ownership granted
when latch available

An exclusive requestor
owns or is waiting for
the latch

ISGLOBT_COND (value
of 1)

Any Return control to caller Request not queued

An exclusive requestor
owns or is waiting for
the latch

ISGLOBT_ASYNC_ECB
(value of 2)

Any Return control to caller Request queued, ECB posted when
ownership granted

Releasing a latch (ISGLREL and ISGRE64 services)
Requestors can call the Latch_Release service to release an owned latch or a
pending request to obtain a latch. It is important to release latches when they are
no longer needed so other requestors can obtain those latches.

When processing a Latch_Release request, the latch manager runs more slowly if
contention for the latch exists at the time of the call to Latch_Release. To allow the
latch manager to release latches most efficiently, you should design your
application to minimize contention for resources.

It is possible that a requestor might end (either normally or abnormally) without
releasing an owned latch or a pending request to obtain a latch. To make such a
latch available, code in your application's recovery can call the Latch_Release
service. Your application's recovery can also call the Latch_Purge service to purge
all granted and pending requests for a particular requestor within a specific latch
set. See “Providing recovery for the latch manager” on page 76 for additional
information.

Specifying a release option
When calling Latch_Release, the requestor specifies the latch token that was
returned on the previous Latch_Obtain call. The latch token identifies the specific
request to be released. On the call to Latch_Release, the requestor also specifies a
release option, which tells the latch manager to do one of the following if the latch
manager did not grant ownership of the latch to the caller of Latch_Obtain:
v ISGLREL_UNCOND (value of 0): Abnormally end the caller of Latch_Release.
v ISGLREL_COND (value of 1): Return control to the caller with a return code;

the remaining actions depend on the obtain_option specified on the original call
to the Latch_Obtain service.

Chapter 4. Serialization 83

“Summary of results of calls to Latch_Release” describes the results of calls to
Latch_Release.

Summary of results of calls to Latch_Release
The following table summarizes the outcomes from calls to the Latch_Release
service:

Situation Release Option Resulting Actions for
Caller of Latch_Release

Outcome of Request to
be Released

Latch is owned Any Return control to caller Request released, new
owner possible

Requestor suspended ISGLREL_UNCOND
(value of 0)

Abend caller Request remains queued

Requestor suspended ISGLREL_COND (value
of 1)

Return control to caller Request remains queued

Requestor is waiting on
an ECB

ISGLREL_UNCOND
(value of 0)

Abend caller Request remains queued

Requestor is waiting on
an ECB

ISGLREL_COND (value
of 1)

Return control to caller Request released

Request not found ISGLREL_UNCOND
(value of 0)

Abend caller No action on the latch

Request not found ISGLREL_COND (value
of 1)

Return control to caller No action on the latch

Purging one or more latches (ISGLPRG and ISGLPR64
services)

Your application's resource manager can call the Latch_Purge service to purge all
granted and pending requests for a particular requestor within a specific latch set.
Latch_Purge is particularly useful when a task or address space is terminating, and
you want to release latches that were obtained by a terminating task or programs
that are running in a terminating address space. For information about how to call
Latch_Purge, see “Providing recovery for the latch manager” on page 76.

Purging one or more latches in a group of latch sets for a
group of requestors (ISGLPBA and ISGLPB64 services)

Your application's resource manager can call the Latch_Purge_by_Address_Space
service to purge all granted and pending requests for a group of requestors within
a group of latch sets. Latch_Purge_by_Address_Space is particularly useful when a
task or address space is termi- nating, and you want to release latches that were
obtained by a terminating task or programs that are running in a terminating
address space.

To effectively use this service the latch_set_names and your requestor_IDs should
be defined such that they have a common portion and a unique portion. Groups of
latch sets can then be formed by masking off the unique portion of the
latch_set_name and groups of latch requests in a latch set can then be formed by
masking off the unique portion of the requestor_ID. This technique is very useful
when keeping track of the unique portion of the requestor_ID might be difficult or
expensive. A single purge request to can then handle multiple latch sets and
multiple requests in a latch set. Recovery routines should call
Latch_Purge_by_Address_Space when one or more errors prevent requestors from
releasing latches.

84 z/OS V2R2 MVS Authorized Assembler Services Guide

Purging groups of latch sets
To better understand how latch sets names and requestor IDs might be grouped,
look at the following example. Suppose that you have created three latch sets in an
address space with the following names:
LATCHSET1 DC CL48’EXAMPLE.ONE_LATCH_SET_1’
LATCHSET2 DC CL48’EXAMPLE.ONE_LATCH_SET_2’
LATCHSET3 DC CL48’EXAMPLE.ONE_LATCH_SET_3’

There are multiple tasks doing spaced-switched program calls (PCs) into this
address space which will be obtaining and releasing latches from these latch sets.
For a requestor_ID, the following is used:
MVC REQ_IDH,PSAAOLD-PSA /* use home ASCB address and */
MVC REQ_IDL,PSATOLD-PSA /* TCB address as requestor ID */

The first word of the requestor_ID contains the ASCB address of the home address
space and the second word is the address of the TCB. For each address space, that
has tasks using the latch sets, an end-of-memory resource manager is set up. If you
are also using SRBs that would obtain and release latches you could use a similar
scheme for the requestor IDs. For instance, the first word could be the ASCB and
the second word could be the address of some control block in common (so that
the address would be unique and different from the TCB address used by the
non-SRB requestors). This is especially useful when the unique portion of the
requestor_ID may not be readily determinable by the latch purge requestor.

When one of these address spaces terminates it may still hold one or more of the
latches. When the resource manager gets control (it will be running in the master
address space), it PCs into our address space to issue the ISGLPBA service. The
following example sets up the parameters for this service:

USING RMPL,R4
MVC REQ_IDH,RMPLASCB /* use the terminating ASCB addr */
MVC REQ_IDL,ZEROS /* rest of req_id should be zero */

The requestor_ID mask would then be:
REQID_MK DC 4X’FF’ /* match terminating ASCB */

XL4’0’ /* mask off TCB address - */
* /* purge latches for */
* /* for all tasks */

The latch set name would be the common portion followed by zeros for the unique
part:

LSNME DC CL22’EXAMPLE.ONE_LATCH_SET_’ /* common part */
DC XL26’0’ /* unique part */

And the mask would be:
LSNME_MK DC 22X’FF’ /* common part */

DC XL26’0’ /* unique part */

And the call to the service will be:
CALL ISGLPBA,(LS_TOKEN,REQ_ID,REQID_MK, X

LSNME,LSNME_MK,RETCD),MF=(E,PBYA_DPL)

Note that LS_TOKEN should be set to zero for the latch_set_name and
latch_set_name_mask to be used.

LS_TOKEN DC XL8’0’ /* use latch set name and */
* /* latch set name mask */

Chapter 4. Serialization 85

For each latch set in the primary address space, the latch_set_name will be
logically ANDed with the latch_set_name_mask:

latch_set_name ’EXAMPLE.ONE_LATCH_SET_1_..................’

CECDDDC7DDC6DCECC6ECE6F4444444444444444444444444
57147355655D31338D253D10000000000000000000000000

AND
latch_set_name_mask FFFFFFFFFFFFFFFFFFFFFF00000000000000000000000000

FFFFFFFFFFFFFFFFFFFFFF00000000000000000000000000

result: ’EXAMPLE.ONE_LATCH_SET_..........................’
CECDDDC7DDC6DCECC6ECE600000000000000000000000000
57147355655D31338D253D00000000000000000000000000

When the result is compared to the latch_set_name operand, LSNME there is a
match and the service will try to purge latches in this latch set.

Similarly, for the requestor ID, suppose a requestor in the terminating address
space has obtained a latch with the following requestor ID:

ASCB TCB

00FA7880008FD8E0

The service looks at all the requests in this latch set by ANDing the requestor ID
with the requestor ID mask and comparing it to the requestor ID operand:

requestor_ID: 00FA7880008FD8E0
requestor_ID_mask: FFFFFFFF00000000

result: 00FA788000000000

When the result is compared, to the requestor ID operand, there is a match and the
latch request will be purged.

86 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 5. Reporting system characteristics

This information describes the following ways to report system characteristics:
v Using ISGQUERY and GQSCAN to obtain resource usage reports
v Using SRM to obtain subsystem measurement reports
v Using IEAMRMF3 to obtain information about the dispatchability of address

spaces
v Using an installation-written component trace to obtain information about

component events.

ISGQUERY is the IBM recommended replacement for the GQSCAN service.

Collecting information about resources and their requestors
(ISGQUERY and GQSCAN macros)

Global resource serialization enables an installation to share symbolically named
resources. Programs issue the ISGENQ, ENQ and RESERVE macros to request
access to resources; global resource serialization adds information about each
requestor to the appropriate resource queue. The only way you can extract
information from the resource queues is by using the ISGQUERY or GQSCAN
macro. See z/OS MVS Planning: Global Resource Serialization for information about
how global resource serialization functions.

Using ISGQUERY and GQSCAN, you can inquire about a particular scope of
resources (such as STEP, SYSTEM, or SYSTEMS), a specific resource by name, a
specific system's resources, a specific address space's resources, or resources
requested through the RESERVE macro. The system collects the information you
request from the resource queues and consolidates that information before
returning it. The authorized calls return a “snapshot” of the outstanding global
resource serialization requests. The system serializes the resource queue so it does
not change while the system gathers the information. (Authorized calls are those
that specify either LOCAL or GLOBAL on the SCOPE parameter.) The information
returned by unauthorized calls, which do not perform serialization, might be
inconsistent because of changes in the resource queue that can occur while the
system collects the information. (Unauthorized calls are those that specify either
STEP, SYSTEM, SYSTEMS, or ALL on the SCOPE parameter.)

Using ISGQUERY the system returns information you request about the status of
each resource identified to global resource serialization, which includes information
about the tasks that have requested the resource. ISGQUERY fully supports 64-bit
callers and as of z/OS V1R6 is the IBM recommended replacement for the
GQSCAN service. Use the ISGQUERY service to inquire about:
v A particular scope of resources (such as STEP, SYSTEM, or SYSTEMS).
v A specific resource by name.
v A specific system or systems resource.
v A specific address space resource.
v Resources that are requested through the RESERVE macro.
v Requests that specified Userdata.

© Copyright IBM Corp. 1988, 2016 87

The system collects the information you request from the resource queues and
consolidates that information before returning it. The ISGQUERY service returns
the following types of global resource serialization information:
v REQINFO=RNLSEARCH: To determine if a given resource name is in the

current Resource Name Lists (RNL).
v REQINFO=QSCAN: To obtain information on resources and requesters of

outstanding ENQ requests.
v REQINFO=ENQSTATS: To obtain information related to ENQ counts.
v REQINFO=LATCHECA: To obtain enhanced contention analysis data for latch

waiters that might indicate contention issues.
v REQINFO=USAGESTATS: To obtain information for address space level

contention information related to ENQs (all scopes) and latches (all latch sets).

On contrast, using the GQSCAN macro the system returns the information you
request in an area whose location and size you specify using the AREA parameter.
The size of the area, the scope of the resource, and whether you code the TOKEN
parameter determine the information you receive from GQSCAN. Use the TOKEN
parameter when you design your program to issue repeated calls to GQSCAN for
the same request. For example, if you request information about a resource that is
shared across systems, the amount of information might be more than will fit in
the area that you provide. Using the TOKEN parameter allows you to issue
subsequent calls to receive additional information about that resource.

How GQSCAN returns resource information
GQSCAN returns the information in the form of resource information blocks (RIB)
and resource information block extensions (RIBE), as shown below. For the
description of RIB and the RIBE, see z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/).

In the RIB, the following fields contain information on RIBEs:
v RIBTRIBE contains the total number of RIBEs associated with this RIB
v RIBNRIBE contains the total number of RIBEs associated with this RIB that

GQSCAN could fit into the area specified on the AREA parameter.

RIB A Resource Information block (RIB) describes a resource

RIB extension (RIBE) describes resource requestor
RIBE A1

RIBE A2

RIBE A3

RIBE B1

RIB B

RIBE B2

88 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

v RIBEDEVN contains a 4-digit EBCDIC device number for RESERVEs issued on
the system. For RESERVEs issued on other systems, RIBEDEVN contains zero.

If the value in RIBNRIBE is less than the value in RIBTRIBE, you may need to
specify a larger area with the AREA parameter.

The number of RIBs and RIBEs you receive for a particular resource depends on
the size of the area you provide, and the scope and token values you specify on
the GQSCAN macro.

How area size determines the information GQSCAN returns
The size of the area you provide must be large enough to hold one RIB and at
least one of its associated RIBEs; otherwise, you might lose information about
resource requestors, or you might have to call GQSCAN repeatedly to receive all of
the information you requested. To determine whether you have received all RIBEs
for a particular RIB, check the values in the RIBTRIBE and RIBNRIBE fields. To
determine whether you have received all of the information on the resource queue,
check the return code from GQSCAN.

IBM recommends that you use a minimum area size of 1024 bytes.

The information that GQSCAN returns in the area also depends on what values
you specify for the SCOPE and TOKEN parameters.

How scope and token values determine the information GQSCAN
returns
Table 16 and Table 17 on page 91 summarize the possible values and the
information returned for a GQSCAN request.

Table 16. GQSCAN Results with a Scope of STEP, SYSTEM, SYSTEMS, or ALL

GQSCAN
Invocation

TOKEN Parameter
Coded?

Information Returned

Initial call No At least the first RIB that represents the first
requestor on the resource queue, and as many of
that RIB's associated RIBEs as will fit. Any RIBEs
that do not fit are not returned to the caller.

If all of the RIBEs fit, GQSCAN returns the next
RIB on the resource queue, as long as the
remaining area is large enough to hold that RIB
and at least one of its RIBEs.

Initial call Yes; value is zero At least the first RIB that represents the first
requestor on the resource queue, and as many of
that RIB's associated RIBEs as will fit. Any RIBEs
that do not fit are not returned to the caller.

If all of the RIBEs fit, GQSCAN returns the next
RIB on the resource queue, as long as the
remaining area is large enough to hold that RIB
and all of its RIBEs.

Chapter 5. Reporting system characteristics 89

Table 16. GQSCAN Results with a Scope of STEP, SYSTEM, SYSTEMS, or
ALL (continued)

GQSCAN
Invocation

TOKEN Parameter
Coded?

Information Returned

Subsequent call No At least the first RIB that represents the first
requestor on the resource queue, and as many of
that RIB's associated RIBEs as will fit. Any RIBEs
that do not fit are not returned to the caller.

If all of the RIBEs fit, GQSCAN returns the next
RIB on the resource queue, as long as the
remaining area is large enough to hold that RIB
and at least one of its RIBEs.

Subsequent call Yes; value is the
token value
returned by
GQSCAN on the
preceding call

At least the next RIB on the resource queue, with
as many of that RIB's associated RIBEs as will
fit. Any RIBEs that do not fit are not returned to
the caller.

If all of the RIBEs fit, GQSCAN returns the next
RIB on the resource queue, as long as the
remaining area is large enough to hold that RIB
and all of its RIBEs.

The example in Figure 9 shows the area contents for three requests. For each
request, the caller specified the TOKEN parameter and one of the following for the
scope value: STEP, SYSTEM, SYSTEMS, or ALL. Assume that the resource queue
contains information about four resources: A, which has three requestors; B, which
has six; C, which has two; and D, which has one.

Note that, because the specified area is not large enough, the caller cannot receive
all of the RIBEs associated with resource B, even though the caller coded the
TOKEN parameter. To receive all of those RIBEs, the caller has to specify a larger
area and reissue the GQSCAN request. Authorized callers (those who can specify
SCOPE=LOCAL or SCOPE=GLOBAL) do not need to alter the size of the area they
provide, as long as they specify the TOKEN parameter; they can receive additional
RIBEs on subsequent calls to GQSCAN.

First return Second return Third return

3 RIBEs total
3 here

6 RIBEs total
5 here

2 RIBEs total
2 here

1 RIBEs total
1 here

RIBE B1 RIBE C1

RIBE C2

RIBE D1

RIB D

RIBE A1

RIBE A2

RIBE A3

RIB B RIB CRIB A

RIBE B2

RIBE B3

RIBE B4

RIBE B5

Figure 9. Work Area Contents for GQSCAN with a Scope of STEP, SYSTEM, SYSTEMS, or
ALL

90 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 17. GQSCAN Results with a Scope of LOCAL or GLOBAL

GQSCAN
Invocation

TOKEN Parameter
Coded?

Information Returned

Initial call No At least the first RIB that represents the first
requestor on the resource queue, and as many of
that RIB's associated RIBEs as will fit. Any RIBEs
that do not fit are not returned to the caller.

If all of the RIBEs fit, GQSCAN returns the next
RIB on the resource queue, as long as the
remaining area is large enough to hold that RIB
and at least one of its RIBEs.

Initial call Yes; value is zero At least the first RIB that represents the first
requestor on the resource queue, and as many of
that RIB's associated RIBEs as will fit. Any RIBEs
that do not fit are not returned unless you issue
GQSCAN again, with the TOKEN parameter
equal to the value that GQSCAN returns on this
call.

If all of the RIBEs fit, GQSCAN returns the next
RIB on the resource queue, as long as the
remaining area is large enough to hold that RIB
and at least one of its RIBEs.

Subsequent call No At least the first RIB that represents the first
requestor on the resource queue, and as many of
that RIB's associated RIBEs as will fit. Any RIBEs
that do not fit are not returned to the caller.

If all of the RIBEs fit, GQSCAN returns the next
RIB on the resource queue, as long as the
remaining area is large enough to hold that RIB
and at least one of its RIBEs.

Subsequent call Yes; value is the
token value
returned by
GQSCAN on the
preceding call

If GQSCAN was unable to return all of the
RIBEs for the last RIB returned on the preceding
call, the information returned is that last RIB and
its remaining RIBEs, plus any additional RIBs
and their associated RIBEs as will fit.

Otherwise, GQSCAN returns at least the next
RIB on the resource queue and as many of that
RIB's associated RIBEs as will fit.

The example in Figure 10 on page 92 shows the area contents for three requests.
For each request, the caller specified the TOKEN parameter and one of the
following for the scope value: LOCAL or GLOBAL.

Chapter 5. Reporting system characteristics 91

When scanning the information returned, you must use the size of the fixed
portion of the RIB and the RIBE that is returned in register 0. The size of the fixed
portion of the RIB (RIBLEN) is in the high-order half of register 0, and the size of
the RIBE (RIBELEN) is in the low-order half.

The first RIB starts at the beginning of the workarea you specify on the AREA
parameter. To find the first RIBE, add the value of RIBLEN and the variable
portion of RIB (as found in the RIBVLEN field of the RIB) to the address of the
workarea. To find the second RIBE, add the value of RIBELEN to the address of
the first RIBE.

To find the second RIB, add the following to the location of the first RIB:
RIBLEN + RIBVLEN + (the number of RIBEs x RIBELEN)

How global resource serialization determines the scope of an
ENQ or RESERVE request

Global resource serialization might change the scope of an ISGENQ, ENQ or
RESERVE request that was issued with a SCOPE of SYSTEM or SYSTEMS (unless
the request specified RNL=NO).

If an ENQ is issued with a scope of SYSTEM, and matches an entry in the SYSTEM
inclusion RNL but does not match an entry in the SYSTEMS exclusion RNL, then
global resource serialization changes the scope of the request from SYSTEM to
SYSTEMS (and processes the resource as a global resource). A GQSCAN with
SCOPE=SYSTEM or SCOPE=LOCAL will not find a match on such a request.

If an ENQ or RESERVE is issued with a scope of SYSTEMS, and either it matches
an entry in the SYSTEMS exclusion RNL, or the system is running with
GRSRNL=EXCLUDE, then GRS changes the scope of the request from SYSTEMS to
SYSTEM (and processes the resource as a local resource). A GQSCAN with
SCOPE=SYSTEMS or SCOPE=GLOBAL will not find a match on such a request.

First return Second return Third return

3 RIBEs total
3 here

3 RIBEs total
3 here

6 RIBEs total
3 here

2 RIBEs total
2 here

1 RIBE total
1 here

RIB DRIB A

RIBE A2

RIBE A1

RIBE A3

RIB B

RIB B

RIBE B6

RIB C

RIBE B2

RIBE B3

RIBE B1 RIBE C1

RIBE C2

RIBE B5

RIBE B4 RIBE D1

Figure 10. Work Area Contents for GQSCAN with a Scope of LOCAL or GLOBAL

92 z/OS V2R2 MVS Authorized Assembler Services Guide

When issuing a GQSCAN for a resource whose scope might have been changed,
you might find it desirable to specify SCOPE=ALL in order to match requests
whether or not they have been changed.

Using the SRM reporting interface to measure subsystem activity
The reporting interface allows an interactive subsystem to pass transaction
performance data to the system resources manager (SRM). The data collected by
the SRM can be reported through the RMF™ workload activity report or the
transaction activity report. The Resource Measurement Facility (RMF) program
product must be installed to obtain these reports. The data is reported according to
the subsystem identifiers (subsystem name, transaction name, transaction class,
accounting information, and user ID).

The reporting interface is necessary because, except for TSO/E, the SRM does not
normally recognize the individual transactions of an interactive subsystem. For
example, the SRM considers a subsystem that consists of an address space created
by a START command to be a single long transaction, and the RMF workload
activity report indicates the total service for the address space but does not
indicate the average transaction response time. However, when a subsystem uses
the interface and the subsystem is specified in the installation control specification,
the RMF workload activity report provides the average transaction response time.

The reporting interface consists of a SYSEVENT macro using a mnemonic operand
of TRAXRPT, TRAXFRPT, or TRAXERPT, which the subsystem must issue at the
completion of each transaction. Issuing the macro allows the subsystem to pass the
transaction start time or elapsed time and, optionally, its resource utilization. The
SRM does not use data collected through the reporting interface to dynamically
adjust resource distribution to subsystems. However, the installation can review the
RMF reports to determine which, if any, SRM parameters need to be changed.

Obtaining dispatchability data about address spaces (IEAMRMF3
macro)

The IEAMRMF3 macro provides the following information about address spaces:
v How many address spaces are currently running on a processor
v Whether a specific address space is running on a processor
v How many address spaces are dispatchable, but not currently running on a

processor.

For information about dispatchability of enclaves, use the IWMRQRY macro. For
information about how to use IWMRQRY, see z/OS MVS Programming: Workload
Management Services.

Before invoking IEAMRMF3, your program must obtain storage in which the
system returns the dispatchability data. The returned information is an array of
elements, each of which represents an address space; the array is mapped by the
IHADSD mapping macro. For each potential address space in the system, your
program can check two bits in the element to determine whether the address
space:
v Is running on a processor
v Is dispatchable, but not actually running on a processor.

Chapter 5. Reporting system characteristics 93

An address space can have both bits set to one. For example, both bits are set to
one for a multitasking address space where at least one task is running on a
processor and at least one task is dispatchable, but not running on a processor.

An address space can have both bits set to zero. Both bits are set to zero for an
address space that does not exist, or an address space that is swapped out, or an
address space with no dispatchable work.

You can search through the array in one of two ways:
v Use an ASID as an index into a specific element in the array.
v Use the value in the DSDINDXF field (in the header) as the index to the first

element that represents an address space that has dispatchable work. From that
element, use the value in the DSDINDXN field to find the next element, and so
forth through the array. In this way, you look at only those elements that
represent address spaces that have dispatchable work.

See z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG for
information about coding the IEAMRMF3 macro and an example of searching
through an array for dispatchability data. For the structure of the IHADSD
mapping macro, see the DSD data area in z/OS MVS Data Areas in the z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

94 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Chapter 6. Tracing applications using component trace

The component trace service (also referred to in the remainder of this information
as simply “component trace”) provides common tracing services for components,
subsystems, or applications. Component trace allows you to capture information
about application-specific events for debugging problems in your application, or
for system analysis.

To use component trace, you create trace entries at various points in your
application to capture the data you require. You decide the location of the trace
points, what the trace entries will contain, and which trace entries, if any, to create
at any given time. You store the trace entries in trace buffers. The entries are
externalized in a dump or, by using the component trace external writer, in a trace
data set on a direct access storage device (DASD) or tape.

Benefits of using component trace: While you might choose to write your own
trace services to capture the events, the advantages of using component trace
instead are that you will:
v Have a consistent interface for all application traces.
v Avoid writing duplicate code.
v Eliminate the need to IPL or to use the SPZAP utility to turn traces on or off; the

component trace service allows you to turn traces on or off dynamically.
v Be able to merge your trace data with other application traces, IBM-supplied

component traces, and GTF user traces.
v Be able to merge different traces from the same system or from multiple systems

in a sysplex.
v Be able to use IPCS to:

– Print or view the trace
– Combine the trace data set with another trace data set
– Extract specific entries from a trace data set
– Merge formatted trace output with other formatted trace output

This information contains the following:
v “Planning an application trace” on page 96 tells what you need to do to

establish a component trace for your application, including how to request it
and how to obtain the trace records.

v “Coding macros for application traces” on page 111 contains information about
coding component trace macros that enable your application to use component
trace:
– Use the CTRACE macro to do one or more of the following:

- Define your application to component trace
- Delete your application from component trace
- Specify a parmlib member containing trace options
- Define multiple traces for your application
- Indicate that your application supports the component trace external writer.

Note:

© Copyright IBM Corp. 1988, 2016 95

1. For the full range of services provided by the CTRACE macro, see z/OS
MVS Programming: Authorized Assembler Services Reference ALE-DYN.

2. All references to the external writer in this information refer to the
component trace external writer.

– Use the ITTCTE mapping macro when creating trace entries.
– When you are using the external writer:

- Use the CTRACECS macro to manage trace buffers.
- Use the CTRACEWR macro to write your trace buffers to DASD or tape.

v “Coding a start/stop exit routine” on page 120 tells how to write a component
trace start/stop exit routine. You must have a start/stop routine to use
component trace. The start/stop routine starts, stops, or modifies tracing for the
application by controlling the creation of trace entries by the application.

v “Coding a display trace exit routine” on page 129 describes how to write a
component trace display exit routine. The display routine provides status
information about the component trace for the display trace operator command.
This routine is optional.

v “Creating trace entries” on page 133 describes how to create trace entries.

Planning an application trace
This information describes the design considerations needed to implement
component trace. Decisions are needed for the following tasks to provide
application tracing:

You Decide: Where to Look:

When to trace and whether to provide minimum options
(MINOPS) that cannot be turned off.

See “When to trace” on page
100.

Where the trace points will be and what the trace entries
will contain.

See “Where and what to
trace” on page 101.

How to create and control trace buffers that contain trace
entries.

See “Creating trace buffers”
on page 102.

Whether to provide multiple traces, which are called
sublevel traces, and how many traces your installation will
need.

See “Using multiple traces”
on page 104.

Whether to set up user-defined trace options. Component
trace allows you to categorize your trace entries and create
only those you select at a given time.

See “Setting up user-defined
options” on page 104.

Whether a display exit routine is required. See “Coding a display trace
exit routine” on page 129.

How to provide default tracing options See “Starting, stopping and
changing the trace” on page
105.

How you will externalize your data. You can:

v Request a dump

v Combine the trace with other trace output

v Use the component trace external writer (called the
external writer in the remainder of this text) to write data
directly to a data set.

See “Externalizing trace data
in a dump” on page 107, or
“Externalizing trace data
through the external writer”
on page 108.

96 z/OS V2R2 MVS Authorized Assembler Services Guide

You Decide: Where to Look:

How you will format your data once it is externalized.

v Component trace supports formatting through IPCS.

v If you do not use IPCS, you will have to format the data
yourself.

See z/OS MVS IPCS
Customization and z/OS MVS
IPCS Commands for
information on using IPCS.

Understanding the Sequence of Trace Activities: The following is a simplified
description of tracing using component trace.
v The programmer plans and sets up the user-defined control structures.
v The application defines itself to component trace.
v The operator turns the trace on, either because of a problem or because of a

message from the application.
v The system passes control to the start/stop exit routine to start tracing.
v The application starts tracing by creating trace entries and placing them in trace

buffers.
v The application or operator (or both) dumps the trace buffers.
v The operator turns off the trace.
v The system passes control to the start/stop exit routine to stop tracing, and

optionally dump the trace buffers.
v The application deletes itself from component trace.
v The system programmer formats the trace buffers through IPCS.

Using component trace involves a number of trace-related activities. The following
tables summarize the trace-related activities and how to accomplish each activity.

Trace activities

Trace-related activity: How to accomplish the activity:

Define the application to component
trace

CTRACE macro with DEFINE parameter (referred
to as CTRACE DEFINE for the remainder of this
text)

Start tracing A user-written start/stop exit routine and one of
the following:

v TRACE CT and accompanying REPLY operator
commands

v Parmlib member on a TRACE CT operator
command

v PRESET in a parmlib member on a TRACE CT
operator command

v Parmlib member on CTRACE DEFINE

Create trace table entries ITTCTE mapping macro

Obtain status information DISPLAY TRACE operator command. A
user-written display trace exit routine is optional.

Chapter 6. Tracing applications using component trace 97

Trace-related activity: How to accomplish the activity:

Change trace options A user-written start/stop exit routine and one of
the following:

v TRACE CT and accompanying REPLY operator
commands

v Parmlib member on a TRACE CT operator
command

Note: Specify MOD=YES on CTRACE DEFINE if
you want to allow options to be changed while the
trace is running.

Externalize trace data through a
dump

v SVC dump requested by an SDUMPX macro
(you can also use the SDUMP macro)

v Stand-alone dump requested by the operator

Externalize trace data through the
external writer

See “Externalizing trace data through the external
writer” on page 108.

Stop tracing A user-written start/stop exit routine and one of
the following:

v TRACE CT operator command

v Parmlib member on a TRACE CT operator
command

v PRESET in a parmlib member on a TRACE CT
operator command

v Parmlib member on CTRACE DEFINE

Format the trace entries v IPCS subcommands

– CTRACE

– COPYTRC

– MERGE

v CTRACE format table (ITTFMTB macro)

v CTRACE buffer find exit routine (used when
you place your trace buffers in a dump)

v CTRACE filter/analysis (CTRF) exit routine
(optional)

v Trace entry format model

Delete the application from
component trace

CTRACE macro with the DELETE parameter

Executable macros for component tracing

Macro Purpose or Related Activity

CTRACE v Define an application to component trace.

v Delete an application from component trace.

SDUMPX Dump the storage containing the trace buffers.

ITTFMTB Create a format table.

CTRACECS Manage trace buffers and determine when they are full.

CTRACEWR Pass full trace buffers to external writer.

98 z/OS V2R2 MVS Authorized Assembler Services Guide

Note: See z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
through z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO
for more information.

Operator commands for component tracing

Operator Command Purpose or Related Activity

TRACE CT and REPLY v Start, stop, change, or preset the application's tracing
options.

v Start and stop the external writer.

v Connect a trace to and disconnect a trace from an
external writer.

DISPLAY TRACE Obtain status information about traces and external writers.

Note: See z/OS MVS System Commands for more information.

IPCS subcommands for component tracing

IPCS Subcommand Purpose or Related Activity

CTRACE Format trace entries from a dump or from data sets written
to DASD or tape, and display the formatted trace entries.

COPYTRC Copy trace data from data sets or dumps into one
combined data set.

MERGE Merge trace data from other application traces and GTF
trace data, and display the formatted trace entries.

Note: See z/OS MVS IPCS Commands for more information.

Exit routines for component tracing

Exit Routine/Model Purpose or Related Activity

Start/stop exit routine v Start or stop tracing for the application, or change trace
options.

v Connect a trace to and disconnect a trace from an
external writer.

Display trace exit routine Provides information about the component trace for the
DISPLAY TRACE operator command.

CTRACE buffer find exit
routine

Locate trace buffers in a dump for formatting through
IPCS.

CTRACE filter/analysis
(CTRF) exit routine

Filter trace entries for formatting, or provide data for
analysis.

Format models Provide application-specific format instructions for trace
entries.

Note: See z/OS MVS IPCS Customization for exits/models related to formatting.

Chapter 6. Tracing applications using component trace 99

Data areas and mapping macros for component tracing

Data Area/Mapping Macro Purpose or Related Activity

CTSS (component trace
start/stop parameter list)
mapped by ITTCTSS

Provide information to the start/stop and display trace exit
routines.

CTE (component trace entry)
mapped by ITTCTE

Create component trace entries.

ABDPL (ABDUMP parameter
list) mapped by BLSABDPL

Provide IPCS information to the CTRACE buffer find exit
routine and the CTRF exit routine.

CTXI (component trace exit
interface) mapped by
ITTCTXI

Provide component trace information to the CTRACE
buffer find exit routine and the CTRF exit routine.

ES record (equate symbol
record) mapped by
BLSRESSY

Record locations of buffers in a dump.

STAB (component trace
sublevel table) mapped by
ITTSTAB

Define the sublevel table structure pointed to by the
component trace start/stop parameter list (CTSSSNTP
field).

TBWC (trace buffer writer
control area) mapped by
ITTTBWC

Communicate between the application and component trace
regarding the status of trace buffers. Input for the
CTRACECS and CTRACEWR macros.

Note: For more information, see z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

Parmlib members for component tracing

Parmlib Member/Procedure Purpose or Related Activity

Parmlib member CTncccxx Use with CTRACE DEFINE or the TRACE CT operator
command to establish default or recommended tracing
options. The installation is responsible for setting up these
parmlib members.

A procedure in
SYS1.PROCLIB

Start the component trace writer program (ITTTRCWR) and
define the DASD or tape destination for the trace data sets.
The installation is responsible for providing this procedure.

Note: See z/OS MVS Initialization and Tuning Reference for more information.

When to trace
You have to decide when you want tracing on and, once it is on, what entries to
trace. Tracing is on when the application is creating some or all of its trace entries.
Tracing is off when the application is not creating trace entries at any of its trace
points. The decision to trace is based on the need to:
v Capture enough data to diagnose a problem.
v Minimize lines of code spent on tracing.
v Optimize the trace path when the trace is on so that tracing causes acceptable

performance degradation.

The more trace entries you create, the greater the impact to performance.

100 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Component trace supports minops for tracing at a minimum, application-defined
default level that cannot be turned off. Some applications choose this option to
ensure that some trace data is always available to enable first failure data capture.

Another consideration is whether you can recreate a problem if one arises. If you
can recreate the problem, you might only turn tracing on after the problem occurs,
and then restart the application. If you have to capture data about a problem
before it occurs (frequently referred to as first failure data capture) you might
choose to trace all the time, or at least at a minimum level. In summary, here are
the options you should consider when deciding when to trace:
v Turn the trace on only when a problem occurs.
v Keep the trace on at all times, with the following choices:

– Trace at a minimum level. (Tracing at a minimum level means creating trace
entries at a minimum number of trace points, ignoring the remaining trace
points.) This provides some data with a minimal impact to performance.

– Define trace options to filter which trace entries will be created. By filtering
out unneeded trace entries, the trace buffers will contain a higher proportion
of useful data.

– Create all trace entries. In this mode, the application does not support any
options to filter the trace data or to turn off the trace. Use this mode if you
are tracing a small number of events, or if your first failure data capture
requirements outweigh the performance impact.

Where and what to trace
Trace points are the locations in the application's code where the system will create
trace entries. You must decide where these trace points will be. Some choices are:
v Module entry
v Module exit
v Start of a functional request
v Major checkpoints in the process of completing a request
v Completion of a functional request
v Interface to another system function
v Interface to the same application on another system
v Any unusual event, such as a detected I/O error or entry to a recovery routine.

You must also decide what information to record in the trace entries, which can
hold a variable amount of data. The following are suggestions on the types of data
you might place in the trace entries:
v Identification of the unit of work or transaction that is being serviced by the

application. This can be the ASID, JOBNAME, USERID, task control block (TCB),
service request block (SRB), or transaction identifier.

v For entries that trace the flow of control, the caller's return address.
v For entries that trace the start of a functional request, the input parameters.
v For internal checkpoints, an identification that ties this trace entry to the original

request, and information on the current status of the process.
v For unusual events, the cause of the problem and any additional data. For

example, you could record a system completion (abend) code and reason code
for entry to a recovery routine.

v On return from a service, the return code and reason code (consider having a
separate identifier for recording return codes that indicate errors).

Chapter 6. Tracing applications using component trace 101

v For trace entries being used for analysis rather than as a debugging aid,
whatever information the user of the application needs.

Creating trace buffers
You need to obtain storage for:
v The trace buffers, which contain the trace data.
v The TBWC control area, which contains the status information for a specific

buffer.
v Control information about your buffers, trace status, and user-defined options.
v An anchor point to control your information.

If you are using an external writer and want to exploit the TESTMODE parameter
of the CTRACECS macro, you must initialize the buffer state to available. Either
use the CTRACECS macro or set the TBWCCAVL bit to '1'B in the TBWC, mapped
by ITTTBWC.

Figure 16 on page 123 includes an illustration of how an application might
organize its control structures to manage the component trace buffers.

Where to locate trace buffers: You should anchor your trace buffers in an area that
the CTRACE buffer find exit routine can access when running under IPCS. The
anchor is a pointer to your control information, and should be an area of storage
addressable by your application at all times that the application is defined to
component trace. Component trace supports the location of trace buffers in private,
common, or data space storage. In z/OS V1R8 or a later release, CTRACE limits
the length of buffers that may be passed to the trace writer to
X'00000000_80000000' bytes. Substantially smaller buffers are generally
recommended. Trace entries within any buffer form a list structure. Loss of one
page when a dump is recorded or damage to a single byte can render all
remaining trace entries illegible.

When to obtain trace buffers: The application has the choice of allocating the trace
buffers at initialization time, or waiting until the trace is turned on. If you wait
until the trace is turned on, you avoid using system resources unnecessarily. Either
the application or the start/stop exit routine can obtain the needed storage.

Determining the size of your trace buffers: You determine the size of your trace
buffers based on the number of trace entries you anticipate creating, and the size
of the trace entries. You control both of these values.

You can specify the size of your application's trace buffers in the following ways:
v CTRACE DEFINE with the BUFDFLT parameter
v TRACE CT,nnnnK or TRACE CT,nnnnM operator command
v Parmlib member with BUFSIZE keyword.

If you set a default size on CTRACE DEFINE, the value can be overridden on the
TRACE CT command or in a parmlib member, provided you also specify
BUFFER=YES on CTRACE DEFINE. If you specify BUFFER=NO, which is the
default, you do not allow the buffer size to be changed. In this case, the
application might allocate too much storage when it is not needed, or allocate too
little storage and cause inadequate trace data to be captured when needed.

Changing the trace buffer size: If the application allows trace buffer size to be
changed, the application must deal with the serialization concerns associated with

102 z/OS V2R2 MVS Authorized Assembler Services Guide

the deletion of the old trace buffers in a multitasking environment. For example, if
you decide to use a new, larger buffer, you will have to copy all the data from the
old to the new buffer. You must ensure that each task writing trace entries is aware
of such things as the new buffer address (and possibly ALET) and the new buffer
size, and whether the new buffer is in private, common, or data space storage.

Using multiple buffers: You should allocate multiple trace buffers, especially if you
plan to use the external writer. In general, the external writer will asynchronously
capture a full trace buffer while the application continues processing and writing
trace entries to another trace buffer. If your application does not require trace data
to be captured asynchronously, then you might be able to use a single, wrapping
trace buffer.

Deciding what to include in the control information: You can set up a block of
storage to contain whatever control information you require to keep track of your
trace buffers. This control information can be in private, common, or data space
storage. The following are examples of the fields you might include in your control
information:

Current mode
Whether the trace is currently on or off or min.

Active options
Which tracing options are currently active. Consider using a bit mapping
where each bit represents a tracing option. Trace points in the code can check
one or more of these bits to determine whether tracing is active for this trace
point. See “Setting up user-defined options” on page 104 for further details.

External writer indication
Whether the application is connected to an external writer. If this flag is set,
the application issues the CTRACECS macro to keep track of its trace buffers,
and the CTRACEWR macro to write buffers to DASD or tape. The application
might also store the token that the start/stop exit routine passes. The
start/stop routine obtains the token from the CTSSWTKN field of the CTSS
(the parameter list passed to the routine). The application needs this token to
issue the CTRACEWR macro.

ASID or JOBNAME lists
If the application supports ASID or JOBNAME filtering, the list of ASIDs or
JOBNAMEs can be kept here. When filtering, the application can check these
lists against the ASID or JOBNAME current at the time of tracing.

Trace buffer addresses
A table, list, or queue of trace buffer addresses and lengths to track the
available trace buffers. If the buffers are in different address spaces or data
spaces, keep an access list entry token (ALET) or space token (STOKEN) with
the buffer pointer.

Trace buffer writer control (TBWC) area
A TBWC is associated with each trace buffer.

Current buffer address
Address of the buffer that is currently receiving trace entries.

Current entry address
Address of the next available slot in the current trace buffer. If your application
supports multitasking, consider using compare and swap to serialize the trace
buffer and update the pointer to the following trace entry.

Chapter 6. Tracing applications using component trace 103

Using multiple traces
Component trace allows an application to have more than one trace associated
with it. For example, if your application runs in multiple address spaces with
multiple tasks in each address space, you could define different traces to represent
each address space, and different traces to represent each task in an address space.
Applications that have complex logic, with several subtasks, or those that run in
multiple address spaces, are good candidates for multiple traces. While multiple
traces might appear to use more resources, multiple traces can actually trace more
efficiently than single traces, depending on the application.

With multiple traces, called sublevel traces, you can:
v Better control which events are to be traced.
v More easily control and change trace options.
v Capture less frequent trace events, which in single traces might be overwritten

by frequent trace events.
v Improve performance because less overhead is required to get addressability to

the trace buffers.
v Avoid special serialization of trace buffers, because each trace uses its own trace

buffers. Less serialization requires fewer instructions, again contributing to
improved performance.

v Set up unique traces with specific options for each function in your application.

For applications that run multiple traces you might want to create special trace
entries that can be used to tie the multiple traces together. IPCS supports the
merging of multiple traces.

For information about coding the CTRACE macro to set up multiple traces for
your application, see z/OS MVS Programming: Authorized Assembler Services Reference
ALE-DYN.

Setting up user-defined options
You can categorize your trace entries and control which entries your application
will create by setting up user-defined options. The operator then specifies these
options on the REPLY operator command, or the options can be in one or more
parmlib members. For example, you might have one option for trace entries that
identify unusual events, another option for trace entries that trace the flow of
control, and other options for trace entries that represent specific functions within
the application. You decide what to call these options, and you can set up flags in
your control information to correspond to each option.

To understand how to set up and use options, consider the following example:
1. Decide on five options, and name them as follows:

v ERRORS for unusual events
v FLOW for events that trace flow of control
v FUNC1 for events representing "function 1" in your program
v FUNC2 for events representing "function 2" in your program
v FUNC3 for events representing "function 3" in your program.

2. Set up flags in your control information to correspond to these options. You
might call them FLAG_ERRORS, FLAG_FLOW, FLAG_FUNC1, FLAG_FUNC2,
and FLAG_FUNC3.

104 z/OS V2R2 MVS Authorized Assembler Services Guide

3. If a problem occurs, you might decide to have the operator turn tracing on
with two of the options, ERRORS and FLOW. The operator then indicates
ERRORS and FLOW as the options on the REPLY operator command. (You can
also do this through a parmlib member.)

4. The system places the options ERRORS and FLOW into the parameter list it
passes to the start/stop exit routine.

5. The start/stop exit routine parses the options and sees that ERRORS and
FLOW were specified.

6. The start/stop exit routine turns on FLAG_ERRORS and FLAG_FLOW in the
control information.

7. The application checks the control information. Because FLAG_ERRORS and
FLAG_FLOW are both on, the application creates those trace entries that
correspond to options ERRORS and FLOW.

Starting, stopping and changing the trace
Your application can start and stop tracing with or without operator intervention.
To start tracing means to start creating the trace entries in the application's code.
To stop tracing means to stop creating trace entries, or to revert to the minimum
level of tracing. The following are the ways to start, stop and change tracing:
v Through the TRACE CT and REPLY operator commands
v Through a parmlib member:

– On CTRACE DEFINE
– On the TRACE CT operator command, with or without PRESET.

See “Using parmlib members” for more information about using parmlib members
with component trace.

To start or stop a trace, the system passes control to your start/stop exit routine.
Once the exit routine gets control, it can set a flag in the application's control
information to indicate that the application should either start or stop tracing.

When you start tracing, either through the operator or through a parmlib member
on CTRACE DEFINE, you specify an initial set of trace options. At some point,
you might need to change these trace options. If you specify MOD=YES on
CTRACE DEFINE, you allow the operator to change the trace options without
turning the trace off. If you specify MOD=NO on CTRACE DEFINE (or take the
default), the operator must turn the trace off, and then turn the trace back on with
the new options.

Using parmlib members
You can use one or more parmlib members to establish default or recommended
tracing options for your application. The installation is responsible for creating
these parmlib members and placing them in SYS1.PARMLIB. Using parmlib
members has several advantages, especially if your application has many trace
options associated with it:
v You can avoid operator intervention entirely, or minimize it.
v You can establish tracing options while the application is defining itself to

component trace (this could be at a time when operator commands are not yet
supported).

v Where operator intervention is necessary, the operator does not have to type in
the options, thus avoiding syntax and keystroke errors.

Chapter 6. Tracing applications using component trace 105

v You can define a set of tracing options for your application before the
application is started.

You can specify parmlib members in the following ways:
v On CTRACE DEFINE (can contain information about only a single trace)
v On the TRACE CT operator command (can contain information about more than

one trace).

Specifying parmlib member on CTRACE DEFINE macro: When the application
issues CTRACE DEFINE with a parmlib member, the system uses the tracing
options specified in that parmlib member. If that parmlib member contains
instructions to turn the trace on, then the system passes control to the application's
start/stop exit routine without any operator intervention. If you update the
parmlib member, this changes the tracing options used when the application
subsequently issues CTRACE DEFINE with that same parmlib member.

Specifying parmlib member on the TRACE CT operator command: The operator in
your installation can specify a parmlib member on the TRACE CT operator
command by using the PARM parameter. The operator can even set up tracing
options for your application before the application runs and defines itself to
component trace.

When the operator issues the TRACE CT command with a parmlib member, the
system uses the tracing options specified in that parmlib member, just as it would
if you specified the parmlib member on CTRACE DEFINE. However, if you
already specified a parmlib member on CTRACE DEFINE, the parmlib member
subsequently specified on TRACE CT overrides the parmlib member on CTRACE
DEFINE. This override is useful if a problem arises requiring a set of trace options
different from those originally specified.

Here is an example of how the operator might specify a parmlib member for
application ABC on the TRACE CT command, after you specified CTXABC01 on
CTRACE DEFINE:
TRACE CT,,COMP=ABC,PARM=CTXABC02

The CTXABC02 parmlib member might contain the following to change the options
that were specified in parmlib member CTXABC01:
TRACEOPTS
ON
ASID(01)
OPTIONS(’new options’)

When you are using multiple traces, a parmlib member that you specify on the
TRACE CT command can contain information about more than one head level or
sublevel trace. See “Using multiple traces” on page 104 and z/OS MVS
Programming: Authorized Assembler Services Guide for more information about
multiple traces.

Using the PRESET option: When you specify a parmlib member on the TRACE CT
command, you can use a parmlib member containing the PRESET option. This
allows the operator to set up trace options for your application before starting the
application and before the application defines itself to component trace. The
operator might do this in anticipation of a problem application. The advantage is
immediacy. The operator issues the TRACE CT command with the parmlib
member containing the PRESET option. Then, when the operator starts the

106 z/OS V2R2 MVS Authorized Assembler Services Guide

application, as soon as the application issues CTRACE DEFINE, the system
immediately uses the options in the parmlib member specified on TRACE CT.

Here is an example of how the operator might specify a parmlib member with the
PRESET option for application ABC:
TRACE CT,,COMP=ABC,PARM=CTXABC03

The CTXABC03 parmlib member might contain the following to preset the tracing
options for application ABC:
TRACEOPTS
PRESET(DEFINE)
ON
ASID(01)
OPTIONS(’PRESET options...’)

As soon as the application issues CTRACE DEFINE,NAME=ABC..., the system uses the
tracing options in parmlib member CTXABC03. The preset parmlib member overrides
the parmlib member that you specify on CTRACE DEFINE.

Externalizing trace data in a dump
You can externalize your trace data in the following types of dumps:
v SVC dump
v Summary dump
v Stand-alone dump.

You can obtain both an SVC dump and a summary dump through the SDUMPX
macro. You can obtain a stand-alone dump by asking the operator to request one
for you.

Obtaining SVC and summary dumps: To obtain SVC and summary dumps, use the
SDUMPX macro to dump the storage containing:
v The trace buffers
v Any control information needed by the CTRACE buffer find exit routine to

locate the trace data.

Note: You must specify SDATA=(SQA) on the SDUMPX macro to dump the
necessary component trace control information.

If tracing continues while the trace buffers are being dumped, the application can
take either of the following steps to ensure useful data in the dump:
v Make the trace buffers large enough so the trace data does not wrap around.
v Suspend tracing until the trace buffers are dumped.

When you use SDUMPX to request an SVC dump, you also get a summary dump
by default. Summary dumps can contain up to 4 megabytes (4MB) of data, so the
application might plan on receiving about 3.5MB of trace data. If your trace buffers
are much larger than 3.5MB, consider suppressing the summary dump and
externalizing the trace data through the SVC dump only.

Obtaining a stand-alone dump: To include the trace buffers in any stand-alone
dumps, ask the operator to dump the storage containing the trace buffers. You
must do one of the following:
v Ensure that the trace buffers and control information are in storage that will

always be dumped by the stand-alone dump program (SADMP).

Chapter 6. Tracing applications using component trace 107

v Set up the SADMP program to specifically dump the desired areas.
v Have the operator specify storage ranges on the prompt from SADMP.

See z/OS MVS Diagnosis: Tools and Service Aids for information about the
stand-alone dump program (SADMP).

Many components can locate their CTRACE buffers in a dump without the
USERDATA supplied by a CTRACE DEFINE operation. IBM advises such
components to supply a CTRACE parmlib statement during IPCS session
initialization. This allows the CTRACE subcommand to associate the name of the
component with the name of the format table supplied by the component. In turn,
this permits the component CTRACE buffers to be located and processed
regardless of whether a dump contains SDATA=(SQA) information, which is the
traditional way that the CTRACE subcommand determines the name of the format
table for a component.

Externalizing trace data through the external writer
By using the external writer, you can write application trace buffers directly to a
trace data set on DASD or tape rather than requesting a dump. While you might
still view your trace buffers by requesting a dump, the advantages of using the
external writer are:
v You do not need to code a component trace buffer find exit routine for IPCS

processing.
v Depending on the size of the trace data set, you can capture more trace data

without using valuable system resources, such as central or auxiliary storage.

The following describes tracing through component trace using an external writer.
v The programmer plans and sets up the user-defined control structures.
v The installation establishes a procedure for the external writer in SYS1.PROCLIB.
v The application defines itself to component trace with an external writer.
v The operator starts the external writer.
v The operator turns on the application's trace and connects the application to the

external writer.
v The system passes control to the start/stop exit routine to start tracing.
v The application starts tracing by creating trace entries and placing them in trace

buffers.
v The application manages trace buffers using the external writer.
v The operator turns off the application's trace; this action disconnects the

application from the external writer.
v The system passes control to the start/stop exit routine to stop tracing.
v The operator stops the external writer.
v The application deletes itself from component trace.
v A diagnostician or systems analyst formats the trace data sets through IPCS.

Using an external writer involves a number of trace-related activities. The
trace-related activities are:

Trace-related activity: How to accomplish the activity:

Define the application to component
trace allowing connection to an
external writer

CTRACE DEFINE with the WTR and WTRMODE
parameters

108 z/OS V2R2 MVS Authorized Assembler Services Guide

Trace-related activity: How to accomplish the activity:

Start an external writer An installation-written procedure in
SYS1.PROCLIB and one of the following:

v TRACE CT operator command with the
WTRSTART parameter

v On a TRACE CT operator command, a parmlib
member with PRESET and WTRSTART
parameters

v On a TRACE CT operator command, a parmlib
member with the WTRSTART parameter

v On CTRACE DEFINE, a parmlib member with
the WTRSTART parameter

Connect an external writer An installation-written procedure in
SYS1.PROCLIB and one of the following:

v TRACE CT,ON operator command and REPLY
operator command with the WTR=wtrname
parameter

v On a TRACE CT operator command, a parmlib
member with PRESET and WTR parameters

v On a TRACE CT operator command, a parmlib
member with the WTR parameter

v On CTRACE DEFINE, a parmlib member with
the WTR parameter

Manage trace buffers v CTRACECS macro

v CTRACEWR macro

v ITTTBWC mapping macro

Disconnect an external writer One of the following:

v TRACE CT,OFF operator command

v TRACE CT,ON operator command and REPLY
operator command with the
WTR=DISCONNECT parameter

v On a TRACE CT operator command, a parmlib
member with the WTR=DISCONNECT
parameter

Stop an external writer One of the following:

v TRACE CT operator command with the
WTRSTOP parameter

v On a TRACE CT operator command, a parmlib
member with the WTRSTOP parameter

Starting the external writer Starting an external writer means preparing the
external writer to receive requests and write trace buffers out to trace data sets. To
start an external writer, the operator issues the TRACE CT command with the
WTRSTART parameter. An external writer that has been started is said to be active.

To start an external writer and connect an application to it without operator
intervention, specify a CTncccxx parmlib member on the PARM parameter of
CTRACE DEFINE.

Connecting an application to the external writer: Connecting an application to an
external writer means the application can write out its trace buffers to an active
external writer. To connect to an external writer, the operator issues the TRACE CT

Chapter 6. Tracing applications using component trace 109

and REPLY operator commands. To connect an external writer without operator
intervention, you can specify the CTncccxx parmlib member on the PARM
parameter of CTRACE DEFINE. For example, the application can issue:
CTRACE DEFINE,NAME=ABCD,WTR=YES,PARM=CTXABC04

Parmlib member CTXABC04 might look like this:
TRACEOPTS
WTRSTART(CTWDASD)
ON
WTR(CTWDASD)
ASID(ASID01)
OPTIONS (’option1,option2’)

When you start and connect the component trace with an external writer, the
system passes control to your start/stop exit routine. Once the start/stop exit gets
control, it should set a flag in the application's control information to indicate that
the application should start managing its trace buffers to be passed to the external
writer.

Disconnecting an application from the external writer: Disconnecting an
application from an external writer means that the application cannot write out its
trace buffers to an active external writer. To disconnect an external writer, the
operator issues the TRACE CT and REPLY commands.

Note: Turning the application's trace off causes an automatic disconnect of that
application from the external writer. In normal processing there is no need to
disconnect an application from an external writer. Simply turning the trace off will
automatically cause a disconnect to occur.

When you disconnect the application from the external writer or stop the trace, the
system passes control to your start/stop exit routine. Once the start/stop exit gets
control, it should set a flag in the application's control information to indicate that
the application no longer needs to manage trace buffers to be passed to the
external writer.

Stopping the external writer: Stopping an external writer means any application
trace requests sent to the external writer will not be written out to trace data sets.
To stop an external writer, the operator issues the TRACE command with the
WTRSTOP parameter.

If the application supports the external writer and either dynamically changes the
buffer size or deletes buffers in a start/stop routine, then there may be a data
integrity exposure when minimum options (MINOPS) is not supported.
Component trace could possibly copy storage that is now allocated to another task
because the buffer was deleted before copying was complete. Applications that fall
into this situation could use TESTMODE=AVAIL to check the buffer's availability
before deleting it, or not change the buffer size when the external writer is active.
There is no integrity problem if MINOPS is supported and the buffer size does not
change.

If you are running under z/OS V1R8 or a later release, you may place your buffers
above the bar. Each buffer can be as long as X'FFFFFFFF_80000000' bytes.
Individual CTRACE entries remain limited to 64000 bytes in length.

110 z/OS V2R2 MVS Authorized Assembler Services Guide

Coding macros for application traces
This information describes the coding for CTRACE, CTRACECS and CTRACEWR
macros. The CTRACE macro is needed to define the application to component
trace and delete the application from component trace. CTRACECS manages trace
buffers and CTRACEWR writes the buffers to an external data set. The following is
a high level sequence of events for your application's tracing with component
trace.

Sequence of events for trace:

1. The application issues CTRACE DEFINE macro during initialization.
2. The application's start/stop routine receives control when the operator turns

the trace on.
v The routine obtains trace buffers and TBWC (Trace Buffer Writer Control)

block of storage.
v Each buffer has an associated TBWC control area to store the state of the

buffer and sequence number associated with the buffer. A unique buffer
sequence number must be maintained for every CTRACEWR macro
invocation.

v The routine initializes the TBWC for each buffer to the available state.
3. The application creates trace entries according to options.

v If component trace is active, it finds an available buffer by looping through
TBWCs, issuing the CTRACECS macro to put the buffer in the filling state if
the buffer is currently in the available state, until one is marked filling.
The CTRACECS macro serializes changing the state and sequence number in
the TBWC.

v The application fills the buffer with trace data, and issues CTRACECS macro
to put the buffer in the full state if the buffer is currently in the filling state.

v If the external writer is active, the application issues the CTRACEWR macro
to write the buffer to the external data set. Otherwise, if buffers are being
wrapped in storage, the application issues the CTRACECS macro to mark the
buffer available.

4. During SDUMP or standalone dump, dump component buffers.
5. The application provides a locate trace buffer exit for dumps.
6. The application provides a unique filter exit.
7. The IPCS CTRACE subcommand provides common functions like time stamp,

ASID, and JOBNAME filtering.
8. Each trace entry that passes all of the filters is formatted according to the

application's format table definition.

Using the CTRACE macro to define the application to
component trace

To use component trace, you must first define the application to component trace
by issuing the CTRACE macro with the DEFINE parameter (CTRACE DEFINE).
CTRACE DEFINE defines the application as being available for activities such as
starting and stopping a trace, displaying trace information, and formatting trace
data. Through parameters on CTRACE DEFINE, you specify information about the
application, such as:

Chapter 6. Tracing applications using component trace 111

v The application name (NAME parameter). The operator uses this name on the
TRACE CT command (COMP parameter). When formatting trace data with
IPCS, use this name on the IPCS CTRACE subcommand (COMP parameter). The
application name is required.

Note: Do not use names that begin with the prefix SYS. The prefix SYS is
reserved for use by IBM.

v A parmlib member name (PARM parameter). Identifying a parmlib member
establishes the initial tracing options for an application. These options can be
overridden by operator commands. This parameter is optional. (See “Using
parmlib members” on page 105 for more information.)

v A head level (HEAD parameter) and a sublevel trace name (SUB parameter).
These parameters are related to multiple traces. (See “Using multiple traces” on
page 104 for more information).

v The load module that contains the CTRACE format table (FMTTAB parameter),
which controls trace formatting in the IPCS CTRACE subcommand.

v The name of the start/stop exit routine (STARTNAM parameter). The system
gives this routine control when the operator enters a TRACE CT command or
when you specify the PARM parameter on CTRACE DEFINE.

v The name of the display trace exit routine (DISPNAM parameter). The system
gives this routine control when the operator enters a DISPLAY TRACE
command.

v A list of default, user-defined tracing options (MINOPS parameter). If you
specify MINOPS, tracing with these options will be in effect at all times and
cannot be turned off.

v An indication that the application supports an external writer (WTR and
WTRMODE parameters).

Specifying parmlib on CTRACE DEFINE: When you specify a parmlib member on
CTRACE DEFINE, the system uses the tracing options specified in that parmlib
member. If that parmlib member contains instructions to turn the trace on, then the
system passes control to the application's start/stop exit routine without operator
intervention. If you update the parmlib member, you change the tracing options
used when the application subsequently issues CTRACE DEFINE with that same
parmlib member.

Here is an example of how you might specify a parmlib member for application
ABC on CTRACE DEFINE:
CTRACE DEFINE,NAME=ABC,PARM=CTXABC01...

The parmlib member CTXABC01 might contain the following to turn tracing on for
address space 01 with specific options:
TRACEOPTS
ON
ASID(01)
OPTIONS(’original options’)

The CTXABC01 parmlib member takes the place of the following operator
commands:
TRACE CT,ON,COMP=ABC
REPLY xx,ASID=(01),OPTIONS=(’original options’),END

A parmlib member you specify on CTRACE DEFINE can contain information
about only a single trace. If you are defining multiple traces, include in each

112 z/OS V2R2 MVS Authorized Assembler Services Guide

parmlib member options that pertain only to the specific head level or sublevel
trace. The following topic explains head level and sublevel traces.

Using multiple traces: To use multiple traces, you must create a head level and
sublevel traces. A head level is a control level with sublevel traces associated with
it. Figure 11 uses an inverted tree structure to depict the relationship of a head
level and sublevel traces for application APPLABC.

Creating a head level: A head level is a control level set up to support sublevel
traces, and can itself be a trace. Create a head level by specifying HEAD=YES on
CTRACE DEFINE. If you want sublevel traces to be able to share the attributes,
options, and mode of the head level, specify both of the following:
v HEADOPTS=YES on CTRACE DEFINE when you create the head level
v LIKEHEAD=YES on CTRACE DEFINE when you create the sublevel traces.

Creating sublevel traces: Create a sublevel trace by specifying SUB=subname on
CTRACE DEFINE. Obtain separate trace buffers for each sublevel trace. You can
define sublevel traces as either:
v Independent traces with unique tracing features (LIKEHEAD=NO on CTRACE

DEFINE)
v Traces that use a head level's attributes, options and mode (LIKEHEAD=YES on

CTRACE DEFINE).

Figure 12 on page 114 lists the characteristics, options, and status associated with a
trace. If an application defines a sublevel trace to match its head level, LIKEHEAD,
any changes to the head level options and status are reflected in the sublevel trace.

Turning a sublevel trace on or off or changing its options cancels its LIKEHEAD
status. A status of LIKEHEAD simply means that the sublevel trace has the same
status and options as its head level. When a sublevel trace has its LIKEHEAD
status cancelled, subsequent changes to its head level do not affect the sublevel
trace except when the head level is turned off. When a head level trace is turned
off, sublevel traces that were defined with LIKEHEAD=YES on the CTRACE
DEFINE macro will also be turned off, regardless of their LIKEHEAD status.

APPLABC

(head level)

APPLABC
ASID(01)

(sublevel)

APPLABC
ASID(02)

(sublevel)

Figure 11. Structure of Multiple Traces for an Application

Chapter 6. Tracing applications using component trace 113

Note: When you specify attributes and characteristics on CTRACE DEFINE, these
features do not change. When you specify options and status through the TRACE
CT operator command or in a parmlib member, you can change these features
dynamically.

A sublevel trace can also serve as a head level. Specify HEAD=YES and
SUB=subname to define a sublevel that is also a head level. In this case, all of the
sublevel and head level attributes, options, and status apply to the subsequent
sublevels if they are likehead. In Figure 13 on page 115, ASID(01) is a sublevel
trace of APPLABC, and a head level for FUNCTION5 and FUNCTION7.
FUNCTION5 and FUNCTION7 use the attributes, options and status of both
ASID(01) and APPLABC.

Attributes (parameters on CTRACE macro)

v ASIDS=YES/NO

v JOBS=YES/NO

v MINOPS

v MOD=YES/NO

v BUFFER=YES/NO

v BUFMIN

v BUFMAX

v BUFDFLT

v BUFDEFIN=YES/NO

v WTR=YES/NO

Characteristics (parameters on CTRACE macro)

v STARTNAM

v FMTTAB

v HEAD=YES/NO

v LIKEHEAD=YES/NO

v MANYSUBS=YES/NO

Options (parameters on TRACE CT operator command or in a parmlib member)

v ASID

v JOBNAME

v OPTIONS

v BUFSIZE

v WTR

Status (parameters on TRACE CT operator command or in a parmlib member)

v ON

v OFF

Figure 12. Trace Features

114 z/OS V2R2 MVS Authorized Assembler Services Guide

The inverted tree structure illustrates how an application named APPLABC
supports separate traces for each user, and has multiple functions in use in the
same address space. In addition, the same function (FUNCTION5) is active in two
address spaces. A description of the steps in defining the tree structure follows:
1. During initialization, APPLABC issues CTRACE DEFINE and specifies

APPLABC as the head level (by specifying HEAD=YES and NAME=APPLABC
on CTRACE DEFINE). APPLABC also specifies HEADOPTS=YES to allow its
sublevel traces to share its attributes, options, and status.

2. The first time APPLABC gets control in address space ASID(01), APPLABC
issues CTRACE DEFINE for sublevel ASID(01), with LIKEHEAD=YES and
HEAD=YES. Now, ASID(01) is established as a sublevel trace with the same
tracing attributes, options, and status as its head level, APPLABC, and
ASID(01) is also established as a head level.

3. APPLABC issues another CTRACE DEFINE for sublevel trace FUNCTION5,
with LIKEHEAD=YES. Now FUNCTION5 is established as a sublevel trace,
and uses all the attributes, options, and status from its head level, ASID(01),
and ASID(01)'s head level, APPLABC.

4. APPLABC defines FUNCTION7 in the same way as FUNCTION5.
5. When APPLABC gets control in address space ASID(02), APPLABC issues

CTRACE DEFINE to establish itself as a head level, and again to establish
ASID(02) as a sublevel trace with the same parameters as ASID(01).

6. APPLABC establishes FUNCTION5 and FUNCTION6 as sublevel traces. Even
though FUNCTION5 is also in ASID(01), FUNCTION5 can have unique tracing
features in ASID(02) by specifying LIKEHEAD=NO (or taking the default).

Figure 14 on page 116 illustrates how you would issue CTRACE DEFINE to set up
the multiple traces for APPLABC.

APPLABC

(head level)

APPLABC
ASID(01)

(head level &
sublevel)

APPLABC
ASID(01)

FUNCTIONS
(sublevel)

APPLABC
ASID(01)

FUNCTION7
(sublevel)

APPLABC
ASID(02)

FUNCTION6
(sublevel)

APPLABC
ASID(02)

FUNCTION5
(sublevel)

APPLABC
ASID(02)

(head level &
sublevel)

Figure 13. Structure of Multiple Traces for an Application

Chapter 6. Tracing applications using component trace 115

Using the component trace external writer: To define your application to
component trace to support an external writer, issue CTRACE DEFINE with the
WTR=YES and WTRMODE parameters. The WTR=YES parameter indicates the
application supports having its trace buffers written to trace data sets on DASD or
tape. The WTRMODE parameter specifies the type of storage your application is
using for its trace buffers. The WTRMODE values are PAGEABLE, DREF, or
FIXED.

Note: IBM recommends you keep your trace buffers in pageable storage, so you
do not deplete your system's central storage. However, if your application cannot
accept page faults, you should use either disabled reference (DREF) or fixed
storage.

CTRACE DEFINE, NAME=APPLABC, X
HEAD=YES, HEADOPTS=YES...

APPLABC

FUNC5

FUNC7 FUNC6

FUNC5

APPLABC

APPLABC

ASID(01) ASID(02)

APPLABC ADDRESS SPACE

CTRACEDEFINE,NAME=APPLABC,X
SUB=ASID(01),LIKEHEAD=YES,
HEAD=YES,HEADOPTS=YES...

CTRACEDEFINE,NAME=APPLABC,X
SUB=ASID(01),FUNC5,
LIKEHEAD=YES...

CTRACEDEFINE,NAME=APPLABC,X
SUB=ASID(01),FUNC7,
LIKEHEAD=YES...

CTRACEDEFINE,NAME=APPLABC,X
SUB=ASID(02),FUNC5,
LIKEHEAD=NO...

CTRACEDEFINE,NAME=APPLABC,X
SUB=ASID(02),FUNC6,
LIKEHEAD=YES...

CTRACEDEFINE,NAME=APPLABC,X
SUB=ASID(01),LIKEHEAD=YES,
HEAD=YES,HEADOPTS=YES...

ATTACHEP=FUNC5 ATTACHEP=FUNC5

ATTACHEP=FUNC6ATTACHEP=FUNC7

X

X

X

X

X

X

Figure 14. Setting up Multiple Traces with CTRACE DEFINE

116 z/OS V2R2 MVS Authorized Assembler Services Guide

Using CTRACECS to manage trace buffer status
Your application is responsible for managing trace buffers when writing to them
and deleting them. Component trace manages the buffers while they are being
captured until they are ready for reuse. Your application uses the CTRACECS
macro to update and track the status of its buffers. Each buffer has an associated
trace buffer writer control (TBWC) area to store the state of the buffer and the
sequence number associated with the buffer. Each buffer has 4 possible states:

State Description Set by:

FILLING trace is filling the buffer application

FULL full and ready to be written to datasets application

CAPTURE Component trace is writing to datasets Component trace

AVAILABLE available for use by the trace Component trace

CTRACECS, which sets the fields in the TBWC area mapped by the ITTTBWC
mapping macro, tests the state of the application's trace buffers to prevent data loss
due to buffers being overwritten before being written to tape or DASD by the
CTRACEWR macro. The current state of the application's trace buffer can be
compared to the expected buffer state, before setting the buffer to the requested
state. You can use the CTRACECS macro to ensure that:
v Only when the buffer is in the available state can it be set to filling.
v Only when the buffer is in the filling state can it be set to full.
v Only when the buffer is in the full state can it be set to available. When the

writer is active there is no need to use the CTRACECS macro to mark the buffer
available.

v You are working with the correct buffer by comparing the current buffer
sequence number to the expected buffer sequence number.

The following steps are an example of how you might use the CTRACECS macro
to manage multiple trace buffers:
1. Mark all buffers available. You cannot use the TESTMODE keyword in

subsequent invocations if the buffer is not initialized to a known state.
CTRACECS TBWC=TBWCAREA, x

MODE=AVAIL, x
COM=’Initialize buffers to available state’

2. Mark an available buffer filling and start putting data into it.

Trace Entry Trace Entry

Trace Data SetBuffer 3
Available

Buffer 2
Filling

Buffer 1
Full

CTRACEWR

Macro

CTRACECS Macro Buffer Management

Figure 15. Managing Buffer Status

Chapter 6. Tracing applications using component trace 117

LA R6,3 x
ST R6,EXPSEQ x

CTRACECS TBWC=TBWCAREA, x
TESTMODE=AVAIL, x
MODE=FILLING, x
CSLABEL=NOT_AVAIL, x
BUFFSEQ#=NEWSEQ#, x
COM=’Mark Buffer filling if available’
.
.

NOT_AVAIL
*The buffer is not available, try another buffer.

3. When there is no more room for trace entries in the buffer, mark the buffer full.
LA R6,2 x
ST R6,EXPSEQ x

x
CTRACECS TBWC=TBWCAREA, x

MODE=FULL, x
TESTMODE=FILLING, x
TESTSEQ#=EXPSEQ, x
CSLABEL=NOT_FILLING, x
COM=’MARK buffer full if filling’
.
.

NOT_FILLING
*The buffer is not filling or the buffer sequence number
assigned to the buffer is not the expected value. The
buffer is not marked full.

4. If using the external writer, invoke the CTRACEWR macro to write the trace
buffer entries to the external data set. Component trace will mark the buffer
available, once CTRACEWR has finished writing the trace entries to the data
set.
If you are not using an external writer, mark the buffer available yourself so
that it can be reused.

LA R6,1 x
ST R6,EXPSEQ x

x
CTRACECS TBWC=TBWCAREA, x

MODE=AVAIL, x
TESTSEQ#=EXPSEQ, x
CSLABEL=WRONGBUFFER, x
COM=’Mark buffer# 1 available’
.
.

WRONG_BUFFER
*The is not buffer# 1 and is not marked available.

The TBWC mode field indicates the requested status of the trace buffers.

MODE Status

AVAIL
The trace buffer is available and ready to be filled with trace entries.

FILLING
The application is entering trace entries into the trace buffer.

FULL The application cannot enter any more trace entries into the trace buffer.

CAPTURE
The system is writing the trace buffer out to DASD or tape.

118 z/OS V2R2 MVS Authorized Assembler Services Guide

The CTRACECS macro requires that a unique TBWC buffer sequence number be
provided by the application. The application must serialize the buffer sequence
number assigned to each buffer. The sequence number must be unique for every
buffer passed to the external writer on the CTRACEWR macro.

Support for testing the application's trace buffers is provided by the TESTMODE
and TESTSEQ# parameters. The system updates the TBWC to the requested status,
if:
v The expected status (TESTMODE) is equal to the current mode (MODE), and
v The expected buffer sequence number (TESTSEQ#) equals the current buffer

sequence number (BUFFSEQ#).

A successful comparison will update the TBWC to the requested status. Otherwise,
the application will branch to a subroutine that you specified using the CSLABEL
keyword.

CSLABEL is optional with TESTMODE=CURRENT but required with
TESTMODE=AVAIL/FULL/FILLING and TESTSEQ#. If you specify
CSLABEL=RETRY, the default, the code will branch to a generated label that retries
the current value of the TBWC until the update is successful.

Note: IBM recommends using TESTMODE and TESTSEQ# to test the state of the
buffer.

The following lists the keyword parameters for TESTMODE:

TESTMODE
Status

AVAIL
Requests that the state of the buffer be set to the state requested by the
MODE keyword only when the buffer is in the available state.

FILLING
Requests that the state of the buffer be set to the state requested by the
MODE keyword only when the buffer is in the filling state,

FULL Requests that the state of the buffer be set to the state requested by the
MODE keyword only when the buffer is in the full state.

CURRENT
Is the default value that sets the state of the buffer to the state specified by
the MODE keyword regardless of the current state.

The TBWC contains the current buffer sequence number (TBWCSEQ), which must
also equal the expected buffer sequence number (TESTSEQ#), before it can be
updated to the desired buffer status. Use TESTSEQ# to ensure a new buffer
sequence number is not being associated with the current TBWC. All four TBWC
fields and the buffer sequence number are used to communicate between your
application and a component trace external writer.

Your application might do the following:
v Check whether a trace buffer is available to be filled using TESTMODE=AVAIL.

IBM recommends more than one trace buffer when tracing with an external
writer and of course the TBWC would need to be initialized to the available
state when it is obtained.

v If no buffers are available, your application should consider obtaining more
buffers or increase the buffer size the next time the trace is started.

Chapter 6. Tracing applications using component trace 119

v When using the CTRACECS macro to mark a new buffer FILLING, make sure
that the buffer sequence number is always incremented. The buffer sequence
number is in the TBWC. Increment the buffer sequence number when using the
external writer even if the return code from the CTRACEWR macro is not zero.

THE CTRACEWR macro: To write trace buffers to trace data sets on DASD or tape,
your application must be connected to an external writer. The CTRACEWR macro
writes the trace buffers out to trace data sets. The trace buffer status should be set
to full by the application using the CTRACECS macro before issuing the
CTRACEWR macro. When the CTRACEWR macro is issued, CTRACE marks the
buffer captured and when CTRACE is finished capturing the buffer, it marks the
buffer available for use again. If the application tries to reuse the buffer when it is
marked captured, CTRACE will not write the buffer to the external data set.

Deleting the application from component trace
You can delete an application from component trace by issuing the CTRACE macro
with the DELETE parameter (CTRACE DELETE). After a CTRACE DELETE,
component trace no longer honors TRACE CT operator commands against that
trace. If you issue the CTRACE DELETE before the trace buffers are dumped,
component trace no longer honors IPCS CTRACE subcommands against that
application.

You should delete the application as part of the normal cleanup of resources. In the
event of abnormal termination, you should include CTRACE DELETE as part of
recovery or termination cleanup to avoid problems when you restart the
application. Deleting the application from component trace prevents the system
from displaying an inactive trace as active on the DISPLAY TRACE operator
command.

Applications that use multiple traces should be careful when deleting their head
level. Deleting a head level results in the deletion of all sublevel traces associated
with that head level. See “Using multiple traces” on page 104 for more information
on multiple traces.

Coding a start/stop exit routine
An application that will be using component trace must have a start/stop exit
routine that starts and stops tracing for the application or modifies trace options.
You are responsible for writing this routine.

If your CTRACE DEFINE macros define multiple traces for your application, you
must write a start/stop exit routine for each trace.

Exit routine environment
The start/stop exit routine receives control in the following environment:

Environmental factor Requirement
Authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit. All passed areas can be above 16 megabytes in virtual

storage.
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

120 z/OS V2R2 MVS Authorized Assembler Services Guide

Environmental factor Requirement
Serialization: Component trace prevents multiple conflicting commands

from being processed simultaneously.
Location: The start/stop routine must be in LPA or the LNKLST

concatenation.

If the start/stop routine is in LPA, the system passes control
to the module at that location, and the module is not
page-fixed. Otherwise, the system places the start/stop
routine into the fixed common service area (CSA).

Exit Recovery: The start/stop routine must supply its own ESTAE-type recovery
routine or functional recovery routine (FRR) for any needed recovery or cleanup of
resources.

Exit routine processing
The start/stop routine receives control to start or stop tracing for the application,
or to change trace options. The routine can determine what action to take by
checking bits in the CTSSFLGS field of the component trace parameter list (CTSS),
which is passed to the start/stop routine. If the CTSSSTRT bit is on, the request is
to start tracing. If the CTSSSTOP bit is on, the request is to stop tracing.

When the start/stop routine receives control to start tracing for the application or
to change the trace options, the routine can do the following:
v Parse the options in the OPTIONS parameter passed to the routine (either from

the REPLY operator command or a CTncccxx parmlib member). If the routine
detects errors, it can issue a WTO using the console ID and CART specified in
the CTSS, and set a failing return code.

v Check for other errors.
v Obtain storage for trace buffers in common storage, in the private area, or in a

data space. IBM recommends that you allocate multiple buffers. You might have
to schedule an SRB, post a task, or switch the primary address space to get to
the right mode to obtain storage.

v If any problems occur locating the desired address space or obtaining storage,
set the appropriate return and reason codes.

v If you plan to externalize your data through a dump data set, anchor the trace
buffers in an area that the CTRACE buffer find exit routine can access when
running under IPCS. See z/OS MVS IPCS Customization for information about
writing this routine.

v Use the 16 bytes of user data in the CTSSUSRD field of the CTSS to assist in
locating the trace buffers. The application can specify this user data on CTRACE
DEFINE with the USERDATA parameter, or in the CTSSUSRD field when the
start/stop routine gets control.

v Set a bit (CTSSRNSS) in the CTSS to indicate whether the start/stop routine for
sublevel traces defined with the LIKEHEAD keyword should be called
individually by component trace.

v Save ASIDs, JOBNAMEs, and the results of the OPTIONS parse in storage where
the application can access them during its tracing activity.

v If the routine receives control indicating connection to an external writer (the
CTSSWCON flag is on), pass the token contained in the CTSSWTKN field to the
application. The application needs this token when it issues the CTRACEWR
macro to write buffers to DASD or tape. See “Externalizing trace data through
the external writer” on page 108 for information about the external writer.

Chapter 6. Tracing applications using component trace 121

For multiple traces in an application, each routine receives a unique token,
whether the CTRACE DEFINE macro contains LIKEHEAD=NO or
LIKEHEAD=YES. Specifying these unique tokens in the CTRACEWR macros
differentiates the buffers for the head level and sublevel trace entries. You can
use IPCS to view a sublevel's entries from one of its buffers or, with the IPCS
MERGE subcommand, to group a sublevel's buffers and view the grouped
entries. any likehead traces.

v When deleting a trace with CTRACE DELETE, the head level start/stop routine
will get control with the CTSSRNSS bit on, indicating that as a default, the
start/stop routine for any likehead traces will also run. If you do not want these
routines to run, code the head level start/stop routine to turn the CTSSRNSS bit
off.

v When changing a trace, if the routine receives control indicating disconnection
from an external writer (the CTSSWDIS flag is on), determine if the application
has any more buffers to write. If so, use the CTRACEWR macro with the
SYNCH=YES keyword to write the current buffer to the external dataset. See
“Externalizing trace data through the external writer” on page 108 and “Using
multiple traces” on page 104 for further information.

v If the routine detects no errors, set the return code to zero and perform the
requested action to turn on the application's trace or change options.

v Establish the returned general purpose registers. See “Return specifications” on
page 128 for the return specifications.

v Return control to component trace.

When the start/stop routine receives control to stop tracing for the application, the
routine should do the following:
v Stop tracing or revert to the minimum level of tracing. If the application

specified MINOPS on CTRACE DEFINE, the tracing should revert to the
minimum level as defined by the application.

v If the application trace is also connected to an external writer, then the
CTSSWDIS bit will also be on, indicating that the application must also
disconnect from the external writer. Use the CTRACEWR macro with the
SYNCH=YES keyword to write the current buffer to the external dataset. See
“Externalizing trace data through the external writer” on page 108 and “Using
multiple traces” on page 104 for further information.

v Set the return code in general purpose register (GPR) 15. See “Return code
specifications” on page 132 for the return code specifications.

v Return control to component trace.

Figure 16 on page 123 illustrates the interaction between the application, its
start/stop exit routine, and the operator.

122 z/OS V2R2 MVS Authorized Assembler Services Guide

Programming considerations
Consider the following when writing the start/stop exit routine:
v If you set a non-zero return code, component trace assumes one of the

following:
– The entire TRACE CT command failed. Component trace discards all of the

command.
– The entire CTRACE DEFINE failed. Component trace discards all of the

macro.
A DISPLAY TRACE command will show the previous status.

v If you use a parmlib member on CTRACE DEFINE to start the trace, and you
set a non-zero return code, then the define will fail.

ABC's ADDRESS SPACE SYSTEM ADDRESS SPACE

OPERATOR COMMANDS

Common Storage

ABC SSEXIT

4

5

8

1

2

4

3

5

6

7

7

3

8

6

2

1 CTRACE DEFINE, NAME=ABC, X
STARTNAM=SSEXIT...

* FIRST CALL

* SECOND CALL
* STOP TRACING

SDUMPX

ITTCTSS

* DELETE CONTROL INFO

* PARSE OPTIONS
* OBTAIN STORAGE FOR

TRACE BUFFERS
* MARKS CURRENT TRACE

OPTIONS IN CONTROL INFO

* TRACE ENTRY

* TRACE ENTRY

SDUMPX...

R1 @ of CTSS

R1 @ of CTSS
CTRACE DELETE, NAME=ABC

TRACE CT, ON, COMP=ABC
REPLY XX, OPTIONS=(...)

TRACE CT, OFF, COMP=ABC

ITTCTE

ANCHOR BUFFER

CTE 1

CTE 2

AVAILABLE ENTRY

CTSS

OPTIONS BUFFER @

ASIDs TABLE @

JOBNAMEs TABLE @

ETC.

CURRENT BUFFER

NEXT ENTRY

CURRENT TRACE OPTIONS

CONTROL INFO

Application ABC defines itself to component trace.

A problem occurs, so the operator turns on the trace.

The system passes control to the start/stop exit routine to start
tracing for the application.

ABC starts creating trace entries, based on user-defined options.

When done creating trace entries, ABC issues the SDUMPX macro to dump the
storage containing the trace buffers.

The system passes control to the start/stop exit routine to stop tracing for the
application, and optionally dump the trace buffers.

ABC deletes itself from component trace.

The operator turns the trace off.

Figure 16. Tracing with Component Trace. Interaction between the application, its start/stop
exit routine, and the operator.

Chapter 6. Tracing applications using component trace 123

v If the start/stop exit routine detects an error and does not set a failing return
code, this will result in incorrect trace options being displayed through the
DISPLAY TRACE operator command.

v A TRACE CT operator command always results in the start/stop exit routine
getting control. However, determining whether the start/stop exit will get
control during CTRACE DEFINE is more complex when you are using multiple
traces or parmlib members. In general, a change in the status of the trace results
in the start/stop exit routine getting control.
The status of the trace consists of the trace mode, buffer size, and options. When
you are using multiple traces, a status of likehead means that the status of a
sublevel trace is the same as the status of its head level.
Table 18 lists possible combinations of mode and parameters and, based on the
combinations, tells whether the start/stop routine runs. See “Using multiple
traces” on page 104 for more detailed information about multiple traces.

Note:

1. On CTRACE DEFINE, LIKEHEAD=NO is the default. In the column labeled
Parameters on CTRACE Macro, assume LIKEHEAD=NO unless specified.

2. Parameters in Parmlib Member gives the parameters in a parmlib member
only if you specified one on CTRACE DEFINE; otherwise, this column is
blank.

3. PRESET Status means that the parmlib member specified on the TRACE CT
command has the PRESET option. If PRESET is not in effect, this column is
blank.

4. Mode of Head Level is relevant only when the trace is likehead. If likehead
is not in effect, this column is blank.

5. The figure does not show CTRACE DEFINE with both the LIKEHEAD=YES
and PARM=parm parameters because this combination results in an error.

Table 18. Conditions Determining When Start/Stop Routine Runs

Parameters on
CTRACE Macro

Parameters in
Parmlib Member

PRESET Status Mode of Head
Level

Will Start/Stop
Routine Run?

Comments

DEFINE... No

DEFINE, PARM
=parm...

ON Yes

DEFINE, PARM
=parm...

OFF No

DEFINE, PARM
=parm...

LIKEHEAD ON Yes

DEFINE, PARM
=parm...

LIKEHEAD OFF Yes Specification of
LIKEHEAD results
in the exit getting
control, even
though the mode of
the head level is
off.

DEFINE... ON Yes

DEFINE... OFF No

DEFINE... LIKEHEAD ON Yes

124 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 18. Conditions Determining When Start/Stop Routine Runs (continued)

Parameters on
CTRACE Macro

Parameters in
Parmlib Member

PRESET Status Mode of Head
Level

Will Start/Stop
Routine Run?

Comments

DEFINE... LIKEHEAD OFF Yes Specification of
LIKEHEAD results
in the exit getting
control, even
though the mode of
the head level is
off.

DEFINE,
LIKEHEAD =YES...

ON Yes

DEFINE,
LIKEHEAD =YES...

OFF No

DEFINE,
LIKEHEAD =YES...

ON Yes The mode of the
head level is not
relevant because the
preset changed the
trace from likehead
to on.

DEFINE,
LIKEHEAD =YES...

OFF Yes The mode of the
head level is not
relevant because the
preset changed the
trace from
LIKEHEAD to off.
The change results
in the exit getting
control.

DEFINE,
LIKEHEAD =YES...

LIKEHEAD ON Yes

DEFINE,
LIKEHEAD =YES...

LIKEHEAD OFF No

Start/stop exit routine communications
The start/stop exit routine runs either in a system address space or the address
space of the caller of CTRACE DEFINE. When a TRACE CT operator command
causes the start/stop exit to run, the routine runs in a system address space. If a
CTRACE DEFINE causes the start/stop exit to run, either through a parmlib
member specified on CTRACE DEFINE or through a parmlib member with the
PRESET option, the routine runs in the caller's address space.

In either case, the routine might have to communicate with another address space
to make the trace options effective. The following methods to accomplish this are
described in this information:
v Use commonly addressable storage:

– Address space common areas
– SCOPE=ALL data spaces
– SCOPE=COMMON data spaces.

v Use a program call (PC) routine
v Schedule a service request block (SRB).

Using commonly addressable storage: If the application doing the tracing does not
have its own address space, then it can maintain its trace options in commonly

Chapter 6. Tracing applications using component trace 125

addressable storage. The start/stop routine can copy the desired options from the
CTSS to the application-maintained trace control area in commonly addressable
storage.

Applications that do have their own address space can attach a permanent task to
process trace requests. When the start/stop exit routine gets control, it could do
the following:
v Obtain common storage to pass the CTSS information. (Consider setting up a

permanent area to hold the CTSS information.)
v Copy the CTSS information into this area.
v Post the task that processes the trace requests. (The ECB must be in common

storage.)
v Wait for the task to complete.
v Upon being posted with a return code, send the return code back to component

trace in register 15.

The task that processes the trace requests could do the following:
v Wait for a trace request.
v When posted, move the trace options to private storage.
v Parse any application-unique options if not already done in the start/stop exit

routine.
v Process the request to start, stop, or change the trace options.
v Post the start/stop exit with a return code.
v Loop back to wait for the next request.

Using a PC routine: The application can implement a space-switching PC to get
addressability to the correct address space. In this case, the start/stop exit routine
could do the following:
v Set up a register pointing to the CTSS.
v Issue a PC to the PC routine responsible for processing trace requests.
v Upon return, send the PC routine's return code back to component trace.

The PC routine responsible for processing trace requests could do the following:
v Use access register ASC mode to access the CTSS in the home address space.
v Parse any application-specific options if not already done in the start/stop exit

routine.
v Process the request to start, stop, or change the trace options.
v Issue a program transfer (PT) or program return (PR) back to the start/stop exit

routine with a return code.

See z/OS MVS Programming: Extended Addressability Guide for further information
about PC routines.

Scheduling an SRB: The application can schedule an SRB to get addressability to
the correct address space. In this case, the start/stop exit routine could do the
following:
v Obtain extended SQA storage for:

– An SRB
– A copy of the CTSS and related control areas
– An ECB.

126 z/OS V2R2 MVS Authorized Assembler Services Guide

v Initialize and schedule the SRB (SCHEDULE macro) to the application's address
space.

v Wait for the ECB to indicate that the SRB has completed.
v Upon being posted and receiving a return code, send the return code back to

component trace.

The SRB routine could do the following:
v Parse the application-unique options.
v Process the request to start, stop, or change the trace options.
v Post the start/stop routine and provide a return code.

See Chapter 9, “Using a service request block (SRB),” on page 203 for further
information.

Entry specifications
Component trace passes information to the start/stop exit routine in a parameter
list and in GPRs.

Registers at entry: On entry to the start/stop routine, the GPRs and access
registers (ARs) contain the following information:

Register Contents

GPR 0 No applicable information

GPR 1 Address of the standard parameter list, which contains the address
of the component trace parameter list (CTSS).

GPRs 2 - 12 If you use these registers, you must save and restore the contents.

GPR 13 Address of a 72-byte register save area, located in pageable,
private-area storage.

GPR 14 Return address.

GPR 15 Entry point address of the start/stop routine.

ARs 0 - 15 If you use these registers, you must save and restore the contents.

Parameter list: The standard parameter list consists of one element: the address of
the component trace parameter list (CTSS). Figure 17 on page 128 illustrates some
of the tables the CTSS points to, including:
v A table containing the options from an operator REPLY or parmlib member

(CTSSOPTP)
v A table containing the ASIDs from an operator REPLY or parmlib member

(CTSSASIP)
v A table containing the JOBNAMEs from an operator REPLY or parmlib member

(CTSSJOBP)
v A sublevel table (CTSSSNTP) if sublevels are involved in the request.

Chapter 6. Tracing applications using component trace 127

The CTSSUSRD field of CTSS contains the 16 bytes of information specified on the
USERDATA parameter of CTRACE DEFINE. This field will contain zeros if not
specified on CTRACE DEFINE. This CTSS user data is treated as input to and
output from the start/stop routine, and can be changed by the start/stop routine.

The standard parameter list, the CTSS, the OPTIONS buffer, the ASID table, and
the JOBNAME table are located in pageable, private-area storage. The CTSS is
mapped by the ITTCTSS mapping macro. For the field descriptions provided by
the ITTCTSS mapping macro, see CTSS in z/OS MVS Data Areas in the z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Return specifications
On return to component trace, the start/stop routine must place information in the
registers. Component trace takes action based on the return codes set by the
routine.

Registers on return: On return to component trace, the start/stop routine must
place the following information in the registers:

Register Contents

GPR 0 Reason code, created by the application program, if the
return code is not zero.

GPR 1 No requirement.

GPRs 2 - 14 You must restore the contents of these registers.

GPR1

@ of CTSS Options

ASIDs

JOBNAMEs

Sublevel names

CTSS

CTSSOPTP

CTSSASIP

CTSSJOBP

CTSSSNTP

Figure 17. Information Passed to the Start/Stop Exit Routine Through GPR 1

128 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Register Contents

GPR 15 Return code. On return from a request to start tracing, IBM
recommends you set the return codes as follows:

0 The start/stop routine completed successfully; the
routine performed the specified action as
requested on the TRACE CT operator command or
on CTRACE DEFINE.

4 An option specified in the operator reply is in
error. Register 0 contains a unique, user-defined,
4-byte reason code to identify the specific error.
The operator can re-issue the command.

8 An environmental error. Register 0 contains a
unique, user-defined, 4-byte reason code to
identify the specific error.

On return from a request to stop tracing, IBM recommends
you set the return codes as follows:

0 Tracing was stopped or set to the minimum level.

Other An error occurred.

ARs 0 - 15 You must restore the contents of these registers.

Component trace processing after return: If the start/stop routine sets a non-zero
return code, the system displays both the return and reason codes through an
operator message. For this reason, you should make your return and reason codes
as meaningful as possible. The return codes shown in the above table are
recommended by IBM.

When issuing CTRACE DEFINE, the application can include the SSRC and
SSRSNC parameters to obtain the start/stop routine's return and reason codes.

Coding a display trace exit routine
An application that will be using component trace might have a display trace exit
routine that provides status information about the component trace for the
DISPLAY TRACE operator command. You are responsible for writing this optional
routine.

A display trace exit routine is desirable if the component trace changes the trace
mode, buffer size, or options independent of the TRACE CT operator command.
There may be conditions under which the component trace may need to change
the status of the trace, such as:
v If the operator issues the TRACE CT command to change the buffer size, the

component trace might round the buffer size up or down. When a D TRACE
command is displayed and a display trace exit routine is provided, the display
exit can provide the buffer size to be displayed. If no display trace exit routine is
provided, then the buffer size specified on the TRACE CT command is
displayed.

v If a problem occurs, the component trace might decide to stop or start tracing, or
change trace options.

Chapter 6. Tracing applications using component trace 129

Exit routine environment
The display trace exit routine receives control in the following environment:

Environmental factor Requirement
Authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit. All passed areas can be above 16 megabytes in virtual

storage.
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Serialization: Component trace prevents multiple conflicting commands

from being processed simultaneously.
Location: The display routine must be in LPA or the LNKLST

concatenation.

If the display routine is in LPA, the system passes control to
the module at that location, and the module is not
page-fixed. Otherwise, the system places the display routine
into the fixed common service area (CSA).

Exit recovery: The display routine must supply its own ESTAE-type recovery
routine or functional recovery routine (FRR) for any needed recovery or cleanup of
resources.

Exit routine processing
The display routine receives control to provide status information about the
component trace for the DISPLAY TRACE operator command. The CTSSDSPI bit
indicates that trace display information is to be provided.

When the display routine receives control it should:
v Set one of the following bits in the CTSS to indicate trace mode:

– CTSSDON - to indicate that the trace mode is ON.
– CTSSDOFF - to indicate that the trace mode is OFF.
– CTSSDMIN - to indicate that the trace mode is MIN.

v Parse the options in the OPTIONS parameter passed to the routine. These are
the options that were specified by the operator on a previously issued TRACE
CT command either by operator reply or in a CTncccxx parmlib member. If the
options being traced are different than those passed to the routine, the routine
should update the CTSS with the trace options in effect.

v If the routine detects errors, it can issue a WTO using the console ID and CART
specified in field CTSSBUFS, and set a failing return code.

v Set the trace buffer size in the CTSS.
v Use the 16 bytes of user data in the CTSSUSRD field. The application can specify

this user data on CTRACE DEFINE with the USERDATA parameter, or in the
CTSSUSRD field when the start/stop routine gets control.

v If the routine detects no errors, set the return code to zero.
v Establish the returned general purpose registers. See “Return specifications” on

page 128 for the return specifications.
v Return control to component trace.

130 z/OS V2R2 MVS Authorized Assembler Services Guide

Programming considerations
When writing the display trace exit routine, component trace displays the mode,
buffer size, and options that were previously set (either from a previous TRACE
CT command or from initial IPL), if either:
v the display trace exit routine does not set either the CTSSDON, CTSSDOFF, or

CTSSDMIN bits
v or the display trace exit routine returns a non-zero return code.

Exit routine communications
The display trace exit routine runs in a system address space.

The routine might have to communicate with another address space to obtain the
display information to be returned to component trace. See “Start/stop exit routine
communications” on page 125 for methods to accomplish this communication.

Entry specifications
Component trace passes information to the display exit routine in a parameter list
and in General Purpose Registers (GPRs).

Registers at entry: On entry to the display routine, the GPRs and access registers
(ARs) contain the following information:

Register Contents

GPR 0 No applicable information

GPR 1 Address of a standard parameter list, which contains the address
of the component trace parameter list (CTSS).

GPRs 2 - 12 If you use these registers, you must save and restore the contents.

GPR 13 Address of a 72-byte register save area, located in pageable,
private-area storage.

GPR 14 Return address.

GPR 15 Entry point address of the display routine.

ARs 0 - 15 If you use these registers, you must save and restore the contents.

Parameter list: The standard parameter list consists of one element: the address of
the component trace parameter list (CTSS). Figure 18 on page 132 illustrates some
of the tables the CTSS points to, including:
v A table containing the options from an operator REPLY or parmlib member

(CTSSOPTP)
v A sublevel table (CTSSSNTP) if sublevels are involved in the request.

Chapter 6. Tracing applications using component trace 131

The CTSSUSRD field of CTSS contains the 16 bytes of information specified on the
USERDATA parameter of CTRACE DEFINE. This field will contain zeros if not
specified on CTRACE DEFINE. This CTSS user data is treated as input to and
output from the display routine, and it can be changed by the display routine.

The standard parameter list, the CTSS, and OPTIONS buffer table are located in
pageable, private-area storage. The CTSS is mapped by the ITTCTSS mapping
macro. For the field descriptions provided by the ITTCTSS mapping macro, see
CTSS in z/OS MVS Data Areas in the z/OS Internet library (http://www.ibm.com/
systems/z/os/zos/bkserv/).

Return code specifications
On return to component trace, the display routine must place information in the
registers. Component trace takes action based on the return codes set by the
routine.

Registers on return: On return to component trace, the display routine must place
the following information in the registers:

Register Contents

GPR 0 No requirement.

GPR 1 No requirement.

GPRs 2 - 14 You must restore the contents of these registers.

GPR 15 Return code. On return from a request to provide
information, IBM recommends you set the return codes as
follows:

0 The display routine completed successfully; the
routine updated the CTSS with the trace display
information.

Other An error occurred.

ARs 0 - 15 You must restore the contents of these registers.

Component trace processing after return: If the display routine sets a non-zero
return code, or it does not set either the CTSSDON, CTSSDOFF or CTSSDMIN bits,
the system displays the previous trace information and the trace information
returned by the display trace exit routine in CTSS is ignored.

GPR1

@ of CTSS Options

Sublevel names

CTSS

CTSSOPTP

CTSSNTP

Figure 18. Information Passed to the Display Trace Exit Routine Through GPR 1

132 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Creating trace entries
This information describes:
v Creating component trace entries (CTEs) and placing them in trace buffers
v Understanding the fields in a CTE
v Organizing the variable data in a CTE.

Your trace entries can be in any format. However, to be able to use IPCS to display
them, use the ITTCTE mapping macro to create CTEs. You can trace a maximum of
60KB of application-unique data in each CTE.

Figure 19 is an example of a CTE with a trailing length, which is a length field at
the end of the entry.

Follow this procedure when creating your CTEs and placing them in buffers:
v Start the trace buffer with a complete CTE at offset 0.
v Continue adding CTEs without any gaps between the trailing length field

(CTELENE) of the previous CTE and the starting length field of the next CTE
(CTELENP).

v When the buffer reaches a stage where the entire next CTE cannot fit, IBM
recommends that you clear the remaining portion of the trace buffer to zeros. At
this point, you have the choice of either using a new buffer or wrapping and
reusing the same buffer. If you are using the external writer, use a new buffer so
that component trace can capture your full trace buffer asynchronously while
you are writing trace entries to a new buffer. If you do not require trace data to
be captured asynchronously, or if you can afford to lose old trace data, you
might reuse the same buffer.

LENGTH OF
FIRST ENTRY

OFFSET
(Points to
beginningofdata)

ZEROS TO END OF BUFFER

MORE TRACE ENTRIES

"
"
"

T
R
A
C
E

E
N
T
R
Y

VARIABLE DATA (Anydatadefinedby theapplication)

IDENTIFIER
(Typeofentry. Controls
formattingand filtering)

TIMESTAMP FOR ENTRY (ProducedbyStoreClock (STCK) instruction)

LENGTH OF
LAST ENTRY

Figure 19. Component Trace Entry in a Trace Buffer

Chapter 6. Tracing applications using component trace 133

Once the application creates all its trace entries, places them in trace buffers in
storage, and externalizes them either in a dump or by using the external writer,
IPCS can format each entry according to instructions you specify in a CTRACE
format table. Use the FMTTAB parameter on CTRACE DEFINE to specify the
name of the load module that contains the CTRACE format table. See z/OS MVS
IPCS Customization for information about creating a CTRACE format table.

Understanding the fields in a CTE
The following fields are common in every CTE:

Length (CTELENP)
A 2-byte field containing the length of the entire CTE, including this length
field (CTELENP) and the trailing length field (CTELENE). The maximum CTE
size is 64KB. This field is at the beginning of the CTE.

Offset (CTEOFF)
A 2-byte field containing the offset of the variable data within the CTE.

Entry Identifier (CTEFMTID)
A 4-byte field containing a user-defined identifier. This indicates the type of
event traced by the entry, and is also specified on the ITTFMTB macro
EVENTDATA keyword in the corresponding format table entry for formatting
purposes.

Time (CTETIME)
An 8-byte field containing the time stamp. IBM recommends that you create
the time stamp using the STCK instruction, which produces Coordinated
universal time (UTC). During formatting, the user of IPCS can request that the
time stamps be formatted in local time only if you created the time stamps in
UTC.

Variable Data (CTEVDATA)
A variable-length field to contain application-unique data in any format. The
maximum length of this field is 60KB. See “Organizing variable data in CTEs”
for suggestions on how to organize this field.

Trailing Length (CTELENE)
A 2-byte field containing the length of the entire CTE, consistent with the value
in CTELENP. This field is at the end of the CTE.

For complete field names and lengths, offsets, and descriptions of the fields
mapped by the ITTCTE mapping macro, see ITTCTE in z/OS MVS Data Areas in
the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Organizing variable data in CTEs
You must determine how you will organize the variable portion (CTEVDATA) of
the information in the CTEs. This information discusses the following methods:
v Using a fixed-field format
v Making each entry unique
v Using a key-length data format.

You might combine these methods to produce other methods.

Using a fixed-field format: If you need the same type of data in every CTE, you
can have one fixed definition of a trace entry. For example:

134 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/

Offset 0 - ASID
Offset 2 - Module name
Offset 10 - Flags
Offset 14 - Return code

You might want to start every CTE with a few fixed fields, and follow that with
variable data. Using fixed-field formats for CTEs allows for a smaller format table,
and fewer lines of code, because you will not need separate format table entries to
support each trace entry.

Making each entry unique: In this case, each CTE contains data that is unique,
which requires unique formatting support and requires a larger format table than
fixed-field formats. The advantage is that you can capture whatever data you
require for a particular CTE.

Using key-length data format: With key-length data format, you define a key that
identifies the data type, and the length indicates where the next key resides. This
method is useful when your application supports a number of data types, but only
a select number of these data types will be in each CTE.

Here is an example of a key-length data format:
KEY = 1 means ASID
LENGTH = 2 allows 2 bytes for an ASID in hexadecimal
DATA = 2 hexadecimal bytes for an ASID

Based on the above example, the formatting program will format an ASID when
the key is 1. This method provides flexible and low-cost formatting (there is less
code to format). One disadvantage is that you consume extra storage in the CTE
for the key and length fields, and might consume extra instructions in the path
that creates the CTEs.

Chapter 6. Tracing applications using component trace 135

136 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 7. Communication

The following communication topics are included in this information:
v Interprocessor communication
v Writing operator messages
v Issuing operator commands
v Routing operator commands in a sysplex
v Extended MCS consoles.

Interprocessor communication
Interprocessor communication (IPC) is a function that provides communication
between processors sharing the same control program. Those executing functions
that require a processor or program action on one or more processors use the IPC
interface to invoke the desired action. The IPC function uses the signal processor
(SIGP) instruction to provide the necessary hardware interface between the
processors.

Based on the condition code of the SIGP instruction, the IPC function may invoke
the excessive spin routine. The excessive spin routine may cause message IEE331A
to be issued. This message either requires the operator to initiate alternate CPU
recovery (ACR) or continue with processing. For more information concerning the
SIGP instruction, see Principles of Operation.

Remote class services are defined for those control program functions that require
the execution of a software function on one of the configured processors.
Emergency signal is a remote immediate service that can be invoked via the
RISGNL macro.

An emergency-signal external-interruption condition is generated at the specified
processor. The interruption condition becomes pending during the execution of the
SIGP instruction. The associated interruption occurs when the processor is
interruptible for that condition. At any one time the receiving processor can keep
pending one emergency-signal condition for each processor of the multiprocessing
system, including the receiving processor itself. Issue the RISGNL macro to invoke
the emergency signal function.

Writing and Deleting Messages (WTO, WTOR, and DOM Macros)
The WTO and WTOR macros allow you to write a message to a display device, a
printer, a hard-copy log, or a program that receives WTO and WTOR messages
(such as an EMCS console or a subsystem console). Besides writing a message,
WTOR allows you to request a reply from the operator who receives the message.
The DOM macro allows you to delete a message that is already written to the
operator.

Routing the Message
You can route a WTO or WTOR message to a console by specifying one or more of
the following parameters:
v ROUTCDE to route messages by routing code

© Copyright IBM Corp. 1988, 2016 137

v CONSID to route messages by console ID
v CONSNAME to route messages by console name
v MSGTYP and MCSFLAG to route messages by message type.

The ROUTCDE parameter allows you to specify the routing code or codes for a
WTO and WTOR message. The routing codes determine which console or consoles
receive the message. Each code represents a predetermined subset of the consoles
that are attached to the system, and that are capable of displaying the message.
The installation defines the consoles that belong to each routing code. WTO and
WTOR allow routing codes from 1 to 128. Routing codes 30 through 41 are
reserved, and are ignored if specified. Routing codes 42 through 128 are available
to authorized programs only, although the ROUTCDE parameter itself is available
to non-authorized as well as authorized users. See any volume of MVS System
Messages for more information on routing codes.

You can also use either the CONSID or CONSNAME parameter to route messages.
These mutually exclusive parameters let you specify the ID or the name of the
console that is to receive the message. When you issue a WTO or WTOR macro
that uses either the CONSID or CONSNAME parameter with the ROUTCDE
parameter, the message or messages will go to all of the consoles specified by both
parameters.

You can use the SYSNAME, JOBID, or JOBNAME parameter to specify the system
or job from which a WTO or WTOR message is issued. SYSNAME is mutually
exclusive with the CONNECT parameter.

Only programmers familiar with multiple console support (MCS) should use the
MSGTYP parameter, which is associated with message routing. The MSGTYP
parameter is typically used for messages related to the MONITOR command.
Specifically, MSGTYP (JOBNAMES) will queue message to consoles that have
activated MONITOR JOBNAMES; MSGTYP (SESS) will queue messages to
consoles that have activated MONITOR SESS; and MSGTYP (STATUS) will queue
messages to consoles that have activated MONITOR STATUS.

The MCSFLAG parameter is used to specify various attributes of the message,
such as whether the message is:
v For a particular console
v For all active consoles
v For the hardcopy log
v A command response

Note: IBM recommends using desciptor code 5, rather than MCSFLAG, to
indicate a command response. This is because MPF exits can change the
descriptor code, but can not change the MCSFLAG.

For the convenience of the operator, messages can be associated with individual
keynames. A keyname consists of 1 to 8 alphanumeric characters, and it appears
with the message on the console. The keyname can be used as an operand in the
MVS DISPLAY R console command, which operators can issue at the console. Use
the KEY parameter on the WTO or WTOR macro for this purpose.

138 z/OS V2R2 MVS Authorized Assembler Services Guide

Altering Message Text
The TEXT parameter on the WTO macro enables you to alter repeatedly the same
message or numerous messages. You can alter the message or messages in one of
two ways:
v If you issued 3 different messages, all with identical parameters other than

TEXT, you created a list form of the macro, moved the text into the list form,
then execute the macro. Using the TEXT parameter you can use the standard
form of the macro, and specify the address of the message text. By reducing the
number of list and execute forms of the WTO macro in your code, you reduce
the storage requirements for your program.

v If you need to modify a parameter in message text, using the TEXT parameter
enables you to modify the parameter in the storage that you define in your
program to contain the message text, rather than modify the WTO parameter
list.

Using the TEXT parameter on WTO can reduce your program's storage
requirements because of fewer lines of code or fewer list forms of the WTO macro.

Writing a Multiple-Line Message
To write a multiple-line message to one or more operator consoles, either issue
WTO with all lines of text, or issue each line of text separately using the
CONNECT parameter on the WTO macro.

The CONNECT parameter connects a subsequent message to a previous message.
For example, if your program develops a large, multiple-line message of unknown
length, it can issue several WTOs for the different parts of the message at different
times. The CONNECT parameter forces all these WTOs to use the same message
ID, and physically unites the different parts of the message at the display console
as a single message. CONNECT is mutually exclusive with CONSID,
CONSNAME, and SYSNAME, and SYNCH=YES, and it is not available with
WTOR.

You can create with one WTO macro request a message that consists of up to 255
lines. For more than 255 lines, issue more than one WTO macro. The additional
lines appear at the end of the message and continue until you specify an “END”
line by specifying “DE” or “E” as the line type for the last line of data. For the first
request, you must ensure that register 0 is set to zero. If register 0 is not set to
zero, WTO assumes that the multiple-line request is adding lines to an existing
message, and no new message is created.

After processing the first request, the system places a message identifier in register
1. For each additional request, you must pass this identifier to the subsequent lines
through the CONNECT parameter of WTO.

Embedding Label Lines in a Multiple-Line Message
Label lines provide column headings in tabular displays. You can change the
column headings used to describe different sections of a tabular display by
embedding label lines in the existing multiple-line WTO message for a tabular
display.

Authorized programs (supervisor state, or PSW key 0-7, or APF-authorized) that
are authorized to add lines to an existing multiple-line WTO message are also
permitted to embed label lines within that existing multiple-line WTO message.

Chapter 7. Communication 139

The label line does not have to appear immediately following the control line and
before the data lines. At most two label lines can appear consecutively without an
intervening data line.

Issuing a Message and Loading a Wait State (WTO and
LOADWAIT Macros)

There are situations in which system operations cannot continue until the system
operator takes some external action. An example might be an authorized
application detecting a critical problem that warrants stopping the entire system to
correct. Using the LOADWAIT macro and the WTO macro with the WSPARM
parameter stops the system so the operator can correct a problem, if possible. By
using LOADWAIT and WTO, you issue a message to the operator and place the
system into a wait state. By placing the system into a wait state, all processor
activity is stopped.

To place the system into a wait state:
v Issue the LOADWAIT macro to store wait state information into a parameter list.
v Issue the WTO macro and specify the parameter WSPARM to issue a message

and load the wait state.

The WSPARM parameter contains the address of the parameter list that you
previously built using the LOADWAIT macro. WTO issues one message to the
operator and uses the parameter list from LOADWAIT to put the system into the
wait state. The wait state code and operator message explain what action the
operator is to take. For more information about wait state codes, see z/OS MVS
System Codes.

Using the Wait State Macro (LOADWAIT)
Through the LOADWAIT macro, you specify the following wait state information:
v Wait state type - This must be either restartable or non-restartable.
v Wait state code - This is the wait state code you must assign for the error.
v Reason code - This is the reason code you can assign for further information

about the wait state.
v Action code location - This is a 1-byte area to receive information that the

operator can supply to the calling program.
v Additional information to be made available to the operator - This could be a

system ID or a pointer to a data area for further information about the wait
state. For more information about action codes, see the specific wait state codes
in z/OS MVS System Codes.

Non-restartable and Restartable Wait States
You must specify on the LOADWAIT macro whether the wait state is
non-restartable or restartable:
v A non-restartable wait state allows the calling program to stop the system. This

type of wait state is used only when MVS cannot be allowed to continue
operating. To continue processing, the operator must re-IPL the system.

v A restartable wait state allows the calling program to communicate with the
operator (PSAPARM), allows the operator to communicate with the calling
program (ACTCODE), and prevents any other activity in the system during
operator communications. This type of wait state is used when:
– MVS must be stopped until the operator corrects some external condition, but

can continue after the condition is corrected.

140 z/OS V2R2 MVS Authorized Assembler Services Guide

– MVS should be stopped to preserve storage contents for problem
determination, but can continue afterward. An example of this type of wait
state is when a SLIP trap (ACTION=WAIT) has been matched.

To continue processing, the operator initiates a restart action from the system
console.

Invoking the LOADWAIT Macro
How you use the LOADWAIT macro depends on the information you have:
v If you have all wait state information at program assembly time, invoke

LOADWAIT once to define and initialize the parameter list.
v If any wait state information is missing at program assembly time, invoke

LOADWAIT separately, to:
– Set up storage for the parameter list.
– Add the wait state information. This step might require more than one

invocation of the macro.

Example with All Wait State Information Known at Assembly
Time
If you know the wait state and the reason code at program assembly time, the
parameter list storage can be defined and initialized with one invocation of the
LOADWAIT macro. The following example defines storage for and initializes a
parameter list, and names the parameter list ‘TEST’:

Issue the WTO macro with the WSPARM option to load a restartable wait state
code of X'A29':

This example represents the most common usage of the LOADWAIT macro. The
list form of the macro is used because both the wait state and reason code are
known at program assembly time. The calling program specifies the LOADWAIT
parameter list (TEST) on the WSPARM parameter of the WTO. WTO issues the
message "WMM0001 UNABLE TO COMMUNICATE A REPLY" and loads the wait
state.

Example with Wait State Information Not Known at Assembly
Time
If you do not know all the wait state information at program assembly time, at
least two separate invocations of the macro are required. In the following example,
assume that the wait state code is passed to the calling program at execution time.
Define storage for a parameter list named ‘SAMP’:

LOADWAIT MF=(L,TEST),
CODE=WAITA29,
WAITTYPE=RESTARTABLE
REASON=SOMERC

Figure 20. LOADWAIT Example for Defining and Initializing a Parameter List

WTO ’WMM0001 UNABLE TO COMMUNICATE A REPLY’,
LINKAGE=BRANCH,SYNCH=YES,WSPARM=TEST

WAITA29 EQU X’A29’
SOMERC EQU X’3’

Figure 21. WTO Example for Issuing a Message with a WSPARM parameter

Chapter 7. Communication 141

The example uses the list form of the macro to reserve storage for the parameter
list. You do not initializing the parameter list because you do not know the wait
state code. Once you know the wait state, invoke LOADWAIT again to insert it
into the parameter list as follows:

Notice that Figure 23 uses the modify form of the LOADWAIT macro because you
are storing the wait state code into the existing parameter list, which you reserved
with Figure 22.

Issue the WTO macro with the WSPARM option to issue a message and load a
restartable wait state with the wait state code that was passed from the calling
program:

When you use the modify form of the macro, the parameter list is reset to all zeros
every time. If you use the modify form of the LOADWAIT macro, be sure to
specify all the required information.

For example, if you wanted to change the wait state type from restartable to
non-restartable and add a reason code to the parameter list named ‘SAMP’ after
your previous modify invocation, you must respecify the required fields that
you've already coded:

Issue the WTO macro with the WSPARM option to issue a message and load a
non-restartable wait state:

Notice that Figure 25 uses the modify form of the LOADWAIT macro because you
are respecifying the wait state information into the existing parameter list you
reserved with Figure 22. This time (Figure 25) the example adds a reason code and
makes the wait state non-restartable. Because the parameter list is reset to zeros

LOADWAIT MF=(L,SAMP)

Figure 22. LOADWAIT Example for Defining Storage for a Parameter List

LOADWAIT MF=(M,SAMP),
CODE=WAIT,
WAITTYPE=RESTARTABLE

Figure 23. LOADWAIT Example for Modifying an Existing Parameter List

WTO ’SCM0001 WTOR FAILED’,
LINKAGE=BRANCH,SYNCH=YES,WSPARM=SAMP

WAIT DS H

Figure 24. WTO Example for Issuing a Message and Loading a Wait State

LOADWAIT MF=(M,SAMP),
CODE=WAIT,
REASON=BADRC,
WAITTYPE=NONREST

Figure 25. LOADWAIT Example for Adding a Reason Code to a Parameter List and
Changing the Type of Wait State

WTO ’WMM0009 BAD RETURN CODE ENCOUNTERED’,
LINKAGE=BRANCH,SYNCH=YES,WSPARM=SAMP

WAIT DS H
BADRC DC X’07’

Figure 26. WTO Example of a Message with a WSPARM Parameter

142 z/OS V2R2 MVS Authorized Assembler Services Guide

when using the modify form of the LOADWAIT macro, you must respecify all the
previous information about the wait state that you had previously coded. Because
this example shows a non-restartable wait state, the operator must re-IPL the
system to continue processing.

Deleting Messages Already Written
The DOM macro deletes the messages that were created using the WTO or WTOR
macros. Depending on the timing of a DOM macro relative to the WTO or WTOR,
the message may or may not have already appeared on the operator's console.
v When a message already exists on the operator screen, it has a format that

indicates to the operator whether the message still requires that some action be
taken. When the operator responds to a message, the message format changes to
remind the operator that a response was already given. When DOM deletes a
message, it does not actually erase the message. It only changes the message‘s
format, displaying it like a non-action message.

v If the message is not yet on the screen, DOM deletes the message before it
appears. The DOM processing does not affect the logging action. That is, if the
message is supposed to be logged, it will be, regardless of when or if a DOM is
issued. The message is logged in the format of a message that is waiting for
operator action.

The program that generates an action message is responsible for deleting that
message.

To delete a message, identify the message by using the MSG, MSGLIST, or TOKEN
parameters on the DOM macro, and issue DOM.

When you issued WTO or WTOR to write the message, the system returned a
message ID in general purpose register 1. Use the ID as input on the MSG or
MSGLIST parameters. MSGLIST (message list) associates several message IDs with
the delete request. You define the number of message IDs in the message list by
the COUNT parameter or by specifying a 1 in the high-order bit position of the
last message ID in the list. The count parameter cannot exceed 60. If you specified
the TOKEN parameter on one or more WTOs or WTORs, use the same value on
the TOKEN parameter of DOM to delete all of those messages.

Writing to the System Log
There are three ways to request that the system write a message to the system log:
v Your installation may have specified, through SYS1.PARMLIB, that all messages

appear at the device that is the hard-copy log.
v Use the WTL (Write-to-Log) macro.
v Use the HRDCPY option on the MCSFLAG parameter on the WTO macro.

IBM recommends that you use the WTO macro to write to the system log.

Issuing an internal START or REPLY command (MGCR)
To issue an internal START or REPLY command, a program can issue the MGCR
macro. The program issuing MGCR can pass a user security token to the system.
The system uses the user security token for command authorization checking. In
the case of the START command, the program that issues MGCR can pass 31 bits
of information (in a field called a program token) to the program being started. An
internal REPLY command is available to reply to a WTOR message.

Chapter 7. Communication 143

You can also issue an internal START or REPLY command by using the MGCRE
macro. MGCRE allows you to issue any operator command from an MCS or
extended MCS console. MGCRE is the preferred programming interface. See
“Issuing operator commands from a program (MGCRE macro)” on page 145 for
more information on using the MGCRE macro.

Before issuing the MGCR macro, set general register 0 to zero, and initialize a
buffer as follows:

1 byte

flags1

1 byte

length flags2 text Program token
right justified

user security
token

2 bytes variable length 4 bytes 80 bytes

flags1
If bit 0 of the flags1 byte is one, the flags2 field must contain meaningful
information. Bits 1-7 of flags1 must be zero.

length
The length field contains the length of the buffer in bytes, up to but not
including the program token field.

flags2
Use this field to indicate whether a program token, a user security token, or
both are present:
v X'0000' - neither a program token nor a user security token is present.
v X'0800' - a program token is present.
v X'0008' - a user security token is present.
v X'0808' - both a program token and a user security token are present.

Note: Bit 0 of flags2 must be zero.

text
The text field contains the START or REPLY command followed by operands
and, optionally, comments. The field may be up to 126 bytes long.

program token
This field contains information that you want to pass to the started program.
You can pass any information depending upon the design of your program.
For example, you might pass a parameter or a pointer to a parameter list.
Program token is meaningful only for the START command.

user security token
Use this field to specify the user security token the system is to use for
command authorization checking. To obtain the user security token, use the
REQUEST=TOKENXTR form of the RACROUTE macro. For a description of
the RACROUTE macro, see z/OS Security Server RACF Macros and Interfaces.

Figure 27 on page 145 shows an example of how to setup the buffer. For a
description of the MGCRPL data area (mapped by IEZMGCR), see z/OS MVS Data
Areas in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/).

144 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Issuing operator commands from a program (MGCRE macro)
The MGCRE macro enables you to issue commands and responses to messages
without operator intervention. For example, an application can issue a VARY or
CONTROL command by using MGCRE, which might satisfy an outstanding action
message.

Using MGCRE to issue internal START and REPLY commands provides many
benefits over the MGCR macro. If you use MGCR, you must initialize a parameter
list before issuing the macro. You do not have to do this initialization if you use
MGCRE. MGCRE builds a parameter list for you, based on macro parameters.
MGCR is limited to only START and REPLY commands, whereas MGCRE will
accept any operator command.

NOT Programming Interface Information

The CMDFLAG=TSO option allows TSO to use MGCRE instead of MGCR.
CMDFLAG=TSO causes the CONSID value in the parameter list to be treated as a
TSO identifier, instead of a console ID.

End NOT Programming Interface Information

Issuing a command response message
Many IBM, customer, and vendor programs process operator commands. These
command processors typically issue one or more WTO macros "in response to" the
command.

When programs issue commands, they use the MGCRE macro (see “Issuing
operator commands from a program (MGCRE macro)”), employing logic similar to
the following:
1. Issue a command with "my" console ID, and a command and response token

(CART) value uniquely related to this command.
2. Wait to receive a response message (marked as a response), back to "my"

console, with the same CART value as the command input.
3. Normally, consider the command "finished" when the first response is received.

If a command processor issues more messages, the logic is more difficult.

SR REG0,REG0 INDICATE SYSTEM ISSUED
* COMMAND

MGCRMAC MGCR MGRCDATA
.
.

MGCRDATA EQU *
FLG1 DC X’80’
LGTH DC AL1(PTOKEN-MGCRDATA)
FLG2 DC X’0808’
TXT DC C’S IMS ***ANY COMMENTS***’
PTOKEN DC AL4(ECB) ECB ADDR
UTOKEN DC CL80 ’***YOUR SECURITY TOKEN***’

Figure 27. Setting Up the Buffer for MGCR

Chapter 7. Communication 145

Rules for a command response WTO
Here are some general rules to follow when coding a WTO in response to a
command.
1. Specify descriptor code 5 (DESC=5)

v Identifies message as a command response
v Can have additional descriptor codes, if wanted
"Extended" (program) consoles have an option to receive only command
responses, and ignore "unsolicited" messages. These programs depend on a
command response message being marked as such.
"Unsolicited" messages are those which are directed to a console because of
routing codes, or some other routing attribute. They have not been directly
"solicited" by the operator. Command responses are considered "solicited"
messages.

2. Direct the message to the console which issued the command (CONSID=cccc),
using the 4-byte console ID of the console which issued the command. All
consoles have a 4-byte console ID, which can be used to direct the message to
the issuing console.

3. Return the CART value specified on the command (CART=vvvvvvvv)
CART data is an 8-byte field passed to you from the input command.
All programs which use the MGCRE macro to issue commands can specify a
Command And Response Token (CART) to identify "which command" this is a
response to.
If the command issuer did not use a CART, it is still safe to say "CART=" on
the WTO, and point to the CART field in your control block. In this case, the
CART is propagated as a field of zeroes.

4. Issue one and only one message in response to the command.
It is preferable to respond with one message, which may be many lines of text.
You can issue a multiple line message "all at once", or use the CONNECT
parameter. Don't forget to "end" the message (issue an end line or data-end
line).
Be sure to clear register zero before issuing a WTO for a line (or block of lines)
of a multiple-line message. If MVS finds a non-zero value in register zero, it
will assume you are trying to CONNECT to a message with that message ID.

Old code conversion
If you are converting existing messages, there are a few things you may see:
v MCSFLAG=RESP

This keyword might be used instead of DESC=5 to indicate a command
response. This is supported, but DESC=5 is preferred, and the WTO should be
changed if convenient.
Descriptor codes can be changed by the installation's message exits, but
MCSFLAGs cannot. For maximum flexibility for the customer, DESC=5 is
preferred.

v MCSFLAG= REG0 or QREG0
Old code might have the "register zero interface" (REG0 or QREG0). If these
keywords are specified, the console ID is placed in the low-order byte of register
zero before the WTO is issued.
Only a 1-byte console ID can be specified this way, so this code must be
converted to use CONSID=.

146 z/OS V2R2 MVS Authorized Assembler Services Guide

Note:

1. As of V1R8, REG0 and QREG0 are no longer supported because of the
removal of 1-byte console IDs.

2. The high-order 3 bytes of register zero are assumed to be a CONNECT ID, if
this is a multiline message.

(Note:).
v Multiple messages

You may be issuing several messages (instead of one multiline) in response to a
command. This should not be changed. Changing the messages in this way
would be a serious incompatibility for any automation programs which were
analyzing the messages.
"New" messages should be designed as a single multiline response, if possible.

Where to get the information
There are several ways for a command processing program to receive its input
command; you can find your console and CART information in the same control
block as the command text.

CIB control block (mapped by IEZCIB)
v CIBX (CIB extension) is found by adding CIBXOFF offset value to the address of

the CIB.
v 4 byte console ID is CIBXCNID
v CART is CIBXCART

CSCB control block (mapped by IEECHAIN)
v 4 byte console ID is CHCNSIDI.
v CART is CHCART.

CMDX control block (mapped by IEZVX101)
This is the input to the command exit routines.
v 4 byte console ID is CMDXC4ID.
v CART is CMDXCART.

SSCM control block (mapped by IEFSSCM)
This is the input to the command subsystem interface routines.
v 4 byte console ID is SSCMCNID.
v CART is SSCMCART.

Assembler example with CIB control block
This is a simple example of a WTO, where the text is not variable. It is also not
re-entrant code.

Assume the address of the CIB has been previously loaded into R7
.
.
.
USING CIB,R7 CIB based on R7
LR R8,R7 Set up R8 as address of CIBX
AH R8,CIBXOFF CIBX=addr(CIB)+CIBXOFF
USING CIBX,R8 Addressability to CIBX
WTO ’ABC123I XYZ COMMAND COMPLETED SUCCESSFULLY’, X

DESC=5, X
CONSID=CIBXCNID, X
CART=CIBXCART

DROP R8 done with CIBX

Chapter 7. Communication 147

CIB DSECT
IEZCIB
.
.

+CIBXCART DS CL8 - COMMAND AND RESPONSE TOKEN
+CIBXCNID DS F - CONSOLE ID

.

.

Assembler example with CMDX control block, multi-line WTO
This is an example of a multiple-line WTO using CONNECT. The text is variable.
This code is re-entrant, if the static data has been copied into a getmained area.

.

.
* Access to CMDX parameter list

L R8,0(R1) save address of CMDX
USING CMDX,R8 Access the CMDX
.
.
.

* Put the first line of text into the TEXT field
* Set the length of the first line

LA R4,L’first line of text
STH R4,TEXTLEN

* Copy actual first line into text field
MVC TEXTTEXT(L’first line of text),first line of text

* Clear register 0 so it will not look like a CONNECT ID
XR R0,R0

* Issue WTO for the first line
WTO TEXT=((TEXTADDR,,)), X

CONSID=CMDXC4ID, X
CART=CMDXCART, X
DESC=5, X
MF=(E,LINE1)

* Save the connect ID returned from the first line WTO
ST R1,MSGID

*
* Repeat the following block until finished putting out all the lines
*
* Put the next line of text into the TEXT field
* Set the length of the next line

LA R4,L’next line of text
STH R4,TEXTLEN

* Copy actual next line into text field
MVC TEXTTEXT(L’next line of text),next line of text
WTO TEXT=((TEXTADDR,,)), X

CONNECT=MSGID, X
MF=(E,CONTINUE)

*
* Ship a "null end line" (no text) to indicate message is finished

WTO (’’,E), X
CONNECT=MSGID, X
MF=(E,NULLEND)
.
.
.

* Dynamic variables - declare as static and copy into getmained area
LINE1 WTO TEXT=((,D)), X

CONSID=, X
CART=, X
DESC=5, X
MF=L

CONTINUE WTO TEXT=((,D)), X
CONNECT=, X
MF=L

148 z/OS V2R2 MVS Authorized Assembler Services Guide

NULLEND WTO (’’,E), X
CONNECT=, X
MF=L

TEXTADDR DS 0H
TEXTLEN DC CL2’ ’
TEXTTEXT DC CL72’ ’
MSGID DS F

.

.

.
* DSECTs
* CMDX - Command exit parameter list -*

IEZVX101 CMDX

Controlling command flooding (IEECMDS macro)
The IEECMDS macro provides the same functions as the command CMDS; either
can be used to display and manipulate the commands which are attached or
waiting to be attached. It can be used to remove commands, but it cannot be used
to cancel commands which are already executing.

When the macro is executed with REQUEST=INFO, the response is returned in the
user-specified BUFFER parameter. The IEEZB889 macro maps the information
returned.

Routing commands in a sysplex (CPF macro)
The command prefix facility (CPF), whose entries are defined through the CPF
macro, allows any operator or any authorized application to enter a command
from any system in a sysplex and route that command to the appropriate system
for execution.

Note: If the installation has defined the security profile MVS.CPF.ROUTE.CHECK
in the OPERCMDS class, the issuer of the command requires sufficient authority to
the MVS.ROUTE.CMD.system to route the command to a different system in the
sysplex.

The command responses will come back to the originating console. The application
can be an installation exit, a subsystem, or an installation-written program.

CPF assigns unique installation-defined prefixes to each system so that an
application can direct a command to any system in the sysplex, just as if that
system is the one on which the application is running. For example, if your
installation is running in a poly-JES2 environment, you can use CPF to create a
unique command prefix for each copy of JES2, so that you direct JES2 commands
to a specific copy of JES2. When an application with CPF REQUEST=DEFINE in its
code initializes, CPF adds to the CPF table the prefix for the system to which the
application will direct commands. The CPF table is shared by all systems in the
sysplex. Also, by issuing the CPF macro, an application can modify or delete
entries in the table.

CPF also ensures that two or more systems do not have the same or overlapping
prefixes, which helps prevent confusion. To ensure the integrity of your command
prefixes, use CPF for as many prefix definitions as possible in your system.

Chapter 7. Communication 149

Assigning a prefix
To define a valid prefix that will not conflict with existing prefixes, adhere to the
following guidelines:
v Define a prefix as a 1- to 8-character string.
v Do not use a prefix that is a command, an abbreviation of a command, or a

command invocation; for example:
– “D” conflicts with MVS commands such as DISPLAY
– “$TP1,Q=A” conflicts with a command invocation.

v Do not define a prefix that is either a subset or a superset of an existing prefix
with the same first character. For example, if command prefix $XYZ already
exists, command prefixes $, $X, and $XY are subsets of, and conflict with the
original prefix. Similarly, prefixes $XYZ1 and XYZ will also conflict with
existing prefix $XYZ because they are supersets with the same first character.
You can, however, define command prefixes XYZ, YZ, or Z, because they do not
start with the same first character as the existing prefix. You can see which
prefixes already exist by issuing the DISPLAY OPDATA command.

v Define a prefix using characters from the set of valid characters listed in
Table 19. This list is not exhaustive as the CPF macro will allow any hex value
from X'41' to X'FE'.

Table 19. Valid Character Set

Character Set Contents

Alphanumeric alphabetic
numeric

Uppercase A through Z
0 through 9

National (See note) “at” sign
dollar sign
pound sign

@, $, # (Characters that can be
represented by hexadecimal values
X'7C', X'5B', and X'7B')

Special

comma,
period,
slash,
apostrophe,
left parenthesis,
right parenthesis,
asterisk,
ampersand,
plus sign,
hyphen,
equal sign,
cent sign,
less than sign,
vertical bar,
exclamation point,
semi-colon,
percent sign,
underscore,
greater than sign,
question mark,
colon,
quotation marks

,
.
/
'
(
)

*
&
+
-
=
¢
<
|
!
;
%
_
>
?
:
"

Note: The system recognizes the following hexadecimal representations of the U.S.
National characters: @ as X'7C', $ as X'5B', and # as X'7B'. In countries other than
the U.S., the U.S. National characters represented on terminal keyboards might
generate a different hexadecimal representation and cause an error. For example, in
some countries the $ character may generate a X'4A'.

150 z/OS V2R2 MVS Authorized Assembler Services Guide

Persistence of the prefix
The FAILDISP keyword on the CPF macro defines what the system will do on
behalf of the prefix owner when the subsystem on which the command will be
processed terminates:
v If you specify FAILDISP=RETAIN, the system will keep the prefix in the CPF

table at all times, even if the subsystem owning the prefix terminates. In this
case, you can decide what to do with the command prefix. You have three
options:
– Perform no action
– Delete the prefix from the CPF table (REQUEST=DELETE)
– Transfer ownership of the prefix to a system or subsystem in the sysplex

using the REDEFINE keyword.
If you do nothing, subsequent use of the command prefix will cause an error
message. If you redefine the owner of the command prefix, you must update the
CPF table to reflect the new owner.

v If you specify FAILDISP=PURGE, the system will delete the command prefix
from the CPF table.

v If you specify FAILDISP=SYSPURGE, you will need to delete the command
prefix from the table when either the subsystem owning the command prefix
goes through end-of-memory (EOM) termination, or you remove from the
sysplex the system to which CPF directs commands.

What is an extended MCS console?
An extended MCS console is a program that acts as a console. It can issue MVS
commands, and receive command responses, unsolicited message traffic, and the
hardcopy message set. There are two ways to use extended consoles:
v Interactively through IBM products such as TSO/E and Netview. See the

documentation on those products for more information.
v Through an application program that you write. Examples of application

program uses are:
– Receiving automated message traffic
– Defining a unique presentation service for messages to consoles

This information discusses how an application program can establish itself as an
extended MCS console.

To establish a program as an extended MCS console, the program must issue the
MCSOPER macro. Once activated as an extended MCS console, a program can
receive messages and command responses by issuing the MCSOPMSG macro, and
can issue commands by issuing the MGCRE macro. Unlike a standard MCS
console, the extended MCS console can control which command responses it
receives.

To receive messages and command responses, a program must issue the
MCSOPMSG macro. Parameters on the MCSOPMSG macro enable a program to
receive only specific types of messages. “Receiving messages and command
responses, and issuing commands” on page 158 describes some of the parameters
on the MCSOPMSG macro.

Chapter 7. Communication 151

To receive the hardcopy message set, a program must issue the MCSOPER macro
with REQUEST=ACTIVATE and the HARDCOPY attribute specified in the
OPERPARM parameter list. “Receiving the hardcopy message set” on page 161
describes how to do this.

To issue commands, a program must issue the MGCRE macro. For more
information on the MGCRE macro, see “Issuing operator commands from a
program (MGCRE macro)” on page 145.

In a sysplex, an extended console application can receive messages from any
system or systems in the sysplex, or can send commands to any system or systems
in the sysplex. There is no system-imposed limit on the number of extended MCS
consoles.

Extended MCS consoles will consume system resources, whether active or inactive.
Once an extended MCS console is activated, the console definition remains for the
life of the sysplex, even if it is later deactivated. IBM recommends care in the
definition and use of extended MCS consoles, because an application that makes
inefficient use of extended MCS consoles can cause system performance
degradation. Specifically, an application should make use of existing extended MCS
consoles, rather than defining new consoles. With z/OS V1R7, you can remove the
definition of an unneeded EMCS console by using the sample program IEARELEC,
which is shipped in SYS1.SAMPLIB. See z/OS MVS Planning: Operations for a
description of this program and how to it.

If the application does not need to receive messages from all systems in the sysplex
(or only some of the systems in the sysplex), the MSCOPE of the console can be
changed to reduce the amount of message traffic that the console receives.

See “Example of managing an extended MCS console session” on page 163 for
sample code for an extended MCS console. Sample code that shows how to use an
extended MCS console resides in IEAEXMCS in SYS1.SAMPLIB.

This information explains how to:
v Activate a program as an extended MCS console
v Receive messages and command responses
v Receive the hardcopy message set
v Issue commands
v Deactivate an extended MCS console.

You can use a security product such as RACF to protect the use of extended MCS
consoles. For more information on using RACF for this purpose, see z/OS MVS
Planning: Operations.

This information refers to several data areas and some of their fields. The data
areas and their mapping macros are:

Data Area Mapping Macro

MDB IEAVM105

MDB prefix IEAVG132

MCSOP IEZVG111

MCSCSA IEAVG131

152 z/OS V2R2 MVS Authorized Assembler Services Guide

All of these data areas and their fields are documented in z/OS MVS Data Areas in
the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Activating an extended MCS console
The MCSOPER macro with REQUEST=ACTIVATE defines and activates an
extended MCS console to the system. When control returns to the calling program,
the location specified on the CONSID parameter and the console status area in
MCSCSA contain a 4-byte console ID that represents the activated extended
console. You must specify the address of a message ECB on the MSGECB
parameter of the MCSOPER macro. MSGECB identifies the ECB that the system is
to post when a message is queued for the extended MCS console. Issue
MCSOPMSG when an ECB is posted. MCSOPMSG returns a pointer to the queued
message so that you can locate it. See “Specifying console attributes” for
information on specifying console attributes.

Note: For system performance reasons, IBM recommends that the message ECB be
in common storage.

When you activate an extended MCS console, the system creates a data space to
store messages. There is one data space for every address space with an active
extended MCS console. Therefore, if an address space has two active extended
MCS consoles, both share the same message data space. Note that the system
deletes this data space upon deactivation of all the extended MCS consoles in the
address space.

When activating an extended MCS console, you need to specify its attributes and
determine how you want to store messages.

Specifying console attributes
When activating the extended console, you need to specify its attributes, such as its
command authority, routing codes, message data space size, and whether it is to
receive the hardcopy message set. These attributes are known as operator
parameters. You can specify these attributes, or operator parameters, in one of
three ways:
1. In the OPERPARM segment of the user profile of a security product, such as

RACF
2. In data area MCSOP, mapped by IEZVG111, when you specify the OPERPARM

parameter on the MCSOPER macro
3. Through system defaults.

The system checks for the attributes in the order listed above. First it looks in the
user profile of the console defined through your security product. The profile
contains the address of the OPERPARM parameter list. Then it checks the MCSOP
data area. If you did not specify the OPERPARM parameter on MCSOPER, the
system applies default values for the console attributes, also defined in the MCSOP
data area.

If you choose to specify attributes in MCSOP, set the appropriate MCSOP fields,
and specify the OPERPARM parameter on the MCSOPER macro when you activate
the extended console.

If you choose to specify attributes through your security product's user profile, see
the security product's documentation for information on specifying attributes in
the OPERPARM segment. z/OS MVS Planning: Operations contains information on
using a RACF user profile to identify operator parameters.

Chapter 7. Communication 153

http://www.ibm.com/systems/z/os/zos/bkserv/

Note: When the RACF OPERCMDS class is not active, the OPERPARM segment
on the RACF user profile is ignored.

You can override the console attributes specified in the user profile of the security
product by turning on bit MCSOVRDY in the MCSOP data area.

The following table summarizes the attributes. For information on the options for
each field, see the MCSOP description in z/OS MVS Data Areas in the z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Operator Parameter MCSOP Field
Name

OPERPARM
Subkeyword (in
OPERPARM segment
of security product)

Default Meaning

Authority MCSOAUTH AUTH INFO Command authority

Routing codes MCSORCDT ROUTCODE NONE Routing codes

Message level MCSOMLVL MLEVEL ALL Levels of messages

Message format MCSOMFRM MFORM M Message format for display

Message scope MCSOMSFG MSCOPE *ALL System message scope in a sysplex

Command scope MCSOCSNM CMDSYS Current system Command scope in the sysplex

Monitor information MCSOMSGT MONITOR NONE Receive status messages about
given system events

Log command responses MCSOLOGC LOGCMDRESP SYSTEM Logging of command responses

Storage MCSOSTOR STORAGE 1 Limit of storage in megabytes
(MB) used for message queuing

DOM MCSODOM DOM NORMAL (see
attribute)

Whether the console receives
delete operator messages (DOM)

Extended MCS console key MCSOKEY KEY NONE 1- to 8-byte name used on the
DISPLAY CONSOLES command
to identify extended MCS consoles

Automated messages MCSOAUTY
MCSOAUTN

AUTO NO Whether the extended console
receives messages that are eligible
for automation

Hardcopy MCSOHDCY
MCSOHDCN

HC NO Whether the extended console
receives the hardcopy message set

Receive messages directed to
console id zero

MCSOINT INTIDS N Whether the console receives
messages directed to console id
zero.

Receive messages directed to
unknown console ids

MCSOUNKN UNKNIDS N Whether the console receives
messages directed to unknown
console ids, such as one-byte id.

The attributes have the following meanings:

Authority
Specifies the command authority for the console. MVS determines command
authority by command groups defined as options for AUTH as follows:

INFO Informational commands

SYS System control commands

IO I/O control commands

CONS Console control commands

ALL Informational, system, I/O control, and console control commands

154 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

MASTER
Master authority commands

INFO is the lowest command authority. SYS, IO, CONS, and ALL are
equivalent in authority. MASTER is the highest command authority.

Command group authority includes commands from groups with lower
authority. For example, AUTH(SYS) allows the user to issue informational
commands (INFO) as well as system control commands from the console.
AUTH(INFO) is the default.

Routing codes
Specifies the routing codes (1 - 128) in effect for the console. MVS directs
messages with the defined routing codes to the console. You can also specify:

ROUTCODE(ALL)
which sends all messages defined by routing codes to the console, or

ROUTCODE(NONE)
which doesn't use routing codes as criteria for routing messages to the
console, and is the default.

Message level
Specifies the message level for the console, which indicates the type of message
to be sent to the console. MVS distinguishes between kinds of message levels
defined as options for LEVEL as follows:

R Write-to-operator with reply (WTOR) messages, which might demand
an immediate reply.

I System failure and immediate action messages (descriptor codes 1 and
2), which indicate a serious error or that a task is awaiting a requested
operator action.

CE Critical eventual action messages (descriptor code 11), which indicate
that an eventual action of critical importance is requested on the part
of the operator.

E Eventual action messages (descriptor code 3), which request an
eventual action that does not require immediate operator attention.

NB Broadcast messages, which are messages normally sent to every active
console regardless of the routing code you assigned to the console.
Specifying LEVEL(NB) indicates that the console is not to receive
broadcast messages.

IN Informational messages, which generally indicate system status. Most
messages are informational.

ALL All messages, which indicate that all messages, including broadcast
messages, appear on the console and is the default.

Message form
This parameter is necessary only if you are coding a presentation service and
want to honor MFORM requests. If an MFORM value has been specified for
this extended MCS console, you can find the value in the MCSCSA. The
MCSCSA reflects the values specified in MCSOP. The system does not add a
system name, job name, or time stamp into the message text. You can find
those values in the MDB, if you want to include them as part of the message
that your program presents.

Chapter 7. Communication 155

Message scope
Identifies the system or systems in a sysplex from which the specified console
will receive unsolicited messages.

The default is *ALL, which indicates that messages from the local system as
well as all other systems in the sysplex appear on the console.

Command scope
Defines the system in a sysplex where you want to send commands entered on
this console for processing. The default is an asterisk (*), which indicates that
commands entered on the console are processed on the local system where the
console is defined.

Monitor information
Specifies that you want messages sent to this console when system events,
such as a job start or end or a TSO user logon or logoff, occur. MVS
distinguishes among the following information, which you can specify as
options for the MONITOR request:

JOBNAME
Specifies that the name of the job is given in job status messages
whenever a job starts or ends.

STATUS
Specifies that data set names and volume serial numbers are given in
status messages whenever data sets are freed.

SESS Specifies that the time sharing option extensions (TSO/E) user ID is
given in session status messages whenever the TSO/E session begins
and ends.

With JOBNAME or SESS, you can add a time stamp (-T).

Log command responses
Specifies whether the system logs messages that are responses to commands
directed to the console. SYSTEM indicates that the value or default for
HARDCOPY CMDLEVEL in CONSOLxx determines whether the system logs
the command responses for the console, and is the default. NO indicates that
the system does not log command responses for the console.

Storage
Specifies the limit of storage in megabytes used for message queuing. The
maximum is 2048 megabytes. When the console is activated, the system sets
the limit. 1 megabyte provides storage for about 250 message lines, and is the
default.

DOM
Specifies whether the console receives delete-operator messages (DOMs).
NORMAL indicates that the system attempts to queue all appropriate DOMs to
the console, which is the default. ALL indicates that MVS queues all DOMs in
the sysplex to the console. The application program that activates the console
must indicate which DOMs it wants to receive based on its handling of held
messages (that is, action messages and WTORs). If the MCSOPER ACTIVATE
request specifies MSGDLVRY=NONE, the DOM attribute is forced to
DOM=NONE.

Extended console key
Specifies a 1- to 8-byte character name used in the DISPLAY
CONSOLES,KEY=keyvalue command. DISPLAY CONSOLES,KEY=keyvalue
displays information for all consoles with that key. Thus, you can define a key
that operators can use in the command to display information about all

156 z/OS V2R2 MVS Authorized Assembler Services Guide

extended MCS consoles in the system or sysplex. The default value is NONE.
For more information on the DISPLAY command, see z/OS MVS System
Commands.

Automated messages
Specifies whether the console is to receive messages that are eligible for
automation. Messages are flagged as automatable by specifying
AUTO(YES/token) on the MPFLSTxx member of SYS1.PARMLIB. See z/OS
MVS Initialization and Tuning Reference for more information on the message
processing facility (MPF). Options are YES, which means the console receives
messages that are eligible for automation, or NO, which means the console
does not receive messages that are eligible for automation. NO is the default.

Hardcopy
Specifies whether the console is to receive the full hardcopy message set.
Options are YES, which means the console receives the hardcopy message set,
or NO, which means the console does not receive the hardcopy message set.
Any route codes specified for a console do not apply for hardcopy messages,
so users should be aware that the console will receive all hardcopy messages,
regardless of their specific route code, when this option is set to YES. NO is the
default. See z/OS MVS Planning: Operations for more information about the
hardcopy message set.

Receive messages directed to console id zero
Whether the specified console can receive messages that are directed to console
id zero. These messages are usually the command responses for internally
issued commands.

Y The specified console is to receive these messages.

N The specified console is not to receive these messages. This is the default
value.

Receive messages directed to unknown console ids
Whether the specified console can receive messages that are directed to
"unknown" console ids. These ids are one-byte ids which the system cannot
resolve.

Y The specified console is to receive these messages.

N The specified console is not to receive these messages. This is the default
value.

Storing messages directed to an extended MCS console
The system stores messages differently, depending on how you will retrieve them.
To retrieve a stored message, do the following:
1. Issue the MCSOPMSG macro to obtain the address of the MDB, which is where

the system stores messages for an extended MCS console.
2. Use assembler instructions to locate and extract the message from the MDB.

MCSOPER provides the following options for delivery of messages:
v If you want MCSOPER to queue messages to and extract messages from the

storage area on a first-in first-out basis, specify MSGDLVRY=FIFO on
MCSOPER.

v If you want to use the search arguments CMDRESP, CART, and MASK when
issuing the MCSOPMSG macro with the REQUEST=GETMSG parameter, specify
MSGDLVRY=SEARCH on MCSOPER.

v If you do not want to receive messages on a console, specify
MSGDLVRY=NONE on MCSOPER. MSGDLVRY=NONE requires that you

Chapter 7. Communication 157

retrieve messages from either the subsystem interface or an MPF exit, rather
than from the message data space. MSGDLVRY=NONE is useful if you want to
issue commands from a console but do not want to receive messages on a
console. The console ID identifies the particular console's messages on the
subsystem interface or MPF exit. For more information on MPF exits, see z/OS
MVS Installation Exits.

Controlling message traffic directed to an extended MCS console
This information explains how to control the number of messages queued to an
extended console and the size of auxiliary storage that an extended console can use
for the message data space.
v The STORAGE field in MCSOP specifies the size of the message data space

created for the extended console. The range of the STORAGE field is from 1 to
2048, where 1 represents 1 megabyte of data space storage and 2048 represents
2048 megabytes, or 2 gigabytes, of data space storage. The default for STORAGE
is 1. The number of messages going to your data space is limited by storage
size. If you want to further control the number of messages going to your data
space, use the QLIMIT parameter.

v The QLIMIT parameter on the MCSOPER macro specifies the maximum number
of messages queued to an extended MCS console. The value can range from 1 to
2147483647 (2 billion). The default for QLIMIT is 2147483647. Taking the default
might cause you to run out of storage in the message data space.

v The ALERTPCT parameter on the MCSOPER macro specifies a percentage of the
QLIMIT value. When the number of messages queued to an extended MCS
console exceeds the number represented by this percentage, the system alerts the
extended MCS console by posting an ECB, identified by the ALERTECB
parameter. For example, if the QLIMIT value is 2000, and the ALERTPCT value
is 50, the system alerts the extended MCS console user when the number of
messages in the message data space exceeds 50%, or 1000 messages, of the
QLIMIT.

Receiving messages and command responses, and issuing
commands

Once your extended console is activated, you can use it to perform the following
functions:
v Receive unsolicited messages
v Receive command responses
v Receive the hardcopy message set
v Issue commands.

Receiving messages and command responses
Messages are sent to an extended MCS console when the system issues the WTO
and WTOR macros. A message data block (MDB) contains the message delivered to
the extended console. If the message is too long for one MDB, the MDB prefix area
contains a pointer to the next MDB, where the message text continues. If multiple
messages are sent to an extended MCS console, they will be placed into separate
MDBs, requiring the issuance of separate MCSOPMSG macros to retrieve them.
You can code a loop around the MCSOPMSG invocation so that the macro can
retrieve messages currently queued to the extended MCS console. Exit the loop
when there are no more messages (MCSOPMSG RC=8,RSN=0).

Once the message ECB of the extended MCS console has been posted, you can
receive messages, and free storage for new messages by issuing the MCSOPMSG

158 z/OS V2R2 MVS Authorized Assembler Services Guide

macro with the REQUEST=GETMSG option. You can receive messages by
specifying certain message types. The CMDRESP option of MCSOPMSG allows
you to retrieve the following messages:
v A command response (CMDRESP=YES)
v An unsolicited message or DOM (CMDRESP=NO).

If you choose to receive a command response, you can further specify the message
command and response token (CART), which associates a response with a
command. You can also specify a CART with a mask. Both the CART and mask are
user-defined values originally specified on the MGCRE macro. A CART allows you
to specify your selection criteria when retrieving command responses. A mask is a
value that is compared to a CART with the logical AND instruction to broaden
that selection criteria. For example, if the CART value is STR10001, MCSOPMSG
searches for messages only with a CART value of STR10001. If the mask is
X'FFFFFFFF00000000', MCSOPMSG uses the logical AND instruction to compare
the two values and use the result as the search criteria. In this case, MCSOPMSG
retrieves any command responses having STR1 as the first four characters of the
CART.

If you do not specify CMDRESP, MCSOPMSG retrieves the next message in the
queue on a first-in first-out basis.

If processing is successful, MCSOPMSG returns an address in GPR1 and an ALET
in AR1; the GPR1/AR1 pair contains the address of the MDB. User applications are
expected to copy the MDB from the message data space. On the next invocation of
MCSOPMSG, the MDB in the message data space is deleted and returned back to
the system, and either the next MDB will be returned to the caller, or a return and
reason code will be given indicating that no more MDBs are currently queued.

You can also specify how the extended MCS console receives messages by
specifying the MSGDLVRY parameter on the MCSOPER macro. MSGDLVRY
enables you to request messages on a first-in-first-out basis (MSGDLVRY=FIFO) or
by search arguments (MSGDLVRY=SEARCH) that you specify on MCSOPMSG.
You can also request that no messages be queued to the extended MCS console
(MSGDLVRY=NONE).

You need to understand the structure of the MDB to retrieve the message from it.

What is the message data block (MDB): The MDB is a data area that contains
either a message or a DOM directed to an extended MCS console, and any
information related to that message. It also contains a prefix area mapped by
mapping macro IEAVG132. This area points to any subsequent MDBs for a given
message. If there are no subsequent MDBs, this area contains a zero.

Messages reside in MDBs, which are put into a data space created when a program
issues the MCSOPER macro to establish itself as an extended MCS console. When
a message is sent to an extended MCS console, the system places the message in
an MDB, where the message stays until the extended MCS console program issues
the MCSOPMSG macro to locate the message.

If a DOM is directed to a previously issued message, the system creates a separate
MDB for the DOM. The MDBGDOM field in the MDB identifies the MDB as a
DOM MDB. The MDBDOMFL field indicates whether the console specified
DOM(NORMAL) or DOM(ALL). If the console specified DOM(NORMAL),
MDBGMID in the DOM MDB matches the same field in the message MDB. If the

Chapter 7. Communication 159

console specified DOM(ALL), the DOM field values in the control program object
indicate which message or messages this DOM is to delete. A single DOM MDB
can delete more than one message.

Figure 28 illustrates the structure of an MDB for a message that requires more than
one MDB.

The MDB generally contains three objects, each beginning with the length and
MDB type specific to each object. To locate the objects, use the address of the MDB
returned by MCSOPMSG. The object type identifies the object as a general, control,
or text object. Within each object is a field that contains the length of the particular
object. MDBGLEN contains the length of the general object, MDBCLEN contains
the length of the control program object, and MDBTLEN contains the length of the
text object.

To find the first object, add the length of the header to the MDB address. The
object type will tell you whether it is a general, control, or text object. To find the
end of the first object, add the length of that object to the end of the header.

You can find subsequent objects by identifying the end of the previous object, and
adding the length of the next one. Compare the end value to the end of the MDB
length to ensure that you are still looking within the MDB.

You can find the end of the MDB by adding the total length of the MDB, which is
contained in the first field of the header, to the address of the MDB.

The three MDB objects are:

MDB prefix
(IEAVG132)

MDB prefix
(IEAVG132)

MDBPNEXT

MDB #1
(IEAVM105)

MDB #2
(IEAVM105)

General Object

R1,AR1

General Object

Control object Text object
#N+1

Text object #1
Text object

#N+2

Text object #2

Text object #N

MDB #1 has N objects MDB #2 has M objects

Text object
#N+M

Figure 28. MDB Structure

160 z/OS V2R2 MVS Authorized Assembler Services Guide

v The general object contains information about the message or DOM. It contains a
message ID, time stamp, and indication of whether the MDB holds a WTO,
WTOR, or a DOM. Each MDB has one general object.

v The control program object contains information about the message or DOM that
is specific to MVS. If the message is a WTO or WTOR, the control program
object contains routing codes, message level, job name, and other message
information. If the MDB contains a DOM, the control program object contains
the ASID, jobstep TCB, or system ID that deleted the message. Each MDB has
one control program object.

v The text object contains the message text, which is variable in length. Each line
of a message is represented by one text object. If the MDB cannot hold all text
objects for a specific message, any remaining text objects will be placed in one or
more additional MDBs. The MDB prefix points to the next MDB. That MDB will
contain only the general object and the remaining text objects. If multiple
messages are delivered, each message will be placed in a separate MDB, which
must be retrieved via MCSOPMSG. These separate MDBs may, as before, consist
of one MDB, or several MDBs chained together.

The general objects and the control program objects appear anywhere in the first
MDB, but text objects are sorted in order within and among MDBs.

If the system sends a DOM to an extended MCS console, the MDB contains only
two objects: the general object and the control program object.

Receiving the hardcopy message set
The hardcopy message set represents those messages that can be queued to the
system log or OPERLOG. See z/OS MVS Planning: Operations for information about
controlling and modifying the hardcopy message set definition.

Extended MCS consoles can also receive the hardcopy message set. To request that
an extended MCS console receive the hardcopy message set, issue the MCSOPER
macro with REQUEST=ACTIVATE, and specify the HARDCOPY attribute in the
OPERPARM parameter list. “Specifying console attributes” on page 153 describes
how to specify operator parameters.

You can also request that an extended MCS console receive the full hardcopy
message set from all the systems in a sysplex, by specifying the MSCOPE=*ALL
console attribute. Any route codes specified for a console do not apply for
hardcopy messages, so users should be aware that the console will receive all
hardcopy messages, regardless of their specific route code. Note that this might
cause performance problems. The default for MSCOPE in a sysplex environment is
ALL systems.

Issuing commands
To issue commands from an extended MCS console, issue the MGCRE macro with
the CONSID or CONSNAME parameter. Specify a 4-byte console ID on the
CONSID parameter or a 2- through 8-byte console name on the CONSNAME
parameter. MCSOPER returns the CONSID parameter when you activate the
extended MCS console. CONSNAME must be the same value you specified on the
NAME parameter of MCSOPER. This console ID or name identifies the console
that will receive responses to the commands you issue with MGCRE.

Chapter 7. Communication 161

NOT Programming Interface Information

The CMDFLAG=TSO option allows TSO to use MGCRE instead of MGCR.
CMDFLAG=TSO causes the CONSID value in the parameter list to be treated as a
TSO identifier, instead of a console ID.

Note: This option allows TSO to use MGCRE instead of MGCR.

End NOT Programming Interface Information

Specify a value for the CART parameter if you want to identify the response
message for a particular command, or if you want to retrieve response messages
with the MCSOPMSG macro based on CARTs or masks.

For more information on the MGCRE macro, see “Issuing operator commands
from a program (MGCRE macro)” on page 145.

What to do if message queuing stops
When any of the following conditions occur, message queuing stops, and the
system posts an ECB.
v No more storage remains in the message data space. The size of the storage area

was specified in the STORAGE field of MCSOP.
v The maximum number of messages was reached in the message data space. The

maximum number was specified on the QLIMIT parameter of the MCSOPER
macro.

The ALERTECB parameter on the MCSOPER macro specifies the ECB to be posted
when message queuing stops.

When MCSOPER posts the ECB, check the MCS console status area, MCSCSA to
determine why queuing has stopped. If the message data space is full, the
MCSCMLIM field contains a 1. If the maximum number of messages has been
reached, the MCSCDLIM field contains a 1. In either case, to start message queuing
again, retrieve messages from the MDB by issuing the MCSOPMSG macro.

Issue the MCSOPMSG macro with the REQUEST=GETMSG parameter a sufficient
number of times to retrieve enough messages to meet the QRESUME percentage
specified on the MCSOPER macro. For example, if on MCSOPER you defined
QLIMIT as 1000 messages, and QRESUME at 50%, queuing stops when the
message storage area holds 1000 messages and the system is queuing one more
message into the area. You can restart queuing in one of two ways:
v Issue MCSOPMSG REQUEST=GETMSG 500 times so that the area holds 500

messages, or 50% of 1000. Queuing automatically resumes when the area holds
50% of the QLIMIT.

v Issue MCSOPMSG REQUEST=GETMSG any number of times to reduce the
number of queued messages, then issue MCSOPMSG REQUEST=RESUME to
restart queuing. Queuing will continue until you again hit the QLIMIT.

The system does not resume queuing if queuing stopped because the message data
space reached the storage limit as defined for the storage attribute in MCSOP, a
security product's user segment, or the system default.

Occasionally, the ALERTECB can be posted for one of the following conditions as
well:

162 z/OS V2R2 MVS Authorized Assembler Services Guide

v An internal queuing error has occurred and message queuing has stopped. The
MCSCSA internal error field will contain a 1. Issue MCSOPMSG
REQUEST=RESUME to restart queuing.

By issuing MCSOPMSG REQUEST=RESUME, you can resume queuing to the
message data space after any abend that suspends system message queuing, or
after the failure of recovery routines invoked. Some or all messages currently
queued might be lost. REQUEST=RESUME enables you to resume queuing
without having to retrieve enough messages to reach the QRESUME percentage.

Deactivating extended MCS consoles
To deactivate an extended MCS console, issue the MCSOPER macro with the
REQUEST=DEACTIVATE option.

There are certain instances where deactivation will be performed automatically by
the system. For example: when the address space ends due to memory
termination, or when a system in a sysplex is being partitioned.

Switching to another console
Through MCSOPER with REQUEST=DEACTIVATE and ABTERM=YES, you can:
v Switch processing from an extended MCS console to another active MCS or

extended MCS console
v Deactivate an active console.

Switching an extended MCS console to an alternate console allows processing to
continue without interruption, and is useful if a program representing an extended
MCS console abnormally ends, and your installation needs to have its processing
taken over by another console. You must specify the console ID of the console to
be deactivated; for example:
MSCOPER REQUEST=DEACTIVATE,CONSID=(R4),ABTERM=YES

Before deactivating a console, you must define a valid alternate group for the
console through operator attributes. See “Specifying console attributes” on page
153 for more information on operator attributes.

Removing extended MCS consoles
With z/OS V1R7, you can remove the definition of an unneeded EMCS console by
using the sample program IEARELEC, which is shipped in SYS1.SAMPLIB. See
z/OS MVS Planning: Operations for a description of this program and how to it.
Removing these console definitions allows you to reuse the console ID assigned to
the EMCS console, although IBM continues to recommend using a console name
rather than a console ID for console communications.

An EMCS console can be deactivated on a downlevel system, but can only be
removed on a z/OS V1R7 system after it has been deactivated. Once removed, the
console ID can be reused by activating an EMCS console on a V1R7 system.

Example of managing an extended MCS console session
The following example shows an overview of how an application might use MVS
services to set up and use an extended MCS console. Additional processing that a
typical application might do, such as process a command response, is not shown
but is represented by three stacked dots within the example. The example shows
an application that:
v Activates an extended MCS console

Chapter 7. Communication 163

v Issues a command from the console
v Waits until the system queues a message, the command response, to the console
v Receives the message from the console
v Deactivates the console.

* 1 - Activate an extended MCS console *

MCSOPER REQUEST=ACTIVATE
NAME=CONS1 CONSOLE NAME
CONSID=(2) CONSOLE ID
TERMNAME=(4) TERMINAL NAME
MCSCSA=(3) CONSOLE STATUS AREA
MCSCSAA=(3) ALET FOR CONSOLE STATUS AREA
MSGECB=MESSAGE_ECB MESSAGE ECB...

**
* 2 - Issue a command from the console *
**

XC TEXTAREA,TEXTAREA CLEAR THE COMMAND AREA
L R1,L’CMD OBTAIN THE LENGTH OF THE COMMAND
STH R1,TEXTLEN SAVE THE LENGTH IN THE COMMAND AREA
MVC TEXTCMD(L’CMD),CMD PUT THE COMMAND IN THE COMMAND AREA
MGCRE TEXT=TEXTAREA TEXTAREA CONTAINS THE COMMAND

CONSID=(2) CONSOLE ID
CART=USER_DEF_CART COMMAND/RESPONSE TOKEN
MF=(E,LISTADDR) ADDRESS OF PARAMETER LIST...

DS 0F
TEXTAREA DS 0CL128 COMMAND AREA
TEXTLEN DS H LENGTH OF COMMAND
TEXTCMD DS CL126 THE COMMAND
CMD DC C’DISPLAY EMCS EXAMPLE COMMAND’...

* 3 - Wait for the system to queue the command response *
* to the console *

WAIT ECB=MESSAGE_ECB WAIT FOR COMMAND RESPONSE...
**
* 4 - Retrieve the command response so it can be processed *
**

MCSOPMSG REQUEST=GETMSG
CONSID=(2) CONSOLE ID

...

* 5 - Deactivate the extended MCS console *

MCSOPER REQUEST=DEACTIVATE
CONSID=(2) CONSOLE ID

...
MESSAGE_ECB DS F
USER_DEF_CART DS CL8...

Figure 29. Managing an Extended MCS Console Session Overview

164 z/OS V2R2 MVS Authorized Assembler Services Guide

The following description provides additional detail about the example. The
numbers in each of the following steps correspond to the numbers in the comment
blocks above.
1. MCSOPER activates the extended MCS console named CONS1. The system

returns the following values to the application:
v In register 2, the address of the 4-byte console identifier
v In register 3, the address of the console status area
v In AR3, the ALET for the address space or data space that contains the

console status area.

The MSGECB parameter identifies the ECB that the system is to post when
there is a message queued for the extended MCS console.

2. MGCRE issues a command from the extended MCS console. The CART
parameter identifies a user-defined token that the command processor is to
return with any response related to the command being issued.

3. In this example, the application cannot continue processing until it receives a
command response. Therefore, the application waits on the ECB. After the
system issues the command response the ECB gets posted and the application
can continue processing.

4. MCSOPMSG retrieves the message that is queued to the extended MCS console
and places it into a message data block (MDB). In this case, the message is the
command response. The MDB also contains the command response token the
application provided on the CART parameter of the MGCRE macro. The
system returns the address of the MDB in register 1 and the ALET for the
address space or data space where the MDB is located in AR1. For more
information on the MDB, see “What is the message data block (MDB)” on page
159. When an application has issued multiple commands and expects command
responses, the command response token enables the application to associate
each response with the corresponding command.

5. The application issues MCSOPER REQUEST=DEACTIVATE to deactivate the
extended MCS console.

SYS1.SAMPLIB contains an additional example of an extended MCS console
application. The example is in IEAEXMCS.

Chapter 7. Communication 165

166 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 8. Listening for system events

The event notification facility (ENF) allows an authorized program to listen for the
occurrence of a specific system event. For example, a program could use ENF to
listen for a software record being written to the logrec data set. When the system
writes the record to the logrec data set, control passes to a specified listener user
exit routine. For a list of the system events that an authorized program can listen
for, see “ENF event codes and meanings” on page 176.

To listen for a system event, use the ENFREQ macro with the LISTEN option to
specify:
v The specific event for which you would like to listen
v The listener user exit routine that is to receive control after the specified event

occurs
v Address of an ENF Listener filter block (for signals that support filter blocks)
v An optional DTOKEN to identify your listen request when ENF returns control
v Any parameters that you would like to pass
v Whether the listener user exit routine should end when the listener's task or

address space ends
v Whether you would like the listener user exit routine to run in the listener's

address space (SRB mode).

In addition to issuing ENFREQ, you must also install your listener user exit
routine in common storage if the listener user exit routine is not an SRB exit.

To stop listening for a system event, use ENFREQ with the DELETE option to
specify:
v The specific event for which your program was listening
v The DTOKEN that you received on the original listen request.

The information describe how to establish a listen request and code a listener user
exit routine. For the complete syntax of the ENFREQ macro, see z/OS MVS
Programming: Authorized Assembler Services Reference EDT-IXG.

Establishing a listen request
Each event is identified by a decimal event code. To specify which event you
would like to listen for, set the CODE parameter on the ENFREQ macro equal to
the desired event code. For a list of the event codes and their corresponding
events, see “ENF event codes and meanings” on page 176.

Qualifying events
For certain types of events, you can use the QUAL and the QMASK parameters on
the ENFREQ macro to more specifically define the event for which you would like
to listen. For example, if you were listening for event code 37 without using the
QUAL and QMASK parameters, you would receive notification when any SMF
accounting-related event occurred. By using the QUAL and QMASK parameters,
however, you can specify that you want to receive notification only when certain
SMF accounting-related events occur. For instance, you can request notification
only when SMF is initialized.

© Copyright IBM Corp. 1988, 2016 167

The QMASK parameter, in combination with the QUAL parameter, specifies the
bytes of the four-byte qualifier that ENF uses to further define the event. The
listener user exit routine receives control only when a system event occurs that
matches the characteristics specified by the QMASK bytes of the QUAL field. The
default for QMASK is QMASK=NONE.

For example, if QMASK=BYTE1, the listener user exit routine receives control
when an event with characteristics described by the first byte in the qualifier
occurs. Because QMASK=BYTE1, ENF ignores information in bytes 2 through 4.

You can specify the following possible QMASK values:

BYTE1
First byte

BYTE2
Second byte

BYTE3
Third byte

BYTE4
Fourth byte

ALL All four bytes

NONE
No bytes

If you specify ALL or NONE, do not code any other QMASK values. If you do not
specify any QMASK values, the default is NONE.

The qualifiers that are valid depend on the system event for which you are
listening. For a list of QUAL values see “ENF event codes and meanings” on page
176.

QUAL example
The following three figures explain how an authorized program can use QUAL
and QMASK with event code 36 to more specifically define the type of event code
36 for which the program would like to receive notification from ENF. Event code
36 specifies notification when a software record is written to the logrec data set or
logrec log stream. To limit the records that the authorized program receives
notification about, the authorized program specifies one of the qualifier values
listed in “ENF event codes and meanings” on page 176. Assume that the following
have been defined for use by the program in these qualifier examples:
ENF36PGMCHECK EQU X’42’ Indicates a program check occurred
ENF36MACHCHECK EQU X’48’ Indicates a machine check occurred

In Figure 30 on page 169, the system writes a record when a program check occurs
and when a machine check occurs. Because the listening program does not specify
any QUAL or QMASK values, ENF passes control to the listener user exit routine
when the system writes either of the software records to the logrec data set or
logrec log stream.

168 z/OS V2R2 MVS Authorized Assembler Services Guide

To specifically define which ENF signals the program should receive, you must
code QUAL and QMASK. Figure 31 on page 170 shows an example of how the
QMASK bytes of a listener's qualifier must match the signaller's qualifier. In this
example, a listener uses ENF36PGMCHECK, the program check qualifier for event
code 36, to request notification when a program check occurs. The listening
program sets QMASK to BYTE4, because the fourth byte contains the information
that specifically identifies a program check. When a program check occurs, the
fourth byte of the signaller's qualifier equals the listener's, and ENF notifies the
listener that a program check occurred.

Note that not all event codes use a QMASK of BYTE4. The QMASK varies with the
qualifiers for a given event code.

.

.

.

.

.

.

.

.

.

.

.

.

Authorized Program

Listener User
Exit Routine

ENFREQ
CODE=36

Program Check Occurs

Machine Check Occurs

ENF passes control
to the listener user

exit routine

ENF passes control
to the listener user

exit routine

Figure 30. Authorized Program without QUAL and QMASK

Chapter 8. Listening for system events 169

Figure 32 on page 171 shows two authorized programs that are both listening for
event code 36, but they have different QUAL values. Authorized program 1 has a
QUAL of ENF36PGMCHECK (which corresponds to a software record for a
program check) and a QMASK of BYTE4. Authorized program 2 has a QUAL of
ENF36MACHCHECK (which corresponds to a software record for a machine
check) and a QMASK of BYTE4.

A QMASK value of BYTE4 tells ENF that it should only use the fourth byte of the
qualifier to determine the listener user exit routine that gets control. Note that the
authorized programs in this example could use a QMASK of ALL. Because there is
no information contained in the first three bytes, ENF would only use the fourth
byte. However, because the first three bytes might contain data, IBM recommends
that you use a QMASK value of BYTE4.

The listener user exit for authorized program 1 receives control only when a
software record is written for a program check. The listener user exit for
authorized program 2, on the other hand, receives control only when a software
record is written for a machine check.

00 00 00 42 00 00 00 42

Reserved ReservedReserved ReservedReserved ReservedFunction Code Function Code

Qualifier for a program check

QUAL=ENF36PGMCHECK
QMASK=BYTE4

Actual hexadecimal value of
listener's qualifier

Actual hexadecimal value of
signaller's qualifier

Fourth bytes match.
System issues signal to the listener.

Figure 31. Qualifier for a Program Check

170 z/OS V2R2 MVS Authorized Assembler Services Guide

nn filtering events
Some types of event support the FLTRBLK parameter on the ENFREQ macro to
identify the address of an optional Enf Listener Filter block. The filter block data is
specific to the signal type and identify further criteria to be used to determine if
the signal should be delivered to the Enf listener. ENF Event code 51 supports
filter blocks that allow further filtering of GRS contention data signals to ones that
involve specific and patterned qnames and rnames that might be of interest to that
Enf Listener. The Enf 51 Listener uses the FltrBlk keyword to identify the address
of the filter block for what signals are to be filtered further by the supporting Enf
51 signaller beyond that of signals matching just the Qual and QMask keywords.

ENFREQ
CODE=36

QUAL=X'00000042'
QMASK=BYTE4
EXIT=EXIT1@

ENFREQ
CODE=36

QUAL=X'00000048'
QMASK=BYTE4
EXIT=EXIT2@

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Authorized Program 1

Listener User
Exit 1

Listener User
Exit 2

Authorized Program 2

Program Check Occurs

Machine Check Occurs

ENF passes control
to user exit 1

ENF passes control
to user exit 2

Figure 32. Authorized Programs with QUAL and QMASK

Chapter 8. Listening for system events 171

Coding the listener user exit routine
After the event for which you are listening occurs, control passes to the listener
user exit routine you specify on either the EXIT parameter or the SRBEXIT
parameter of the ENFREQ macro. The exit receives control in the event issuer's
address space. If you want the listener user exit routine to receive control in SRB
mode in the address space that issued the listen request, specify SRBEXIT. For
example, if the listener user exit routine needs to address the requestor's private
storage, use SRBEXIT. SRBEXIT is valid only with certain event codes. See “ENF
event codes and meanings” on page 176 for a list of all codes and their meanings.

If, for documentation purposes, you want to specify names for the listener user
exit routine and the exit's establisher, use the EXITNME and ESTBNME parameters
on ENFREQ. Although these parameters are optional, IBM recommends that you
use them.

The listen exit is coded to run in either task or SRB mode, depending on the
parameter you specify. If you specify SRBEXIT, it can only run in SRB mode. If you
specify EXIT, it is able to run in both task and SRB modes. The Listen exit does not
impose any restriction on the signaller.

Installing the Exit: The listener user exit routine must reside in common storage if
the exit routine is not an SRB exit. To install the listener exit routine in common
storage, perform the following steps:
v (For a subsequent IPL) Link-edit the routine into a data set in the LPA

concatenation or use SMP/E to place it there, or
v (For the current IPL) Use Dynamic LPA services to add the routine to LPA.

If the exit routine is an SRB exit, it can reside in either common or private storage.

Non-SRBEXIT routine
The following information is about standard listener user exit routines. For
information about SRB listener user exit routines, see “SRBEXIT routine” on page
174.

Exit Routine Environment: The listener user exit receives control in the following
environment:

Environmental factor Requirement
Authorization: Supervisor state and PSW key 0
Dispatchable Unit Mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: Depends on the setting of the high-order bit of the field

containing the exit routine address. (24-bit if the bit is off,
31-bit if the bit is on)

ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

Exit recovery: If your listener user exit routine acquires resources, such as storage
or locks, provide a recovery routine for the exit.

If the listener user exit routine ends abnormally, control proceeds to the exit's
recovery routine, if it provides one, or to a system recovery routine. The system

172 z/OS V2R2 MVS Authorized Assembler Services Guide

recovery routine ends the notification request so that the exit routine that abended
can no longer receive control. ENF continues, however, to send notification to the
other listening programs.

The system will not end the notification request for an exit routine if a
non-retryable abend, such as a CANCEL command, caused the listener user exit
routine to end abnormally.

Listener user exit processing: The high-order bit of the listener user exit address
specified on the ENFREQ macro request determines the AMODE in which the
listener user exit routine receives control.

Programming considerations: The listener user exit routine must be reentrant.

Instructions and restrictions: Avoid such time-consuming processing as obtaining
large amounts of storage through the GETMAIN macro, issuing WAITs or calling
routines that issue the WAIT macro, and performing I/O operations. Also, avoid
requests for the local lock and using multiple listener user exits. Avoid the use of
dynamic allocation (SVC99) calls in "listen" exits that receive control in ASID 1;
such calls can cause unpredictable results.

Because the listener user exit routine does not normally receive control in the same
address space as the LISTEN request, the listener user exit routine cannot depend
on the original address space always existing.

Entry specifications: The system passes information to the listener user exit routine
in a parameter list that is mapped by the event code's mapping macro. For
information about the parameter lists for each event code, see “ENF event codes
and meanings” on page 176.

Registers at entry: On entry to the listener user exit routine, the registers contain
the following information:

Register Contents

GPR 0 Event code

GPR 1 Address of a 6-word structure.

Word Contains

1 Address of the parameter list supplied by the system for this
event code

2 Fullword of zeros

3 Fullword of data specified on the PARM keyword or the address
of the listener parameter list specified on the PARM keyword

4 Fullword of zeros

5 Address of a parameter list mapped by the IEFENFSG macro

6 Fullword of zeros
See “Passing parameters to a listener user exit routine” on page 175.

GPRs 2-12 Do not contain any information for use by the listener user exit.

GPR 13 Address of an 18-word save area

GPR 14 Return address

GPR 15 Entry point address of the listener user exit routine

Chapter 8. Listening for system events 173

Return specifications: The listener user exit routine does not need to set any return
codes.

Registers at exit: Upon return from listener user exit routine processing, the
registers must be:

Register Contents

0, 1 The listener user exit does not have to place any information in this
register, and does not have to restore its contents to what they were when
the listener user exit routine received control.

2 - 13 The listener user exit must restore the contents to what they were when
the exit received control.

14, 15 The listener user exit does not have to place any information in this
register, and does not have to restore its contents to what they were when
the listener user exit routine received control.

SRBEXIT routine
The following information is about SRB listener user exit routines. These exit
routines are valid with only certain event codes. See “ENF event codes and
meanings” on page 176 for a list of the codes that allow SRBEXIT.

The listener user SRBEXIT receives control in the following environment:

Environmental factor Requirement
Authorization: Supervisor state
Dispatchable unit mode: SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

Exit recovery: If the SRB listener user exit routine ends abnormally, control
proceeds to the exit's recovery routine, if it provides one, or to a system recovery
routine. The system recovery routine ends the notification request so that the exit
routine that abended can no longer receive control. ENF continues, however, to
send notification to the other listening programs.

The system will not end the notification request for an exit routine if a
non-retryable abend, such as a CANCEL command, caused the SRB listener user
exit routine to end abnormally.

Instructions and restrictions: Avoid such time-consuming processing as obtaining
large amounts of storage through the GETMAIN macro, issuing WAITs or issuing
SVCs that issue the WAIT macro, and performing I/O operations. Also, avoid
requests for the local lock and using multiple listener user exits.

Registers at entry: On entry to the ENF listener user exit routine, the registers
contain the following information:

Register Contents

GPR 0 Event code

174 z/OS V2R2 MVS Authorized Assembler Services Guide

Register Contents

GPR 1 Address of a 6-word structure.

Word Contains

1 Address of the parameter list supplied by the system for this
event code.

2 Fullword of zeroes

3 Fullword of data specified on the PARM keyword or the address
of the listener parameter list specified on the PARM keyword

4 Fullword of zeroes

5 Address of a parameter list mapped by the IEFENFSG macro

6 Fullword of zeroes
See “Passing parameters to a listener user exit routine.”

GPRs 2-12 Do not contain any information for use by the listener user exit.

GPR 13 Address of an 18-word save area

GPR 14 Return address

GPR 15 Entry point address of the listener user exit

Return specifications: The ENF listener user exit routine does not have to set any
return codes.

The SRB listener user exit routine must return to the address in register 14.

Registers at exit: Upon return from listen exit processing, the registers must be:

Register Contents

0, 1 The listener user exit does not have to place any information in this
register, and does not have to restore its contents to what they were when
the listener user exit routine received control.

2 - 13 The listener user exit must restore the contents to what they were when
the exit received control.

14, 15 The listener user exit does not have to place any information in this
register, and does not have to restore its contents to what they were when
the listener user exit routine received control.

Passing parameters to a listener user exit routine
The listener user exit routine receives parameters in a six-word data structure that
is pointed to by register 1 on entry to the listener user exit routine.

The six-word data structure contains parameters from one or both of the following
sources:
v The system. The first fullword of the data structure contains the address of the

parameter list associated with the ENF event code's mapping macro. See “ENF
event codes and meanings” on page 176 for a list of the mapping macros.

v The ENF listener. The listening program can send parameters to the listener user
exit routine by using the PARM keyword on the ENFREQ macro. PARM can be
either a fullword of data or the address of a parameter list. PARM is passed to
the listener user exit routine in the third word of the data structure.

Chapter 8. Listening for system events 175

Ending the listener user exit routine
Using the EOT and EOM parameters, you can specify on the ENFREQ macro
whether the system should automatically delete the listener user exit routine when
the listener's task ends (EOT) or when the address space ends (EOM). If you
specify SRBEXIT then you must specify EOM=YES because the exit routine runs in
the listener's address space and ends with the listener.

Only certain combinations of EOT and EOM are valid. The following chart shows
which combinations are valid.

Table 20. Valid EOT and EOM parameter combinations

EOT EOM Exit type

EOT=YES EOM=YES EXIT or SRBEXIT

EOT=NO EOM=YES EXIT or SRBEXIT

EOT=NO EOM=NO EXIT

For example, to end the exit routine when the listener's task ends or the listener’s
address space ends, specify EOT=YES and EOM=YES. To end the exit routine
when the listener's address space ends, but not when the listener's task ends,
specify EOM=YES, EOT=NO. For more information about the EOM and EOT
keywords, see z/OS MVS Programming: Authorized Assembler Services Reference
EDT-IXG.

ENF event codes and meanings
The following characteristics vary depending on the event for which you are
listening.

Event code
Identifies the event

Qualifier
Further defines the specific event for which you would like to listen

Parameter list
Passes information about the event to the listener user exit

Exit type
Specifies the type of the listener user exit routine, which can be either EXIT
or SRBEXIT

Cross-system capable
Specifies whether the exit is to receive signals from other systems in the
sysplex

176 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 21. ENF macro event codes

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

20 Notes:

1. The input save area and the
information area (registers 13 and 1)
point to areas above 16M. When
specifying ENFREQ
REQUEST=LISTEN, make sure that the
exit routine (EXIT keyword) gets
control in AMODE 31.

2. This exit only gets control in task
mode in ASID 1.

3. Event 20 "listen" exits should avoid
issuing dynamic allocation (SVC99)
calls.

The defined QUAL values are:

Qualifier Information type

x'80000004'
System information changed. Any
program using the data returned by
the CSRSI service should obtain the
updated data.

Mapped by SIV1V2V3
DSECT within macro
CSRSIIDF. This area
contains the current
information that would be
returned by the CSRSI
service when all data is
requested (a request type of
CSRSI_TYPE_
V1CPC_Machine plus
CSRSI_TYPE_
V2CPC_LPAR plus
CSRSI_TYPE_ V3CPC_VM),
with the exception of the
fields whose names begin
with “SI00PCCA”. If the
SI00PCCAxxx fields are
needed, the CSRSI service
can be called. The
SIV1V2V3 area is in 31-bit
storage.

EXIT / NO

23 The system or an operator varied a device
online.

An operator can vary a device online by
using the VARY command. For more
information about the VARY command,
see z/OS MVS System Commands.

Corresponds to the UCBTYP field in the UCB
data area. The bytes in the qualifier correspond
to the bytes in UCBTYP as follows:

First byte = UCBDVCLS
Second byte = UCBUNTYP
Third byte = UCBTBYT2
Fourth byte = UCBTBYT1

Mapped by IEFEVARY EXIT / NO

24 The system or an operator varied a device
offline.

An operator can vary a device offline by
using the VARY command. For more
information about the VARY command,
see z/OS MVS System Commands.

Corresponds to the UCBTYP field in the UCB
data area. The bytes in the qualifier correspond
to the bytes in UCBTYP as follows:

First byte = UCBDVCLS
Second byte = UCBUNTYP
Third byte = UCBTBYT2
Fourth byte = UCBTBYT1

Mapped by IEFEVARY EXIT / NO

25 The system or an operator unloaded a
DASD or tape volume.

An operator can unload a DASD volume
by issuing the VARY command. For more
information about the VARY command,
see z/OS MVS System Commands.

Corresponds to the UCBTYP field in the UCB
data area. The bytes in the qualifier correspond
to the bytes in UCBTYP as follows:

First byte = UCBDVCLS
Second byte = UCBUNTYP
Third byte = UCBTBYT2
Fourth byte = UCBTBYT1

Mapped by IEZEUNLD EXIT / NO

28 A dynamic device reconfiguration (DDR)
swap occurred.

A DDR swap moves or swaps a
demountable volume from a failed device
to another available device. For
information about the SWAP command,
which enables an operator to perform a
DDR swap, see z/OS MVS System
Commands.

None 8-byte parameter list. The
first four bytes contain the
address of the UCB for the
device that was the source
of the swap event. The
second four bytes contain
the address of the UCB for
the device that was the
target of the swap event.

EXIT / NO

29 The system or an operator placed a device
in pending offline status.

An operator can place a device in offline
status by issuing the VARY command. For
more information about this command,
see z/OS MVS System Commands.

Corresponds to the UCBTYP field in the UCB
data area. The bytes in the qualifier correspond
to the bytes in UCBTYP as follows:

First byte = UCBDVCLS
Second byte = UCBUNTYP
Third byte = UCBTBYT2
Fourth byte = UCBTBYT1

Mapped by IEFEVARY EXIT / NO

30 The system or an operator placed a
volume online so that it would be
available for system use.

An operator can place a volume online by
issuing the VARY command. For more
information about this command, see z/OS
MVS System Commands.

Corresponds to the UCBTYP field in the UCB
data area. The bytes in the qualifier correspond
to the bytes in UCBTYP as follows:

First byte = UCBDVCLS
Second byte = UCBUNTYP
Third byte = UCBTBYT2
Fourth byte = UCBTBYT1

Mapped by IEFEVARY EXIT / NO

Chapter 8. Listening for system events 177

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

31 A configuration change that involves
deleting a device or deleting a path to a
device was requested or was rejected.

None Mapped by IOSDDCCD EXIT / NO

32 A configuration change was successful. None Mapped by IOSDDCCD EXIT / NO

33 One of the following changes to the
hardware configuration of a device
occurred:

v A device is added or deleted from the
hardware configuration definition or a
device is attached or detached with the
VM ATTACH or DETACH command.
The I/O subchannel corresponding to
the device's UCB is connected or
disconnected.

v A device is made available because the
channel path to the device is
reestablished.

v The description of a device is added,
deleted, or changed. The
self-description information is stored in
a configuration data record (CDR). A
change to a CDR is always a delete
followed by an add. Use timestamps to
determine the correct sequence.

v The HyperPAV mode of operation for a
logical control unit is changed.

v A change in state has occurred for a
PCIe device.

v A device requires monitoring.

BYTE 1 Device class (Byte 3 from UCBTYP)

BYTE 2 Reserved

BYTES 3-4
Qualifier number

Each qualifier number designates a type of
change, such as I/O subchannel change, device
available, a configuration data record (CDR)
change, or a HyperPav mode change. Along with
each qualifier number is a qualifier
number-dependent mapping in the IOSDDACH
mapping macro, which designates fields specific
to the type of change.

The following ENF signal 33 subtypes are issued
for PAV-alias devices:
v DACHIO
v DACHIORA
v DACHCCDR
v DACHPAV

For each of these subtypes, if the signal applies
to a device in the alternate subchannel set, the
issuer will fill in a new field in the DACH
subtype for the subchannel set identifier and
change the subtype according to the information
in z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/
zos/bkserv/).

ENF 33 is issued once for the logical control unit
when its HyperPav mode is changed. The
following ENF 33 subtype fields are updated to
uniquely identify this event:
v DACHDEVC='CU'
v DACHTRAN='TRAN'
v DACHQN=X'0008'
v DACH_TRAN_CU=control unit that is

changing
v DACH_TRAN_MODE=target mode of

operation

For specific field definitions, see the IOSDDACH
macro in z/OS MVS Data Areas in the z/OS
Internet library (http://www.ibm.com/systems/
z/os/zos/bkserv/).

The ENF signal 33 subtype DACHPCIE (X'0009')
is issued for the change in state of a PCIe device.
For this subtype, the following value is set in the
DACHTYPE field by the issuer of the signal:
DACHTYPEPCIE ('PCIE').

For this subtype, the DACHQN field is set to
X'0009' (PCIE device event).

Mapped by IOSDDACH EXIT / NO

178 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

33
(cont.)

For this subtype, the following data is supplied
in the DACHQUALD field by the issuer of the
signal:
v DACH_PCIE_PFID (4 bytes): The PFID of PCIe

device involved in the event.
v DACH_PCIE_DEVID (2 bytes): The device ID

of PCIe device involved in the event.
v DACH_PCIE_VENDID (2 bytes): The vendor

ID of PCIe device involved in the event.
v DACH_PCIE_EVENT (1 byte): The device

event code:
1 = The device is going online.
2 = The device is going offline.

ENF signal 33 subtype DACHMONC
(DACHTYPE = DACHMONC) is issued when a
change in device monitoring is requested. This
signal may be generated for secondary devices
monitored for HyperSwap® configurations for
which I/O operations may begin to be started.
This signal may also be received when devices
that were previously identified by ENF 33
subtype DACHMONC no longer require
monitoring.

Programs such as RMF may choose to monitor
this ENF 33 signal to know when to begin
collecting data for these devices which might
otherwise see only insignificant amounts of I/O
activity. For the DACHMONC subtype:

v For a device that requires monitoring, the
following fields are set:
DACH_IO_QUAL

Set to
DACH_IO_QUAL_MONC_ON

DACH_IO_DEVN
Device number

DACH_IO_SSID
Subchannel set identifier

DACH_IO_DTYP
Contents of the UCBTYP field from
the UCB

DACHUCBC
Device class

DACHQN
Either DACHIO or DACHIO_AS

Each device receives a separate signal to begin
monitoring. When monitoring is requested, the
UCBCMONR bit is set on in the UCB.

v When one or more devices no longer require
monitoring, a single ENF 33 DACHTYPE =
DACHMONC, DACHQN = DACHIO signal is
given with DACH_IO_QUAL =
DACH_IO_QUAL_MONC_OFF. This is
typically done after a HyperSwap occurs or
when a configuration is purged from the
HyperSwap manager. When this signal is
received, a UCBSCAN can be done to detect
devices for which the UCBCMONR bit is no
longer set on. DACH_IO_DEVN and
DACH_IO_SSID are not used for this signal.

Chapter 8. Listening for system events 179

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

35 One of the following XES or XCF events
has occurred:

v New coupling facility resources have
become available on this system.
Requests to connect with IXLCONN
that previously failed might now
succeed because of this new coupling
facility resource.

v A specific structure has become
available for use. Requests to connect to
the structure with IXLCONN that
previously failed might now succeed
because of this new coupling facility
resource.

v A system has joined the sysplex. The
system name and ID are presented to
the user.

v A system has been partitioned from the
sysplex. The system name and ID are
presented to the user.

v A CF definition with a SITE specified
has been added or an existing CF SITE
specification has changed.

Note that the listener user exit routine for
event code 35 can run in SRB mode.

None Mapped by IXCYENF EXIT or
SRBEXIT /
NO

36 The system wrote a record to the logrec
data set or the logrec log stream. ENF
passes to the listener user exit routine a
parameter list containing the record
information.

For details about the contents of the
parameter list, see IFBENF36 in z/OS MVS
Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/
zos/bkserv/).

Additional considerations for listeners of
this code include the following:

v The mapping does not indicate whether
an IBM or non-IBM program caused the
record to be written to logrec.

v ENF does not suppress duplicate ENF
signals sent to the listener. The listener
must be aware of instances where a
program loop causes the same software
record to be recorded in logrec multiple
times, thus causing ENF to issue
duplicate signals.

v ENF does not filter software records
based on any criteria including ABEND
codes.

The specific logrec record type value is used as
the qualifier for each ENF event code 36 signal.
Note that no signal is issued for record types
X'9x'.

Mapped by IFBENF36 EXIT or
SRBEXIT /
NO

180 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

37 One of the following SMF
accounting-related events occurred:

v SMF was initialized

v SMF ended

v SMF INTVAL parameter changed

v SMF SYNCVAL parameter changed

v SMF interval expired

v SMF interval sync processing disabled

v SMF event driven interval occurred

For information about these
accounting-related events, see z/OS MVS
System Management Facilities (SMF).

ENF37Q00
SMF address space was initialized.

ENF37Q01
SMF address space ended.

ENF37Q02
SMF INTVAL parameter changed.

ENF37Q03
SMF SYNCVAL parameter changed.

ENF37Q04
SMF interval expired.

ENF37Q05
SMF interval sync processing
disabled.

ENF37Q06
SMF event driven interval occurred.

Mapped by IFAENF37 EXIT / NO

38 One of the following automatic restart
manager events occurred:

v A job or task started or was restarted,
and has registered or reregistered as an
element of the automatic restart
manager.

v An element notified the system that it is
ready to accept work.

v An element has deregistered with the
automatic restart manager.

v This system has acquired (or regained)
access to the automatic restart
management couple data set. Batch jobs
and started tasks may now register as
elements of the automatic restart
manager.

v An element has been deregistered with
the automatic restart manager.

None Mapped by IXCYAREN SRBEXIT /
NO

40 A JES2 subsystem either completed
initialization or ended normally. (Note
that ENF code 40 does not reflect
situations in which JES2 abends.)

ENF passes to the listener user exit
routine a parameter list that identifies the
JES2 subsystem. For details about the
contents of the parameter list, see
IEFENF40 in z/OS MVS Data Areas in the
z/OS Internet library (http://
www.ibm.com/systems/z/os/zos/
bkserv/).

ENF40_INIT
A JES completed initialization.

ENF40_TERM
A JES ended normally

Mapped by IEFENF40 EXIT / NO

Chapter 8. Listening for system events 181

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

41 A workload management (WLM) event
occurred. The following qualifiers for ENF
code 41 are provided:

BYTE 1
1 Policy change was

initiated.
2 Policy change

completed.
3 Policy change

failed.

BYTE 2 Reserved.

BYTE 3
1 Workload activity

reporting failed and
has begun recovery.

2 Workload activity
reporting recovery
was successful.

3 Workload activity
reporting recovery
was not successful.

BYTE 4
1 WLM service

definition was
successfully
installed.

WLMENF11
A VARY WLM,POLICY command
was issued.

WLMENF12
A VARY WLM,POLICY command
completed.

WLMENF13
A VARY WLM,POLICY command
failed. The new policy could not be
activated on this system.

WLMENF31
WLM workload activity reporting
failed and has begun recovery.

WLMENF32
WLM workload activity reporting
recovery was successful.

WLMENF33
Workload activity reporting recovery
was unsuccessful.

WLMENF41
Service definition was successfully
installed.

Mapped by IWMRENF1 EXIT / NO

43 A new copy of workload management
sampled address space information is
available via IWMRQRY.

Event code 43 is issued at the end of
workload management's sampling interval
so a listener can synchronize its sampling
interval with workload management's
interval.

None Four byte parameter
containing the length of the
storage required to hold the
information. A listener can
pass this length to
IWMRQRY in the ANSLEN
parameter and save issuing
IWMRQRY to determine the
length.

EXIT / NO

44 A configuration change involving paths to
a coupling facility has occurred.

None Mapped by IXLYCFSE EXIT / NO

45 The SMSVSAM server address space has
been initialized or reinitialized after a
failure. Any subsystem that lost
connection to the service provider address
space can now reconnect.

None Mapped by IDAENF45 SRBEXIT /
NO

46 z/OS UNIX System Services has been
initialized or reinitialized.

None None EXIT / NO

47 DAE has detected that the threshold for
completed or suppressed dumps, related
to a particular symptom string, has been
reached.

None Mapped by ADYENF EXIT / NO

48 A status change has occurred within
system logger. The events issued by ENF
48 are issued to all systems in the sysplex.
For a description of using ENF event 48
for system logger, see z/OS MVS
Programming: Authorized Assembler Services
Guide. For a description of the events
mapped by the IXGENF macro, see z/OS
MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/
os/zos/bkserv/).

None Mapped by IXGENF SRBEXIT /
YES

49 The logrec output recording medium has
been changed by the SETLOGRC
command.

None IFBNTASM SRBEXIT /
NO

182 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

51 One of the following types of GRS
information:

v Resource contention information

v RNL change effects on user jobs

v GRS mode change information

Note that the listener user exit routine for
event code 51 can run in SRB mode.

Event code 51 can generate large numbers
of events in short periods of time. The
listener user exit routine for event code 51
must handle the volume of events. See
z/OS MVS Programming: Authorized
Assembler Services Guide for a description
of system services to avoid when writing
listener user exits.

Supports Filter Block (FLKBLOCK)
listners: Mapped by ISGYELF. The filter
block reason codes for EnfReq RC=X'68' is
in field ISGYELF_ReasonCode. The
mapping also includes constants for the
various values of the reason code.

The qualifier (QUAL parameter) has the
following format:

BYTE 1 Type of signal information:
x'01' Contention data
x'02' RNL changes
x'03' Mode changes

BYTE 2 Always x'00'.

BYTE 3 Varies with type of signal (value of
BYTE1):
x'00' Normal contention
x'01' Waitless contention

BYTE 4 Varies with type of signal (value of
BYTE1):
x'01' Local events
x'02' Global events
x'03' Recovery events

The defined QUAL values are:

Qualifier Information type

x'01000000'
All Normal resource contention
(excludes waitless)

x'01000001'
Normal Local resource contention

x'01000002'
Normal Global resource contention

x'01000003'
Normal Contention-related recovery
information

x'01000100'
All Waitless resource contention

x'01000101'
Waitless Local resource contention

x'01000102'
Waitless Global resource contention

x'02000001'
User job suspended because of RNL
change

x'02000002'
User job resumed following RNL
change

x'0300yyzz'
GRS mode changes:
yy Old mode
zz New mode

Values for yy and zz are those defined
in IHAECVT for the ECVTGMOD
field

Contention data: ISGE51CN

RNL data: ISGE51RN

Mode change data: None

EXIT or
SRBEXIT /
YES

52 A LNKLST set has been activated. A
LNKLST set can be activated at IPL
through a PROGxx LNKLST statement, or
through SET PROG=xx or SETPROG
LNKLST operator commands. For
information about PROGxx, see z/OS MVS
Initialization and Tuning Reference. For
commands, see z/OS MVS System
Commands.

None Mapped by CSVDLENF EXIT or
SRBEXIT /
NO

Chapter 8. Listening for system events 183

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

53
v A Sysplex Timer (ETR) configuration

change occurred.

v A change to the local time offset
occurred.

None 8-byte parameter list

v Bytes 1 and 2 indicate a
configuration change to
the Sysplex Timer (ETR).

v Byte 3, if non-zero,
indicates a change to the
local time offset. Possible
values are:
0 Sysplex Timer

configuration
has changed.

1 Local time
offset has
changed.

2 Leap second
offset has
changed.

3 Both local
time offsets
have changed.

EXIT / NO

55 The system resource manager (SRM) has
detected a significant MVS image event,
which is being signalled. The qualifiers
and parameters further define the event.

ENF55QLF_REAL_SHORTAGE (X'80000000')
Too many fixed frames in storage;
issued when IRA400E occurs.

ENF55QLF_REAL_SHORTAGE_RELIEVED
(X'40000000')

Pageable storage shortage due to
excessive fixed storage relieved;
issued when IRA402I occurs.

ENF55QLF_REAL_WARNING (X'20000000')
Pageable storage warning that
indicates there are many fixed frames
in storage; issued when IRA405I
occurs.

ENF55QLF_AUX_CRITICAL_SHORTAGE
(X'08000000')

Too many slots allocated in the AUX
subsystem. It is a critical shortage and
is issued when IRA201E occurs.

ENF55QLF_AUX_SHORTAGE (X'04000000')
Too many slots allocated in the AUX
subsystem. It is issued when IRA200E
occurs.

ENF55QLF_AUX_SHORTAGE_RELIEVED
(X'02000000')

AUX Storage shortage due to
excessive slots relieved. It is issued
when IRA202I occurs.

ENF55QLF_AUX_WARNING (X'01000000')
AUX Storage usage warning that
indicates there are many slots
allocated in the AUX subsystem. It is
issued when IRA205I occurs.

ENF55QLF_SCM_HIGH_USAGE (X'00040000')
High usage of storage-class memory
(SCM). Issued when IRA250I occurs.

Mapped by IRAENF55 EXIT or
SRBEXIT /
NO

184 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

55
(cont.) ENF55QLF_SCM_HIGH_USAGE_RELIEVED

(X'00020000')
High usage of storage-class memory
(SCM) relieved. Issued when IRA252I
occurs.

ENF55QLF_AFQ_SHORTAGE (X'00008000')
Available frame queue shortage. Not
enough frames on the available frame
queue.

ENF55QLF_AFQ_SHORTAGE_RELIEVED
(X'00004000')

Available frame queue shortage
relieved.

ENF55QLF_PREF_SHORTAGE (X'00002000')
Preferred frame queue shortage. Not
enough frames on the preferred frame
queue.
Note: This preferred storage shortage
indicator is an informational
notification for applications that are
able to change their storage allocation
type. In case of a preferred storage
shortage, the application should
request non-preferred storage (if
possible) instead of preferred storage.
No action is taken by SRM to address
this shortage.

ENF55QLF_PREF_SHORTAGE_RELIEVED
(X'00001000')

Preferred frame queue shortage
relieved.

56 Workload management has changed an
attribute of a job. WLMENF56_QUAL_RESET

A job was reset using the RESET
system command or IWMRESET
macro.

WLMENF56_QUAL_ ENCLAVERESET
An enclave has been successfully reset
via the IWMERES service.

Mapped by IWMRENF2 EXIT / NO

57 The state of a workload management
scheduling environment has been altered. WLMENF57_NORMAL_ SCHENV_CHANGE

The state of a scheduling environment
has changed due to a
F WLM,RESOURCE command or
IWMSESET macro.

WLMENF57_RECOVERY_ SCHENV_CHANGE
The state of a scheduling environment
has changed due to workload
management recovery processing.

Mapped by IWMRENF57 EXIT / NO

Chapter 8. Listening for system events 185

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

58 The state of a SYSOUT data set has
changed. The state of a SYSOUT data set
changes when it is either dynamically
allocated using the DALRTCTK text unit,
or when the SYSOUT application program
interface (SAPI) disposition bit is set.

For more information, see the “Listening
for Events” section of the “JES
Client/Server Print Interface” chapter in
z/OS JES Application Programming.

ENF58_Q_PURGE
The data set was purged.

ENF58_Q_SELECT
The data set was selected.

ENF58_Q_DESELECT_ PROCESSED
The data set was processed.

ENF58_Q_DESELECT_ NOT_PROCESSED
The data set is no longer selected,
disposition was not updated.

ENF58_Q_DESELECT_
NOT_PROCESSED_HELD

The data set is no longer selected,
disposition was not updated, and
data set is held.

ENF58_Q_DESELECT_ ERROR
An error resulting in a system level
hold occurred.

ENF58_Q_EOD_OK
End of data set notification occurred
— successful.

ENF58_Q_EOD_ERROR
End of data set notification occurred
— unsuccessful.

ENF58_Q_JOB_CHANGE
A job status change occurred.

ENF58_Q_TOKEN_ CHANGE
The client token has changed.

ENF58_Q_INSTANCE
Addition instance of data set created.

ENF58_Q_GRP_SELECT
Data set group select.

ENF58_Q_GRP_DESELECT
Data set group deselect.

Mapped by IAZENF58 EXIT / YES

60 A TRACE TT command has been
accepted.

ENF60_QUAL Mapped by ITZENF60 EXIT / NO

61 The capacity of the MVS image or CEC
has changed.

WLMENF61_CAPACITY_ CHANGE Mapped by IWMENF61 EXIT / NO

62 A RACF SETROPTS RACLIST command
has affected in-storage profiles used for
authorization requests in a class
designated as SIGNAL=YES or
SIGNAL(YES) in the RACF class
descriptor table. The class affected is in
the parameter list in field
IRR_ENFCLASS.

The qualifier (QUAL) has the following format:

BYTE 1
X'80' SETROPTS RACLIST has

taken place.

BYTE 2
X'80' SETROPTS RACLIST

REFRESH has taken place.

BYTE 3
X'80' SETROPTS NORACLIST

has taken place.

Mapped by IRRPENFP in
SYS1.MACLIB.

EXIT or
SRBEXIT/
NO

63 A permanent error was detected on a
HyperSwap capable device.

None Mapped by IOSDE63R EXIT / NO

186 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

64 One of the following events occurred:

v The capacity of a storage volume has
changed.

v The VTOC or INDEX of a direct access
volume has been extended or moved to
a new location.

v The VTOC index of a storage volume
has been built. The index indicates a
direct access volume has changed from
an OS format VTOC (OSVTOC) to an
indexed format VTOC (IXVTOC).

v The content of the volume has changed
due to a full volume copy or restore
operation.

v DS8K recovery scenario occurs either on
primary or secondary PPRC disk
subsystem. DS8K signals z/OS on all
paths via the Storage Controller Health
Message attention status.

v One or more devices in the logical
subsystem has a PPRC state change.

v A full volume FlashCopy® relationship
has been established.

The qualifier (QUAL parameter) has the
following format:

BYTE 1 Type of signal information:
X'01' Volume event
X'02' LSS event

BYTE 2 Varies with event

BYTE 3 Always X'00'

BYTE 4 Varies with event

The defined QUAL values are:

Qualifier Information type

X'0100xxxx'
Volume events

X'01000001'
DASD volume capacity changed

X'01000002'
VTOC updated (moved or extended)

X'01000003'
VTOC index is built

X'01000010'
Volume transformed. This qualifier
indicates that the content of the
volume, including system data, such
as the VTOC, VTOC INDEX, and
VVDS, has changed, and the location
of these files may have changed.

X'02xxxxxx'
LSS event

X'02010001'
Storage controller health (LSS) event

X'02020001'
Summary (LSS) event - PPRC state
change

Mapped by IECENF64 EXIT / YES

Chapter 8. Listening for system events 187

|
|

|
|
|
|
|
|

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

65 System REXX event has occurred.
X'80000000'

The AXR address space has
initialized. AXREXX can be invoked.

X'40000000'
The AXR address space has
terminated. Subsequent AXREXX
invocations will be rejected.

X'20000000'
The AXR address space has reached
its threshold of ACTIVE+WAITING
AXREXX requests. No more requests
will be accepted until the number of
requests drops to an acceptable level.

X'10000000'
The number of ACTIVE+WAITING
AXREXX requests has dropped to an
acceptable level. AXREXX requests are
now being accepted.

X'08000000'
The number of ACTIVE+WAITING
AXREXX requests is high and is
nearing the level where subsequent
requests will be rejected.

X'04000000'
The number of extents in the
REXXLIB concatenation exceeds the
system limit. See z/OS DFSMS Using
Data Sets for details. If this condition
is detected during System REXX
initialization, System REXX
terminates; otherwise, no new
AXREXX requests will be accepted.

None EXIT/NO

67 One of the following IBM Health Checker
for z/OS events has occurred:

v IBM Health Checker for z/OS has
become available.

v IBM Health Checker for z/OS has
terminated and is not available.

The defined BITQUAL values are:

Qualifier Information type

X'80000000'
IBM Health Checker for z/OS is
available. Field
Enf067_BitQual_Available in the
HZSZENF mapping macro.

X'40000000'
IBM Health Checker for z/OS has
terminated and is not available. Field
Enf067_BitQual_NotAvailable in the
HZSZENF mapping macro.

Mapped by HZSZENF EXIT / NO

188 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

68 One of the following BCPii events has
occurred:

v A change in BCPii status has occurred.

v A hardware communication error has
occurred.

v A hardware event has occurred.

The defined QUAL values are:

Qualifier Information type

X'01000001'
BCPii is available.

X'01000002'
BCPii is not available.

X'020100yy'
A hardware communication error has
occurred and CPC events might have
been lost. yy denotes the type of error:
01 A temporary error, some

events might have been
lost.

02 A permanent error, no
more events are delivered.

03 Communication to the
CPC has been established
or re-established. Event
delivery from this CPC
will now commence or
re-commence.

X'03xx00yy'
A hardware event has occurred.

xx denotes the event source:
01 CPC
02 Image

yy denotes the event.

The defined BITQUAL values are:

Qualifier Information type

X'01nnnnnn'
N/A

X'0201nnnn'
Bytes 1-17 CPC name, padded with
hexadecimal zeros

X'0301nnnn'
Bytes 1-17, CPC name, padded with
hexadecimal zeros

X'0302nnnn'
Bytes 1-17, CPC name, padded
with hexadecimal zeros
Bytes 18-24, image name, padded
with hexadecimal zeros

Mapped by HWICIASM
and HWICIC

EXIT / NO

Chapter 8. Listening for system events 189

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

68 One of the following BCPii events has
occurred:

v A change in BCPii status.

v A hardware communication error has
occurred.

v A hardware event has occurred.

Hardware Event Codes:

Code Description

'01' x A command response has been
received.

'02' x An object status change has occurred.

'03' x An object name change has occurred.

'04' x The activation profile of the object has
changed.

'05' x A new object was created.

'06' x An object was deleted.

'07' x An object entered or left an exception
state.

'08' x A Console application has started.

'09' x A Console application has ended.

'0A' x An operating system message has
been received.

'0B' x A hardware message has been
received.

'0C' x A hardware message has been
deleted.

'0D' x A capacity change event has been
received.

'0E' x A capacity record change has
occurred.

'0F' x A security event has been logged.

'10' x An image has entered a disabled wait
state.

'11' x A power change event has been
received.

Mapped by HWICIASM
and HWICIC

EXIT / NO

70 The state of a job (batch, STC or TSU)
owned by JES has changed. The job may
have been selected for processing,
completed processing, changed phase
(including changes to execution phase job
class), or been purged.

ENF70_SELECT
Job was selected.

ENF70_DESELECT
Job was processed.

ENF70_CHANGE
Job queued to new phase of
processing.

ENF70_PURGE
Job was purged.

Mapped by IAZENF70 EXIT / YES

71 A RACF command has affected a user's
group connections which may affect his or
her resource authorization.

The user affected is in the parameter list
in field IRR_ENF2USER.

The group affected is in the parameter list
in field IRR_ENF2GROUP.

Control flags that are used to provide
greater granularity for the listeners are in
the parameter list in field IRR_ENF2Flags.

The qualifier (QUAL) has the following format:

BYTE 1
X'80' CONNECT command
X'40' REMOVE command
X'20' ALTUSER REVOKE

command
X'10' DELUSER command
X'08' DELGROUP command

BYTES 2 - 4
Reserved

Mapped by IRRPENF2 (See
z/OS Security Server RACF
Data Areas)

EXIT or
SRBEXIT /
YES

190 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

72 Volume status information for SMS.

The listener user exit routine for event
code 72 can run in SRB mode.

Event code 72 can generate large numbers
of events in short periods of time. The
listener user exit routine for event code 72
must be able to handle the volume of
events.

The qualifier (QUAL) has the following format:

BYTE 1 Type of signal information:
X'01' Volume status

BYTE 2 Always X'00'

BYTES 3 - 4
Varies with event.

The defined QUAL values are:

Qualifier Information type

X'01000001'
ENF72_OVER_THRESHOLD_AM_Y.
Volume over threshold when storage
group is defined using AM=Y (Auto
Migrate, yes).

Volume Status information:
IGDE72VL

Mapped by IGDENV72

EXIT or
SRBEXIT /
YES

73 The SETLOAD xx, IEASYM command has
completed successfully. The local system's
symbol table has been updated.

None None EXIT/ NO

78 The state of a job (batch, STC or TSU)
owned by JES has changed. The job has
completed processing.

ENF78_JOB_NOTIFY Mapped by IAZENF78 EXIT/YES

Chapter 8. Listening for system events 191

|

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

79 A RACF command has modified a profile
such that a user's authorization to the
resources it protects may be affected.

v The user affected is in the parameter
list in field IRR_ENF3_UserID.

v The class in which the modified profile
belongs is in the parameter list in field
IRR_ENF3_ClassName.

v The length of the affected profile name
is in the parameter list in field
IRR_ENF3_ProfName_Length.

v The name of the affected profile is in
the parameter list in field
IRR_ENF3_ProfName.

Control flags that are used to provide
greater granularity for the listeners are in
the parameter list in field
IRR_ENF3_Flags.

For the PERMIT RACF command
processor, there maybe additional
information regarding:

v The type of Conditional Access, a
numerical value that is in the parameter
list in field
IRR_ENF3_PERMIT_WHEN_Cond.

v The Conditional Access List Entry. The
length of the Conditional Access Name
and the Conditional Access Name itself
is in the parameter list in the fields:

IRR_ENF3_CACLName_Length
IRR_ENF3_CACLName

For the RDEFINE and RALTER RACF
command processors, there may be
additional information in the ADDMEM
and DELMEM lists. The number of
elements in the list, the length of the list,
and the offset to the list are in the
parameter list in the fields:

IRR_ENF3_ADDMEML_Member#
IRR_ENF3_DELMEML_Member#
IRR_ENF3_ADDMEML_Length
IRR_ENF3_DELMEML_Length
IRR_ENF3_ADDMEML_Offset
IRR_ENF3_DELMEML_Offset

The qualifier (IRR_ENF3_QualCode) has the
following format:

BYTE 1
X'80' PERMIT command
X'40' RDEFINE command
X'20' RALTER command
X'10' DELETE command

BYTES 2 - 4
Reserved

Mapped by IRRPENF3 (See
z/OS Security Server RACF
Data Areas)

EXIT or
SRBEXIT /
YES

192 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 21. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

80 One of the following z/OS
Communication Server events has
occurred:

v The rpcbind server has initialized.

v The rpcbind server is stopping.

Notes:

1. ENF80_RPC DSECT maps the
RPCBIND event.

2. Use the ENF80_RPC_FLAGs to
determine if the rpcbind server is
initializing or ending.

3. When flag ENF80_RPCINIT is on, RPC
applications can register with
RPCBIND.

4. When flag ENF80_RPCTERM is on,
the rpcbind server is stopping.

5. ENF80_RPC DSECT includes the
jobname of the rpcbind server that
generated the event.

ENF80_RPC_EVENT Mapped by EZAENF80 SRBEXIT /
NO

ENF sample programs
The following code segments from a sample listening program show how to:
v Set up a program to listen for specific event codes
v Use qualifiers to more specifically define an event
v Pass control to the appropriate listener user exit routine
v Delete a listen request

Following this sample listening program are the listener user exit routines which
this program calls.

SMFLSTEN - Sample ENF listener
This module controls the following two sample listener user exit routines:
v SMFLSTAL - Gains control for all qualifier values
v SMFLST00 - Only gains control if qualifier equals ENF37Q00

For each listener user exit routine, this module issues the ENFREQ LISTEN
request, waits for the associated processing to complete and then issues the
ENFREQ DELETE request.

A program that listens for ENF events should perform the following:
v Initialize Module

– Perform Entry Linkage
- Save input registers
- MODESET to key 0, Supervisor State

– Get Working Storage
v Set Module Recovery

When the module ends abnormally, its ESTAE routine attempts a RETRY to
ensure that ENFREQ DELETE deletes all of the listen requests.

v Set up for ENF Listen Requests

Chapter 8. Listening for system events 193

– Ensure that the listener user exits are in common storage
– Issue an ENFREQ LISTEN request (with or without a qualifier)

Issue listen request without qualifier
The following code segment loads the SMFLSTAL listener user exit routine into
common storage and issues the ENFREQ LISTEN request to listen for all event
code 37 (SMF accounting) events. Because this ENFREQ request does not use the
QUAL and QMASK keywords, the program listens for all code 37 events. For a
description of the exit routine, see “SMFLSTAL - Sample ENF listener user exit
routine” on page 196. For a description of the variables, see “Module declarations”
on page 195.
* Load ENF Listen Exit (SMFLSTAL) into common storage and save address
* SMFLALL@ contains the address of the listener user exit routine

.

.
ST R00,SMFLALL@

*
* Issue LISTEN Request for SMF Event Code (all functions)

L R02,SMFLALL@
ENFREQ ACTION=LISTEN, -- Function +

CODE=ENFC37, -- Event Code +
EXIT=(R02), -- Exit Address +
ESTBNME=THISMOD, -- Establisher Name +
EXITNME=SMFLSTAL, -- Exit Name +
DTOKEN=SMFLALLT -- Returned Token Field

*
* Check the return code from ENFREQ - if not zero issue message
*

Issue listen request with QUAL=ENF37Q00
The following code segment sets up and loads into common storage the SMFLST00
listener user exit routine, which gains control only if the qualifier equals
ENF37Q00.

Note that the qualifiers are declared in the IFAENF37 mapping macro. The
ENFREQ macro specifies QMASK=ALL, which specifies that all four bytes of the
qualifier mask are to be used in the qualifier comparison.

See “SMFLST00 - Sample ENF listener user exit routine” on page 197 for a
description of this listener user exit routine.
* Load ENF Listen Exit (SMFLST00) into common storage and save address
* SMFL00@ contains the address of the listener user exit routine

.

.
ST R00,SMFL00@

*
* Issue LISTEN Request for SMF Event Code (Qualifier ENF37Q00)

L R02,SMFL00@
ENFREQ ACTION=LISTEN, -- Function +

CODE=ENFC37, -- Event Code +
EXIT=(R02), -- Exit Address +
QUAL=ENF37Q00, -- Qualifier Value +
QMASK=ALL, -- Qualifier Mask (Full Word) +
ESTBNME=THISMOD, -- Establisher Name +
EXITNME=SMFLST00, -- Exit Name +
DTOKEN=SMFL00T -- Returned Token Field

*
* Check the return code from ENFREQ - if not zero issue message
*

194 z/OS V2R2 MVS Authorized Assembler Services Guide

Sample ENFREQ DELETE request
After issuing an ENFREQ LISTEN request, the module saves, for later use, the
returned DTOKEN and does one of the following:
v Ends Processing
v Waits for completion of processing (using a WTOR or STIMER WAIT request for

testing purposes)

When the listening program no longer needs the listener user exit routine, the
program deletes the listen request by issuing an ENFREQ DELETE request
specifying the DTOKEN that was returned on the ENFREQ LISTEN request.

The following code segment shows the ENFREQ DELETE request for the DTOKEN
that was returned on the LISTEN request for the SMFLSTAL exit:
*
* Issue DELETE Request for SMF Event Code (all functions)

ENFREQ ACTION=DELETE, +
CODE=ENFC37, +
DTOKEN=SMFLALLT

*
* Check the return code from ENFREQ - if not zero issue message
*

The following code segment shows the ENFREQ DELETE request for the DTOKEN
that was returned on the LISTEN request for the SMFLST00 exit:
* Issue DELETE Request for SMF Event Code (Qualifier ENF37Q00)

ENFREQ ACTION=DELETE, +
CODE=ENFC37, +
DTOKEN=SMFL00T

*
* Check the return code from ENFREQ - if not zero issue message
*

The following code segment shows the ENFREQ DELETE request for the DTOKEN
that was returned on the LISTEN request for the SMFLST01 exit:
* Issue DELETE Request for SMF Event Code (Qualifier ENF37Q01)

ENFREQ ACTION=DELETE, +
CODE=ENFC37, +
DTOKEN=SMFL01T

*
* Check the return code from ENFREQ - if not zero issue message
*

The listening program must do the following to complete clean up and end the
module:
v Release ESTAE for module
v Free Automatic Storage
v Perform Exit Linkage

– MODESET back to problem state
– Return to caller

Module declarations
The following segment defines the variables and control blocks that are required
for this program:
* - Local variables
DATAAREA DSECT
SMFLALL@ DS A
SMFL00@ DS A

Chapter 8. Listening for system events 195

SMFL01@ DS A
SMFLALLT DS F
SMFL00T DS F
SMFL01T DS F
ENFPTR DS A
*
* - Local constants
SMFLSTEN CSECT

DS 0F
ENFC37 EQU 37
THISMOD DC CL8’SMFLSTEN’
SMFLSTAL DC CL8’SMFLSTAL’
SMFLST00 DC CL8’SMFLST00’
SMFLST01 DC CL8’SMFLST01’
*
* - External control blocks

CVT DSECT=YES
IEFENFCT

SMFLSTEN CSECT
IFAENF37

DATAAREA DSECT
IEFENFPM

LENODATA EQU *-DATAAREA
*

Note that the IFAENF37 macro includes the following declarations:
&SYSECT CSECT Control Section for Constants
ENF37Q00 DC X’80000000’ SMF Active
ENF37Q01 DC X’40000000’ SMF Terminated

SMFLSTAL - Sample ENF listener user exit routine
This ENF listener user exit routine processes all the qualifier values for the ENF
event code.

By checking the qualifier value passed on the parmlist, this exit routine is able to
determine which event occurred and process accordingly.

After checking the qualifier, this exit issues a message to the console to tell the
operator which of the following SMF Accounting events occurred:

ENF37C00
'SMF has completed initialization'

ENF37C01
'SMF has terminated'

On entry to this listener user exit routine, register 1 points to the address of the
input parmlist (mapped by the macro IFAENF37).

To initialize this exit routine you must do the following:
v Perform Entry Linkage

– Save input registers
v Get Working Storage
v Get the address of the input parm list and define DSECT mapping
*
* Get the input parameter structure and set DSECT basing

L E37@,0(R01) Get Input Parm Structure
USING ENF37,E37@ Set Parm Structure basing

*

196 z/OS V2R2 MVS Authorized Assembler Services Guide

After completing initialization, this exit routine determines which event occurred
and processes accordingly.
v If the qualifier indicates 'SMF has completed initialization' then issue a message

to the console.
*

CLC ENF37QLF(4),ENF37Q00
BNE CHKQ01
WTO ’SMFLSTAL: SMF HAS COMPLETED INITIALIZATION’
B MODTERM

*

v If the qualifier indicates 'SMF has terminated' then issue a message to the
console.
*
CHKQ01 EQU *

CLC ENF37QLF(4),ENF37Q01
BNE CHKQ02
WTO ’SMFLSTAL: SMF HAS TERMINATED’
B MODTERM

*
CHKQ02 EQU *

To end cleanly, the exit routine must do the following:
v Free Automatic Storage
v Restore Input Registers
v Perform Exit Linkage
v Return to caller

Module declarations
The following segment defines the variables and control blocks that are required
for this program:
* - Local variables
DATAAREA DSECT
ENF37@ EQU 4
*
* - External control blocks
SMFLSTAL CSECT

IFAENF37
*

Note that the IFAENF37 mapping macro includes the following declarations:
ENF37 DSECT SMF ENF Parameter List for Inter
*
ENF37QLF DS CL4 - Qualifier Code
*
&SYSECT CSECT Control Section for Constants
ENF37Q00 DC X’80000000’ SMF Active
ENF37Q01 DC X’40000000’ SMF Terminated

SMFLST00 - Sample ENF listener user exit routine
This ENF listener user exit routine is set up to process ONLY the qualifier value
ENF37Q00 for the ENF Event Code.

This exit routine issues a message to the console to tell the operator that SMF
completed initialization.

Chapter 8. Listening for system events 197

On entry to this listener user exit routine, register 1 points to the address of the
input parmlist (mapped by the macro IFAENF37). Because the specific event is
already known in this case, however, this exit routine does not reference the
parmlist.

This exit routine performs module initialization by:
v Performing Entry Linkage
v Saving input resisters
v Obtaining Working Storage

After completing initialization, the module issues a message to the console
indicating that SMF completed initialization.
*

WTO ’SMFLST00: SMF HAS COMPLETED INITIALIZATION’
*

After issuing the WTO message, the listener user exit routine ends cleanly by:
v Restoring Input Registers
v Freeing Automatic Storage
v Performing Exit Linkage
v Returning to caller

Listening for global resource serialization-related system events
GRS will issue ENF signal 51 when resource contention occurs or when an RNL
change causes a user job to be suspended or to resume. The following topic
provide guidance for using ENF to listen for the occurrence of these events. See
Chapter 8, “Listening for system events,” on page 167 for a detailed discussion of
the ENFREQ ACTION=LISTEN interface, and “ENF event codes and meanings” on
page 176 for a description of the qualifier values defined for the global resource
serialization event code.

Monitoring contention changes
There are two types of contention events:
v Where the requester waits for the contention to complete before becoming an

owner of the resource.
v Where the requester requested not to wait for the resource to become available.

These result from RET=USE and RET=CHNG type ENQs when the resource was
unavailable. Listeners can request to get control only for a specific type or for
both types depending on the qualifiers that they specify.

To establish an ENF listen exit to be called when resource contention occurs, issue
ENFREQ ACTION=LISTEN

with one of the qualifier/qmask combinations described in Table 22 on page 199.
In the table:
v In qualifier values, the character 'x' indicates an arbitrary value (“don't-care”

value).
v An incremental update might represent multiple changes in the state of

contention (for instance, multiple new waiters, or multiple changes in
ownership).

198 z/OS V2R2 MVS Authorized Assembler Services Guide

If you are monitoring contention for global resources, your listen request must
specify XSYS=YES even if you are monitoring contention involving only the local
system. Contention notifications may originate from another system that is
involved in contention for a resource, or even from a system that is not involved in
contention at all.

It is possible to receive duplicate notification, that is, two signals that represent the
same contention data. For example, this can occur if an ENQ and DEQ happen in
rapid succession, thereby causing and relieving contention. This could result in two
notifications, both indicating that no contention exists.

Table 22. Qualifier / QMASK combinations for contention data

Qualifier
(hexadecimal) QMASK Result

None NONE

All signal 51 events, including both
contention and RNL change data. Qualifier
value requests all contention data, including
waitless contention resulting from RET=USE
and RET=CHNG type ENQs.

01xxxxxx BYTE1

All contention-related events, including
waitless contention resulting from RET=USE
and RET=CHNG type ENQs. All
contention-related events. To correspond to a
GQ SCAN request, specify the following:

SCOPE=(Global,Local)
WAITCNT=1
XSYS=YES

01xxxx01 BYTE1, BYTE4

All contention-related events, including
waitless contention resulting from RET=USE
and RET=CHNG type ENQs. Incremental
updates to contention information for local
resources. Corresponds to a GQSCAN request
specifying:

RESNAME=resource name specified
on the ENQ or DEQ request
SCOPE=LOCAL

01xxxx02 BYTE1, BYTE4

All contention-related events, including
waitless contention resulting from RET=USE
and RET=CHNG type ENQs. Incremental
updates to contention information for global
resources. Corresponds to a GQSCAN request
specifying:

RESNAME=resource name specified
on the ENQ or DEQ request
SCOPE=GLOBAL
XSYS=YES

01xxxx03 BYTE1, BYTE4

Contention-related recovery information,
including removal of a system from the
sysplex or limitation of contention notification
capability.

01xx00xx BYTE1, BYTE3
All contention data, excluding waitless
contention resulting from RET=USE and
RET=CHNG type ENQs.

01xx0001 BYTE1, BYTE3, BYTE4
All contention data, excluding waitless
contention resulting from RET=USE and
RET=CHNG type ENQs.

Chapter 8. Listening for system events 199

Table 22. Qualifier / QMASK combinations for contention data (continued)

Qualifier
(hexadecimal) QMASK Result

01xx0002 BYTE1, BYTE3, BYTE4
All contention data, excluding waitless
contention resulting from RET=USE and
RET=CHNG type ENQs.

If you are monitoring contention changes and are maintaining a database of
current contention data, observe the following protocol to obtain a set of initial
data:
1. Establish your ENF listen request.
2. On return from ENF, record a timestamp (STCK).
3. Issue GQSCAN SCOPE=LOCAL and/or GLOBAL, WAITCNT=1,XSYS=YES.
4. In your listen exit, process and store any contention notifications accumulated

during GQSCAN processing.
5. On return from GQSCAN, apply the stored contention notifications to the

GQSCAN output. Discard any notifications timestamped earlier than the
recorded timestamp, and apply any notifications with a timestamp equal to or
later than the recorded timestamp.

6. Complete initialization and begin normal processing, applying contention
notifications as they arrive.

If you are monitoring resource contention, you should define your listen exit to
receive and process recovery signals identified by the X'01xxxx03' qualifier. The
recovery signals are characterized further by the following flags in the ISGE51CN
parameter list:

ENF51C_SYSTEM_FAILURE
If the ENF51C_SYSTEM_FAILURE flag is set, the system identified by the
ENF51C_FAILED_SYSTEM field has failed. If the ENF listener is maintaining a
database of contention information, it must be reinitialized as described above.

Note: Global resource serialization may not issue this event for all system
failures. This flag is only set when global resource serialization cannot
determine the effect of the system failure on contention already in existence.

ENF51C_SYSTEM_ERROR
If the ENF51C_SYSTEM_ERROR flag is set, contention information has
been lost due to a system error:
v In a global resource serialization ring complex, contention monitors on

the system where the failure occurred will receive no further contention
signals. Contention information relating to that system will be available
via ENF signals on the other systems in the complex. The signal is only
sent to listeners on the affected system.

v In a global resource serialization star complex, no further contention
information for the system where the error occurred will be available via
ENF signals to other systems in the complex. Global resource contention
data is not valid on any system. Local resource contention data remains
valid on systems other than the one suffering the error. The signal is sent
to all systems in the sysplex.

The CVTGRSST field contains the following flags that describe the
availability of ENF contention data on each system following the error:

200 z/OS V2R2 MVS Authorized Assembler Services Guide

CVTE51GN
When this flag is set, global resource contention data is not
available. ENF 51 listeners may receive signals for global resource
contention, but the data will be incomplete.

CVTE51LN
When this flag is set, local resource contention data is not
available. ENF 51 listeners will not receive signals for local
resource contention.

ENF51C_SYSTEM_ERROR_CLEARED
If this flag is set, all systems that had suffered the error reported by the
ENF51C_SYSTEM_ERROR signal have been partitioned from the sysplex.
Global resource contention data is once again valid on all systems. This
signal is sent to listeners on all systems in a star complex. (In a ring
complex, the other systems were not affected by the original error.)

Listening for RNL change data
To establish an ENF listen exit to be called when a user job is affected by RNL
changes, issue
ENFREQ ACTION=LISTEN

with one of the qualifier/qmask combinations described in Table 23. In the table:
v In qualifier values, the character 'x' indicates an arbitrary value (“don't-care”

value).

Table 23. Qualifier / QMASK combinations for RNL change data

Qualifier
(hexadecimal) QMASK Result

None N/A All signal 51 events, including both contention
and RNL change data

02xxxxxx BYTE1 All RNL-related events

02xxxx01 BYTE1,BYTE4 User job suspended due to RNL changes

02xxxx02 BYTE1,BYTE4 User job resumed following RNL changes

Listening for other global resource serialization events
To establish an ENF listen exit to be called global resource serialization mode
changes (that is, migrations from a ring to star complex), issue
ENFREQ ACTION=LISTEN

with one of the qualifier/qmask combinations described in Table 24. In the table:
v In qualifier values, the character 'x' indicates an arbitrary value (“ don't-care”

value).

Table 24. Qualifier / QMASK combinations for Global Resource Serialization Mode changes

Qualifier
(hexadecimal) QMASK Result

03xxxxxx BYTE1 Any mode change

03xxyyzz BYTE1,BYTE3
BYTE4

Changes from yy mode to zz mode, where the
values for yy and zz are defined in the
IHAECVT for the ECVTGMODE field.

Chapter 8. Listening for system events 201

202 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 9. Using a service request block (SRB)

There are many advantages to the use of multiple virtual address spaces. Virtual
addressing permits an addressing range that is greater than the central storage
capabilities of the system. The use of multiple virtual address spaces provides this
virtual addressing capability to each job in the system by assigning each job its
own separate virtual address space. The potentially large number of address spaces
provides the system with a large virtual addressing capacity.

With multiple virtual address spaces, errors are confined to one address space,
except for errors in commonly addressable storage, thus improving system
reliability and making error recovery easier. Programs in separate address spaces
are protected from each other. Isolating data in its own address space also protects
the data.

In a multiple virtual address space environment, sometimes applications need
ways to communicate between address spaces. There are two basic methods of
inter-address space communication:
v Scheduling a service request block (SRB), an asynchronous process described in

this information.
v Using cross-memory services and access registers, synchronous processes that

are described in z/OS MVS Programming: Extended Addressability Guide.

What is an SRB?
An SRB is a control block that represents a routine that performs a particular
function or service in a specified address space. An SRB is similar to a TCB in that
it identifies a unit of work to the system. Some characteristics of an SRB are:
v An SRB cannot “own” storage areas. SRB routines can obtain, reference, use, and

free storage areas, but the areas must be owned by a TCB.
v An SRB has associated with it such resources as a dispatchable unit access list

(DU-AL), a functional recovery routine (FRR) stack, a linkage stack, and a CPU
timer value.

The routine that performs the function or service is called the SRB routine;
initiating the process is called scheduling an SRB.

Why would you use an SRB?
A program uses an SRB to initiate a process in another address space or in the
same address space. The advantage of scheduling an SRB is that an SRB routine is
asynchronous in nature and runs independently of the scheduling program. This
advantage makes SRBs very useful in the following situations, where the
scheduling program does not need to wait for the SRB routine to finish running:
v To process in parallel

In a multi-processor environment, the SRB routine, after being scheduled, can:
– Be dispatched on another processor and can run concurrently with the

scheduling program. The scheduling program can continue to do other
processing in parallel with the SRB routine.

– Run with the same cross-memory environment as the scheduling program
and with a DU-AL that is a copy of the scheduling program's DU-AL as it

© Copyright IBM Corp. 1988, 2016 203

exists when the scheduling program issues the SCHEDULE or IEAMSCHD
macro, with the exception of any subspace entries in the scheduling
program's DU-AL. The system does not copy subspace entries. In this way,
the SRB routine and the scheduling program can access the same address and
data spaces.

v To avoid serializing
Because the SRB represents a separate unit of work, the unit of work that
schedules the SRB routine is not serialized or delayed while the SRB routine
completes its function. The following types of delays can usually be avoided:
– Page fault resolution
– Address space swap-ins
– Lock suspensions - wait time

v To account for resources
Because the SRB represents a separate unit of work, the processor time spent
accomplishing that work can be charged to:
– The address space in which the SRB is running
– The enclave in which the SRB is running
– The client address space in which the SRB is running

v To make changes of state
In some instances, a program might be running in some state that prohibits it
from performing certain functions. The following are examples of when that
program might schedule an SRB routine:
– A program in a disabled state cannot request a suspend-type lock. The

program can avoid these restrictions by scheduling an SRB to complete the
function.

– A program running in cross-memory mode requires functions that only can
be performed when in non-cross-memory mode. The program can schedule
an SRB that places the SRB routine in non-cross-memory mode.

v To raise the priority of a process
Because the SRB represents a separate unit of work, the SRB has its own
dispatching priority. It can run at a priority higher than that of any address
space or at the priority of the address space in which it is scheduled.
It can also run at a preemptable priority, allowing work at an equal or higher
priority to have access to the processor.

Although a major advantage of SRBs is their asynchronous nature, you can use
WAIT and POST or SUSPEND and RESUME to synchronize the processing of the
SRB routine with the scheduling program.

Scheduling and managing SRBs
This information describes how you can schedule an SRB and purge that SRB
when you no longer need it. It describes how you use the macros that initiate the
running of an SRB routine and provide its recovery. It also describes how you can
serialize the processing of an SRB routine and how to transfer control from an SRB
to a TCB.

The information includes descriptions of the following macros:
v To schedule an SRB, use either the IEAMSCHD or the SCHEDULE macro. IBM

recommends that you use the IEAMSCHD macro. The program that issues either

204 z/OS V2R2 MVS Authorized Assembler Services Guide

the IEAMSCHD or SCHEDULE macro is called the scheduling program. The
scheduling program can schedule an SRB at different priorities.

v The PURGEDQ macro allows for cleanup of SRB activity.
v The SUSPEND macro suspends the running of an SRB routine until an event

occurs.
v The RESUME macro causes the SRB routine to resume running.
v The TCTL macro transfers control from an SRB routine to a task.

The following macros are related to scheduling and managing SRBs:
v The IWMECREA macro allows a program to create an enclave. An enclave is a

way to associate related SRBs to be managed and dispatched as a group. A
program can schedule an SRB to run in an enclave with the IEAMSCHD macro.

v The IWMEDELE macro allows a program to delete an enclave.

For information about how to use the IWMECREA and IWMEDELE macros, see
z/OS MVS Programming: Workload Management Services.

Before you can code the macros, you need to understand the possible
cross-memory environments that the SRB routine can begin running in. Also, you
need to be aware of some characteristics of SRB routines and some restrictions that
the system places on them.

Specifying the addressing environment of the SRB routine
You can choose the cross-memory environment in which the SRB routine will run
and the SRB routine's ability to access address spaces and data spaces. For the
IEAMSCHD macro, you specify the environment with the ENV parameter. For the
SCHEDULE macro, you specify the environment with the MODE parameter.

Using the ENV parameter on IEAMSCHD
On the ENV parameter on IEAMSCHD, you can specify the following addressing
environments for the SRB routine:

HOME
Specifies that the SRB routine is to receive control in the current home
address space, and with PASID=SASID=HASID.

PRIMARY
Specifies that the SRB routine is to receive control in the current primary
address space, with PASID=SASID=HASID.

FULLXM
Specifies that the SRB receives control with the scheduling program's
current cross-memory environment. This means that when the SRB routine
begins to run, it has the primary, home, and secondary address space of
the scheduling program's at the time of the invocation of the IEAMSCHD
macro. In addition, the SRB routine's DU-AL is a copy of the scheduling
program's DU-AL as it exists when the scheduling program issues the
IEAMSCHD macro, with the exception of any subspace entries in the
scheduling program's DU-AL. The system does not copy subspace entries.

STOKEN
Specifies that the SRB routine is to receive control in the address space
specified by the target STOKEN and with PASID=SASID=HASID.

Chapter 9. Using a service request block (SRB) 205

Using the MODE parameter on SCHEDULE
On the MODE parameter on SCHEDULE, you can specify the following addressing
environments for the SRB routine:

NONXM
Specifies that the SRB routine receives control in non-cross-memory mode,
with its primary, secondary, and home address spaces equal to the contents
of SRBASCB. In addition, the SRB routine has access to an empty DU-AL.

FULLXM
Specifies that the SRB receives control with the scheduling program's
current cross-memory environment. This means that when the SRB routine
begins to run, it has the primary, home, and secondary address space of
the scheduling program's at the time of the invocation of the SCHEDULE
macro. In addition, the SRB routine's DU-AL is a copy of the scheduling
program's DU-AL as it exists when the scheduling program issues the
SCHEDULE macro, with the exception of any subspace entries in the
scheduling program's DU-AL. The system does not copy subspace entries.

With MODE=NONXM, the SRB is required only for initial dispatch. The
scheduling routine can free or reuse the SRB after the SRB routine is dispatched.
With MODE=FULLXM, the SRB is needed only for the SCHEDULE invocation. The
scheduling program can free the SRB immediately after issuing the SCHEDULE
macro.

Characteristics and restrictions of SRB routines
SRB routines run enabled and can be interrupted by an asynchronous interruption.
They can be scheduled as preemptable SRBs, allowing higher priority work access
to the processor. SRB routines might lose control because of synchronous events
that cause suspension of the program in control, such as page faults and
unconditional requests for suspend-type locks. In this case, full status of the
process is saved and other work is dispatched; the SRB routine is redispatched
when the situation is resolved.

An enabled SRB routine can take page faults.
v If the routine does not hold any locks when the page fault occurs, the system

suspends the SRB routine, which allows the system to dispatch other work on
the active processor. The system redispatches the SRB routine after it resolves the
page fault.

v If the routine holds a suspend type lock (such as a local, CML, or CMS lock)
when a page fault occurs, the suspended SRB routine continues to hold those
locks. The system suspends other work units that require the lock held by the
suspended SRB routine until the system redispatches the SRB and the SRB
routine explicitly releases those locks.

You can use the SUSPEND macro to suspend the execution of an SRB routine until
an event occurs. The RESUME macro then causes the SRB routine to resume
execution. “Serializing SRB processing” on page 216 describes how you use the
SUSPEND and RESUME macros.

If an SRB routine requires an Integrated Cryptographic Feature (ICRF) to encrypt
or decrypt data, use the following guidelines:
v Use the FEATURE=CRYPTO parameter if the routine's only purpose is to

encrypt or decrypt data.

206 z/OS V2R2 MVS Authorized Assembler Services Guide

v Do not use the FEATURE=CRYPTO parameter if the routine has many purposes.
In this case, let the system schedule the routine to run on the appropriate
processors as the routine's requirements change.

Implications of running in SRB mode
The SRB routine runs in the operating mode known as SRB mode. Code in SRB
mode:
v Cannot leave supervisor state. The scheduling program can specify that the SRB

routine be dispatched with a LOCAL lock held (LLOCK=YES on the
IEAMSCHD or SCHEDULE macro) or have a recovery routine established for
the SRB routine, or both.

v Can request any lock through the SETLOCK macro.
v Cannot issue SVCs except ABEND. This limitation means that a program in SRB

mode cannot issue some of the system macros and data management macros
such as OPEN and CLOSE. Macro descriptions in one of the following books tell
whether you can use the macros in SRB mode; if a description does not give this
information, you can assume that the macro does not support SRB-mode users.
– z/OS MVS Programming: Assembler Services Reference ABE-HSP

– z/OS MVS Programming: Assembler Services Reference IAR-XCT

– z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

– z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG

– z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

– z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.
v Must return control to the address supplied in register 14, in supervisor state

with no locks held, except the CPU lock. (If LLOCK=YES was specified on the
IEAMSCHD or SCHEDULE macro, the routine must release the LOCAL lock.)

v Can create, use, and delete data spaces, but cannot own a data space. For
information about data space ownership as it relates to an SRB, see z/OS MVS
Programming: Extended Addressability Guide. that contains an example of an SRB
creating and using a data space, without owning one.

v Can run in access register (AR) address space control (ASC) mode.
v Can issue a PC instruction and schedule an SRB.
v Can resume a suspended task or SRB.
v Can suspend itself.
v Should not be a long-running program. An SRB routine is generally not

preempted by I/O interruptions once it is dispatched. An SRB, however, can be
scheduled as a preemptable SRB, allowing higher priority work access to the
processor.

v Can use an ICRF to encrypt and decrypt data.

If you specify a FULLXM environment and FRR=YES to schedule the SRB, the
specified FRR has the characteristics set through the SETFRR macro with the
MODE=FULLXM parameter. If you specify any other environment, and FRR=YES,
the FRR has the characteristics set through the SETFRR macro with the
MODE=HOME parameter.

When you specify FULLXM, a DU-AL with more than 256 entries is not available
to the scheduled SRB routine until the SRB routine is dispatched. If an error occurs
before the SRB routine is dispatched, the DU-AL might not be available to the SRB
routine's FRR.

Chapter 9. Using a service request block (SRB) 207

Environment of the SRB routine at entry
At entry, an SRB routine is in supervisor state, primary ASC mode, enabled and
unlocked unless you specified LLOCK=YES, in which case the local lock is held.
The general purpose registers contain the following:

Register
Contents

0 SRB address if SCHEDULE macro is used; zero if IEAMSCHD is used.

1 If the IEAMSCHD macro is used, the value provided by the PARM
parameter; or if SCHEDULE is used, the SRBPARM field of the SRB.

2 If the IEAMSCHD macro is used with FRRADDR=YES, or if SCHEDULE is
used with FRR=YES, the 24-bit address of the FRR parameter area;
otherwise, not part of the intended programming interface.

14 Return address.

15 Entry point address.

Other general purpose registers and all access registers are used as work areas by
the system.

Scheduling an SRB (IEAMSCHD or SCHEDULE macro)
You can use either IEAMSCHD or SCHEDULE to schedule an SRB routine. IBM
recommends that you use IEAMSCHD. The following table provides a comparison
of the two macros:

Table 25. Comparing IEAMSCHD to SCHEDULE

IEAMSCHD SCHEDULE

IEAMSCHD obtains storage for the SRB for
the caller, and frees the storage when SRB
processing is complete.

Caller must obtain storage for the SRB.

When the SRB routine gets control, Register
0 contains zeros.

When the SRB routine gets control, Register
0 contains the address of the SRB.

RMTR and FRR are optional. RMTR and FRR required to free storage at
termination of SRB and when an error
occurs.

Schedules an SRB at any of the following
priorities: local, global, current, preemptable,
client, and enclave.

Schedules an SRB at either global or local
priority.

IEAMSCHD initializes SRB fields in IHASRB
for caller.

Caller must initialize SRB fields in IHASRB.

Scheduling an SRB using IEAMSCHD
To schedule an SRB using IEAMSCHD, follow these procedures:
1. Determine the addressing environment of the SRB, and specify it using the

ENV parameter.
2. Determine the priority at which you want to schedule the SRB.

There are two kinds of priorities: major and minor. The major priority is the
dispatching priority. The dispatching priority is dynamically defined based on
the goal defined in the service policy. A minor priority is equivalent to a task's
dispatching priority. You can specify a minor priority for SRB routines so that

208 z/OS V2R2 MVS Authorized Assembler Services Guide

|
|

|
|
|

they are dispatched before, with, or after tasks in the address space. You can
assign a minor priority only to preemptable, client, or enclave priority SRBs.
The SRB may be scheduled for execution in any address space at any of the
following major dispatching priorities:

Client
The priority of the address space named by the STOKEN. SRBs scheduled
at this priority are preemptable. For more information about using SRBs
with a client priority, see z/OS MVS Programming: Workload Management
Services.

Current
The priority of the scheduling program's current home address space.

Enclave
The priority defined for the work running in the enclave. SRBs scheduled
at this priority are preemptable.

Global
The priority of the highest priority work in the system.

Local
The priority of the address space into which the SRB is scheduled. The SRB
is not preemptable, and its priority is higher than any preemptable work
running in the address space.

Preemptable
The priority of the target home address space.

Preemptable SRBs may also be scheduled with a minor priority.
A minor priority of X'00' is the lowest and X'FF' is the highest. SRB routines
with higher minor priority are dispatched before preemptable-class SRB
routines with lower minor priority and before tasks in the same address space.

3. Use the FLAGS parameter of IEAMSCHD if you need to differentiate between
one or more of these cases that could result from issuing IEAMSCHD:
v SRB was definitely not queued for execution.
v SRB might have been queued for execution, but the system cannot know

with certainty (this would be a very rare circumstance).
v SRB was definitely queued for execution.

4. Issue IEAMSCHD with the appropriate parameters.

Scheduling an SRB using SCHEDULE
To schedule an SRB using SCHEDULE, follow these procedures:
1. Allocate storage for the SRB from fixed, commonly addressable storage, with

any storage key (0-7).
2. Determine whether or not the SRB routine requires either the same

cross-memory environment as the scheduling program or a copy of the
scheduling program's DU-AL. If the SRB routine needs either of these, specify
MODE=FULLXM on the SCHEDULE macro.
If the SRB routine does not need the same cross-memory environment as the
scheduling program or a copy of the scheduling program's DU-AL:
v Specify MODE=NONXM on the SCHEDULE macro.
v Specify the address space in which the SRB routine is to run.

3. Assign the priority of the SRB
Through the SCHEDULE macro, a program schedules either a global SRB
(through SCOPE=GLOBAL) or a local SRB (through SCOPE=LOCAL),

Chapter 9. Using a service request block (SRB) 209

depending on the priority at which you want the system to dispatch the SRB
routine. The system gives a global SRB a priority that is above that of any task
in any address space. The system gives a local SRB a priority equal to that of
the address space in which the SRB routine will run, but higher than that of
any task within that address space.
The global SRBs that user programs dispatch compete with the global SRBs that
the system dispatches. Therefore, IBM recommends that you specify
SCOPE=LOCAL (the default).

4. Initialize fields in the SRB that identify:
v The SRB routine
v A parameter list, if required
v Additional information for recovery and control
“Initializing the SRB” provides additional information on obtaining and
initializing the SRB.

5. Issue the SCHEDULE macro with the appropriate parameters.

Initializing the SRB
Before a program schedules an SRB, it must obtain 44 bytes of storage for the SRB
and initialize its fields. Either the scheduling program or the SRB must free this
storage when the SRB is no longer needed.

The SRB can be reused or freed. If you scheduled the SRB with MODE=FULLXM,
you can free or reuse the SRB immediately after it has been scheduled. If the
scheduling program passed a parameter list to the SRB routine, you must free or
reuse only the SRB. The parameter list must remain available to the SRB routine
until it has completed processing. If you scheduled the SRB with MODE=NONXM,
the scheduling program must provide the serialization to ensure that it doesn't
reuse, change, or free the SRB before the SRB routine begins to run.

The IHASRB macro maps the structure of an SRB; include IHASRB in your
program. To see the format of the SRB, see the SRB data area see z/OS MVS Data
Areas in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/).

Use the following information to help you initialize the SRB. First, set the SRB to
zeroes, then initialize the fields. The values of all fields not mentioned in this
information should be zero.

SRBASCB
Contains the address of the ASCB of the address space in which the SRB
routine will run, if the SRB was scheduled without duplicating the
scheduling program's cross-memory environment (MODE=NONXM). To
make sure that you identify the address space correctly, use the STOKEN
parameter on the SCHEDULE macro. The system makes sure that the
address space that SRBASCB points to is active and the same as the one
that the STOKEN parameter identifies.

Note: If the SRB was scheduled with cross-memory services
(MODE=FULLXM), this field does not contain useable information.

SRBPKF
Indicates, in the four high-order bits, the PSW key of the SRB routine. The
four low-order bits must be zero.

SRBEP
Specifies the address of the entry point of the SRB routine. If the SRB

210 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

routine is to run in 31-bit addressing mode, set the high-order bit in the
field to 1; if the routine is to run in 24-bit addressing mode, set the
high-order bit to 0.

SRBPARM
Contains the address of a user parameter area. Through this field, the
scheduling program passes information to the SRB routine.

SRBRMTR
Contains the address of a resource manager termination routine (RMTR).
This routine is responsible for cleaning up an SRB that has been scheduled
but not yet dispatched. The RMTR is required and must be in common
storage. SRBRMTR must contain a valid nonzero address. If the RMTR is
to run in 31-bit addressing mode, set the high-order bit in the field to 1. If
the RMTR is to receive control with the local lock, set bit 31 in the field to
1 (SRBRMTLL). For information about the RMTR, see “The resource
manager termination routine (RMTR)” on page 213.

SRBPTCB
Contains the address of a TCB that is associated with the SRB routine. The
system uses this address in two ways:
v If the SRB routine abnormally ends and its FRR does not exist or does

not retry, the task is scheduled for abnormal termination.
v If the specified task terminates, the system purges the SRB and gives the

RMTR control.
If this SRB is not related to any task, or purging is not necessary, specify
a zero value.

SRBPASID
Contains the ASID of the address space associated with the SRB routine. If
you specified a nonzero value in SRBPTCB, you must specify a value for
SRBPASID; the value must contain the ASID of the address space
containing that TCB. Otherwise, this field can be zeroes. If the specified
address space terminates, the system purges the specified SRB and gives
control to the RMTR. SRBPASID does not need to represent the same
address space as SRBASCB.

SRBFRRA
Contains the address of an FRR that receives control if the SRB routine
abnormally ends. If the FRR is to run in 31-bit addressing mode, set the
high-order bit in the field to 1; if the routine is to run in 24-bit addressing
mode, set the high-order bit to 0. SRBFRRA is needed only when
FRR=YES.

Purging an SRB (PURGEDQ macro)
Because an SRB routine is dispatched after the program actually issues either the
IEAMSCHD or the SCHEDULE macro, the conditions that existed in the system at
the time the macro was issued might have changed by the time the SRB routine
begins to run. If, in this time interval, the environment that the SRB routine needs
to run successfully has been changed, the results are unpredictable.

An example of a changed environment is when a task or address space terminates,
leaving outstanding requests for the task or address space. The system issues
PURGEDQs at task and address space termination.

Note: If you used IEAMSCHD, the system filled in the fields of IHASRB. If you
used SCHEDULE, the caller filled in the fields of IHASRB.

Chapter 9. Using a service request block (SRB) 211

v For task termination, the system purges any SRBs associated with the task
(SRBPTCB) and its address space (SRBPASID).

v For address space termination, the system purges any SRBs scheduled to the
address space (SRBASCB, with matching SRBPASID.)

If there are any other conditions for which your SRBs should be purged, issue the
PURGEDQ macro. A program, such as an ESTAE routine or a resource manager,
might use the PURGEDQ macro to:
v Dequeue SRBs that are scheduled, but not yet dispatched
v Allow processing for previously scheduled SRBs to complete
v Purge each dequeued SRB.
v Purge a preemptable SRB at any point in time.
v Purge a non-preemptable SRB (that voluntarily gave up control by doing a

Pause or a SUSPEND with Token) prior to being released or resumed.

Identifying the SRB to be purged
The program must tell PURGEDQ which SRBs are to be purged. Input to
PURGEDQ is as follows:
v The address of the RMTR (RMTR parameter, required).
v The address space identifier (corresponding to SRBASCB) of the address space in

which the SRB is scheduled to be dispatched (ASID parameter, optional).
v The address space and the TCB associated with the SRB that the system is to

purge (ASIDTCB parameter, optional).

The RMTR parameter specifies the address of the RMTR. The RMTR cleans up an
SRB that has been scheduled, but not yet dispatched. The system purges only those
SRBs whose SRBRMTR field contains the address of the RMTR, as specified on the
PURGEDQ macro. When comparing the RMTR parameter to the SRBRMTR field,
SRBRMTLL is treated as zero.

The ASID parameter specifies the address of a halfword containing an address
space identifier. PURGEDQ searches for SRBs scheduled to be dispatched into the
address space specified by this parameter. If you specify the primary address space
by coding its address or by omitting the ASID parameter, you need to know what
PURGEDQ does with the three kinds of SRBs: active, nondispatched, or
suspended:
v It waits for active SRB routines to complete processing.
v It dequeues all nondispatched SRBs. After all of the SRBs have been dequeued

or completed, the RMTR specified in the SRB is given control to perform the
required cleanup for each dequeued SRB.

v It does not pass control to an RMTR of a suspended SRB. Instead, the system
abnormally terminates those SRB routines and waits for the termination to
complete.

If you specify an address space other than the primary address space, PURGEDQ
will try to purge SRBs that have not been dispatched. PURGEDQ does not
guarantee that all SRBs matching the purge parameters will be purged. For
example, PURGEDQ will not purge suspended SRBs, nor will PURGEDQ wait for
active or suspended SRB routines to complete processing.

212 z/OS V2R2 MVS Authorized Assembler Services Guide

When you specify an address space other than the primary, you should use an
RMTR to inform the issuer of PURGEDQ whether a particular SRB has been
purged; otherwise, problems might result. For example, consider the following
sequence of events:
v Program-A running in ASID-Current schedules SRB-A to run in ASID-Target.
v Program-A running in ASID-Current issues the PURGEDQ macro with the ASID

parameter to purge SRBs in ASID-Target.
v Program-A running in ASID-Current issues a FREEMAIN for SRB-A.

The preceding sequence of events could result in SRB-A's storage being freed while
it is still waiting to be dispatched, because the PURGEDQ function, when the
address space specified is other than the primary address space, does not
guarantee that all SRBs in ASID-target will be found and purged. This processing
might cause spin loops, ABENDs in lock manager, and other problems. Before
issuing a FREEMAIN for an SRB, PURGEDQ users who specify an address space
other than primary must construct their own communication mechanism to be sure
that an SRB has indeed been purged. One way to be sure than an SRB has been
purged is to use an RMTR. When the PURGEDQ successfully finds and purges an
SRB, the RMTR associated with that SRB is called. The RMTR can free the SRB, or
the RMTR can use the SRB parameter area to indicate to another program that the
SRB can be safely freed. This prevents SRBs that are missed by PURGEDQ from
being freed while they are still waiting to be dispatched.

The ASIDTCB parameter specifies the address of a doubleword that describes the
TCB for which SRBs are to be purged. Through this parameter, you can purge the
SRBs associated with a specific task. If you omit the parameter, the system purges
SRBs associated with the current task in the primary address space.

The resource manager termination routine (RMTR)
If the system has purged the SRB from the dispatching queue before the SRB
routine can run, PURGEDQ calls the RMTR associated with the SRB. The primary
purpose of the RMTR is to clean up the SRB. The routine can either free the SRB
storage by invoking the FREEMAIN or the STORAGE RELEASE macro or mark
the SRB so that it can be reused. The choice depends on how your application
manages its SRBs.

The RMTR must be commonly addressable from all address spaces and must
remain in supervisor state. One RMTR can provide recovery for more than one
SRB. However, then you must be more careful when you tell the PURGEDQ macro
which SRB (or SRBs) to purge.

At entry, the RMTR is enabled, in task mode, in supervisor state, with PSW key 0.
If requested either by bit 31 of RMTRADDR being on for IEAMSCHD or by
SRBRMTLL being on, the RMTR will receive control with the local lock held.
Otherwise, no locks will be held. Entry register contents are as follows:

Register
Contents

0 Contents of register 0 of the caller of PURGEDQ at the time the PURGEDQ
macro was issued. This register allows the caller of PURGEDQ to pass
information to the RMTR. This information can be a pointer or data.
Register 0 contains zero if the SRB was purged by the system during
address space or task termination.

1 For IEAMSCHED, 0. For SCHEDULE, the address of the dequeued SRB.

Chapter 9. Using a service request block (SRB) 213

2 For IEAMSCHD, this is the contents specified on the PARM keyword for
the SRB. For SCHEDULE, this is the contents specified in the SRBPARM
field of the SRB.

14 Return address to PURGEDQ.

15 Entry point of RMTR.

The RMTR must return control using a BR 14, enabled, in supervisor state with
PSW key 0. If the local lock was held on entry, the RMTR is allowed to release the
local lock before returning, but is not required to do so. No other locks may be
held upon return. If the local lock was not held on entry, the RMTR must return
with no locks held. The RMTR is allowed to acquire locks, release locks, issue
SVCs and use input registers without first saving the contents during its
processing.

Scenario of scheduling and purging an SRB
The best way to describe the activities related to the scheduling of an SRB is
through examples.

Example 1
This example shows a scenario of scheduling an SRB using IEAMSCHD and
purging the SRB using PURGEDQ. The example schedules an SRB routine:
v To an enclave (identified by ENCLAVE_TOKEN) at the lowest priority in the

enclave.
v To receive control in the current home address space with an FRR established

and holding the LOCAL lock of the current home address space.
v To run with PSW key 2 in the current home address space
v To have a resource manager termination routine whose entry point address is in

RMTR_ADDR.

The scheduling routine's current task recovery is to receive control should the SRB
routine's recovery percolate. The SRB routine should be purged if the current task
terminates. The ENCLAVE_TOKEN and PURGE_STOKEN were previously
initialized.
*
SCHED_SRB_RTN EQU *

USING PSA,0 Base Prefixed Save Area
*

IEAMSCHD EPADDR=EP_ADDR,FRRADDR=FRR_ADDR,KEYVALUE=
PSW_KEY_2,PRIORITY=ENCLAVE,ENCLAVETOKEN=ENCLAVE_TOKEN,
MINORPRIORITY=MINOR_PRIORITY,RMTRADDR=RMTR_ADDR,
PURGESTOKEN=PURGE_STOKEN,PTCBADDR=PSATOLD,LLOCK=YES,
ENV=HOME

*
.
.
.

ENCLAVE_TOKEN DS D Enclave Token returned by IWMECREA
PURGE_STOKEN DS D Purge-STOKEN
EP_ADDR DC A(SRB_ROUTINE) Address of Entry Point for SRB
FRR_ADDR DC A(FRR_ROUTINE) Address of FRR Routine
RMTR_ADDR DC A(RMTR_ROUTINE) Address of RMTR Entry Point
MINOR_PRIORITY DC X’00’ Lowest Priority in Enclave
PSW_KEY_2 DC X’20’ PSW Key 2

214 z/OS V2R2 MVS Authorized Assembler Services Guide

|
|

Example 2
This example shows a scenario of scheduling an SRB using SCHEDULE and
purging the SRB using PURGEDQ. Figure 33 shows SRB storage and five pieces of
code:
v The scheduling program, PGM1, runs in AS1 and needs the service of a routine

in another address space.
v The SRB routine, SRBRTN, runs in address space AS2.
v A recovery routine, RMTR1, in AS1 performs cleanup operations in case AS2

terminates before SRBRTN can run.
v A recovery routine, FRR1, in AS1 receives control if PGM1 abnormally ends.
v A recovery routine, FRR2, in AS2 receives control if SRBRTN abnormally ends.

Note that SRBRTN is not required to be in the common area; it could be in the
private area of AS2.

Actions of PGM1:
v STORAGE OBTAIN obtains storage for the SRB from subpool 245.
v PGM1 initializes the SRB. Contents of some fields are:

– SRBASCB - the ASCB of AS2
– SRBPASID - the ASID of AS1
– SRBPTCB - the address of PGM1's TCB
– SRBEP - the address of SRBRTN
– SRBRMTR - the address of RMTR1
– SRBFRRA - the address of FRR2

v SETFRR sets up recovery through FRR1 for PGM1.

AS1

PGM1

AS2

SETFRR ...@ FRR1

SCHEDULE ..FRR=YES..@ SRBRTN

PURGEDQ ...

FRR1

RMTR1 SRBRTN

SRB FRR2

STORAGE OBTAIN...

STORAGE RELEASE...

STORAGE RELEASE... STORAGE RELEASE...

STORAGE RELEASE...

COMMON AREA

Figure 33. Example of Scheduling an SRB

Chapter 9. Using a service request block (SRB) 215

v SCHEDULE schedules an SRB. FRR=YES indicates that the scheduling program
has set up recovery (through FRR2) for SRBRTN, as defined by SRBFRRA. When
the SRB routine gets control, it should fill in the FRR parameter area with the
information required by its FRR.
If the FRR is entered before the SRB routine runs (which would result if, for
example, the SRB has affinity but no processors online fit the affinity), then the
system fills in the FRR parameter area as follows:
– Word 1 - Contents of SRBPARM
– Word 2 - Address of SRB

v PURGEDQ purges the SRBs that were scheduled to be dispatched and that were
associated with the TCB.

Actions of SRBRTN:
v Initialize the FRR parameter area
v STORAGE RELEASE frees the SRB storage.

Actions of RMTR1:
v STORAGE RELEASE frees the SRB storage.

Actions of FRR1 that covers PGM1:
v STORAGE RELEASE frees the SRB storage (if it has not already been scheduled).

Actions of FRR2 that covers SRBRTN:
v STORAGE RELEASE frees the SRB storage.
v If FRR2 percolates, the system abnormally ends PGM1 (because SRBPTCB

contains the address of PGM1's TCB).

Serializing SRB processing
To serialize an SRB, use the SUSPEND and RESUME macros. The SUSPEND macro
identifies the SRB that is to be suspended. In response to the SUSPEND macro, the
system provides a token that identifies the SRB and invokes a user-provided exit
routine. The exit routine must save the token and then decide whether to suspend
the SRB or to allow it to continue running. The RESUME macro enables a program
to request that the system resume execution of a suspended SRB or purge the SRB.

Suspending an SRB until an event completes (SUSPEND
macro)

The SUSPEND macro enables an SRB routine to suspend execution until an event
occurs that requires the routine to resume execution.

To issue SUSPEND from an SRB routine, code both the SPTOKEN parameter and
the EXIT parameter. SPTOKEN defines the address of an 8-byte location where the
system returns a token called the suspend token. This token uniquely identifies the
suspended SRB and is subsequently used by the suspend exit routine and the
RESUME macro. The EXIT parameter defines the address of the user-provided
suspend exit routine. This exit routine stores the suspend token and decides
whether to suspend the SRB or allow it to continue running. The SRB routine can
pass a parameter list to the exit routine; the EXITPARM parameter on the
SUSPEND macro points to this parameter list. For information on how to write
this exit, see “Suspend exit routine” on page 217.

216 z/OS V2R2 MVS Authorized Assembler Services Guide

Optionally, you can also code the RSCODE parameter. RSCODE provides the
address of a fullword, called the resume code. The resume code provides a means
for the exit routine or the program that subsequently resumes the SRB to
communicate with your program. The exit routine and the program that issues the
RESUME macro have the option of storing a fullword value in the resume code.
The meaning of the value is a decision that must be made among the macro callers
and the exit designer.

After the SUSPEND macro is issued, one of the following actions occur depending
on the suspend exit's decision:
v The SRB routine continues to run, in which case, control immediately returns to

the instruction following the SUSPEND macro.
v The SRB is suspended. A suspended SRB remains suspended until a program

subsequently issues the RESUME macro to resume SRB execution or to purge
the SRB from the system. A resumed SRB resumes execution at the instruction
following the SUSPEND macro. A purged SRB never regains control.

Suspend exit routine
The suspend exit routine is required. It is responsible for saving the suspend token.
Additionally, it makes the decision whether to suspend an SRB or allow it to
continue running. The system invokes the exit routine when an SRB routine issues
the SUSPEND macro and identifies the exit on the EXIT parameter. The exit
routine must be addressable in the primary address space of the program that
issued the SUSPEND macro. Input to the exit routine is the address of the suspend
token. The exit routine must store the suspend token and not alter it.

The SRB routine can pass parameters to the exit routine; the EXITPARM parameter
on SUSPEND points to the address of the parameter list. The exit routine and the
SRB routine determine the format of the list.

Environment on Entry: On entry to the exit routine, the following environment
exists. This same environment must exist when the exit routine returns control to
its caller.

Environmental factor Requirement
Authorization: Supervisor state and PSW key 0
Dispatchable unit mode: SRB (The same SRB that represents the issuer of SUSPEND.)
Cross memory mode: NewHASN = oldHASN, newPASN = oldPASN, newSASN =

oldPASN
AMODE: 31-bit
ASC mode: Same as the program that issued SUSPEND
Interrupt status: Enabled for I/O and external interrupts
Locks: If the calling program holds the local or CML lock, the exit

routine holds the lock when invoked.

Registers on Entry: On entry to the exit routine, the general purpose registers
contain:

Register
Contents

0 Address of the exit routine parameters specified by the EXITPARM
parameter of SUSPEND

1 Address of the suspend token

2 - 13 Used as work registers by the system

Chapter 9. Using a service request block (SRB) 217

14 Return address

15 Entry point address

The access registers contain:

Register
Contents

0 ALET that qualifies the address of the exit routine parameters

1 ALET of the suspend token

2 - 15 Used as work registers by the system

To suspend the SRB, the exit routine must place a return code of 0 into register 15.
If the caller of the SUSPEND macro holds a local or CML lock, SUSPEND releases
the lock when the exit routine passes control back to it and passes a return code of
0. To subsequently resume the SRB, a program will need to use the suspend token.
Therefore, the exit routine must store the suspend token in a location that will be
addressable by any program that resumes the SRB. For example, the exit routine
might store the token in common storage, then set a flag to indicate that the token
is stored and the exit has finished processing. On exit, the access registers and
general purpose registers 0 - 13 can contain any values placed there by the exit
routine. To return to the caller, the exit routine must issue a BR 14 instruction.

To allow the SRB to continue running, the exit must place a return code of 4 into
register 15. Optionally, the exit routine can also place a fullword resume code into
register 0. The system returns the resume code to the resumed SRB routine. On
exit, the access registers and general purpose registers 1 - 13 can contain any
values the exit routine places there. To return to the caller, the exit routine must
issue a BR 14 instruction.

Resuming or purging a suspended SRB (RESUME macro)
The RESUME macro enables a program to resume execution of a previously
suspended SRB or to purge the SRB. Do not attempt to purge or resume a
suspended SRB until after the suspend exit receives control.

To resume or purge an SRB, code the SPTOKEN parameter on the RESUME macro.
SPTOKEN defines the address of an 8-byte location that contains the suspend
token that identifies the SRB. This must be the same suspend token the system
provided when the SUSPEND macro was issued to suspend the SRB.

To resume a suspended SRB, in addition to coding SPTOKEN you can code
PURGE=NO or omit the PURGE parameter. To communicate with the resumed
SRB routine, code the RSCODE parameter. RSCODE defines a fullword (the
resume code) where you can place a value that the system will return to the
resumed SRB routine. If you omit RSCODE, the system returns a resume code of
zero to the resumed SRB routine.

To purge a suspended SRB, in addition to coding SPTOKEN, you must code
PURGE=YES. A purged SRB never regains control.

Scenario of suspending and resuming an SRB
The best way to describe the activities related to the suspending and resuming of
an SRB is through an example. Figure 34 on page 219 shows the SRB routine
SRBRTN that runs in address space AS2. PGM1 in AS1 manages a resource that

218 z/OS V2R2 MVS Authorized Assembler Services Guide

SRBRTN needs.

When SRBRTN needs the resource, it issues the SUSPEND macro, providing a
location where the system can return a suspend token and identifying an exit
routine.

The exit routine, which runs under the SRB that represents SRBRTN, receives the
suspend token and stores it in the common area. It then queues a request for the
resource and returns to the system indicating that the SRB is to remain in a
suspended state.

PGM1 receives control when the resource is free. It obtains the suspend token from
the common area and issues the RESUME macro, providing the suspend token and
specifying PURGE=NO. SRBRTN then resumes control, able to use the resource.

It is important that you understand the order in which the code runs. The circled
numbers indicate the order. The SUSPEND macro causes the exit routine to run.
The RESUME macro causes the code following the SUSPEND macro to run.

Recovery responsibilities for a suspended SRB
During address space termination, the recovery programs established by
suspended SRB routines in that address space do not get control. For this reason,
the program that suspends those SRB routines should provide recovery for the SRB
routine for the time the SRB routine is suspended. To do this, the resuming or
purging program should have used the RESMGR macro to establish a resource
manager that gains control should the address space terminate. The resource
manager must free any resources owned by the SRB routine and perform recovery,
as needed.

When the target of a PURGEDQ macro is a terminating task, the system looks for
suspended SRB routines that were scheduled with SRBPTCB and SRBPASID fields
that identify the terminating task. The system abnormally ends those SRB routines
with an X'47B' system completion code.

SRBRTN

AS1 AS2

PGM1

SRB

BR14

4

1

2

3

SUSPEND SPTOKEN=...EXIT=...

exit routine
suspend token

COMMON AREA

RESUME SPTOKEN=...PURGE=NO

Figure 34. Suspending and Resuming an SRB

Chapter 9. Using a service request block (SRB) 219

When the target of a PURGEDQ macro is the issuer's primary address space, the
system looks for preemptable SRB routines that were scheduled with SRBPTCB,
SRBPASID, and SRBRMTR fields that match the TCB, ASID, and RMTR parameters
on PURGEDQ. If the fields match the parameters, the system abnormally ends the
SRB routine, after converting the SRB to be nonpreemptable and nonquiescable,
with an X' 47B' system completion code, and waits for termination to complete.

Terminating a preemptable SRB
Preemptable SRBs scheduled via IEAMSCHD with the SRBIDTOKEN parameter
can be terminated using CALLRTM TYPE=SRBTERM, SRBIDTOKEN=token addr.
To temporarily protect an executing preemptable SRB from CALLRTM
TYPE=SRBTERM, obtain a lock or set process-must-complete. Note that the system
will honor the pending SRBTERM request when your SRB releases its lock or
resets process-must-complete.

Calling an SRB to run synchronously
To suspend the caller's thread until the scheduled SRB completes, is purged, or
abends, specify the SYNCH=YES parameter on IEAMSCHD. Note that if an SRB
scheduled with SYNCH=YES abends, SRB to task percolation does not occur. The
calling thread can determine the final status of the scheduled SRB by specifying
the SYNCHCOMPADDR= and SYNCHCODEADDR= parameters on IEAMSCHD.

Transferring control for SRB processing (TCTL macro)
The TCTL (transfer control) macro allows an SRB routine to exit from its
processing and to pass control to a task with minimal system overhead. When an
SRB specifies RESUME RETURN=N, control transfers to the resumed TCB. Control
then passes to the top RB on the TCB/RB chain, but only if the system determines
that the RB is dispatchable.

Some other considerations for using the TCTL macro are:
v The TCTL macro can be used only by SRB programs, but they may be in any

key. If a non-SRB routine issues either the TCTL macro or a RESUME
RETURN=N, the routine will abnormally terminate with a X'070' system
completion code.

v The TCTL macro causes cleanup of the SRB.
v The TCTL macro requires inclusion of the CVT mapping macro.

The TCTL macro requires that the SRB requesting the TCTL must not hold any
locks and must be in primary ASC mode, where the home and primary address
space is the same.

220 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 10. Virtual storage management

The system allocates and releases blocks of virtual storage on request, ensures that
real frames exist for SQA, LSQA, and V=R pages, and protects storage with fetch
and storage protection keys. It provides this function through the GETMAIN,
FREEMAIN, and STORAGE macros. In addition, the system provides the following
services through the use of the macros specified:
v VSMREGN macro: List the starting address and the size of the private area

regions associated with a given task
v VSMLOC macro: Verify that a given area has been allocated through a

GETMAIN or STORAGE macro
v VSMLIST macro: List the ranges of virtual storage allocated in a specified area.

These system services are especially useful when determining available storage,
coding recovery procedures, or specifying areas to be included in a dump.
VSMREGN enables you to determine the amount of storage that you have for
potential use.

z/OS R2 introduces 64-bit addressing and an address space with an almost
unlimited amount of virtual storage above the 2-gigabyte address. The size of the
64-bit address space is 16 exabytes, which makes the new address space 8 billion
times the size of the former S/390 address space. Programs continue to be loaded
and to run below the 2-gigabyte address; these programs can use data that resides
above 2-gigabytes. To allocate and release virtual storage above the 2-gigabyte
address, a program issues the IARV64 macro. The GETMAIN, FREEMAIN,
STORAGE, and CPOOL macros do not allocate storage above the 2-gigabyte
address, nor do callable cell pool services. It is expected that most programs will
continue to use virtual storage below the 2-gigabyte address. To learn how to
obtain and use storage above the 2-gigabyte address, see Using the 64-bit address
space in z/OS MVS Programming: Extended Addressability Guide.

If you need to check whether a GETMAIN or STORAGE macro was issued to
allocate a given block of storage, you can use the VSMLOC macro to perform this
check. If the given block is located in private area storage, you can also request the
address of the TCB that issued the GETMAIN or STORAGE macro. VSMLOC
enables you to verify control blocks or storage locations when coding recovery
procedures. You can use VSMLOC to check whether a control block has been
allocated and to verify that the control block is located in the correct subpool.

VSMLIST enables you to obtain detailed information about virtual storage that
could be useful in determining the areas that you might need in a dump and
thereby limit the size of the dump. Limiting the size of a dump is especially critical
when executing in 31-bit addressing mode because of the amount of storage
involved. The use of VSMLIST is described in “Obtaining information about the
allocation of virtual storage (VSMLIST)” on page 240.

You can use the Page Status Interface Routine (IARQD) to determine the location
and status of a page in the storage hierarchy. The use of IARQD is described in
“Using IARQD — The page status interface routine” on page 248.

© Copyright IBM Corp. 1988, 2016 221

Allocating and freeing virtual storage (GETMAIN, FREEMAIN and
STORAGE macros)

The GETMAIN macro and the STORAGE macro with the OBTAIN parameter
allocate virtual storage. The FREEMAIN macro and the STORAGE macro with the
RELEASE parameter free virtual storage.

Most of the functions of GETMAIN, FREEMAIN, and STORAGE are available to
all users. You can find information on these functions in z/OS MVS Programming:
Assembler Services Guide. However, some of the GETMAIN, FREEMAIN, and
STORAGE functions are available only to authorized programs. This information
provides help in the following areas:
v To help you decide which of the macros to use to obtain and release storage, see

“Comparison of GETMAIN/FREEMAIN macros with the STORAGE macro.”
v To learn how your program can enter the GETMAIN and FREEMAIN macro

service routines through a branch instruction, see “Specifying branch entry to
GETMAIN and FREEMAIN services” on page 223.

v To learn how your program can use STORAGE and GETMAIN to obtain storage
with a specific storage protection key. See “Selecting the storage key” on page
229.

v To learn how your program can use the STORAGE macro to obtain and release
storage in an address space that is not the primary, see “Obtaining storage in
another address space” on page 223.

v To learn how to choose the right subpool for your storage request, see “Selecting
the right subpool for your virtual storage request” on page 225.

v To learn how your program can associate storage to be obtained with an address
space or the system (so the system can track ownership of CSA, ECSA, SQA,
and ESQA storage), see “Tracking virtual storage allocation (CPOOL BUILD,
GETMAIN, and STORAGE OBTAIN macros)” on page 239.

Comparison of GETMAIN/FREEMAIN macros with the
STORAGE macro

The decision about whether to use GETMAIN or STORAGE OBTAIN to obtain
virtual storage and FREEMAIN or STORAGE RELEASE to release the storage
depends on several conditions:
v The address space control (ASC) mode of your program. If it is in AR mode,

use the STORAGE macro.
v The address space that contains the storage your program wants to obtain or

release. If the storage is in an address space other than the primary, use the
STORAGE macro.

v Whether the program requires a branch entry or a stacking PC entry to the
macro service. Using the branch entry on the GETMAIN or FREEMAIN macro
is more difficult than using the STORAGE macro. Therefore, you might use
STORAGE OBTAIN instead of GETMAIN for ease of coding, for example, when
your program:
– Is in SRB mode
– Is in cross memory mode
– Is running with an enabled, unlocked, task mode (EUT) FRR
The branch entry (BRANCH parameter on GETMAIN or FREEMAIN) requires
that your program hold certain locks. STORAGE does not have any locking
requirement.

222 z/OS V2R2 MVS Authorized Assembler Services Guide

If your program runs in an environment where it can issue the FREEMAIN macro
(as specified by the conditions listed above), you can use FREEMAIN to free
storage that was originally obtained using STORAGE OBTAIN. You can also use
STORAGE RELEASE to release storage that was originally obtained using
GETMAIN.

Specifying branch entry to GETMAIN and FREEMAIN services
In addition to SVC entry available to programs in problem state, branch entry is
available for authorized programs using the GETMAIN and FREEMAIN macros.
Thus, authorized programs that cannot issue SVCs can still use GETMAIN and
FREEMAIN.

Two types of branch entry are available for GETMAIN and FREEMAIN:
BRANCH=YES and BRANCH=(YES,GLOBAL). BRANCH=YES allows both local
(private area) and global (common area) storage to be obtained or released.
BRANCH=(YES,GLOBAL) allows only global storage to be obtained or released.
BRANCH=(YES,GLOBAL) requests are limited to the following global subpools:
The common service area (CSA) subpools 227, 228, 231, and 241, and the system
queue area (SQA) subpools 226, 239, 245, 247, and 248.

See the BRANCH parameter descriptions for GETMAIN and FREEMAIN in z/OS
MVS Programming: Authorized Assembler Services Reference EDT-IXG for information
on how to code the two types of branch entries.

Obtaining storage in another address space
Your program can obtain and release storage in an address space other than the
primary address space. Use the ALET parameter on the STORAGE OBTAIN and
STORAGE RELEASE macros. To understand access lists and ALETs, and how to
get addressability to other address spaces, see z/OS MVS Programming: Extended
Addressability Guide.

Obtaining and using disabled reference (DREF) storage
A program that runs disabled for I/O or external interrupts cannot reference
data-in-virtual storage unless the storage has been page-fixed or is in either a fixed
or disabled reference (DREF) subpool.

All storage supported by the system is either fixed, pageable, or disabled reference
(DREF). Because the system resolves page faults occurring on DREF storage
synchronously, your program can reference DREF storage while it runs disabled for
I/O and external interrupts. Your program, therefore, can use DREF storage in
place of fixed storage if it needs to reference storage while it is disabled. An
advantage of DREF storage is that it need not be backed by central storage frames
until it is referenced. However, if the system cannot obtain a frame of central
storage to back the DREF storage when it is referenced, the program referencing
the storage is ended abnormally.

DREF storage is similar to pageable storage in the following ways:
v It cannot be referenced with DAT off
v It cannot be used for I/O
v Its virtual addresses do not map to constant real addresses.

IBM recommends that you use pageable storage instead of DREF storage if
possible. You should also consider using the PGSER macro to page-fix pageable
storage as needed.

Chapter 10. Virtual storage management 223

To obtain storage from a DREF subpool, use the SP parameter on either GETMAIN
or STORAGE and specify subpool 203, 204, 205, 213, 214, 215, 247, or 248. These
subpools are the DREF subpools.

Avoid using the load real address (LRA) instruction to get the real address of
DREF storage. Do not reference DREF storage with an I/O operation or with
dynamic address translation (DAT) turned off. Also, because the DREF subpools
are supported only above 16 megabytes, specify LOC=31 on the GETMAIN macro
or STORAGE OBTAIN macro.

You can also use the DSPSERV macro to obtain a data space of DREF storage. The
z/OS MVS Programming: Extended Addressability Guide contains information on how
to create a data space with DREF storage.

Abends while referencing DREF storage: If your program attempts to reference
DREF storage and the system cannot obtain central storage to back it, the system
will abnormally terminate your program with an abend code of X'03C'. If you plan
to use DREF storage, your program should be prepared to handle such an abend.
Furthermore, your program's recovery routine should refrain from referencing any
DREF storage if that is what caused the abend.

Using cell pool services (CPOOL macro)
The cell pool macro, CPOOL, provides users with another way of obtaining virtual
storage. This macro provides centralized, high performance cell management
services.

Cell pool services obtain a block of virtual storage (called a cell pool) from a
specific subpool at the user's request. The user can then request smaller blocks of
storage (called cells) from this cell pool as needed. If the storage for the requested
cells exceeds the storage available in the cell pool, the user can also request that
the cell pool be increased in size (extended) to fill all requests.

The CPOOL macro makes the following cell pool services available:
v Create a cell pool (BUILD)
v Obtain a cell from a cell pool if storage is available (GET,COND)
v Obtain a cell from a cell pool and extend the cell pool if storage is not available

(GET,UNCOND)
v Return a cell to the cell pool (FREE)
v Free all storage for a cell pool (DELETE)
v List the beginning address and ending address of every extent in a cell pool

(LIST)

The CPOOL macro, with the exception of the TCB, VERIFY, and
LINKAGE=BRANCH parameters, is available to unauthorized users. If
unauthorized programs specify the OWNER parameter, the system ignores the
parameter (because unauthorized programs cannot obtain common storage). Note,
however, that in order to provide high performance, cell pool services do not
attempt to detect most user errors. For example, the following user errors are not
detected by cell pool services, and may produce unpredictable results:
v The user is executing in a non-zero key that does not match the key of the pool

being manipulated.
v The user attempts to free a cell from a pool that has already been deleted.

224 z/OS V2R2 MVS Authorized Assembler Services Guide

v When trying to free a cell, the user passes cell pool services a bad cell address.
(This might damage the cell pool, preventing subsequent requests from being
properly handled.)

v A disabled user requests that a cell pool be built in a pageable subpool.

Your program can use the LIST service when it wants to know the starting and
ending addresses of cell pool extents. It can use this information when it requests
SVC dumps of cell pool storage. Because of the limit of the input buffer, the system
might not be able to complete the request for the listing in one issuance of CPOOL
LIST. It can reissue the macro. In the first bit of the work area it supplies on the
WORKAREA parameter, the program must tell the system whether this is the first
issuance of the macro. A “1” in the first bit indicates the first time the macro is
issued and a “0” indicates subsequent issuances. The system returns a code to let
your program know when it has more information to give and when it has
completed the request. Return codes are listed in z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN. Do not issue any other CPOOL
requests between the issuances of CPOOL LIST.

Selecting the right subpool for your virtual storage request
Conceptually, a subpool is an area of virtual storage with a certain set of attributes,
created by MVS to satisfy a request for virtual storage. A two-gigabyte virtual
storage address space is divided into multiple areas, each intended to support
specific system and user needs. MVS provides subpools within the following areas
of the address space:
v Low private
v High private
v Private local system queue area (LSQA) and extended LSQA
v Common system queue area (SQA) and extended SQA
v Common service area (CSA) and extended CSA.

For more information about these virtual storage areas as well as information
about virtual storage in general, see the virtual storage overview in z/OS MVS
Initialization and Tuning Guide.

Besides being in a particular area in an address space, subpools are distinguished
by other attributes, such as which programs can access them, whether the storage
can be paged out, and how long the storage persists. To select the right subpool,
you need to examine these attributes and determine which ones are best suited for
your needs. Your choice of subpool depends on several factors:
v Whether your program is authorized
v How you will use the storage
v What environment your program runs in.

This information discusses the considerations involved in determining the
appropriate subpool for your storage request, such as:
v What is your program's authorization level? (See “Program authorization” on

page 226.)
v Do other address spaces need access to the storage or will it be used only by

tasks and subtasks in the same address space? (See “Selecting private or
common storage” on page 227.)

v Do you want to protect the storage area from unwanted access? (See “Selecting
fetch protected or non-fetch protected storage” on page 228.)

Chapter 10. Virtual storage management 225

v Does your storage area require a particular storage key? (See “Selecting the
storage key” on page 229.)

v Is the program accessing the storage running enabled, locked, or disabled? (See
“Selecting pageable, DREF, or fixed storage” on page 230.)

v How long will the storage be required? (See “Selecting storage persistence” on
page 231.)

v Must the storage area be backed below 16 megabytes or can it be backed
anywhere? (See “Selecting central storage backing” on page 234.)

Be sure also to read the discussion of subpools in z/OS MVS Programming:
Assembler Services Guide. The information in z/OS MVS Programming: Assembler
Services Guide is not repeated in this discussion.

Program authorization
Your program's authorization determines what subpools you can use. For the
GETMAIN, FREEMAIN, STORAGE, and CPOOL macros, your program is
authorized if it has at least one of the following types of authorization:
v Runs in supervisor state
v Has PSW key 0-7
v Is APF-authorized

Otherwise, the program is unauthorized. Unauthorized programs can request
storage only from private storage subpools 0-127, 131, and 132. Authorized
programs can obtain storage from additional private storage subpools as well as
from common storage subpools.

Obtaining and releasing storage from subpool 0 yields different results depending
on whether a program is running in supervisor state and PSW key 0. If a program
is running in supervisor state and PSW key 0, the system translates the subpool 0
storage request to a subpool 252 storage request. In all other cases, the system
handles subpool 0 storage requests as such. To obtain or free subpool 0 storage
while running in supervisor state and PSW key 0, a program must specify subpool
240 or 250 on the storage request. Subpool 240 and 250 requests, which are limited
to authorized callers, are translated to subpool 0 requests. Table 26 summarizes
these special cases.

Table 26. Supervisor State and PSW Key 0 Callers and Subpool 0

Subpool Specified Subpool Obtained or Freed

240, 250 0

0 252

Because of the way the system translates requests from supervisor state and PSW
key 0 callers involving certain subpools, a problem such as the following could
occur. A program running in supervisor state and PSW key 0 switches into another
PSW key and obtains storage from subpool 0. The program then switches back to

Alternatives to Using Subpool Storage

Data spaces and hiperspaces provide an alternative means of obtaining and sharing storage. For instance, you can
use a SCOPE=ALL data space to hold data to be accessed by all programs running in your address space. You can
also use a SCOPE=COMMON data space to share data among programs in different address spaces instead of using
common storage for that purpose. For more information about creating and using data spaces and hiperspaces, see
z/OS MVS Programming: Extended Addressability Guide.

226 z/OS V2R2 MVS Authorized Assembler Services Guide

PSW key 0 and tries to free the storage. An error results because the system
translates the request to free storage from subpool 0 to a request to free storage
from subpool 252. To prevent this error, the program must specify subpool 240 or
250 when releasing the subpool 0 storage.

Selecting private or common storage
Your choice of private or common storage depends on whether programs in other
address spaces need access to your storage.

Private storage is divided into low private and high private storage. The system
satisfies low private storage requests by allocating storage at the lowest available
address. The system satisfies high private storage requests by allocating storage at
the highest available address. This method of allocating low and high private
storage allows the amount of low and high private to adjust to the needs of the
address space. Certain considerations apply to allocating storage within the private
area. See “Managing private storage allocation” for further information.

Low private storage can be obtained and released by all programs; in contrast,
high private storage can be obtained and released only by authorized programs.
Common storage can be read by both authorized and unauthorized programs, but
can be obtained and released only by authorized programs. Each address space in
the system has its own private storage but shares common storage with the other
address spaces. Although common storage is considered part of an address space,
in many ways it behaves as if it were not. For instance, if an address space is
swapped out, only the private storage is swapped out. Private storage can be
accessed from another address space only by using access registers or
cross-memory services; whereas common storage can be accessed by tasks and
SRBs in other address spaces.

Note: Private and common storage are frequently referred to as local and global
storage, respectively.

Table 27 summarizes the differences between private and common storage:

Table 27. A Comparison of Private and Common Storage

Private Storage Common Storage

Each address space has its own All address spaces share

Accessible only using the dynamic address
translation (DAT) tables for that address
space

Accessible using the DAT tables for any
address space

Swappable if address space is swappable Non-swappable

Amount of low private storage limited by
the user region size, an installation-defined
parameter. For more information about the
user region, see z/OS MVS Initialization and
Tuning Guide.

Amount limited by sizes of SQA and CSA as
defined in the IEASYSxx member of
SYS1.PARMLIB. For more information about
the IEASYSxx member, see z/OS MVS
Initialization and Tuning Reference.

Managing private storage allocation
When the system creates an address space, it assigns a certain area of the address
space for use as private storage. High private storage is allocated from the top of
the private area down, and low private storage is allocated from the bottom of the
private area up. Private storage allocation is governed by two rules:
1. Low private storage cannot exceed the boundary set by the

installation-determined user region size limit.

Chapter 10. Virtual storage management 227

2. High private can "grow" down as long as it does not go below the low storage
boundary, determined by the allocated low private storage area at the highest
address. That is, high private storage must be allocated above all allocated low
private storage, and low private storage must be allocated below all allocated
high private storage.

High private storage can be allocated below the user region boundary as long as
the high private storage resides above all allocated low private storage.

As a result of rule 2, several problems could occur. First, a caller might be unable
to obtain low private storage even though low private storage is available because
an area of high private storage is in the way and the available storage is above it.
Figure 35 illustrates the problem.

To reduce the possibility of being unable to obtain low private storage, try to
obtain storage areas for long-term use first so that they will be allocated at the top
(high private storage) or bottom (low private storage) of the private area,
preventing long-term allocations from fragmenting private storage. You should also
release any storage when it is no longer needed.

Another problem could occur due to the allocation of large amounts of high
private storage. The amount of low private storage could be reduced to the point
that the system cannot provide a user region of the specified size when it attempts
to a start a new step. If this situation occurs, the step is ended abnormally.

To minimize this problem, try to avoid fragmenting high private storage because
this causes successive allocations to reach farther and farther down into the low
private area. You should also release any storage when it is no longer needed.

Selecting fetch protected or non-fetch protected storage
Fetch protection helps prevent unwanted read access to your storage. A program
can read from fetch protected storage only if its PSW key matches the storage key
of the storage area or if its PSW key is 0. Non-fetch protected storage can be read
by any program.

Unallocated
High Private

Storage

Unallocated
Low Private

Storage

User Region
Boundary

High Private
Storage Boundary

Low Private
Storage BoundaryUnallocated

Storage

Allocated
High Private Storage

Allocated
Low Private Storage

Allocated
High Private

Storage

Figure 35. Low and High Private Storage Allocation

228 z/OS V2R2 MVS Authorized Assembler Services Guide

Note: Although you can obtain fetch-protected storage in key 8, the storage is only
protected from accidental access because any program can switch into PSW key 8
and thereby obtain access to key-8 storage.

Selecting the storage key
The storage key helps control read and write access to the virtual storage area. You
need to choose a storage key that will allow access by those programs that require
it. To limit unwanted access by other programs, try to select a storage key different
from the PSW key that other programs are likely to use.

The storage key controls user access as follows:
v Programs running in PSW key 0 have read and write access to storage in every

storage key.
v Programs running in PSW keys 1 through 15 have read access to:

– Storage whose key matches their PSW key
– Storage (in any key) that's not fetch protected
– Storage in key 9 if the hardware feature, subsystem storage protection

override, is installed. The CVTOVER bit in the CVT is set to 1 if the feature is
installed. For more information about the CVTOVER bit in the CVT, see z/OS
MVS Data Areas in the z/OS Internet library (http://www.ibm.com/systems/
z/os/zos/bkserv/).

v Programs running in PSW keys 1 through 15 have write access to:
– Storage whose key matches their PSW key
– Storage in key 9, if subsystem storage protection override is installed.

The amount of control you have over the storage key assigned to your virtual
storage request varies depending on the subpool from which you request storage.
For the purpose of storage key assignment, there are three types of subpools. The
first type of subpool is always assigned a particular storage key, such as 0. The
second type of subpool is assigned its storage key based on the key in the
requesting task's TCB at the time of that task's first storage request. The third type
of subpool allows you to select the storage key by:
v Specifying the KEY parameter on the STORAGE, GETMAIN, or FREEMAIN

macros, or the CPOOL macro with the BUILD parameter.
v Choosing a particular macro and set of parameters for the storage request. (The

combination of macro and parameters determines the key assigned to the
storage request for these subpools.)

v Specifying CALLRKY=YES on the STORAGE macro, which causes the storage
key to match the calling program's current PSW key.

These subpools are shown in the subpool table (Table 32 on page 236) as having a
selectable storage key. Detailed information about subpools with selectable storage
keys is provided in Table 28.

Table 28. Storage Keys for Selectable Key Subpools

Subpool Macros and Parameters Storage Key

129-132
v GETMAIN with LC, LU, VC, VU, EC, EU, or R;

BRANCH not specified

v FREEMAIN with LC, LU, L, VC, VU, V, EC, EU, E, or R;
BRANCH not specified

v STORAGE with OBTAIN or RELEASE; CALLRKY=YES is
specified

The storage key equals the caller's PSW key.
(The KEY parameter is not allowed.)

Chapter 10. Virtual storage management 229

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 28. Storage Keys for Selectable Key Subpools (continued)

Subpool Macros and Parameters Storage Key

129-132
v GETMAIN with LC, LU, VC, VU, EC, EU, or R;

BRANCH=YES specified

v FREEMAIN with LC, LU, L, VC, VU, V, EC, EU, E, or R;
BRANCH=YES specified

The storage key is 0. (The KEY parameter is
not allowed.)

129-132
v GETMAIN with RC, RU, VRC, VRU; BRANCH not

specified

v FREEMAIN with RC, RU; BRANCH not specified

v CPOOL with BUILD

The storage key is the key the caller specifies
on the KEY parameter. If KEY is not
specified, the default equals the caller's PSW
key.

129-132
v GETMAIN with RC, RU, VRC, VRU; BRANCH=YES

specified

v FREEMAIN with RC, RU; BRANCH=YES specified

v STORAGE with OBTAIN or RELEASE; CALLRKY=YES is
omitted, or CALLRKY=NO is specified

The storage key is the key the caller specifies
on the KEY parameter. If KEY is not
specified, the default is 0.

227-231, 241, 249
v All GETMAIN requests with BRANCH not specified

v All FREEMAIN requests with BRANCH not specified

v STORAGE with OBTAIN or RELEASE; CALLRKY=YES
specified

The storage key equals the caller's PSW key.
(For RC, RU, VRC, and VRU, the KEY
parameter is ignored. For other GETMAIN
and FREEMAIN requests, the KEY
parameter is not allowed.)

227-231, 241, 249
v GETMAIN with LC, LU, VC, VU, EC, EU, or R;

BRANCH=YES specified

v FREEMAIN with LC, LU, L, VC, VU, V, EC, EU, E, or R;
BRANCH=YES specified

The storage key is 0 (The KEY parameter is
not allowed.)

227-231, 241, 249
v GETMAIN with RC, RU, VRC, VRU; BRANCH specified

Note: BRANCH=(YES,GLOBAL) is not valid for
subpools 229, 230, and 249.

v FREEMAIN with RC, RU; BRANCH specified
Note: BRANCH=(YES,GLOBAL) is not valid for
subpools 229, 230, and 249.

v STORAGE with OBTAIN or RELEASE; CALLRKY=YES
omitted, or CALLRKY=NO specified

The storage key is the key the caller specifies
on the KEY parameter. If KEY is not
specified, the default is 0.

227-231, 241, 249
v CPOOL with BUILD The storage key is the key the caller specifies

on the KEY parameter. If KEY is not
specified, the default equals the caller's PSW
key.

Selecting pageable, DREF, or fixed storage
Whether you choose pageable, DREF, or fixed storage depends on the extent to
which your program is running disabled for external and I/O interrupts. To
determine the type of storage you require, use the following guidelines:
v If your program runs enabled for external and I/O interrupts, use pageable

storage. If your program requires fixed storage for only a short interval, use the
PGSER macro to page-fix the storage area as needed.

v If your program meets the following criteria, consider using DREF storage:
– Runs disabled for external and I/O interrupts
– Has no requirement for constant real addresses backing virtual addresses
– Is authorized to obtain storage in storage key 0.

Attention: Before choosing DREF storage, read “Obtaining and using disabled
reference (DREF) storage” on page 223, for information about special recovery
requirements for its use.

v If your program runs disabled for external and I/O interrupts for the duration
of its processing and requires constant real addresses backing virtual addresses,

230 z/OS V2R2 MVS Authorized Assembler Services Guide

use fixed storage. Note that the storage area must be non-swappable (either
located in common storage or in a non-swappable address space) to have fixed
real addresses.

You should select the type of storage that meets your needs while minimizing your
use of central storage. Central storage is the most limited resource, followed by
expanded storage, followed by auxiliary storage.

Pageable and DREF storage are backed by central storage only when the virtual
storage is referenced. Fixed storage is always backed by central storage.

Selecting storage persistence
To select the storage persistence, you must decide how long you require the
storage. Before making these decisions, you need to understand what determines
the persistence of a virtual storage area.

The level of persistence is determined by whether the storage is owned by a task, a
job step task, an address space, or the system. When the owner terminates, the
system releases the storage. In the subpool table in Table 32 on page 236, the
"owner" heading shows the owner of each subpool. The four categories are:

Task The storage is owned by a task's TCB.

Job step
The storage is owned by a job step task's TCB.

Address space
The storage is owned by the address space in which the storage resides.

System
The storage is owned by the system; it is not associated with a particular
task or address space.

Note: Storage ownership as it is discussed here is unrelated to the OWNER
keyword on the STORAGE, GETMAIN, and CPOOL macros.

To understand how the system determines the ownership of task and job step
owned storage, you need to understand the concept of the input TCB. The input
TCB is the TCB whose address is specified either explicitly or by default on a
request to obtain or free private storage. The system uses the input TCB to assign
ownership of the storage being obtained or to determine the ownership of the
storage being freed. Note that the system does not necessarily assign storage
ownership to the input TCB:
v For task owned storage: the owning TCB is the input TCB.
v For job step owned storage: the owning TCB is the job step task TCB of the

input TCB.

Note: The rules for task and job step owned storage ownership are different for
shared subpools. For information about how the system assigns ownership for
storage obtained from shared subpools, see “Additional considerations” on page
235.

Task owned storage: For task owned storage, the input TCB is determined by the
macro used to obtain or free the storage, the parameters specified, the dispatchable
unit mode of the caller, and the address space in which the storage is obtained (the
target address space). If the calling program is running in SRB mode or obtaining
storage in an address space other than the home address space, the system assigns
the input TCB to be the TCB that owns the cross memory resources in the address

Chapter 10. Virtual storage management 231

space in which the storage is being obtained. The address of this TCB is stored in
the ASCBXTCB field of the ASCB of that address space. Table 29 shows how the
system determines the input TCB for task-owned private storage.

Table 29. How the System Determines the Input TCB for Task Owned Storage

Macro Conditions Input TCB Event Causing Storage to
be Freed

GETMAIN and FREEMAIN
macros

If the caller specifies SVC
entry

TCB of the currently active
task, whose address is in
PSATOLD

Currently active task
terminates

GETMAIN and FREEMAIN
macros

If the caller specifies local
branch entry and specifies
GPR 4 with a value of zero

TCB owning the
cross-memory resources in
the target address space,
whose address is in
ASCBXTCB

Task, whose TCB address is
in ASCBXTCB, terminates

GETMAIN and FREEMAIN
macros

If the caller specifies local
branch entry and specifies
GPR 4 with a non-zero
value

TCB address specified by
the caller in GPR 4

Task, whose TCB address is
passed in GPR 4, terminates

STORAGE macro If the caller is in task mode
and the target address
space is the home address
space

TCB of the currently active
task, whose address is in
PSATOLD

Currently active task
terminates

STORAGE macro If the caller is in SRB mode
or the target address space
is not the home address
space

TCB owning the
cross-memory resources in
the target address space,
whose address is in
ASCBXTCB

Task, whose TCB address is
in ASCBXTCB, terminates

STORAGE macro If the caller specifies the
TCBADDR parameter

TCB specified by the caller
with the TCBADDR
parameter

Task whose TCB address is
specified with the
TCBADDR parameter
terminates

CPOOL macro If the caller omits the TCB
parameter

TCB of the currently active
task, whose address is in
PSATOLD

Currently active task
terminates

CPOOL macro If the caller specifies the
TCB parameter with a
value of 0

TCB owning the
cross-memory resources in
the target address space,
whose address is in
ASCBXTCB

Task, whose TCB address is
in ASCBXTCB, terminates

CPOOL macro If the caller specifies the
TCB parameter with a
non-zero value

TCB specified by the caller
with the TCB parameter

Task, whose TCB address is
specified with the TCB
parameter, terminates

Job step owned storage: For job step owned storage, the owning TCB is the job
step task TCB of the input TCB. That is, the owning TCB is the job step task TCB
of the TCB that would own the storage according to Table 29.

Figure 36 on page 233 shows an example of a task structure within an address
space, including the locations of the ASCBXTCB and TCBJSTCB fields. Note that
the task structure within an address space can vary and this example only shows
one of many different possibilities.

232 z/OS V2R2 MVS Authorized Assembler Services Guide

Address space owned storage: Address space owned storage is private storage that
is owned by the address space in which it resides. It is not associated with a task.

System owned storage: System owned storage persists until explicitly freed using
the FREEMAIN macro, the STORAGE macro with the RELEASE parameter, or the
CPOOL macro with the DELETE parameter. If an area of system owned storage is
not freed, it remains allocated for the life of the IPL. System owned storage is not
associated with a task or an address space. Common storage subpools are system
owned. Private storage subpools are all task, job step task, or address space
owned.

The important consideration in selecting the type of storage ownership is to ensure
that the storage you obtain remains in existence for the required duration. Because
the system automatically frees all non-system-owned storage when the owner
terminates, you must ensure that storage ownership is assigned to an entity that
will not terminate while the obtained storage area is still needed.

You should always ensure that storage explicitly obtained is explicitly freed. It is
not a good programming practice to rely on the system to free storage for you,
except in cases where there is no alternative.

Now that you understand the types of storage ownership and how storage
ownership is assigned, use the following guidelines to help you determine the type
of storage ownership you need:
v If you require the storage only during your program's processing, use task

owned storage.
v If you require the storage to persist after your program has terminated but not

after the owning job step task has terminated, use job step owned storage. For

PSA

ASCB
TCB

TCB

ASCBXTCB

PSATOLD

TCBJSTCB

TCBJSTCB

Job Step

Currently Active Task

(obtaining or freeing
storage)

System Queue Area Private Storage

TCB Address

TCB Address
TCB Address

of Job Step TCB

TCB Address
of Job Step TCB

Figure 36. Task Structure Within an Address Space

Chapter 10. Virtual storage management 233

instance, it is necessary to have storage persist after your program has
terminated if your program obtains storage that must be accessed by another
task that will be running after your program terminates.

v If you require the storage to persist for the life of the address space, use address
space owned storage. This is necessary, for instance, if the storage must be
available to job step tasks running later in the same address space.

v If you require the storage to persist after the address space has terminated, use
system owned storage (which is exclusively common storage). This is necessary,
for instance, if the storage must be available permanently to all address spaces.

Table 30 lists the types of storage ownership and the circumstances under which
each is appropriate.

Table 30. Choosing Storage Ownership

If you need the storage: Storage should be owned by:

Only during your program's processing Task

After your program terminates but not after
the job step task has terminated

Job step

For the life of the address space but not after
the address space has terminated

Address space

After the address space has terminated System

Selecting central storage backing: Virtual storage is first backed by central
storage when it is:
v Referenced
v Obtained from a fixed storage subpool
v Page-fixed by a program using the PGSER macro
v Obtained from a pageable storage subpool (only in some cases).

When the storage is fixed, either implicitly through the subpool attribute, or
explicitly through PGSER FIX, the LOC parameter, specified on the GETMAIN
STORAGE, or CPOOL macro invocation used to obtain the storage, determines
where the storage will be backed in central storage. Storage which is not fixed can
be backed anywhere in central storage.

The STORAGE OBTAIN PAGEFRAMESIZE1MB option specifies to back storage by
1MB large page frames, if available.

The system will back the storage below 16 megabytes only if one of the following
is true:
v You specify LOC=24 when obtaining storage and the subpool is supported

below 16 megabytes, and the subpool is not an SQA or LSQA subpool.
v You specify LOC=RES either explicitly or by default, your program resides

below 16 megabytes, and the subpool is supported below 16 megabytes, and the
subpool is not an SQA or LSQA subpool.

v You specify subpool 226, which is always backed below 16 megabytes.

Otherwise, the system might back the virtual storage request with central storage
above 16 megabytes.

You should not need central storage backing below 16 megabytes unless your
program requires 24-bit real addresses.

234 z/OS V2R2 MVS Authorized Assembler Services Guide

The system may back fixed virtual storage above 2 gigabytes if the subpool is not
226, and you specify one of the following:
v LOC=(24,64)
v LOC=(RES,64)
v LOC=(31,64)
v LOC=(31,PAGEFRAMESIZE1MB)
v LOC=(EXPLICIT,64)
v LOC=(EXPLICIT,PAGEFRAMESIZE1MB)

Additional considerations: In addition to the previously described considerations
for selecting a virtual storage subpool, you should keep in mind the following:
v If your program obtains storage from a subpool shared between a task and its

attached subtasks, private storage ownership is assigned as follows:
– For task owned storage: the owning task is the task that attached the

subtasks.
– For job step task owned storage: the owning task is the job step task of the

task that attached the subtasks.
The storage key associated with the shared subpool is determined at the time
storage is first obtained from that subpool. All subsequent storage requests filled
from that subpool have that storage key. For more information about shared
subpools, see “Virtual Storage Management” in z/OS MVS Programming:
Assembler Services Guide.

v If you are allocating a very large storage area, you might want to read z/OS
MVS Diagnosis: Tools and Service Aids to find out what subpools are dumped by
default during a stand-alone dump. If the data to be stored in the storage area
would not be of interest in a stand-alone dump and the storage area is large
(requires a long time to dump), you should obtain storage from a subpool that is
not dumped by default.

Making the final selection: After determining the storage attributes necessary for
your storage request, use Table 31, which shows subpools organized by attribute
and owner, to obtain candidate subpool numbers. Then use the subpool table,
Table 32 on page 236, to obtain additional information about each candidate
subpool before making your final selection.

Table 31. Subpools Grouped by Attributes

Task Owned Job Step Owned
Address Space
Owned System Owned

Private, Fetch Protected Pageable 0-127, 229, 240, 250 129, 131, 251 None None

Private, Fetch Protected DREF 213 214 215 None

Private, Fetch Protected Fixed 223 224 225 None

Private, Not Fetch
Protected

Pageable 230, 236, 237
130, 132, 249, 244,
252

None None

Private, Not Fetch
Protected

DREF 203 204 205 None

Private, Not Fetch
Protected

Fixed 233, 253 234, 254 235, 255 None

Common, Fetch
Protected

Pageable None None None 231

Common, Fetch
Protected

DREF None None None 247

Common, Fetch
Protected

Fixed None None None 227, 239

Chapter 10. Virtual storage management 235

Table 31. Subpools Grouped by Attributes (continued)

Task Owned Job Step Owned
Address Space
Owned System Owned

Common, Not Fetch
Protected

Pageable None None None 241

Common, Not Fetch
Protected

DREF None None None 248

Common, Not Fetch
Protected

Fixed
None None None 226, 228, 245

The subpool table: The following table lists the subpools and their attributes. Be
sure to read the notes at the end of the table where applicable.

Table 32. Storage Subpools and Their Attributes

Subpool Location Fetch Protection Type Owner Storage Key
See Notes at
End of Table

0-127 Private low Yes Pageable Task. TCB identified in note
10.

Same as TCB key at
time of first storage
request.

1,5,7,9,12

129 Private low Yes Pageable Job step. TCB whose address
is in TCBJSTCB of TCB
identified in note 10.

Selectable. See
Table 28 on page
229.

1,12

130 Private low No Pageable Job step. TCB whose address
is in TCBJSTCB of TCB
identified in note 10.

Selectable. See
Table 28 on page
229.

1,12

131 Private low Yes Pageable Job step. TCB whose address
is in TCBJSTCB of TCB
identified in note 10.

Selectable. See
Table 28 on page
229.

1,5,6,12

132 Private low No Pageable Job step. TCB whose address
is in TCBJSTCB of TCB
identified in note 10.

Selectable. See
Table 28 on page
229.

1,5,6,12

203 Private ELSQA No DREF Task. TCB shown in Table 29
on page 232.

0 2,4

204 Private ELSQA No DREF Job step. TCB whose address
is in TCBJSTCB of TCB shown
in Table 29 on page 232.

0 2,4

205 Private ELSQA No DREF Address space 0 2,4

213 Private ELSQA Yes DREF Task. TCB shown in Table 29
on page 232.

0 2,4

214 Private ELSQA Yes DREF Job step. TCB whose address
is in TCBJSTCB of TCB shown
in Table 29 on page 232.

0 2,4

215 Private ELSQA Yes DREF Address space 0 2,4

223 Private ELSQA Yes Fixed Task. TCB shown in Table 29
on page 232.

0 2,4

224 Private ELSQA Yes Fixed Job step. TCB whose address
is in TCBJSTCB of TCB shown
in Table 29 on page 232.

0 2,4

225 Private ELSQA Yes Fixed Address space 0 2,4

226 Common
SQA/ESQA

No Fixed System 0 3

227 Common
CSA/ECSA

Yes Fixed System Selectable. See
Table 28 on page
229.

1

228 Common
CSA/ECSA

No Fixed System Selectable. See
Table 28 on page
229.

1

229 Private high Yes Pageable Task. TCB shown in Table 29
on page 232.

Selectable. See
Table 28 on page
229.

1

236 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 32. Storage Subpools and Their Attributes (continued)

Subpool Location Fetch Protection Type Owner Storage Key
See Notes at
End of Table

230 Private high No Pageable Task. TCB shown in Table 29
on page 232.

Selectable. See
Table 28 on page
229.

1

231 Common
CSA/ECSA

Yes Pageable System Selectable. See
Table 28 on page
229.

1

233 Private
LSQA/ELSQA

No Fixed Task. TCB shown in Table 29
on page 232.

0 2

234 Private
LSQA/ELSQA

No Fixed Job step. TCB whose address
is in TCBJSTCB of TCB shown
in Table 29 on page 232.

0 2

235 Private
LSQA/ELSQA

No Fixed Address space 0 2

236 Private high No Pageable Task. TCB identified in note
11.

1 2

237 Private high No Pageable Task. TCB identified in note
11.

1 2

239 Common
SQA/ESQA

Yes Fixed System 0 2

240 Private low Yes Pageable Task. TCB identified in note
10.

Same as TCB key at
time of first storage
request.

1,8,9,12

241 Common
CSA/ECSA

No Pageable System Selectable. See
Table 28 on page
229.

1

244 Private low No Pageable Job step. TCB whose address
is in TCBJSTCB of TCB
identified in note 10.

Selectable. See
Table 28 on page
229.

1,12

245 Common
SQA/ESQA

No Fixed System 0 2

247 Common ESQA Yes DREF System 0 2,4

248 Common ESQA No DREF System 0 2,4

249 Private high No Pageable Job step. TCB whose address
is in TCBJSTCB of TCB shown
in Table 29 on page 232.

Selectable. See
Table 28 on page
229.

1

250 Private low Yes Pageable Task. TCB identified in note
10.

Same as TCB key at
time of first storage
request.

1,8,9,12

251 Private low Yes Pageable Job step. TCB whose address
is in TCBJSTCB of TCB shown
in Table 29 on page 232.

Same as TCB key at
time of first storage
request.

1,9,12

252 Private low No Pageable Job step. TCB whose address
is in TCBJSTCB of TCB shown
in Table 29 on page 232.

0 1,12

253 Private
LSQA/ELSQA

No Fixed Task. TCB shown in Table 29
on page 232.

0 2

254 Private
LSQA/ELSQA

No Fixed Job step. TCB whose address
is in TCBJSTCB of TCB shown
in Table 29 on page 232.

0 2

255 Private
LSQA/ELSQA

No Fixed Address space 0 2

Notes:

1. Virtual storage is first backed by central storage when it is referenced or when
it is page-fixed by a program using the PGSER macro. The location of the
central storage backing this subpool depends on the value of the LOC
parameter on the GETMAIN, STORAGE, or CPOOL macro invocation used to
obtain the storage. Central storage is assigned below 16 megabytes only if one
of the following is true:

Chapter 10. Virtual storage management 237

v The program obtaining the storage specified LOC=24 when obtaining the
storage.

v The program obtaining the storage resides below 16 megabytes, specified
LOC=RES either explicitly or by default, and specified a subpool supported
below 16 megabytes.

2. Central storage backing this subpool can be above 2 gigabytes when
LOC=(xx,64) is specified.

3. Central storage backing this subpool resides below 16 megabytes.
4. This subpool is valid only when allocating virtual storage above 16

megabytes.
5. Subpools 0-127, 131, and 132 are the only valid subpools for unauthorized

programs. A request by an unauthorized program for a subpool other than
0-127, 131, or 132 causes abnormal termination of the program.

6. A program can issue a request to obtain or release storage from subpool 131
or 132 in a storage key that does not match the PSW key under which the
program is running. However, the system will accept the storage request only
if the requesting program is authorized in one of the following ways:
v Running in supervisor state
v Running under PSW key 0-7
v APF-authorized (valid for GETMAIN, FREEMAIN, CPOOL, and STORAGE

macros)
v Having a PSW-key mask (PKM) that allows it to switch its PSW key to

match the storage key of the storage specified. On a request to release all
the storage in the subpool, the program must be able to switch its PSW key
to match all the storage keys in the subpool.

For information about the function and structure of the PKM, and information
about switching the PSW key, see Principles of Operation.

7. Subpool 0 requests by programs in supervisor state and PSW key 0 are
translated to subpool 252 requests and assigned a storage key of 0.

8. Subpool 240 and 250 requests are translated to subpool 0 requests. This
permits programs running in supervisor state and PSW key 0 to acquire or
free subpool 0 storage. If a program is running in supervisor state and key 0,
the system translates subpool 0 storage requests to subpool 252 storage
requests. For more information, see Table 26 on page 226.

9. The system assigns the storage key based on the key in the requesting task's
TCB at the time of the task's first storage request, not the current key in the
TCB (unless this is the task's first storage request).

10. The GSPV, SHSPV, and SZERO parameters on the ATTACH or ATTACHX
macro invocation used to create the currently active task determine which
TCB owns the storage in this subpool. These parameters specify the subpools
to be owned by the subtask being attached (GSPV) and the subpools to be
shared by the attaching task and the subtask being attached (SHSPV, SZERO).
If the currently active task was given ownership of the subpool, then the TCB
of the currently active task owns the storage in this subpool. If the currently
active task is sharing this subpool with the task that created it, then the TCB
of the attaching task owns the storage in this subpool. For more information,
see the descriptions of the ATTACH and ATTACHX macros in z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN and the virtual
storage management topic in z/OS MVS Programming: Assembler Services Guide.

11. Virtual storage is located within the scheduler work area (SWA). The storage is
freed at the end of the started task or at initiator termination for subpool 236
and at the end of the job for subpool 237. The NSHSPL and NSHSPV

238 z/OS V2R2 MVS Authorized Assembler Services Guide

parameters on the ATTACH or ATTACHX macro invocation used to create the
currently active task determine ownership of the subpool. If the currently
active task was given ownership of the subpool, then the TCB of the currently
active task owns the storage in this subpool. If the currently active task is
sharing this subpool with the attaching task, then the TCB of the attaching
task owns the storage in this subpool. For more information, see the
description of the ATTACH and ATTACHX macros in z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN and the virtual storage
management topic in z/OS MVS Programming: Assembler Services Guide. For
additional information about the SWA, see z/OS MVS Initialization and Tuning
Guide.

12. This subpool is backed by a 1 megabyte page frame, if available, when
LOC=(31,PAGEFRAMESIZE1MB) or LOC=(EXPLICIT,PAGEGRAMESIZE1MB)
is specified on the STORAGE macro.

Tracking virtual storage allocation (CPOOL BUILD, GETMAIN, and
STORAGE OBTAIN macros)

Common storage tracking is an optional function that collects information about
requests to obtain and free storage in CSA, ECSA, SQA, and ESQA. You can use
Resource Measurement Facility (RMF) as of release 4.3 or any compatible monitor
program to display the information that the storage tracking function collects. You
can also use the interactive problem control system (IPCS) to format the
information from a dump.

You can use the RMF or IPCS reports to identify jobs or address spaces that use an
excessive amount of storage or have ended without freeing storage. If those jobs or
address spaces have code to free that storage when they are canceled, you might
relieve the shortage and avoid an IPL if you cancel the jobs or address spaces
using an operator command.

The OWNER parameter on the CPOOL BUILD, GETMAIN, and STORAGE
OBTAIN macros specifies the entity to which the system will assign ownership of
requested CSA, ECSA, SQA, and ESQA storage, which is one of the following:
v An address space that, upon termination, is responsible for freeing the storage.
v The system (the storage is not associated with an address space); specify this

value if you expect the requested storage to remain allocated after termination of
the job that obtained the storage.

For the storage tracking function to produce accurate results, authorized programs
must include the OWNER parameter when issuing CPOOL BUILD, GETMAIN,
and STORAGE OBTAIN macros that:
v Request storage in CSA, ECSA, SQA, or ECSA, and

v Have an owning address space that is not the home address space.

You do not have to code the OWNER parameter when the home address space is
to own the requested storage (the default value is HOME).

For information about how to use IPCS to format data collected by the storage
tracking function from a dump, see the description of the VERBEXIT VSMDATA
subcommand in z/OS MVS IPCS Commands.

Chapter 10. Virtual storage management 239

Obtaining information about the allocation of virtual storage (VSMLIST)
The VSMLIST macro provides information about the allocation of virtual storage.
The VSMLIST service routine returns the information in a user-supplied work area
specified as a parameter of the VSMLIST macro. The length of the work area varies
but it must be a minimum length of 4K bytes.

Using the VSMLIST work area
Prior to the first invocation of the VSMLIST macro for a single request, you must
set the first four bytes of the work area to zero. This field will contain the return
code of the VSMLIST macro after control returns to the issuer.

The VSMLIST service routine updates the work area and places the requested
information in the data area located at the end of the work area. If the macro was
executed successfully and all of the requested information fit into the data area, the
VSMLIST service routine returns to the caller with a return code of 0 in the first
four bytes of the work area. If the macro was executed successfully, but all of the
requested information could not fit into the data area, the service routine returns to
the caller with a return code of 4 in the first four bytes of the work area. In this
case, the caller can reissue the macro as many times as necessary to obtain all of
the information.

For multiple invocations of VSMLIST, the service routine continues supplying the
information, starting where it left off on the previous invocation, provided the
work area is not changed. However, multiple invocations do not provide
cumulative results. For each invocation of a set of multiple invocations for a
specific request:
v The count fields are relative to the current invocation of the macro (for example,

the number-of-subpools field contains the number of subpool descriptors in the
current invocation only).

v The output in the data area describes the current invocation only.

You can avoid multiple invocations by enlarging the work area to hold all of the
information. If you do enlarge the work area, be sure to set the first four bytes of
the work area (the return code area) to zero before reissuing the macro.

Table 33. Description of VSMLIST Work Area

Bytes Field name Description

0-3 Return code This field contains the return code from the
previous invocation of the VSMLIST macro.
You must set this field to zero before the
first invocation of the VSMLIST macro for a
single request.

4-7 Address of data area The data area is located at the end of the
work area and contains the information that
you requested.

8-11 Length of the data area The data area varies in length and is limited
in size by the length of the work area that
you specified as a parameter of the
VSMLIST macro.

12-15 Reserved for IBM use

32-x Reserved for IBM use

240 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 33. Description of VSMLIST Work Area (continued)

Bytes Field name Description

x-y Data area This area contains the actual output of the
VSMLIST macro. The area varies in size and
is limited by the length of the work area
specified as a parameter of the macro.

The information returned in the data area depends on the parameters specified on
the macro invocation. You can use the VSMLIST macro to obtain information about
the following types of storage:
v Allocated
v Free
v Unallocated

Except for subpool 245, an allocated block of storage is a multiple of 4K, some of
which has been allocated through a GETMAIN or STORAGE macro. Free space
within that block is the area that has not been allocated by a GETMAIN or
STORAGE macro. An unallocated block of storage is some multiple of 4K, none of
which has been allocated by a GETMAIN or STORAGE macro.

VSMLIST reports all SQA pages not allocated to subpools 226, 239, 247, and 248 as
allocated to subpool 245. These pages of subpool 245 may not have been allocated
by a GETMAIN or STORAGE macro.

The format of the information returned in the data area for each of these three
types of requests follows.

Allocated storage information
You can request allocated storage information by coding the SPACE=ALLOC
parameter of the VSMLIST macro. The format of the output varies according to
what you specify for the SP parameter.

If you specify SP=SQA, SP=CSA, or SP=LSQA, the output consists of the allocated
storage information for the subpools in the specified area. The subpools listed in
each of these areas are:
v SQA: 226, 239, 245, 247, 248
v CSA: 227, 228, 231, 241
v LSQA: 205, 215, 225, 255

Figure 37 on page 243 shows the output the system produces when you issue the
VSMLIST macro with SP=CSA or SP=SQA specified.

If you specify SP=PVT, the output consists of the allocated storage information for
subpools in the private area according to the owning TCB. These subpools are
0-127, 129-132, 229, 230, 236, 237, 244, 249, 251, and 252.

Figure 40 on page 245 shows the format of the allocated storage information for the
private area.

If you specify a subpool list, the output consists of the allocated storage
information for each of the subpools in the list. Figure 41 on page 246 shows the
format of the allocated storage information for a subpool list request.

Chapter 10. Virtual storage management 241

See the following figures for the format that the system uses to provide allocated
storage information.
v For the format of the work area that VSMLIST produces when you specify

SP=LSQA, SP=CSA, or SP=SQA, see Figure 37 on page 243
v For the format of the subpool descriptor, see Figure 38 on page 244
v For the format of the allocated block descriptor, see Figure 39 on page 244
v For the format of the allocated storage information for the private area, see

Figure 40 on page 245
v For the format of the allocated storage information for a subpool list, see

Figure 41 on page 246
v For the format of free space information ,see Figure 42 on page 246
v For the format of the free space descriptor, see Figure 43 on page 246
v For the format of unallocated storage information for CSA and PVT subpools,

see Figure 44 on page 247
v For the format of the region descriptor, see Figure 45 on page 248
v For the format of the unallocated block descriptor, see Figure 46 on page 248

242 z/OS V2R2 MVS Authorized Assembler Services Guide

Number of subpools (4-byte field)

First subpool descriptor

Number of allocated blocks in first subpool

First

subpool

in

area

Second

subpool

in

area

Last

subpool

in

area

Allocated block descriptor for first block

Free space information, if SPACE=FREE is specified

Allocated block descriptor for second block

Free space information, if SPACE=FREE is specified

Allocated block descriptor for last block

Free space information, if SPACE=FREE is specified

Second subpool descriptor

Number of allocated blocks in second subpool

Allocated block descriptor for first block

Allocated block descriptor for second block

Allocated block descriptor for last block

Free space information, if SPACE=FREE is specified

Last subpool descriptor

Number of allocated blocks in last subpool

Allocated block descriptor for first block

Free space information, if SPACE=FREE is specified

Allocated block descriptor for second block

Free space information, if SPACE=FREE is specified

Allocated block descriptor for last block

Free space information, if SPACE=FREE is specified

Free space information, if SPACE=FREE is specified

Free space information, if SPACE=FREE is specified

This figure describes the work area that VSMLIST produces when you use SP=LSQA,
SP=CSA, or SP=SQA. If you also specify SPACE=FREE, each allocated block descriptor is
followed by free space information. If you specify SPACE=ALLOC, VSMLIST omits free
space information.
Figure 37. Allocated Storage Information for Subpools in a Specified Area

Chapter 10. Virtual storage management 243

Byte Content

0 X‘00’ to identify a subpool descriptor

1 Length of subpool descriptor

2 Subpool ID

3 Miscellaneous flags and storage key as follows:

Bit Meaning When Set

0-3 Storage key

4 The TCB with which this descriptor is associated owns the storage
described by this descriptor

This is meaningful for private area storage only.

5 The storage described by this descriptor is shared. This is meaningful for
private area storage only.

6-7 Reserved

4-7 Owning TCB address (if PVT subpool), otherwise zero.

Figure 38. Format of Subpool Descriptor

Byte Content

0-3 The virtual address of the allocated block

Bit Meaning When Set

0 The caller specified the REAL31 option and this allocated block could be
backed in central storage above (bit 0=1) or below (bit 0=0) 16 megabytes
when the storage is fixed.

30 The caller specified the REALPGFMSZ option and this storage can be
backed in central storage by 1 megabyte pages (bit 30=1) or by 4K pages
(bit 30=0) when the storage is fixed.

31 The caller specified the REAL64 option and this allocated block could be
backed in central storage above (bit 31=1) or below (bit 31=0) 2 gigabytes
when the storage is fixed.

4-7 The length of the allocated block

Figure 39. Format of Allocated Block Descriptor

244 z/OS V2R2 MVS Authorized Assembler Services Guide

Number of TCBs in the private area (4-byte field)

Address of the first TCB

Allocated storage information for
subpools owned by the first TCB

Second TCB

First TCB

Last TCB

Address of second TCB

Allocated storage information for
subpools owned by the second TCB

Address of the last TCB

Allocated storage information for
subpools owned by the last TCB

This figure describes the work area that VSMLIST produces when you use SP=PVT.

Note:

1. The number of subpools in the private area is a 31-bit number.

2. The address of the TCB is contained in a fullword.

3. Figure 37 on page 243 shows the format of the allocated storage information for the
subpools owned by each TCB. The storage information begins at offset 0, “number of
subpools” in that figure.

4. If you specify SPACE=FREE, free space information follows each allocated block
descriptor. Figure 42 on page 246 describes the format of the free space information.

Figure 40. Allocated Storage Information for the Private Area

Chapter 10. Virtual storage management 245

Free space
The following blocks contain free space information.

Number of SQA subpools (4-byte field)

Number of CSA subpools (4-byte field)

Number of LSQA subpools (4-byte field)
This information

is always present

but could be zero.Number of TCBs

If the information of SQA subpools is not zero, the
information for the SQA as described in "Allocated
Storage Information for Subpools in a Specified
Area" figure, beginning at offset 4

If the information of CSA subpools is not zero, the
information for the CSA as described in "Allocated
Storage Information for Subpools in a Specified
Area" figure, beginning at offset 4

If the information of LSQA subpools is not zero, the
information for the LSQA as described in "Allocated
Storage Information for Subpools in a Specified
Area" figure, beginning at offset 4

If the number of TCBs is not zero, the information
for the private area as described in "Allocated
Storage Information for Subpools in a Specified
Area" figure, beginning at offset 0

Note: The number of subpools is a 31-bit number.

This figure describes the work area that VSMLIST produces when you use
SP=(subpool1,subpool2,subpool3,...).

Figure 41. Allocated Storage Information for a Subpool List

Number of free space descriptors that follow
(4-byte field)

First free space descriptor

This information
is always present
but may be zero.

Second free space descriptor

Last free space descriptor

Figure 42. Format of Free Space Information

Byte Content

0-3 The virtual address of the start of the free space

4-7 The length of the free space

Figure 43. Format of Free Space Descriptor

246 z/OS V2R2 MVS Authorized Assembler Services Guide

Unallocated storage information
You can request information about unallocated storage by specifying the
SPACE=UNALLOC parameter of the VSMLIST macro. You can obtain this
information for CSA and private area subpools only, by specifying SP=CSA or
SP=PVT. Figure 44 shows the format of the output for a SPACE=UNALLOC
request for CSA or PVT subpools.

Number of region descriptors (4-byte field)

First region descriptor

Number of unallocated blocks in the first region

First

region in

specified

area

Second

region in

specified

area

Last

region in

specified

area

Unallocated block descriptor for the first unallocated block

Unallocated block descriptor for the second unallocated block

Second region descriptor

Unallocated block descriptor for the last unallocated block

Number of unallocated blocks in the second region

Unallocated block descriptor for the first unallocated block

Unallocated block descriptor for the second unallocated block

Unallocated block descriptor for the last unallocated block

Unallocated block descriptor for the first unallocated block

Unallocated block descriptor for the second unallocated block

Unallocated block descriptor for the last unallocated block

Last region descriptor

Number of unallocated blocks in the last region

Note:

1. The number of region descriptors and the number of unallocated blocks in each region
are given as 31- bit numbers.

2. Figure 45 on page 248 shows the format of a region descriptor.

3. Figure 46 on page 248 shows the format of an unallocated block descriptor.

Figure 44. Unallocated Storage Information for CSA and PVT Subpools

Chapter 10. Virtual storage management 247

Using IARQD — The page status interface routine
If you are writing a program that dumps virtual storage and you need to
determine where the virtual storage pages of an address space or of a data space
reside, use the Page Status Interface Routine (IARQD).

Before using IARQD, you must understand the types of pages managed in virtual
storage and how these pages might be managed through the paging hierarchy. For
additional information, see:
v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Extended Addressability Guide

When you invoke IARQD, a search begins for a page location and status. This
search begins at an address that you provide, and continues for the number of
pages you specify unless you reach a change in the page status or the end of
storage first.

The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state with PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No SPIN locks
Control parameters: The parameter list must be in non-pageable storage in the

caller's primary address space.

There are 4 steps involved in using this interface:
1. Decide which of the 2 entry points you want to use, IARQDUMP or

IARQDSPD.
2. Obtain storage and load register 1 with the address of the parameter list
3. Use NUCLKUP to find the address of the entry point you want to use
4. Invoke the entry point and evaluate the returned information

v Return codes

Byte Content

0-3 The virtual address of the region (CSA, ECSA, RCT area, V=V area, extended V=V
area, or V=R area)

4-7 The length of the region

Figure 45. Format of Region Descriptor

Byte Content

0-3 The virtual address of the unallocated block

4-7 The length of the unallocated block

Figure 46. Format of Unallocated Block Descriptor

248 z/OS V2R2 MVS Authorized Assembler Services Guide

v Reason codes (possibly)
v Delimiter page

Decide which entry point you want to use
Entry point IARQDUMP determines the location and status of a page in the
storage hierarchy of a page in an address space. See Figure 1 for return codes and
reason codes.

Entry point IARQDSPD determines the location and status of a page in the
storage hierarchy of a page in a data space. See Figure 1 for return codes and
reason codes.

Obtain storage and load register 1

IARQDUMP
R1 contains the address of a 2-word parameter list

The contents of the input parameter list is mapped as follows:
v The first word contains the virtual address of any byte in the page to start

looking at
v The second word contains the maximum number of pages to process.

The content of the output parameter list for IARQDUMP is mapped as follows:
v The first word remains unchanged
v The second word contains the address of the delimiter page.

Address of Page

Number of Pages to Search

Input Parameter List 2 WORDS

IARQDUMP

Output Parameter List

4 BYTES

4 BYTES

Address of Page

Number of Delimiter Page

IARQDSPD
R1 contains the address of a 4-word parameter list

The input parameter list is:
v The first word contains the virtual address of any byte in the page to start

looking at
v The second word contains the maximum number of pages to process
v The third and fourth words contain the 8-byte STOKEN for the data space to be

examined.

The output parameter list for IARQDSPD is:
v The first word remains unchanged
v The second word contains the address of the delimiter page

v The third and fourth words remain unchanged.

Chapter 10. Virtual storage management 249

Address of Page

Number of Pages to Search

Data space STOKEN

Input Parameter List 4 WORDS

IARQDSPD

Output Parameter List

4 BYTES

4 BYTES

8 BYTES

Address of Page

Number of Delimiter Page

Data space STOKEN

The delimiter page
The delimiter page is the next page after your search has stopped. It may or may
not have a different page status than the last page searched.
v If the search goes on for the maximum number of pages (specified in the second

word of the parameter list), and still does not find a different page status, then
the address of the next page after the last page examined is returned as the
delimiter page. This page may or may not have a different page status than the
last page examined.

v If the search finds a different page status before reaching the maximum number
of pages to be searched, the search is complete and the address of the next page
after the last page examined is returned as the delimiter page. This page does
have a different page status (that is why the search ended).

v If the search reaches the end of storage before finding a different page status, the
delimiter page will contain the address X'7FFFFFFF'.

v The search may be terminated before the maximum number of pages have been
searched, or before a page of a different status has been found and before the
end of storage has been reached. In that case, all pages up to the delimiter page
have the same status and the status of the delimiter page may or may not be the
same as the previous page.
This might occur, for example, when the page table for the delimiter page has
been paged out.

Use NUCLKUP to find the address of the entry point you want
to use

NUCLKUP will put the address of the entry point in Register 0.

For more information on the NUCLKUP macro, see z/OS MVS Programming:
Authorized Assembler Services Reference LLA-SDU.

Example
Operation: Place the address and AMODE of entry point IARQDUMP in register 0.
NUCLKUP BYNAME,NAME=’IARQDUMP’,ADDR=(0)

Input register information
Before calling either the IARQDUMP or IARQDSPD entry point, the caller must
make sure that the following general purpose registers (GPRs) contain the specified
information:

Register
Contents

0 Used as a work register

250 z/OS V2R2 MVS Authorized Assembler Services Guide

1 The address of a non-pageable parameter list

2-12 Used as work registers

13 The address of a standard save area

14 The return address

15 The entry address

Before calling either the IARQDUMP or IARQDSPD entry point, the caller does not
have to place any information into the access registers.

Invoke the entry point
To invoke the entry point you have chosen, use the following instructions:
v LR 15,0
v BALR 14,15

The output returns are:
v Return code
v Reason code (possibly)
v Delimiter page

When control returns to the caller, the GPRs contain:

Register
Contents

0 The reason code if R15 is 08.

1 The address of the parameter list

2-14 Unchanged

15 The return code

When control returns to the caller, the ARs are unchanged.

When the IARQDxx entry point returns control to your program, GPR 15 contains
the return code. If the return code is 8, GPR0 contains the reason code.

Table 34. Return and Reason Codes for IARQD

Return Code Reason Code Meaning

00 none A copy of the page cannot be found in virtual storage. (that
is: real storage, expanded storage, or auxiliary storage) This
could happen because:

v The page was not obtained through the GETMAIN or
STORAGE macro

v The page was just obtained and has no data in it yet

v The page cannot be read into real storage due to an I/O
error

04 none All copies of the page are in virtual storage at the same
level as what is on permanent storage. This return code is
only possible for pages that have been mapped through the
DIV (data-in-virtual) macro.

08 xx0000xx The page is in central storage.

At least one copy of the page has been found in virtual
storage. For data-in-virtual (DIV) pages, the copy of the
page is at a later level than the copy on permanent storage.

Chapter 10. Virtual storage management 251

Table 34. Return and Reason Codes for IARQD (continued)

Return Code Reason Code Meaning

08 xx0004xx The page is on a synchronous medium, such as in
expanded storage

At least one copy of the page has been found in virtual
storage. For data-in-virtual (DIV) pages, the copy of the
page is at a later level than the copy on permanent storage.

08 xx0008xx The page is on an asynchronous medium

At least one copy of the page has been found in virtual
storage. For data-in-virtual (DIV) pages, the copy of the
page is at a later level than the copy on permanent storage.

0C The status of the page is not determined

252 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 11. Accessing the scheduler work area

When the system interprets a job's JCL statements, it obtains information about the
job's data sets. It stores this information in the scheduler work area (SWA). When
the job runs, the system develops additional information about the job's data sets,
which it also stores in the SWA. Some of this information is in the following SWA
blocks:
v The job file control block (JFCB)
v The job file control block extension (JFCBX)

Your program can use the SWAREQ macro and the IEFQMREQ macro to read
from a block, write into a block, or obtain the location of a block. The only SWA
blocks that you can access are the ones associated with your job.

A SWA block can be accessed using one of the following:
v IEFQMREQ reads the SWA information into a buffer that you provide, or writes

information from your buffer into the SWA.
v SWAREQ, instead of actually writing or reading information, only tells you the

location of the SWA block that you are interested in. Once you know the
location, you can examine or change the block directly.

Use IEFQMREQ to access the SWA in programs that have a 24-bit addressing
mode and SWA located above 16 megabytes. See z/OS JES2 Initialization and Tuning
Guide or z/OS JES3 Initialization and Tuning Guide for information on placing SWA
above or below 16 megabytes.

Using the IEFQMREQ and the SWAREQ macros
See z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG and
z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO for
information about the environment requirements for using these macros.

To use these macros, you must provide information to one of two external
parameter areas (EPAs). When invoking SWAREQ, use the EPAL. When invoking
IEFQMREQ, use the EPAM. This information uses the term EPA when generically
referring to either of these areas.

You must provide a function code and a pointer to an EPA. The function code
specifies the service that the macro is to perform. The EPA is where you store
input data to the macro and where the macro returns output data to you. The
input data in the EPA depends on the function code that you specify. The data in
the EPA can be:
v The buffer address.
v The token that represents the SWA block. These tokens are called SVAs.
v The pointer (block pointer) to the SWA block being accessed.
v The length (block length) of the block being accessed.
v An ID field (block ID) that represents the type of SWA block. Use this block ID

to compare against the block ID in a SWA block returned from a read function.

© Copyright IBM Corp. 1988, 2016 253

|
|
|

If the comparison is not equal, then the returned block is not the type of SWA
block that you requested. Block ids are mapped by the IEFQMIDS mapping
macro.

One of the items that you must store in the EPA before invoking the macro is the
token that identifies the SWA block that you want to access. You can obtain these
tokens (called SVAs) from the following fields:

SWA block to be accessed Field that contains the token Mapping macro for field
that contains the token

JFCB (job file control block) TIOEJFCB in the TIOT entry IEFTIOT1

JFCBX (job file control block
extension)

JFCBEXAD in the JFCB IEFJFCBN

The SWAREQ macro
SWAREQ, instead of actually writing or reading information, only tells you the
location of the SWA block that you are interested in. Once you know the location,
you can read or write information yourself. By specifying a function code when
you invoke the macro, you can request the following SWAREQ services.
v Read Locate — Returns the address of the block that you specify. It does not

read any data from the specified block into your buffer. Your program does the
actual reading by coding techniques such as MVC instructions.

v Write Locate — When you use regular coding techniques to write data from
your buffer into the data area of a SWA block, the system does not know that
the block has been written into. To allow the system to set up the control fields
that are necessary to integrate the SWA block into the system, use write locate to
inform the system that a write has taken place.

How to invoke SWAREQ
As parameters of the SWAREQ macro, you specify the function code and the
pointer to the EPAL. The EPAL input data and the EPAL output data for each
function code is summarized in the following block:

SWAREQ function EPAL size EPAL input fields EPAL output fields

Read Locate,
UNAUTH=NO

16 SVA Block pointer, block
length, block ID

Read Locate,
UNAUTH=YES

28 SVA Block pointer, block
length, block ID, block
prefix pointer, block
length including the
prefix

Write Locate 16 SVA, block pointer,
block ID

None

When you write a program that invokes SWAREQ, you must provide the field
definitions in the EPA. You might also need to provide the SWA block definitions.
When you assemble the program, the following mapping macros provide the
definitions that you need:
v IEFZB505 — EPAL data area
v IEFJESCT — JES control block
v CVT — communications vector table

254 z/OS V2R2 MVS Authorized Assembler Services Guide

|
|
|

|
|
|||
|
|
|
|

v IEFQMIDS — SWA block ID definitions

See z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO for
details about SWAREQ.

SWAREQ summary
To issue a locate mode request, take the following steps:
1. Build an EPAL (mapped by macro IEFZB505).
2. Issue the SWAREQ macro, specifying the address of the EPAL pointer and the

required function code.

Example of using SWAREQ
The following program locates the JFCB block in the scheduler work area. After the
program obtains the location of the block, it can store new information in the block
or it can move information from the block into another area. The example assumes
that general purpose register (GPR) 6 points to the TIOT:
v UNAUTH=NO specified or defaulted to:

LA 5,EPA GET ADDRESS OF THE EPA
ST 5,SWEPAPTR INITIALIZE EPA POINTER
USING ZB505,5 ESTABLISH ADDRESSABILITY TO EPA
XC SWAEPA,SWAEPA INITIALIZE THE EPA
USING TIOT1,6 ESTABLISH ADDRESSABILITY TO TIOT
MVC SWVA,TIOEJFCB MV SVA OF JFCB INTO EPA
SWAREQ FCODE=RL,EPA=SWEPAPTR,MF=(E,SWAPARMS) LOCATE THE JFCB
L 7,SWBLKPTR SET THE POINTER TO THE JFCB
USING INFMJFCB,7 ESTABLISH ADDRESSABILITY TO JFCB

*
SWEPAPTR DS F
EPA DS CL16
SWAPARMS SWAREQ MF=L

CVT DSECT=YES
IEFJESCT
IEFZB505
TIOT DSECT
IEFTIOT1
IEFJFCBN

v UNAUTH=YES specified:
LA 5,EPA GET ADDRESS OF THE EPA

ST 5,SWEPAPTR INITIALIZE EPA POINTER
USING ZB505,5 ESTABLISH ADDRESSABILITY TO EPA
XC SWAEPAX,SWAEPAX INITIALIZE THE EPA
USING TIOT1,6 ESTABLISH ADDRESSABILITY TO TIOT
MVC SWVA,TIOEJFCB MV SVA OF JFCB INTO EPA
SWAREQ FCODE=RL,EPA=SWEPAPTR,MF=(E,SWAPARMS) LOCATE THE JFCB
L 7,SWBLKPTR SET THE POINTER TO THE JFCB
USING INFMJFCB,7 ESTABLISH ADDRESSABILITY TO JFCB

*
SWEPAPTR DS F
EPA DS CL28
SWAPARMS SWAREQ MF=L

CVT DSECT=YES
IEFJESCT
IEFZB505 LOCEPAX=YES
TIOT DSECT
IEFTIOT1
IEFJFCBN

Return codes and reason codes from SWAREQ

UNAUTH=YES: If you specify UNAUTH=YES, SWAREQ cannot abend. It always
returns to the program that invoked it. Check the return code in GPR 15. If the

Chapter 11. Accessing the scheduler work area 255

|
|

return code is 0, the service is successful. Otherwise, the service failed and the
non-zero return code in GPR 15 is also the reason code associated with the failure.

UNAUTH=NO: If you specify UNAUTH=NO or omit UNAUTH, the service can
abend if an error occurs or if your program is holding a lock. The return, reason,
and abend codes for UNAUTH=NO are as follows:

When control returns after invoking SWAREQ, check the return code in GPR 15. If
the return code is 0, the service is successful. Otherwise, the service failed, and the
non-zero return code in GPR 15 is also the reason code associated with the failure.
There is only one reason code: reason code hexadecimal 38, which means that the
system could not obtain the storage necessary to carry out the request.

When control does not return from SWAREQ, an abend occurred. To interpret the
abend dump, use the contents of GPRs 1 and 15. GPR 0 contains the address of an
area that contains diagnostic information. This area is further described in z/OS
MVS Programming: Authorized Assembler Services Reference SET-WTO. GPR 1
contains abend code 0B0. GPR 15 has the reason code associated with the abend.

The IEFQMREQ macro
IEFQMREQ reads the SWA information into a buffer that you provide, or writes
information from your buffer into the SWA. By specifying a function code when
you invoke the macro, you can request the following IEFQMREQ services. Use the
symbolic function codes that are in the QMPA mapping macro:
v Read — Reads the data area of a specified block into your buffer. IEFQMREQ

reads 176 bytes of data from SWA into your buffer. If the requested data is less
than 176 bytes in length, IEFQMREQ pads the data with zeroes so the amount
read into your buffer is 176 bytes.

v Write — Writes information from your buffer into the block that you specify.
Only the data area is written, not the prefix area.

These are the only general-use programming interface function codes.

How to invoke IEFQMREQ
The IEFQMREQ macro does not have any parameters. Before you invoke the
macro you must store input data for the macro in the QMPA and the external
parameter area (EPAM). The input that you store in the QMPA is:
v The function code — In the field QMPOP, the function code specifies the

service to be performed.
v The EPAM address — The EPAM address, which can be in either of two QMPA

fields, locates the EPAM. Fill in the QMPACL field if you are specifying a
three-byte address and the QMPACLX field if you are specifying a four-byte
address.

v A 4-byte EPAM address indicator — Set this indicator in the field QMPACLEX
if you are using a four-byte EPAM address.

v The extended EPAM indicator — Some services let you specify the size of the
EPAM as 8 or 16 bytes. Set this indicator in the field QMPAX if you are using
the 16-byte EPAM size.

v The number of EPAMs — This is the number of times that the function is to be
performed, and the number of EPAM blocks that you are passing. Specify this
number in the QMPNC field. For example, when you read three different SWA
blocks into three different buffers in a single invocation of IEFQMREQ, the
number that you specify in this field is 3.

256 z/OS V2R2 MVS Authorized Assembler Services Guide

If you want the function to be performed more than once, supply more than one
EPAM. For example, you can read three different SWA blocks into three different
buffers in a single invocation of IEFQMREQ. If you supply more than one EPAM,
you must arrange them contiguously in storage. When you invoke the macro, GPR
1 must point to the QMPA. The EPAM input data and the EPAM output data for
each IEFQMREQ function code are summarized in the following block:

IEFQMREQ
Function

EPAM Size EPAM Input Fields EPAM Output
Fields

Read 8 or 16 SVA, buffer address Block ID

Write 8 or 16 SVA, buffer address, block ID None

When you write a program that invokes IEFQMREQ, in addition to supplying
input data in fields that are in the QMPA and the EPAM, you must supply SWA
block definitions as input to the macro. When you assemble the program, the
assembler needs definitions for the CVT and the JESCT. The format of the input
data is defined in the following mapping macros:
v CVT — communications vector table
v IEFJESCT — JES control block
v IEFQMIDS — SWA block id definitions
v IEFQMNGR — QMPA data area
v IEFZB506 — EPAM data area

Example of using IEFQMREQ
The following program copies the JFCB from the scheduler work area into a buffer
that the program provides. The example assumes GPR 6 points to the TIOT:

LA 5,EPA GET ADDRESS OF THE EPA
USING SWAMMEPA,5 ESTABLISH EPA ADDRESSABILITY
LA 1,QMPA GET ADDRESS OF THE QMPA
USING IOPARAMS,1 ESTABLISH QMPA ADDRESSABILITY
XC IOPARAMS(36),IOPARAMS INITIALIZE THE QMPA
MVI QMPOP,QMREAD INDICATE READ FUNCTION
MVI QMPCL,1 INDICATE 1 EPA IS BEING PASSED
STCM 5,7,QMPACL PUT 3-BYTE EPA ADDRESS IN QMPA
XC SWAMMEPA,SWAMMEPA INITIALIZE THE EPA
USING TIOT1,6 ESTABLISH ADDRESSABILITY TO TIOT
MVC SWROWVA,TIOEJFCB SVA OF JFCB MOVED TO EPA
LA 8,JFCBCOPY SET THE POINTER TO THE JFCB
ST 8,SWBUFPTR SET BUFFER POINTER IN EPA
IEFQMREQ COPY SWA BLOCK TO THE BUFFER
USING INFMJFCB,8 ESTABLISH ADDRESSABILITY TO JFCB

*
JFCBCOPY DS CL176 BUFFER TO READ THE JFCB INTO
EPA DS CL8
QMPA DS CL36

CVT DSECT=YES
IEFJESCT
IEFZB506
IEFQMNGR

TIOT DSECT
IEFTIOT1
IEFJFCBN

Return codes and reason codes from IEFQMREQ
When control returns after invoking IEFQMREQ, check the return code in GPR 15.
If the return code is 0, the service is successful. Otherwise, the service failed, and
the non-zero return code in GPR 15 is also the reason code associated with the

Chapter 11. Accessing the scheduler work area 257

failure. There is only one reason code: reason code hexadecimal 38, which means
that the system could not obtain the storage necessary to carry out the request.

When control does not return from IEFQMREQ, an abend occurred. To interpret
the abend dump, use the contents of GPRs 0, 1 and 15. GPR 0 contains the address
of an area that contains diagnostic information, described further in z/OS MVS
Programming: Authorized Assembler Services Reference EDT-IXG. GPR 1 contains
abend code 0B0. GPR 15 has the reason code associated with the abend.

258 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 12. The virtual lookaside facility (VLF)

Virtual lookaside facility (VLF) is a set of services that can improve the
performance and response time of applications that must retrieve a set of data for
many users. VLF creates and manages a data space to store an application's most
frequently used data. When the application makes a request for data, VLF checks
its data space to see if the data is there. If the data is present, VLF can rapidly
retrieve it without requesting I/O to DASD.

To take advantage of VLF, an application must identify the data it needs to
perform its task. The data is known as a data object. Data objects should be small
to moderate in size, named according to the VLF naming convention discussed
later in this information, and associated with an installation-defined class of data
objects.

VLF is intended for use with major applications. Because VLF runs as a started
task that the operator can stop or cancel, it cannot take the place of any existing
means of accessing data on DASD. Any application that uses VLF must also be
able to run without it.

An installation can realize immediate benefits from VLF by using some of the
products that use VLF. See z/OS MVS Initialization and Tuning Guide for information
about how to achieve these benefits.

Deciding when to use VLF
Before creating a new application or recoding an existing one to take advantage of
VLF, you must answer a few questions about the data objects your application will
use.
v What kind of data objects does your application work with?

VLF works best with two kinds of data: (1) data objects that are members of
partitioned data sets, located through a partitioned data set (PDS) concatenation,
or (2) data objects that, while not PDS members, could be easily described as a
collection of named objects that are repeatedly retrieved by many users.
If neither description fits your data objects, it is likely that you would not obtain
any performance benefit from VLF. An application that retrieves named shared
objects might save development cost by using VLF, but there are storage
overhead costs associated with using VLF, and it is best used when you expect
performance benefit.

v Is your data accessed frequently enough so that much of it is likely to remain
in processor storage?

Like data in private storage, data stored through VLF is subject to page stealing.
Thus, appropriate data for VLF is data shared by many users, so that the
combined reference rate of all users is likely to keep the data in processor
storage. That is, VLF works best when a significant portion of the data is likely
to remain in processor storage and not be paged out to auxiliary storage.

v How large are your data objects?

VLF works best with relatively small objects because less virtual storage is
expended to reduce the number of I/O operations. Very large objects, if they are
not used frequently enough to remain in central or expanded storage, might take
longer to retrieve through VLF than through traditional I/O from DASD.

© Copyright IBM Corp. 1988, 2016 259

v How long do you expect users to actively retrieve objects through your
application?

VLF processing adds overhead to the initial retrieval of an object from DASD,
and your application must identify users to VLF. Some applications might
require more identifications than others. If many retrieves are not likely for each
identification, then the relative benefit of using VLF is less.

Other questions that are important to answer when deciding whether or not to use
VLF are:
v Is your system storage-constrained?

VLF is designed to improve performance by increasing the use of virtual storage
to reduce the number of I/O operations. For a system that is already
experiencing a central, expanded, or auxiliary storage constraint, this strategy is
probably not a good choice.

v Is user access to data controlled at the address space level or at the task level?

When your application identifies an end user to VLF, VLF returns a user token.
Any task in the user address space can then use that token. Thus, VLF checks
access to data objects at the address space level. You cannot use VLF to manage
data that must be restricted to only certain tasks in an address space.

v Is running in either supervisor state or with PSW key mask 0-7 a problem for
your application?

This environmental restriction is essential to maintain system integrity. In
addition, if your application obtains its VLF data objects from DASD, you must
be sure that the program that reads in the object and creates the VLF object
maintains the integrity of the data.

v Does your application process the data obtained from DASD in a repetitive
way before passing it to each user?

If it does, you can potentially obtain additional benefit from VLF by saving
preprocessed objects in VLF storage rather than exact copies of the DASD
objects. This technique would require some recoding for an existing application,
but it could provide a significant benefit if the amount of common repetitive
processing is large.

Planning to use VLF
To activate VLF for your application, your installation must do two things:
1. Start VLF. See z/OS MVS System Commands for information on how to use the

START command to start VLF.
2. Update COFVLFxx to include the VLF class associated with the application or

product.
See z/OS MVS Initialization and Tuning Reference for detailed information about
creating COFVLFxx.

An installation may need to add the VLFNOTE command to the TSO/E authorized
command table. To update the TSO/E authorized command table, define an entry
in the SYS1.PARMLIB member IKJTSOxx. For information on IKJTSOxx, see z/OS
MVS Initialization and Tuning Reference. For information on the VLFNOTE
command, see z/OS TSO/E Command Reference.

As you decide how to use VLF, you must also consider whether the end user of
your application needs to know about VLF. The end user, perhaps a TSO/E user,
will define the object required; your application will retrieve that object through
VLF and then present it to the end user.

260 z/OS V2R2 MVS Authorized Assembler Services Guide

In an installation that has a single system (which can be a tightly-coupled
multiprocessing system), the end user normally needs no awareness of VLF; the
only effect is improved performance and response time.

In an installation with multi-system shared DASD, the end user needs some
awareness of VLF and, on occasion, might need to communicate directly with VLF.
If you use VLF in such an environment, you need to provide education for end
users on how VLF affects their work and what kind of changes VLF might create.
See “Cross-system sharing” on page 262.

Within your application, you must give particular consideration to:
v The data objects VLF is to manage, particularly if you expect users to have

private data sets or if the data sets are shared across systems.
v Protecting the integrity of the data.
v Recovery for your application.

“Using the VLF macros” on page 265 describes the macros you use to request VLF
services.

Data objects and classes
When developing an application that uses VLF, you must use the VLF naming
convention when naming VLF data objects. Data objects managed by VLF are
structured by your installation into groups called classes. Each class can represent
data managed by a different application. The IBM products that use VLF have
specific class names defined in the COFVLFxx member of SYS1.SAMPLIB.
Installation-written applications cannot use these names for their own classes of
data.

Thus, a class is a group of related objects made available to users through an
application. Note that a named object may belong to one class only. This restriction
means that an object may be retrieved using VLF only by the application that
manages the class the object belongs to.

VLF provides two different implementations of its services that are dependent on
what class the object belongs to. A class that consists of objects that correspond to
members of partitioned data sets is called a PDS class. Objects belonging to a PDS
class are updated by VLF whenever the data object is changed on DASD. A class
that consists of objects that do not correspond to members of partitioned data sets
is called a non-PDS class. Objects belonging to a non-PDS class are not updated
by VLF whenever the data object is changed on DASD. When designing your
application, you may even choose a non-PDS implementation of VLF with data
objects that belong to a partitioned data set.

VLF determines whether it is dealing with a PDS or non-PDS class from the class
definition in the COFVLFxx parmlib member specified when VLF is started. In
both the PDS and non-PDS class, VLF uses two levels of names to identify an
object:
1. Major name — specifies a subgroup of objects within a class. The major name

for a PDS class is created by combining the volume serial number and data set
name.
Within a class, each major name must be unique; the same major name,
however, can exist under more than one class name.

2. Minor name — specifies a specific object within a major name. The minor
name of a VLF data object belonging to a PDS class is the PDS member name

Chapter 12. The virtual lookaside facility (VLF) 261

of the source data. Within a major name, each minor name must be unique; the
same minor name, however, can exist under more than one major name.
Thus, for a given class with several major names, multiple objects might have
the same minor name.

This naming structure parallels the existing structure used to access members of
partitioned data sets. The major name corresponds to a combination of the volume
serial number and the name of the partitioned data set; that is, it uniquely
identifies a group of objects. The minor name corresponds to a PDS member name;
it uniquely identifies a specific data object by name.

Locating a specific minor name within a VLF class is thus very much like the
process of locating a specific member name within a set of concatenated
partitioned data sets. VLF allows a unique major name search order for each end
user. The order determines which major names are searched first for that user.

For a PDS class, VLF determines a user's search order by DDNAME specification
and automatically removes the user's identification if the allocation changes in any
way. In addition, VLF automatically purges objects from the class if they are
updated in the corresponding partitioned data set on DASD. Note that automatic
purging applies only to the local system, which can be a tightly-coupled system.
See “Cross-system sharing” for information about sharing access to partitioned
data sets across systems.

Private data sets
If you are planning to use a PDS class, you must consider whether individual
users of your class are likely to have private data sets concatenated ahead of
eligible data sets (data sets that contain members that VLF is to manage as data
objects). VLF is less efficient when private data sets are present in a user's
concatenation ahead of the eligible data sets.

Your application does not have to distinguish between private data sets and
eligible data sets. VLF, however, does perform extra processing when private data
sets precede eligible data sets. Specifically, if an end user has a private data set
concatenated ahead of an eligible data set, the first attempt to retrieve a given
object from VLF storage will not succeed.

If you have control over the search orders, VLF works most efficiently when
private data sets (or ineligible major names for non-PDS classes) are either not
allowed or follow the eligible names rather than precede them.

Cross-system sharing
To ensure that users have access to current data, VLF needs to be notified when
changes are made to data that is shared across systems. For instance, if a user
changes shared data but VLF on all the affected systems is not notified, VLF users
on those systems would not have access to current data.

Under certain circumstances, VLF is automatically notified of changes to data it
manages. At other times, someone, such as a user or an application programmer,
needs to notify VLF that data has been changed. Table 35 on page 263 summarizes
when notification to VLF is automatic. A more detailed explanation follows the
figure.

262 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 35. When VLF Notification is Automatic

Class of Data Object Multiple Systems VLF Notification

PDS Sysplex Automatic

PDS No sysplex Not automatic

Non-PDS Sysplex Not automatic

Non-PDS No sysplex Not automatic

When VLF notification is automatic
Notification to VLF is automatic when both of the following are true:
v VLF runs on a sysplex. Each VLF that is active on a sysplex automatically

receives notification of changes to shared data. When one system in the sysplex
changes data, each VLF that is active on the sysplex and that shares the changed
data is automatically informed of the change. See z/OS MVS Setting Up a Sysplex
for more information about setting up VLF to run on a sysplex.

v The changed data is in a PDS class. Additionally, the change to the PDS data
must have been made by either:
– A program that uses IBM data management services
– A program that provides notification of the change to one of the systems by

issuing the COFNOTIF macro.

When VLF notification is not automatic
If VLF is running on systems that are not part of a sysplex or the changed data is
non-PDS data, notification to VLF is not automatic. Whoever controls the shared
data must notify VLF on individual systems that the data has been changed.

How VLF is notified depends on who controls the data. For example, an end user
in charge of the data would use the TSO/E VLFNOTE command to notify VLF. An
application programmer might use the COFNOTIF macro in a program.

Which systems need to be notified depends on the type of data being changed:
v For PDS data, all the systems except the local system (the system on which the

data change was made) need to be notified. VLF on the local system receives
automatic notification as long as the change was made using IBM data
management services. (If the change was made some other way, the local system
needs to be notified.)

v For non-PDS data, VLF must be notified on all of the systems sharing the data,
including the local system.

The types of changes that require VLF notification appear in the following lists.

For data in a PDS, notify VLF when:
v Adding a member to an eligible data set (a data set that is identified to VLF).
v Adding a member to a non-eligible data set when both of the following are true:

– The data set containing the new member is in a user's SYSPROC
concatenation ahead of an eligible data set.

– The eligible data set has a member with the same name as the new member.
v Updating an existing member of an eligible data set.
v Deleting an eligible data set or member of an eligible data set.

For non-PDS data, notify VLF when:

Chapter 12. The virtual lookaside facility (VLF) 263

v Adding a minor name to a major name.
v Updating a minor name associated with a major name.
v Deleting a minor name from a major name.

Note: If you plan to use the VLFNOTE command, be sure your installation defines
VLFNOTE in the IKJTSOxx parmlib member. See z/OS MVS Initialization and
Tuning Reference for a description of the IKJTSOxx parmlib member.

The VLFNOTE command can be issued from either:
v A TSO/E user ID on each system
v A batch job, with system affinity, on each system.

See z/OS TSO/E Command Reference for information about using the VLFNOTE
command.

Data integrity
VLF constitutes a form of “shared” storage in that data placed into VLF as a result
of one user's processing might later be returned to many other users. Given this
fact, it is obvious that your application must include controls to protect the
integrity of the data to be stored in VLF.

The VLF environment provides some of the required integrity. All VLF macros,
with the exception of the object retrieval (COFRETRI) macro, require that the caller
be running in supervisor state or with PSW key mask 0-7. Thus, VLF can
guarantee that, once an object is created in VLF storage, it cannot be modified by
unauthorized code. VLF cannot, however, guarantee that the data stored in VLF in
the first place is correct; your application must ensure the integrity of the data to
be stored in VLF.

The best way to provide this integrity is to design your application so that objects
are created by authorized code using system key storage. See “Creating a VLF
object” on page 269 for details.

Recovery
Your program must be able to handle cases when VLF is inactive. For example:
v VLF might be inactive when you issue a VLF macro.
v The operator might cancel or stop VLF, thus making it inactive, while VLF is

processing your request and your application's address is swapped out.

If your program issues a VLF macro when VLF is inactive, the system returns a
return code of X‘28’. Your program should then use an alternate method of
retrieving data.

To avoid an abnormal termination that might occur if VLF becomes inactive while
processing your request, your program should:
1. Establish a recovery routine before issuing any VLF macro.
2. Set flags before and after issuing any VLF macro. If an error causes your

recovery routine to get control, the recovery routine can use the flags to
determine whether the program issued a VLF macro, but had not yet regained
control, when the problem occurred.

3. If the flags indicate the application was in a VLF macro when the failure
occurred, the recovery routine can, in nearly all cases, assume that the failure
occurred because VLF is inactive. The recovery routine can then take the same

264 z/OS V2R2 MVS Authorized Assembler Services Guide

action that your application does for a return code of X'28'. Generally, the
recovery routine should not request a dump or write a record to the logrec data
set for this failure. The routine can assume that the system has collected
serviceability data for this unexpected failure.

Using the VLF macros
VLF provides seven basic functions. An application invokes each function by
issuing a VLF macro. The functions and the corresponding macros are:
v Defining a class of VLF objects — COFDEFIN
v Identifying an end user to VLF — COFIDENT
v Retrieving a VLF object — COFRETRI
v Creating a VLF object — COFCREAT
v Notifying VLF of a change — COFNOTIF
v Removing a VLF end user — COFREMOV
v Purging a VLF class — COFPURGE

Use the information here to decide how to use VLF. z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN contains information about coding
each macro, including the return and reason code combinations the macro issues to
describe the processing performed.

As you design your application, consider these return and reason codes carefully.
For example, VLF runs as a started task, and most installations would start VLF as
part of the IPL process. It is possible, however, that VLF might not be active when
your application issues VLF macros. Thus, your application must be able to run
without VLF. Also, each VLF macro issues a return code of X‘28’ when VLF is not
active; each time your application issues a VLF macro, it must check for this return
code.

If your application must be able to run on multiple levels of MVS, note that all
VLF macros issue return code X‘28’ on a level of MVS prior to MVS/SP3.

Figure 47 on page 266 shows, at a very high level, one possible way of using VLF
to retrieve objects from a PDS class. The figure shows the sequence of steps an
application might use to find and read a member without VLF, and the high-level
process of retrieving an object for an end user with VLF. In the VLF process, each
shaded box represents the same steps the application uses to find and read a
member without VLF. Figure 47 on page 266 does not include all VLF functions or
the detailed return code checking than an actual application would perform.

Chapter 12. The virtual lookaside facility (VLF) 265

Defining a class of VLF objects
To define a class of VLF objects, issue the COFDEFIN macro. When you issue
COFDEFIN, VLF uses information you specify on the macro and information from
the active COFVLFxx member of SYS1.PARMLIB to prepare to process objects in
that class. You must issue COFDEFIN for each class of objects that you want VLF
to process.

To issue COFDEFIN specify:
v The class name. This name must match a class described on a CLASS statement

in COFVLFxx.

Object
found

?

UTOKEN
valid

?

Result
?

Class
defined

?

N

N

Y

Y

Y

N

Failure Success

N Y
A

B

A

C

C B

D

D

User requests
object

If necessary
allocate and

OPEN DDNAME

Issue BLDL to
locate member
in concatenation

Read the member
from DASD

Return the object
to user

Find and read
the member

Find and read
the member

Issue COFCREAT
to create the object

Issue COFDEFIN
to define the class

Issue COFIDENT
to obtain UTOKEN

If necessary, allocate
and OPEN DDNAME

Return object
to user

class not
defined

set "not a
VLF user"

Issue COFRETRI
to retrieve

object

Is
user a "VLF

user"

User requests
object

With VLFWithout VLF

Figure 47. Retrieving an Object for an End User

266 z/OS V2R2 MVS Authorized Assembler Services Guide

v The length of the major names in the class. The default length (and only valid
length) for a PDS class is 50.

v The length of the minor names in the class. The default length (and only valid
length) for a PDS class is 8.

Note that you do not specify eligible major names on COFDEFIN. VLF obtains the
eligible major names for the class from the CLASS statement in COFVLFxx.

If you want to make sure that only authorized code can retrieve objects, specify
AUTHRET=YES when you define the class.

The CLASS statement in COFVLFxx defines the amount of virtual storage available
for a class. On the COFDEFIN macro, however, you indicate how you want VLF to
manage virtual storage for the objects in the class. If you specify TRIM=ON, which
is the default, VLF automatically removes the least recently used objects when it
needs space. If you specify TRIM=OFF, VLF removes objects only when it is
specifically notified. Allowing VLF to manage the storage (TRIM=ON) ensures that,
if space is limited, the most recently used objects tend to remain in virtual storage.

Identifying an end user to VLF
To identify an end user to VLF and to connect that end user to a VLF class, issue
the COFIDENT macro. Your application must, to maintain the security of your
installation's data, ensure that the user is authorized to access the objects. Before
you issue COFIDENT, follow your system's security procedures (perhaps using
RACF) to verify the user's authority to access the objects. For a PDS class, open the
DDNAME you expect to specify on COFIDENT; otherwise, the COFIDENT will
fail.

After verifying that the user is authorized to access the objects, issue COFIDENT.
VLF connects the end user to a class and returns a user token that uniquely
identifies the user of the class. VLF then ensures that only an identified user can
access objects.

To issue COFIDENT, you must specify:
v The class name. For the identification to succeed, the class you name must

already have been defined to VLF (through the COFDEFIN macro).
v The major name search order. On the DDNAME parameter (for a PDS class) or

on the MAJNLIST parameter (for a non-PDS class), you specify the list of major
names. The order in which these names are listed determines the search order
for that particular user, and the search order can be different for each user. A
single user can have more than one search order, but you must issue COFIDENT
separately for each search order.
This information comes from the user. For a PDS class, the user supplies the
DDNAME of the partitioned data set concatenation. VLF determines the data set
names in the list. (VLF allows private data sets in the list, but it creates objects
only from major names that correspond to the major names specified for the
class in the COFVLFxx parmlib member.)

v An area where VLF can return a user token (UTOKEN). The user token
identifies this user as an identified user with access to a particular class of
objects. Other VLF functions, such as retrieving an object or creating an object,
require your application to supply the UTOKEN.

Your application design must allow you to keep track of the relationship between
an end user, a class, and the token that connects the two. If a single user needs

Chapter 12. The virtual lookaside facility (VLF) 267

access to more than one class of VLF objects, you must issue COFIDENT for each
class. An end user needs a unique user token for each class.

The SCOPE parameter on COFIDENT determines which tasks can retrieve objects
with the returned user token. If you specify SCOPE=HOME, only a task running
under the same home address space as the task that issued COFIDENT can
retrieve objects with the returned UTOKEN. SCOPE=HOME is the default. If you
specify SCOPE=SYSTEM, tasks running in any address space can retrieve objects
with the returned UTOKEN.

The value you specify for SCOPE affects only the retrieving of objects with the
COFRETRI macro. All other VLF macros that supply the user token must have the
same home ASID as the user of COFIDENT.

Retrieving a VLF object
To retrieve a VLF object, issue the COFRETRI macro. Retrieving a VLF object
means using VLF to obtain a copy of a VLF object on behalf of an end user. (Your
application must check authority to access objects before you issue COFIDENT, the
macro that connects the user to a class of VLF objects.) VLF retrieves objects
according to the major name search order of the VLF end user, identified by the
user token (UTOKEN).

When an end user requests a VLF object, your application must issue COFRETRI
to attempt to retrieve the object before attempting to create the object. VLF ensures
that, if you follow this processing order, VLF does not create an object if the
permanent source data on DASD changes between the time you obtain the object
from permanent storage and the time you create the object.

To issue COFRETRI, you must specify:
v The minor name of the object. This information comes from the user request.
v The user token (UTOKEN). This user token is the token returned from the

earlier COFIDENT macro for the user. From the UTOKEN, VLF knows the class
and major name search order for the user.

When you issue COFRETRI, you must provide locations where VLF can return the
object it retrieves from virtual storage. You provide this area by defining a target
area list, using two parameters: TLSIZE and TLIST.

TLSIZE defines the total size of the target area list. TLIST defines the target area
list, which describes the target areas into which VLF is to place consecutive areas
of the object. There must be at least one target area; there can be as many as
sixteen target areas.

You must also provide locations where VLF can return:
v The size of the object it retrieves (OBJSIZE).
v The concatenation index (CINDEX) of the major name associated with the object.

The index is the zero-origin relative number of the major name for the object in
the major name list of the user.
For concatenated partitioned data sets, the CINDEX value is the same as the “K”
(concatenation index) value returned when a BLDL is performed to locate a
member. This value indicates which major name in the concatenation list
includes the object that VLF has retrieved.

268 z/OS V2R2 MVS Authorized Assembler Services Guide

When control returns to your program from COFRETRI, check the return codes
carefully. Possible actions for some common return codes include:
v For return code 2 (best available object found), your application can issue a

BLDL to determine if the object VLF returned is the correct object. If it is not,
use traditional methods to obtain the object from DASD for the user, then issue
the COFCREAT macro to create the object in VLF storage.

v For return code 4 (the object was found but the target area was too small),
provide a larger target area and reissue COFRETRI.

v For return code 8 (no object was found), issue a BLDL and use traditional
methods to obtain the object from DASD for the user, then issue the COFCREAT
macro to create the object in VLF storage.

Creating a VLF object
To create a VLF object, obtain the object from DASD, then issue the COFCREAT
macro. Creating a VLF object means using VLF to add an object to a class of VLF
objects in virtual storage. You create a VLF object when an end user requests an
object that does not yet exist in VLF storage.

To ensure that VLF does not create an object if the permanent source data on
DASD changes between the time you obtain the object from permanent storage
and the time you create the object, VLF requires that you issue COFRETRI to try to
retrieve the object before you issue COFCREAT.

Thus, normal processing of an end user request for an object includes the
following steps:
1. Issue the COFRETRI macro to attempt to retrieve the object.
2. Examine the return code from COFRETRI.
3. If the return code is 2 or 8, create the object. Between issuing the COFRETRI

and the COFCREAT for this object, do not issue any COFRETRI macro with the
same UTOKEN but a different minor name.

To ensure the integrity of the data, the working storage that your application uses
to create the VLF object must not be key 8 storage, and you must perform the
following steps:
1. Change to (or remain in) supervisor state.
2. Issue a BLDL macro for the PDS member using the same DDNAME used to

identify the user to VLF. VLF guarantees that no manipulations with allocation
can allow the user to alter the data sets associated with a DDNAME used to
identify a VLF user. In such a case, VLF invalidates that user's token
(UTOKEN).

3. Save the “K” value from a successful BLDL to pass to VLF as the CINDEX
value on COFCREAT.

4. Perform secure I/O to read the object from DASD. Performing secure I/O,
which protects the data from malicious tasks, has the following requirements:
a. The DCB used for I/O must not be in key 8 storage.
b. The I/O buffers must not be in key 8 storage.

5. Issue the COFCREAT macro to create the VLF object.
6. If necessary, copy the object to key 8 storage to enable the user program to

access it.

Chapter 12. The virtual lookaside facility (VLF) 269

Failure to follow these rules compromises the integrity of data objects in VLF
storage. Depending on the nature of the class of VLF objects, incorrect data could
cause severe system integrity problems.

To issue COFCREAT, you must specify:
v The major name for the object:

– For a non-PDS class, you specify the major name on the MAJOR parameter.
– For a PDS class, you specify the major name indirectly through the

concatenation index on the CINDEX parameter. (You obtain this value by
issuing a BLDL macro.)

This information comes from the end user requesting the object.
To ensure that VLF does not retain objects containing down-level data, your
application must determine the highest level major name (in the user's major
name search order) only after it receives a non-zero return code from
COFRETRI. For a PDS class, you must issue the BLDL after the COFRETRI.

v The minor name of the object. This information comes from the end user
requesting the object.

v The user token for the user on whose behalf you are creating this object. This
token is the UTOKEN returned when you issued the COFIDENT macro for the
user.

You must also describe where VLF can find the source data for the object it is to
add to its virtual storage. You provide this source area for the object by defining an
object parts list, using two parameters: OBJPLSZ and OBJPRTL.

OBJPLSZ defines the total size of the object parts list. OBJPRTL defines the object
parts list, which describes source areas from which VLF can obtain consecutive
pieces of the object. There must be at least one source area; there can be as many
as sixteen source areas.

To issue COFCREAT, your program must be running under a task with the same
home ASID as the issuer of the COFIDENT macro that identified the user.

Using REPLACE
For non-PDS classes, you can issue COFCREAT with the REPLACE option. If you
specify REPLACE, VLF does not require that COFRETRI precede COFCREAT.
Because VLF cannot then guarantee that the source object has not changed, your
application must ensure that the source object remains unchanged between the
time when you reference the source object to create the object parts list and the
time when you receive control back from COFCREAT.

If you issue COFCREAT without REPLACE for an object that already exists in VLF
storage, VLF returns a successful completion code but does not replace the data
object. In this case, VLF assumes that the data object you supply is identical to the
data object that already exists in VLF storage.

If you issue COFCREAT with REPLACE for an object that already exists in VLF
storage, VLF does replace the existing object with the parts specified in the object
parts list. In this case, VLF assumes that the data object you supply is more current
than the data object that already exists in VLF storage.

270 z/OS V2R2 MVS Authorized Assembler Services Guide

Notifying VLF of a change
The system automatically informs VLF of all PDS updates made through
IBM-supplied code. Thus, for PDS classes, your application does not need to notify
VLF about PDS updates unless your installation uses its own private method of
updating partitioned data sets.

If you need to notify VLF that an object, or some set of objects, in VLF storage is
no longer valid, issue the COFNOTIF macro. You normally use COFNOTIF to
inform VLF of changes to the permanent data kept on auxiliary storage devices, to
ensure that the VLF objects reflect the current level of the permanent data on
DASD.

To issue COFNOTIF, you must specify:
v The major name or a list of major names. The structure of the major name for

PDS classes consists of the following elements:
– 6-character volume serial number (padded with blanks if necessary)
– PDS name (44-characters maximum), padded with blanks to equal the

MAJLEN value.
For example, where the volume serial number is VOL123 and the data set name
is MYPDS, specify VOL123MYPDS, padded with blanks as required.

v The type of change you are reporting. A change to a minor name affects only the
minor name within the major name specified on the MAJOR parameter.
VLF views a minor name with one or more alias names as separate objects.
Thus, to change a minor name, you must issue COFNOTIF for the minor name
and for each alias name.

Specify the type of change with the FUNC parameter, as follows:
v FUNC=DELMAJOR — specifies that one or more major names have been

deleted. VLF deletes all objects with those major names.
v FUNC=DELMINOR — specifies that one or more minor names have been

deleted. VLF deletes any object with a matching minor name. With
FUNC=DELMINOR, you must specify MINLIST to identify the minor name(s).
When MAJOR is specified and the class is a non-PDS class, only matching minor
names within that major name are deleted. Otherwise, all objects matching the
minor name(s) in all PDS classes are deleted.

v FUNC=ADDMINOR — specifies that one or more minor names have been
added to a major name. With FUNC=ADDMINOR, you must specify MINLIST
to identify the minor name(s).

v FUNC=UPDMINOR — specifies that one or more objects corresponding to
existing minor names have been changed. With FUNC=UPDMINOR, you must
specify MINLIST to identify the minor name(s).

v FUNC=PURGEVOL — specifies that a physical storage device has been logically
disconnected from the system, or that all of the information on the device has
been deleted or replaced. With FUNC=PURGEVOL, you must specify VOLUME
to identify the volume serial number of the volume.

For non-PDS classes, you must specify CLASS to restrict the changes to a single
class. If you omit CLASS or use CLASS to specify the name of a PDS class, VLF
assumes that the change affects all PDS classes.

Chapter 12. The virtual lookaside facility (VLF) 271

Removing a VLF end user
To terminate an end user's access to a specific class of VLF objects, issue the
COFREMOV macro. Issue COFREMOV when your application determines that an
end user should no longer have access to the class of VLF objects. COFREMOV
terminates an end user's access to the class of VLF objects associated with the
specified user token (UTOKEN).

To issue COFREMOV, you must specify the user token (UTOKEN) returned from
the COFIDENT macro that identified the user. To remove a user connected to more
than one class, you must issue multiple COFREMOV macros.

You must issue COFREMOV from a task that has the same home ASID as the task
that issued the COFIDENT to identify the user.

After you have removed the user, VLF rejects, with a reason code that indicates an
unknown UTOKEN, any subsequent VLF requests that specify the UTOKEN.

Purging a VLF class
To request that VLF purge an entire class of objects previously defined to VLF,
issue the COFPURGE macro. VLF deletes the class immediately. Any transaction in
process for the purged class fails; VLF issues a failure return code that is
appropriate for the transaction. Any user token (UTOKEN) connecting a user to the
purged class becomes an invalid user token.

To issue COFPURGE, you must specify the class name.

If you then need to reinstate the class, you must issue another COFDEFIN for the
class, which you can do at any time. Once you have reinstated the class, you must
reidentify the users of the class.

Note that the system can also delete a class for control purposes even if no user
requests it. You learn that a class has been purged when you issue a COFIDENT,
COFREMOV, COFCREAT, or COFRETRI macro that specifies the purged class.
There is a specific return and reason code combination for a class that is not
defined or a UTOKEN that is not valid.

Modifying VLF
VLF can be modified using the MODIFY VLF,REPLACE,NN=xx command, instead
of being stopped and restarted, so that its existing cache of objects can be retained.
Use the command to start VLF with up to 16 concatenated COFVLFxx members of
the logical parmlib, instead of the current members. The COFVLFxx parmlib
members must contain valid CLASS statements.

The MODIFY VLF,REPLACE,NN=xx command can be used for the following
actions:
v Deleting existing classes
v Adding new classes and their associated parameters
v Deleting EDSN or EMAJ major names from existing classes
v Adding EDSN or EMAJ major names to existing classes
v Increasing MaxVirt for existing classes
v Decreasing MaxVirt for existing classes
v Changing AlertAge for existing classes.

272 z/OS V2R2 MVS Authorized Assembler Services Guide

For further information about using the COFVLFxx member, refer to z/OS MVS
Initialization and Tuning Reference.

For details on using the MODIFY VLF,REPLACE,NN=xx command, refer to z/OS
MVS System Commands.

Chapter 12. The virtual lookaside facility (VLF) 273

274 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 13. Data-in-virtual

Data-in-virtual simplifies the writing of applications that use large amounts of data
from permanent storage. Applications can create, read, and update data without
the I/O buffer, blocksize, and record considerations that the traditional GET and
PUT types of access methods require.

By using the services of data-in-virtual, certain applications that access large
amounts of data can potentially improve their performance and their use of system
resources. Such applications have an accessing pattern that is non-sequential and
unpredictable. This kind of pattern is a function of conditions and values that are
revealed only in the course of the processing. In these applications, the sequential
record subdivisions of conventional access methods are meaningless to the central
processing algorithm. It is difficult to adapt this class of applications to
conventional record management programming techniques, which require all
permanent storage access to be fundamentally record-oriented. Through the DIV
macro, data-in-virtual provides a way for these applications to manipulate the data
without the constraints of record-oriented processing.

An application written for data-in-virtual views its permanent storage data as a
seamless body of data without internal record boundaries. By using the
data-in-virtual MAP service, the application can make any portion of the object
appear in virtual storage in an area called a virtual storage window. The window
can exist in an address space, a data space, or a standard hiperspace. The
application can reference and update the data in the window by using
conventional processor instructions. To copy the updates to the object, the
application uses the data-in-virtual SAVE service. For information about using data
spaces or hiperspaces, see z/OS MVS Programming: Extended Addressability Guide.

An application written for data-in-virtual might also benefit by using the
IARVSERV macro to share virtual storage, when that storage is in an address space
or data space. For information about sharing data in virtual storage through
IARVSERV, particularly the restrictions for using the data-in-virtual MAP and
UNMAP services, see Chapter 16, “Sharing data in virtual storage (IARVSERV
macro),” on page 317.

The data-in-virtual services process the application data in 4096-byte (4K-byte)
units on 4K-byte boundaries called blocks. The application data resides in what is
called a data-in-virtual object, a data object, or simply an object. The
data-in-virtual object is a continuous string of uninterrupted data. The data object
can be either a VSAM linear data set or a non-shared standard hiperspace.
Choosing a linear data set as an object or a non-shared standard hiperspace as an
object depends on your application. If your application requires the object to retain
data, choose a linear data set, which provides permanent storage on DASD. A
hiperspace object provides temporary storage.

When to use data-in-virtual
When an application reads more input and writes more output data than
necessary, the unnecessary reads and writes impact performance. You can expect
improved performance from data-in-virtual because it reduces the amount of
unnecessary I/O.

© Copyright IBM Corp. 1988, 2016 275

As an example of unnecessary I/O, consider the I/O performed by an interactive
application that requires immediate access to several large data sets. The program
knows that some of the data, although not all of it, will be accessed. However, the
program does not know ahead of time which data will be accessed. A possible
strategy for gaining immediate access to all the data is to read all the data ahead of
time, reading each data set in its entirety insofar as this is possible. Once read into
main storage, the data can be accessed quickly. However, if only a small percentage
of the data is likely to be accessed during any given period, the I/O performed on
the unaccessed data is unnecessary.

Furthermore, if the application changes some data in main storage, it might not
keep track of the changes. Therefore, to guarantee that all the changes are
captured, the application must then write entire data sets back onto permanent
storage even though only relatively few bytes are changed in the data sets.

Whenever such an application starts up, terminates, or accesses different data sets
in an alternating manner, time is spent reading data that is not likely to be
accessed. This time is essentially wasted, and the amount of it is proportional to
the amount of unchanged data for which I/O is performed. Such applications are
suitable candidates for a data-in-virtual implementation.

Factors affecting performance
When you write applications using the techniques of data-in-virtual, the I/O takes
place only for the data referenced and saved. If you run an application using
conventional access methods, and then run it again using data-in-virtual, you will
notice a difference in performance. This difference depends on both the size of the
data set and its access pattern (or reference pattern). Size refers to the magnitude
of the data sets that the application must process. The access pattern refers to how
the application references the data.

Engineering and scientific applications often use data access patterns that are
suitable for data-in-virtual. Among the applications that can be considered for a
data-in-virtual implementation are:
v Applications that process large arrays
v VSAM relative record applications
v BDAM fixed length record applications

Commercial applications sometimes use data access patterns that are not suitable
because they are predictable and sequential. If the access pattern of a proposed
application is fundamentally sequential or if the data set is small, a conventional
VSAM (or other sequential access method) implementation may perform better
than a data-in-virtual implementation. However, this does not rule out commercial
applications as data-in-virtual candidates. If the performance factors are favorable,
any type of application, commercial or scientific, is suitable for a data-in-virtual
implementation.

Before you can use the DIV macro to process a linear data set object or a
hiperspace object, you must create either the data set or the hiperspace. z/OS MVS
Programming: Extended Addressability Guide explains how to create a hiperspace.
“Creating a linear data set” explains how to create a linear data set.

Creating a linear data set
To create the data set, you need to specify the DEFINE CLUSTER function of
IDCAMS with the LINEAR parameter. When you code the SHAREOPTIONS

276 z/OS V2R2 MVS Authorized Assembler Services Guide

parameter for DEFINE CLUSTER, the cross-system value must be 3; that is, you
may code SHAREOPTIONS as (1,3), (2,3), (3,3), or (4,3). Normally, you should use
SHAREOPTIONS (1,3).

When creating a linear data set for data-in-virtual, you can use the LOCVIEW
parameter of the DIV macro in conjunction with the other SHAREOPTIONS.
LOCVIEW is described under the topic “The ACCESS service” on page 281. For a
complete explanation of SHAREOPTIONS, see z/OS DFSMS Using Data Sets.

The following is a sample job that invokes Access Method Services (IDCAMS) to
create the linear data set named DIV.SAMPLE on the volume called DIVPAK.
When IDCAMS creates the data set, it creates it as an empty data set. Note that
there is no RECORDS parameter; linear data sets do not have records.

For further information on creating linear VSAM data sets and altering
entry-sequenced VSAM data sets, see z/OS DFSMS Access Method Services
Commands.

Using the services of data-in-virtual
Each invocation of the DIV macro requests any one of the services provided by
data-in-virtual:
v IDENTIFY
v ACCESS
v MAP
v SAVE
v SAVELIST
v RESET
v UNMAP
v UNACCESS
v UNIDENTIFY

Identify
An application must use IDENTIFY to tell the system which data-in-virtual object
it wants to process. IDENTIFY generates a unique ID, or token, that uniquely
represents an application's request to use the given data object. The system returns
this ID to the application. When the application requests other kinds of services
with the DIV macro, the system supplies this ID as an input parameter. Specify
DDNAME for a linear data set object and STOKEN for a hiperspace object.

//JNAME JOB ’ALLOCATE LINEAR’,MSGLEVEL=(1,1),
// CLASS=R,MSGCLASS=D,USER=JOHNDOE
//*
//* ALLOCATE A VSAM LINEAR DATASET
//*
//CLUSTPG EXEC PGM=IDCAMS,REGION=4096K
//SYSPRINT DD SYSOUT=*
//DIVPAK DD UNIT=3380,VOL=SER=DIVPAK,DISP=OLD
//SYSIN DD *

DEFINE CLUSTER (NAME(DIV.SAMPLE) -
VOLUMES(DIVPAK) -
TRACKS(1,1) -
SHAREOPTIONS(1,3) -
LINEAR)

/*

Chapter 13. Data-in-virtual 277

An authorized application can also use IDENTIFY to request that data-in-virtual
services bypass validity checking, and to assign ownership of the object's ID to
another task.

Access
To gain the right to view or update the object, an application must use the
ACCESS service. You normally invoke ACCESS after you invoke IDENTIFY and
before you invoke MAP. ACCESS is similar to the OPEN macro of VSAM. It has a
mode parameter of READ or UPDATE, and it gives your application the right to
read or update the object.

If the object is a data set and if the SHAREOPTIONS parameter used to allocate
the linear data set implies serialization, the system automatically serializes your
access to the object. If access is not automatically serialized, you can serialize
access to the object by using the ENQ, DEQ, and the RESERVE macros. If you do
not serialize access to the object, you should consider using the LOCVIEW
parameter to protect your window data against the unexpected changes that can
occur when access to the object is not serialized. LOCVIEW is described under the
topic “The ACCESS service” on page 281.

If the object is a hiperspace, DIV ensures that only one program can write to the
object and that multiple users can only read the object. Only the task that owns the
corresponding ID can issue ACCESS.

Map
The data object is stored in units of 4096-byte blocks. An application uses the MAP
service to specify the part of the object that is to be processed in virtual storage. It
can specify the entire object (all of the blocks), or a part of the object (any
continuous range of blocks). Because parts of the same object can be viewed
simultaneously through several different windows, the application can set up
separate windows on the same object. However, a specific page of virtual storage
cannot be in more than one window at a time.

After issuing ACCESS, the application obtains a virtual storage area large enough
to contain the window. The size of the object, which ACCESS optionally returns,
can determine how much virtual storage you need to request. After requesting
virtual storage, the application invokes MAP. MAP establishes a one-to-one
correspondence between blocks in the object and pages in virtual storage. A
continuous range of pages corresponds to a continuous range of blocks. This
correspondence is called a virtual storage window, or a window.

After issuing MAP, the application can look into the virtual storage area that the
window contains. When it looks into this virtual storage area, it sees the same data
that is in the object. When the application references this virtual storage area, it is
referencing the data from the object. To reference the area in the window, the
application simply uses any conventional processor instructions that access storage.

Although the object data becomes available in the window when the application
invokes MAP, no actual movement of data from the object into the window occurs
at that time. Actual movement of data from the object to the window occurs only
when the application refers to data in the window. When the application references
a page in the window for the first time, a page fault occurs. When the page fault
occurs, the system reads the permanent storage block into real storage.

278 z/OS V2R2 MVS Authorized Assembler Services Guide

When the system brings data into real storage, the data movement involves only
the precise block that the application references. The system updates the contents
of the corresponding page in the window with the contents of the linear data set
object. Thus, the system reads only the blocks that an application references into
real storage. The sole exception to the system reading only the referenced blocks
occurs when the application specifies LOCVIEW=MAP with the ACCESS service
for a data set object.

Note:

1. If the application specifies LOCVIEW=MAP with ACCESS, the entire window
is immediately filled with object data when the application invokes MAP.

2. If, when an application invokes MAP, it would rather keep in the window the
data that existed before the window was established (instead of having the
object data appear in the window), it can specify RETAIN=YES. Specifying
RETAIN=YES is useful when creating an object or overlaying the contents of an
object.

3. An important concept for data-in-virtual is the concept of freshly obtained
storage. When virtual storage has been obtained and not subsequently
modified, the storage is considered to be freshly obtained. The storage is also
in this state when it has been obtained as a data space by using a DSPSERV
CREATE and not subsequently modified. After a DSPSERV RELEASE, the
storage is still considered freshly obtained until it has been modified. When
referring to this storage or any of its included pages, this information uses
freshly obtained storage and freshly obtained pages. If a program stores into a
freshly obtained page, only that page loses its freshly obtained status, while
other pages still retain it.

4. You can map virtual storage pages that are protected only when RETAIN=YES
is specified. When the system establishes the virtual window, you can use the
PGSER PROTECT macro to protect the data in the window. However, you must
ensure that the data in the window is not protected when you issue the RESET
form of the DIV macro.

Save, Savelist, and Reset
After using the MAP service, the application can access the data inside the
window directly through normal programming techniques. When the application
changes some data in the window, however, the data on the object does not
consequently change. If the application wants the data changes in the window to
appear in the object, it must use the SAVE service. SAVE writes, to the object, all
changed blocks within the range to be saved inside the window. SAVE does not
write unchanged blocks. When SAVE completes, the object contains any changes
that the application made inside the virtual storage window. If a SAVE is preceded
by another SAVE, the second SAVE will pick up only the changes that occurred
since the previous SAVE.

Optionally, SAVE accepts a user list as input. To provide a user list, the application
uses the SAVELIST service. SAVELIST returns the addresses of the first and last
changed pages in each range of changed pages within the window. The application
can then use these addresses as the user list for SAVE. The SAVE operation can be
more efficient when using the list of addresses, so an application can improve its
performance by using SAVELIST and then SAVE.

When specifying a user list and when a data space or hiperspace contains the
window, the caller must use an STOKEN with SAVE to identify the data space or
hiperspace.

Chapter 13. Data-in-virtual 279

If the application changes some data in a virtual storage window but then decides
not to keep those changes, it can use the RESET service to reload the window with
data from the object. RESET reloads only the blocks that have been changed unless
you specify or have specified RELEASE=YES.

Unmap
When the application is finished processing the part of the object that is in the
window, it eliminates the window by using UNMAP. To process a different part of
the object, one not already mapped, the application can use the MAP service again.
The SAVE, RESET, MAP, and UNMAP services can be invoked repeatedly as
required by the processing requirements of the application.

If you issued multiple MAPs to different STOKENs, use STOKEN with UNMAP to
identify the data space or hiperspace you want to unmap.

Note: If you do not want to retain the data in the virtual window, before you use
the UNMAP service, use the PGSER UNPROTECT macro to “unprotect” any
protected pages in the window.

If you issue UNMAP with RETAIN=NO and there are protected pages in the
virtual storage window, the system loses the data in the protected pages and
preserves the protection status. If you try to reference the protected pages, the
system issues abend X'028'. To access the protected pages again, remove the
protection status. Then issue the PGSER RELEASE or DSPSERV RELEASE macro
to release all physical paging resources.

Unaccess
If the application has temporarily finished processing the object but still has other
processing to perform, it uses UNACCESS to relinquish access to the object. Then
other programs can access the object. If the application needs to access the same
object again, it can regain access to the object by using the ACCESS service again
without having to use the IDENTIFY service again.

Unidentify
UNIDENTIFY ends the use of a data-in-virtual object under a previously assigned
ID that the IDENTIFY service returned.

The IDENTIFY service
To select the data-in-virtual object that you want to process, use IDENTIFY.
IDENTIFY has the following required parameters:
v ID, TYPE, and DDNAME if TYPE=DA, or
v STOKEN if TYPE=HS.

IDENTIFY has two optional parameters: CHECKING and TTOKEN. Only
programs running in supervisor state or under a PSW key of 0-7, or both, can use
the CHECKING and TTOKEN parameters.

The following examples show two ways to code the IDENTIFY service.

Hiperspace™ object:
DIV IDENTIFY,ID=DIVOBJID,TYPE=HS,STOKEN=HSSTOK

Data set object:

280 z/OS V2R2 MVS Authorized Assembler Services Guide

DIV IDENTIFY,ID=DIVOBJID,TYPE=DA,DDNAME=DDAREA

ID: The ID parameter specifies the address where the IDENTIFY service returns a
unique eight-byte name that connects a particular user with a particular object.
This name is an output value from IDENTIFY, and it is also a required input value
to all other services.

Simultaneous requests for different processing activities against the same
data-in-virtual object can originate from different tasks or from different routines
within the same task or the same routine. Each task or routine requesting
processing activity against the object must first invoke the identify service. To
correlate the various DIV macro invocations and processing activities, the
eight-byte IDs generated by IDENTIFY are sufficiently unique to reflect the
individuality of the IDENTIFY request, yet they all reflect the same data-in-virtual
object.

TYPE: The TYPE parameter indicates the type of data-in-virtual object, either a
linear data set (TYPE=DA) or a hiperspace (TYPE=HS). DIV does not support
VSAM extended format linear data sets for use as a DIV object for which the size
is greater than 4GB.

DDNAME: When you specify TYPE=DA for a data set object, you must specify
DDNAME to identify your data-in-virtual object. If you specify TYPE=HS with
IDENTIFY, do not specify DDNAME. (Specify STOKEN instead.) Do not specify a
DDNAME that corresponds to a VSAM extended format linear data set for which
the size is greater than 4GB, because DIV does not support them for use as a DIV
object.

STOKEN: When you specify TYPE=HS for a hiperspace object, you must specify
STOKEN to identify the hiperspace that is your data-in-virtual object. The
STOKEN must be addressable in your primary address space. The hiperspace must
be a standard hiperspace and must be owned by the task issuing the IDENTIFY.
The system does not verify the STOKEN until your application uses the associated
ID to access the object.

CHECKING: The CHECKING parameter enables you to request or bypass
data-in-virtual validity checking. If you bypass validity checking,
(CHECKING=NO), all data-in-virtual services bypass validity checking for the
corresponding ID. You then have to ensure that the parameters and the
environment are valid each time a data-in-virtual service is invoked. A parameter
or environment that is not valid causes unpredictable results. The default is to
allow data-in-virtual to perform validity checking. Bypass validity checking only if
you need to improve data-in-virtual performance.

TTOKEN: To assign ownership of the corresponding ID to another TCB, code the
TTOKEN parameter. You can assign the ID only to a TCB that is in the same TCB
chain as your program, but is higher in the chain.

The ACCESS service
Your program uses the ACCESS service to request permission to read or update
the object. ACCESS has two required parameters: ID and MODE, and two optional
parameters: SIZE and LOCVIEW.

The following example shows one way to code the ACCESS service.
DIV ACCESS,ID=DIVOBJID,MODE=UPDATE,SIZE=OBJSIZE

Chapter 13. Data-in-virtual 281

ID: When you issue a DIV macro that requests the ACCESS service, you must also
specify, on the ID parameter, the identifier that the IDENTIFY service returned. The
task that issues ACCESS must own the corresponding ID. The ID parameter tells
the system what object you want access to. When you request permission to access
the object under a specified ID, the system checks the following conditions before
it grants the access:
v You previously established the ID specified with your ACCESS request by

invoking IDENTIFY.
v You have not already accessed the object under the same unique eight-byte ID.

Before you can reaccess an already-accessed object under the same ID, you must
first invoke UNACCESS for that ID.

v If your installation uses RACF, you must have the proper RACF authorization to
access the object.

v If you are requesting read access, the object must not be empty. Use the MODE
parameter to request read or update access.

v If the data object is a hiperspace, the system rejects the request if the hiperspace:
– Has ever been the target of an ALESERV ADD.
– Has one or more readers and one updater. (That is, the hiperspace can have

readers and it can have one updater, but it can't have both.)
v If the data object is a linear data set, the system rejects the request if the linear

data set:
– Is a VSAM extended format linear data set for which the size is greater than

4GB.

MODE: The MODE parameter specifies how your program will access the object.
You can specify a mode parameter of READ or UPDATE. They are described as
follows:
v READ lets you read the object, but prevents you from using SAVE, to change the

object.
v UPDATE, like READ, lets you read the object, but it also allows you update the

object with SAVE.

Whether you specify READ or UPDATE, you can still make changes in the
window, because the object does not change when you change the data in the
window.

SIZE: The SIZE parameter specifies the address of the field where the system
stores the size of the object. The system returns the size in this field whenever you
specify SAVE or ACCESS with SIZE. If you omit SIZE or specify SIZE=*, the
system does not return the size.

If you specified TYPE=DA with IDENTIFY for a data set object, SIZE specifies the
address of a four-byte field. When control is returned to your program after the
ACCESS service executes, the four-byte field contains the current size of the object.
The size is the number of blocks that the application must map to ensure the
mapping of the entire object.

If you specified TYPE=HS with IDENTIFY for a hiperspace object, ACCESS returns
two sizes. The first is the current size of the hiperspace (in blocks). The second is
the maximum size of the hiperspace (also in blocks). When specifying SIZE with
an ID associated with a hiperspace object, you must provide an eight-byte field in
which the system can return the sizes (4 bytes each).

282 z/OS V2R2 MVS Authorized Assembler Services Guide

LOCVIEW: The LOCVIEW parameter allows you to specify whether the system is
to create a local copy of the data-in-virtual object.

If your object is a hiperspace, you cannot specify LOCVIEW=MAP.

If your object is a data set, you can code the LOCVIEW parameter two ways:
v LOCVIEW=MAP
v LOCVIEW=NONE (the default if you do not specify LOCVIEW)

If another program maps the same block of a data-in-virtual object as your
program has mapped, a change in the object due to a SAVE by the other program
can sometimes appear in the virtual storage window of your program. The change
can appear when you allocate the data set object with a SHAREOPTIONS(2,3),
SHAREOPTIONS(3,3), or SHAREOPTIONS(4,3) parameter, and when the other
program is updating the object while your program is accessing it.

If the change appears when your program is processing the data in the window,
processing results might be erroneous because the window data at the beginning
of your processing is inconsistent with the window data at the end of your
processing. For an explanation of SHAREOPTIONS, see z/OS DFSMS Using Data
Sets. The relationship between SHAREOPTIONS and LOCVIEW is as follows:
v When you allocate the data set object by SHAREOPTIONS(2,3),

SHAREOPTIONS(3,3), or SHAREOPTIONS(4,3), the system does not serialize
the accesses that programs make to the object. Under these options, if the
programs do not observe any serialization protocol, the data in your virtual
storage window can change when other programs invoke SAVE. To ensure that
your program has a consistent view of the object, and protect your window from
changes that other programs make on the object, use LOCVIEW=MAP. If you do
not use LOCVIEW=MAP when you invoke ACCESS, the system provides a
return code of 4 and a reason code of hexadecimal 37 as a reminder that no
serialization is in effect even though the access was successful.

v When you allocate the object by SHAREOPTIONS(1,3), object changes made by
the other program cannot appear in your window because the system performs
automatic serialization of access. Thus, when any program has update access to
the object, the system automatically prevents all other access. Use
LOCVIEW=NONE when you allocate the data set by SHAREOPTIONS(1,3).

Note: The usual method of programming data-in-virtual is to use
LOCVIEW=NONE and SHAREOPTIONS(1,3). LOCVIEW=MAP is provided for
programs that must access a data object simultaneously. Those programs would
not use SHAREOPTIONS(1,3).

LOCVIEW=MAP requires extra processing that degrades performance. Use
LOCVIEW=NONE whenever possible although you can use LOCVIEW=MAP for
small data objects without significant performance loss. When you write a program
that uses LOCVIEW=MAP, be careful about making changes in the object size.
Consider the following:
v When a group of programs, all using LOCVIEW=MAP, have simultaneous

access to the same object, no program should invoke any SAVE or MAP that
extends or truncates the object unless it informs the other programs by some
coding protocol of a change in object size. When the other programs are
informed, they can adjust their processing based on the new size.

v All the programs must create their maps before any program changes the object
size. Subsequently, if any program wants to reset the map or create a new map,

Chapter 13. Data-in-virtual 283

it must not do so without observing the protocol of a size check. If the size
changed, the program should invoke UNACCESS, followed by ACCESS to get
the new size. Then the program can reset the map or create the new map.

The MAP service
The MAP service makes an association between part or all of an object, the portion
being specified by the OFFSET and SPAN parameters, and your program's virtual
storage. This association, which is called a virtual storage window, takes the form
of a one-to-one correspondence between specified blocks on the object and
specified pages in virtual storage. After the MAP is complete, your program can
then process the data in the window. The RETAIN parameter specifies whether
data that is in the window when you issue MAP is to remain or be replaced by the
data from the associated object.

Note: You cannot map virtual storage pages that are page-fixed into a virtual
storage window. Once the window exists, you can page-fix data inside the window
so long as it is not fixed when you issue SAVE, UNMAP, or RESET.

If your window is in an address space, you can map either a linear data set or a
hiperspace object. See Figure 48.

If your window is in a data space or a hiperspace, you can map only to a linear
data set. See Figure 49 on page 285.

window

window

PermanentObject

OR

TemporaryObject

Hiperspace

AddressSpace

AddressSpace

LinearDataSet

Figure 48. Mapping from an Address Space

284 z/OS V2R2 MVS Authorized Assembler Services Guide

If your window is in a data space or hiperspace, you can issue multiple MAPs
under the same ID from different data spaces or hiperspaces. You cannot mix data
space maps or hiperspace maps with address space maps under the same ID at
any one time. However, you can mix data space maps and hiperspace maps. See
Figure 50 on page 286.

window

Permanent Object

Linear Data Set

Data Space
or Hiperspace

Figure 49. Mapping from a Data Space or Hiperspace

Chapter 13. Data-in-virtual 285

The MAP service has two required parameters: ID and OFFSET, and five optional
parameters: SPAN, AREA, RETAIN, STOKEN, and PFCOUNT.

The following examples show two ways to code the MAP service.

Hiperspace or data set object:
DIV MAP,ID=DIVOBJID,AREA=MAPPTR1,SPAN=SPANVAL,OFFSET=*,PFCOUNT=7

Data set object:
DIV MAP,ID=DIVOBJID,AREA=MAPPTR1,SPAN=SPANVAL,OFFSET=*,STOKEN=DSSTOK,PFCOUNT=7

ID: The ID parameter specifies the storage location containing the unique
eight-byte value that was returned by IDENTIFY. The map service uses this value
to determine which object is being mapped under which request.

DataSpace
orHiperspace

DataSpace
orHiperspace

PermanentObject

DataSpace
orHiperspace

LinearDataSet

window

window

window

Figure 50. Multiple Mapping

286 z/OS V2R2 MVS Authorized Assembler Services Guide

If you specify the same ID on multiple invocations of the MAP service, you can
create simultaneous windows corresponding to different parts of the object.
However, an object block that is mapped into one window cannot be mapped into
any other window created under the same ID. If you use different IDs, however,
an object block can be included simultaneously in several windows.

OFFSET and SPAN: The OFFSET and SPAN parameters indicate a range of blocks
on the object. Blocks in this range appear in the window. OFFSET indicates the
first object block in the range, while SPAN indicates how many contiguous blocks
make up the range. An offset of zero indicates the beginning of the object. For
example, an offset of zero and a span of ten causes the block at the beginning of
the object to appear in the window, together with the next nine object blocks. The
window would then be ten pages long.

Specifying OFFSET=* or omitting OFFSET causes the system to use a default
OFFSET of zero. Specifying SPAN=0, SPAN=*, or omitting SPAN results in a
default SPAN of the number of blocks needed to MAP the entire object, starting
from the block indicated by OFFSET. Specifying both OFFSET=* and SPAN=* or
omitting both causes the entire object to appear in the window.

You may use the OFFSET and SPAN parameters to specify a range spanning any
portion of the object, the entire object, or extending beyond the object. Specifying a
range beyond the object enables a program to add data to the object, increasing the
size of the object. If data in a mapped range beyond the object is saved (using the
SAVE service), the size of the object is updated to reflect the new size.

To use the OFFSET parameter, specify the storage location containing the block
offset of the first block to be mapped. The offset of the first block in the data object
is zero. To use the SPAN parameter, specify the storage location containing the
number of blocks in the mapped range.

AREA: When you specify MAP, you must also specify an AREA parameter. AREA
indicates the beginning of a virtual storage space large enough to contain the entire
window. Before invoking MAP, you must ensure that your task owns this virtual
storage space. The storage must belong to a single, pageable private area subpool.
It must begin on a 4096-byte boundary (that is, a page boundary) and have a
length that is a multiple of 4096 bytes.

Note that any virtual storage space assigned to one window cannot be
simultaneously assigned to another window. If your MAP request specifies a
virtual storage location, via the AREA parameter, that is part of another window,
the system rejects the request.

You cannot free virtual storage that is mapped into a window as long as the map
exists. Attempts to do this will cause your program to abend. Subsequent attempts
to reference the mapped virtual space will cause an ABEND.

RETAIN: The RETAIN parameter determines what data you can view in the
window. It can be either the contents of the virtual storage area (that corresponds
to the window) the way it was before you invoked MAP, or it can be the contents
of the object. The following table shows how using the RETAIN parameter with
MAP affects the contents of the window.

RETAIN= Window view

NO (default) Contents of mapped object

Chapter 13. Data-in-virtual 287

RETAIN= Window view
YES Contents of virtual storage

If you specify RETAIN=NO, or do not specify the RETAIN parameter at all (which
defaults to RETAIN=NO), the contents of the object replace the contents of the
virtual storage whenever your program references a page in the window. Virtual
storage that corresponds to a range beyond the end of the object appears as binary
zeroes when referenced. You can use RETAIN=NO to change some data and save it
back to the object.

If you specify RETAIN=YES, the window retains the contents of virtual storage.
The contents of the window are not replaced by data from the object. If you issue a
subsequent SAVE, the data in the window replaces the data on the object. If the
window extends beyond the object and your program has not referenced the pages
in the extending part of the window, the system does not save the extending
pages. However, if your program has referenced the extending pages, the system
does save them on the object, extending the object so it can hold the additional
data.

You can also use RETAIN=YES to reduce the size of (truncate) the object. If the
part you want to truncate is mapped with RETAIN=YES and the window consists
of freshly obtained storage, the data object size is reduced at SAVE time.

If you want to have zeroes written at the end of the object, the corresponding
virtual storage must be explicitly set to zero prior to the SAVE.

STOKEN: To reference an entire linear data set through a single window, a
program might require a considerable amount of virtual storage. In this case, the
program can use a data space or hiperspace to contain the window. If you want
the virtual storage window to be in a data space or hiperspace, specify STOKEN
when you invoke MAP. When you specify STOKEN, you provide an eight-byte
input parameter that identifies the data space or hiperspace, and that was returned
from DSPSERV CREATE.

However, do not place the window in a data space or hiperspace under the
following circumstances:
v If the data space is a disabled reference (DREF) data space.
v If the object is accessed with LOCVIEW=MAP.
v If the data space or hiperspace belongs to another task. However, if your

program is in supervisor state or has a system storage key, it can use a data
space or hiperspace that belongs to another task provided that the other task is
in the same primary address space as your program.

PFCOUNT: PFCOUNT is useful for referencing sequential data. Because you get a
page fault the first time you reference each page, preloading successive pages
decreases the number of page faults.

The PFCOUNT parameter (nnn) is an unsigned decimal number up to 255. When
an application references a mapped page, PFCOUNT tells the system that the
program will be referencing this object in a sequential manner. PFCOUNT might
improve performance because it asks the system to preload nnn pages, if possible.
The system reads in nnn successive pages only to the end of the virtual range of
the mapped area containing the originally referenced page, and only as resources
are available.

288 z/OS V2R2 MVS Authorized Assembler Services Guide

You can use REFPAT INSTALL to define a reference pattern for the mapped area.
In response to REFPAT, the system brings multiple pages into central storage when
referenced. In this case, the PFCOUNT value you specify on DIV is not in effect as
long as the reference pattern is in effect. When REFPAT REMOVE removes the
definition of the reference pattern, the PFCOUNT you specify on DIV is again in
effect. For information on the REFPAT macro, see z/OS MVS Programming:
Assembler Services Reference IAR-XCT.

The SAVE service
The SAVE service writes changed pages from the window to the object if the
changed pages are within the range to be saved. When you invoke SAVE, you
specify one of the following:
v A single and continuous range of blocks in the data-in-virtual object with the

use of OFFSET and SPAN. Any virtual storage windows inside this range are
eligible to participate in the save.

v A user list supplied with the use of LISTADDR and LISTSIZE. The list must
contain the addresses of the first and last changed pages for each range of
changed pages within the window. The SAVELIST service can provide these
addresses for the user list.

For a SAVE request to be valid, the object must currently be accessed with
MODE=UPDATE, under the same ID as the one specified on this SAVE request.
Because you can map an object beyond its current end, the object might be
extended when the SAVE completes if there are changed pages beyond the current
end at the time of the ACCESS. On the other hand, the SAVE truncates the object if
freshly obtained pages are being saved that are mapped in a range that extends to
or beyond the end of the object and additional non-freshly-obtained pages beyond
the object area are not also being saved. In either case, the new object size is
returned to your program if you specify the SIZE parameter.

When the system writes the pages from the window to the object, it clears (sets to
zeroes) blocks in the object that are mapped to freshly obtained pages in the
window if either one of the following conditions is true:
v There are subsequent pages in the range being saved that are not freshly

obtained
v The blocks mapped to the freshly obtained pages are not at the end of the object.

That is, they are imbedded in the object somewhere before the last block of the
object. If the blocks mapped to freshly obtained pages do extend to the end of
the object and no subsequent non-freshly obtained pages are being saved, then
the object is truncated by that number of blocks.

If you specified RETAIN=YES with MAP, SAVE treats pages in the window that
you have not previously saved as changed pages and will write them to the object.

Note:

1. Do not use SAVE for a storage range that contains DREF or page fixed storage.
2. If data to be saved has not changed since the last SAVE, no I/O will be

performed. The performance advantages of using data-in-virtual are primarily
because of the automatic elimination of unnecessary read and write I/O
operations.

3. The range specified with SAVE can extend beyond the end of the object.
4. The system does not save pages of an object that was not mapped to any

window.

Chapter 13. Data-in-virtual 289

5. The system does not save pages in a window that lies outside the specified
range.

The following example shows how to code the SAVE service for a hiperspace or
data set object.
DIV SAVE,ID=DIVOBJID,SPAN=SPAVAL,OFFSET=*,SIZE=OBJSIZE

ID: The ID parameter tells the SAVE service which data object the system is
writing to under which request. Use ID to specify the storage location containing
the unique eight-byte name that was returned by IDENTIFY. You must have
previously accessed the object with MODE=UPDATE under the same ID as the one
specified for SAVE.

OFFSET and SPAN: Use the OFFSET and SPAN parameters to select a continuous
range of object blocks within which the SAVE service can operate. OFFSET
indicates the first block and SPAN indicates the number of blocks in the range. As
in the MAP service, the offset and span parameters refer to object blocks; they do
not refer to pages in the window. You cannot specify OFFSET and SPAN when you
specify LISTADDR and LISTSIZE.

Specifying OFFSET=* or omitting OFFSET causes the system to use the default
offset (zero). The zero offset does not omit or skip over any of the object blocks,
and it causes the range to start right at the beginning of the object. Specifying
SPAN=0, SPAN=*, or omitting SPAN gives you the default span. The default span
includes the first object block after the part skipped by the offset, and it includes
the entire succession of object blocks up to and including the object block that
corresponds to the last page of the last window.

When SAVE executes, it examines each virtual storage window established for the
object. In each window, it detects every page that corresponds to an object block in
the selected range. Then, if the page has changed since the last SAVE, the system
writes the page on the object. (If the page has not changed since the last SAVE, it is
already identical to the corresponding object block and there is no need to save it.)
Although SAVE discriminates between blocks on the basis of whether they have
changed, it has the effect of saving all window pages that lie in the selected range.
Specifying both OFFSET=* and SPAN=* or omitting both causes the system to save
all changed pages in the window without exceptions.

To use the OFFSET parameter, specify the storage location containing the block
offset of the first block to be saved. The offset of the first block in the object is zero.
To use the SPAN parameter, specify the storage location containing the number of
blocks in the range to be saved.

SIZE: When you specify SIZE after the SAVE completes, the system returns the
size of the data object in the virtual storage location specified by the SIZE
parameter. If you omit SIZE or specify SIZE=*, the system does not return the size
value. If TYPE=DA, invoking SAVE can change the size of the object. If TYPE=HS,
invoking SAVE has no effect on the size of the object.

LISTADDR: The LISTADDR parameter specifies the address of the first entry in
the user list. Use this parameter and the LISTSIZE parameter when you specify a
user list as input for SAVE.

LISTSIZE: The LISTSIZE parameter specifies the number of entries in the user list.
Use this parameter and the LISTADDR parameter when you specify a user list as
input for SAVE.

290 z/OS V2R2 MVS Authorized Assembler Services Guide

STOKEN: If you specify a user list as input for SAVE and a data space or
hiperspace contains the window, you must specify STOKEN when you invoke
SAVE. When you specify STOKEN, you provide an eight-byte input parameter that
identifies the data space or hiperspace, and that was returned from DSPSERV
CREATE.

The SAVELIST service
The advantage of using SAVELIST with SAVE is improved performance, especially
for applications that manipulate graphic images. The SAVELIST service allows the
application to inspect and verify data only in pages that have been changed. In a
user list provided by the application, SAVELIST returns the addresses of the first
and last page in each range of changed pages within the window. The mapped
ranges may be either address spaces, data spaces or hiperspaces. If more than one
data space or hiperspace is mapped onto a DIV object, the selected range must be
contained within a single data space or hiperspace.

The application must set up a user list before issuing SAVELIST. Upon return from
SAVELIST, the first word of each list entry holds the virtual storage address of the
first page in a range of changed pages. The second word of the entry holds the
virtual storage address of the last changed page in this range. In the last valid
entry of the user list, the high-order bit of the first word is set to one.

If the reason code indicates that there are more changed pages that can fit in this
list, the first word of the last entry in the list contains an offset (in block number
format) into the DIV object from which more changed pages might exist. The
second word of the last entry contains the span from the new offset to the block
pointed to by the original OFFSET/SPAN combination. If more changed pages can
fit in the user list, you can issue SAVE with the current list, and then issue
SAVELIST and SAVE again to obtain the addresses of the additional changed pages
and to save them.

ID: Use ID to specify the storage location containing the unique eight-byte name
that was returned by IDENTIFY, which connects a particular user to a particular
object.

LISTADDR: The LISTADDR parameter specifies the address of the first entry in
the user list.

LISTSIZE: The LISTSIZE parameter specifies the number of entries in the list. The
size of the list must be a minimum of three entries and a maximum of 255 entries.
The SAVELIST service can place addresses in all but the last two entries, which the
macro uses as a work area.

The RESET service
At times during program processing, your program might have made changes to
pages in the virtual storage window, and might no longer want to keep those
changes. RESET, which is the opposite of SAVE, replaces data in the virtual storage
window with data from the object. As with SAVE and MAP, the range to be reset
refers to the object rather than the virtual storage. RESET resets only windows that
are within the specified range, and it resets all the windows in the range that your
program changed.

Do not use RESET for a storage range that contains DREF storage.

Chapter 13. Data-in-virtual 291

Effect of RETAIN mode on RESET
You actually specify RETAIN on MAP, not on RESET, but the RETAIN mode of
each individual window affects how the system resets the window. The following
table shows the effect that issuing RETAIN with MAP has on RESET.

RETAIN= RESET results
NO (default) The data in the window matches the object data as of the last SAVE.
YES Unless saved, the data in the window become freshly obtained. Any

pages previously saved re-appear in their corresponding window. All
other pages appear freshly obtained.

The system resets the window as follows:
v If you specified RETAIN=NO with MAP, after the RESET, the data in the

window matches the object data as of the last SAVE. This applies to all the
pages in the window.

v If you specified RETAIN=YES with MAP, the pages in the window acquire a
freshly obtained status after the RESET unless you have been doing SAVE
operations on this window. Individual object blocks changed by those SAVE
operations re-appear after the RESET in their corresponding window pages,
together with the other pages. However, the other pages appear freshly
obtained.

Note: Regardless of the RETAIN mode of the window, any window page that
corresponds to a block beyond the end of the object appears as a freshly obtained
page.

The following example shows how to code the RESET service for a hiperspace or
data set object:
DIV RESET,ID=DIVOBJID,SPAN=SPANVAL,OFFSET=*,RELEASE=YES

ID: The ID parameter tells the RESET service what data object is being written to.
Use ID to specify the storage location containing the unique eight-byte name that
was returned by IDENTIFY and used with previous MAP requests. You must have
previously accessed the object (with either MODE=READ or MODE=UPDATE)
under the same ID as the one currently specified for RESET.

OFFSET and SPAN: The OFFSET and SPAN parameters indicate the RESET range,
the part of the object that is to supply the data for the RESET. As with MAP and
SAVE, OFFSET indicates the first object block in the range, while SPAN indicates
how many contiguous blocks make up the range, starting from the block indicated
by OFFSET. The first block of the object has an offset of zero.

To use OFFSET, specify the storage location containing the block offset of the first
block to be reset. To use SPAN, specify the storage location containing the number
of blocks in the range to be RESET. Specifying OFFSET=* or omitting OFFSET
causes the system to use a default OFFSET of zero. Specifying SPAN=* or omitting
SPAN sets the default to the number of blocks needed to reset all the virtual
storage windows that are mapped under the specified ID starting only with the
block number indicated by OFFSET. Specifying both OFFSET=* and SPAN=* or
omitting both resets all windows that are currently mapped under the specified ID.

RELEASE: RELEASE=YES tells the system to release all pages in the reset range.
RELEASE=NO does not replace unchanged pages in the window with a new copy
of pages from the object. It replaces only changed pages. Another ID might have

292 z/OS V2R2 MVS Authorized Assembler Services Guide

changed the object itself while you viewed data in the window. Specify
RELEASE=YES to reset all pages. Any subsequent reference to these pages causes
the system to load a new copy of the data page from the object.

Your program uses the UNMAP service to remove the association between a
window in virtual storage and the object. Each UNMAP request must correspond
to a previous MAP request. Note that UNMAP has no effect on the object. If you
made changes in virtual storage but have not yet saved them, the system does not
save them on the object when you issue UNMAP. UNMAP has two required
parameters: ID and AREA, and two optional parameters: RETAIN and STOKEN.

The following examples show two ways to code the UNMAP service.

Hiperspace or data set object:
DIV UNMAP,ID=DIVOBJID,AREA=MAPPTR1

Data set object:
DIV UNMAP,ID=DIVOBJID,AREA=MAPPTR1,STOKEN=DSSTOK

ID: The ID parameter you specify is the address of an eight-byte field in storage.
That field contains the identifier associated with the object. The identifier is the
same value that the IDENTIFY service returned, which is also the same value you
specified when you issued the corresponding MAP request.

AREA: The AREA parameter specifies the address of a four-byte field in storage
that contains a pointer to the start of the virtual storage to be unmapped. This
address must point to the beginning of a window. It is the same address that you
provided when you issued the corresponding MAP request.

RETAIN: RETAIN specifies the state that virtual storage is to be left in after it is
unmapped, that is, after you remove the correspondence between virtual storage
and the object.

Specifying RETAIN=NO with UNMAP indicates that the data in the unmapped
window is to be freshly obtained.

If your object is a hiperspace, you cannot specify RETAIN=YES. If your object is a
data set, you can specify RETAIN=YES.

Specifying RETAIN=YES on the corresponding UNMAP transfers the data of the
object into the unchanged pages in the window. In this case, RETAIN=YES with
UNMAP specifies that the virtual storage area corresponding to the unmapped
window is to contain the last view of the object. After UNMAP, your program can
still reference and change the data in this virtual storage but can no longer save it
on the object unless the virtual area is mapped again.

Note:

1. If you issue UNMAP with RETAIN=NO, and there are unsaved changes in the
virtual storage window, those changes are lost.

2. If you issue UNMAP with RETAIN=YES, and there are unsaved changes in the
window, they remain in the virtual storage.

3. Using UNMAP with RETAIN=YES has certain performance implications. It
causes the system to read unreferenced pages, and maybe some unchanged
ones, from the object. You must not unmap with RETAIN=YES if your object is
a hiperspace.

Chapter 13. Data-in-virtual 293

4. If the window is in a deleted data space, UNMAP works differently depending
on whether you specify RETAIN=YES or RETAIN=NO. If you specify
RETAIN=YES, the unmap fails and the program abends. Otherwise, the unmap
is successful.

STOKEN: If you issued multiple maps under the same ID with different STOKENs,
use STOKEN with UNMAP. If you do not specify STOKEN in this case, the system
will scan the mapped ranges and unmap the first range that matches the specified
virtual area regardless of the data space it is in. Issuing UNACCESS or
UNIDENTIFY automatically unmaps all mapped ranges.

The UNACCESS and UNIDENTIFY services
Use UNACCESS to terminate your access to the object for the specified ID.
UNACCESS automatically includes an implied UNMAP. If you issue an
UNACCESS with outstanding virtual storage windows, any windows that exist for
the specified ID are unmapped with RETAIN=NO. The ID parameter is the sole
parameter of the UNACCESS service, and it designates the same ID that you
specified in the corresponding ACCESS. As in the other services, use ID to specify
the storage location containing the unique eight-byte name that was returned by
IDENTIFY.

Use UNIDENTIFY to notify the system that your use of an object under the
specified ID has ended. If the object is still accessed as an object under this ID,
UNIDENTIFY automatically includes an implied UNACCESS. The UNACCESS, in
turn, issues any necessary UNMAPs using RETAIN=NO. The ID parameter is the
only parameter for UNIDENTIFY, and it must designate the same ID as the one
specified in the corresponding ACCESS. As in the other services, use ID to specify
the storage location containing the unique eight-byte name that was returned by
IDENTIFY.

The following example shows how to code the UNACCESS and UNIDENTIFY
services for a hiperspace or data set object:
DIV UNACCESS,ID=DIVOBJID
DIV UNIDENTIFY,ID=DIVOBJID

Sharing data in an object
The services of data-in-virtual are task-oriented. When a user issues IDENTIFY, an
association is established between the ID assigned and the user's task. The type of
association differs, however, depending on whether the task is authorized or not.
The authorized task runs in supervisor state, has a system key (0-7), or has APF
authorization. The unauthorized task runs in problem program state with a user
key and with no APF authorization.
v For the unauthorized user, using data-in-virtual services for a specific ID is

strictly local to its immediate task. That is, all services for a particular ID must
be requested by the same task that requested IDENTIFY and obtained the ID.

v For the authorized user, one task can issue IDENTIFY, ACCESS, and UNACCESS
while authorized subtasks of that task can request all the other services by using
the ID returned by IDENTIFY. If you specified TYPE=HS with IDENTIFY, you
cannot issue MAP or SAVE unless your task is the same as the one that issued
IDENTIFY.

Any task, authorized or not, can reference or change the data in a mapped virtual
storage window, even if the window was mapped by another task, and even if the

294 z/OS V2R2 MVS Authorized Assembler Services Guide

object was identified and accessed by another task. As long as the task can address
the window, it is allowed to reference or change the included data. However, only
the task that issued the IDENTIFY can issue the SAVE to change the object.

When more than one user has the ability to change the data in one storage area,
you must take steps to serialize their use of the area.

Because data-in-virtual services affect virtual storage, the PSW key of any task that
requests a service (under a given ID) must be the same as the PSW key of the task
that issued the IDENTIFY (that obtained the ID). This is not required if the task
has PSW key zero.

DIV macro programming examples
The following programming examples illustrate how to code and execute a
program that processes a data set data-in-virtual object.

Executing an application
The following JCL job executes an application program called SAMPLE. SAMPLE
performs some kind of application-oriented processing on the dataset object,
DIV.SAMPLE, that was allocated in “Creating a linear data set” on page 276.

When SAMPLE executes, it issues a DIV macro specifying to the IDENTIFY service
the name of the data-in-virtual object that it will process. To identify the data set,
SAMPLE specifies the ddname, DYNAMIC, on the DDNAME parameter of the
DIV macro.

The system then connects the actual data set name, DIV.SAMPLE, with the
program that will process it. The link between the application program and the
data set is the name, DYNAMIC, which appears in both the application and the
JCL.

Processing a data-in-virtual object
The following example shows a program that processes a data-in-virtual object.
The first part of the program identifies the data set and accesses the object. Then it
obtains the virtual storage where it will place the window.

//*
//*
//* EXECUTE A DATA-IN-VIRTUAL APPLICATION
//*
//SAMPLE EXEC PGM=SAMPLE
//STEPLIB DD DSN=DIV22.LOAD.JOBS,DISP=SHR
//DYNAMIC DD DSN=DIV.SAMPLE,DISP=SHR
//SYSABEND DD SYSOUT=*
/*

Chapter 13. Data-in-virtual 295

The program maps the data set object. The resulting virtual storage window is
eight pages long, and it corresponds to the second eight blocks of the object. The
window is situated in the virtual storage obtained earlier by the GETMAIN macro.
The program fills the window with fives, then saves the window back into the
second eight blocks of the object. The program eliminates the window by invoking
UNMAP.

SAMPLE CSECT ,
SAMPLE AMODE 31
SAMPLE RMODE ANY
*
* FUNCTION: OBTAIN VIRTUAL STORAGE. THEN IDENTIFY AND
* ACCESS THE LINEAR DATA SET. THEN MAP AND PROCESS THE
* VIRTUAL STORAGE, AND STORE DATA INTO IT. THEN DO SAVES &
* RESETS. FINISH UP WITH AN UNMAP, AN UNACCESS AND AN
* UNIDENTIFY. ALL INVOCATIONS OF DATA-IN-VIRTUAL IN THIS
* PROGRAM DEFAULT TO ’RETAIN = NO’.
*
* DESCRIPTION: THIS JOB MAKES CHANGES IN THE LINEAR DATASET
* CLUSTER, ’DIV.SAMPLE’, WHICH IS TREATED AS A LINEAR
* DATASET. AFTER THIS JOB IS RUN, THE DATASET WILL CONTAIN
* SEVEN PAGES OF ONES, FOLLOWED BY ONE PAGE OF ZEROES,
* FOLLOWED BY EIGHT PAGES OF FIVES. IT IS ASSUMED THE
* DATASET WAS CREATED BY A DEFINE CLUSTER COMMAND AND THAT
* IT CONTAINS ZEROES WHEN THIS PROGRAM BEGINS TO EXECUTE.
*
@MAINENT DS 0H

USING *,R15
B @PROLOG
DC AL1(14)
DC C’SAMPLE PROGRAM’
DROP R15

@PROLOG STM R14,R12,12(R13) STD ENTRY LINKAGE
LR R12,R15
USING SAMPLE,R12
ST R13,SAVEAREA+4
LR R2,R13
LA R13,SAVEAREA
ST R13,8(R2)
SR R15,R15 CLEAR R15

*
* GET STORAGE FOR THE WINDOW
*

GETMAIN RU,LV=16*4096,SP=0,BNDRY=PAGE
ST R1,MAPPTR1 PTR TO STORAGE

*
* INVOKE IDENTIFY SERVICE OF DIV MACRO
*

DIV IDENTIFY,DDNAME=DDAREA,TYPE=DA,ID=TESTID
LTR R15,R15 CHECK IF RC IS ZERO
BNZ ERROR IDENTIFY FAILED

*
* INVOKE ACCESS SERVICE OF DIV MACRO
*

DIV ACCESS,MODE=UPDATE,ID=TESTID
LTR R15,R15 CHECK IF RC IS ZERO
BNZ ERROR ACCESS FAILED

296 z/OS V2R2 MVS Authorized Assembler Services Guide

The program creates a new window that includes the first eight blocks of the
object. This map omits OFFSET, causing a default offset of zero to be used with the
specified span of eight blocks. After filling the window with ones, the program
invokes RESET against the eighth block of the object which corresponds to the
eighth page of the window. Because the information provided by the reset comes
from the object which still contains zeroes, the eighth page in the window is set to
zeros.

* INVOKE THE MAP SERVICE OF THE DIV MACRO
* TO SKIP THE FIRST EIGHT BLOCKS OF THE OBJECT
*

L R3,EIGHT GET SPAN
ST R3,SPVALUE INITIALIZE SPAN
ST R3,OFFS INITIALIZE OFFSET
DIV MAP,ID=TESTID,AREA=MAPPTR1, x

SPAN=SPVALUE,OFFSET=OFFS
LTR R15,R15 CHECK IF RC IS ZERO
BNZ ERROR MAP FAILED

*
* FILL IN 5’S FOR ALL EIGHT MAPPED BLOCKS
*

L R1,MAPPTR1 POINTS TO WINDOW
LR R2,R1 POINTS TO MAP
SR R5,R5 COUNTER 32 KBYTES
L R6,PAGE8 COUNTER MAXIMUM
IC R3,N55 5S USED AS FILLER

LOOP1 STC R3,0(,R2) STORE INTO MAP
LA R2,1(,R2) POINTS NEXT BYTE
LA R5,1(,R5) COUNT UP ONE BYTE
CR R5,R6 LAST BYTE OF MAP?
BM LOOP1 DO AGAIN IF NOT

*
* INVOKE THE SAVE SERVICE OF THE DIV MACRO
*

DIV SAVE,ID=TESTID,SIZE=OBJSIZE
LTR R15,R15 CHECK ZERO RC
BNZ ERROR SAVE FAILED

*
* INVOKE THE UNMAP SERVICE OF THE DIV MACRO
*

DIV UNMAP,ID=TESTID,AREA=MAPPTR1
LTR R15,R15 CHECK ZERO RC
BNZ ERROR UNMAP FAILED

*
* OBJECT NOW HAS . CONTIGUOUS PAGES OF 5’S
*

Chapter 13. Data-in-virtual 297

The program saves the window in the first eight blocks of the object by issuing the
DIV macro, specifying SAVE. Then it terminates its use of the object by invoking
the UNMAP, UNACCESS, and UNIDENTIFY services of the DIV macro.

* INVOKE MAP SERVICE FOR FIRST EIGHT 4K
* BLOCKS OF DATASET, WITH DEFAULT OFFSET.
*

L R3,EIGHT GET VALUE OF SPAN
ST R3,SPVALUE INITIALIZE SPAN
DIV MAP,ID=TESTID,AREA=MAPPTR1, x

SPAN=SPVALUE
LTR R15,R15 CHECK ZERO RC
BNZ ERROR MAP FAILED

*
* FILL IN DATA - 1’S FOR THE FIRST 8 PAGES
*

L R1,MAPPTR1 POINTS TO WINDOW
LR R2,R1 POINTS TO MAP
SR R5,R5 COUNTER 32 KBYTES
L R6,PAGE8 COUNTER MAXIMUM
IC R3,N11 1S USED AS FILLER

LOOP2 STC R3,0(,R2) STORE INTO MAP
LA R2,1(,R2) POINTS TO NEXT BYTE
LA R5,1(,R5) COUNT UP ONE BYTE
CR R5,R6 LAST BYTE OF MAP?
BM LOOP2 DO AGAIN IF NOT

*
* RESET 8TH VIRTUAL BLOCK FROM THE CORRESPONDING
* BLOCK ON DASD. THIS BLOCK NOW CONTAINS ZEROES
* SINCE THE PROGRAM HAS NOT YET INVOKED ANY
* SAVE SERVICES AFFECTING IT.
*

L R3,SEVEN
ST R3,OFFS INITIALIZE OFFSET
L R3,ONE
ST R3,SPVALUE INITIALIZE SPAN
DIV RESET,ID=TESTID, x

SPAN=SPVALUE,OFFSET=OFFS
LTR R15,R15 CHECK IF RC IS ZERO
BNZ ERROR RESET FAILED

298 z/OS V2R2 MVS Authorized Assembler Services Guide

Finally, the program frees its virtual storage and goes through a standard exit
linkage sequence.

* INVOKE SAVE, USING DEFAULTS FOR SPAN AND
* OFFSET. THIS SAVES ALL MAPPED BLOCKS ON
* THE OBJECT. THE FIRST SEVEN ARE FILLED
* WITH X’11’ AND THE LAST HAS ALL BINARY
* ZEROES.
*

DIV SAVE,ID=TESTID,SIZE=OBJSIZE
LTR R15,R15 CHECK ZERO RC
BNZ ERROR SAVE FAILED

*
* INVOKE THE UNMAP SERVICE
*

DIV UNMAP,ID=TESTID,AREA=MAPPTR1
LTR R15,R15 CHECK IF RC IS ZERO
BNZ ERROR UNMAP FAILED

*
* THE OBJECT NOW HAS SEVEN CONTIGUOUS BLOCKS OF
* 1’S, FOLLOWED BY ONE BLOCK OF 0’S, FOLLOWED BY
* EIGHT BLOCKS OF 5’S. NOW INVOKE UNACCESS.
*

DIV UNACCESS,ID=TESTID
LTR R15,R15 CHECK IF RC IS ZERO
BNZ ERROR UNACCESS FAILED

*
* INVOKE THE UNIDENTIFY SERVICE
*

B EXIT SKIP ERROR PROCESSING
ERROR EQU *

L R15,SIXTEEN BAD RETURN CODE
ST R15,SAVER15 HOLD R15 VALUE

EXIT EQU *
DIV UNIDENTIFY,ID=TESTID
LTR R15,R15 CHECK IF RC IS ZERO
BZ FREE IF SO, LEAVE RC GOOD
L R15,SIXTEEN SET BAD RETURN CODE
ST R15,SAVER15 HOLD R15 VALUE

Chapter 13. Data-in-virtual 299

* FREE STORAGE AND EXIT
*
FREE EQU *

FREEMAIN RU,A=MAPPTR1,LV=16*4096,SP=0
L R15,SAVER15 RETRIEVE R15
L R13,4(R13) STD EXIT LINKAGE
L R14,12(R13)
LM R0,R12,20(R13) SAVE RETURN CODE
BR R14
SPACE 2

*
* DECLARE VARIABLES
*
MAPPTR1 DS A PTR TO GETMAINED STORAGE
OBJSIZE DS F SIZE RETURNED FROM ACCESS
OFFS DS A POSITION IN OBJECT
SPVALUE DS A LENGTH TO BE MAPPED-RESET
SAVER15 DS F’0’ RC VALUE IN REG 15
SAVEAREA DS CL72 USED BY DATA-IN-VIRTUAL
TESTID DS CL8 ID RETURNED FROM IDENTIFY
DDAREA DS CL8

ORG DDAREA
DC AL1(7) LENGTH OF DDNAME
DC CL7’DYNAMIC’ NAME USED IN JCL
ORG DDAREA+8
SPACE 2

*
* CONSTANTS
*
N11 DC X’11’ HEX ONES
N55 DC X’55’ HEX FIVES
ONE DC F’1’ ONE
SEVEN DC F’7’ SEVEN
EIGHT DC F’8’ EIGHT
SIXTEEN DC F’16’ SIXTEEN
PAGE8 DC F’32768’ 8 TIMES 4096
*
* REGISTERS
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R5 EQU 5
R6 EQU 6
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

EJECT
END SAMPLE

300 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 14. Sharing application data (name/token callable
services)

Name/token callable services allow you to share data between two programs
running under the same task, or between two or more tasks or address spaces. To
share data, programs often need to locate data or data structures acquired and
built by other programs. The data structures and the programs using them need
not reside in the same address space. Name/token callable services provide a way
for programs to save and retrieve the data.

Levels for name/token pairs
Name/token pairs have a level attribute associated with them. The level defines
the relationship of the creating program (that is, the program that creates the
name/token pair) to the retrieving program (that is, the program that retrieves the
data). Depending on the level you select, the retrieving program can run under the
same task as the creating program, or in the same home address space, in the same
primary address space, or in the same system.
v A task-level name/token pair allows the creating program and the retrieving

program to run under the same task.
v A home-address-space-level name/token pair allows the creating program and

the retrieving program to run in the same home address space.
v A primary-address-space-level name/token pair allows the creating program

and the retrieving program to run in the same primary address space.
v A system-level name/token pair allows the creating program and the retrieving

program to run in the same system. That is, the two programs run in separate
address spaces.

The various name/token levels allow for sharing data between programs that run
under a single task, between programs that run within an address space, and
between programs that run in different address spaces. Some examples of using
name/token levels are:
v Different programs that run under the same task can share data through the use

of a task-level pair.
v Any number of tasks or SRBs that run within an address space can share data

through use of an address-space-level pair.
v Programs that run in different address spaces can share data through the use of

a system-level pair.

Determining what your program can do with name/token pairs
The following table shows the name/token callable services your program can use
to manipulate different levels of name/token pairs:

Where To Find Prerequisite Information

The name/token callable services are available to both unauthorized (problem state and PSW key 8-15) and
authorized (supervisor state or PSW key 0-7) programs. z/OS MVS Programming: Assembler Services Guide introduces
the name/token callable services and discusses functions that are available to all programs. The following topics
discuss functions of the name/token callable services that are available to authorized programs only. Before reading
the following topics, read about the name/token callable services in z/OS MVS Programming: Assembler Services Guide.

© Copyright IBM Corp. 1988, 2016 301

Table 36. Summary of What Programs Do with Name/Token Pairs

Service Unauthorized Programs Authorized Programs

Create (IEANTCR) v Task

v Home

v Primary

v Task

v Home

v Primary

v System

Retrieve (IEANTRT) Any name/token level Any name/token level

Delete (IEANTDL) v Task

v Home

v Primary
Note: Unauthorized
programs cannot delete
any pairs created by
authorized programs.

Any name/token level

Note: The task-level and home-level name/token pairs are used by both
unauthorized and authorized programs. For complete descriptions of the task-level
and home-level name/token pairs, see z/OS MVS Programming: Assembler Services
Guide.

Checking authorization when retrieving a token
In addition to using the level parameter of the IEANTRT callable service to specify
the level of a name/token pair, an authorized program can use the parameter to
check the authorization of the creator of the pair. Authorized programs might
perform such checking to make sure they do not retrieve data from a problem-state
and PSW key 8-15 program that was written with an intent to do harm. To retrieve
a token and make sure the pair's creating task is supervisor state or PSW key 0-7,
use one of the following values on the level parameter:
v 11 - task level with authorization check
v 12 - home level with authorization check
v 13 - primary level with authorization check.

If a program requests a retrieval with an authorization check and an unauthorized
program created the pair, the program receives a non-zero return code but does
not receive the token.

Deciding what name/token level you need
To determine the level to use, consider the relationship between the code that
creates the pair and the code that retrieves the pair:
v If the retrieving code will be running under the same task as the creator's code,

use the task level
v If the retrieving code will have the same home address space but run under a

different task or SRB, use the home level
v If the retrieving code will be running in the same primary address space but run

under a different task or SRB, use the primary level

Note: This level is intended for code running with a primary address space
different than the home address space (that is, a cross memory environment).

302 z/OS V2R2 MVS Authorized Assembler Services Guide

v If the token will be retrieved by programs in many address spaces, use the
system level.

Primary-level name/token pair
A primary-level name/token pair can be used when programs running under
different tasks in the primary address space need to use the data.

Figure 51 shows the primary-level name/token pair in a cross-memory
environment.

In Figure 51:
1. TASK 1 creates task-level (N1,T1), home-level (N2,T2), and primary-level

(N3,T3) name/token pairs using the IEANTCR callable service.
2. TASK 1 contains a program call (PC) instruction that transfers control to

PCROUTINE1 in ADDRESS SPACE 2. PCROUTINE1's home address space is
ADDRESS SPACE 1 and its primary address space is ADDRESS SPACE 2.

3. PCROUTINE1 creates a home-level name/token pair (N5,T5) associated with
ADDRESS SPACE 1, a primary-level name/token pair (N6,T6) associated with
ADDRESS SPACE 2, and a task-level name/token pair (N7,T7) associated with
TASK 1 that was dispatched in ADDRESS SPACE 1. PCROUTINE1 also
retrieves a primary-level name/token pair (N8,T8) that was previously created
by TASK2.

TASK 1

TASK 2

ADDRESS SPACE 1

ADDRESS SPACE 2

TASK-LEVEL PAIRS

HOME AND PRIMARY LEVEL PAIRS

TASK-LEVEL PAIR

HOME AND PRIMARY
LEVEL PAIRS

CALL IEANTCR,(TASKLEV,N1,T1,NOPERSIST,RC)

CALL IEANTCR,(TASKLEV,N4,T4,NOPERSIST,RC)

CALL IEANTCR,(PRIMLEV,N6,T6,NOPERSIST,RC)

CALL IEANTCR,(HOMELEV,N5,T5,NOPERSIST,RC)

CALL IEANTCR,(HOMELEV,N2,T2,NOPERSIST,RC)

CALL IEANTCR,(PRIMLEV,N3,T3,NOPERSIST,RC)

PC

CALL IEANTCR,(HOMELEV,N8,T8,NOPERSIST,RC)

CALL IEANTCR,(TASKLEV,N7,T7,NPPERSIST,RC)

CALL IEANTRT,(PRIMLEV,N8,T8,RC)

PR

PCROUTINE1

N2

N3

N5

T3

T5

T2

N1

N7

T1

T7

N6

N8

T6

T8

N4 T4

Figure 51. Using the Primary Level in a Cross-Memory Environment

Chapter 14. Sharing application data (name/token callable services) 303

When the primary address space and home address space of the creating task are
the same, both the primary-address-space level and the home-address-space level
of the pair it creates are the same. For example, when PASN=HASN, a program
could create a name/token pair with a primary-address-space level and retrieve it
with a home-address-space level. IBM recommends that in this situation, the
program use the home-address-space level for retrieving the pair.

When the primary address space and home address space are different, as in a
cross-memory environment, the home-address-space level and
primary-address-space levels are different. A program can use the home level to
access pairs associated with the home address space and use the
primary-address-space level to access entries associated with the primary address
space. For a given pair, you cannot use the levels interchangeably.

A cross-memory server application might want to retrieve name/token pairs using
the primary-address-space level to locate control structures contained in the
primary address space. In Figure 51 on page 303, notice that PCROUTINE1
retrieves a primary-level name/token pair (N8,T8). Even though TASK 2 created
the name/token pair (N8,T8) as a home-level pair, PCROUTINE1 retrieves the pair
as a primary-level name/token pair.

System-level name/token pair
A system-level name/token pair contains data that is shared among programs that
run in different address spaces in the same system.

Figure 52 on page 305 shows the system-level name/token pair in a multiple
address space environment.

304 z/OS V2R2 MVS Authorized Assembler Services Guide

In Figure 52:
1. TASK 1 initially creates a system-level name/token pair in ADDRESS SPACE 1

using the IEANTCR callable service.
2. Even though TASKS 2, 3, and 4 reside in different address spaces, they can

retrieve the system-level name/token pair using the IEANTRT callable service.

System-level name/token pairs are owned by the job step task of the home address
space of the task or SRB that created the pair. System-level pairs are deleted when
the owning job step task terminates. However, the IEANTCR callable service
provides an option that allows the system-level name/token pair to exist after the
owning job step task terminates. This option, available through the persist_option
parameter on the IEANTCR callable service, is helpful when a program is
abnormally terminated and must be restarted. Upon restart, the program can check
what data is stored in the name/token pair so the program can free or reuse the
program storage.

TASK 1

TASK 2

TASK 3

TASK 4

ADDRESS SPACE 1

ADDRESS SPACE 2

ADDRESS SPACE 3

ADDRESS SPACE 4

SYSTEM-LEVEL PAIR

CALL IEANTCR,(SYSLEV,N1,T1,NOPERSIST,RC)

CALL IEANTRT,(SYSLEV,N1,T1,RC)

CALL IEANTRT,(SYSLEV,N1,T1,RC)

CALL IEANTRT,(SYSLEV,N1,T1,RC)

N1 T1

Figure 52. Using the System Level in a Multiple Address Space Environment

Chapter 14. Sharing application data (name/token callable services) 305

If the persist option is specified as zero when the system-level name/token pair is
created, the pair is deleted when the job step task in the home address space
terminates. If the persist option is specified as a one, the pair is not deleted when
the job step task in the home address space terminates. However, even if the
persist option is specified as a one, the pair will be deleted by the system if the
system itself fails and is started again.

If there is not sufficient storage in the system-level name/token pool to permit
creation of a new system-level name/token pair, the system obtains additional
storage. The system does not release the storage when the pair is deleted. Instead,
the system holds the storage for the duration of the IPL, reserving the storage for
new system-level name/token pairs. If you create many new system-level
name/token pairs without deleting previously-created pairs, a potentially serious
storage shortage could result. For this reason, use system-level name/token pairs
sparingly.

Owning and deleting name/token pairs
Name/token pairs created by a program are automatically deleted by the system.
The level of the name/token pair determines when the system deletes the pair.

Note: The words job step in this topic refers to the cross memory resource owning
(CMRO) task. While the CMRO task is generally the main job step task, at times it
may be either the initiator task or started task control task (such as between jobs).
v Task-level pairs are owned by the task that created them and are deleted when

the owning task terminates.
v Home-address-space-level name/token pairs are owned by the job step task of

the home address space that created them. These pairs are deleted when the job
step task, rather than the creating task, in the address space terminates; that is,
home-level pairs created by subtasks of a job step task are not automatically
deleted when the subtask terminates.

v Primary-address-space-level name/token pairs are owned by the job step task of
the primary address space that created them. These pairs are deleted when the
job step task, rather than the creating task, in the address space terminates; that
is, primary-level pairs created by subtasks of a job step task are not
automatically deleted when the subtask terminates.

v System-level name/token pairs are owned by the job step task of the home
address space that created them. If the persist option is specified as zero when
the pair is created, the pair is deleted when the owning job step task in the
home address space terminates. If the persist parameter is specified as one when
the pair is created, the pair is not deleted when the owning job step task in the
home address space terminates. The user must explicitly delete the pair when
the pair is no longer needed.

Note: Name/token pairs do not persist when a system terminates and is
restarted.

Example of using the name/token services
The following example shows how an application uses the name/token callable
services. The application, called a server application, offers services to users. The
application resides within a single address space, the server address space. The
application offers services to users that reside in address spaces outside the server

306 z/OS V2R2 MVS Authorized Assembler Services Guide

address space. The example assumes the server application has already set up the
cross-memory environment that allows the users to connect to the server address
space.

The server application uses name/token callable service twice during its
initialization:
v The first use is to make important information available to the users. Before

users can invoke the services of the server application, they need to know the
Program Call (PC) number that they use to switch program processing from
their primary address spaces to the server's address space. Through IEANTCR,
the server, in supervisor state, creates a system-level name/token pair. With a
system-level pair, programs running in any address space can retrieve the token,
in this case the PC number the user must have to call the server. The invocation
that creates the name/token pair is as follows:
CALL IEANTCR,(SYSLEV,NAME,TOKEN,NOPERSIST,RETURNCODE)

The name/token pair is not marked as persistent; users cannot retrieve the token
(that is, the PC number) if the server has terminated. If the server is terminated
or in the process of restarting, the user will have to wait until the server is
restarted before successfully retrieving the PC number.
A user retrieves the PC number through the following invocation:
CALL IEANTRT,(SYSLEV,NAME,TOKEN,RETURNCODE)

v The server also uses IEANTCR to create a primary-address-space-level
name/token pair. With this name/token pair, any program running in the
server's address space can use the name to retrieve the associated token. In this
case, the token contains a pointer to the application's main data area. The
invocation that creates the name/token pair is as follows:
CALL IEANTCR,(PRIMLEV,NAME2,TOKEN2,NOPERSIST,RETURNCODE)

If the server abnormally terminates, its recovery routine might use the following
invocation to retrieve the address of the main data area. Note that if the
recovery routine gets control before the address space terminates, the recovery
routine can retry; the name/token pair is still retrievable until the address space
completes termination.
CALL IEANTRT,(PRIMLEV,NAME2,TOKEN2,RETURNCODE)

Chapter 14. Sharing application data (name/token callable services) 307

308 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 15. Processor storage management

The system administers the use of processor storage (that is, central and expanded
storage) and directs the movement of virtual storage pages between auxiliary
storage slots and real frames in blocks of 4096 bytes. It makes all addressable
virtual storage in each address space appear as central storage. Only the virtual
pages necessary for program execution are kept in central storage. The remainder
reside on auxiliary storage. The system employs the auxiliary storage manager to
perform the actual paging I/O necessary to transfer pages in and out of central
storage. The system also provides DASD allocation and management for paging
space on auxiliary storage.

The system assigns real frames upon request from pools of available frames,
thereby associating virtual addresses with central storage addresses. Frames are
repossessed when freed by a user, when a user is swapped-out, or when needed to
replenish the available pool. While a virtual page occupies a real frame, the page is
considered pageable unless it is fixed by the FIX option of the PGSER macro, a
PGFIX or PGFIXA macro, or obtained from a fixed subpool. The system also
allocates virtual equals real (V=R) regions upon request by those programs that
cannot tolerate dynamic relocation. Such a region is allocated contiguously from a
predefined area of central storage and is non-pageable.

The PGSER macro provides all the paging services through the use of parameters.
PGSER handles virtual addresses above or below 16 megabytes. The macros,
PGFIX, PGFIXA, PGFREE, PGFREEA, PGLOAD, PGANY, PGOUT, and PGRLSE
are supported to maintain compatibility with MVS/370, but it is recommended
that you use the PGSER macro.

The paging services provided include the following:
v Fix virtual storage contents -- PGFIX, PGFIXA, or the FIX option of PGSER
v Fast path to fix virtual storage contents -- the FIX and BRANCH=SPECIAL

options of PGSER
v Free central storage -- PGFREE, PGFREEA, or the FREE option of PGSER
v Fast path to free central storage -- the FREE and BRANCH=SPECIAL options of

PGSER
v Load virtual storage areas into central storage -- PGLOAD or the LOAD option

of PGSER
v Page out virtual storage areas from central storage -- PGOUT or the OUT option

of PGSER
v Release virtual storage contents -- PGRLSE or the RELEASE option of PGSER
v Page anywhere (above or below 16 megabytes of central storage) -- PGANY or

the ANYWHER option of PGSER
v Makes a range of virtual storage pages read-only -- the PROTECT option of

PGSER.
v Makes a range of virtual storage pages modifiable -- the UNPROTECT option of

PGSER.

The PGFIX, PGFIXA, PGFREE, and PGFREEA functions as well as the FIX and
FREE options of PGSER are available only to authorized system functions and
users and are described in the following topics. PGANY, PGLOAD, PGOUT, and

© Copyright IBM Corp. 1988, 2016 309

PGRLSE as well as the ANYWHER, LOAD, OUT, and RELEASE options of PGSER
are not restricted and are available to all users. PGSER and PGANY are described
in this publication. PGLOAD, PGOUT, and PGRLSE are described in z/OS MVS
Programming: Assembler Services Guide and z/OS MVS Programming: Assembler
Services Reference IAR-XCT.

You can use paging services for storage that you define as shared through the
IARVSERV macro. For information about sharing storage through IARVSERV,
particularly for the PGSER FIX, PROTECT, and UNPROTECT options, see
Chapter 16, “Sharing data in virtual storage (IARVSERV macro),” on page 317.

Fixing/freeing virtual storage contents
Fixing virtual storage and freeing central storage are complementary functions. The
PGFIX and PGFIXA macros and the FIX option of PGSER make specified storage
areas resident in central storage and ineligible for page-out as long as the
requesting address space remains in central storage. Note that page fixing ties up
valuable central storage and is usually detrimental to system performance unless
the use of the fixed pages is extremely high.

The PGFREE and PGFREEA macros and the FREE option of PGSER make specified
storage areas, which were previously fixed via the PGFIX macro or the FIX option
of PGSER, eligible for page-out. Pages fixed by PGFIX, PGFIXA, or the FIX option
of PGSER are not considered pageable until the same number of page free and
page-fix requests have been issued for any virtual area. The fix and free requests
for a page must be issued by the same task (unless TCB=0 is specified), otherwise
the page will not be freed.

When using the fix function, you have the option of specifying the relative real
time duration anticipated for the fix. Specify LONG=Y, if you expect that the
duration of the fix will be relatively long. (As a rule of thumb, the duration of a fix
is considered long if the interval can be measured on an ordinary timepiece-that is,
in seconds.) Additional processing might be required to avoid an assignment of a
frame to the V=R area or an area that might be varied offline. Specify LONG=N, if
you expect the time duration of the fix to be relatively short. A long-term fix is
assumed if you do not specify this option.

In both the fix and free functions, you have the option of specifying that the
contents of the virtual area are to remain intact or be released. If the contents are to
be released, specify RELEASE=Y; otherwise, specify RELEASE=N. If you specify
PGFIX or the FIX option of PGSER with RELEASE=Y, the release function is
performed before the fix function. If you specify PGFREE or the FREE option of
PGSER with RELEASE=Y, the free function is performed and those pages of the
virtual subarea with zero fix counts are released; that is, the contents of virtual
areas spanning entire virtual pages that were fixed are expendable and no
page-outs for these pages are necessary.

RELEASE may also be specified as a separate parameter of the PGSER macro.
When you specify RELEASE as a separate parameter, the released page can be in
disabled reference storage.

Note: PGRLSE, PGSER RELEASE, PGSER FREE with RELEASE=Y, and PGFREE
RELEASE=Y may ignore some or all of the pages in the input range and will not
notify the caller if this was done.

310 z/OS V2R2 MVS Authorized Assembler Services Guide

Any pages in the input range that match any of the following conditions will be
skipped, and processing continues with the next page in the range:
v Storage is not allocated or all pages in a segment have not yet been referenced.
v Page is in PSA, SQA or LSQA.
v Page is V=R. Effectively, it's fixed.
v Page is in BLDL, (E)PLPA, or (E)MLPA.
v Page has a page fix in progress or a nonzero FIX count.
v Pages with COMMIT in progress or with DISASSOCIATE in progress.

The BRANCH=SPECIAL and the FIX or FREE options of PGSER provide the fast
path version of PGSER. The fast path version of PGSER with the FIX option ensure
that specific storage areas are resident in central storage and ineligible for
page-out. These functions execute only short-term, synchronous page fixes.

Note:

1. PGFIX and the FIX option of PGSER do not prevent pages from being paged
out when an entire virtual address space is swapped out of central storage.
Consequently, the user of PGFIX and the FIX option of PGSER cannot assume a
constant real address mapping for fixed virtual areas in most cases.

2. IBM recommends that page fixes of more than 100 pages be divided into
several smaller fix requests. Large page fix requests can cause an excessive
spin loop to occur.

3. When using the PGFIXA macro or the fast path version of PGSER with the FIX
option, or a branch entry to PGSER with the options FIX and TCB=0, fixed
areas will not automatically be freed at the end of a job; to free them, issue a
PGFREEA macro or the PGSER macro with the FREE and BRANCH=SPECIAL
options.

Protecting a range of virtual storage pages
The PROTECT option of PGSER makes a range of virtual storage pages read-only
and helps to improve data integrity. The UNPROTECT option of PGSER makes a
range of virtual storage pages modifiable and provides a supported way of
modifying the PLPA on an IPLed system. Note, however, that PLPA modifications
made this way exist only for the life of the IPL.

Areas of storage that can be protected or unprotected above or below 16
megabytes are:
v Private area pages
v SWA pages
v CSA pages
v SQA pages
v LPA pages
v Nucleus pages (except read/only nucleus pages that are backed by 1 megabyte

pages)

IBM recommends that you use PGSER PROTECT only for full pages of storage on
page boundaries. This usage avoids making other areas of storage read-only
unintentionally. For instance, if you obtain a virtual storage area smaller than a
page and then issue PGSER PROTECT, the entire page is made read-only,
including the portion of the page that is not part of your storage area.

Chapter 15. Processor storage management 311

PROTECT and UNPROTECT apply only to virtual storage pages. The system does
not keep track of how many times a page has been protected or unprotected. One
UNPROTECT cancels all PROTECTs for a given page.

PGFIX/PGFREE completion considerations
Under normal circumstances, you can reverse the effect of a PGFIX by using a
PGFREE when the need for a page fix ceases. You can also reverse the effect of the
FIX option of PGSER by using the FREE option of PGSER when the need for a
page fix ceases. However, a page-fix request sometimes completes asynchronously
if, for example, it requires a page-in operation. In such cases, you might need to
explicitly purge page-fix operations.

For this reason, the page-fix function provides a mechanism for signalling event
completion. The mechanism is the standard ECB together with WAIT/POST logic.
The requestor supplies an ECB address and waits on the ECB after a request if the
return code indicates that all of the pages were not immediately fixed. The ECB is
posted when all requested pages are fixed in central storage.

Note: Callers who supply an ECB and use PGSER must check the return code
before waiting since the ECB is not posted for a return code of 0.

There are two ways to explicitly purge a page fix:
v If the page fix is known to be complete, the page fix is reversed through the

page-free function.
v If there is any possibility that the page fix has not been posted as complete,

issue PGFREE or PGSER with FREE and supply an ECB address. This ECB
parameter identifies the event control block that was supplied as an input
parameter with the page fix being purged. Note that for the purpose of
canceling a page-fix request that has not yet completed, the ECB must uniquely
identify the page-fix request. Consequently, to provide for explicit purging, you
must ensure that the ECB for any incomplete page fix can be located in a purge
situation, and that the ECB has not been reused at the time the page fix is to be
canceled.

The page-free function always completes immediately and requires no ECB address
except for purging considerations.

The issuer of the following macros is responsible for freeing the fixed frames:
v PGFIXA
v PGSER, with the FIX, BRANCH, and TCB=0 options
v PGSER, with the FIX and BRANCH=SPECIAL options

This can be accomplished by using PGFREEA; PGSER with FREE, BRANCH, and
TCB=0; or PGSER with FREE and BRANCH=SPECIAL.

An FRR (functional recovery routine) or ESTAE recovery routine should be
established during the period these fixes are outstanding. The recovery routine
should free the frames in case there is an unexpected error.

312 z/OS V2R2 MVS Authorized Assembler Services Guide

Input to page services
There are two formats for providing input to page services. These are the register
(R) and list (L) formats. If you specify R, page services uses the input information
supplied in registers to perform the requested function; if you specify L, page
services uses the input information provided in a parameter list to perform the
requested function. The information that you must provide in the parameter list
includes the starting and the ending addresses for which you want the page
service to be performed and an indication of the end of the list.

The list used depends on which page services macro you code. Descriptions of the
parameter lists and the macros that use them follow.

Virtual subarea list (VSL)
The virtual subarea list provides the basic input to the page service functions:
PGFIX, PGFIXA, PGFREE, PGFREEA, PGLOAD, PGRLSE, and PGOUT.

The list contains one or more doubleword entries; each entry describes an area in
virtual storage. The list must be non-pageable and located in the address space to
be processed. The VSL is not required to be on a word boundary.

For a description of the VSL, see z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

Page service list (PSL)
The page service list provides the basic input to the page service functions of the
PGSER macro with the exception of the BRANCH=SPECIAL option. Each entry in
the list specifies a range of addresses to be processed, or specifies the address of
the next list entry to be processed, or is null. The first entry also indicates the
paging service that is to be performed on all the ranges specified in the list.

The PSL has the following characteristics:
v The list must be in non-pageable storage.
v The PSL is not required to be on a word boundary.
v All addresses specified are 31-bit addresses.

For a description of the PSL, see z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

Short page service list (SSL)
The short page service list provides the basic input to the PGSER macro with the
BRANCH=SPECIAL option. The list contains entries for the 31-bit starting and
31-bit ending addresses of the virtual area to be fixed or freed.

The SSL has the following characteristics:
v The list must be in non-pageable storage.
v The SSL is not required to be on a word boundary.
v All addresses specified are 31-bit addresses.

For a description of the SSL, see z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

Chapter 15. Processor storage management 313

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Branch entry to page services
Branch entry is available for all page services, but macro interfaces are provided
only for the PGSER, PGFIXA, and PGFREEA macros. The PGSER macro, which is
the IBM-recommended interface to page services, supports branch entry in both
cross memory and non-cross memory mode. The PGFIXA and PGFREEA macros
also work in cross memory and non-cross memory mode but should be used only
under the special circumstances for which they are intended. The page-fix,
page-free, page-load, page-release, page-any, and page-out services support both
cross memory and non-cross memory mode; the page-out service supports only
non-cross memory mode.

To branch-enter page services that do not provide a macro interface for branch
entry, the caller must:
v Run in supervisor state with PSW key 0.
v Hold the local lock of the currently addressable address space.
v Set up the registers as described below for cross memory or non-cross memory

mode.
v Branch to the service.

Note: The pages that are candidates for page services must be addressable in the
current address space. All addresses must be 24-bit addresses.

Cross memory mode

Register(s) Bit(s) Contents

0 0

1 0 0 for register format 1 for list format
1-7 Same as bits 1-7 of VLSFLAG1 field of VSL

for register format; irrelevant for list format
8-31 24-bit starting address on which the service is to be

performed for register format; 24-bit address of user's first
VSL for list format

2 0-7 Same as VSLFLAG2 field in VSL for register format;
irrelevant for list format

8-31 24-bit ending address + 1 for which the service is to be
performed for register format; irrelevant for list format

3 Irrelevant

4 0

5-6 Irrelevant

7 ASCB address of current address space

8-13 Irrelevant

14 Return address

15 Entry point to page services, obtained from the CVT field,
CVTPSXM.

314 z/OS V2R2 MVS Authorized Assembler Services Guide

On return, the page service sets the registers as follows:

Register
Contents

0-4 Used by the system as work registers.

5-14 Unchanged.

15 Return code.

The only return code possible is 0. This indicates that the requested function was
processed successfully.

Non-cross memory mode
The caller must set up registers as follows:

Register(s) Bit(s) Contents

0 ECB address or 0 if no ECB is specified
1 0 0 for register format 1 for list format

1-7 Same as bits 1-7 of VSLFLAG1 field of VSL
for register format; irrelevant for list format

8-31 24-bit starting address on which the service
is to be performed for register format; 24-bit address of
user's first VSL for list format

2 0-7 Same as VSLFLAG2 field in VSL for register
format; irrelevant for list format

8-31 24-bit ending address + 1 for which the service is to be
performed for register format; irrelevant for list format

3 Irrelevant

4 TCB address or 0

5-13 Irrelevant

14 Return address

15 Entry point to page services, obtained from the CVT field,
CVTVPSIB.

On return, the page service sets the registers as follows:

Register
Contents

0-14 Unchanged

15 Return code

The return codes are as follows:

Code Meaning

0 The requested function was processed successfully. If the function was
page-fix or page-load, and an ECB was supplied, it will be posted.

Chapter 15. Processor storage management 315

8 The requested function was page-fix or page-load with an ECB. The
function will be processed asynchronously and the ECB will be posted
upon completion.

12 The requested function was page-out and the function was unsuccessful
for at least one of the specified pages.

316 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 16. Sharing data in virtual storage (IARVSERV macro)

With the shared pages function, which is available through the IARVSERV macro,
you can define virtual storage areas through which data can be shared by
programs within or between address spaces or data spaces. Also, the type of
storage access can be changed.

Sharing reduces the amount of processor storage required and the I/O necessary to
support data applications that require access to the same data. For example,
IARVSERV provides a way for a program running below 16 megabytes, in 24-bit
addressing mode, to access data above 16 megabytes that it shares with 31-bit
mode programs. IARVSERV allows the sharing of data without the central storage
constraints and processor overhead of other existing methods of sharing data.

The sharing of data benefits many types of applications, because data is available
to all sharing applications with no increase in storage usage. This function is useful
for applications in either a sysplex environment or a single-system environment.
Additionally, IARVSERV allows you to control whether a sharing program:
v Has read access only
v Has both read and write access and receives updates immediately
v Can modify the data without modifying the original, and without allowing the

sharing programs to view the updates
v Can modify the original while sharing programs see the change, but without

allowing the sharing programs to change the data
v Can change the current storage access

An additional macro, IARR2V, is provided as an aid to converting central storage
addresses to virtual storage addresses. See “Converting a central to virtual storage
address (IARR2V macro)” on page 326 for information on the IARR2V macro.

The IARVSERV topics described in this information are:
v Understanding the concepts of sharing data with IARVSERV
v Storage you can use with IARVSERV
v Obtaining storage for the source and target
v Defining storage for sharing data and access
v Changing storage access
v How to share and unshare data
v Accessing data in a sharing group
v Example of sharing storage with IARVSERV
v Use with data-in-virtual (DIV macro)
v Use with Page Services (PGSER macro)
v Diagnosing problems with shared data

For coding information about the IARVSERV and IARR2V macros, see z/OS MVS
Programming: Authorized Assembler Services Reference EDT-IXG.

© Copyright IBM Corp. 1988, 2016 317

Understanding the concepts of sharing data with IARVSERV
As you read this information, refer to Figure 53 for an illustration of the sharing
data through the IARVSERV macro.

Suppose that Addr Space A contains data that is required by programs in Addr
Space B. A program in Addr Space A can use IARVSERV to define that data to be
shared; that data and the storage it resides in are called the source. The program
also defines storage in Addr Space B to receive a copy of the source; that storage
and its copy of source data are called the target.

The source and its corresponding target form a sharing group. A sharing group
can consist of several target areas and one source. For example, suppose another
program in Addr Space A defines a portion of data1 (in Addr Space A) as source,
and defines a target in Data Space X. That target becomes a member of the sharing
group established previously.

All sharing of data is done on a page (4K) basis. If the source page is already a
member of an existing sharing group, the target becomes a member of that existing
sharing group. A page is called a sharing page if it is a member of a sharing
group.

Programs that access the source or targets are called sharing programs. Each
sharing program accesses the shared virtual storage as it would any other storage,
and may not need to know that the storage is being shared. So, you can allow
programs to share data through IARVSERV without having to rewrite existing
programs.

Storage you can use with IARVSERV
You can share data in address spaces and data spaces. You can use any storage to
which you have valid access, except for a subspace, a hiperspace, a VIO window, a
V=R region, the PSA or the nucleus (read-only, extended read-only, read-write and
extended read-write areas). The target area cannot contain page-protected or
page-fixed pages. Storage that is currently allocated through DIV MAP to any DIV
object cannot be the target, nor can the source storage have been allocated through
DIV MAP to a hiperspace.

Addr Space
A

Addr Space
B

data1

source

data1

target

Data Space
X

data1

target

S
H
A
R
E SHARE

Figure 53. Data Sharing with IARVSERV

318 z/OS V2R2 MVS Authorized Assembler Services Guide

Authorized programs can use an unlimited number of pages for sharing. However,
use care to ensure that it is used appropriately. System performance can be affected
if programs use large amounts of storage for many source areas, but having many
targets of one large or a few small sources can reduce central storage constraints.

ESQA storage requirements increase as more storage is shared. The formula for the
number of bytes of ESQA storage used by the systems is: 40 bytes per shared page
group plus 40 bytes per shared page view. For example, a single shared page
group with two views requires 40+40*2 = 120 bytes of ESQA storage.

The maximum number of shared pages for a program in problem state with PSW
key 8-15 is 32, unless this number is modified by your installation. This number
includes both the source and targets, so the actual number of unique pages is 16.
Your installation can use the IEFUSI installation exit to change the limit for
problem state programs. See z/OS MVS Installation Exits for details on IEFUSI.

In order to expedite the return of all internal control blocks for the shared storage
back to the system, IBM recommends issuing IARVSERV UNSHARE against all
views for both source and target that are originally shared. For an example of how
to code the UNSHARE parameter, see z/OS MVS Programming: Assembler Services
Reference IAR-XCT.

Obtaining storage for the source and target
Before you can issue IARVSERV to define storage as shared, you must obtain or
create both the source and target areas. For address space storage, use the
GETMAIN or STORAGE macro; for data space storage, use the DSPSERV macro.
The source and target areas must be as follows:
v Start on a page boundary,
v Have the same storage protect key and fetch-protection status (except for

TARGET_VIEW=UNIQUEWRITE or TARGET_VIEW=LIKESOURCE and the
source has UNIQUEWRITE view),

v Meet one of the following requirements:
– Reside within pageable private storage of an address space.
– Reside within the valid size of an existing data space and be pageable

storage.

The source can be common storage and the target can be in CSA/ECSA,
SQA/ESQA, LSQA/ELSQA or DREF storage. The target area must not be storage
that contains system data, including storage containing access lists and dynamic
address translation tables. The source and the target must be two different storage
areas. They must be different virtual storage addresses or reside in different
address or data spaces.

Then initialize the source with data. Make sure any storage you obtain or data
space you create can be accessed by the intended sharing programs. For example,
if you want to allow sharing programs to both read and modify a target, the
programs' PSW key value must match or override the target's storage protection
key. For information about storage subpool attributes, see Table 32 on page 236. For
information about access to data spaces, see z/OS MVS Programming: Extended
Addressability Guide.

Chapter 16. Sharing data in virtual storage (IARVSERV macro) 319

Defining storage for sharing data and access
With the IARVSERV macro, you can define multiple types of data sharing and
access. As you read this information, use Figure 53 on page 318 to see how each
IARVSERV parameter acts on the current state of the data. Each type of data
sharing access is called a specific view of the source data. A view is the way your
program accesses, or sees, the data. You define the view in the TARGET_VIEW
parameter on IARVSERV, by specifying one of the following:
v Read-only view (READONLY value) — where the target data may not be

modified.
v Shared-write view (SHAREDWRITE value) — where the target data can be read

and modified through the view.
v Copy-on-write view (UNIQUEWRITE value) — where the source data

modifications are not seen by other source - sharing programs. Any attempt to
modify the shared source data in this view causes MVS to create a unique target
copy of the affected page for that address or data space.
An example of two different cases:
– If the shared data is modified through a SHAREDWRITE view, the

UNIQUEWRITE view gets an unmodified copy of the data. Any remaining
views sharing that data see the modified data.

– If the shared data is modified through a UNIQUEWRITE view, the
UNIQUEWRITE view gets the modified copy of the data. Any remaining
views sharing that data see the unmodified data.

v Copy-on-write target view (TARGETWRITE value) — where the target data may
be read and modified through the source view. Any modification of a shared
target page causes MVS to create a unique target copy of the affected page for
that address or data space.
An example for two different cases:
– If the shared data is modified through a SHAREDWRITE view, the

TARGETWRITE view sees the modified data.
– If the shared data is modified through a TARGETWRITE view, the

TARGETWRITE view sees the modified copy of the data. Any remaining
views sharing that data see the unmodified data.

v Like source view (LIKESOURCE value) — where the target data is given the
current view type of the source data. If the source data is currently not shared,
then its current storage attribute is given to the target.

v Hidden view (HIDDEN value) — where the target will share the source data,
but any attempt to access the target data (HIDDEN value) will cause a program
check. To access the target, the view type must be changed to READONLY,
SHAREDWRITE, UNIQUEWRITE, or TARGETWRITE.

When you specify a value for TARGET_VIEW, keep the following in mind:
v The execution key (PSW key) of the caller must be sufficient for altering the

target area. If TARGET_VIEW=SHAREDWRITE is specified, the execution key
must be sufficient for altering the source area also.

v The SHAREDWRITE value cannot be specified if the source contains sharing
pages that have the READONLY view mode attribute, are page protected, or are
protected by attribute (such as PLPA).

v For TARGET_VIEW=UNIQUEWRITE, if the input source area is address space
storage, and the storage has not been obtained by GETMAIN or STORAGE
OBTAIN, or the storage and fetch protect keys do not match, then the SHARE is

320 z/OS V2R2 MVS Authorized Assembler Services Guide

not performed for that area. The target will be all zeros (first reference), or it will
remain as pages that were not obtained by GETMAIN.

v For target views created with LIKESOURCE on IARVSERV SHARE, the system
propagates explicit page protection from the source to the target view.

v Page-fixed pages and DREF pages cannot be made TARGETWRITE,
UNIQUEWRITE, or HIDDEN.

Changing storage access
With the IARVSERV macro, the SHARE and CHANGEACCESS parameters can
change the views type of storage access. For SHARE, the current storage attribute
of the source data affects the outcome of the target. Table 37 shows the permitted
target views for different combinations with the source. A NO in the table means
that an abend will occur if you request that target view with the current source
view. For CHANGEACCESS, all combinations are permitted.

Table 37. Allowed Source/Target View Combinations for Share (Requested Target View)
Current Source
View READONLY SHAREDWRITE UNIQUEWRITE TARGETWRITE HIDDEN LIKESOURCE

READONLY Yes No Yes Yes Yes Yes

SHAREDWRITE Yes Yes Yes Yes Yes Yes

UNIQUEWRITE Yes Yes Yes Yes Yes Yes

TARGETWRITE No No Yes No No Yes

HIDDEN (Shared) No No No No No Yes

Non-Shared Yes Yes Yes Yes Yes Yes

HIDDEN
(Non-Shared)

No No No No No Yes

The following apply when using IARVSERV SHARE when changing storage
access:
v For source views to be either UNIQUEWRITE or TARGETWRITE, the processor

must have the Suppression-On-Protection (SOP) hardware feature, and a
previous IARVSERV SHARE must have created a view of UNIQUEWRITE or
TARGETWRITE.

v For target views to be TARGETWRITE, the processor must have the SOP
hardware feature. If a request is made to create a TARGETWRITE view and the
SOP feature is not installed, the request fails with a return code of 8.

v For target views to be UNIQUEWRITE, the SOP hardware feature must be
installed. Also, the request must not specify COPYNOW. If the request specifies
COPYNOW, or the SOP feature is not installed, a UNIQUEWRITE view is not
established, and a separate copy of the data is made.

v For target views created with LIKESOURCE on IARVSERV SHARE, the system
propagates explicit page protection from the source to the target view.

v For source pages that are not shared, if the page is page-protected, the view
created for that page is a SHAREDWRITE view, but the view is flagged as an
explicitly protected view (one that cannot be modified).

The following apply when changing the storage access with IARVSERV
CHANGEACCESS:
v To remove hidden status, you must use an IARVSERV CHANGEACCESS,

FREEMAIN, or DSPSERV DELETE macro.

Chapter 16. Sharing data in virtual storage (IARVSERV macro) 321

v To remove explicit read-only protection status, you must use an IARVSERV
CHANGEACCESS, FREEMAIN, DSPSERV DELETE, or PGSER UNPROTECT
macro.

v If a hidden page is hidden because of loss of access to 'mapped' data (such as
through DIV UNMAP), and, if the page is changed from hidden, the data in the
page might be lost.

v Hidden pages cannot be released via a PGSER RELEASE or DSPSERV RELEASE
macro. An attempt would result in an abend with the same reason code as is
used for protected pages.

v Issuing an IARVSERV UNSHARE macro for the original mapped page causes
the data to be retained for that page. The data for the other sharing pages is lost.
References to hidden pages cause an X'0C4' abend, and references to lost pages
cause in a X'028' abend.

v Page-fixed pages and DREF pages cannot be made TARGETWRITE,
UNIQUEWRITE, or HIDDEN.

How to share and unshare data
With the IARVSERV macro, use the SHARE parameter to initiate sharing of data;
use the UNSHARE parameter to end sharing for the issuing program. This
information discusses the additional IARVSERV parameters that you can specify
with SHARE or UNSHARE.

The RANGLIST parameter is always required for both SHARE and UNSHARE. It
gives IARVSERV information about the source and target addresses. The
RANGLIST value is actually the address of the list of addresses you must create
using the mapping macro IARVRL. For the details of IARVRL, see z/OS MVS Data
Areas in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/). The following table lists the required IARVRL fields that you must
supply for SHARE or UNSHARE.

IARVRL Fields That You Must Initialize
for SHARE

IARVRL Fields That You Must Initialize
for UNSHARE

VRLSVSA
VRLSSTKN (for STOKEN)
VRLSALET (for ALET)
VRLNUMPG
VRLTVSA
VRLTSTKN (for STOKEN)
VRLTALET (for ALET)

VRLNUMPG
VRLTVSA
VRLTSTKN (for STOKEN)
VRLTAKET (for ALET)

For IARVSERV SHARE, if the target area contains pages that belong to an existing
sharing group, MVS performs an implicit UNSHARE to pull those pages out of the
existing sharing group before proceeding. Also, MVS automatically performs an
UNSHARE on any sharing page when the page is being freed by FREEMAIN,
STORAGE RELEASE, or DSPSERV DELETE, or when the page's address space is
ended.

Also, when MVS finds that one page of a range is not acceptable for sharing, MVS
will not complete the SHARE request for that page, nor the rest of the range or
ranges not already processed. You can assume that all pages up to that point were
processed successfully. An abend will be issued and GPR 2 and 3 will contain the
address range list associated with the error page and the storage address of the

322 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

page in error, respectively. To remove the SHARE on the successful pages, issue
IARVSERV UNSHARE for the storage ranges up to, but excluding, the error page.

The parameter TARGET_VIEW is required with SHARE only, to tell IARVSERV
how you plan to share the data contained in the source. You have three choices
described in “Defining storage for sharing data and access” on page 320.
v READONLY does not allow any program accessing the target area to write to it.

An abend results if a program attempts to write to a READONLY target.
v SHAREDWRITE allows any sharing program to write to the target. All those

sharing the target area instantly receive the updates. This view could be very
useful as a communication method for programs.

v UNIQUEWRITE has the property of copy-on-write, which means that MVS
creates a copy of a page for the updating program once the program writes to
that page. The only program that has the change is the program that changed it;
all others continue to use the original page unmodified. This is true whether the
program writes to a source or target page.
A copy-on-write hardware facility is provided for additional performance
improvement. If you need to determine if your processor has the feature, you
can use the CVT mapping macro, and test the CVTSOPF bit. For details on the
CVT mapping macro, see z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

RETAIN is a parameter available only with UNSHARE. RETAIN=NO requests that
MVS remove the target from sharing. The target data is lost. RETAIN=YES requests
that MVS leave the data in the target untouched.

Specifying RETAIN=NO for an unshare of a E/LSQA or E/SQA view will result in
a page that is not backed by real storage. Any subsequent access to the page will
result in an 0C4 abend. The page can, however, be the target of a subsequent share.
Specifying RETAIN=YES for an unshare of a E/LSQA or E/SQA page will result in
a 6C5 abend.

Accessing data in a sharing group
Data is accessed in a sharing group just as it would be if sharing did not exist.
Trying to write to a READONLY view will cause an abend.

You can create a sharing group that permits programs in 24-bit addressing mode to
access data above 16 megabytes. To do this, you would define the source in storage
above 16 megabytes, and obtain a target in storage below 16 megabytes. Then
initialize the source with data, so programs in 24-bit mode can share the data
through the target.

Example of sharing storage with IARVSERV
Suppose you are updating a program called PGMA, that controls all the account
deposits for a savings bank. Your program must work with two older programs
that are complex and do not have source code available. The first program, called
SUBPGMA, was updated six years ago and runs in 31-bit addressing mode; it
records deposits in money market accounts. It cannot use data spaces. The other
program, SUBPGMB, is much older and records deposits in standard savings
accounts. It runs in 24-bit addressing mode. See Figure 54 on page 324 for a
representation of the storage.

Chapter 16. Sharing data in virtual storage (IARVSERV macro) 323

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Program PGMA, the main program, was written to keep all of its data in one large
data space. PGMA must continually obtain appropriate storage in the address
space that is addressed by SUBPGMA and SUBPGMB. After SUBPGMA and
SUBPGMB finish, PGMA must copy all the updated data back to the data space.
This is degrading performance and needs to be fixed. By using IARVSERV, you can
eliminate the copying, and reduce the complexity of PGMA.

Your update to PGMA would cause the programs to work together this way:
1. PGMA creates a data space and initializes it with data.
2. Before PGMA calls SUBPGMA to do a money market deposit, PGMA issues

GETMAIN for storage in the private area for a buffer. This buffer is BUFFER31.
3. PGMA issues IARVSERV SHARE to share the source in the data space with the

target, BUFFER31. Use TARGET_VIEW=SHAREDWRITE so updates can be
made directly into the data space.

4. PGMA now calls SUBPGMA to update the data, passing the address of
BUFFER31 as the area to be updated.

5. Once SUBPGMA updates the data in BUFFER31, PGMA issues IARVSERV
UNSHARE followed by FREEMAIN to release the storage.

6. When PGMA needs to call SUBPGMB to do a savings account deposit, the only
difference is that PGMA must obtain storage below 16 megabytes for the buffer.
This buffer is BUFFER24.

7. PGMA again issues IARVSERV SHARE with TARGET_VIEW=SHAREDWRITE,
but identifies the target as BUFFER24.

8. PGMA calls SUBPGMB to update the data, passing the address of BUFFER24 as
the area to be updated.

9. Once SUBPGMB updates the data in BUFFER24, PGMA issues IARVSERV
UNSHARE and FREEMAIN to release the storage as before.

Note that all three programs could share the data in the data space at the same
time. Sharing continues until PGMA issues IARVSERV UNSHARE for that buffer
area.

Addr Space

data

target

target

data

Buffer31

Buffer24

16 meg

Data Space

data

source

0

Figure 54. Sharing Storage with IARVSERV

324 z/OS V2R2 MVS Authorized Assembler Services Guide

Use with data-in-virtual (DIV macro)
There are several restrictions for programs that use data-in-virtual MAP service
with data shared using the IARVSERV SHARE service:
v A sharing page must reside in non-swappable storage and have a

SHAREDWRITE view mode.
v Only one member of a sharing group can be mapped. Any attempt to map

another member of the same sharing group results in a X'08B' abend.
v You cannot use the IARVSERV macro to share data mapped to a hiperspace

object.
v You cannot map a sharing page whose sharing group contains a page that is

currently a fixed or disabled reference page.
v If the owning address space of a sharing page that was mapped by DIV MAP

terminates prior to a DIV UNMAP, the data is lost. Any further reference to the
shared data results in a X'028' abend.

There are also restrictions for programs that use the data-in-virtual UNMAP
function:

If a sharing page is currently mapped, and the owner of the map issues DIV
UNMAP with RETAIN for that page, the value of RETAIN affects all sharing
group members as follows:
v For RETAIN=NO, all pages of the target become unpredictable in content.
v For RETAIN=YES, all pages of the target get the data as it last appeared within

the sharing page. This can be useful for saving an instance of data, such as a
check point. Use of RETAIN=YES can affect performance if it consumes large
amounts of central storage by repeated retaining of the storage.

Use with page services (PGSER macro)
If programs are sharing data using the IARVSERV macro, the highest level of
protection remains in effect to ensure data integrity. For example, pages that have
been shared with a READONLY view, and are then protected through PGSER, will
remain READONLY protected even after PGSER is issued with UNPROTECT.
Likewise, pages that have been shared with a READONLY view, and are protected
through PGSER, will remain protected even after IARVSERV is issued with
UNSHARE.

Diagnosing problems with shared data
You can use IPCS reports to see how data is being shared through IARVSERV. The
IPCS RSMDATA subcommand with the SHRDATA parameter provides a detailed
report on the status of IARVSERV data sharing. The following RSMDATA reports
also provide shared data information: ADDRSPACE, EXPFRAME, REALFRAME,
RSMREQ, SUMMARY, and VIRTPAGE. See z/OS MVS IPCS Commands for more
information about the SHRDATA subcommand.

You may also collect information about data shared through IARVSERV by issuing
the DISPLAY command, and by specifying certain optional parameters on the
IARR2V macro. See z/OS MVS System Commands and “Converting a central to
virtual storage address (IARR2V macro)” on page 326 for more information.

Chapter 16. Sharing data in virtual storage (IARVSERV macro) 325

Converting a central to virtual storage address (IARR2V macro)
The IARR2V macro provides a simple method to obtain a virtual storage address
from a central storage address. This conversion can be useful, for example, when
you are working with an I/O or diagnostic program that provides central storage
addresses, but you want to use virtual storage addresses.

The details of the syntax and parameters of IARR2V are in z/OS MVS Programming:
Authorized Assembler Services Reference EDT-IXG. In its simplest form, the IARR2V
macro requires only the RSA parameter. The RSA parameter specifies the central
storage address that you want to convert.

The system returns the virtual storage address in a register or in a storage location
you specify through the VSA parameter. Also, you can request the system to return
the ASID or STOKEN of the address space or data space associated with the
address. For an authorized program, you may also specify the type of linkage the
system is to use.

If you require knowledge of whether the central storage address you have is being
shared through the IARVSERV macro, you can get that information using the
WORKREG, NUMVIEW, and NUMVALID parameters. To use the NUMVIEW and
NUMVALID parameters, you must use the WORKREG parameter to specify the
work register for the system to use. The NUMVIEW parameter requests the total
number of pages sharing the view of your central storage address. NUMVALID
requests the number of pages currently addressable (accessed), which is called the
number of valid views. With NUMVIEW and NUMVALID, you can check how
effectively programs are using shared storage. Pages that are not accessed have not
been read or updated by any program.

326 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 17. The nucleus

The nucleus contains routines that execute with dynamic address translation (DAT)
turned off and routines that execute with DAT on.

There are three macros that provide services for the nucleus. These macros are:

Macro Function

DATOFF
Provides a means of linking to routines in the DAT-OFF nucleus

NUCLKUP
Provides a means of obtaining information about CSECTs in the DAT-ON
nucleus

NMLDEF
Provides a means of identifying the members in SYS1.NUCLEUS that are
to be loaded into the DAT-ON nucleus region.

Linking to routines in the DAT-OFF nucleus (DATOFF)
The DAT-OFF nucleus is not mapped in virtual storage. IPL processing loads the
DAT-OFF nucleus into consecutive real storage located at the highest available real
address. Because the DAT-OFF nucleus is not mapped in virtual storage, a special
method is used to link to routines in this area. The DATOFF macro provides the
means of linking to system and user-written routines in the DAT-OFF nucleus.

When using the DATOFF macro, the caller specifies an index that identifies the
routine that is to receive control in the DAT-OFF nucleus. The index, entry point,
and purpose of the routines available to users in the DAT-OFF nucleus are shown
in Table 38.

Table 38. DAT-OFF Routines Available to Users

Index Entry Point Function

INDCDS 31-bit Compare Double and Swap
INDMVCL0 31-bit General DAT-OFF MVCL
INDMVCLK 31-bit General DAT-OFF MVCL in user key
INDXC0 31-bit General DAT-OFF XC
INDCDS64 64-bit Compare Double and Swap
INDMVCL64 64-bit General DAT-OFF MVCL
INDMVCLK64 64-bit General DAT-OFF MVCL in user key
INDXC64 64-bit General DAT-OFF XC
INDUSR1 IEAVEUR1 31-bit user defined
INDUSR2 IEAVEUR2 31-bit user defined
INDUSR3 IEAVEUR3 31-bit user defined
INDUSR4 IEAVEUR4 31-bit user defined
INDUSR641 IEAV64U1 64-bit user defined
INDUSR642 IEAV64U2 64-bit user defined
INDUSR643 IEAV64U3 64-bit user defined
INDUSR644 IEAV64U4 64-bit user defined

© Copyright IBM Corp. 1988, 2016 327

All routines that execute with DAT turned off must be located in the DAT-OFF
nucleus. These routines receive control and execute in 31-bit addressing mode or
64-bit addressing mode and must be capable of residing either above or below 16
megabytes. Therefore routines that execute in the DAT-OFF nucleus must have the
attributes AMODE=31 or AMODE=64, RMODE=ANY. For information concerning
24-bit/31-bit compatibility, see z/OS MVS Programming: Assembler Services Guide.

Using system provided DAT-OFF routines (DATOFF)
The system defined index values, INDMVCL0, INDMVCLK, INDXC0, and
INDCDS, and their 64-bit counterparts, are available to users. INDMVCL0 initiates
the move character long (MVCL) function, INDMVCLK initiates the MVCL
function in user key, INDCDS initiates the compare double and swap function, and
INDXC0 initiates the exclusive OR (XC) function. The register usage and linkage
for these functions follows.

In all cases, the DATOFF macro destroys the contents of general registers 0, 14, and
15.

INDMVCL0 and INDMVCL64 - Move character long
INDMCVL0 input register values must be 31-bit addresses. INDMCVL64 input
register values must be 64-bit addresses. Before issuing the macro, the user must
load the registers as follows:

Register
Use

0 Used as a work register by the system

2 Real location into which the characters are to be moved

3 Length of the area into which the characters are to be moved

4 Real location of the area from which the characters are to be moved

5 Length of the area from which the characters are to be moved

14 Used as a work register by the system

15 Used as a work register by the system

1,6-13 Unused

The user invokes the 31-bit MVCL function by coding the following macro:
DATOFF INDMVCL0

INDMVCLK and INDMVCL64 - Move character long in user key
INDMVCLK input register values must be 31-bit addresses. INDMVCLK64 input
register values must be 64-bit addresses. Before issuing the macro, the user must
load the registers as follows:

Register
Use

0 Used as a work register by the system

2 Real location into which the characters are to be moved

3 Length of the area into which the characters are to be moved

4 Real location of the area from which the characters are to be moved

5 Length of the area from which the characters are to be moved

328 z/OS V2R2 MVS Authorized Assembler Services Guide

6 Bits 24-27 contain the PSW key in which the MVCL function is to be
performed

14 Used as a work register by the system

15 Used as a work register by the system

1,7-13 Unused

The user invokes the 31-bit MVCL in user key function by coding the following
macro:
DATOFF INDMVCLK

INDXC0 and INDXC64 - Exclusive OR
INDXC0 input register values must be 31-bit addresses. INDXC64 input register
values must be 64-bit addresses. Before issuing the macro, the user must load the
registers as follows:

Register
Use

0 Used as a work register by the system

2 Real location of first operand and location for results of exclusive OR
character operation

3 Length, in bytes, of operand pointed to by register 2. The length must be
in bits 24-31 of register 3. Allows a maximum length of 256 bytes

4 Real location of the operand to be exclusive ORed with the operand
pointed to by register 2.

14 Used as a work register by the system

15 Used as a work register by the system

1,5-13 Unused

The user invokes the 31-bit XC function by coding the following macro:
DATOFF INDXC0

INDCDS and INDCDS64 - Compare double and swap
INDCDS input register values must be 31-bit addresses. INDCDS64 input register
values must be 64-bit addresses. Before issuing the macro, the user must load the
registers as follows:

Register
Use

0 Used as a work register by the system

1 Unchanged

2,3 First 64 bit operand in even-odd pair of registers (target data)

4,5 Third 64 bit operand in even-odd pair of registers (source data)

6 Real address of second operand, a doubleword in storage (target address)

7-13 Unchanged

14 Used as a work register by the system

15 Used as a work register by the system

The user invokes the 31-bit CDS function by coding the following macro:

Chapter 17. The nucleus 329

DATOFF INDCDS

Writing user DAT-OFF routines
As shown in 1 on page 392, there are eight DAT-OFF indexes that users can define.
These indexes are INDUSR1, INDUSR2, INDUSR3, INDUSR4, INDUSR641,
INDUSR642, INDUSR643, and INDUSR644. The entry points corresponding to
these indexes are IEAVEUR1, IEAVEUR2, IEAVEUR3, IEAVEUR4, IEAV64U1,
IEAV64U2, IEAV64U3, and IEAV64U4, respectively.

User written DAT-OFF routines are restricted as follows:
v The user of the DATOFF macro must be in key 0, supervisor state, and executing

with DAT turned on.
v DAT-OFF routines INDUSR1, INDUSR2, INDUSR3, and INDUSR4 must have

the attributes AMODE=31 and RMODE=ANY.
v DAT-OFF routines INDUSR641, INDUSR642, INDUSR643, and INDUSR644 must

have the attributes AMODE=64 and RMODE=ANY.
v The DAT-OFF routine must preserve register 0 because register 0 contains the

return address of the module that issued the DATOFF macro.
v The DAT-OFF routine must use branch instructions to link to other DAT-OFF

routines.
v The DAT-OFF function must use BSM 0,14 to return from INDUSR1, INDUSR2,

INDUSR3, and INDUSR4.
v The DAT-OFF function must return via BR 14 from INDUSR641, INDUSR642,

INDUSR643, and INDUSR644.

Placing user DAT-OFF routines in the DAT-OFF nucleus
To add 31-bit DAT-off code to the DAT-off nucleus, and execute the code, follow
these steps:
1. Create a separate module containing the code that runs with DAT-off, as

follows:
v Use entry point IEAVEURn, where n is a number from 1 to 4. MVS reserves

four entry points in the DAT-off nucleus for AMODE 31 user code.
v Give the module AMODE 31 and RMODE ANY attributes.
v Make sure the DAT-off code does not alter register 0; it contains the return

address to the routine that issues the DATOFF macro.
v Use BSM 0,14 as the return instruction.

2. Linkedit your DAT-off module (IEAVEURn) into SYS1.NUCLEUS. The member
names are IEAVEDAT and IEAV2DAT; input to the linkage editor must include
an ORDER and ENTRY control statement for entry point IEAVEDAT in both
modules.

3. Within a DAT-on routine, code a DATOFF macro to invoke the module created
in step 1:
DATOFF INDEX=INDUSRn

The suffix of the index (n) is the same as the suffix of the DAT-off module‘s
entry point, IEAVEURn. See z/OS MVS Programming: Authorized Assembler
Services Reference ALE-DYN for details on coding the DATOFF macro.

Note: You will need to re-linkedit your IEAVEURn module(s) into the DAT-off
nucleus if you re-install the MVS base control program.

330 z/OS V2R2 MVS Authorized Assembler Services Guide

To add 64-bit DAT-off code to the DAT-off nucleus, and execute the code, follow
these steps:
1. Create a separate module containing the code that runs with DAT-off, as

follows:
v Use entry point IEAV64Un, where n is a number from 1 to 4. MVS reserves

four entry points in the DAT-off nucleus for AMODE 64 user code. Give the
module AMODE 64 and RMODE ANY attributes.

v Give the module AMODE 31 and RMODE ANY attributes.
v Make sure the DAT-off code does not alter register 0; it contains the return

address to the routine that issues the DATOFF macro.
v Use BR 14 as the return instruction.

2. Linkedit your DAT-off module (IEAVEURn) into SYS1.NUCLEUS. The member
name is IEAV2DAT; input to the linkage editor must include an ORDER and
ENTRY control statement for entry point IEAVEDAT.

3. Within a DAT-on routine, code a DATOFF macro to invoke the module created
in step 1:
DATOFF INDEX=INDUSR64n

The suffix of the index (n) is the same as the suffix of the DAT-off module‘s
entry point, IEAV64Un. See z/OS MVS Programming: Authorized Assembler
Services Reference ALE-DYN for details on coding the DATOFF macro.

Note: You will need to re-linkedit your IEAV64Un module(s) into the DAT-off
nucleus if you re-install the MVS base control program.

Obtaining information about CSECTs in the DAT-ON nucleus
(NUCLKUP)

IPL processing places the CSECTs located in the DAT-ON nucleus in virtual storage
and creates a map of them. The real addresses do not equal the virtual addresses
and the real addresses are not necessarily contiguous. IPL processing loads the
CSECTs into storage according to residency mode and according to whether they
are read only or read/write. If the CSECT is assembled with RMODE=ANY, it is
placed in the extended nucleus. Figure 55 on page 332 shows the virtual storage
map of the DAT-ON nucleus.

Chapter 17. The nucleus 331

The nucleus map look up service provides users with information about these
CSECTs. Through the use of the NUCLKUP macro, users can perform two
functions:
v Retrieve the address and addressing mode of a nucleus CSECT, given the name

of the CSECT
v Retrieve the name and entry point address of a nucleus CSECT, given an

address within the CSECT.

Customizing the nucleus region
You can use the NUCLSTxx member of SYS1.PARMLIB or the NMLDEF macro to
customize the nucleus region. Both are interfaces to the generalized nucleus loader,
which:
v Enables you to maintain, as separate members in SYS1.NUCLEUS, modules to

be loaded into the DAT-ON nucleus region
v Eliminates the need to link-edit, into an IEANUC0x member of SYS1.NUCLEUS,

new nucleus-resident code such as installation-written SVCs.

You can design each NUCLSTxx parmlib member or nucleus module list (NML) to
contain a list of the SYS1.NUCLEUS members that are part of the same product or
user modification. The generalized nucleus loader processes all NMLs found in
SYS1.NUCLEUS, including those used by IBM products and vendor products.

Note:

1. All multiple CSECT load modules, such as IEANUC0x, to be loaded into the
nucleus region, must be link-edited with the scatter (SCTR) attribute. If this is
not done, the system enters a non-restartable wait state at system initialization.

2. Neither the NUCLSTxx parmlib member nor the NMLDEF macro can be used
to change the contents of IEANUC0x. They can be used only to specify which
additional members of SYS1.NUCLEUS are to be loaded into the nucleus region
along with IEANUC0x. See “Removing existing routines from IEANUC0x” on
page 333 for information on deleting routines from IEANUC0x.

Extended

Extended

16MB

2G

0

Read/write nucleus

Read/write nucleus

Read/only nucleus

Read/only nucleus

Figure 55. Virtual Storage Map of DAT-ON Nucleus

332 z/OS V2R2 MVS Authorized Assembler Services Guide

The NUCLSTxx parmlib member is easier to use and offers more flexibility than
the NMLDEF macro. See z/OS MVS Initialization and Tuning Reference for more
information about NUCLSTxx.

The NMLDEF macro
Use the NMLDEF macro to generate an NML. The macro generates a CSECT
statement, the list of module names, and an END statement. The generated NML is
a load module that resides in SYS1.NUCLEUS.

When using NMLDEF, ensure that:
v All SYS1.NUCLEUS members listed in an NML are in SYS1.NUCLEUS. If the

system cannot find the specified SYS1.NUCLEUS member, it enters wait state
X'055', with reason code X'2'.

v Each SYS1.NUCLEUS member is listed in only one NML. If the system finds a
duplicate NML entry, it enters wait state X'025'.

See z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU for
details on coding the NMLDEF macro.

Removing existing routines from IEANUC0x
Nucleus-resident routines can be removed from an IEANUC0x member of
SYS1.NUCLEUS by running a link-edit job to replace the existing version of
IEANUC0x with one that does not contain the routine to be deleted.

Note:

1. If the existing nucleus-resident routine is known to SMP/E, use the SMP/E
UCLIN statement to remove the module entry.

2. All multiple CSECT load modules, such as IEANUC0x, to be loaded into the
nucleus region, must be link-edited with the scatter (SCTR) attribute. If this is
not done, the system enters a non-restartable wait state at system initialization.

Chapter 17. The nucleus 333

334 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 18. Providing recovery

In an ideal world, the programs you write would run perfectly, and never
encounter an error, either software or hardware. In the real world, programs do
encounter errors that can result in the premature end of the program's processing.
These errors could be caused by something your program does, or they could be
beyond your program's control.

MVS allows you to provide something called recovery for your programs; that
means you can anticipate and possibly recover from software errors that could
prematurely end a program. To recover from these errors, you must have one or
more user-written routines called recovery routines. The general idea is that, when
something goes wrong, you have a recovery routine standing by to take over, fix
the problem, and return control to your program so that processing can complete
normally; if the problem cannot be fixed, the recovery routine would provide
information about what went wrong. If correctly set up, your recovery should, at
the very least, provide you with more information about what went wrong with
your program than you would have had otherwise.

Part of recovery is also the "cleaning up" of any resources your program might
have acquired. By "clean up" of resources, we mean that programs might need to
release storage that was obtained, release ENQs, close data sets, and so on. If your
program encounters an error before it has the opportunity to clean up resources,
either your recovery routine, or another type of user-written routine called a
resource manager, can do the clean up. You can also use a resource manager if
your program ends normally without encountering any errors.

MVS provides the recovery termination manager (RTM) to handle the process by
which recovery routines and resource managers receive control.

Most of this information is devoted to explaining why you might want to provide
recovery for your programs in anticipation of encountering one or more errors, and
how you go about doing that. An important point to note is that providing
recovery is something to be considered at the design stage of your program. You
should make the decision about whether to provide recovery before you begin
designing the program. Trying to provide recovery for an existing program is
much more difficult because recovery must be an integral part of your program.

This information also discusses why you might want to provide resource managers
to clean up resources acquired by your program, and how you go about doing
that. You can provide resource managers whether or not you provide recovery
routines. See “Using resource managers” on page 410 for further information.

The following table provides a roadmap to the information in this topic. If you
already understand recovery concepts, you might want to skip directly to those
topics of specific interest to you.

© Copyright IBM Corp. 1988, 2016 335

To find out about: Consult the following topic:

General recovery concepts, including:

v Why you would want to provide recovery.

v What software errors result in your
recovery getting control.

v What we mean when we say a program
abnormally ends.

v The different states for a recovery routine.

v The different types of routines in a
recovery environment, and how to choose,
define, and activate the right recovery
routine.

v The basic options available to a recovery
routine.

v How routines in a recovery environment
interact.

“Understanding general recovery concepts.”

How to write a recovery routine, including:

v What recovery routines do.

v How recovery routines communicate with
other routines and with the system.

v Special considerations when writing
different types of recovery routines.

“Writing recovery routines” on page 347.

The recovery environment, including:

v Register contents at various times during
recovery processing.

v Other environmental factors such as
program authorization, dispatchable unit
mode, ASC mode, and so on.

“Understanding the recovery environment”
on page 373.

Coding the various routines in a typical
recovery environment.

“Understanding recovery through a coded
example” on page 397.

Advanced recovery topics, including:

v Providing recovery with minimal
processor overhead (for types 2, 3, and 4
SVCs only).

v Intentionally invoking RTM.

v Providing multiple recovery routines.

v Providing recovery for recovery routines.

v Providing recovery for multitasking
programs

v Using resource managers.

“Understanding advanced recovery topics”
on page 399.

Understanding general recovery concepts
This information provides a general overview of recovery concepts. After reading
this information, you should understand the following:
v Why you would want to provide recovery for your programs.
v What software errors result in your recovery getting control, if you provide

recovery.
v What we mean when we say a program abnormally ends.
v The different states for a recovery routine.

336 z/OS V2R2 MVS Authorized Assembler Services Guide

v The difference between a mainline routine, a recovery routine, a retry routine,
and a resource manager.

v The difference between an extended specify task abnormal exit (ESTAE-type)
recovery routine and a functional recovery routine (FRR), and how to choose,
define, and activate the appropriate one.

v The difference between what it means to retry and what it means to percolate.
v How routines in a recovery environment interact.

Deciding whether to provide recovery
MVS does all that it can to ensure the availability of programs, and to protect the
integrity of system resources. However, MVS cannot provide effective recovery for
every individual application program, so programs need recovery routines of their
own.

To decide whether you need to provide recovery for a particular program, and the
amount of recovery to provide, you should:
v Determine what the consequences will be if the program encounters an error

and ends.
v Compare the cost of tolerating those consequences to the cost of providing

recovery.

In general, if you have a large, complex program upon which a great number of
users depend, such as a subsystem, a database manager, or any application that
provides an important service to many other programs or end users, you will
almost certainly want to provide recovery. For small, simple programs upon which
very few users depend, you might not get enough return on your investment.
Between these two extremes is a whole spectrum of possibilities.

Consider the following points in making your decision. Providing recovery:
v Increases your program's availability.

Depending on the nature of the error, your recovery routine might successfully
correct the error and allow your program to continue processing normally.
Maintaining maximum availability is one of the major objectives of providing
recovery.

v Is a way to protect both system and application resources.
In general, recovery routines should clean up any resources your program is
holding that might be requested by another program, or another user of your
program. The purpose of clean up is to:
– Allow your program to run again successfully without requiring a re-IPL
– Allow the system to continue to run other work (consider especially other

work related to the failing program).
System locks, ENQs, and latches are examples of important resources shared by
other programs. A program should provide for the release of these resources if
an error occurs so that other programs can access them. Releasing resources is
especially important if your program is a service routine. A service routine must
release resources before returning to its caller, so the caller does not end up
holding resources that it did not request.

Note: Locks, ENQs, and latches are all used for serialization. See Chapter 4,
“Serialization,” on page 33 for more information about serialization.

Chapter 18. Providing recovery 337

Another resource a program should release is any virtual storage it obtained, so
that the storage becomes available to other programs. Note that the most
important storage to release is common storage.
Recovery routines should also ensure the integrity of any data being accessed.
Consider the case of a database application that is responsible for protecting its
database resources. The application must ensure the integrity and consistency of
the data in the event an error occurs. Data changes that were made prior to the
error might have to be backed out from the database.

v Provides for communication between different processes.

An example of this would be a task that sends a request to another task. If the
second task encounters an error, a recovery routine could inform the first task
that its request will not be fulfilled.
When dealing with a multi-tasking environment, you must plan your recovery
in terms of the multiple tasks involved. You must have a cohesive scheme that
provides recovery for the set of tasks rather than thinking only in terms of a
single task.

v Is a way to help you determine what went wrong when an error occurs in
your program.

Recovery routines can do such things as save serviceability data, request
recording of an error in the logrec data set, and request dumps. Each of these
actions help you determine what went wrong in your program, and each is
explained in greater detail later in this information. Note that the recovery
routine must provide whatever serviceability data it wants the system to record.

v Facilitates validity checking of user parameters.

Consider the case of a program that must verify input from its callers. The
program does parameter validation, but might not catch all variations. For
example, the caller might pass the address of an input data area that appears to
be valid; however, the caller did not have access to that storage. When the
program attempts to update the data area, a protection exception occurs. A
recovery routine could intercept this error, and allow the program to pass back a
return code to the caller indicating the input was not valid.
Providing recovery in a case like this improves the reliability of your program.

If you do not provide recovery for your program, and your program encounters an
error, MVS handles the problem to some extent, but the result is that your program
ends before you expected it to, and application resources might not be cleaned up.

Understanding errors in MVS
Certain errors, which your program or the system can detect, trigger the system to
interrupt your program and pass control to your recovery routine (or routines) if
you have any; if you do not have any recovery routines, the system abnormally
ends your program. This information uses the term abnormal end when your
program ends for either of the following reasons:
v Your program encounters an error for which it has no recovery routines
v Your program encounters an error for which its recovery routines are not

successful.

The errors for which you, or the system, might want to interrupt your program are
generally those that might degrade the system or destroy data.

The following are some examples of errors that would cause your recovery routine
(if you have one) to get control:

338 z/OS V2R2 MVS Authorized Assembler Services Guide

v Unanticipated program checks (except those resolved by SPIE or ESPIE routines;
see Chapter 19, “Processing program interruptions (SPIE, ESPIE),” on page 421
and “Program Interruption Services” in z/OS MVS Programming: Assembler
Services Guide for information about SPIE and ESPIE routines.)

v Machine checks (such as a storage error that occurs while your program is
running)

v Various types of CANCEL (such as operator or time out)
v An error when issuing an MVS macro or callable service (for example,

specifying parameters that are not valid)

Each of the above errors has associated with it one or more system completion
codes. All system completion codes are described in z/OS MVS System Codes. You
can write your recovery routine to specifically handle one or more of these system
completion codes, or define your own user completion codes and handle one or
more of them. Completion codes associated with errors are also referred to as
abend codes.

As stated earlier, the system can detect errors, but your program also can detect
errors and request that the system pass control to recovery routines. To do so, your
program can issue either the ABEND macro or the CALLRTM macro.

Use the ABEND macro to request recovery processing on behalf of the current unit
of work. Your program might choose to issue the ABEND macro if it detects an
impossible or illogical situation and cannot proceed further. For example, your
program might be passed parameters that are not valid, or might detect something
in the environment that is not valid. Your program might also choose to issue the
ABEND macro so that its recovery routine can get control to save serviceability
information.

Use the CALLRTM macro to request recovery processing on behalf of a particular
task or address space. Your program might do this if, for example, the program is
sharing resources with another task, and that task appears to have stopped
processing while holding an exclusive ENQ on a resource. Your program might
issue the CALLRTM macro to signal the system to pass control to a recovery
routine so the resource can be freed.

Understanding recovery routine states
In this information, recovery routines can be in one of the following states:
v Defined

A recovery routine is defined when you make it known to the system. For
example, you might issue a macro on which you specify a particular recovery
routine. At the point of issuing that macro, the recovery routine is defined to the
system.

v Activated

A recovery routine is activated when it is available to receive control; if an error
occurs, the system can pass control to an activated recovery routine. Depending
on the type of recovery routine, it might be defined to the system but not yet
activated. Some recovery routines are both defined and activated by issuing a
single macro.

v In control

A recovery routine is in control when it is running; an error has occurred and
the system passed control to the recovery routine.

v No longer in control

Chapter 18. Providing recovery 339

A recovery routine is no longer in control when it returns control to the system.
The recovery routine returns control either by requesting to percolate or retry
and issuing a BR 14 instruction, or by encountering an error itself.

v Deactivated

A recovery routine is deactivated when it is no longer available to receive
control; if an error occurs, the system will not pass control to a deactivated
recovery routine. Depending on the type of recovery routine, it might be
deactivated but still defined to the system. For some recovery routines, issuing a
single macro results in the routine becoming both deactivated and no longer
defined.

v No longer defined

A recovery routine is no longer defined when it is no longer known to the
system. The routine might still exist and be in virtual storage, but the system no
longer recognizes it as a recovery routine.

Understanding the various routines in a recovery environment
This information discusses the following different types of routines that interact in
a recovery environment:
v Mainline routine
v Recovery routine
v Retry routine (also known as a retry point)
v Resource manager.

All of these routines are user-written routines.

Mainline routine
The mainline routine is that portion of your program that does the work, or
provides the required function. In general, the mainline routine defines and
activates the recovery routine. Before returning to its caller, the mainline should
also deactivate the recovery routine and request that it be no longer defined. When
an error occurs in the mainline routine, the system passes control to the recovery
routine.

Recovery routine
A recovery routine is the routine to which the system passes control when an error
occurs in the mainline routine. The recovery routine's objective is to intercept the
error and potentially perform one or more of the following tasks:
v Eliminate or minimize the effects of the error
v Allow the mainline routine to resume normal processing
v Clean up resources
v Communicate with other programs as appropriate
v Provide serviceability data
v Request recording in the logrec data set
v Request a dump
v Validate user parameters
v Provide one or more recovery routines for itself.

The recovery routine can be an entry point in your program that processes only
when an error occurs, or it can be a separate routine that gets control when the
error occurs.

340 z/OS V2R2 MVS Authorized Assembler Services Guide

Retry routine
A retry routine is essentially an extension of the mainline routine. When an error
occurs, the system passes control to your recovery routine, which can then request
the system to pass control back to the mainline routine to resume processing. That
portion of the mainline that gets control back is referred to as the retry routine.
When the retry routine gets control, it is as if the mainline routine branched there
after encountering the error; to the mainline routine, it appears as though the error
never occurred.

The retry routine does whatever processing your mainline routine would continue
doing at that point.

Once the retry routine is running, if another error occurs, the system again passes
control to your recovery routine, just as it did when the mainline routine
encountered an error.

Resource manager
A resource manager is a routine you can write to handle the clean up of resources
owned by a task or address space. Resource managers get control only when all
programs running under a particular task or address space have ended. Resource
managers get control when a task or address space is ending either normally or
abnormally.

Choosing the appropriate recovery routine
Once you have decided to provide recovery for your program, you need to decide
what type of recovery to provide. Recovery routines fall into two broad categories:
ESTAE-type recovery routines and FRRs. In turn, there are different types of
ESTAE-type recovery routines. This information describes the different types of
recovery routines, and for each type describes how you define it, activate it,
deactivate it, and request that it be no longer defined. A summary of this
information is in Table 39 on page 344.

When you provide one or more recovery routines for your program, you have the
opportunity to identify a user parameter area for the system to pass from the
mainline routine to the recovery routine. Creating such a parameter area with
information for the recovery routine is a very important part of providing recovery.
See “Setting up, passing, and accessing the parameter area” on page 356 for more
information about what this parameter area should contain, and how to pass it.

Choosing an ESTAE-type recovery routine
Use ESTAE-type recovery routines to protect programs running under enabled,
unlocked tasks (EUTs). ESTAE-type recovery routines can be in either problem
state or supervisor state, and can have any PSW key.

Programs that are disabled, hold locks, or are in SRB mode cannot use ESTAE-type
recovery routines. If your program obtains a lock after you activate an ESTAE-type
recovery routine, and then encounters an error causing your recovery routine to
get control, the system releases the lock. You could use an ESTAE-type recovery
routine in this situation if your program can tolerate losing its lock. For example,
the lock might be used only to protect a queue from change while it is being read.

Whatever is said about ESTAE-type recovery routines throughout this information
applies to recovery routines defined in all of the following ways, unless stated
otherwise:
v STAE, ESTAE, and ESTAEX macros

Chapter 18. Providing recovery 341

v ATTACH and ATTACHX macros with STAI and ESTAI parameters
v ETDEF macro (ARR parameter, together with the ETCRE macro) or IEAARR

macro
v FESTAE macro.

The following describes the recovery routines you can define with each of the
above macros:
v STAE, ESTAE, and ESTAEX macros

To provide recovery to protect itself and any other programs running under the
same task, a program can issue either the STAE, ESTAE, or ESTAEX macro with
the CT parameter. Each of these macros both defines and activates the recovery
routine. The recovery routine is defined and activated until one of the following
events occurs:
– You deactivate it and request that it be no longer defined (issue STAE 0,

ESTAE 0, or ESTAEX 0).
– The recovery routine fails to or chooses not to retry (explained under

“Understanding recovery routine options” on page 344).
– The request block (RB) under which the caller of the macro is running

terminates.
A program cannot protect other tasks with recovery routines defined through
these macros.
IBM recommends you always use IEAARR or ESTAEX unless your program
and your recovery routine are in 24-bit addressing mode, or your program
requires a branch entry. In these cases, you should use ESTAE. ESTAE and
ESTAEX provide the same function, except that ESTAEX can be issued in AR
ASC mode and in cross memory mode.
The remainder of this information refers to the recovery routines you define and
activate through the ESTAE and ESTAEX macros as ESTAE routines or ESTAEX
routines, respectively.

v ATTACH and ATTACHX macros with STAI and ESTAI parameters

To attach a task and provide recovery to protect the attached task and all of its
subtasks, a program can issue either the ATTACH or the ATTACHX macro with
either the STAI or the ESTAI parameter. You define the recovery routine when
you issue the macro. The recovery routine is not activated until the attached task
gets control. The recovery routine remains activated as long as the attached task
is still running, or until the recovery routine fails to or chooses not to retry. The
system deactivates the recovery routine when the attached task ends. At that
point, the recovery routine is no longer defined.
The program attaching the task is not protected by the recovery defined in this
manner. Only the attached task and its subtasks are protected.
IBM recommends you always use the ESTAI, rather than the STAI, parameter
on ATTACHX, rather than ATTACH. ATTACH and ATTACHX provide the same
function, except that ATTACHX can be issued in AR ASC mode.
The remainder of this information refers to the recovery routines you define
through ATTACHX with ESTAI as ESTAI routines. All references to the
ATTACHX macro apply also to the ATTACH macro.

v ETDEF macro (ARR parameter, together with the ETCRE macro) or IEAARR
macro

To provide recovery for a stacking PC routine, the program defining the stacking
PC routine can use the ARR parameter on the ETDEF macro to identify an
associated recovery routine (ARR). Using the ETDEF macro with the ARR
parameter, together with the ETCRE macro, defines the ARR to the system. You

342 z/OS V2R2 MVS Authorized Assembler Services Guide

can also cause the system to establish an ARR to cover a target routine by
issuing the IEAARR macro. When you issue the PC instruction to give control to
the stacking PC routine, the ARR is activated. The ARR remains activated, and
cannot be deactivated, while the stacking PC routine is running. The ARR
receives control if the stacking PC routine encounters an error. The ARR is
deactivated when the stacking PC routine issues the PR instruction to return
control to its caller. When you issue the ETDES macro, the ARR is no longer
defined.

Note: Use an ARR only if the stacking PC routine is always entered in enabled,
unlocked task mode. See “Using ARRs” on page 369 for more information about
ARRs.

v FESTAE macro

The recovery routine you define with the FESTAE macro is similar to an ESTAE
routine, but is limited to types 2, 3, and 4 SVCs that require recovery with
minimal processor overhead.
You both define and activate the recovery routine by issuing the FESTAE macro
with the EXITADR parameter. You deactivate the recovery routine and request
that it be no longer defined by issuing FESTAE with the 0,WRKREG parameter.
The remainder of this information refers to the recovery routines you define
through the FESTAE macro as FESTAE routines. See “Providing recovery with
minimal processor overhead (FESTAE macro)” on page 400 for more information
about using FESTAE.

In summary, ESTAE-type recovery routines include ESTAE and ESTAEX routines,
ESTAI routines, ARRs, and FESTAE routines.

All ESTAE-type recovery routines handle the Floating Point Registers (FPRs) and
Floating Point Control (FPC) register the same as for FRRs (see below), except that
the DXC field in the Floating Point Control register could have been altered by an
asynchronous exit. Also, in general ESTAE-type routines should not depend on the
FPRs and FPC register containing the time-of-error values.

Choosing an FRR
A supervisor state and PSW key 0-7 program must choose an FRR, as opposed to
an ESTAE-type recovery routine, if the program is disabled, locked, or in SRB
mode. To both define and activate the FRR, the program issues the SETFRR macro.

Note: Supervisor state and PSW key 0-7 programs can be protected by FRRs, but
the program must be in supervisor state and PSW key 0 when it issues the
SETFRR macro.

A supervisor state and PSW key 0-7 program can also choose an FRR if it is
enabled, unlocked, and in task mode, by specifying EUT=YES on SETFRR. An FRR
defined in this way is called an EUT FRR. A program might choose an EUT FRR if
the circumstances under which the program will get control are unknown. If you
do not know if the program will get control in task or SRB mode, whether it will
be disabled, or whether it will be holding a lock, you can use an EUT FRR.

Once a program activates an EUT FRR, the program cannot issue any SVCs, and
cannot handle asynchronous interrupts (the system does not dispatch any new
asynchronous exits on that task until all FRRs for the task have been deactivated.)

An FRR is activated until one of the following events occurs:
v You deactivate it and request that it be no longer defined (issue SETFRR D)

Chapter 18. Providing recovery 343

v The FRR fails to or chooses not to retry (explained under “Understanding
recovery routine options”)

v The unit of work (either task or SRB) under which the caller of SETFRR is
running terminates.

From the time an FRR is activated until the time it is deactivated, at least one of
the following must be true:
v The unit of work holds a lock
v The unit of work is running disabled
v The unit of work is an SRB
v The FRR is an EUT FRR.

If at any time none of the above conditions are met, then the results are
unpredictable, and your program might lose its FRR recovery. Note also that any
FRR entered disabled must remain disabled.

Floating point implications
When working under the FRR recovery routine state, the first recovery routine will
normally see the time-of-error Floating Point Registers (FPRs) and the Floating
Point Control (FPC) register. The DXC value is provided in the SDWA. It is this
value that should be used rather than the copy in the Floating Point Control
register.

If control can pass to other recovery routines, and the first recovery routine
modifies any of the FPRs or FPC register, it is responsible to save and restore the
time-of-error FPRs and FPC register.

If retry is to be done, a recovery routine can (manually) change the value(s) of the
FPR(s) and FPC register. Changes to the non-volatile fields (i.e., the IEEE settings)
in the FPC register must be made carefully since this could affect the processing of
the rest of the current program, and possibly subsequent programs.

Summary of recovery routine states
The following table summarizes, for each type of recovery routine, when the
recovery routine is defined, activated, deactivated, and no longer defined.

Table 39. Summary of Recovery Routine States

Recovery routine Defined Activated Deactivated No longer defined

ESTAE ESTAE CT ESTAE CT ESTAE 0 ESTAE 0

ESTAEX ESTAEX CT ESTAEX CT ESTAEX 0 ESTAEX 0

ESTAI ATTACHX ESTAI Attached task gets
control

Attached task ends Attached task ends

ARR ETDEF ARR and
ETCRE

PC instruction PR instruction ETDES

ARR IEAARR system-issued PC
instruction

system PR
instruction

system PR
instruction

FESTAE FESTAE FESTAE FESTAE 0 FESTAE 0

FRR SETFRR A SETFRR A SETFRR D SETFRR D

Understanding recovery routine options
A recovery routine has two basic options: the routine can either retry or it can
percolate.

344 z/OS V2R2 MVS Authorized Assembler Services Guide

Retry is the attempt to resume processing at some point in the unit of work that
encountered the error. The recovery routine does something to circumvent or
repair the error, and requests that the system pass control to a retry routine to
attempt to continue with normal processing.

Percolate is the opposite of retry. To percolate means to continue with error
processing. A recovery routine percolates under one of the following circumstances:
v The system does not allow a retry
v The recovery routine chooses not to retry, perhaps because the environment is so

damaged that the routine cannot circumvent or repair the error, or perhaps
because the recovery routine was designed only to capture serviceability data,
and is not intended to retry.

When a recovery routine percolates, the system checks to see if any other recovery
routines are activated. If so, the system passes control to that recovery routine,
which then has the option to either retry or percolate. Think of the process of
percolation, then, as the system passing control to one recovery routine after
another.

The system gives control to recovery routines in the following order:
1. FRRs, in last-in-first-out (LIFO) order, which means the most recently activated

routine gets control first
2. ESTAE-type recovery routines that are not ESTAI routines, in LIFO order
3. ESTAI routines, in LIFO order.

See “Providing multiple recovery routines” on page 403 for more information
about having multiple recovery routines.

If no other recovery routines are activated, or all recovery routines percolate, the
system proceeds to abnormally end your program.

Understanding how routines in a recovery environment
interact

Figure 56 on page 346 is a very simplified illustration of how routines in a recovery
environment interact. In this figure, only one recovery routine exists, and it is an
ESTAE-type recovery routine. The following sequence of events might occur:
1. The mainline routine encounters an error.
2. The system gets control.
3. The system looks for recovery routines and finds an ESTAE-type recovery

routine called ESTAEX.
4. The ESTAEX routine either retries or percolates.

a. If the ESTAEX routine retries, it returns control to a retry point in the
mainline routine. The mainline routine continues processing.

b. If the ESTAEX routine percolates, the system gets control and abnormally
ends the mainline routine; then the system gives control to any resource
managers that are present.

Chapter 18. Providing recovery 345

Figure 57 on page 347 shows a more complex situation. Several recovery routines
exist, and each one that is entered has the opportunity to retry or to percolate. The
following sequence of events might occur if all recovery routines percolate:
1. The mainline routine encounters an error.
2. The system looks for recovery routines and finds that the latest FRR created is

FRR(3).
3. The system gives control to FRR(3) first.
4. FRR(3) percolates to FRR(2), which percolates to FRR(1).
5. FRR(1) also percolates, so the system looks for ESTAE-type recovery routines,

and finds that ESTAEX(4) was the last one created.
6. The system gives control to ESTAEX(4) first.
7. ESTAEX(4) percolates to ARR(3), which percolates to ESTAE(2), which

percolates to ESTAI(1).
8. ESTAI(1) also percolates, and no other recovery routines are activated, so the

system abnormally ends the mainline routine, and passes control to any
resource managers that are present.

Had any of the recovery routines decided to retry, the system would have returned
control to the retry point, and the mainline routine might have ended normally.

Mainline
Routine

Retry Point

Error occurs -
The system gets control

The system abnormally
ends the mainline routine

End
Normally

ESTAEX
Routine

Retry

Percolate

Figure 56. Mainline Routine with One Recovery Routine

346 z/OS V2R2 MVS Authorized Assembler Services Guide

Writing recovery routines
This information has discussed general recovery concepts, including how to decide
what type of recovery you need, and how to provide that recovery. To write the
recovery routines that you provide, you must understand all of the following:
v What a recovery routine is supposed to do.

ESTAI(1)

Mainline
Routine

Retry Point

End
Normally

The system
gives

control to
FRRs first

The system
gives control

to ESTAE-type
routines

after FRRs

Resource
Manager
Routine

Error occurs
The system gets control

Retry

Retry

All FRRs percolate

All ESTAE-type routines percolate -
The system abnormally ends the mainline routine

ESTAI(1)

FRR(1)

FRR(2)

FRR(3)

ESTAI(1)

ESTAI(1)

ESTAI(1)

ESTAE(2)

ARR(3)

ESTAI(1)

ESTAI(1)

ESTAEX(4)

.

.

.

.

Figure 57. Mainline Routine with Several Recovery Routines

Chapter 18. Providing recovery 347

So far we talked about how recovery routines can either retry or percolate. But,
they do a lot more than that. We also talked about recovery routines correcting
or repairing errors, but we have not said how exactly they go about doing that.

v How the recovery routine communicates with the mainline routine, the retry
routine, and the system.

The means of communication available to a recovery routine are:
– A user parameter area, built by the mainline routine and passed to the

recovery routine.
– A data area called the system diagnostic work area (SDWA), which is

provided by the system. The recovery routine communicates with the system,
with other recovery routines, and with the retry routine through the SDWA.
The recovery routine uses the SETRP macro to update information in the
SDWA.

– Registers, when no SDWA is provided.
v The special considerations you must make when writing an ESTAE-type

recovery routine as opposed to an FRR.

One important consideration is the presence of an SDWA. When an FRR gets
control, the system always provides an SDWA; that is not true for an
ESTAE-type recovery routine. The case where an SDWA is not provided is rare;
nevertheless, when you design an ESTAE-type recovery routine, you must allow
for the possibility of not receiving an SDWA.
Remember also that programs running disabled, holding a lock, or in SRB mode
must use an FRR rather than an ESTAE-type recovery routine.
Other special considerations for ESTAE-type recovery routines include RB
considerations, linkage stack considerations, and outstanding I/Os at time of
failure.

Note: When an error occurs for which the system passes control to your recovery
routine, the recovery routine must be in virtual storage. It can either be an entry
point in your program, or a separate routine. You are responsible for ensuring that
the recovery routine is in virtual storage when needed.

Understanding what recovery routines do
The following is a list of some of the things a recovery routine should do if the
recovery is to be effective.

The items are arranged in a way that suggests the order in which you might do
them; however, you must decide yourself the order that would work best for your
particular routine.
v Preserve the return address to the system.
v Check for the presence of an SDWA (for ESTAE-type recovery routines only).
v Establish addressability to the parameter area passed by the mainline routine.

How you do that depends on whether an SDWA is present.
v Check the contents of important fields in the SDWA.

– Determine the location of the parameter area.
– Determine why the routine was entered.
– Determine if this is the first recovery routine to get control.

v Check the contents of the parameter area passed by the mainline.
– Determine if this is a repeated error (to avoid recursion).
– Determine when and where the error occurred.

348 z/OS V2R2 MVS Authorized Assembler Services Guide

v Provide information to help determine the cause of the error:
– Save serviceability data in the SDWA.
– Request recording in the logrec data set.
– Request a dump of storage.

v Try to correct or minimize the effects of the error.
v Determine whether the recovery routine can retry, decide whether to retry or

percolate, and take the appropriate actions (such as cleaning up resources).

Saving the return address to the system
When writing a recovery routine, you must save the return address to the system,
which you find in general purpose register (GPR) 14. The system sets up the return
address so that the recovery routine can return, at the appropriate time, using a BR
14 instruction.

Checking for the SDWA
Even though this applies only to ESTAE-type recovery routines, it is important
enough to emphasize here in the general information.

ESTAE-type recovery routines do not always receive an SDWA. If the system
cannot obtain storage for an SDWA, the system does not provide one. The case
where an SDWA is not provided is rare. Nevertheless, when you design an
ESTAE-type recovery routine, you must allow for the possibility of not receiving an
SDWA; almost every action an ESTAE-type recovery routine takes must be set up
differently to handle the two possibilities.

To check for the presence of the SDWA, the recovery routine checks the contents of
GPR 0. If GPR 0 contains 12 (X'0C') the system could not obtain an SDWA. When
GPR 0 contains any value other than 12, an SDWA is present, and its address is in
GPR 1. When the system provides an SDWA, the system also provides a register
save area whose address is in GPR 13.

If an SDWA was not provided GPR 13 does not point to a save area, and your
routine must not use the area pointed to by GPR 13.

FRRs do not have to check for the presence of an SDWA. When FRRs get control,
the system always provides an SDWA.

Establishing addressability to the parameter area
The recovery routine also must establish addressability to the parameter area
passed by the mainline routine. To determine the location of the parameter area:
v If an SDWA is present, the recovery routine checks either the contents of

SDWAPARM or the contents of GPR/AR 2. GPR 2 contains the address of the
parameter area, and for AR-mode callers, AR 2 contains the ALET.

v If no SDWA is present, the recovery routine checks the contents of GPR/AR 2.
GPR 2 contains the address of the parameter area, and for AR-mode callers, AR
2 contains the ALET.

Refer to “Setting up, passing, and accessing the parameter area” on page 356 for
further detail on accessing the parameter area.

The following are examples of information a mainline routine can pass to a
recovery routine through the parameter area:
v A dynamic storage area

Chapter 18. Providing recovery 349

v An input parameter list (that is, a parameter list that might have been passed to
the mainline routine)

v The addresses of important data areas.

Checking important fields in the SDWA
Assuming an SDWA is present, your routine can obtain a great deal of information
from this data area. Some of the key information a recovery routine can check for
in the SDWA includes:
v Why the routine was entered.

The routine can check the SDWACMPC field, which contains the completion
code that existed when the system gave control to the routine, and the
SDWACRC field, which contains the reason code associated with the completion
code. SDWACRC contains a reason code only if the SDWARCF bit is on.

v The location of the parameter area that was passed by the mainline.

The routine can check the SDWAPARM field, which provides the information
the routine needs to locate the parameter area. The contents of this field vary
depending on the way in which the recovery was defined.

v Whether this is the first recovery routine to get control.

If the SDWAPERC bit is off, this recovery routine is the first to get control. If the
SDWAPERC bit is on, percolation has occurred.
The first recovery routine to get control usually has a more direct relationship
with the error; being the first recovery routine to get control for an error can be
an indication that the error occurred in the mainline routine that activated this
particular recovery routine, rather than in a routine that was subsequently
called.
This information can be useful in determining what action the recovery routine
should take. A recovery routine is more likely to take corrective action or
capture serviceability data if it is the first to get control for an error. Subsequent
recovery routines are further removed from the error, and might limit their
activities to releasing resources, or attempting a retry if possible.
The SDWAPERC bit is significant only between similar types of recovery
routines. An ESTAE-type recovery routine can tell only if another ESTAE-type
recovery routine has percolated; an FRR can tell only if another FRR has
percolated.

See “Important fields in the SDWA” on page 361 for a list of some of the fields in
the SDWA, and an explanation of their contents.

Checking the contents of the parameter area
Generally the mainline routine sets up a parameter area containing information for
use by the recovery routine. Key information that a recovery routine might
determine from the parameter area includes:
v When and where the error occurred
v Whether this is a repeated error.

The recovery routine can tell when and where the error occurred through
“footprints,” a technique explained under “Deciding what to include in the
parameter area” on page 356. Footprints can help the recovery routine to avoid
getting into a loop in which the routine requests a retry, and the same error occurs
again (recursion). For example, if the recovery routine supplies a bad retry address
to the system, and the processing of the first instruction at the given address

350 z/OS V2R2 MVS Authorized Assembler Services Guide

causes a program check, the first recovery routine to get control is the one that just
requested the retry. If the recovery routine requests another retry at the same
address, the loop is created.

Note: For an FRR, the system initializes the parameter area to zeros. If an FRR
receives control when the parameter area still contains zeros, the error probably
occurred before the mainline code initialized the parameter area.

See “Setting up, passing, and accessing the parameter area” on page 356 for more
information about what the parameter area can contain, and the techniques you
can use to provide the most useful information to the recovery routine.

Saving serviceability data
One of the objectives of providing recovery is to obtain as much information as
possible to help you determine what went wrong. The SDWA has certain areas
where the recovery routine can save such information. Your recovery routine can
update the SDWA with serviceability information in three different ways:
v By issuing the SETRP macro with the RECPARM parameter. Use the RECPARM

parameter to supply the load module name, the active CSECT name, and the
recovery routine CSECT name. See “Using the SETRP macro to update the
SDWA” on page 360 for more information about using SETRP.

v By issuing the VRADATA macro to update the SDWA variable recording area.
See the VRADATA macro in z/OS MVS Programming: Assembler Services Reference
IAR-XCT for more information.

v By directly manipulating other fields in the SDWA. Important fields to fill in are
SDWACID, SDWASC, SDWAMLVL, and SDWARRL. See “Important fields in the
SDWA” on page 361 for a description of each of these fields.

Part of saving serviceability data includes providing information for dump analysis
and elimination (DAE). DAE depends on information that users provide in
recovery routines to construct symptom strings needed to describe software
failures. DAE uses these symptom strings to analyze dumps and suppress
duplicate dumps as requested. You should provide information for DAE prior to
requesting a dump of storage. See “Suppressing SVC dumps that duplicate
previous SVC dumps” on page 432 for more information about DAE and dump
suppression.

Recording in the Logrec data set
The system records the entire SDWA (including the fixed length base, the variable
length recording area, and the recordable extensions) in the logrec data set under
the following circumstances, depending on the type of recovery routine:
v FRRs

The system automatically records the SDWA in the logrec data set for the first
FRR, unless the FRR specifies RECORD=NO on the SETRP macro. Subsequent
FRRs that require recording in the logrec data set must specify RECORD=YES on
SETRP.

v ESTAE-type recovery routines

The system does not automatically record the SDWA in the logrec data set for
any ESTAE-type recovery routines. The mainline routine can request recording
through the RECORD parameters on the ESTAE, ESTAEX, and FESTAE macros.
The recovery routine can request recording through the RECORD parameter on
the SETRP macro.
The recovery routine can also override whatever the mainline routine requests. If
the recovery routine specifies RECORD=YES (or RECORD=NO) on SETRP, the

Chapter 18. Providing recovery 351

system will (or will not) record the SDWA in the logrec data set, regardless of
what the mainline routine specifies on ESTAE, ESTAEX, or FESTAE. The
recovery routine can honor what the mainline routine requests by specifying
RECORD=IGNORE on SETRP.

Note: The routine that defines an ESTAI routine or an ARR cannot request
recording. ESTAI routines and ARRs can request recording only through the
SETRP macro.

Requesting a dump
Your recovery routine can also request a dump of storage to help determine the
cause of the error. In most cases, the system does not automatically request dumps
on behalf of your program. To request an ABEND dump, the recovery routine can
issue the SETRP macro with the DUMP=YES parameter. To request an SVC dump,
the recovery routine can issue the SDUMPX (or SDUMP) macro.

“Dumping Virtual Storage (ABEND, SNAPX, and SNAP Macros” in z/OS MVS
Programming: Assembler Services Guide contains information about ABEND dumps.
Chapter 20, “Dumping virtual storage (SDUMPX, SDUMP, and IEATDUMP
macros),” on page 425 and Chapter 19, “Processing program interruptions (SPIE,
ESPIE),” on page 421 contain information about SVC dumps.

Before requesting a dump of storage, the recovery routine should check the
SDWAEAS bit. The SDWAEAS bit is on when a previous recovery routine has
provided sufficient diagnostic data related to this error. The recovery routine that
analyzes the problem and captures sufficient diagnostic data is responsible for
setting the SDWAEAS bit so that subsequent recovery routines know they do not
have to capture any further data. If the recovery routine issues SDUMPX (or
SDUMP), the system sets the SDWAEAS bit automatically.

Note that if your program calls a system service (by issuing a macro or callable
service), that system service might encounter a user-induced error and end
abnormally. Generally, the system does not take dumps for user-induced errors. If
you require such a dump, then it is your responsibility to request one in your
recovery routine.

Correcting or minimizing the error
Another important activity for a recovery routine is to attempt to correct or
minimize the error. What the recovery routine actually does to correct or minimize
the error depends on what the mainline routine is doing and what the error is.
Some examples of possible situations where the recovery routine could take action
are the following:
v The mainline routine might be working with a queue of data areas. The recovery

routine might be able to scan the queue and determine if one or more of the
data areas contains information that is not valid.
For example, one of the data areas might contain an address that is not valid.
Or, the mainline routine might have set up the data areas with some sort of
validating information that could be checked, and possibly corrected. Certain
data areas might have to be deleted from the queue, or the entire queue might
have to be deleted and rebuilt.

v The mainline routine might be running under a task that is communicating with
another task when an error occurs. The recovery routine might then take the
action of alerting the other task that a problem exists, so the other task does not
wait for any further communication.

352 z/OS V2R2 MVS Authorized Assembler Services Guide

v The mainline routine might have initiated I/O, and the recovery routine might
have to ensure that the I/O completes to protect the integrity of the I/O
resources.

v The recovery routine might back out changes made to a database to ensure its
integrity.

Deciding to retry or percolate
Under certain circumstances (such as CANCEL), the system does not allow a retry.
The SDWACLUP bit is on when the system prohibits a retry, and off when the
system allows a retry.

If a recovery routine requests retry when it is not allowed, the system ignores the
request and continues with percolation.

A recovery routine must determine whether it will attempt a retry. The
determination might be very simple: if the SDWACLUP bit is on, retry is not even
an option. But if retry is an option, the routine must make the decision based on
the information it has gathered in the preceding steps.

By no means is a recovery routine required to attempt a retry, even when one is
permitted. The recovery routine might decide not to retry if no SDWA is present,
going on the assumption that serious problems probably exist. The routine might
make the decision based on the particular completion code it finds in
SDWACMPC, or based on information in the parameter area, or based on how
successful the routine was in determining the cause of the error and fixing it.
Perhaps the environment is so badly damaged that repair is beyond the scope of
the recovery routine.

Once the decision is made, the recovery routine now does different things
depending on whether it will retry or percolate.

Note: If the recovery routine does not specify retry or percolate, the default is to
percolate.

Recovery routines that retry: When a recovery routine decides to retry, it should
do the following:
v Eliminate or minimize the cause of the error with complete or partial repair, as

explained above under “Correcting or minimizing the error” on page 352.
v Ensure that the retry routine's environment is restored. For example, restore

registers and re-establish addressability to mainline resources. See “Register
contents on entry to a retry routine” on page 377 for details about how a
recovery routine can control the register contents on entry to the retry routine.

v Know the condition of resources being held by the mainline. For example, the
recovery routine might have to acquire locks to repair data structures, back out
changes to data sets, and so on.

v For FRRs, decide what to do about locks that were acquired by the mainline and
are held on entry to the FRR. In general, the FRR's responsibility is to make sure
that all locks are freed, either by itself, or by the system. See “Special
considerations for FRRs” on page 371 for details about freeing locks held on
entry to an FRR. ESTAE-type recovery routines are not entered holding any
locks.

v If the recovery routine obtains any locks after it gets control, it should free them
before returning control to the system. If an FRR returns to the system holding

Chapter 18. Providing recovery 353

locks the FRR obtained, the system frees them. An ESTAE-type recovery routine
must free any locks it obtains before returning control to the system or an error
occurs.

v Indicate to the system that a retry is to be attempted. If an SDWA is present, the
recovery routine issues the SETRP macro with the RC=4 parameter to indicate
retry, and the RETADDR parameter to specify the address of the retry routine.
You can specify RC=4 even when the SDWACLUP bit is on, indicating that retry
is not allowed. If you do so, however, the system ignores the retry request.
If no SDWA is present, the recovery routine has to set a return code of 4 in GPR
15, and place the address of the retry routine in GPR 0.

v For an ESTAE-type recovery routine, decide whether to pass the SDWA to the
retry routine, and so indicate on the SETRP macro with the FRESDWA
parameter.

What the retry routine does: Once the retry routine gets control, it continues with
mainline processing, and can free resources, deactivate recovery routines, and so
on. As stated earlier, the retry routine is really an extension of the mainline routine,
and its purpose is to re-establish the mainline environment.

When the retry routine gets control, the following are true:
v The retry routine runs under the same unit of work that activated the recovery

routine. See “Special considerations for ESTAE-type recovery routines” on page
365 for further details related to ESTAE-type recovery routines.

v The retry routine might or might not have access to the SDWA, and the recovery
routine might or might not have directed that register contents be restored for
the retry routine.
For ESTAE-type recovery routines that specify FRESDWA=YES on SETRP, and
for all FRRs, the system frees the SDWA before entering the retry routine.
For ESTAE-type recovery routines that specify RETREGS=YES, and for all FRRs,
the system restores the registers from the SDWA.
For ESTAE-type recovery routines that specify FRESDWA=NO on SETRP, the
system does not free the SDWA, and the retry routine can access it. In that case,
the retry routine also has the responsibility of freeing the storage for the
SDWA when it is no longer needed. The subpool number and length to use to
free the storage are in the SDWA, in fields SDWASPID and SDWALNTH,
respectively.

Note: IBM recommends that the recovery routine use FRESDWA=YES on the
SETRP macro, thus alleviating the retry routine's responsibility to free the
SDWA. If your recovery routine retries multiple times and the SDWA is not
freed, out-of-storage failures can result.
When the retry routine is to free the SDWA, note that an ESTAE-type recovery
routine activated under PSW key 0 - 7 receives an SDWA in key 0 storage. If the
retry routine is running under a key other than key 0, it must do one of the
following:
– Issue the MODESET macro to switch into PSW key 0 before freeing the

SDWA.
– Free the SDWA using the STORAGE macro with the KEY parameter to

specify a storage key of 0.
The retry routine can determine what action the recovery routine took in regard
to freeing the SDWA and restoring registers by examining the contents of GPR 0:

354 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 40. Contents of GPR 0 on Entry to a Retry Routine

GPR 0 Contents Meaning

0 The system provided an SDWA. The recovery routine specified
RETREGS=NO and FRESDWA=NO. Registers are not restored from the
SDWA, and the retry routine must free the SDWA. GPR 1 contains the
address of the SDWA.

12 (X'0C') The system did not provide an SDWA.

20 (X'14') The system provided an SDWA. The recovery routine specified
RETREGS=NO and FRESDWA=YES. Registers are not restored from the
SDWA, and the retry routine does not have to free the SDWA.

Value restored from
SDWA (field SDWASR00)

The system provided an SDWA. The recovery routine specified
RETREGS=YES, and either FRESDWA=NO or FRESDWA=YES. If the
recovery routine specifies FRESDWA=NO, the recovery routine must alert
the retry routine to free the SDWA. Some sort of protocol must be
established between the recovery routine and the retry routine. For
example, the recovery routine can set a unique value in SDWASR00 (the
field that represents GPR 0 in SDWASRSV) to distinguish this case from
those above where GPR 0 contains either 0, 12, or 20. The recovery routine
can pass the address of the SDWA to the retry routine in a parameter area
(use the parameter area pointed to by SDWAPARM) or in a register
(consider using register 0).

For complete details about register contents see “Understanding the recovery
environment” on page 373.

v The recovery routine that requested the retry is still activated and can be entered
again, so be aware of the possibility of looping back to the same recovery
routine. That recovery routine remains activated and can be entered again unless
the recovery routine issued SETRP with REMREC=YES. If the recovery routine
specified REMREC=YES, the system deactivated that recovery routine before
giving control to the retry routine.

v Any previous recovery routines (those that percolated to the recovery routine
that requested the retry) are deactivated.

Note:

1. You can have as many retry points in your program as needed, and you can
change the designated retry point as your mainline processing continues.

2. The retry routine can be a separate routine. The only requirement is that it
must be in virtual storage. You are responsible for ensuring that the retry
routine is in virtual storage when needed.

Recovery routines that percolate: When a recovery routine decides to percolate
(or takes the default), it should do the following:
v Release resources that were acquired by the mainline, such as:

– Storage that should be explicitly freed (for example, CSA)
– ENQs
– Locks (the same rules regarding locks apply to recovery routines that

percolate as those described under “Recovery routines that retry” on page
353.)

v Repair the cause of the error, if possible.
v Indicate the percolate option to the system. If an SDWA is present, the recovery

routine issues the SETRP macro with the RC=0 parameter to indicate
percolation. If no SDWA is present, the recovery routine has to set a return code
of 0 in register 15.

Note:

Chapter 18. Providing recovery 355

1. Once a recovery routine percolates, it is no longer activated; it cannot receive
control again for this error.

2. An ESTAI routine can request that the system not give control to any further
ESTAI routines by specifying RC=16 on the SETRP macro. The system then
abnormally ends the task.

Understanding the means of communication
An important aspect of writing a recovery routine is understanding how the
recovery routine communicates with the mainline routine, the retry routine, and
the system. This information discusses the following means of communication:
v Parameter area

The parameter area is set up by the mainline routine and passed to the recovery
routine. See “Setting up, passing, and accessing the parameter area.”

v SDWA

The SDWA provides information to the recovery routine, and the recovery
routine can communicate with the system, and with subsequent recovery
routines, by placing information into the SDWA. See “Using the SDWA” on page
360.

v Registers

When a recovery routine gets control, GPR 0 indicates whether an SDWA is
available. When an SDWA is not available, the recovery routine can
communicate its recovery options to the system only through registers. Aside
from this circumstance, the recovery routine cannot use registers to
communicate with the system; the routine must use the SDWA. Also, the
mainline routine should not place information in registers and expect that
information to be in the registers when the recovery routine gets control.
Complete details about registers are in “Understanding the recovery
environment” on page 373.

You should understand that communications are handled differently depending on
the following circumstances:
v Whether your recovery routine received an SDWA
v Whether your recovery routine is an ESTAE-type or an FRR
v Whether the communication is with the recovery routine or with the retry

routine.

Setting up, passing, and accessing the parameter area
The primary means of communication between the mainline routine and the
recovery routine is the parameter area that the mainline sets up and passes to the
recovery routine. This information discusses:
v What your mainline routine should put into the parameter area
v How your mainline passes the parameter area to the recovery routine
v How your recovery routine accesses the parameter area.

Deciding what to include in the parameter area: Your mainline routine can put
whatever information it wants in the parameter area. Remember that the object is
to provide the recovery routine with as much useful information as possible so the
recovery routine can be effective. Here are some suggestions for important
information to place in the parameter area:
v The base registers for the mainline. The recovery routine must be able to

establish addressability to whatever resources the mainline is holding.
v The addresses of all dynamically acquired storage.

356 z/OS V2R2 MVS Authorized Assembler Services Guide

v The location of a work area for use by the recovery routine.
v Indications of what resources are held or serialized, such as ENQs, locks, data

sets, and so on.
v Footprints indicating the processing being performed by the mainline when the

error occurred. Using footprints is a technique whereby the mainline sets bits as
it goes through its processing. When the recovery routine gets control, it can
check the parameter area to see which bits have been turned on, and thus can
tell how far along the mainline was. The recovery routine can pinpoint what the
mainline was doing at the time of error. If the mainline was done with its
processing when the error occurred, the recovery routine might not need to
retry, but might just clean up resources.

v An indication of whether a retry is desired.
v The input parameter list to the mainline. When the mainline received control, it

might have received an input parameter list. The mainline can preserve this in
the parameter area intended for use by the recovery routine. The recovery
routine can then inspect the input parameter list to determine if the mainline
received input that was not valid.

v Whatever register contents (both GPRs and ARs) the mainline wants to save
(they might need to be restored upon retry).

v The location of important data areas used by the mainline. Errors often occur
because of damage to information in a data area. The recovery routine might
need to repair one or more of these data areas, and so must be able to access
them. The recovery routine might also want to include these data areas when it
specifies the areas of storage to dump.

v The addresses of any user-written routines available to repair damage. You
might have separate routines designed to scan and repair queues, repair data
areas, and so on. The recovery routine might want to call these other routines
for assistance.

Passing the parameter area: When you provide a recovery routine, you have the
opportunity to identify to the system the parameter area you want passed to the
recovery routine. Here are the ways to accomplish that:
v ESTAE, ESTAEX, and FESTAE routines

Use the PARAM parameter on the ESTAE, ESTAEX, or FESTAE macro to specify
the address of the parameter area you have constructed.

Note: For a recovery routine defined by a FESTAE macro, there is also a 24-byte
parameter area available in the SVRB, in field RBFEPARM. See “Providing
recovery with minimal processor overhead (FESTAE macro)” on page 400 for
more information about RBFEPARM.

v ESTAI routines

Use the ESTAI parameter on the ATTACHX macro to specify both the address of
the recovery routine to get control, and the address of the parameter area you
have constructed.

v ARRs

– If the ARR will not be given control in AMODE 64, the stacking PC routine
for which the ARR was defined can use the 8-byte modifiable area of the
linkage stack to provide the address and ALET of the parameter area to be
passed to the recovery routine.

– If the ARR will be given control in AMODE 64, the stacking PC routine for
which the ARR was defined can use the 8-byte modifiable area of the linkage
stack to provide the 64-bit address of the parameter area to be passed to the
recovery routine.

Chapter 18. Providing recovery 357

The stacking PC routine places the address and ALET into an even/odd GPR
pair and then uses the MSTA instruction to move the information into the
linkage stack.

v IEAARR routines

Use the ARRPARAMPTR parameter on the IEAARR macro to specify the 31-bit
address of the parameter area you constructed, or use the ARRPARAMPTR64
parameter to specify the 64-bit address of the parameter area you constructed.

v FRRs

Use the PARMAD parameter on the SETFRR macro to specify a 4-byte field or
GPR into which the system places the address of a 24-byte parameter area,
initialized to zeros. You use this system-provided parameter area to place the
parameter information to be passed to the FRR.

Accessing the parameter area: Once the recovery routine gets control, the routine
must know how to access the parameter area. That varies according to whether the
system provided an SDWA, and according to how the recovery routine was
defined:
v SDWA is present

– ESTAE and FESTAE macros

SDWAPARM and GPR 2 contain the address of the parameter area you
specified on the PARAM parameter on ESTAE or FESTAE. For FESTAE, if you
did not specify PARAM, either SDWAPARM or GPR 2 contains the address of
the 24-byte parameter area in the SVRB (RBFEPARM).

– ESTAEX macro

SDWAPARM contains the address of an 8-byte field, which contains the
address and ALET of the parameter area you specified on the PARAM
parameter on ESTAEX, and GPR 2 contains the address of the parameter area
you specified on the PARAM parameter on ESTAEX. AR 2 contains the ALET
qualifying the address in GPR 2.

– ESTAEX macro issued in AMODE 64

SDWAPARM contains the address of an 8-byte area, which contains the
address of the parameter area you specified on the PARAM parameter of
ESTAEX. GPR 2 contains the 64-bit address of the parameter area.

– ATTACHX macro with ESTAI parameter

SDWAPARM and GPR 2 contain the address of the parameter area you
specified on the ESTAI parameter on ATTACHX. When ATTACHX is issued
in AMODE 64 the parameter list address is still treated as a 31-bit address.
The parameter area specified on ATTACHX is always assumed to be in the
primary address space, so for AR-mode callers, the ALET is always zero.

– ARRs not in AMODE 64

SDWAPARM contains the address of a copy of the 8-byte modifiable area of
the linkage stack, and GPR 2 contains a copy of the first 4 bytes from the
8-byte modifiable area of the linkage stack; AR 2 contains a copy of the
second 4 bytes from the 8-byte modifiable area of the linkage stack. The
stacking PC routine covered by the ARR should have set the contents of this
modifiable area to contain the address and ALET of the parameter area by
using the MSTA instruction.

– ARRs in AMODE 64

SDWAPARM contains the address of a copy of the 8-byte modifiable area of
the linkage stack, and 64-bit GPR 2 contains a copy of that 8-byte modifiable
area; AR 2 contains 0. The stacking PC routine covered by the ARR should

358 z/OS V2R2 MVS Authorized Assembler Services Guide

have set the contents of this modifiable area to contain the 64-bit address of
the parameter area by using the MSTA instruction.

– IEAARR macro

SDWAPARM contains the address of an 8-byte area. The first word of this
area contains the address of the parameter area you specified on the
ARRPARAMPTR parameter of IEAARR and the second word does not
contain interface information. GPR 2 contains the address of the parameter
area.

– IEAARR macro issued in AMODE 64

SDWAPARM contains the address of an 8-byte area, which contains the
address of the parameter area you specified on the ARRPARAMPTR64
parameter of IEAARR. GPR 2 contains the 64-bit address of the parameter
area.

– FRRs

SDWAPARM and GPR 2 contain the address of the 24-byte parameter area
returned by the SETFRR macro when you specified PARMAD.

v SDWA is not present

– ESTAE and FESTAE macros

GPR 2 contains the address of the parameter area you specified on the
PARAM parameter on ESTAE or FESTAE. For FESTAE, if you did not specify
PARAM, GPR 2 contains the address of the 24-byte parameter area in the
SVRB (RBFEPARM).

– ESTAEX macro

GPR 2 contains the address of the parameter area you specified on the
PARAM parameter on ESTAEX. AR 2 contains the ALET qualifying the
address in GPR 2.

– ESTAEX macro issued in AMODE 64

GPR2 contains the 64-bit address of the parameter area you specified on the
PARAM parameter of ESTAEX.

– ATTACHX macro with ESTAI parameter

SDWAPARM and GPR 2 contain the address of the parameter area you
specified on the ESTAI parameter on ATTACHX. When ATTACHX is issued
in AMODE 64 the parameter list address is still treated as a 31-bit address.
The parameter area specified on ATTACHX is always assumed to be in the
primary address space, so for AR-mode callers, the ALET is always zero.

– ARRs not in AMODE 64

GPR 2 contains a copy of the first 4 bytes from the 8-byte modifiable area of
the linkage stack; AR 2 contains a copy of the second 4 bytes from the 8-byte
modifiable area of the linkage stack. The stacking PC routine covered by the
ARR should have set the contents of this modifiable area to contain the
address and ALET of the parameter area by using the MSTA instruction.

– ARRs in AMODE 64

64-bit GPR 2 contains a copy of the 8-byte modifiable area of the linkage
stack; AR 2 contains 0. The stacking PC routine covered by the ARR should
have set the contents of this modifiable area to contain the 64-bit address of
the parameter area by using the MSTA instruction.

– IEAARR macro

GPR 2 contains the address of the parameter area you specified on the
ARRPARAMPTR parameter of IEAARR.

– IEAARR macro issued in AMODE 64

Chapter 18. Providing recovery 359

GPR 2 contains the 64-bit address of the parameter area you specified on the
ARRPARAMPTR64 parameter of IEAARR.

– FRRs

FRRs always get control with an SDWA.

Using the SDWA
The SDWA is both a means by which the recovery routine can provide information
to the system and to subsequent recovery routines, and a provider of information
to the recovery routine. To access and update the SDWA, the recovery routine must
include the IHASDWA mapping macro as a DSECT. For complete information
about the SDWA, see SDWA in z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/). The SDWA is always in the
primary address space.

Updating the SDWA: A recovery routine can update the SDWA in various ways:
v By issuing the SETRP macro (See “Using the SETRP macro to update the

SDWA.”)
v By issuing the VRADATA macro (See the VRADATA macro in z/OS MVS

Programming: Assembler Services Reference IAR-XCT and information about
symptoms provided by a recovery routine in z/OS MVS Programming: Assembler
Services Guide.)

v By directly updating specific fields (see “Important fields in the SDWA” on page
361).

Recording the SDWA in the logrec data set: A recovery routine can request the
system to record the SDWA in the logrec data set by specifying the RECORD
parameter on SETRP. See “Recording in the Logrec data set” on page 351 for more
information.

Using the SETRP macro to update the SDWA: Recovery routines issue the
SETRP macro to communicate recovery options to the system, and to save
serviceability data. The routine must have an SDWA to issue SETRP. The following
are some of the things a recovery routine can do using the SETRP macro:
v Indicate retry or percolate

Use the RC parameter on SETRP to let the system know whether the recovery
routine wants to percolate (RC=0) or retry (RC=4). If attempting a retry, the
routine must also specify a retry address on the RETADDR parameter.
For ESTAI routines, you can also specify RC=16 to ask the system not to give
control to any further ESTAI routines.

v Specify register contents for the retry routine and free the SDWA

ESTAE-type recovery routines can use parameters on the SETRP macro to restore
registers from the SDWA (RETREGS=YES), and to free the SDWA before control
is given to the retry routine (FRESDWA=YES). See “Retry from an ESTAE-type
recovery routine” on page 377 for information about using the RETREGS and
FRESDWA parameters.
For FRRs, RETREGS=YES or RETREGS=NO has no effect; the system always
restores registers from the SDWA. FRRs cannot specify the FRESDWA parameter;
the system always frees the SDWA before giving control to the retry routine.

v Save serviceability data

Use the RECPARM parameter to supply the load module name, the active
CSECT name, and the recovery routine CSECT name.

v Change the completion and reason codes

360 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

You can specify both completion and reason code values on the ABEND macro.
The system passes these values to recovery routines in the SDWA. Recovery
routines can change the values of the completion code and the reason code by
using the SETRP macro. The COMPCOD parameter allows you to specify a new
completion code; the REASON parameter allows you to specify a new reason
code.
The reason code has no meaning by itself, but must be used together with a
completion code. To maintain meaningful completion and reason codes, the
system propagates changes to these values according to the following rules:
– If a user changes both the completion code and the reason code, the system

accepts both new values.
– If a user changes the reason code but not the completion code, the system

accepts the new reason code and uses the unchanged completion code.
– If a user changes the completion code but not the reason code, the system

accepts the new completion code and uses a zero for the reason code.

Symptom data required in the SDWA for dump suppression: If the installation
is using DAE to suppress duplicate dumps, the recovery routine must provide the
following minimum data to enable dump suppression. See z/OS MVS Programming:
Assembler Services Guide for more information about dump suppression.

SDWA Field Data Example
SDWAMODN Failing module name IEAVTCXX
SDWACSCT Failing CSECT name IEAVTC22
SDWACID Product or component identifier SCDMP
SDWACIB
SDWACIDB Component identifier base 5655
SDWAREXN Recovery routine name IEAVTC2R
SDWASC Subcomponent or module subfunction RSM-PGFIX

Important fields in the SDWA: The following figure summarizes some of the key
fields in the SDWA. Note that certain fields are in an extension of the SDWA called
SDWARC1, which is a different DSECT. Here is how to access SDWARC1:
v SDWAXPAD in the SDWA contains the address of SDWAPTRS.
v SDWAPTRS is a DSECT which contains SDWASRVP.
v SDWASRVP contains the address of SDWARC1.

The fields described below that are in SDWARC1 are:
v SDWACRC
v SDWAARER
v SDWAARSV
v SDWACID
v SDWASC
v SDWAMLVL
v SDWARRL

Field Name
Use

SDWAPARM
For ESTAEX, if the ESTAEX was established by a routine running in
AMODE 64, the 8-byte area contains the address of the parameter area you
specified on the PARAM parameter of the ESTAEX macro. Otherwise, the

Chapter 18. Providing recovery 361

first four bytes of this 8-byte area contain the address of the parameter area
and the next four bytes contain the ALET for the parameter area.

For routines defined by the IEAARR macro, if the IEAARR was issued in
AMODE 64, the 8-byte area contains the 64-bit address of the parameter
area specified on the ARRPARMPTR64 parameter of IEAARR. Otherwise,
this field contains the address of an 8-byte area. The first word of this area
contains the address of the parameter area you specified on the
ARRPARAMPTR parameter of IEAARR and the second word does not
contain interface information.

See “Setting up, passing, and accessing the parameter area” on page 356
for details on the parameter area passed by recovery routines.

SDWACMPC
This 3-byte field contains the completion code that existed when the
system gave control to the recovery routine. The recovery routine can
change the completion code by issuing the SETRP macro with the
COMPCOD parameter. The system completion code appears in the first
twelve bits, and the user completion code appears in the second twelve
bits.

SDWARPIV
This bit tells the recovery routine that the registers and PSW at the time of
error are not available. When this bit is on, the contents of SDWAGRSV,
SDWAG64, SDWAARER, and SDWAEC1 are unpredictable.

SDWACRC
This 4-byte field contains the reason code associated with the completion
code in SDWACMPC. The reason code is set through the REASON
parameter of the CALLRTM or ABEND macro, and is valid only when bit
SDWARCF is on. The recovery routine may change this reason code by
specifying a new value for the REASON parameter of the SETRP macro.

Note: This reason code is not the same as the return code that programs
may set in GPR 15 before they issue the CALLRTM or ABEND macro.

SDWARCF
If on, this bit indicates that SDWACRC contains a reason code.

SDWAGRSV
This field contains the contents of the general purpose registers (GPRs)
0-15 as they were at the time of the error.

SDWAARER
This field contains the contents of the access registers (ARs) 0-15 as they
were at the time of the error.

SDWAEC1
This field contains the PSW that existed at the time of the error.

SDWAEC2
The contents of this field vary according to the type of recovery routine:
v For ESTAE-type recovery routines (except for ESTAI routines): If a

program establishes an ESTAE routine, and subsequently performs a
stacking operation while running under the same RB as when it
established the ESTAE routine, SDWAEC2 contains the PSW from the
linkage stack entry immediately following the entry that was current
when the ESTAE routine was established. Otherwise, SDWAEC2 contains
the current RBOPSW from the RB that activated the recovery routine,
and the PSW is the one from the time of the last interruption of that RB

362 z/OS V2R2 MVS Authorized Assembler Services Guide

that occurred while the RB was unlocked and enabled. Bit SDWAINTF
in SDWAXFLG indicates whether the contents of SDWAEC2 are from the
linkage stack (SDWAINTF is 1) or from an RB (SDWAINTF is 0).

v For an ESTAI routine, this field contains zero.
v For an FRR, the field contains the PSW used to give control to the FRR.

SDWASRSV
The contents of this field vary according to the type of recovery routine:
v For ESTAE-type recovery routines (except for ESTAI routines): If a

program establishes an ESTAE routine, and subsequently performs a
stacking operation while running under the same RB as when it
established the ESTAE routine, SDWASRSV contains GPRs 0-15 from the
linkage stack entry immediately following the entry that was current
when the ESTAE routine was established. Otherwise, SDWASRSV
contains GPRs 0-15 from the RB that activated the recovery routine, and
the GPRs are the same as they were at the time of the last interruption
of that RB that occurred while the RB was unlocked and enabled. Bit
SDWAINTF in SDWAXFLG indicates whether the contents of
SDWASRSV are from the linkage stack (SDWAINTF is 1) or from an RB
(SDWAINTF is 0).

Note: SDWASRSV is not available for ESTAE-type recovery routines
running in AMODE 64. SDWAG64 is used for retry instead of
SDWASRSV when RETREGS=64 is specified with SETRP.

v For an ESTAI routine, this field contains zeros.
v For an FRR, this field has the same contents as SDWAGRSV.

If the recovery routine requests a retry, the system might use the contents
of this field to load the GPRs for the retry routine. See the RETREGS
parameter description in the SETRP macro in z/OS MVS Programming:
Authorized Assembler Services Reference SET-WTO for details. To change the
contents of the GPRs for the retry routine, you must make the changes to
SDWASRSV and then issue SETRP with RETREGS=YES. You can update
the registers directly or with the RUB parameter on SETRP.

SDWAARSV
The contents of this field depend on the type of recovery routine:
v For ESTAE-type recovery routines (except for ESTAI routines): If a

program establishes an ESTAE routine, and subsequently performs a
stacking operation while running under the same RB as when it
established the ESTAE routine, SDWAARSV contains ARs 0-15 from the
linkage stack entry immediately following the entry that was current
when the ESTAE routine was established. Otherwise, SDWAARSV
contains ARs 0-15 from the RB that activated the recovery routine, and
the ARs are the same as they were at the time of the last interruption of
that RB that occurred while the RB was unlocked and enabled. Bit
SDWAINTF in SDWAXFLG indicates whether the contents of
SDWAARSV are from the linkage stack (SDWAINTF is 1) or from an RB
(SDWAINTF is 0).

v For an ESTAI routine, this field contains zeros.
v For an FRR, this field has the same contents as SDWAARER.

If the recovery routine requests a retry, the system might use the contents
of this field to load the ARs for the retry routine. See the RETREGS
parameter description in the SETRP macro in z/OS MVS Programming:
Authorized Assembler Services Reference SET-WTO for details. To change the

Chapter 18. Providing recovery 363

contents of the ARs for the retry routine, you must make the changes in
SDWAARSV, and then issue SETRP with RETREGS=YES.

SDWASPID
This field contains the subpool ID of the storage used to obtain the SDWA,
for use whenever the retry routine is responsible for freeing the SDWA.

SDWALNTH
This field contains the length, in bytes, of this SDWA, the SDWA
extensions, and the variable recording area, for use whenever the retry
routine is responsible for freeing the SDWA. (This allows the retry routine
to free the extensions along with the SDWA.)

SDWACOMU
The recovery routines can use this 8-byte field to communicate with each
other when percolation occurs. The system copies this field from one
SDWA to the next on all percolations. When the field contains all zeros,
either no information is passed or the system has not been able to pass the
information.

Note: Using this field, FRRs can pass information to ESTAE-type recovery
routines.

SDWATRAN
This field contains one of the following if a translation exception occurred:
v The valid translation exception address if the SDWATEAV bit is 1.
v The ASID of the address space in which the translation exception

occurred if the SDWATEIV bit is 1.

If both the SDWATEAV and SDWATEIV bits are 0, ignore the SDWATRAN
field.

SDWATEAR
For translation exceptions that occur in AR mode, this 1-byte field
identifies the number of the AR that the program was using when the
translation exception occurred.

SDWACLUP
If on, this bit indicates that the recovery routine cannot retry.

SDWAPERC
If on, this bit indicates that a recovery routine of the same type has already
percolated for this error. This bit is valid only between similar types of
recovery routines; an FRR can tell if an FRR has percolated, and an
ESTAE-type recovery routine can tell if an ESTAE-type recovery routine
has percolated.

SDWAEAS
If on, this bit indicates that a previous recovery routine provided sufficient
diagnostic information pertaining to this error. The recovery routine
providing the information is responsible for setting the bit. If the recovery
routine issues SDUMPX (or SDUMP), the system sets the bit automatically.

SDWACID
The recovery routine can use this 5-byte field to provide the component ID
of the component involved in the error.

SDWASC
The recovery routine can use this 23-byte field to provide the name of the
component and a description of the function or subfunction involved in
the error.

364 z/OS V2R2 MVS Authorized Assembler Services Guide

SDWAMLVL
The recovery routine can use this 16-byte field to indicate the level of the
module involved in the error. The first 8 bytes contains the date
(SDWAMDAT) and the second 8 bytes contains the version (SDWAMVRS).

SDWARRL
The recovery routine can use this 8-byte field to indicate the recovery
routine's entry point label.

SDWALCL
If on, this bit indicates that the system is entering an FRR in LOCAL
restricted mode.

SDWALSLV
The recovery routine can use this 2-byte field to control the linkage stack
state upon retry. See “Linkage stack at time of retry” on page 395 for
additional information.

SDWAG64
When running in z/Architecture® mode, this field contains the full 64-bit
contents of the general purpose registers at the time of error. It also
contains the 64-bit registers to be used for retry if you specify
RETREGS=64 on the SETRP macro or turn on the SDWAUPRG and
SDWAUP64 bits.

SDWATXG64
When bits SDWAPCHK and SDWAPTX2 are on, indicating that the
program interrupt occurred while within transactional execution, this field
contains the full 64-bit contents of the general purpose registers that result
from the transaction abort.

SDWATXPSW16
When bits SDWAPCHK and SDWAPTX2 are on, this field contains the
16-byte PSW that results from the transaction abort.

Special considerations for ESTAE-type recovery routines
This information discusses the following topics related specifically to ESTAE-type
recovery:
v RB considerations
v Linkage stack considerations
v Outstanding I/Os at time of failure
v Other considerations specific to ESTAE-type recovery routines
v Using ARRs.

RB considerations
A program must activate and deactivate ESTAE-type recovery routines under the
same RB level. If you try to deactivate an ESTAE-type recovery routine that is not
associated with your RB, you get a return code that indicates your request is not
valid.

ESTAE-type recovery routines are deactivated when their associated RBs terminate.
This is important because a program expects one of its own ESTAE-type recovery
routines to get control rather than one left behind by a called program. A program
might, however, invoke a service routine that does not create an RB. If that routine
then issues an ESTAEX or ESTAE macro and fails to deactivate the resulting
ESTAE-type recovery routine, a problem could develop if the original program
encounters an error. The ESTAE-type recovery routine left behind by the service

Chapter 18. Providing recovery 365

routine would receive control rather than the ESTAE-type recovery routine
associated with the program, because the recovery routine specified by the most
recently issued ESTAE or ESTAEX macro gets control.

IBM recommends that every program that activates an ESTAE-type recovery
routine also deactivate it.

The TOKEN parameter on the ESTAEX or ESTAE macro can help you if your
program is running in an environment where a called program is unable to
deactivate its own ESTAE-type recovery routine. The TOKEN parameter associates
a token with the ESTAE-type recovery routine you are activating. To deactivate
(ESTAE or ESTAEX with the 0 parameter) or overlay (ESTAE or ESTAEX with the
OV parameter) the recovery routine that was activated with TOKEN, the same
token must be specified. All of the more recently activated ESTAE or ESTAEX
recovery routines are deactivated at the same time. Using the TOKEN parameter
can help in these ways:
v When you attempt to deactivate your ESTAE-type recovery routine, you are sure

of deactivating the correct one.
v You deactivate all of the more recently activated ESTAE-type recovery routines,

so your program's caller does not have the problem of leftover recovery routines
when your program returns control.

v You could activate a dummy ESTAE-type recovery routine with the TOKEN
parameter and then deactivate it. The sole purpose of the dummy routine would
be to ensure that all leftover ESTAE-type recovery routines are deactivated. Then
if your program encounters an error, you are assured that your own ESTAE-type
recovery routine gets control.

If a program issues an ESTAE or ESTAEX macro that specifies both the TOKEN
parameter and XCTL=YES and then issues the XCTL or XCTLX macro, the token
must be passed as part of the parameters to the called routine so that the routine
can deactivate the ESTAEX or ESTAE routine.

For retry from an ESTAE-type recovery routine, the retry routine runs as a
continuation of the code that activated the recovery routine. That is, the retry
routine runs under the same RB that defined the ESTAE-type recovery routine, and
the system purges all RBs created after the retry RB before giving control to the
retry routine.

Note that ESTAI is an exception; a retry request from a recovery routine defined by
the ESTAI parameter of the ATTACHX macro must run under a program request
block (PRB). The retry routine cannot run under the PRB of the routine that
defined the ESTAI routine, because that PRB is associated with a different task. The
system scans the RB queue associated with the task under which the retry is to
occur, starting with the RB that was interrupted (the newest RB). The system then
uses the following rules to select a PRB for the retry routine:
v If one or more PRBs exist that represent an ESTAE-type recovery routine, use the

newest one.
v If no PRBs exist that represent ESTAE-type recovery routines, use the newest

PRB that does not have any non-PRBs (such as SVRBs) that are older.

If the RB queue contains no PRBs at all, retry is suppressed.

366 z/OS V2R2 MVS Authorized Assembler Services Guide

Linkage stack considerations
Consider the following information about the linkage stack when writing an
ESTAE-type recovery routine or a retry routine, or when deactivating an
ESTAE-type recovery routine:

Recovery routine: IBM recommends that your recovery routine not modify or
extract from the linkage stack entry that is current when the routine is entered. In
some cases, the system might prevent an ESTAE-type recovery routine from
modifying or extracting from that linkage stack entry. If your recovery routine
attempts to modify or extract from the linkage stack entry when the system does
not allow it, the result is a linkage stack exception.

IBM recommends that if your recovery routine adds entries to the linkage stack,
through a stacking PC or BAKR instruction, it should also remove them. If the
recovery routine adds entries to the stack and does not remove them, the system
recognizes an error when the recovery routine returns control. If the recovery
routine retries, the additional entries are not given to the retry routine. If the
recovery routine percolates, subsequent recovery routines receive a linkage stack
with entries more recent than the entry that was current at the time of error.

Retry routine: When the system gives control to your retry routine, the linkage
stack level is set to the level that was current when your program activated the
recovery routine, unless the recovery routine sets the SDWALSLV field.

Deactivating an ESTAE-type recovery routine: A program may deactivate an
ESTAE-type recovery routine only under the same linkage stack level as the level
that existed when the program activated the recovery routine. This rule affects
programs that add entries to the linkage stack either through the BAKR or PC
instruction. Failure to follow this rule results in an error return code of 36 from the
ESTAE or ESTAEX macro.

When you issue a PR, the system automatically deactivates all ESTAE-type
recovery routines that were previously activated under that current linkage stack
entry.

Outstanding I/Os at the time of failure
Before the most recently activated ESTAE-type recovery routine receives control,
the system can handle outstanding I/Os at the time of the failure. You request this
through the macro that defines the routine (that is, through the PURGE parameter
on ESTAE, ESTAEX, FESTAE, or ATTACHX). The system performs the requested
I/O processing only for the first ESTAE-type recovery routine that gets control.
Subsequent routines that get control receive an indication of the I/O processing
previously done, but no additional processing is performed.

Note: You need to understand PURGE processing before using this parameter. For
information about PURGE processing, see z/OS DFSMSdfp Advanced Services.

If there are quiesced restorable I/O operations (because you specified
PURGE=QUIESCE on the macro for the most recently defined ESTAE-type
recovery routine), the retry routine can restore them as follows:
v If the recovery routine specified FRESDWA=YES and RETREGS=NO on the

SETRP macro, or the system did not provide an SDWA, the system supplies the
address of the purged I/O restore list in GPR 2 on entry to the retry routine.

v If the recovery routine specified FRESDWA=NO and RETREGS=NO on the
SETRP macro, GPR 1 contains the address of the SDWA, and the address of the
purged I/O restore list is in the SDWAFIOB field on entry to the retry routine.

Chapter 18. Providing recovery 367

v If the recovery routine specified FRESDWA=NO and RETREGS=YES on the
SETRP macro, the recovery routine must pass the address of the SDWA to the
retry routine (in the user parameter area, or in GPR 0). The address of the
purged I/O restore list is in the SDWAFIOB field on entry to the retry routine.

v If the recovery routine specified FRESDWA=YES and RETREGS=YES on the
SETRP macro, the retry routine cannot access the purged I/O restore list.

The following table provides a summary of how the retry routine can access
quiesced restorable I/O operations:

Table 41. Restoring Quiesced Restorable I/O Operations

Parameter on SETRP Macro RETREGS=NO RETREGS=YES

FRESDWA=YES GPR 2 contains the address of
the purged I/O restore list (see
note below)

Retry routine cannot access the
purged I/O restore list.

FRESDWA=NO GPR 1 contains the address of
the SDWA; SDWAFIOB contains
the address of the purged I/O
restore list

The recovery routine must pass
the address of the SDWA to the
retry routine; SDWAFIOB
contains the address of the
purged I/O restore list.

Note: If the system did not provide an SDWA and RETREGS=NO, then GPR 2
contains the address of the purged I/O restore list.

You can use the RESTORE macro to have the system restore all I/O requests on
the list. For information about where the RESTORE macro is documented, see z/OS
DFSMS Introduction for the version of DFP you have installed.

Additional considerations specific to ESTAE-type recovery
routines
The following are additional things you should consider that are specific to
ESTAE-type recovery routines:
v During processing of the first and all subsequent recovery routines, the system

allows or disallows asynchronous processing (such as a timer exit) depending on
how you specify the ASYNCH parameter when you define the routine (that is,
through the ASYNCH parameter on ESTAE, ESTAEX, and ATTACHX).

v The following list describes what the system does when it is done processing a
particular recovery routine (either because the recovery routine percolates, or
because the recovery routine itself encounters an error and has no recovery
routine of its own that retries):
– Accumulates dump options
– Resets the asynchronous exit indicator according to the request of the next

recovery routine
– Ignores the I/O options for the next recovery routine
– Initializes a new SDWA
– Gives control to the next recovery routine.
If all recovery routines fail or percolate, the task is terminated.

v If a non-job step task issues an ABEND macro with the STEP parameter, the
system gives control to recovery routines for the non-job step task. If the
recovery routines do not request a retry, the job step is terminated with the
specified completion code. Subsequent recovery routines for the job step task get
control only when you specify TERM=YES on the macros that defined those
recovery routines. You can specify TERM=YES on ESTAE, ESTAEX, FESTAE, and
ATTACHX. ARRs always get TERM=YES.

368 z/OS V2R2 MVS Authorized Assembler Services Guide

If the recovery routines for the job step task do not retry, subsequent recovery
routines for any other non-job step tasks get control in the same way they would
if the job step task itself encountered the error and then did not retry.

v For some situations, the system gives control to ESTAE-type recovery routines
only when the TERM=YES parameter was specified (including ARRs, which
always get TERM=YES). The situations are:
– System-initiated logoff
– Job step timer expiration
– Wait time limit for job step exceeded
– DETACH macro was issued from a higher level task (possibly by the system

if the higher level task encountered an error)
– Operator cancel
– Error occurred on a higher level task
– Error in the job step task when a non-job step task issued the ABEND macro

with the STEP parameter
– OpenMVS is canceled and the user's task is in a wait in the OpenMVS kernel.
When the system gives control to the recovery routines defined with the
TERM=YES parameter as a result of the above errors, the system takes the
following actions:
– Sets the SDWACLUP bit
– Gives control to all such routines in LIFO order
– Does not enter any ESTAI routine previously suppressed by a return code of

16, or any previously entered recovery routine that requested percolation
– Ignores any request for retry.

Using ARRs
An ARR provides recovery for a stacking PC routine and receives control if the
stacking PC routine encounters an error. An ARR is an ESTAE-type recovery
routine. An ARR receives all of the defaults of the ESTAEX macro, with the
exception of the TERM parameter. For ARRs, the system uses TERM=YES.

To define an ARR, either:
v Issue the IEAARR macro to establish an ARR to cover a target routine, as

described in z/OS MVS Programming: Authorized Assembler Services Reference
EDT-IXG.

v Specify the name or address of the routine on the ARR parameter of the ETDEF
macro when you define the entry table definition (ETD) for the stacking PC
routine; you must also issue the ETCRE macro before the ARR is actually
defined to the system. You can use an ARR only for a stacking PC routine that is
always entered enabled, unlocked, and in task mode.

You activate an ARR when you issue the PC instruction; you deactivate an ARR
when you issue the corresponding PR instruction.

While the stacking PC routine is running, you cannot deactivate its ARR.
Therefore, if you do not want an ARR associated with the stacking PC routine, do
not code the ARR parameter on the ETDEF macro.

An ARR receives control in 31-bit or 64-bit addressing mode depending on the
mode specified via the ETDEF macro or the mode at the time that IEAARR was
issued. If it is passed an SDWA, the SDWA is in 31-bit addressable storage.

Chapter 18. Providing recovery 369

A stacking PC routine can also have an FRR; however, if the stacking PC routine
has an FRR, its ARR gets control only if the FRR percolates. The writer of a
stacking PC routine should be aware of the environment in which the routine is
called. The system does not give control to an ARR in the following
circumstances:
v The cross-memory environment required for the ARR (which matches the

environment on entry to the stacking PC routine) could not be established.
v Your program is running in SRB mode.
v Your program is running in task mode; prior to issuing the PC instruction to

pass control to the stacking PC routine associated with the ARR, you activated
one or more FRRs. If the stacking PC routine encounters an error, the most
recently activated FRR gets control. If all FRRs percolate, then unless the ARR
was defined with ARRCOND=YES, the system records a symptom record in the
logrec data set describing the fact that an ARR has been skipped.

If you issue an IEAARR macro to establish an ARR, you can skip the following
instructions until the end of this information. See “Setting up, passing, and
accessing the parameter area” on page 356 for explanations of passing parameter
areas for IEAARR.

If you define the ARR via the ETDEF macro, the stacking PC routine can use the
8-byte modifiable area of the current linkage stack entry to pass parameters to the
ARR. To store data into this 8-byte area, the stacking PC routine can use the
modify stacked state (MSTA) instruction. The stacking PC routine might, for
example, store the address of a footprint area into the first 4 bytes and the ALET
identifying the footprint area's address space into the second 4 bytes.

The following example shows how a stacking PC routine can use the 8-byte
modifiable area of the linkage stack to pass parameters to an ARR.

The assembler instructions perform the following functions:
v LAE places the address of PARMAREA into GPR 2 and the ALET that identifies

the address space that contains the PARMAREA into AR 2.
v EAR places the contents of AR 2 (the ALET) into GPR 3.
v MSTA places the contents of GPR 2 (the address of PARMAREA) and GPR 3 (the

ALET of PARMAREA) into the modifiable area of the linkage stack.

When the ARR receives control, the SDWAPARM field contains the address of a
copy of the 8-byte modifiable area of the linkage stack entry established by the
stacking PC routine associated with the ARR. For example, suppose PGM1 uses a
stacking PC to call PCRTN1. After PCRTN1 gets control, it encounters an error and
control passes to the ARR associated with the stacking PC routine. At this time,
SDWAPARM contains the address of a copy of the modifiable area in the linkage
stack entry associated with the stacking PC routine. Note that SDWAPARM does
not necessarily contain the address of a copy of the current entry. Between the time
it received control and encountered the error, PCRTN1 could have added an entry
to the linkage stack through a BAKR instruction. This entry would be the current
entry; SDWAPARM contains the address of a copy of a previous entry.

LAE 2,PARMAREA GET ALET AND ADDRESS OF PARMAREA
EAR 3,2 PUT CONTENTS OF AR2 INTO GPR3
MSTA 2 PLACE ALET AND ADDRESS OF PARMAREA

* INTO LINKAGE STACK

Figure 58. Passing Parameters to an ARR

370 z/OS V2R2 MVS Authorized Assembler Services Guide

If there is no SDWA, the ARR receives the copy of the 8-byte area in GPR/AR 2:
GPR 2 contains the first 4 bytes, and AR 2 contains the second 4 bytes.

If there is no SDWA when the recovery routine requests a retry, the system uses
the linkage stack entry that was current when the ARR's stacking PC routine was
entered, and from that entry, provides a copy of the current contents of the 8-byte
modifiable area in GPR/AR 1.

You have the option to allow or prevent asynchronous interrupts from interrupting
an ARR while it is running. To allow asynchronous interrupts, specify
ASYNCH=YES on the ETDEF macro. To prevent asynchronous interrupts from
interrupting the ARR, specify ASYNCH=NO. If the ARR uses any supervisor
services that depend on an asynchronous interrupt for successful completion,
specify ASYNCH=YES.

You also have the option to allow cancel or detach processing to interrupt an ARR
while it is running or to prevent this interrupt. To allow the interrupt, specify
CANCEL=YES on the ETDEF macro. To prevent the interrupt, specify
CANCEL=NO. If you specify CANCEL=NO, and a cancel or detach is attempted
while the ARR is running, the ARR completes running before the system begins
cancel or detach processing. The routine that issues ETDEF cannot use
CANCEL=NO unless the stacking PC routine to be associated with the ARR runs
in supervisor state or with PSW key 0 - 7.

One ARR can serve multiple stacking PC routines. In this case, each stacking PC
routine must not only store information about where in its processing the stacking
PC routine is, but must also store information that identifies which stacking PC
routine it is.

Special considerations for FRRs
Consider the following when writing an FRR:

FRR stack: When you define an FRR, the SETFRR macro creates an entry in a
system area called an FRR stack. The size of the FRR stack satisfies the recovery
needs of the system. If additional FRRs placed on the stack cause the size to be
exceeded, the routine issuing the SETFRR macro ends abnormally. User-written
routines outside of the system may add up to two FRRs to the FRR stack. All
remaining stack entries are reserved for the system. If a routine attempts to add an
entry to the stack when the stack is full, the system issues an X'07D' abend.

SDWA: The system always gives control to FRRs with an SDWA. If the system
cannot supply an SDWA, the system bypasses the FRR, goes to the next FRR, and
again attempts to supply an SDWA. When no FRRs remain, the system gives
control to any ESTAE-type recovery routines that are available. When an FRR
receives control in AMODE 64 the SDWA may be in 31-bit addressable storage.

AMODE 31 users of SETFRR can specify SDWALOC31=YES to indicate that their
FRR can tolerate an SDWA in 31-bit addressable storage. Considering that 31-bit
storage is less likely to be constrained than 24-bit storage and RTM skips FRRs for
which it can not obtain an SDWA, use SDWALOC31=YES whenever possible for
AMODE 31 FRRs.

Locks: When the system invokes an FRR, the FRR runs with the locks (and the
enablement implied by those locks) that were held at the time of the error, plus an

Chapter 18. Providing recovery 371

additional CPU lock obtained for the system if the FRR was holding any CPU
locks, unless a previous FRR does one of the following:
v Deletes one or more of the locks
v Requests the system to delete one or more of the locks using the FRELOCK

parameter on the SETRP macro.

The FRR should take the following action regarding locks held when the FRR is
entered:
v The FRR should issue SETRP with the FRELOCK parameter. This indicates that

the system is to free the specified locks if the FRR percolates.
v Assuming retry is not prohibited, if the FRR retries, it should request that the

system free locks prior to entering the retry routine by specifying the following
on SETRP:
– The FRELOCK parameter, specifying the locks to be freed.
– The FRLKRTY=YES parameter.

v If the FRR needs to do some processing that cannot be done with the locks that
were held at time of entry, keep the following in mind:
– If entered holding one or more CPU locks (that is, the FRR is entered

disabled), then the FRR must not release all of the CPU locks (it must remain
disabled by retaining at least one CPU lock). Freeing the last CPU lock can
cause different units of work to use the same SDWA simultaneously.

– If entered holding the CMS lock, the FRR can release that lock.
– If entered holding the LOCAL lock or a CML lock, the FRR can release that

lock if either of the following is true:
- The FRR is in SRB mode.
- The FRR is in task mode and is an EUT FRR.

Deactivating an FRR: When an FRR wants to deactivate itself, the FRR should
issue SETRP with REMREC=YES. FRRs can also issue SETFRR D, but must
exercise caution when doing so. The FRR should not call any other program or
service after issuing SETFRR D because of the following:
v When the FRR issues SETFRR D, it removes itself from the FRR stack.
v If the FRR then calls a program or service that sets another FRR, that FRR goes

on the FRR stack.
v The system thinks the new FRR is the original FRR.
v In the event the called program or service encounters an error, the system does

not give control to the new FRR because it appears to be the original FRR.

For example, suppose the FRR issues SETFRR D, and then issues the SDUMPX
macro. SDUMPX processing places another FRR on the FRR stack, in the location
of the original FRR. If SDUMPX processing encounters an error, the system does
not give control to its FRR because the system thinks it is the original FRR, to
which control was already given.

Thus, IBM recommends that you issue SETRP with REMREC=YES rather than
issuing SETFRR D within an FRR. If the FRR specifies SETRP REMREC=YES, the
system deactivates the FRR after the FRR gives up control, thus removing the entry
from the FRR stack at a safe time.

372 z/OS V2R2 MVS Authorized Assembler Services Guide

Understanding the recovery environment
When you write a recovery routine, you must take into consideration a number of
environmental factors that are present when the recovery routine gets control, and
that are present when a retry routine gets control. This information discusses
environmental factors in two broad categories, distinguishing register contents
from all other environmental factors:
v Register contents.

Recovery routines are interested in register contents at the following times:
– When the error occurs

When the recovery routine gets control, certain fields in the SDWA contain
the register contents at the time the error occurs. SDWAGRSV contains the
contents of the GPRs; SDWAARER contains the contents of the ARs.

– On entry to and return from the recovery routine
See “Register contents on entry to a recovery routine” on page 374 and
“Register contents on return from a recovery routine” on page 377 for details.

– On entry to the retry routine
See “Register contents on entry to a retry routine” on page 377 for details.

v All other environmental factors.

The other environmental factors important in a recovery environment are:
– Authorization: problem state or supervisor state, PSW key, and PSW key

mask (PKM)
– SDWA storage key
– Dispatchable unit mode
– Cross memory mode
– AMODE
– ASC mode
– Interrupt status
– Dispatchable unit access list (DU-AL)
– Locks
– Program mask
– Condition of the linkage stack
– Authorization index (AX)
– Extended authorization index (EAX)

This information discusses each of the environmental factors, and makes
distinctions, where necessary, that depend on the following:
v Whether the system provided an SDWA
v Whether you have an ESTAE-type recovery routine or an FRR
v Whether you are dealing with the recovery routine or the retry routine.

Register contents
This information describes register contents for the following:
v On entry to a recovery routine
v On return from a recovery routine (see “Register contents on return from a

recovery routine” on page 377)
v On entry to a retry routine.

Chapter 18. Providing recovery 373

The following table provides a roadmap to all the tables containing register content
information on entry to a recovery routine or on entry to a retry routine:

Table 42. Where to Find Register Content Information

Registers Described For: Table Number:

ESTAE-type recovery routine with an SDWA Table 43

ESTAE-type recovery routine without an SDWA Table 44 on page 375

FRR Table 45 on page 376

Retry from an ESTAE-type recovery routine without an SDWA Table 46 on page 378

Retry from an ESTAE-type recovery routine with an SDWA,
RETREGS=NO, and FRESDWA=NO

Table 48 on page 379

Retry from an ESTAE-type recovery routine with an SDWA,
RETREGS=NO, and FRESDWA=YES

Table 50 on page 379

Retry from an ESTAE-type recovery routine with an SDWA and
RETREGS=YES

Table 52 on page 380

Retry from an ESTAE-type recovery routine with an SDWA and
RETREGS=64 in z/Architecture mode

Table 54 on page 380

Retry from an FRR Table 56 on page 381

Retry from an FRR with RETREGS=64 in z/Architecture mode Table 58 on page 381

Register contents on entry to a recovery routine
The register contents on entry to a recovery routine are different depending on
whether you have an ESTAE-type recovery routine or an FRR, and depending on
whether the system supplied an SDWA. The possibilities are:
v ESTAE-type recovery routine with an SDWA
v ESTAE-type recovery routine without an SDWA
v FRR (FRRs always get control with an SDWA).

The following tables describe the register contents on entry to the recovery routine
for each of the above situations.

Table 43. Register Contents—ESTAE-Type Recovery Routine With an SDWA

Register Contents

General Purpose Registers

GPR 0 A code indicating the type of I/O processing performed:

0 Active I/O has been quiesced and is restorable.

4 Active I/O has been halted and is not restorable.

8 No I/O was active when the abend occurred.

16 (X'10')
No I/O processing was performed.

GPR 1 Address of the SDWA.

374 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 43. Register Contents—ESTAE-Type Recovery Routine With an SDWA (continued)

Register Contents

GPR 2 One of the following:

v For ARRs that do not get control in AMODE 64, a copy of the first 4
bytes of the 8-byte modifiable area of the linkage stack.

v For ARRs that get control in AMODE 64, 64-bit GR2 contains a copy of
the 8-byte modifiable area of the linkage stack.

v If you specified the PARM parameter on ESTAE or ESTAEX, the address
of the user-supplied parameter area.

v For ESTAI issued via ATTACHX, the address of the user-supplied
parameter area. Note this is a 31-bit address for ESTAI issued in either
AMODE 31 or AMODE 64.

v If you issued FESTAE without the PARAM parameter, the address of the
24-byte parameter area in the SVRB (RBFEPARM).

v If you issued ESTAE, ESTAEX, or ATTACHX without the PARAM
parameter, zero.

v For IEAARR issued in AMODE 31, the 31-bit address of the parameter
area specified on the ARRPARAMPTR parameter of IEAARR.

v For IEAARR issued in AMODE 64, the 64-bit address of the parameter
area specified on the ARRPARAMPTR64 parameter of IEAARR.

GPRs 3 - 12 Do not contain any information for use by the routine.

GPR 13 Address of a 144-byte register save area.

GPR 14 Return address to the system.

GPR 15 Entry point address of the ESTAE-type recovery routine except for
ESTAEX issued in AMODE 64 in which the low order bit is set on.

Access Registers

ARs 0 - 1 Zero

AR 2 One of the following:

v For ARRs that do not get control in AMODE 64, a copy of the second 4
bytes of the 8-byte modifiable area of the linkage stack.

v If you issued the ESTAEX macro in AR ASC mode and not AMODE 64,
an ALET that qualifies the address in GPR 2.

v Otherwise, this register does not contain any information for use by the
routine.

ARs 3 - 15 Zero.

Table 44. Register Contents—ESTAE-Type Recovery Routine Without an SDWA

Register Contents

General Purpose Registers

GPR 0 12 (X'0C'). The system could not obtain an SDWA.

GPR 1 Completion code in bytes 1-3. The system completion code appears in the
first 12 bits, and the user completion code appears in the second 12 bits.

Chapter 18. Providing recovery 375

|

|
|

|

Table 44. Register Contents—ESTAE-Type Recovery Routine Without an
SDWA (continued)

Register Contents

GPR 2 One of the following:

v For ARRs, a copy of the first 4 bytes of the 8-byte modifiable area of the
linkage stack.

v If you specified the PARAM parameter on ESTAE, ESTAEX, or FESTAE,
the address of the user-supplied parameter area.

v For ESTAI issued via ATTACHX, the address of the user-supplied
parameter area. Note this is a 31-bit address for ESTAI issued in either
AMODE31 or AMODE64.

v If you issued FESTAE without the PARM parameter, the address of the
24-byte parameter area in the SVRB (RBFEPARM).

v If you issued ESTAE, ESTAEX, or ATTACHX without the PARAM
parameter, zero.

v For IEAARR issued in AMODE 31, the 31-bit address of the parameter
area specified on the ARRPARAMPTR parameter of IEAARR.

v For IEAARR issued in AMODE 64, the 64-bit address of the parameter
area specified on the ARRPARAMPTR64 parameter of IEAARR.

GPRs 3 - 13 Do not contain any information for use by the routine.
Note: When the system does not provide an SDWA, GPR 13 does not
contain the address of a 144-byte save area. In this case, your ESTAE-type
recovery routine must save the address from GPR 14 and use it as the
return address to the system.

GPR 14 Return address to the system.

GPR 15 Entry point address of the ESTAE-type recovery routine.

Access Registers

ARs 0 - 1 Zero

AR 2 One of the following:

v For ARRs, a copy of the second 4 bytes of the 8-byte modifiable area of
the linkage stack.

v If you issued the ESTAEX macro in AR ASC mode, an ALET that
qualifies the address in GPR 2.

v Otherwise, this register does not contain any information for use by the
routine.

ARs 3 - 15 Zero.

Table 45. Register Contents—FRR

Register Contents

General Purpose Registers

GPR 0 Address of a 304-byte work area for the FRR. This area has been cleared to
zeros.

GPR 1 Address of the SDWA.
Note: When an FRR receives control in AMODE 64 the SDWA may be in
31-bit addressable storage.

GPR 2 Contains the address of the 24-byte parameter area returned by the
SETFRR macro when you specified PARMAD.

GPRs 3 - 13 Do not contain any information for use by the routine.

GPR 14 Return address to the system.

376 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 45. Register Contents—FRR (continued)

Register Contents

GPR 15 Address of the FRR.

Access Registers

ARs 0 - 15 Zero

Register contents on return from a recovery routine
The register contents on return from a recovery routine depend on whether the
system provided an SDWA. For FRRs, and for ESTAE-type recovery routines that
receive an SDWA, the routines can use any register without saving its contents,
except GPR 14. The routines must maintain the return address supplied in GPR 14.
The routines do not have to place any information in the registers for use by the
system.

ESTAE-type recovery routines that do not receive an SDWA must set one of the
following return codes in GPR 15:

Return Code
Meaning

0 The recovery routine requests percolation.

4 The recovery routine requests a retry. The recovery routine must then
place the address of the retry routine in GPR 0.

16 (X'10')
Valid only for an ESTAI recovery routine. The system should not give
control to any further ESTAI routines, and should abnormally end the task.

Register contents on entry to a retry routine
The register contents on entry to a retry routine vary according to the following:
v Whether this is a retry from an ESTAE-type recovery routine or an FRR.
v Whether an SDWA is present.
v If an SDWA is present, what the recovery routine specifies on the SETRP macro.

Retry from an ESTAE-type recovery routine: When an ESTAE-type recovery
routine attempts a retry, the contents of the registers on entry to the retry routine
depend on whether an SDWA is present, and depend on what the recovery routine
specifies on SETRP. The parameters on SETRP that affect register contents on entry
to the retry routine from an ESTAE-type recovery routine are the following:
v The RETREGS parameter controls whether registers are restored from the SDWA.

If you specify RETREGS=NO, registers are not restored from the SDWA.
If you specify RETREGS=YES, GPRs are restored from SDWASRSV, and ARs are
restored from SDWAARSV. If you specify RETREGS=YES,RUB, you can
manipulate the contents of SDWASRSV to whatever you wish the GPRs to be
before they are restored. Or, you can directly manipulate the contents of both
SDWASRSV and SDWAARSV. When you specify RETREGS=YES and are
running in z/Architecture mode, the upper halves of the 64–bit registers at retry
will contain the upper halves of the 64–bit registers from the time of error.
If you are running in z/Architecture mode and specify RETREGS=64, the 64–bit
GPRs at retry are restored from SDWAG64 and the ARs are restored from
SDWAARSV.
See the description of the SETRP macro in z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO for complete details.

Chapter 18. Providing recovery 377

v The FRESDWA parameter controls whether the system frees the SDWA before
giving control to the retry routine. FRESDWA=YES instructs the system to free
the SDWA; FRESDWA=NO instructs the system not to free the SDWA. This has
an affect on the register contents on entry to the retry routine.

The following tables describe the register contents under various circumstances on
entry to a retry routine from an ESTAE-type recovery routine:

Table 46. Register Contents—Retry from an ESTAE-Type Recovery Routine Without an
SDWA (General Purpose Registers)

Register Contents

GPR 0 12 (X'0C').

GPR 1 For ARRs, a copy of the current contents of the first 4 bytes of the 8-byte
modifiable area in the linkage stack entry that was current when the
ARR''s stacking PC was entered.

For IEAARR issued in AMODE 31, the 31-bit address of the parameter
area specified on the ARRPARAMPTR parameter of IEAARR.

For IEAARR issued in AMODE 64, the 64-bit address of the parameter
area specified on the ARRPARAMPTR64 parameter of IEAARR.

For other ESTAE-type recovery routines where the PARAM parameter was
specified, the address of the user-supplied parameter area. Note that when
ESTAEX was issued in AMODE 64, GPR 1 contains a 64-bit value.

For other ESTAE-type routines where the PARAM parameter was not
specified, zero.

GPR 2 Address of the purged I/O restore list if I/O was quiesced and is
restorable; otherwise, zero.

GPRs 3 - 14 Do not contain any information for use by the routine.

GPR 15 Entry point address of the retry routine, except for when ESTAEX was
issued in AMODE 64, in which case the low order bit is set on.

Table 47. Register Contents—Retry from an ESTAE-Type Recovery Routine Without an
SDWA (Access Registers)

Register Contents

AR 0 Zero.

AR 1 One of the following:

v If you issued the ESTAEX macro in AR ASC mode and not AMODE 64,
an ALET that qualifies the address in GPR 1.

v For ARRs, the system uses the linkage stack entry that was current
when the ARR's stacking PC routine was entered, and from that entry,
provides a copy of the current contents of the second 4 bytes of the
8-byte modifiable area.

v Otherwise, this register does not contain any information for use by the
routine.

ARs 2 - 13 Do not contain any information for use by the routine.

ARs 14 - 15 Zero.

378 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 48. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA,
RETREGS=NO, and FRESDWA=NO (General Purpose Registers)

Register Contents

GPR 0 Zero.

GPR 1 Address of the SDWA.

GPRs 2 - 14 Do not contain any information for use by the routine.

GPR 15 Entry point address of the retry routine, except for when ESTAEX was
issued in AMODE 64, in which case the low order bit is set on.

Table 49. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA,
RETREGS=NO, and FRESDWA=NO (Access Registers)

Register Contents

ARs 0 - 1 Zero.

ARs 2 - 13 Do not contain any information for use by the routine.

ARs 14 - 15 Zero.

Table 50. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA,
RETREGS=NO, and FRESDWA=YES (General Purpose Registers)

Register Contents

GPR 0 20 (X'14').

GPR 1 For ARRs, a copy of the current contents of the first 4 bytes of the 8-byte
modifiable area in the linkage stack entry that was current when the
ARR''s stacking PC was entered.

For IEAARR issued in AMODE 31, the 31-bit address of the parameter
area specified on the ARRPARAMPTR parameter of IEAARR.

For IEAARR issued in AMODE 64, the 64-bit address of the parameter
area specified on the ARRPARAMPTR64 parameter of IEAARR.

For other ESTAE-type recovery routines where the PARAM parameter was
specified, the address of the user-supplied parameter area. Note that when
ESTAEX was issued in AMODE 64, GPR 1 contains a 64-bit value.

For other ESTAE-type recovery routines where the PARAM parameter was
not specified, zero.

GPR 2 Address of the purged I/O restore list, if I/O was quiesced and is
restorable; otherwise, zero.

GPRs 3 - 14 Do not contain any information for use by the routine.

GPR 15 Entry point address of the retry routine, except for when ESTAEX was
issued in AMODE 64, in which case the low order bit is set on.

Table 51. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA,
RETREGS=NO, and FRESDWA=YES (Access Registers)

Register Contents

AR 0 Zero.

Chapter 18. Providing recovery 379

Table 51. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA,
RETREGS=NO, and FRESDWA=YES (Access Registers) (continued)

Register Contents

AR 1 One of the following:

v If you issued the ESTAEX macro in AR ASC mode and not AMODE 64,
an ALET that qualifies the address in GPR 1.

v For ARRs, the system uses the linkage stack entry that was current
when the ARR's stacking PC routine was entered, and from that entry,
provides a copy of the current contents of the second 4 bytes of the
8-byte modifiable area.

v Otherwise, this register does not contain any information for use by the
routine.

ARs 2 - 13 Do not contain any information for use by the routine.

ARs 14 - 15 Zero.

Table 52. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA
and RETREGS=YES (General Purpose Registers)

Register Contents

GPRs 0 - 15 Restored from SDWASRSV, regardless of whether the recovery routine
specified FRESDWA=NO or FRESDWA=YES.

Note that register 15 does not contain the entry point address of the retry
routine unless the recovery routine sets it up that way.

Table 53. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA
and RETREGS=YES (Access Registers)

Register Contents

ARs 0 - 15 Restored from SDWAARSV, regardless of whether the recovery routine
specified FRESDWA=NO or FRESDWA=YES.

Table 54. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA
and RETREGS=64 in z/Architecture mode (General Purpose Registers)

Register Contents

GPRs 0 - 15 Restored from SDWAG64, regardless of whether the recovery routine
specified FRESDWA=NO or FRESDWA=YES.

Note that register 15 does not contain the entry point address of the retry
routine unless the recovery routine sets it up that way.

Table 55. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA
and RETREGS=64 in z/Architecture mode (Access Registers)

Register Contents

ARs 0 - 15 Restored from SDWAARSV, regardless of whether the recovery routine
specified FRESDWA=NO or FRESDWA=YES.

Retry from an FRR: The following table describes register contents on entry to a
retry routine from an FRR. Note that an FRR can use RETREGS=YES,RUB to
update the SDWASRSV, or can directly manipulate the contents of both the
SDWASRSV and the SDWAARSV.

380 z/OS V2R2 MVS Authorized Assembler Services Guide

If you are running in z/Architecture mode and do not specify RETREGS=64, the
upper halves of the 64-bit GPRs at retry will contain the upper halves of the 64-bit
registers from the time of error.

Table 56. Register Contents—Retry from an FRR (General Purpose Registers)

Register Contents

GPRs 0 - 14 Restored from SDWASRSV.

GPR 15 Entry point for the retry routine if the FRR specifies RETRY15=NO, or
takes the default; restored from SDWASRSV if the FRR specifies
RETRY15=YES.

Table 57. Register Contents—Retry from an FRR (Access Registers)

Register Contents

ARs 0 - 14 Restored from SDWAARSV.

AR 15 Zero if the FRR specifies RETRY15=NO, or takes the default; restored from
SDWAARSV if the FRR specifies RETRY15=YES.

Table 58. Register Contents—Retry from an FRR with RETREGS=64 in z/Architecture mode
(General Purpose Registers)

Register Contents

GPRs 0 - 14 Restored from SDWAG64.

GPR 15 Entry point for the retry routine if the FRR specifies RETRY15=NO, or
takes the default; restored from SDWASRSV if the FRR specifies
RETRY15=YES. When GPR 15 contains the entry point of the retry routine,
the upper half of GPR 15 is set to zero.

Table 59. Register Contents—Retry from an FRR with RETREGS=64 in z/Architecture mode
(Access Registers)

Register Contents

ARs 0 - 14 Restored from SDWAARSV.

AR 15 Zero if the FRR specifies RETRY15=NO, or takes the default; restored from
SDWAARSV if the FRR specifies RETRY15=YES.

Other environmental factors in recovery
As mentioned previously, the other environmental factors to be concerned about in
a recovery environment are:
v Authorization: problem state or supervisor state, PSW key, and PKM
v SDWA storage key
v Dispatchable unit mode
v Cross memory mode
v AMODE
v ASC mode
v Interrupt status
v DU-AL
v Locks
v Program mask
v Condition of the linkage stack

Chapter 18. Providing recovery 381

v AX
v EAX

These environmental factors differ depending on whether the routine is:
v An ESTAE-type recovery routine
v A retry routine getting control from an ESTAE-type recovery routine
v An FRR
v A retry routine getting control from an FRR.

Environment on entry to an ESTAE-type recovery routine
The following is a description of each environmental factor on entry to an
ESTAE-type recovery routine.

Authorization:

Environmental factor Requirement

Problem or supervisor state An ESTAE-type recovery routine is entered
in the state, either supervisor or problem
state, that existed at the time the recovery
routine was defined.

PSW key An ESTAE-type recovery routine is entered
with PSW key 0 whenever the routine was
defined with a PSW key less than 8.
Otherwise, it is entered with the PSW key
that existed at the time it was defined.

PKM ESTAE-type recovery routines defined by the
ESTAE, ESTAEX, or ATTACHX macros are
entered with the PKM that existed at the
time the macro was issued.

FESTAE routines are entered with the PKM
that existed at the time of error.

ARRs are entered with the PKM that existed
at the time their stacking PC routine was
entered.

SDWA storage key: An ESTAE-type recovery routine activated under PSW key 0
- 7 receives an SDWA in storage key 0.

An ESTAE-type recovery routine activated under PSW key 8 - F receives an SDWA
as follows:
v Whether or not the recovery routine is in cross memory mode, the SDWA is in

the same storage key as the TCB key at the time the related task made the first
storage request from subpool 0.

v If the recovery routine is in cross memory mode, the system obtains the SDWA
from the primary address space in which the task that owns the cross memory
resources is running; that task is the one whose address is in ASCBXTCB.

For information about subpools and storage keys, see “Selecting the right subpool
for your virtual storage request” on page 225.

Dispatchable unit mode: All ESTAE-type recovery routines receive control in task
mode.

382 z/OS V2R2 MVS Authorized Assembler Services Guide

Cross memory mode: A recovery routine defined through the ESTAE macro, the
FESTAE macro, or the ESTAI parameter on ATTACHX has PASN=HASN=SASN.

A recovery routine defined through the ESTAEX macro has the PASN and SASN
that existed when the ESTAEX macro was issued.

ARRs have the PASN and SASN that existed when the stacking PC routine was
entered.

AMODE: ESTAE-type recovery exits receive control in the AMODE that was
current at the time-of-set (time-of-PC AMODE for ARRs) with the following
exceptions:
v ARR, IEAARR, and ESTAEX exits receive control in AMODE 31 instead of

AMODE 24 when established for AMODE 24 programs.

ASC mode: A recovery routine defined through the ESTAE macro or the FESTAE
macro is entered in primary ASC mode.

A recovery routine defined through the ESTAEX macro or the ESTAI parameter on
ATTACHX is entered in the ASC mode that existed at the time the macro was
issued.

ARRs are entered in the ASC mode that existed at the time the stacking PC routine
was entered.

Interrupt status: All ESTAE-type recovery routines are entered enabled for I/O
and external interrupts.

DU-AL: ESTAE-type recovery routines receive control with the DU-AL that was
current at the time of the error, as modified by any previous recovery routines,
with the following exception. For an ESTAE-type recovery routine activated by an
IRB, or activated by an IRB's ESTAE-type recovery routine, the ESTAE-type
recovery routine receives the IRB's DU-AL (IRBs get control with their own
DU-AL). The system does not modify the contents of the DU-AL during recovery
processing.

Locks: All locks are freed before the first ESTAE-type recovery routine gets
control.

Program mask: The program mask on entry to an ESTAE-type recovery routine is
the same as the program mask at the time of error.

Condition of the linkage stack: On entry to an ESTAE-type recovery routine, the
current linkage stack entry is the same as it was at the time of the error, unless a
previous recovery routine added entries to the linkage stack through a PC or
BAKR instruction and did not remove them. In such a case, when percolation
occurs and the recovery routine gets control, the linkage stack contains additional
entries beyond what was the current entry at the time of the error for which the
recovery routine received control. IBM recommends that any recovery routines
that add entries to the linkage stack also remove them.

AX: The AX for ESTAE-type recovery routines is the AX for the current PASN of
the recovery routine. The system does not modify the AX value during recovery
processing. Refer to the information on cross memory in z/OS MVS Programming:
Extended Addressability Guide for more information about the AX.

Chapter 18. Providing recovery 383

EAX: The EAX for recovery routines defined through the ESTAE macro, the
ESTAEX macro, or the ESTAI parameter on ATTACHX is the same as when the
macro was issued.

For FESTAE routines, the EAX is the same as when the SVC routine that defined
the FESTAE routine was entered.

For ARRs, the EAX is the same as when the stacking PC routine was entered.

Refer to the information on access registers in z/OS MVS Programming: Extended
Addressability Guide for more information about the EAX.

Restricted environments: During normal task termination, a resource manager
might end abnormally; its own recovery routines, if any exist, will receive control.
If they do not retry, or if the resource manager has no recovery routines, the
system now considers this situation to be an abnormal termination, and passes
control to the newest ESTAI routine. Because the abending resource manager, and
any previous resource managers, might have completed some processing, the
ESTAI routine will run in an unpredictable environment. In this situation, IBM
recommends that you restrict the ESTAI routine's processing. For the ESTAI routine
to run in this environment, design it to:
1. Check the STCBRMET field in the STCB; if the bit is on, the ESTAI routine is

running after a resource manager has ended abnormally and its recovery
routines have not retried. In this situation, the ESTAI routine does not need to
hold a lock to check the STCBRMET field. For the mapping of the STCB, see
z/OS MVS Data Areas in the z/OS Internet library (http://www.ibm.com/
systems/z/os/zos/bkserv/).

2. Do as little processing as possible, and nothing that might depend on a
resource that might have been cleaned up already.

3. Do not request to retry. The system will not allow a retry in this situation.

Note that no other ESTAE-type routines receive control in this situation; only those
established through the ATTACHX macro still exist at this point in termination
processing.

Environment on entry to a retry routine from an ESTAE-type
recovery routine
The following is a description of each environmental factor on entry to a retry
routine that was specified by an ESTAE-type recovery routine.

384 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Authorization:

Environmental factor Requirement

Problem or supervisor state If the recovery routine was defined by an
ESTAE or ESTAEX macro, the retry routine
is entered in the state that existed when the
macro was issued.

If the recovery routine was defined by a
FESTAE macro, the retry routine is entered
in supervisor state.

For ARRs, the retry routine is entered in the
state that existed when the stacking PC
routine was entered.

If the recovery routine was defined by the
ESTAI parameter of the ATTACHX macro,
the retry routine is entered in supervisor
state if, and only if, the RBOPSW of the
retry RB is in supervisor state and the
mainline routine was authorized at the time
of the error. Otherwise, the retry routine is
entered in problem state. The mainline
routine is considered to be authorized at the
time of the error when at least one of the
following is true:

v The program is APF-authorized.

v The task in error has a protect key which
is less than 8.

v All RBs for the task in error run in
supervisor state.

PSW key If the recovery routine was defined by an
ESTAE, ESTAEX, or ESTAEX macro, the
retry routine is entered with the same PSW
key that existed when the macro was issued.

If the recovery routine was defined by the
ESTAI parameter of the ATTACHX macro,
the retry routine is entered with the same
PSW key as the one in RBOPSW of the retry
RB, if the RBOPSW of the retry RB when
one of the following is true (otherwise, the
PSW key of the retry routine is that of the
task in error):

v The main routine was authorized (as
defined earlier under “Problem or
Supervisor State”) at the time of the error.

v The RBOPSW of the retry RB has a key
greater than or equal to 8 and is in
problem state, and the PKM of that RB
does not have authority to keys less than
8.

For ARRs, the retry routine is entered with
the same PSW key that existed when the
stacking PC routine was entered.

Chapter 18. Providing recovery 385

Environmental factor Requirement

PKM If the recovery routine was defined through
the ESTAE or ESTAEX macro, the retry
routine is entered with the PKM that existed
when the macro was issued.

If the recovery routine was defined by the
FESTAE macro, the retry routine is entered
with the PKM that existed at the time of the
error.

If the recovery routine was defined through
the ESTAI parameter of the ATTACHX
macro, the retry routine is entered with the
PKM from the retry RB only if one of the
following is true (otherwise, the PKM of the
retry routine only has authority that is
equivalent to that of the task in error):

v The main routine was authorized (as
defined earlier under “Problem or
Supervisor State”) at the time of the error.

v The RBOPSW of the retry RB has a key
greater than or equal to 8 and is in
problem state, and the PKM of that RB
does not have authority to keys less than
8.

For ARRs, the retry routine is entered with
the PKM at the time the PC routine was
entered.

SDWA storage key: If the recovery routine does not request that the system free
the SDWA, the retry routine receives the SDWA in the same storage key as that
which the recovery routine received.

Dispatchable unit mode: The retry routine is always entered in task mode.

Cross memory mode: If the recovery routine was defined through the ESTAE
macro, the FESTAE macro, or the ESTAI parameter on ATTACHX, the retry routine
is entered with PASN=HASN=SASN.

If the recovery routine was defined through the ESTAEX macro, the retry routine is
entered with the PASN and SASN that existed when the macro was issued.

For ARRs, the retry routine is entered with the PASN and SASN that existed when
the stacking PC routine was entered.

AMODE: Retry routines are entered in the same addressing mode that existed
when the recovery routine was entered, unless the SETRP RETRYAMODE= is used
by the recovery routine. See the description of RETRYAMODE= parameter on the
SETRP information of the z/OS MVS Programming: Assembler Services Reference
IAR-XCT.

ASC mode: For recovery routines defined through the ESTAE or FESTAE macro,
the retry routine is entered in primary ASC mode.

386 z/OS V2R2 MVS Authorized Assembler Services Guide

For recovery routines defined through the ESTAEX macro or through the ESTAI
parameter on ATTACHX, the retry routine is entered with the ASC mode of the
caller when the macro was issued.

For ARRs, the retry routine is entered in the ASC mode at the time the stacking PC
routine was entered.

Interrupt status: The retry routine is always entered enabled for I/O and external
interrupts.

DU-AL: The retry routine is entered with the same DU-AL that the ESTAE-type
recovery routine received, as modified by the ESTAE-type recovery routine. The
system does not modify the contents of the DU-AL during recovery processing.

Locks: The retry routine is entered with no locks held. If the ESTAE-type recovery
routine obtains any locks, it must free those locks before returning to the system.
Otherwise, the system recognizes this as an error, and the retry routine does not
get control.

Program mask: When the retry routine receives control, the program mask is the
one in the RBOPSW for the retry RB, saved at the time of the last interruption of
that RB that occurred while the RB was unlocked and enabled.

Condition of the linkage stack: For recovery routines defined through the ESTAE
or ESTAEX macro, on entry to the retry routine, the current linkage stack entry is
the same as it was at the time the macro was issued, unless the recovery routine
has set the SDWALSLV field.

For recovery routines defined through the ESTAI parameter on ATTACHX, on
entry to the retry routine, the current linkage stack entry is the same as it was at
the time the selected retry RB was entered, unless the recovery routine has set the
SDWALSLV field.

For FESTAE routines, on entry to the retry routine, the current linkage stack entry
is the same as it was at the time the SVC routine was entered.

For ARRs, on entry to the retry routine, the current linkage stack entry is the same
as it was at the time the PC routine was entered, unless the recovery routine has
set the SDWALSLV field.

AX: The retry routine is entered with the AX for the current PASN of the retry
routine. The system does not modify the AX value during recovery processing.

EAX: For recovery routines defined through the ESTAE or ESTAEX macro, the
EAX for the retry routine is the same as when the macro was issued.

For ESTAI routines, the EAX for the retry routine is the EAX at the time the
selected retry RB was entered.

For FESTAE routines, the EAX for the retry routine is the same as when the SVC
routine was entered.

For ARRs, the EAX for the retry routine is the same as when the PC routine was
entered.

Chapter 18. Providing recovery 387

Summary of environment on entry to an ESTAE-type recovery
routine and its retry routine
Table 60 summarizes some of the environmental factors for ESTAE-type recovery
routines under different conditions. Specifically, the table lists the status
information of:
v The caller at the time of issuing the macro
v The recovery routine at entry
v The retry routine at entry.

Table 60. Environments of ESTAE-Type Recovery Routines and their Retry Routines

Type of Recovery When macro was issued At entry to recovery routine At entry to retry routine

ESTAE ASC mode=primary

PASN=HASN=SASN

ASC mode=primary

PASN=HASN=SASN

Linkage stack at time of error (see
Note 1 on page 389)

EAX at time macro was issued

PKM at time macro was issued

ASC mode=primary

PASN=HASN=SASN

Linkage stack at time macro was
issued (see Note 2 on page 389)

EAX at time macro was issued

PKM at time macro was issued

ESTAEX or
IEAARR

ASC mode=primary or AR

PASN=HASN=SASN or any PASN,
any SASN, any HASN

ASC mode at time macro was
issued

PASN and SASN at time macro
was issued

Linkage stack at time of error (see
Note 1 on page 389)

EAX at time macro was issued

PKM at time macro was issued

ASC mode at time macro was
issued

PASN and SASN at time macro was
issued

Linkage stack at time macro was
issued (see Note 2 on page 389)

EAX at time macro was issued

PKM at time macro was issued

ARR N/A ASC mode at time stacking PC
routine was entered

PASN and SASN at time stacking
PC routine was entered

Linkable stack at time of error (see
Note 1 on page 389)

EAX at time stacking PC routine
was entered

PKM at time stacking PC routine
was entered

ASC mode at time stacking PC
routine was entered

PASN and SASN at time stacking
PC routine was entered

Linkage stack at time stacking PC
routine was entered (see Note 2 on
page 389)

EAX at time stacking PC routine
was entered

PKM at time stacking PC routine
was entered

FESTAE ASC mode=primary

PASN=HASN=SASN

ASC mode=primary

PASN=HASN=SASN

Linkage stack at time of error (see
Note 1 on page 389)

EAX at time SVC routine was
entered

PKM at time of error

ASC mode=primary

PASN=HASN=SASN

Linkage stack at time SVC routine
was entered

EAX at time SVC routine was
entered

PKM at time of error

388 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 60. Environments of ESTAE-Type Recovery Routines and their Retry Routines (continued)

Type of Recovery When macro was issued At entry to recovery routine At entry to retry routine

ESTAI (through
ATTACHX)

ASC mode=primary or AR

PASN=HASN=SASN

ASC mode at time macro was
issued

PASN=HASN=SASN

Linkage stack at time of error (see
Note 1)

EAX at time macro the selected
retry RB was entered (see Note 2)

EAX at time the macro was issued

PKM at time macro was issued

For possible environment
restrictions, see “Restricted
environments” on page 384

ASC mode at time macro was
issued

PASN=HASN=SASN

Linkage stack at time the selected
retry RB was entered (see Note 2)

EAX at time the selected retry RBG
was entered

Note:

1. If a previous recovery routine added entries through a PC or BAKR instruction
and did not remove them, the linkage stack presented to the recovery routine
might have additional entries beyond what was the current entry at the time of
the error.

2. When the recovery routine set the SDWALSLV field, the linkage stack presented
to the retry routine might have additional entries beyond what was current at
the time the recovery routine was activated.

3. At time of entry to the recovery routine, the AMODE is the same as the time of
invocation, except for ESTAEX, ARR, and IEAARR routines. ESTAEX and
IEAARR routines that were established in AMODE 64 receive control in
AMODE 64, otherwise ESTAEX, ARR, and IEAARR routines always receive
control in AMODE 31.

4. The AMODE at the retry point is the same as the AMODE on entry to the
recovery routine, unless the SETRP RETRYAMODE= parameter specifies a
specific retry AMODE.

5. An ESTAE-type recovery routine is entered with PSW key 0 whenever it was
defined with a PSW key less than 8. Otherwise, it is entered with the PSW key
that existed at the time it was defined.

6. The AX for the recovery routine or the retry routine is always the AX for the
current PASN of the recovery routine or the retry routine, respectively. The
system does not modify the AX value during recovery processing.

Environment on entry to an FRR
The following is a description of each environmental factor on entry to an FRR. In
addition to the factors described for ESTAE-type recovery routines, this
information includes a description of restricted environments, which applies only
to FRRs. See “Restricted environments” on page 392 for more information.

Authorization:

Environmental factor Requirement

Problem or supervisor state All FRRs receive control in supervisor state.

PSW key All FRRs receive control in PSW key 0.

Chapter 18. Providing recovery 389

Environmental factor Requirement

PKM For FRRs defined through the SETFRR
macro with the MODE=FULLXM or
MODE=PRIMARY parameters, the PKM on
entry to the FRR is the PKM at the time the
SETFRR macro was issued.

For FRRs defined through the SETFRR
macro with the MODE=HOME parameter,
the PKM on entry to the FRR is as follows:

v If the FRR is in SRB mode, the PKM at
the time of the error.

v If the FRR is in task mode, the PKM that
can be constructed from the storage
protection key in the TCB of the currently
active task, unless a DAT error occurs. If a
DAT error occurs, the PKM is the PKM at
the time of the error.

SDWA storage key: FRRs always receive an SDWA in storage key 0.

Dispatchable unit mode: FRRs are entered in the dispatchable unit mode that
existed at the time of error.

Cross memory mode: The cross memory environment for an FRR depends on the
values coded for the MODE parameter in the SETFRR macro that defined the FRR.

Specifying HOME, PRIMARY, or FULLXM for the MODE parameter of the
SETFRR macro indicates to the system the normal or expected addressing
environment of the FRR.

MODE=HOME
If you specify MODE=HOME or omit the MODE parameter, the FRR gets
control with PASN=HASN=SASN.

MODE=PRIMARY
If you code MODE=PRIMARY, the FRR gets control with the PASN and SASN
both the same as the PASN that existed when the SETFRR macro was issued.

MODE=FULLXM
If you specify MODE=FULLXM, the FRR gets control in the cross memory
environment that existed when the SETFRR macro was issued. That is, the
PASN and the SASN are the same as those that existed when the SETFRR
macro was issued.

If the system cannot enter an FRR with its normal addressing environment
established as defined by the MODE parameter on the SETFRR macro, the system
bypasses the FRR and percolates to the next FRR on the FRR stack, unless the FRR
was defined to run in a restricted addressing environment (also specified by the
MODE parameter). See “Restricted environments” on page 392 for more
information about FRRs running in restricted environments.

AMODE: The addressing mode for FRRs is the addressing mode that existed at
the time the SETFRR macro was issued.

390 z/OS V2R2 MVS Authorized Assembler Services Guide

ASC mode: The ASC mode on entry to an FRR depends on the ASC mode when
the SETFRR macro was issued, and on the MODE specification on the SETFRR
macro. See Table 61 for the ASC mode on entry to an FRR.

Interrupt status: An FRR gets control and is entered disabled if, at the time of the
error, the mainline routine is disabled. Any FRR entered disabled must remain
disabled.

DU-AL: FRRs receive control with the DU-AL that was current at the time of the
error, as modified by any previous FRRs. The system does not modify the contents
of the DU-AL during recovery processing.

Locks: FRRs run with the locks (and the enablement implied by those locks) that
were held at the time of the error, plus an additional CPU lock obtained for the
system if the FRR was holding any CPU locks, unless a previous FRR does one of
the following:
v Deletes one or more of the locks
v Requests the system to delete one or more of the locks using the FRELOCK

parameter on the SETRP macro.

Program mask: On entry to an FRR, the program mask is zero.

Condition of the linkage stack: On entry to an FRR, the current linkage stack
entry is the same as it was at the time of the error, unless a previous recovery
routine added entries to the linkage stack through a PC or BAKR instruction and
did not remove them. In such a case, when percolation occurs and the recovery
routine gets control, the linkage stack contains additional entries beyond what was
the current entry at the time of the error for which the recovery routine received
control. IBM recommends that any recovery routines that add entries to the
linkage stack also remove them.

AX: The AX for FRRs is the AX for the current PASN of the recovery routine. The
system does not modify the AX value during recovery processing. Refer to the
information on cross memory in z/OS MVS Programming: Extended Addressability
Guide for more information about the AX.

EAX: The EAX for FRRs is the same as when the SETFRR macro was issued.
Refer to the information on access registers in z/OS MVS Programming: Extended
Addressability Guide for more information about the EAX.

Summary of environment on entry to an FRR: Table 61 summarizes some of the
environmental factors on entry to FRRs for three options on the MODE parameter:

Table 61. Environment on Entry to FRRs

MODE=FULLXM MODE=PRIMARY MODE=HOME

SETFRR issued in primary ASC
mode

ASC mode=primary

PASN=PASN at the time
SETFRR was issued

SASN=SASN at the time
SETFRR was issued

PKM=PKM at the time
SETFRR was issued

ASC mode=primary

PASN=PASN at the time
SETFRR was issued

SASN=PASN at the time
SETFRR was issued

PKM=PKM at the time
SETFRR was issued

ASC mode=primary

PASN=HASN=SASN

PKM depends on the
dispatchable unit mode, as
follows:

v For task mode, see Note 1
on page 392.

v For SRB mode, PKM=PKM
at time of error

Chapter 18. Providing recovery 391

Table 61. Environment on Entry to FRRs (continued)

MODE=FULLXM MODE=PRIMARY MODE=HOME

SETFRR issued in secondary
ASC mode

ASC mode=secondary

PASN=PASN at the time
SETFRR was issued

SASN=SASN at the time
SETFRR was issued

PKM=PKM at the time
SETFRR was issued

ASC mode=primary

PASN=PASN at the time
SETFRR was issued

SASN=PASN at the time
SETFRR was issued

PKM=PKM at the time
SETFRR was issued

ASC mode=primary

PASN=HASN=SASN

PKM depends on the
dispatchable unit mode, as
follows:

v For task mode, see Note 1.

v For SRB mode, PKM=PKM
at time of error

SETFRR issued in AR ASC
mode

ASC mode=AR

PASN=PASN at the time
SETFRR was issued

SASN=SASN at the time
SETFRR was issued

PKM=PKM at the time
SETFRR was issued

ASC mode=AR

PASN=PASN at the time
SETFRR was issued

SASN=PASN at the time
SETFRR was issued

PKM=PKM at the time
SETFRR was issued

ASC mode=AR

PASN=HASN=SASN

PKM depends on the
dispatchable unit mode, as
follows:

v For task mode, see Note 1.

v For SRB mode, PKM=PKM
at time of error

Note:

1. When your program specifies MODE=HOME on SETFRR, and is also in task
mode, the PKM for the FRR is the PKM that can be constructed from the
storage protection key in the TCB of the currently active task, unless a DAT
error occurs. If a DAT error occurs, the PKM is the PKM at the time of the
error.

2. The EAX is the same as when the SETFRR macro was issued.
3. The AX is the AX for the current PASN of the recovery routine.
4. On entry to an FRR, the current linkage stack entry is the same as it was at the

time of the error, unless a previous FRR added entries to the linkage stack
through a PC or BAKR instruction and did not remove them. In such a case,
when percolation occurs and the FRR gets control, the linkage stack contains
additional entries beyond what was the current entry at the time of the error
for which the FRR received control.

5. There is no restriction on AMODE at time of invocation for SETFRR. At time of
entry to the recovery routine, the AMODE will be the same as the time of
invocation.

6. The PSW key on entry to an FRR is always 0.

Restricted environments: Specifying LOCAL for the MODE parameter on
SETFRR indicates to the system that the FRR can run in either a normal
environment or a restricted environment. When an FRR is entered in a restricted
environment, it is often called a resource manager because its only purpose is to
recover resources. These resources are critical address space resources. Requesting
to be able to run in a restricted environment is advantageous when the address
space under which the unit of work was running terminates. When you specify
MODE=LOCAL, the FRR can run in a different address space, and thus can have
the opportunity to clean up the critical resource. The system does not allow FRRs
entered in a restricted environment to retry.

392 z/OS V2R2 MVS Authorized Assembler Services Guide

MODE=LOCAL should be used by services that need to clean up critical address
space related resources serialized by means of a local lock (including the CML
lock). When LOCAL is specified and the system cannot enter the FRR in its normal
mode, it enters the FRR in the restricted LOCAL mode as long as a local lock is
held, and the address space whose lock is held has not terminated or suffered a
DAT error.

If it is possible for the FRR to get control in one address space in normal mode and
in another address space in restricted mode, the FRR must reside in commonly
addressable storage.

The system enters an FRR defined with the LOCAL parameter in LOCAL restricted
mode for two different reasons:
1. The system tried to establish the environment required to enter the FRR in

normal mode but could not; this problem can occur, for example, when the
SASN is no longer valid.

2. An address space is terminating and at least one unit of work in that address
space is holding the local lock for another address space (CML lock).
In both cases, the entry environment is:
v Primary mode, the home address space can be any address space, and the

PASN and SASN are the same as the ASN of the locked address space.
v The system turns on the SDWALCL bit to indicate that the system is entering

the routine in LOCAL restricted mode (otherwise, this bit is turned off).
v The system turns on the SDWACLUP bit to indicate that the routine is not

allowed to retry, although, if system conditions permit, nested FRRs are
permitted to retry. See “Providing recovery for recovery routines” on page
409 for an explanation of nested recovery routines.

The following considerations apply when the system enters the FRR in LOCAL
restricted mode as a result of reason 2:
v If the FRR issues a SETRP macro to request that the system free the CML lock,

subsequent FRRs are not entered because the resources in the address space are
no longer serialized and therefore no further LOCAL resource clean up can be
done.

v The FRR must not depend on running in task mode because, even though the
SETFRR macro was issued in task mode, an FRR entered in LOCAL restricted
mode runs in SRB mode. In this case, the information in the SDWA reflects the
interrupted process that originally held the CML lock, and the FRR is not
permitted to retry.

v The FRR created with the LOCAL parameter must be prepared to be suspended
during its normal mode recovery processing and then be entered a second time
in LOCAL restricted mode to recover critical address space resources. If the FRR
that is running has defined another FRR, specifying MODE=LOCAL, the newer
FRR gets control in LOCAL restricted mode followed by the FRR that was in
control at the time of suspension.

Environment on entry to a retry routine from an FRR
The following is a description of each environmental factor on entry to a retry
routine that was specified by an FRR.

Chapter 18. Providing recovery 393

Authorization:

Environmental factor Requirement

Problem or supervisor state The retry routine from an FRR is always
entered in supervisor state.

PSW key The retry routine from an FRR is always
entered in PSW key 0.

PKM The PKM for a retry routine from an FRR is
the same as the PKM for the FRR.

SDWA storage key: For retry from an FRR, the retry routine cannot access the
SDWA. The system always frees the SDWA before giving control to the retry
routine.

Dispatchable unit mode: The dispatchable unit mode for the retry routine is the
mode that existed at the time of error.

Cross memory mode: The PASN and SASN for the retry routine can be either
those that existed at the time of the error, or those that existed at the time of the
entry to the FRR that is requesting the retry. The FRR makes the choice through the
RETRY parameter on the SETRP macro.

When the recovery routine specifies the RETRY=ERROR parameter on SETRP, the
system sets the PASN and the SASN to the values they had at the time of the error.

Use caution in choosing to establish the environment that existed at the time of the
error, because a problem with the environment might very well be the cause of the
error.

You can use the RETRY=FRR parameter on SETRP (or take the default) to specify
that the retry routine get control in the cross memory conditions that existed at the
time the program issued the SETFRR. Table 62 shows the cross memory conditions
that exist if you issue this request.

Note: Specifying MODE=PRIMARY on SETFRR causes the retry routine to lose
addressability to what was the secondary address space at the time the macro was
issued (the SASN is set to whatever the PASN was at the time SETFRR was
issued).

Table 62. Retry to SETFRR Environment (Specifying SETRP RETRY=FRR)

ASC Mode MODE=FULLXM MODE=PRIMARY MODE=HOME

SETFRR issued in primary
mode

ASC mode=primary

PASN=PASN at the time
SETFRR was issued

SASN=SASN at the time
SETFRR was issued

ASC mode=primary

PASN=PASN at the time
SETFRR was issued

SASN=PASN at the time
SETFRR was issued

ASC mode=primary

PASN=HASN=SASN

SETFRR issued in secondary
mode

ASC mode=secondary

PASN=PASN at the time
SETFRR was issued

SASN=SASN at the time
SETFRR was issued

ASC mode=primary

PASN=PASN at the time
SETFRR was issued

SASN=PASN at the time
SETFRR was issued

ASC mode=primary

PASN=HASN=SASN

394 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 62. Retry to SETFRR Environment (Specifying SETRP RETRY=FRR) (continued)

ASC Mode MODE=FULLXM MODE=PRIMARY MODE=HOME

SETFRR issued in AR mode ASC mode=AR

PASN=PASN at the time
SETFRR was issued

SASN=SASN at the time
SETFRR was issued

ASC mode=AR

PASN=PASN at the time
SETFRR was issued

SASN=PASN at the time
SETFRR was issued

ASC mode=AR

PASN=HASN=SASN

AMODE: Retry routines are entered in the same addressing mode that existed
when the recovery routine was entered, unless the SETRP RETRYAMODE= is used
by the recovery routine. See the description of RETRYAMODE= parameter on the
SETRP information of the z/OS MVS Programming: Assembler Services Reference
IAR-XCT.

ASC mode: The ASC mode on entry to the retry routine depends on what the
FRR specifies on the RETRY parameter on SETRP. If the FRR specifies
RETRY=ERROR, the system sets the ASC mode to whatever it was at the time of
error. If the FRR specifies RETRY=FRR, the ASC mode for the retry routine
depends on the ASC mode of the program issuing SETFRR, and on how the
program specifies the MODE parameter on SETFRR. See Table 62 on page 394 for
the ASC mode values when RETRY=FRR.

Interrupt status: The retry routine is entered disabled if the FRR was entered
disabled and does not issue SETRP with FRELOCK=CPU and FRLKRTY=YES.
Otherwise, the retry routine is entered enabled.

DU-AL: The retry routine receives control with the same DU-AL that the FRR
received, as modified by the FRR. The system does not modify the contents of the
DU-AL during recovery processing.

Locks: The status of locks held is the same on entry to the retry routine as it was
on entry to the FRR requesting retry. Exceptions occur when the FRR specifies
FRELOCK and FRLKRTY on the SETRP macro to request that the system free the
locks, or the FRR itself frees the locks. Any locks requested to be freed are no
longer held upon entry to the retry routine. If the FRR obtained any locks, the
system frees them before giving control to the retry routine.

Program mask: The retry routine is entered with a program mask of zero.

Condition of the linkage stack: The retry routine is always entered with the same
linkage stack that was in effect when SETFRR was issued, unless the recovery
routine sets the SDWALSLV field.

AX: The AX is the current one for the PASN of the retry routine.

EAX: The EAX is the same as when the SETFRR macro was issued.

Linkage stack at time of retry
There is one retry situation you must avoid: the situation where the retry routine
runs with a linkage stack entry that is inappropriate. Consider the following
example, where PGM1 activates an ESTAEX routine that handles recovery for
PGM1, PGM2, and PGM3.

Chapter 18. Providing recovery 395

Both PGM2 and PGM3 use the BAKR instruction to save status; each BAKR adds
an entry to the linkage stack. Within PGM3, “retry point” indicates the location
where the ESTAEX routine is to retry. After PGM3 issues the BAKR instruction, the
last entries in the linkage stack are:
v Entry 1 -- caused by PGM1's BAKR
v Entry 2 -- caused by PGM2's BAKR
v Entry 3 -- caused by PGM3's BAKR

When the abend occurs in PGM3, unless you take special measures, the linkage
stack level is reset to the level that was current when PGM1 activated the ESTAEX
recovery routine. However, retry from the abend in PGM3 occurs within PGM3.
The linkage stack level and the retry routine are not “in synch”. Measures you take
to avoid this situation involve:
1. Passing the recovery routine a value that represents the difference between the

level of the linkage stack that the retry routine in PGM3 needs and the level of
the stack at the time PGM1 activated the ESTAEX routine. (In our example, the
difference is 2 entries.)

2. Having the recovery routine set the value “2” in the SDWALSLV field in the
SDWA.

At a retry, the system uses the value in SDWALSLV to adjust the linkage stack. In
this way, the retry routine has the appropriate current linkage stack entry.

Two ways your program can track the entries in the linkage stack are:
v Count the number of entries added to the stack through BAKRs since PGM1

activated the ESTAEX routine. Subtract from that total the number of entries
taken from the stack through corresponding PRs.

v Issue the IEALSQRY macro, which returns the number as output.

In either case, the recovery routine must receive the value and must place it in
SDWALSLV. In summary, the value in SDWALSLV is the difference between the
number of linkage stack entries present when the retry routine gets control and the
number that were present when the recovery routine was activated. The system
preserves the additional entries on the linkage stack for use by the retry routine.
These linkage stack entries must exist at the time of the error; the system does not
create any new entries.

The following rules apply to the value in SDWALSLV, as it pertains to linkage
stack entries:

caller ---> PGM1
BAKR
:
ESTAEX
:
BALR --------> PGM2

BAKR
:
BALR --------> PGM3

BAKR
abend

:
retry point
:

<-------- PR

396 z/OS V2R2 MVS Authorized Assembler Services Guide

v The system ignores the value when the recovery routine is a STAE, STAI, or
FESTAE routine.

v When retry is from an FRR, the value can reflect entries caused by a PC
instruction. All other times, the value can reflect only entries caused by a BAKR.

v For unauthorized ESTAE-type recovery routines, all entries must have the same
state (problem or supervisor) and have the same PSW key as the program that
activated the recovery routine. For authorized ESTAE-type recovery routines or
FRRs, this restriction does not apply.

v For ESTAE-type routines, the value must reflect only those entries associated
with programs that have been established by a program running under the RB
of the retry routine. See “RB considerations” on page 365.

If any of these rules are broken, retry still occurs but the system ignores the entry
that did not conform and all subsequent entries.

Understanding recovery through a coded example
This information provides a coded example illustrating a mainline routine with
both a recovery routine and a retry routine as entry points in the mainline code.

The code in this example does not contain any real function. The mainline code
does little more than save status, establish addressability, obtain a dynamic area
(making the code reentrant), define a recovery routine, and issue the ABEND
macro to pass control to the system.

The purpose of the example is just to illustrate how you might code a program
that contains both a recovery routine and a retry routine, and how the three
routines interact. The example also illustrates how you design an ESTAE-type
recovery routine to allow for the possibility that the system might not provide an
SDWA.
EXAMPLE CSECT * SAMPLE PROGRAM THAT USES ESTAEX
EXAMPLE AMODE 31
EXAMPLE RMODE ANY

USING EXAMPLE,15 * ESTABLISH TEMPORARY ADDRESSABILITY
B @PROLOG * BRANCH AROUND EYE CATCHER
DC CL24’EXAMPLE 04/10/92.01’ * EYE CATCHER

*
* USE THE LINKAGE STACK TO SAVE STATUS ON ENTRY TO THE PROGRAM.
*
@PROLOG BAKR 14,0 * SAVE REGISTER/PSW STATUS
*
* ESTABLISH ADDRESSABILITY FOR THIS PROGRAM.
*

LR 12,15 * REG 12 BECOMES BASE REGISTER
DROP 15 *
USING EXAMPLE,12 * ESTABLISH ADDRESSABILITY

*
* OBTAIN DYNAMIC STORAGE AREA FOR THIS REENTRANT PROGRAM.
*

L 2,DYNSIZE * LENGTH TO OBTAIN
STORAGE OBTAIN,ADDR=(1),SP=0,LENGTH=(2)
LR 13,1 * SAVE DYNAMIC AREA ADDRESS
USING DYNAREA,13 * ADDRESSABILITY TO DYNAMIC AREA

*
* SET UP THE REMOTE PARAMETER LIST FOR THE ESTAEX MACRO.
*

MVC RMTESTAEX(@LSTSIZE),LSTESTAEX
*
* DEFINE AND ACTIVATE AN ESTAEX RECOVERY ROUTINE AT LABEL ’RECOVERY’.
*

Chapter 18. Providing recovery 397

ESTAEX RECOVERY,PARAM=DYNAREA,RECORD=YES,MF=(E,RMTESTAEX)

*
* CODE FOR THE MAINLINE ROUTINE FUNCTION CAN BE INSERTED HERE
*
* IF AN ERROR OCCURS IN THE MAINLINE ROUTINE, THEN THE SYSTEM WILL
* PASS CONTROL TO RECOVERY.
*

*
RETRYPT DS 0H

*
* CODE FOR THE RETRY ROUTINE FUNCTION CAN BE INSERTED HERE
*

ESTAEX 0 * DELETE THE ESTAEX
LR 1,13 * FREE DYNAMIC AREA, ADDRESS TO FREE
L 2,DYNSIZE * LENGTH TO FREE
STORAGE RELEASE,ADDR=(1),SP=0,LENGTH=(2)
PR * RESTORE STATUS & RETURN TO CALLER

*
* RECOVERY ROUTINE
*

RECOVERY DS 0H * ENTRY POINT FOR ESTAEX RECOVERY ROUTINE
*
* HANDLE INPUT FROM THE SYSTEM AND RE-ESTABLISH ADDRESSABILITY FOR
* BASE REGISTER (12) AND DYNAMIC AREA REGISTER (13)
*

PUSH USING
DROP , * ENSURE NO SPURIOUS USING REFERENCES
USING RECOVERY,15 * TEMPORARY ADDRESSABILITY
L 12,#BASE * RELOAD THE BASE REGISTER
DROP 15 * RELEASE TEMPORARY ADDRESSABILITY
USING EXAMPLE,12 * USE THE BASE REGISTER
USING DYNAREA,13 * DYNAMIC AREA ADDRESSABILITY
C 0,TESTNOSDWA * IS THERE AN SDWA PRESENT?
BE NOSDWA * NO, DO NOT USE THE SDWA

HAVESDWA DS 0H
USING SDWA,1 * ADDRESSABILITY TO SDWA
L 13,SDWAPARM * ADDRESS OF PARAMETER ADDRESS
L 13,0(13) * PARAMETER ADDRESS (DYNAREA)
MVC SAVE_ABCC,SDWAABCC * SAVE THE COMPLETION CODE
B RECOV1 * CONTINUE WITH COMMON RECOVERY

NOSDWA LR 13,2 * PARAMETER ADDRESS (DYNAREA)
ST 1,SAVE_ABCC * SAVE THE COMPLETION CODE
SR 1,1 * NO SDWA IS AVAILABLE, CLEAR REGISTER

*
* COMMON RECOVERY PROCESSING
*
RECOV1 DS 0H * COMMON RECOVERY PROCESSING

ST 1,SAVE_SDWA * SAVE THE SDWA ADDRESS
ST 14,SAVE_RETURNR14 * RETURN ADDRESS TO THE SYSTEM

*

*
* CODE FOR THE RECOVERY ROUTINE FUNCTION SHOULD BE INSERTED HERE
*

*
* IF THERE IS NO SDWA, THEN SET UP FOR PERCOLATION
*

L 1,SAVE_SDWA * RESTORE SDWA REGISTER (1)
LTR 1,1 * IS THERE AN SDWA?
BZ NORETRY * NO, DO NOT ATTEMPT TO RETRY

398 z/OS V2R2 MVS Authorized Assembler Services Guide

*
* CHECK SDWACLUP TO SEE IF RETRY IS ALLOWED
*

TM SDWAERRD,SDWACLUP * IS RETRY ALLOWED?
BNZ NORETRY * NO, DO NOT ATTEMPT TO RETRY

*
* SET UP THE RETURN PARAMETERS TO THE SYSTEM. THE SETRP MACRO UPDATES
* THE SDWA. NOTE: THE WKAREA PARAMETER DEFAULTS TO REGISTER 1, WHICH
* HAS THE ADDRESS OF THE SDWA. ALSO NOTE THAT OTHER REGISTERS MIGHT
* NEED TO BE UPDATED TO MEET THE NEEDS OF DIFFERENT PROGRAMS.
*

ST 12,SDWASR12 * BASE REGISTER 12 FOR RETRY
ST 13,SDWASR13 * DYNAMIC AREA REGISTER 13 FOR RETRY
SETRP RETREGS=YES,RC=4,RETADDR=RETRYPT,FRESDWA=YES
B RECOV2 * CONTINUE WITH COMMON RECOVERY

NORETRY DS 0H * BRANCH HERE WHEN NOT GOING TO RETRY
LA 15,0 * RETURN CODE TO INDICATE PERCOLATION

RECOV2 DS 0H * COMPLETE THE RETURN TO THE SYSTEM
L 14,SAVE_RETURNR14 * SET THE RETURN ADDRESS TO THE SYSTEM
BR 14 * RETURN TO THE SYSTEM

*
* STATIC STORAGE AREA
*
TESTNOSDWA DC F’12’ * TEST FOR NO SDWA CONDITION
#BASE DC A(EXAMPLE) * BASE REGISTER VALUE
DYNSIZE DC AL4(@DYNSIZE) * DYNAMIC AREA SIZE
LSTESTAEX ESTAEX RECOVERY,MF=L * LIST FORM OF ESTAEX PARAMETER LIST
@LSTSIZE EQU *-LSTESTAEX * SIZE OF ESTAEX PARAMETER LIST
*
* DYNAMIC AREA STORAGE FOR REENTRANT PROGRAM
*
DYNAREA DSECT * DYNAMIC STORAGE
SAVEAREA DS 18F * REGISTER SAVE AREA
SAVE_SDWA DS F * SDWA ADDRESS ON ENTRY TO RECOVERY
SAVE_ABCC DS F * COMPLETION CODE
SAVE_RETURNR14 DS F * RETURN ADDR. TO SYSTEM FROM RECOVERY
RMTESTAEX DS CL(@LSTSIZE) * REMOTE ESTAEX PARAMETER LIST
STATUS DS F * MAINLINE STATUS INDICATOR
@ENDDYN DS 0X * USED TO CALCULATE DYNAMIC AREA SIZE
@DYNSIZE EQU ((@ENDDYN-DYNAREA+7)/8)*8 * DYNAMIC AREA SIZE
*
* INCLUDE MACROS
*

IHASDWA
END

Understanding advanced recovery topics
This topic contains information about the following advanced recovery topics:
v “Providing recovery with minimal processor overhead (FESTAE macro)” on page

400
v “Invoking RTM” on page 400
v “Providing multiple recovery routines” on page 403

– “Percolation for the same unit of work” on page 407
– “SRB-to-task percolation” on page 408

v “Providing recovery for recovery routines” on page 409
v “Providing recovery for multitasking programs” on page 410
v “Using resource managers” on page 410

Chapter 18. Providing recovery 399

Providing recovery with minimal processor overhead (FESTAE
macro)

A recovery routine defined by the FESTAE macro gets control in the same
sequence and under the same conditions as a recovery routine defined by the
ESTAE or ESTAEX macro. However, only a type 2, 3, or 4 SVC routine (one for
which the system creates an SVRB) can issue FESTAE.

When the SVC routine issues FESTAE, it defines an ESTAE-type recovery routine
with minimal processor overhead. The SVC routine can use FESTAE only once to
create a recovery routine. Therefore, any SVC routine needing to change its
recovery routine address must use branch entry ESTAE services, and any SVC
routine needing more than a single recovery routine must use an ESTAEX or
ESTAE macro to get the additional recovery routines.

In addition to the parameter area that you can supply by coding the PARAM
parameter on the FESTAE macro, a 24-byte parameter area is also available as an
option. The name of the optional parameter area is RBFEPARM, which is a field in
the RB data area. If you do not specify the PARAM parameter on the FESTAE
macro, the system uses RBFEPARM as the default parameter area. When the
recovery routine gets control, SDWAPARM (or GPR 2 if the system does not
provide an SDWA) contains the address of RBFEPARM. The mainline routine can
clear (set to zero) and initialize the parameter area with appropriate information
(such as tracking data) that might be useful to the recovery routine. You must clear
the parameter area before using it to ensure that no spurious data remains in it
from previous processing.

Invoking RTM
RTM can be called to perform its recovery and termination services on behalf of
the caller or on behalf of another routine. Two macros -- CALLRTM and ABEND --
invoke RTM.

Using the CALLRTM macro
A routine issues the CALLRTM macro to direct recovery termination services to
terminate a task, an address space, or a preemptable SRB. Control returns to the
issuer of the macro if TYPE=ABTERM, TYPE=MEMTERM, or TYPE=SRBTERM is
specified.

TYPE=ABTERM: If the CALLRTM macro specifies TYPE=ABTERM, system
processing is directed toward the specified task. The following locking and save
area requirements apply to this form of CALLRTM:
v To terminate the current task, you can specify (or default to) TCB=0, or specify

TCB= as the address of the current task's TCB, or specify TTOKEN= as the
TTOKEN of the current task. Regardless of how the current task is specified, you
must also specify the ASID= parameter using the current ASID.
In this form of ABTERM, the caller may (but is not required to) hold the local
lock. This ABTERM request will be processed asynchronously via an SRB. To
prevent the current task from running while the SRB is implementing the
requested ABTERM, the current task should be placed into a wait state on an
ECB that will never be posted.
To terminate the current task immediately rather than asynchronously, issue the
ABEND macro instead of CALLRTM.

v To terminate a task other than the current task in the same address space, you
can either specify TCB= as the address of the target task's TCB, or specify
TTOKEN= as the TTOKEN of the target task. Do not specify the ASID=

400 z/OS V2R2 MVS Authorized Assembler Services Guide

parameter. In this form of ABTERM, the caller must hold the local lock. To avoid
holding the local lock, you can treat the task as one in a different address space
and issue the ABTERM with the ASID= parameter.

v To terminate a task in a different address space, you can either specify TCB= as
the address of the target task's TCB, or specify TTOKEN= as the TTOKEN of the
target task. Regardless of how the target task is specified, you must also specify
the ASID= parameter as the target ASID.
In this form of ABTERM, the caller may (but is not required to) hold the local
lock. This ABTERM request will be processed asynchronously via an SRB. It is
better to specify the TTOKEN= parameter than the TCB address because the
TCB address might be re-used before the SRB actually runs, which could lead to
the wrong task being terminated.

Note: The required work area that you provide when you specify either TTOKEN
or ASID is not the standard 72-byte save area. The system stores into the first 8
bytes of the area, which are commonly used for save area chaining. If you pass the
save area in register 13 that you are using to link your program to your caller's,
you will not be able to get back to your caller.

Through the use of the following parameters, valid with TYPE=ABTERM, it is
possible to specify what happens once the system receives control.
v DUMP specifies whether a dump should be taken. DUMPOPT and DUMPOPX

are optional parameters which allow you to determine the contents of the dump
by specifying the address of a parameter list of dump options.

v STEP indicates whether the job step should be abnormally terminated.
v RETRY specifies whether the caller's recovery routines can retry. Specifying

RETRY=NO will turn on the SDWACLUP bit and force all recovery routines to
percolate rather than retry.

TYPE=MEMTERM: If the CALLRTM macro specifies TYPE=MEMTERM, system
processing is directed toward an address space. The following locking and work
area requirements apply to this form of CALLRTM:
v If the ASID parameter is nonzero, the specified address space is abnormally

terminated. The caller need not be disabled or own any locks. The caller must
pass the address of a 72-byte work area in GPR 13.

v If the ASID parameter is specified as 0 or is omitted, the current address space is
abnormally terminated. The caller need not be disabled or own any locks. The
caller must pass the address of a 72-byte work area in GPR 13.

Note: The required work area is not the standard 72-byte save area. The system
stores into the first 8 bytes of the area, which are commonly used for save area
chaining. If you pass the save area in register 13 that you are using to link your
program to your caller's, you will not be able to get back to your caller.

Because TYPE=MEMTERM processing circumvents all task recovery and task
resource manager processing, its use is restricted to a select group of routines that
can determine that task recovery and task resource manager clean-up are either not
warranted or will not successfully operate in the address space being terminated.
An alternative way to terminate an address space is to use CALLRTM
TYPE=ABTERM and specify the job step TCB.

TYPE=SRBTERM: If the CALLRTM macro specifies TYPE=SRBTERM, system
processing is directed toward a specific preemptable SRB, identified by the

Chapter 18. Providing recovery 401

SRBIDTOKEN provided via IEAMSCHD. The following locking and work area
requirements apply to this form of CALLRTM:
v The caller may hold a lock, but none are required.
v TYPE=SRBTERM requires a 144-byte workarea that is not used as a standard

savearea (like the 72-byte workarea required by TYPE=ABTERM).
v An ASID should not be specified with TYPE=SRBTERM. The SRBIDTOKEN

provides the necessary information for the system to find the SRB.
v The target SRB is processed asynchronously and may terminate after control has

returned to the invoking program.
v RETRY specifies whether the caller's recovery routines can retry. Specifying

RETRY=NO will turn on the SDWACLUP bit and force all recovery routines to
percolate rather than retry.

v Preemptable SRBs can be protected from CALLRTM
TYPE=SRBTERM,SRBIDTOKEN=token addr by holding a lock or using the
process-must-complete mode.

For TYPE=SRBTERM, set the high-order bit of the reason code to 1 when you want
to indicate that an SVCDUMP is not necessary for the abend being issued. The
system does not do anything special with this bit, but recovery routines can use
the information when determining if they should request an SVCDUMP of the
abend.

Using the ABEND macro
Any routine can issue the ABEND macro to direct the recovery termination
services to itself (cause entry into its recovery routine) or to its callers. The issuer
of ABEND should remove its own recovery routine if it wishes its caller to be
ended abnormally or to enter recovery. Control does not return to the issuer of the
macro (except as a result of a retry).

The position within the job step hierarchy of the task for which the ABEND macro
is issued determines the exact function of the abnormal termination routine. If an
ABEND macro is issued when the job step task (the highest level or only task) is
active, or if the STEP parameter is coded in an ABEND macro issued during the
performance of any task in the job step, all the tasks in the job step are terminated.
For example, if the STEP parameter is coded in an ABEND macro under TSO/E,
the TSO/E job is terminated. An ABEND macro (without a STEP parameter) that is
issued in performance of any task in the job step task usually causes only that task
and its subtasks to be abnormally terminated. However, if the abnormal
termination cannot be fulfilled as requested, it might be necessary for the system to
end the job step task abnormally.

If you have provided a recovery routine for your program, the system passes
control to your routine. If you have not provided a recovery routine, the system
handles the problem. The action the system takes depends on whether the job step
is going to be terminated.

If the job step is not going to be terminated, the system:
v Releases the resources owned by the terminating task and all of its subtasks,

starting with the lowest level task.
v Places the system or user completion code specified in the ABEND macro in the

task control block (TCB) of the active task (the task for which the ABEND macro
was issued).

402 z/OS V2R2 MVS Authorized Assembler Services Guide

v Posts the event control block (ECB) with the completion code specified in the
ABEND macro, if the ECB parameter was coded in the ATTACHX macro issued
to create the active task.

v Schedules the end-of-task exit routine to be given control when the originating
task becomes active, if the ETXR parameter was coded in the ATTACHX macro
issued to create the active task.

v Calls a routine to free the storage of the terminating task's TCB, if neither the
ECB nor ETXR parameter were specified by the ATTACHX macro.

If the job step is to be terminated, the system:
v Releases the resources owned by each task, starting with the lowest level task,

for all tasks in the job step. The system does not give control to any end-of-task
exit.

v Writes the system or user completion code specified in the ABEND macro on the
system output device.

The remaining steps in the job are skipped unless you can define your own
recovery routine to perform similar functions and any other functions that your
program requires. Use either the ESTAE or ESTAEX macro, or the ATTACHX
macro with the ESTAI option to provide a recovery routine that gets control
whenever your program issues an ABEND macro. If your program is running in
AR ASC mode, use the ESTAEX or ATTACHX macro.

Providing multiple recovery routines
A single program can activate more than one ESTAE-type recovery routine by
issuing the ESTAE or ESTAEX macro more than once with the CT parameter. The
program can also overlay recovery routines by issuing ESTAE or ESTAEX with the
OV parameter, or deactivate recovery routines by issuing ESTAE or ESTAEX with
an address of zero.

ESTAE-type recovery routines get control in LIFO order, so the last ESTAE-type
recovery routine activated is the first to get control. Remember that ESTAE-type
recovery routines include ESTAE and ESTAEX routines, FESTAE routines, ARRs,
and ESTAI routines. ESTAI routines are entered after all other ESTAE-type recovery
routines that exist for a given task have received control and have either failed or
percolated.

MVS functions provide their own recovery routines; thus, percolation can pass
control to both installation-written and system-provided recovery routines. If all
recovery routines percolate -- that is, no recovery routine can recover from the
error -- then the unit of work (an SRB or a task) is terminated.

When a recovery routine gets control and cannot recover from the error (that is, it
does not retry), it must free the resources held by the mainline routine and request
that the system continue with error processing (percolate). Note that a recovery
routine entered with the SDWACLUP bit set to one, indicating that retry is not
permitted, has no choice but to percolate. When the recovery routine requests
percolation, the previously activated recovery routine gets control. When a retry is
not requested and the system has entered all possible recovery routines, the unit of
work (either an SRB or a task) ends abnormally. Figure 59 on page 405 shows the
decisions the system makes to determine which recovery routine is to get control
in a particular situation.

Chapter 18. Providing recovery 403

When a recovery routine requests percolation, it is deactivated; that is, it can no
longer get control for this error. A deactivated recovery routine is not entered again
unless that recovery routine is activated again after a retry. There are two types of
percolation: percolation for the same unit of work and SRB-to-task percolation.

404 z/OS V2R2 MVS Authorized Assembler Services Guide

Error:

SRB
or

TASK
?

YES

NO

NO

TASK

YES

SRB

FRR

FRR
EXECUTION

DELETE
FRRA

B

NO

NO

YES

YES

TASK

MAIN

SRB

ESTAE

ANY
FRRsON
STACK

?

ANY
SRB-TO-TASK
PERCOLATION

ONTCB
QUEUE

?

RETRY
FOR MAIN
OR ESTAE
ROUTINE

?

DEQUEUE REQUEST
FOR SRB-TO-TASK

PERCOLATION

RETRY
TO SRB

RETRY TO TASK's
MAIN ROUTINE

SET UP TO
REENTER SAME

FRR TO PROCESS
SRB-TO-TASK
PERCOLATION

REQUEST

EXIT TO SRB
DISPATCHER

IS
THERE A
RELATED

TASK
?

SRB
OR TASK

RETRY
REQUESTED
AND VALID

RETRY TO
RECOVERY ROUTINE

ENTER RTM

Figure 59. Routing control to recovery routines, example 1

Chapter 18. Providing recovery 405

NO

MAIN

YES

YES

YES

ANY
ESTAE-TYPE
RECOVERY
ROUTINE

?

RETRY
REQUESTED
AND VALID

?

RETRY
TO MAIN

OR RECOVERY
ROUTINE

?

ANY
SRB-TO-TASK
PERCOLATION

ON TCB QUEUE
?

TERMINATE
THE TASK

ESTAE-TYPE

ESTAE-TYPE
RECOVERY
ROUTINE

EXECUTION

CANCEL
ESTAE-TYPE
RECOVERY
ROUTINE

RETRY TO ANOTHER
RECOVERY ROUTINE

RECOVERY

NO

A

NO

PURGE SRB-TO-TASK
PERCOLATION
QUEUE IF ONE

EXISTS

SET UPTO ENTER
SAME ESTAE-TYPE

ROUTINETO PROCESS
SRB-TO-TASK
PERCOLATION

REQUEST

DEQUEUE
REQUESTER FOR

SRB-TO-TASK
PERCOLATION

RETRY IN
MAIN ROUTINE

Figure 60. Routing control to recovery routines, example 2

406 z/OS V2R2 MVS Authorized Assembler Services Guide

Percolation for the same unit of work
Percolation for the same unit of work causes control to be given to one recovery
routine after another for that same unit of work, which can be either a task or an
SRB.

Percolation to an FRR always occurs from another FRR. If an FRR obtains locks
that were not held when it was entered and then requests percolation, the system
frees those locks before giving control to the next FRR. Also, if the percolating FRR
requested that the system free any locks, the system frees these locks before giving
control to the next FRR.

NO YES

YES

YES

NO

B

STOP THE
RELATED TASK

IS
TASK IN

RECOVERY
?

IS
SRB-TO-TASK
PERCOLATION

REQUEST
SERIALIZED

?

QUEUE REQUEST FOR
SERIALIZED SRB-TO-TASK

PERCOLATION ON TCB
QUEUE

RESTART THE
RELATED TASK

EXIT TO SRB
DISPATCHER

IS
SRB-TO-TASK
PERCOLATION
PROHIBITED

?

SET UP TASK FOR
TERMINATION-

TASK REENTERS
RTM FROM THE

BEGINNING

IGNORE THE
REQUEST

NO

YES

Figure 61. Routing control to recovery routines, example 3

Chapter 18. Providing recovery 407

Percolation to an ESTAE-type recovery routine can occur from either an FRR or
another ESTAE-type recovery routine. The environment in which an ESTAE-type
recovery routine gets control does not vary regardless of whether the percolation
request came from an FRR or another ESTAE-type recovery routine. Note that a
recovery routine defined by the ESTAI parameter of the ATTACHX macro can
choose either to percolate to a previous ESTAI routine (by setting a return code of
0 for the system) or to bypass further ESTAI recovery routine processing and
continue with error processing (by setting a return code of 16 for the system).

SRB-to-task percolation
When an SRB is scheduled and the fields SRBPASID and SRBPTCB are supplied,
or IEAMSCHD is used with the PTCBADDR= parameter and SYNCH=NO, the
specified TCB is defined as the SRB's related task. This TCB is in the ASID
specified by SRBPASID or the Home ASID of the issuer of IEAMSCHD. When an
SRB with a related task ends abnormally and the FRR for the SRB does not exist or
does not request a retry, the error is percolated to the recovery routine for the
related task. This percolation is called SRB-to-task percolation.

SRB-to-task percolation occurs if none of the FRRs defined by the SRB retry, or if
the SRB does not have an FRR. Either case creates a request for the system to
perform SRB-to-task percolation. The system ignores the request whenever the
related task has already ended. If serialization is requested on the SETRP macro in
the FRR for that SRB, the percolation request is deferred if the task is already in
recovery. (See the SERIAL=YES parameter of the SETRP macro in z/OS MVS
Programming: Authorized Assembler Services Reference SET-WTO.) Serializing
SRB-to-task percolation ensures that information about multiple SRB failures is not
lost.

Note: SERIAL=YES should not be specified unless the task's recovery routine
expects it.

The system processes requests for non-serialized SRB-to-task percolation as follows:
the system abnormally ends the task and passes the information about the SRB's
error to the most recently activated recovery routine for the task.

The system processes requests for serialized SRB-to-task percolation as follows:
v If the task is already in recovery, the system saves and queues the information

about the SRB's error for processing later when the task recovers from the
previous error.

v If the task is not in recovery, the system abnormally ends the task and passes the
information about the SRB's error to the task's recovery.

When one of the task's recovery routines that is not a nested recovery routine
(defined in “Providing recovery for recovery routines” on page 409) requests a
retry and retry is allowed, the system checks for queued requests for SRB-to-task
percolation and takes the following actions before performing the retry:
1. If any requests are queued, the system dequeues a request and again enters the

recovery routine that requested the retry. The system repeats this process as
long as there are queued requests.

2. When the queue is empty or depleted, the system honors the retry request and
gives control to the retry routine.

Figure 59 on page 405 shows this process.

408 z/OS V2R2 MVS Authorized Assembler Services Guide

The environment for a task recovery routine entered as a result of SRB-to-task
percolation is the same as the environment described earlier under “Percolation for
the same unit of work” on page 407.

However, the information in the SDWA describes the error that occurred in the
SRB. Whenever serialized SRB-to-task percolation is requested and the system must
queue a request, the system obtains an area from the user's private area to preserve
the information about the SRB's error. If no space is available, the system cannot
preserve that information but still enters the task recovery for the request. If an
SDWA is available, the system sets the SDWARPIV bit to indicate that error-time
information is not available. Also, the system sets the SDWACOMU field to zeros
because the system cannot preserve its contents to pass from the SRB's FRR to the
task's recovery routine.

Providing recovery for recovery routines
In some situations, the function a recovery routine performs is so essential that you
should provide a recovery routine to recover from errors in the recovery routine.
Two examples of such situations are:
1. The availability of some resources can be so critical to continued system or

subsystem operation that it might be necessary to provide a recovery routine
for the recovery routine, thus ensuring the availability of the critical resources.

2. A recovery routine might perform a function that is, in effect, an extension of
the mainline routine's processing. For example, a system service might elect to
check a caller's parameter list for fetch or store protection. The service
references the user's data in the user's key and, as a result of protection, suffers
a program check. The recovery routine gets control and requests a retry to pass
a particular return code to the mainline routine. If this recovery routine ends
abnormally and does not provide its own recovery, then the caller's recovery
routine gets control, and the caller does not get an opportunity to check the
return code that it was expecting.

You can activate an FRR from either another FRR or from an ESTAE-type recovery
routine. When activating an FRR from an ESTAE-type recovery routine, the
ESTAE-type recovery routine must have acquired a lock after being entered, or the
FRR must be an EUT FRR.

You should activate an ESTAE-type recovery routine only from an ESTAE-type
recovery routine. IBM recommends you do not activate an ESTAE-type recovery
routine from an FRR, because it might not get control in the correct order.

Any recovery routine activated from a recovery routine is called a nested recovery
routine. A nested recovery routine can retry provided the error for which it gets
control is retryable. Whether the nested recovery routine can retry is independent
of whether the recovery routine that activated the nested recovery routine can
retry. For example, a recovery routine might get control for a non-retryable error.
The recovery routine itself might encounter an error for which its recovery routine
(the nested recovery routine) gets control and can retry. The retry routine from a
nested ESTAE or ESTAEX recovery routine runs under the RB of the ESTAE-type
recovery routine that activated the nested recovery routine.

Nested FRRs do not have access to their owning FRR's SDWA or 304-byte work
area. The system makes a temporary copy of these areas and re-uses the original
SDWA and work area when giving control to the nested FRR. Nested FRRs do
have access to their owning FRR's 24-byte parameter area.

Chapter 18. Providing recovery 409

Providing recovery for multitasking programs
There are situations where the system does not provide serialization between
recovery routines for different TCBs in an address space. When possible you
should write your recovery routines so that serialization is not required.

When a recovery routine requires serialization with other TCBs in the address
space then the recovery routine must provide its own serialization. Serialization
must be carefully designed to avoid causing deadlock situations.

One serialization technique to ensure the order of termination processing is to use
the DETACH macro. Issuing DETACH ensures that the detached task and its
recovery routines complete before processing for the issuing task proceeds.
DETACH can only be used for tasks that were directly attached by the recovery
routine's TCB.

Another important aspect of recovery is releasing resources. Releasing serialization
resources (locks, ENQs, latches) in ESTAE-type recovery routines, rather than
leaving them to be released by a resource manager, helps avoid deadlocks in
recovery processing.

Using resource managers
MVS provides resource managers that are invoked to “clean up” resources
associated with a task or an address space. A resource manager is a routine that
gets control during normal and abnormal termination of a task or an address
space. Task or address space termination is the process of removing a task or
address space from the system, releasing the resources from the task or address
space, and making the resources available for reuse.

During normal termination, RTM invalidates any existing recovery except for
STAI/ESTAI recovery routines. 'End of task' resource managers are called, then the
task ends. If an ABEND occurs while an 'end of task' resource manager is running,
RTM will call any recovery that was established by the resource manager. If that
recovery percolates (or is not allowed to retry), then RTM will give control to
eligible STAI/ESTAI exits. These STAI/ESTAI exits are not allowed to retry. The
task will then enter abnormal termination at the point where we begin to call 'end
of task' resource managers as described above. Since we start over again at the
beginning of resource manager processing, it is possible for a resource manager to
run twice -- once for normal termination and once for abnormal termination.

Abnormal termination begins after an ABEND occurs and all recovery exits have
run and percolated. After this, RTM detaches any remaining subtasks, then calls
'end of task' resource managers for an abnormal termination. These resource
managers are protected from cancels, detaches and 'SRB-to-task' percolation
ABENDs. If an ABEND occurs while a resource manager is running, any recovery
that it established is given control and may retry if the ABEND is able to be
retried. If the recovery does not retry, RTM continues by calling the next resource
manager. After all resource managers have run, the task ends.

'End of memory' resource managers run in the master address space (ASID 1) and
do not have access to local storage in the terminating address space. If an 'end of
memory' resource manager abends, any recovery that it has established will receive
control and be allowed to retry if the ABEND is able to be retried. If the recovery
does not retry, RTM continues by calling the next resource manager. After all
resource managers have run, the address space is terminated.

410 z/OS V2R2 MVS Authorized Assembler Services Guide

If an 'end of memory' resource manager remains dormant for more than four
minutes, the system will consider the resource manager to have 'hung' and issues
ABEND 30D after scheduling an SVCDUMP of the hang. The resource manager's
recovery is allowed to retry ABEND 30D. For more details, see the description of
the ABEND 30D in z/OS MVS System Codes.

Resource manager execution environment
Task-related resource managers will receive control in different environments
depending on the parameters passed into the RESMGR macro, but they all have
some common features. All resource managers will receive control in task mode,
enabled for I/O and external interrupts, and with no locks held.

Control parameters are also provided to all routines and include the RMPL, a
user-supplied PARAM value, and the resource manager work area. These areas are
in key 0 storage (below the 16M line) in the home address space.

All other environmental settings depend on how the resource manager was
originally set up, whether it is for branch, link or PC entry.

Environment for ROUTINE=(BRANCH,routine):

Environmental factor Requirement
State and key: Supervisor state, Key 0
Cross memory mode: Home = Primary = Secondary
AMODE: AMODE 31
ASC mode: Primary

Environment for ROUTINE=(LINK,routine): The routine must reside within the
Link Pack Area (LPA) or an APF-authorized library in the LNKLST set that is
active when the LINK is issued.

Environmental factor Requirement
State and key: Supervisor state, Key 0
Cross memory mode: Home = Primary = Secondary
AMODE: The AMODE of the target program (24 or 31, AMODE of 64

is not supported).
ASC mode: Primary

Environment for ROUTINE=(PC,routine): A PC routine must be defined so that
it may receive control from supervisor state, key 0.

Environmental factor Requirement
State and key: State and Key as defined via the ETDEF for the PC
Cross memory mode: If it is not a space switcher PC, then Home = Primary =

Secondary. Otherwise, the ETDEF of the PC will define the
cross memory mode.

AMODE: Defined via the ETDEF for the PC
ASC mode: ASC mode defined via ETDEF for the PC

Installation-written resource managers
If an installation creates a function that uses a resource that cannot be protected by
an ESTAE-type recovery routine or an FRR, the installation should write a resource
manager for that function. The installation-written resource manager should
perform the same basic tasks for this new function that system resource managers
perform for system functions. These are:

Chapter 18. Providing recovery 411

v At task termination: ensure that the terminating task is not connected to or
associated with any resources; that is, each resource (data set, volume, device) is
left in such a state that another task in the address space or system can reuse it.

v At address space termination: release all system queue area and common
service area control blocks obtained for the use of the terminating address space.
Reset all buffers, bit settings, pointers, and so on relating to the address space.

In addition, the installation-written resource manager can include any special
processing the installation requires, and can provide recovery routines to protect its
function.

Adding an installation-written resource manager
An installation can define an installation-written resource manager either
dynamically (while the system is running) or at IPL.

Tip: IBM recommends using the RESMGR macro to define resource managers
dynamically rather than using CSECT IEAVTRML at IPL. The RESMGR macro:
v Does not require an IPL
v Can specify a resource manager for specific address spaces or tasks and can

specify the type of linkage, which can improve the performance of your system

Dynamically: By using the RESMGR macro, an authorized routine can
dynamically add (or delete) a resource manager. If you want to provide a routine
that disposes of your address space and task resources in a particular way, use
RESMGR to add the routine to the system. When you use RESMGR, the routine
that you add takes effect immediately and before the next IPL of the system. Use
RESMGR to delete the routine when it is no longer required.

The resource manager that you add can be one that monitors the termination of
one or more address spaces, or one or more tasks. The following rules apply before
you can issue RESMGR to provide a resource manager:
v To monitor a single task in the home address space, that task must exist.

Note: To monitor for several tasks, issue RESMGR for each task.
v To monitor all tasks or the jobstep program task in the home address space, that

address space must exist, but a particular task need not exist.
v To monitor all tasks or the jobstep program task in all address spaces, a

particular address space or task need not exist.
v To monitor a single address space, that address space must exist.
v To monitor all address spaces, a particular address space need not exist.

The system automatically deletes the resource manager if it is monitoring the
termination of the following:
v A specific task, when the task terminates
v A specific address space, when the address space terminates
v All tasks or the jobstep program task in a specific address space, when the

address space terminates

The system does not automatically delete the resource manager if it is monitoring
termination of the following (the resource manager stays in the system to monitor
for the next termination):
v All tasks or the jobstep program task in all address spaces
v All address spaces

412 z/OS V2R2 MVS Authorized Assembler Services Guide

|

|

|

|

Whether or not the system is to automatically delete the resource manager, you can
invoke the delete service of RESMGR at any time to force the deletion of the
resource manager.

For a description of the RESMGR macro, see z/OS MVS Programming: Authorized
Assembler Services Reference LLA-SDU.

At IPL: To add your own resource managers for installation applications at IPL,
place their names in the CSECT IEAVTRML, which is provided by MVS.

Initially, IEAVTRML consists of four 12-byte entries, each containing zeros. You can
modify each of the first three 12-byte entries (using the AMASPZAP service aid as
described in z/OS MVS Diagnosis: Tools and Service Aids) to contain a module name
in the first eight bytes; the last four bytes of each entry are reserved and always
contain zeros. The last entry must also contain all zeros, to indicate the end of the
list. A typical entry for the CSECT might be:
DC CL8’MODULENM’
DC XL4’00’

To add the names of more than three installation-written resource managers, create
an entry for each module and a final entry that contains all zeros. Then assemble
your modified IEAVTRML and use the modified CSECT to replace the existing
IEAVTRML module in load module IGC0001C in SYS1.LPALIB. Place each
installation-written resource manager in SYS1.LINKLIB (or a library concatenated
to SYS1.LINKLIB through a LNKLSTxx member of SYS1.PARMLIB) or
SYS1.LPALIB. If every routine named in IEAVTRML is not present in one of these
libraries, the IPL fails.

Using the IEAVTRML method to add installation-written resource managers is still
supported, but is no longer recommended because of performance considerations.
IEAVTRML exits receive control by means of a LINK that will be issued when both
EVERY task in EVERY address space terminates and EVERY address space
terminates. Placing an exit routine in the LNKLST concatenation has caused
significant performance delays during concurrent IPLs of multiple systems in a
sysplex. In extreme cases, task termination delays can result in storage shortage in
the address space that delays and might prevent successful IPL.

The resource manager parameter list
The resource manager parameter list (RMPL) is the interface between MVS and the
installation-written resource manager. The RMPL tells the resource manager why it
was invoked and provides information for its use during processing. RMPL fields
indicate, for example, whether the resource manager is being invoked during task
termination or address space termination, and whether the termination is normal
or abnormal.

To access the contents of the RMPL, the resource manager must include the
IHARMPL mapping macro, which provides the field names and describes their
content and use. Detailed information on the name, offset, and meaning of each
field in the RMPL appears in z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

Register use
On entry to the resource manager, register contents are:

Register
Contents

Chapter 18. Providing recovery 413

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

0 Does not contain any information for use by the routine.

1 Address of an 8-byte field. The first 4 bytes of this 8-byte field contain the
address of the resource manager parameter list (defined in your routine by
the IHARMPL mapping macro).

If this is a dynamically invoked resource manager, the second 4 bytes
contain the address of an 8-byte field that contains a user-supplied value
on the PARAM parameter of the RESMGR macro. If the resource manager
was not dynamically added, this 4-byte field contains a zero.

2-12 Do not contain any information for use by the routine.

13 Address of a standard 72-byte save area.

14 Return address.

15 Entry point address in the resource manager.

Your resource manager must save and restore registers 1-14, and may use registers
15 and 0 respectively to pass a return and reason code to the system. When the
resource manager is not established with the RESMGR macro, all return and reason
codes are ignored. When the resource manager is established with the RESMGR
macro, all return codes will be ignored except return code 8. When the return code
in register 15 is 8, the system will honor the following reason codes in register 0:

1 Indicates that the system should remove the returning resource manager.
Usage of this reason code is equivalent to issuing a RESMGR macro with
the DELETE keyword and the appropriate parameters for deleting the
returning resource manager. Note that the ECB keyword of RESMGR is not
provided by this interface.

Processing sequence
The system gives control to the installation-written resource managers in the
following order:
1. Resource managers listed in the CSECT IEAVTRML.
2. Dynamic resource managers, either address space or task, get control in LIFO

order within resource manager type.
Dynamic task resource managers are processed in the following order:
a. Resource managers provided to protect the specific terminating task
b. Resource managers provided to protect all tasks in the home address space

of the terminating task
c. Resource managers provided to protect all tasks in all address spaces.
Dynamic address space resource managers are processed in the following order:
a. Resource managers provided to protect a specific address space
b. Resource managers provided to protect all address spaces.

For task termination, the resource manager runs under an RB for the terminating
task. For address space termination, it runs in task mode in the master scheduler
address space. In either case, the resource manager gets control in PSW key 0,
supervisor state, with no locks held.

After all installation-written resource managers have completed processing, the
system invokes the system-provided resource managers.

414 z/OS V2R2 MVS Authorized Assembler Services Guide

Using STAE/STAI routines

Note:

1. IBM recommends you use the ESTAEX or ESTAE macro, or the ESTAI
parameter on ATTACHX.

2. Under certain circumstances, STAE or STAI routines might receive control in a
restricted environment. See “Restricted environments” on page 384 for more
information.

The STAE macro causes a recovery routine address to be made known to the
system. This recovery routine is associated with the task and the RB that issued
STAE. Use of the STAI option on the ATTACH macro also causes a recovery
routine to be made known to the system, but the routine is associated with the
subtask created through ATTACH. Furthermore, STAI recovery routines are
propagated to all lower-level subtasks of the subtask created with ATTACH that
specified the STAI parameter.

If a task is scheduled for abnormal termination, the recovery routine specified by
the most recently issued STAE macro gets control and runs under a program
request block created by the SYNCH service routine. Only one STAE routine
receives control. The STAE routine must specify, by a return code in register 15,
whether a retry routine is to be scheduled. If no retry routine is to be scheduled
(return code = 0) and this is a subtask with STAI recovery routines, the STAI
recovery routine is given control. If there is no STAI recovery routine, abnormal
termination continues.

If there is more than one STAI recovery routine existing for a task, the newest one
receives control first. If it requests that termination continue (return code = 0), the
next STAI routine receives control. This continues until either all STAI routines
have received control and requested that the termination continue, a STAI routine
requests retry (return code = 4 or 12), or a STAI routine requests that the
termination continue but no further STAI routines receive control (return code =
16).

Programs running under a single TCB can issue more than one STAE macro with
the CT parameter to define more than one STAE routine. Each issuance
temporarily deactivates the previous STAE routine. The previous STAE routine
becomes active when the current STAE routine is deactivated.

A STAE routine is deactivated (it cannot receive control again for this error) under
any of the following circumstances:
v When the RB that activated it goes away (unless it issued XCTL and specified

the XCTL=YES parameter on the STAE macro)
v When the STAE macro is issued with an address of 0
v When the STAE routine receives control.

If a STAE routine receives control and requests retry, the retry routine reissues the
STAE macro if it wants continued STAE protection.

A STAI routine is deactivated if the task completes or if the STAI routine requests
that termination continue and no further STAI processing be done. In the latter
case, all STAI recovery routines for the task are deactivated.

Chapter 18. Providing recovery 415

STAE and STAI routine environment: Prior to entering a STAE or STAI recovery
routine, the system attempts to obtain and initialize a work area that contains
information about the error. The first 4 bytes of the SDWA contains the address of
the user parameter area specified on the STAE macro or the STAI parameter on the
ATTACH macro.

Upon entry to the STAE or STAI routine, the GPRs contain the following:

If an SDWA was obtained:

GPR Contents

0 A code indicating the type of I/O processing performed:

0 Active I/O has been quiesced and is restorable.

4 Active I/O has been halted and is not restorable.

8 No active I/O at abend time.

16 (X'10')
Active I/O, if any, was allowed to continue.

1 Address of the SDWA.

2 Address of the parameter area you specified on the PARAM parameter.

3-12 Do not contain any information for use by the routine.

13 Save area address.

14 Return address.

15 Address of STAE recovery routine.

If no SDWA was available:

GPR Contents

0 12 (X'0C') to indicate that no SDWA was obtained.

1 Completion code.

2 Address of user-supplied parameter list.

3-13 Do not contain any information for use by the routine.

14 Return address.

15 Address of STAE recovery routine.

When the STAE or STAI routine has completed, it should return to the system
through the contents of GPR 14. GPR 15 should contain one of the following return
codes:

Return Code
Action

0 Continue the termination. The next STAI, ESTAI, or ESTAE routine will be
given control. No other STAE routines will receive control.

4,8,12 A retry routine is to be scheduled.

416 z/OS V2R2 MVS Authorized Assembler Services Guide

Note: These values are not valid for STAI/ESTAI routines that receive
control when a resource manager fails during normal termination of a task.
See “Restricted environments” on page 384 for more information.

16 No further STAI/ESTAI processing is to occur. This code may be issued
only by a STAI/ESTAI routine

For the following situations, STAE/STAI routines are not entered:
v If the abnormal termination is caused by an operator's CANCEL command, job

step timer expiration, or the detaching of an incomplete task without the
STAE=YES option.

v If the failing task has been in a wait state for more than 30 minutes.
v If the STAE macro was issued by a subtask and the attaching task abnormally

terminates.
v If the recovery routine was specified for a subtask, through the STAI parameter

of the ATTACH macro, and the attaching task abnormally terminates.
v If a problem other than those above arises while the system is preparing to give

control to the STAE routine.
v If another task in the job step terminates without the step option.

STAE and STAI retry routines: If the STAE retry routine is scheduled, the system
automatically deactivates the active STAE routine; the preceding STAE routine, if
one exists, then becomes activated. Users wanting to maintain STAE protection
during retry must reactivate a STAE routine within the retry routine, or must issue
multiple STAE requests prior to the time that the retry routine gains control.

Like the STAE/STAI recovery routine, the STAE/STAI retry routine must be in
storage when the recovery routine determines that retry is to be attempted. If not
already resident in your program, the retry routine may be brought into storage
through the LOAD macro by either the mainline routine or the recovery routine.

If the STAE/STAI routine indicates that a retry routine has been provided (return
code = 4, 8, or 12), register 0 must contain the address of the retry routine. The
STAE routine that requested retry is deactivated and the request block queue is
purged up to, but not including, the RB of the program that issued the STAE
macro. In addition, open DCBs that can be associated with the purged RBs are
closed and queued I/O requests associated with the DCBs being closed are purged.

The RB purge is an attempt to cancel the effects of partially run programs that are
at a lower level in the program hierarchy than the program under which the retry
occurs. However, certain effects on the system are not canceled by this RB purge.
Generally, these effects are TCB-related and are not identifiable at the RB level.
Examples of these effects are as follows:
v Subtasks created by a program to be purged. Subtasks cannot be associated with

an RB; the structure is defined through TCBs.
v Resources allocated by the ENQ macro. ENQ resources are associated with the

TCB and are not identifiable at the RB level.
v DCBs that exist in dynamically acquired virtual storage. Only DCBs in the

program, as defined by the RB through the CDE itself, are closed.

If there are quiesced restorable input/output operations (as specified by
PURGE=QUIESCE on the macro invocation), the retry routine can restore them in
the same manner as the retry routine from an ESTAE routine. See “Outstanding
I/Os at the time of failure” on page 367.

Chapter 18. Providing recovery 417

If an SDWA was obtained upon entry to the STAE/STAI retry routine, the contents
of the GPRs are as follows:

GPR Contents

0 0

1 Address of the first 104 bytes of the SDWA.

2-14 Do not contain any information for use by the routine.

15 Address of the STAE/STAI retry routine.

When the storage is no longer needed, the retry routine should use the FREEMAIN
macro to free the first 104 bytes of the SDWA. If the retry routine is in the user key,
this storage should be freed from subpool 0 which is the default subpool for the
FREEMAIN macro. If the retry routine is in the system key, storage must be freed
from subpool 250.

If the system was not able to obtain storage for the work area, GPR contents are as
follows:

GPR Contents

0 12 (X'0C')

1 Completion code.

2 Address of purged I/O restore list or 0 if I/O is not restorable.

3-14 Do not contain any information for use by the routine.

15 Address of the STAE/STAI retry routine.

The retry routine is entered in supervisor state if the RBOPSW of the retry RB is in
supervisor state and the task was authorized at the time the STAE routine was
activated or at the time of the error. Otherwise, the retry routine is entered in
problem state.

The task is considered to be authorized at the time the STAE routine is activated
when at least one of the following is true:
v The task is APF-authorized.
v The requestor is in supervisor state.
v The requestor has a PSW key less than 8.
v The task has a protect key less than 8.
v The PKM of the requestor allows keys less than 8.

The mainline routine is considered to be authorized at the time of the error when
at least one of the following is true:
v The task is APF-authorized.
v The task in error has a protect key less than 8.
v All RBs for the task in error run in supervisor state.

The retry routine is entered with the same PSW key as the one in RBOPSW of the
retry RB when one of the following is true:
v The task was authorized at the time of the error as described above.
v The RBOPSW of the retry RB has a key greater than or equal to 8 and is in

problem state, and the PKM of that RB does not have authority to keys less than
8.

418 z/OS V2R2 MVS Authorized Assembler Services Guide

Otherwise, the PSW key of the retry routine is that of the task in error.

Chapter 18. Providing recovery 419

420 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 19. Processing program interruptions (SPIE, ESPIE)

The SPIE1 macro enables a problem program executing in 24-bit addressing mode
to specify an error exit routine to get control in response to one or more program
error interruptions. The ESPIE macro extends the function of SPIE to callers in
31-bit addressing mode. Callers in both 24-bit and 31-bit addressing mode can use
the ESPIE macro.

If a program interruption occurs, the SPIE/ESPIE exit receives control only when
all of the following conditions exist:
v The interrupted program is a problem state program.
v The program interrupt code is in the range 1–15 and 17.
v For the SPIE macro, the interrupted program is in primary address space control

(ASC) mode. For the ESPIE macro, the interrupted program is in primary or
access register (AR) ASC mode. For both the SPIE and ESPIE macros, the
interrupt occurred when the primary, home, and secondary address space were
the same.

Note: SPIE/ESPIE exits cannot percolate to FRR or ESTAE-type recovery routines.

SPIE/ESPIE exits that were established for the specific program interruption that
occurred get control before any RTM (FRR or ESTAE-type) routines, so RTM is
disabled for this unit of work. However, if the SPIE/ESPIE exit encounters an
error, RTM will process this secondary error.

A SPIE exit routine established while executing in 24-bit addressing mode does not
receive control if the program executing is in 31-bit addressing mode at the time of
the interruption.

Each succeeding SPIE/ESPIE macro completely overrides any previous
SPIE/ESPIE macro specifications for the task. The specified exit routine gets
control in the key of the TCB when one of the specified program interruptions
occurs in any problem program of the task. When a SPIE macro is issued from a
SPIE exit routine, the program interruption element (PIE) is reset (zeroed). Thus, a
SPIE exit routine should save any required PIE data before issuing a SPIE.

If a caller issues an ESPIE macro from within a SPIE exit routine, it has no effect
on the contents of the PIE. However, if an ESPIE macro deletes the last SPIE/ESPIE
environment, the PIE is freed, and the SPIE exit cannot retry.

If the current SPIE environment is cancelled during SPIE exit routine processing,
the system will not return to the interrupted program when the SPIE program
terminates. Therefore, if the SPIE exit routine wishes to retry within the interrupted
program, a SPIE cancel should not be issued within the SPIE exit routine.

The SPIE macro can be issued by any problem program being executed in the
performance of the task. The system automatically deletes the SPIE exit routine
when the request block (RB) that created the SPIE macro terminates.

1. IBM recommends that you use the ESPIE macro rather than SPIE.

© Copyright IBM Corp. 1988, 2016 421

When using Floating Point Registers (FPRs) an ESPIE routine will receive the DXC
value in its parameter area, and should use this value rather than the value in the
Floating Point Control (FPC) register.

If a retry is to be done, an ESPIE routine can manually change the values of the
FPRs and FPC register. Changes to the nonvolatile fields (that is, the IEEE settings)
in the FPC register must be made carefully as this could affect the processing of
the rest of the current program, and possibly subsequent programs.

The SPIE and ESPIE macros and their related services are discussed in detail in
z/OS MVS Programming: Assembler Services Guide, z/OS MVS Programming: Assembler
Services Reference ABE-HSP, and z/OS MVS Programming: Assembler Services Reference
IAR-XCT. The syntax of both the SPIE and the ESPIE macros appears in z/OS MVS
Programming: Authorized Assembler Services Reference SET-WTO.

Interruption types
You can specify interruptions 1-15 and 17 using either the SPIE or the ESPIE
macro. Interruption 17 designates page faults and can be specified so that a
user-written SPIE/ESPIE exit routine gets control before a supervisor routine when
a problem state page fault occurs. The user-provided SPIE/ESPIE exit routine gets
control in problem program state and in the key of the TCB when a page fault
occurs for the program that issued the SPIE/ESPIE macro. The exit routine gets
control in the addressing mode that was in effect when the SPIE or ESPIE macro
was issued. (If a SPIE macro was issued this is 24-bit addressing mode.) The
SPIE/ESPIE exit routine for interruption type 17 handles page faults at the task
level. This includes all RBs executing under the task for which the SPIE/ESPIE was
issued. The exit routine resolves page faults by invoking the paging supervisor. In
order to specify interruption 17, your program must have APF authorization or be
executing in system key (0-7).

A caller in supervisor state who issues the SPIE macro is abnormally terminated
with a X‘30E’ abend completion code. A caller in supervisor state who issues the
ESPIE macro is abnormally terminated with a 46D-18 abend completion-reason
code. If the caller takes a page fault while in supervisor state, the exit routine does
not get control even if a SPIE/ESPIE macro specifying interruption type 17 is in
effect. Supervisor routines resolve the page fault and continue program processing
without abending the caller.

If a program fault occurs while a SPIE or ESPIE that specifies interrupt type 17 is
in effect, the SPIE/ESPIE exit routine receives control. If a page fault occurs during
setup processing while referencing the PIE/PICA (for a SPIE) or the EPIE (for an
ESPIE), the system handles the original page fault. In this case, the SPIE/ESPIE
exit routine does not handle the original page fault because the system cannot
provide the information that the exit routine needs. After the page fault is
resolved, processing continues in the problem program.

There is another situation in which the exit routine might not get control when a
page fault occurs. To use interruption type 17, you must place the PIE/PICA (for a
SPIE macro), the EPIE (for an ESPIE macro), the SPIE/ESPIE program, and data
areas in fixed storage. Page faults can occur after issuing the SPIE/ESPIE macro
and before placing this information in fixed storage. If a page fault occurs at this
point, the SPIE/ESPIE service routine performs set-up processing and, if it can
reference the PIE/PICA (for SPIE) and the EPIE (for ESPIE), passes control to the
exit routine. If the exit routine encounters a page fault, the paging supervisor

422 z/OS V2R2 MVS Authorized Assembler Services Guide

resolves the page fault unless the routine is running disabled. A disabled page
fault causes an 0C4 abend. Once the page fault is resolved, normal processing
continues in the exit routine.

The ESPIE routines for interruption type 17 do not get control on data space faults.
The ESPIE macro is not designed to be driven for disabled faults, segment or
region faults, or cross memory faults (data space faults might be considered as a
special case of cross memory faults because the faulted space is not the home or
primary address space).

Chapter 19. Processing program interruptions (SPIE, ESPIE) 423

424 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 20. Dumping virtual storage (SDUMPX, SDUMP, and
IEATDUMP macros)

When an error occurs, a program can request a dump of virtual storage that a
programmer can use to diagnose the error. To request a dump of the storage, the
program can issue one of the following:
v The ABEND macro with the DUMP parameter, or the SETRP macro with

DUMP=YES. These two macros produce an ABEND dump.
v The CALLRTM macro with DUMP=YES. This macro also produces an ABEND

dump.
v Either the SDUMPX or SDUMP macro. These macros produce an unformatted

SVC dump that is written to a SYS1.DUMPnn data set. IBM recommends using
SDUMPX over SDUMP, although MVS accepts SDUMP macro invocations.

v The IEATDUMP macro. This macro produces an unformatted Transaction dump
that is written to a pre-allocated or automatically allocated data set.

SVC dumps
This information describes SVC dumps, including:
v Deciding when to request an SVC dump
v Understanding the types of SVC dumps that MVS produces, and designing your

program to handle a specific type
v Identifying the data set to contain the dump
v Defining the contents of the dump
v Suppressing duplicate SVC dumps using dump analysis and elimination (DAE)
v Requesting dumps on other systems in a sysplex
v Using dynamic exits to control dumps on other systems in a sysplex.

For a description of ABEND dumps, see z/OS MVS Programming: Assembler Services
Guide.

The SDUMPX macro provides the same service as SDUMP, but has the following
unique capabilities:
v SDUMPX allows callers in access register (AR) mode to request an SVC dump,

whereas SDUMP provides that service only for callers in primary mode.
v SDUMPX allows callers to include data spaces in the SVC dump.
v SDUMPX allows callers to include cross-system coupling facility (XCF)

information in the SVC dump.

Where To Find Prerequisite Information

ABEND and SNAP dumps are available to both authorized and unauthorized programs. z/OS MVS Programming:
Assembler Services Guide introduces ABEND and SNAP dumps and discusses functions that are available to all
programs. The following topic discusses SVC dumps, which are available to authorized programs only and
Transaction dumps which are available to both authorized and unauthorized programs. Before reading the following
topic, read about ABEND and SNAP dumps in z/OS MVS Programming: Assembler Services Guide.

© Copyright IBM Corp. 1988, 2016 425

v SDUMPX allows callers to specify when MVS will post the caller's event control
block (ECB) or schedule its service request block (SRB). The calling program can
request notification or scheduling after one of the following phases of dump
processing:
– The capture phase; that is, after MVS collects and stores the dump data
– The write phase; that is, after MVS moves the dump data from storage to an

allocated data set.

For simplicity, this information mentions only SDUMPX whenever the SDUMP and
SDUMPX services are identical. Functions available only through SDUMPX are
noted as such.

For details about coding an SDUMPX or SDUMP macro, see z/OS MVS
Programming: Authorized Assembler Services Reference LLA-SDU.

For a description of SVC dumps, see z/OS MVS Diagnosis: Tools and Service Aids.

Deciding when to request an SVC dump
Generally, the programs that request dumps of virtual storage are recovery
routines, which run in a recovery environment. Under certain circumstances, a
recovery routine might not need to request a dump of any storage. For example:
v Another recovery routine might have already requested an SVC dump for this

error. If more than one recovery routine might receive control, each routine
should determine whether another routine already requested a dump by
checking the SDWAEAS bit of the system diagnostic work area (SDWA).

v Some errors do not require a dump for diagnosis. For example, a system
completion code of X'913' results when an operator or user does not supply a
correct password.

Note: If your program calls a system service (by issuing a macro or callable
service), that system service might encounter a user-induced error and end
abnormally. Generally, the system does not take dumps for user-induced errors. If
you require such a dump, then it is your responsibility to request one in your
recovery routine. See Chapter 18, “Providing recovery,” on page 335 for
information about writing recovery routines.

When a dump is required for diagnosis, an authorized program can request either
an SVC dump or an ABEND dump. Requesting an SVC dump rather than an
ABEND dump has several advantages:
v SVC dumps are delivered to the installation's system programmer rather than to

the person who ran the abnormally terminating job. Usually, the system
programmer wants to see the dumps requested by authorized programs
immediately.

v The system processes an SVC dump whether or not the recovery routine
percolates or requests a retry. In contrast, the system processes an ABEND dump
only if all functional recovery routines (FRRs) percolate, or if no ESTAE-type
recovery routine suppresses the dump.

v The system processes an SVC dump closer to the time of error, so the SVC
dump might contain more useful data for diagnosis. The system handles an SVC
dump request right after the program issues the SDUMPX macro. In contrast,
the system handles an ABEND dump request either just before a retry, or after
all of the recovery routines have percolated. During percolation, the recovery
routines might have altered storage contents or dump options.

426 z/OS V2R2 MVS Authorized Assembler Services Guide

Understanding the type of SVC dump that MVS produces
When you design a program to dump storage for diagnostic purposes, you make
decisions based on several factors, two of which are: the environment in which the
program runs, and the address spaces for which you want storage dumped. These
factors determine which parameters you code on the SDUMPX macro, which, in
turn, determine the type of SVC dump MVS produces.
v If your program is in supervisor state with PSW key 0, and meets at least one of

the following conditions, you can request branch entry into dump processing:
– The program runs in SRB mode
– The program holds any lock
– The program has established an enabled, unlocked task (EUT) FRR.
To request a branch entry, code BRANCH=YES. A branch entry causes MVS to
produce a scheduled dump, which offers a potential performance advantage
because your program can continue processing as soon as dump processing
begins. However, use caution when you code BRANCH=YES; if you do not
synchronize your program's processing with dump processing, the dump might
not contain valuable data.

v If your program does not meet the environmental restrictions in the preceding
item, you must code BRANCH=NO. For BRANCH=NO, the parameters you
code to identify storage determine the type of dump MVS produces:
– If the parameters you coded identify only the primary address space or global

data spaces, MVS produces a synchronous dump.
– If the parameters you coded identify address spaces other than, or in addition

to, the primary address space, MVS produces a scheduled dump.

When MVS produces a synchronous dump, your program cannot run until the
capture phase of dump processing completes. However, when MVS produces a
scheduled dump, your program can continue its processing as soon as dump
processing begins. Because of this difference in processing, you might make
different design decisions based on the type of dump MVS produces. To design
your program, you need to know which SDUMPX parameter combinations
produce each type.

Coding parameters that produce a synchronous dump
MVS produces a synchronous dump when you code BRANCH=NO to request an
SVC dump of only the primary address space or global data spaces. Be careful if
you code the following parameters:
v LISTD=list addr. MVS produces a scheduled— not synchronous— dump when

the STOKEN represents either an address space that is not the primary address
space, or a SCOPE=SINGLE data space owned by a program that is not running
in the primary address space.

v SUBPLST=subpool id list addr. MVS produces a scheduled— not synchronous—
dump when the list of address spaces with associated subpool IDs contains at
least one address space other than the primary address space.

Do not code the following parameters if you want a synchronous dump; these
parameters automatically cause MVS to produce a scheduled dump:
v ASID=asid addr

v ASIDLST
v TYPE=XMEM or TYPE=XMEME
v LISTA.

Chapter 20. Dumping virtual storage (SDUMPX, SDUMP, and IEATDUMP macros) 427

Designing a program to handle a synchronous dump
With a synchronous dump, MVS usually returns control to your program after the
capture phase of dump processing completes. If, however, you code DCB=dcb addr
to request that MVS use a specific data set for the dump data, MVS returns control
after the write phase completes. Your program must then close that data set.

Coding parameters that produce a scheduled dump
MVS produces a scheduled dump if you request branch-entry dump processing, or
if you code parameters that identify storage of an address space other than the
primary address space, or of multiple address spaces. Specifically, MVS produces a
scheduled dump if you code one of the following:
v BRANCH=YES

To code BRANCH=YES, your program must be in supervisor state with PSW
key 0, and also must meet at least one of the following conditions:
– Is in SRB mode
– Holds any lock
– Has an enabled, unlocked task (EUT) FRR established.
The branch-entry interface uses standard linkage conventions. On entry, general
purpose register 13 must point to a 72-byte save area. Branch entry callers must
include the CVT mapping macro with the PREFIX=YES parameter.

v BRANCH=NO, with one or more of the following:
– ASIDLST
– ASID=asid addr

– TYPE=XMEM or TYPE=XMEME
– LISTA
– LISTD=list addr, when the STOKEN represents either an address space other

than the primary address space, or a SCOPE=SINGLE data space owned by a
program that is not running in the primary address space

– SUBPLST=subpool id list addr, when the list of address spaces with associated
subpool IDs contains at least one address space other than the primary
address space.

Designing a program to handle a scheduled dump
With a scheduled dump, MVS returns control to your program as soon as dump
processing begins. In this sense, a scheduled dump is considered an asynchronous
dump because your program can continue its processing simultaneously with
dump processing.

Because your program can run asynchronously with dump processing, scheduled
dumps offer a potential performance advantage. However, under some
circumstances, your program might have to synchronize its processing with dump
processing by waiting for MVS to capture all of the dump data, or to write the
data out to a dump data set.

Synchronizing your program through an ECB or SRB
To synchronize your program with dump processing, you can design the program
to use an event control block (ECB) or a service request block (SRB). If you use an
ECB, MVS posts the ECB to notify your program that dump processing is
complete. If you use an SRB to do some post-dump processing for your program,
MVS schedules the SRB after the capture phase or the write phase is complete.

428 z/OS V2R2 MVS Authorized Assembler Services Guide

When you synchronize your program with dump processing, MVS usually posts
your program's ECB, or schedules its SRB, after the capture phase completes. IBM
recommends using the ECB or SRB parameter with CAPTURE instead of WRITE,
because your program can continue processing sooner, and resources can be freed
sooner. With WRITE, your program not only has to wait for MVS to write the data
to a data set, but also might have to wait until an installation operator makes a
data set available.

However, in some cases, your program must wait until the write phase completes.
MVS posts your program's ECB, or schedules its SRB, after the write phase
completes if you:
v Code DCB=dcb addr to request that MVS use a specific data set for the dump

data. Your program must close that data set after the dump writing phase
completes. Whenever you code the DCB parameter, MVS automatically posts
your program's ECB or schedules its SRB after the write phase completes, but
IBM recommends that you code ECB=(ecb addr,WRITE) or SRB=(srb addr,WRITE)
on SDUMPX to make your source code easier for programmers to understand.

v Use the SDUMPX macro with ECB=(ecb addr,WRITE) to request that MVS post
your program's ECB when the dump writing phase completes. (If you use the
SDUMP macro, you cannot code WRITE on the ECB parameter.)

v Use the SDUMPX macro with SRB=(srb addr,WRITE) to request that MVS
schedule your program's SRB when the dump writing phase completes. (If you
use the SDUMP macro, you cannot code WRITE on the SRB parameter.)

Designing your program to run asynchronously with dump
processing

Depending on the tasks your program is designed to accomplish, you might not be
able to synchronize it with dump processing. If the environment in which your
program runs does not allow you to use an ECB or SRB to synchronize your
program, you might lose data that is subject to rapid and frequent change. For
example, the data used for communication with other address spaces can change
before the system processes a scheduled dump. To avoid this loss, your program
can place the data in footprint areas before issuing the SDUMPX macro. Footprint
areas include:
v The program's work areas
v The variable recording area (VRA) of the system diagnostic work area (SDWA)
v Any areas you specify through the SUMLIST and SUMLISTA parameters
v Any areas you specify through the SUMLSTL parameter (SDUMPX only)
v The 4K buffer of SQA that is reserved for the caller of SDUMPX, only if no other

program is using this buffer.

If your program uses footprint areas to save such data, you should provide your
installation's programmers with information that explains how your program uses
those areas. Otherwise, other programmers might not be able to read the dump or
the logrec data set records.

Identifying the data set to contain the dump
By default, MVS places the dump you request on a SYS1.DUMPnn data set.
However, you can code the DCB parameter on SDUMPX to specify the data set
that you want MVS to use. Because SVC dumps include data from key 0 storage,
the data set you use should be made secure. If you use the DCB parameter to
specify a data set, your program:

Chapter 20. Dumping virtual storage (SDUMPX, SDUMP, and IEATDUMP macros) 429

1. Opens the data set
2. Issues SDUMPX with the DCB parameter and, possibly, the ECB or SRB

parameter
3. Closes the data set.

If your program uses the DCB and ECB parameters, MVS notifies your program
when the write phase completes by posting the ECB. Then your program can close
the dump data set. If your program uses the DCB and SRB parameters, MVS
schedules the SRB when the write phase completes. As part of its processing, the
SRB routine can initiate the process to close the dump data set that your program
opened.

If you use SDUMPX to request a scheduled SVC dump, IBM recommends that you
code DCB=dcb addr with either ECB=(ecb addr,WRITE) or SRB=(srb addr,WRITE) to
have MVS post the ECB or schedule the SRB when the write phase of the dump
completes. Whenever you code the DCB parameter, MVS automatically posts your
program's ECB or schedules its SRB after the write phase completes, but coding
the WRITE option makes your source code easier for programmers to understand.

If you use the SDUMP macro to request an SVC dump, code DCB=dcb addr with
either ECB=ecb addr or SRB=srb addr. SDUMP does not recognize the WRITE
option. However, MVS automatically posts your program's ECB or schedules its
SRB after the write phase completes.

Defining the contents of the dump
Depending on the error that occurs, you might want to tailor the SVC dump to
include information that will be the most helpful for diagnosing the error. Through
the SDUMPX parameters, you can:
v Identify the address space or spaces to be dumped
v Identify the data spaces to be dumped (available through SDUMPX only)
v Customize the contents of the dump for those address spaces
v Request a summary dump.

Identifying the address spaces or data spaces to be dumped
You can request an SVC dump of the virtual storage for a maximum of 15 address
spaces.
v To dump the storage of one address space, code ASID=asid addr. If you omit the

ASID parameter, the SVC dump will contain the storage of the primary address
space (the default). If you code ASID=0, the SVC dump will contain the storage
of the home address space.

v To dump the storage of multiple address spaces, code ASIDLST=list addr.
v To allow the cross-memory mode of the calling program to determine which

address spaces to dump, code TYPE=XMEME or TYPE=XMEM. With these
parameters, you request an SVC dump of the home, primary, and secondary
address spaces, from either the time of the error or the time of the dump
request.

v To dump ranges of storage within address spaces, code LISTA=list addr.
v To dump subpool storage associated with address spaces, code SUBPLST=subpool

id list addr.
v To dump ranges of referenced storage in address or data spaces, code LISTD=list

addr on SDUMPX only.

430 z/OS V2R2 MVS Authorized Assembler Services Guide

Customizing the contents of the SVC dump
For a specific address space, or for each address space you identify, you can
request that the system include or exclude specific storage or ranges of storage. By
coding additional parameters, you can request that the system:
v Dump certain areas of private or common storage (SDATA parameter with

options)
v Override default options (SDATA parameter with NODEFS).

Do not specify all SDATA parameters unless you need all storage areas to diagnose
the error. If you do not need a particular area, omit the corresponding option or
omit the SDATA parameter. Whenever possible, tailor the SVC dump using the
storage list parameters, such as LISTD (on SDUMPX only), LIST, LISTA, and
STORAGE.

Generally, each installation defines default options for SVC dumps and sets up
specific formatters for those dumps. If you override the default options, provide
your own interactive problem control system (IPCS) CLIST to format the dump
contents.

Requesting the summary dump
The dump you request through SDUMPX contains a summary dump by default. A
summary dump, part of an SVC dump, is formatted and contains the storage of
certain system data areas. Although the summary dump is a default, you can
explicitly request the system to include one by coding SDATA=SUMDUMP.

The type of summary dump that MVS includes depends on the SDUMPX
parameters you code:

Table 63. SDUMPX Parameters and the Type of Summary Dump They Produce

If you code: The summary dump type is:

BRANCH=YES, SUSPEND=NO Disabled

BRANCH=YES, SUSPEND=YES
or

BRANCH=NO, SUMLSTL=list addr

Suspend

BRANCH=NO (SUSPEND cannot be specified) Enabled

Descriptions of each type of summary dump follow.

Disabled Summary Dump
In a disabled summary dump, MVS captures system data that is subject to
rapid and frequent change. Because the system is disabled, MVS can
capture data from only paged-in or disabled reference (DREF) storage. The
caller can specify the SUMLIST and SUMLSTA parameters on SDUMP or
SDUMPX and the SUMLSTL parameter on SDUMPX to save specific data
in the summary dump.

Suspend Summary Dump
In a suspend summary dump, MVS also captures system data that is
subject to rapid and frequent change. However, MVS can capture data
from paged-in, DREF, and pageable storage. The caller can specify the
SUMLIST and SUMLSTA parameters on SDUMP or SDUMPX and the
SUMLSTL parameter on SDUMPX to save specific data in the summary
dump.

Chapter 20. Dumping virtual storage (SDUMPX, SDUMP, and IEATDUMP macros) 431

Enabled Summary Dump
The purpose of the enabled summary dump is to group data for
debugging dumps by specifying a particular option on the SDUMP or
SDUMPX macro. If the dump is a scheduled dump, the summary data is
saved for each address space specified.

Suppressing SVC dumps that duplicate previous SVC dumps
Where To Find Prerequisite Information: The dump and analysis elimination (DAE)
function is available to both unauthorized and authorized programs. Before
reading the following topic, read about DAE and about how to provide symptoms
through the SDWA in z/OS MVS Programming: Assembler Services Guide. See also
z/OS MVS Diagnosis: Tools and Service Aids for starting and controlling dump
suppression by DAE.

Providing symptom information through the SDUMPX macro
The SYMREC parameter on the SDUMPX macro allows programs running in a
non-recovery environment, where there is no SDWA, to request an SVC dump and
dump suppression services similar to those that are available in a recovery
environment, where an SDWA is present. When an SDWA exists and a symptom
record is passed to the system on the SYMREC parameter, DAE uses the primary
symptom string in the symptom record. DAE suppresses the SVC dump if the
primary symptom string in the symptom record matches previously known
symptoms.

DAE copies the primary and secondary symptom strings from the symptom record
into the dump header. If the symptom record is written to the logrec data set, the
symptom string in the dump header is consistent with the record in the logrec data
set. The system does not include the symptom record in the dump, but you can
include the symptom record in the dump by using the SUMLIST keyword on the
SDUMPX macro.

Consider the following points when using the SYMREC parameter of the SDUMPX
macro to specify a symptom record:
v The caller must build the symptom record using the SYMRBLD macro, or the

ADSR mapping macro, and fill in at least the ‘SR’ identifier and the primary
symptom string, which should uniquely identify the error.
If the symptom record identifier is not ‘SR’ or if the symptoms are not
addressable, the system issues an abend with a completion code of X'233', then
returns to the caller with a return code of 8.
See z/OS MVS Programming: Assembler Services Guide for instructions and
programming notes for using the SYMRBLD macro or the ADSR mapping
macro.

v DAE uses only the first 150 bytes of the primary symptom string in the
symptom record. If it must truncate a primary symptom string, DAE truncates at
the end of the last complete symptom within the first 150 bytes of the symptom
string.

v During its match processing, DAE performs a byte-by-byte comparison of
symptom strings. Thus, be sure that the symptom strings you generate are
consistent in the order of symptoms and the number of blank characters
between symptoms.

v If the SYMREC parameter is used in a recovery environment where an SDWA
exists, DAE uses the symptoms found in the symptom record rather than in the
SDWA.

432 z/OS V2R2 MVS Authorized Assembler Services Guide

Requesting dumps on other systems in a sysplex
In a sysplex, a problem can involve several or all of the systems. The SDUMPX
macro can request an SVC dump on the local system and, using the REMOTE
parameter, an SVC dump on one or more of the other systems in the sysplex.
Using the parameters on the macro, you can make the dump requests the same or
different, depending on the areas you think a diagnostician will need for any
problems.

In systems in a sysplex, the installation should specify names that form patterns so
that all the names can be specified in one value that contains wildcards. In the
SDUMPX macro, you can use wildcards, * and ?, to identify all or some names,
based on the patterns for the names. For example, jobs can be named TRANS1,
TRANS2, TRANS3, ... , TRANS17. A jobname of TRANS* in the SDUMPX macro
will dump all of them. In the SDUMPX macro, you can use wildcards in system
names, address space identifiers, job names, XCF groups, XCF members, and data
space names.

Using dynamic exits to control dumps in a sysplex
Three types of dynamic exits control SVC dumps requested from another system in
a sysplex. The exits are:
v IEASDUMP.QUERY - SVC dump query exit
v IEASDUMP.GLOBAL - SVC dump exit for capturing common storage
v IEASDUMP.LOCAL - SVC dump exit for capturing storage in its address space
v IEASDUMP.SERVER - SVC dump exit for adding data to the dump.

IEASDUMP.QUERY dynamic exit
You can use an IEASDUMP.QUERY exit:
v To decide if an SVC dump requested by another system in the sysplex is needed.

To indicate that this system should be dumped, do the following:
– Specify a SDUMPX macro with a REMOTE parameter
– Place SYSDCOND in the PROBDESC area for the macro
– Pass a return code of 0 from at least one IEASDUMP.QUERY exit
To indicate that this system should not be dumped, SYSDCOND must be in the
PROBDESC area and either of the following must be true:
– No IEASDUMP.QUERY exit exists
– No IEASDUMP.QUERY exit returns a code of 0

v To identify storage areas to be added to dumps that are needed.

Installing IEASDUMP.QUERY
Use the CSVDYNEX macro to connect the routine to the SVC dump processing.
For example:
CSVDYNEX REQUEST=ADD,

EXITNAME=ROUTQ,
MODNAME=MODQ,
STOKEN=(3)

.

.

.
ROUTQ DC CL16’IEASDUMP.QUERY’
MODQ DC CL8’SDUMPQ’

Chapter 20. Dumping virtual storage (SDUMPX, SDUMP, and IEATDUMP macros) 433

IEASDUMP.QUERY dynamic exit environment
The exit receives control in the following environment:
v In supervisor state with PSW key 0.
v In dispatchable unit mode of SRB.
v In cross memory mode of PASN=HASN=SASN.
v In AMODE 31.
v In primary ASC mode.
v Enabled for I/O and external interrupts.
v With no locks held.
v With parameter areas in the primary address space. The parameter area for

IEASDUMP.QUERY is mapped by the IHASDMSE mapping macro.

IEASDUMP.QUERY dynamic exit recovery
The exit should provide its own recovery, using a functional recovery routine
(FRR). If the IEASDUMP.QUERY exit ends abnormally, its recovery routine will get
control first.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted under the
following conditions:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
v The system allows a retry, that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

If an IEASDUMP.QUERY exit ends abnormally, the system will proceed as though
the exit had returned a nonzero return code. If it is the only IEASDUMP.QUERY
exit invoked, no dump will be written. If other IEASDUMP.QUERY exits are
invoked, a dump will be written if one of the other exits returns a code of 0. If all
other IEASDUMP.QUERY exits return nonzero codes or abnormally end and
SYSDCOND is in the PROBDESC area, no dump will be written.

IEASDUMP.QUERY dynamic exit processing
All IEASDUMP.QUERY exits that are defined receive control when another system
in the sysplex requests an SVC dump on this system using:
v An SDUMPX macro with a REMOTE parameter and with or without a

PROBDESC parameter.
v A DUMP command with a REMOTE parameter and with a PROBDESC

parameter.

The IEASDUMP.QUERY exit on the local system, which is the system requesting the
dumps, also receives control if PROBDESC=SYSDLOCL is specified and if the local
system is included in the systems specified by SYSLIST or GRPLIST through the
REMOTE parameter.

The IEASDUMP.QUERY exit receives control before the system obtains the areas to
be dumped. The exit receives control in one of the following address spaces:
v In the address space represented by the STOKEN parameter, if STOKEN was

specified on the CSVDYNEX REQUEST=ADD macro that installed the routine.

434 z/OS V2R2 MVS Authorized Assembler Services Guide

v In the address space represented by the job specified in the JOBNAME
parameter, if JOBNAME was specified on the CSVDYNEX REQUEST=ADD
macro. If several jobs have the specified job name, the exit gets control in only
one of the address spaces, unless another of those address spaces is also
identified by the STOKEN on another of the CSVDYNEX REQUEST=ADD
macros. For example:
– CSVDYNEX REQUEST=ADD for exit R1 and with STOKEN=x, which is for

ASID 002F.
– CSVDYNEX REQUEST=ADD for exit R2 and with JOBNAME=J. Both ASID

002E and 002F are for the job named J.
Exit R1 gets control only in ASID 002F. Exit R2 gets control in both ASID 002E
and 002F. However, if R1 had not been associated with this exit, R2 would get
control only in ASID 002E. To best limit the address spaces in which the exit will
run, use STOKEN rather than JOBNAME.

v In address space ASID 0001 and in the address spaces of any other
IEASDUMP.QUERY exits, based on their STOKEN and JOBNAME values, if
neither STOKEN nor JOBNAME was specified.

IBM recommends that you specify an STOKEN parameter for an
IEASDUMP.QUERY exit.. To obtain the STOKEN for the home address space, issue
an ALESERV macro with an EXTRACTH parameter. To obtain the STOKEN for
ASID 0001:
v Issue the macro LOCASCB ASID==H’1’ to locate the address space control block

(ASCB) for ASID 0001. (The two equal signs are needed.)
v Use the ASCBASSB field in the ASCB to locate the address space secondary

block (ASSB) for ASID 0001.
v Obtain the STOKEN for ASID 0001 from the ASSBSTKN field of the ASSB.

The IEASDUMP.QUERY exit decides if its system should write an SVC dump. The
IEASDUMP.QUERY exit returns control with a return code to indicate the actions
to be taken.

If the return code indicates that a dump should be written, the exit can add areas
to be dumped, specifying them in the area mapped by the IHASDMSE mapping
macro. For example:
v Address spaces, specified in an area mapped by DSECT SDMSE_ASIDLST.

When used, place the address of this area in
SDMSE_OUTPUT_ASIDLST_ADDR.

v Storage ranges, specified in an area mapped by DSECT SDMSE_STORAGE.
When used, place the address of this area in
SDMSE_OUTPUT_STORAGE_ADDR.

v Jobs, specified in an area mapped by DSECT SDMSE_JOBLIST. When used,
place the address of this area in SDMSE_OUTPUT_JOBLIST_ADDR.

v Data spaces, specified in an area mapped by DSECT SDMSE_DSPLIST. When
used, place the address of this area in SDMSE_OUTPUT_DSPLIST_ADDR.

v Subpools, specified in an area mapped by DSECT SDMSE_SUBPLST. When
used, place the address of this area in SDMSE_OUTPUT_SUBPLST_ADDR.

v Keys for the subpools, specified in an area mapped by DSECT SDMSE_KEYLIST.
When used, place the address of this area in
SDMSE_OUTPUT_KEYLIST_ADDR.

v SDATA options, specified in the SDMSE_SDATA_OPTIONS fields.

Chapter 20. Dumping virtual storage (SDUMPX, SDUMP, and IEATDUMP macros) 435

The exit can place data to be dumped in a 4096-byte workarea supplied by the
system; the address of the workarea is in the SDMSE_INPUT_WORKARE_ADDR
field. If the exit requires more storage, the exit should request it with a GETMAIN
or STORAGE OBTAIN macro and describe it as follows:
v Its address in the SDMSE_OUTPUT_WORKAREA_ADDR field.
v Its length in the SDMSE_OUTPUT_WORKAREA_LENGTH field.
v Its subpool in the SDMSE_OUTPUT_WORKAREA_SUBPOOL field.
v Its key in the SDMSE_OUTPUT_WORKAREA_KEY field. Make sure that the key

is in bits 0-3 of the 8-bit field. For example, if using key 1, set the field to X'10'.

Upon return from the routine, the system releases the storage described by these
fields.

Code the IEASDUMP.QUERY exit to be reentrant.

Immediate and Deferred Local Dump: For the local system that requests the
dumps, you can obtain two related dumps: an immediate dump containing current
problem data and a deferred dump containing areas added by the IEASDUMP
exits.

Specify the immediate and deferred dumps as follows:
v Specify the local system in SYSLIST or GRPLIST through the REMOTE

parameter of the DUMP command or SDUMPX macro. You can specify the local
system explicitly or with wildcards. For example, an * indicates all systems. SY?
indicates the local system if it is named, for example, SY1.

v Specify SYSDCOND and SYSDLOCL keys on the PROBDESC parameter of the
DUMP command or in the PROBDESC area for the SDUMPX macro.

When you specify the preceding for four systems, SY1, SY2, SY3, and SY4, with
SY1 as the system requesting the dumps, the results are:
v An SVC dump is requested on SY1.
v SY1 requests dumps on SY2, SY3, and SY4, and also on SY1.
v On SY2, SY3, and SY4, dump processing begins. If any IEASDUMP.QUERY exit

returns 0, a dump is written for the system.
v On SY1, dump processing also begins. If any IEASDUMP.QUERY exit returns 0,

a dump is written.

The total dumps requested are five, two on system SY1 and one each on systems
SY2, SY3, and SY4.

Registers at entry to IEASDUMP.QUERY dynamic exit
The contents of the registers on entry to an exit are:

Register
Contents

0 Not applicable

1 Address of the parameter area mapped by the IHASDMSE mapping
macro.

2-12 Not applicable

13 Address of the 72-byte standard save area

14 Return address

436 z/OS V2R2 MVS Authorized Assembler Services Guide

15 Entry point address of IEASDUMP.QUERY.

Parameter area at entry to IEASDUMP.QUERY dynamic exit
The parameter area is mapped by the IHASDMSE mapping macro. For
IHASDMSE, see z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/). Information that the area
provides to the IEASDUMP.QUERY exit includes the problem description provided
through the PROBDESC parameter.

Registers at exit from IEASDUMP.QUERY dynamic exit
Upon return from IEASDUMP.QUERY processing, the register contents must be:

Register
Contents

0-1 Not applicable

2-13 Restored to contents at entry

14 Not applicable

15 One of the following return codes:

Return Code
Explanation

0 Write the requested dump. Dump added areas, if specified in the
parameter list, are mapped by the IHASDMSE mapping macro.

4 Do not add areas to the dump. If the DUMP command or
SDUMPX macro contains PROBDESC=SYSDCOND, suppress the
dump of this system.

Disassociating IEASDUMP.QUERY
Disassociate the exit from SVC dump when it should no longer receive control
because the task or address space ended. Use the CSVDYNEX macro to
disassociate the exits. For example:
CSVDYNEX REQUEST=DELETE,

EXITNAME=ROUTQ,
MODNAME=MODQ

.

.

.
ROUTQ DC CL16’IEASDUMP.QUERY’
MODQ DC CL8’SDUMPQ’

Disassociation is needed to prevent the routine from being invoked after the
application is ended, and to release any common storage that might be used for it.

IEASDUMP.GLOBAL and IEASDUMP.LOCAL dynamic exits
You can use the IEASDUMP.GLOBAL and IEASDUMP.LOCAL exits dentify storage
areas to be added to an SVC dump requested by another system in the sysplex.

Installing IEASDUMP.GLOBAL and IEASDUMP.LOCAL
Use the CSVDYNEX macro to connect each exit to the SVC dump processing. For
example:
CSVDYNEX REQUEST=ADD,

EXITNAME=ROUTGLO,
MODNAME=MODGLO

CSVDYNEX REQUEST=ADD,
EXITNAME=ROUTLOC,

Chapter 20. Dumping virtual storage (SDUMPX, SDUMP, and IEATDUMP macros) 437

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

MODNAME=MODLOC
JOBNAME=ANY

.

.

.
ROUTGLO DC CL16’IEASDUMP.GLOBAL’
MODGLO DC CL8’SDUMPGLO’
ROUTLOC DC CL16’IEASDUMP.LOCAL’
MODLOC DC CL8’SDUMPLOC’

Use JOBNAME or STOKEN to limit further the address spaces in which
IEASDUMP.LOCAL exits receive control.

IEASDUMP.GLOBAL and IEASDUMP.LOCAL dynamic exit
environment
The exits receive control in the following environment:
v In supervisor state with PSW key 0.
v In dispatchable unit mode of task.
v In cross memory mode of PASN=HASN=SASN.
v In AMODE 31.
v In primary ASC mode.
v Enabled for I/O and external interrupts.
v With no locks held.
v With parameter areas in the primary address space. The parameter area for

IEASDUMP.GLOBAL or IEASDUMP.LOCAL is mapped by the IHASDEXI
mapping macro.

IEASDUMP.GLOBAL and IEASDUMP.LOCAL dynamic exit
Each exit should provide its own recovery, using an ESTAEX or ESTAE macro. If
the IEASDUMP.GLOBAL or IEASDUMP.LOCAL exit ends abnormally, its recovery
routine will get control first.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted under the
following conditions:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
v The system allows a retry, that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

If a IEASDUMP.GLOBAL or IEASDUMP.LOCAL exit ends abnormally or times
out, a partial dump is written. The dump will indicate that an error occurred in an
IEASDUMP exit routine.

IEASDUMP.GLOBAL and IEASDUMP.LOCAL dynamic exit
processing
The IEASDUMP.GLOBAL and IEASDUMP.LOCAL exits, if defined, receive control
when another system in the sysplex requests an SVC dump on this system and the
IEASDUMP.QUERY did not block the dump. The SVC dump on this system is
requested by:
v A SDUMPX macro with a REMOTE parameter
v A DUMP command with a REMOTE parameter

438 z/OS V2R2 MVS Authorized Assembler Services Guide

The exits receive control as follows:
v IEASDUMP.GLOBAL exit: Receives control in the DUMPSRV address space

during global data capture, once for an SVC dump on its system.

Note: Do not specify STOKEN on the CSVDYNEX REQUEST=ADD macro for
IEASDUMP.GLOBAL.

v IEASDUMP.LOCAL exit: Receives control during local data capture in each
address space being dumped for an SVC dump on its system. The exit can run
several times for one dump.
If STOKEN is specified in the CSVDYNEX REQUEST=ADD macro for an
IEASDUMP.LOCAL, the exit will receive control only in the address space
represented by the STOKEN and only when the dump includes that address
space.

Both exits can add areas to be dumped, specifying them in the area mapped by the
IHASDEXI mapping macro. You can dump a single page of data or, if a range is
specified, pages of data:
v Indicate a range by turning on bit SDEXIADDRESSRANGE and providing the

end address in field SDEXIRANGEEND. See the description of bit
SDEXIADDRESSRANGE for more complete information about providing an
address range.

v Indicate a single page of data by making sure that bit SDEXIADDRESSRANGE
is off. Place the 4096 bytes of data in the buffer whose address is in field
SDEXIFAD.

Note that, in all cases, the system dumps entire 4096-byte pages. The addresses
you specify are rounded down or up to page boundaries, as needed.

If the storage to be dumped is in the primary address space, specify its start
address in field SDEXICDAD. If the storage is not in the primary address space,
define a dump record prefix, which describes the location and the address space or
data space being dumped. When defining a dump record prefix, set bit
SDEXIDRPS on and place in field SDEXIDRPXLAD the address of the start of the
area to be included in the dump; for example, the start of a range, or the address
of the 4096-byte buffer's contents, or the address to be associated with the
component data. The dump record prefix is a 64-byte area provided by the system,
mapped by DSECT SDEXIDRPX, and pointed to by field SDEXIDRPA. See the
description preceding the SDEXIDRPX DSECT for information about the fields to
set in the dump record prefix area.

After setting the fields in the area mapped by IHASDEXI, the IEASDUMP.GLOBAL
or IEASDUMP.LOCAL exit should call the system routine whose address is in the
SDEXIORAD field. The system routine adds the storage range or buffer to the
dump.

The IEASDUMP.GLOBAL or IEASDUMP.LOCAL exit is to use the following
interface when calling the system routine. The system routine must receive control
in the following environment:
v In supervisor state with PSW key 0.
v In dispatchable unit mode of task.
v In cross memory mode of any PASN, any SASN, and the HASN under which

the IEASDUMP exit received control.
v In AMODE 31.

Chapter 20. Dumping virtual storage (SDUMPX, SDUMP, and IEATDUMP macros) 439

v In primary ASC mode.
v Enabled for I/O and external interrupts.
v With no locks held.
v With no enabled, unlocked task (EUT) FRRs.

The contents of the registers on entry to the system routine addressed by
SDEXIORAD are:

Register
Contents

0 Not applicable

1 Address of SDEXI

2-12 Not applicable

13 Address of a 72-byte standard save area

14 Return address

15 Entry point address

The contents of the registers on exit from the system routine addressed by
SDEXIORAD are:

Register
Contents

0-1 Used as work registers

2-13 Unchanged

14-15 Used as work registers

Code the IEASDUMP.GLOBAL and IEASDUMP.LOCAL exits to be reentrant.

Registers at entry to IEASDUMP.GLOBAL or IEASDUMP.LOCAL
dynamic exit
The contents of the registers on entry to a IEASDUMP.GLOBAL or
IEASDUMP.LOCAL exit are:

Register
Contents

0 Not applicable

1 Address of the parameter area mapped by the IHASDEXI mapping macro.

2-12 Not applicable

13 Address of the 72-byte standard save area

14 Return address

15 Entry point address of IEASDUMP.GLOBAL or IEASDUMP.LOCAL

Parameter area at entry to IEASDUMP.GLOBAL or
IEASDUMP.LOCAL dynamic exit
The parameter area is mapped by the IHASDEXI mapping macro. For IHASDEXI,
see z/OS MVS Data Areas in the z/OS Internet library (http://www.ibm.com/
systems/z/os/zos/bkserv/). Information that the area provides to the
IEASDUMP.GLOBAL or IEASDUMP.LOCAL exit includes the problem description

440 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

provided through the PROBDESC parameter and the incident token for the related
dumps. The area gives the address and length of the data buffer the exit should
use.

Registers at exit from IEASDUMP.GLOBAL or IEASDUMP.LOCAL
dynamic exit
Upon return from IEASDUMP.GLOBAL or IEASDUMP.LOCAL processing, the
register contents must be:

Register
Contents

0-1 Not applicable

2-13 Restored to contents at entry

14 Not applicable

15 One of the following return codes:

Return Code
Explanation

0 Exit processed successfully. Data was added to the dump.

4 Exit did not process successfully. Some data was not added to the
dump. Upon dump completion, dump processing will issue a
partial-dump message.

Disassociating IEASDUMP.GLOBAL and IEASDUMP.LOCAL
Disassociate the exits from SVC dump when they should no longer receive control
because the task or address space ended. Use the CSVDYNEX macro to
disassociate the exits. For example:
CSVDYNEX REQUEST=DELETE,

EXITNAME=ROUTGLO,
MODNAME=MODGLO

CSVDYNEX REQUEST=DELETE,
EXITNAME=ROUTLOC,
MODNAME=MODLOC

.

.

.
ROUTGLO DC CL16’IEASDUMP.GLOBAL’
MODGLO DC CL8’SDUMPGLO’
ROUTLOC DC CL16’IEASDUMP.LOCAL’
MODLOC DC CL8’SDUMPLOC’

Disassociation is needed to prevent the routine from being invoked after the
application is ended, and to release any common storage that might be used for it.

IEASDUMP.SERVER dynamic exit
You can use an IEASDUMP.SERVER exit to identify data to be added to the dump.
The current dump request is provided in register 1 and is mapped by IHASDMSE.
Exit routines should scan the current dump request to determine if data should be
added to the dump.

Installing IEASDUMP.SERVER
Use the CSVDYNEX macro to connect the exit to the SVC dump processing. For
example:
CSVDYNEX REQUEST=ADD,

EXITNAME=ROUTQ,
MODNAME=MODQ,

Chapter 20. Dumping virtual storage (SDUMPX, SDUMP, and IEATDUMP macros) 441

STOKEN=(3)
.
.
.
ROUTQ DC CL16’IEASDUMP.SERVER’
MODQ DC CL8’SDUMPQ’

IEASDUMP.SERVER dynamic exit environment
The exit receives control in the following environment:
v In supervisor state with PSW key 0
v In dispatchable unit mode of TCB
v In cross memory mode of PASN=HASN=SASN
v In AMODE 31
v In primary ASC mode
v Enabled for I/O and external interrupts
v With no locks held
v With parameter areas in the primary address space. The parameter area for

IEASDUMP.SERVER is mapped by the IHASDMSE mapping macro.

IEASDUMP.SERVER dynamic exit recovery
The exit should provide its own recovery using an EXTAE(X) routine. If the
IEASDUMP.SERVER exit ends abnormally, its recovery routine will get control first.

You can use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro to limit the number of times the exit routine
abnormally ends before it becomes inactive. An abend is counted under the
following conditions:
v The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error.
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system does not disable the exit routine.

If an IEASDUMP.SERVER exit ends abnormally, the system will proceed as though
the exit had returned a nonzero return code. If it is the only IEASDUMP.SERVER
exit invoked, no data will be added. If other IEASDUMP.SERVER exits are
invoked, data will be added if one of the other exits returns a code of 0. If all other
IEASDUMP.SERVER exits return nonzero codes or abnormally end, no data will be
added.

IEASDUMP.SERVER dynamic exit processing
All IEASDUMP.SERVER exits that are defined receive control when
SDATA=SERVERS are specified on the SDUMPX macro, on the DUMP command,
or on an SDUMP option of the CHNGDUMP SDUMP command.

The IEASDUMP.SERVER exit receives control before the system obtains the areas
to be dumped. The exit receives control in the DUMPSRV address space.

The current dump request is provided to the caller and is mapped by the
IHASDMSE mapping macro. For example:
v Address spaces, specified in an area mapped by DSECT SDMSE_ASIDLST. The

address of this area is in SDMSE_INPUT_ASIDLST_ADDR.

442 z/OS V2R2 MVS Authorized Assembler Services Guide

v Storage ranges, specified in an area mapped by DSECT SDMSE_STORAGE. The
address of this area is in SDMSE_INPUT_STORAGE_ADDR.

v Subpools, specified in an area mapped by DSECT SDMSE_SUBPLST. The
address of this area is in SDMSE_INPUT_SUBPLST_ADDR.

v Keys for the subpools, specified in an area mapped by DSECT SDMSE_KEYLIST.
The ddress of this area is in SDMSE_INPUT_KEYLIST_ADDR.

v SDATA options, specified in the SDMSE_SDATA_OPTIONS fields.

If the return code indicates that data should be added, the exit can add the areas to
be dumped, specifying them in the area mapped by the IHASDMSE mapping
macro. For example:
v Address spaces, specified in an area mapped by DSECT SDMSE_ASIDLST.

When used, place the address of this area in
SDMSE_OUTPUT_ASIDLST_ADDR.

v Storage ranges, specified in an area mapped by DSECT SDMSE_STORAGE.
When used, place the address of this area in
SDMSE_OUTPUT_STORAGE_ADDR.

v Jobs, specified in an area mapped by DSECT SDMSE_JOBLIST. When used,
place the address of this area in SDMSE_OUTPUT_JOBLIST_ADDR.

v Data spaces, specified in an area mapped by DSECT SDMSE_DSPLIST. When
used, place the address of this area in SDMSE_OUTPUT_DSPLIST_ADDR.

v Subpools, specified in an area mapped by DSECT SDMSE_SUBPLST. When
used, place the address of this area in SDMSE_OUTPUT_SUBPLST_ADDR.

v Keys for the subpools, specified in an area mapped by DSECT SDMSE_KEYLIST.
When used, place the address of this area in
SDMSE_OUTPUT_KEYLIST_ADDR.

v SDATA options, specified in the SDMSE_SDATA_OPTIONS fields.

The exit can place data to be dumped in a 4096-byte work area supplied by the
system. The address of the work area is in the
SDMSE_INPUT_WORKAREA_ADDR field. If the exit requires more storage, the
exit should request it with a GETMAIN or STORAGE OBTAIN macro and describe
it as follows:
v Address in the SDMSE_OUTPUT_WORKAREA_ADDR field
v Length in the SDMSE_OUTPUT_WORKAREA_LENGTH field
v Subpool in the SDMSE_OUTPUT_WORKAREA_SUBPOOL field
v Key in the SDMSE_OUTPUT_WORKAREA_KEY field. Make sure that the key is

in bits 0-3 of the 8-bit field. For example, if using key 1, set the field to X'10'.

Upon return from the exit, the system releases the storage described by these
fields.

Code the IEASDUMP.SERVER exit to be reentrant.

Registers at entry to IEASDUMP.SERVER dynamic exit
The contents of the registers on entry to an exit are:

Register
Contents

0 Not applicable

1 Address of the parameter area mapped by the IHASDMSE mapping macro

2-12 Not applicable

Chapter 20. Dumping virtual storage (SDUMPX, SDUMP, and IEATDUMP macros) 443

13 Address of the 72-byte standard save area

14 Return address

15 Entry point address of IEASDUMP.SERVER

Parameter area at entry to IEASDUMP.SERVER dynamic exit
The parameter area is mapped by the IHASDMSE mapping macro. For
IHASDMSE, see z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/). Information that the area
provides to the IEASDUMP.SERVER exit includes the problem description
provided through the PROBDESC parameter.

Registers at exit from IEASDUMP.SERVER dynamic exit
Upon return from IEASDUMP.SERVER processing, the register contents must be:

Register
Contents

0-1 Not applicable

2-13 Restored to contents at entry

14 Not applicable

15 One of the following return codes:

Return Code
Explanation

0 Add the requested data to the dump. Dump added areas, if
specified in the parameter list, are mapped by the IHASDMSE
mapping macro.

4 Do not add areas to the dump.

Disassociating IEASDUMP.SERVER
Disassociate the exit from SVC dump when it should no longer receive control
because the task or address space ended. Use the CSVDYNEX macro to
disassociate the exits. For example:
CSVDYNEX REQUEST=DELETE,

EXITNAME=ROUTQ,
MODNAME=MODQ

.

.

.
ROUTQ DC CL16’IEASDUMP.SERVER’
MODQ DC CL8’SDUMPQ’

Disassociation is needed to prevent the routine from being invoked after the
application is ended, and to release any common storage that might be used for it.

Transaction dumps
This information describes Transaction dumps, including:
v Deciding when to request a Transaction dump
v Understanding the types of Transaction dumps that MVS produces, and

designing your program to handle a specific type
v Identifying the data set to contain the dump
v Defining the contents of the dump

444 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

v Suppressing duplicate Transaction dumps using dump analysis and elimination
(DAE)

v Requesting dumps of other address spaces on the same system or on other
systems in the same sysplex

Deciding when to request a transaction dump
Generally, the programs that request dumps of virtual storage are recovery
routines, which run in a recovery environment. Under certain circumstances, a
recovery routine might not need to request a dump of any storage. For example:
v Another recovery routine might have already requested a Transaction dump for

this error. If more than one recovery routine might receive control, each routine
should determine whether another routine already requested a dump by
checking the SDWAEAS bit of the system diagnostic work area (SDWA).

v Some errors do not require a dump for diagnosis. For example, a system
completion code of X'913' results when an operator or user does not supply a
correct password.

Note: If your program calls a system service (by issuing a macro or callable
service), that system service might encounter a user-induced error and end
abnormally. Generally, the system does not take dumps for user-induced errors. If
you require such a dump, then it is your responsibility to request one in your
recovery routine. See Chapter 18, “Providing recovery,” on page 335 for
information about writing recovery routines.

When a dump is required for diagnosis, both unauthorized and authorized
programs can request either a Transaction dump or an ABEND dump. Requesting
a Transaction dump rather than an ABEND dump has several advantages:
v The system processes a Transaction dump whether or not the recovery routine

percolates or requests a retry. In contrast, the system processes an ABEND dump
only if all functional recovery routines (FRRs) percolate, or if no ESTAE-type
recovery routine suppresses the dump.

v The system processes a Transaction dump closer to the time of error, so the
Transaction dump might contain more useful data for diagnosis. The system
handles a Transaction dump request right after the program issues the
IEATDUMP macro. In contrast, the system handles an ABEND dump request
either just before a retry, or after all of the recovery routines have percolated.
During percolation, the recovery routines might have altered storage contents or
dump options.

Understanding the type of transaction dump that MVS
produces

When you design a program to dump storage for diagnostic purposes, you make
decisions based on several factors, two of which are: the environment in which the
program runs, and the storage you want dumped. These factors determine which
parameters you code on the IEATDUMP macro, which, in turn, determine the type
of Transaction dump MVS produces.

Identifying the data set to contain the dump
You can request that the Transaction dump be written to a data set that is either
pre-allocated or automatically allocated. To request a pre-allocated data set, specify
the DDNAME parameter that identifies a data set that contains sufficient space in
one or more extents for the entire dump to be written. If you don't provide a large
enough data set, you will receive a partial dump. To request automatic allocation,

Chapter 20. Dumping virtual storage (SDUMPX, SDUMP, and IEATDUMP macros) 445

specify the DSN and DSNAD parameters to diminish the exposure that the dump
is truncated because of data set space constraints. Automatic allocation is done to
SYSALLDA. When using DSN or DSNAD, the maximum dump size is 2 GB. To
collect data beyond that, use the &DS symbol at the end of the pattern. Then, the
dump data is split across multiple data sets. DDNAME does not have the 2GB size
restriction.

Defining the contents of the dump
Depending on the error that occurs, you might want to tailor the Transaction
dump to include information that will be the most helpful for diagnosing the error.
Through the IEATDUMP parameters, you can:
v Identify the address space or spaces to be dumped
v Identify the data spaces to be dumped
v Customize the contents of the dump for those address spaces
v Request a summary dump.

Customizing the contents of the transaction dump
For a specific address space, or for each address space you identify, you can
request that the system include or exclude specific storage or ranges of storage. By
coding additional parameters, you can request that the system dump certain areas
of private or common storage (SDATA parameter with options).

Do not specify all SDATA parameters unless you need all storage areas to diagnose
the error. If you do not need a particular area, omit the corresponding option or
omit the SDATA parameter.

Generally, each installation defines default options for Transaction dumps and sets
up specific formatters for those dumps. If you override the default options,
provide your own interactive problem control system (IPCS) CLIST to format the
dump contents.

Requesting the summary dump
The purpose of the summary dump is to group data for debugging dumps. By
specifying SDATA= with the REMOTE parameter on the IEATDUMP macro,
summary data is saved for each address space specified.

Suppressing transaction dumps that duplicate previous
transaction dumps

Where To Find Prerequisite Information: The dump and analysis elimination (DAE)
function is available to both unauthorized and authorized programs. Before
reading the following topic, read about DAE and about how to provide symptoms
through the SDWA in z/OS MVS Programming: Assembler Services Guide. See also
z/OS MVS Diagnosis: Tools and Service Aids for starting and controlling dump
suppression by DAE.

Providing symptom information through the IEATDUMP macro
The SYMREC parameter on the IEATDUMP macro allows programs running in a
non-recovery environment, where there is no SDWA, to request a Transaction
dump and dump suppression services similar to those that are available in a
recovery environment, where an SDWA is present. When an SDWA exists and a
symptom record is passed to the system on the SYMREC parameter, DAE uses the

446 z/OS V2R2 MVS Authorized Assembler Services Guide

primary symptom string in the symptom record. DAE suppresses the Transaction
dump if the primary symptom string in the symptom record matches previously
known symptoms.

DAE copies the primary and secondary symptom strings from the symptom record
into the dump header. If the symptom record is written to the logrec data set, the
symptom string in the dump header is consistent with the record in the logrec data
set. The system does not include the symptom record in the dump, but you can
include the symptom record in the dump by using the PROBDESC keyword on the
IEATDUMP macro.

Consider the following points when using the SYMREC parameter of the
IEATDUMP macro to specify a symptom record:
v The caller must build the symptom record using the SYMRBLD macro, or the

ADSR mapping macro, and fill in at least the ‘SR’ identifier and the primary
symptom string, which should uniquely identify the error.
If the symptom record identifier is not ‘SR’ or if the symptoms are not
addressable, the system returns to the caller with a return code of 8.
See z/OS MVS Programming: Assembler Services Guide for instructions and
programming notes for using the SYMRBLD macro or the ADSR mapping
macro.

v DAE uses only the first 150 bytes of the primary symptom string in the
symptom record. If it must truncate a primary symptom string, DAE truncates at
the end of the last complete symptom within the first 150 bytes of the symptom
string.

v During its match processing, DAE performs a byte-by-byte comparison of
symptom strings. Thus, be sure that the symptom strings you generate are
consistent in the order of symptoms and the number of blank characters
between symptoms.

v If the SYMREC parameter is used in a recovery environment where an SDWA
exists, DAE uses the symptoms found in the symptom record rather than in the
SDWA.

Requesting dumps of other systems
In a sysplex, a problem can involve several or all of the systems. The IEATDUMP
macro can request a Transaction dump of the local system address space and,
using the REMOTE parameter, a Transaction dump of one or more address spaces
on the same or different systems. Using the parameters on the macro, you can
make the dump requests the same or different, depending on the areas you think a
diagnostician will need for any problems.

In systems in a sysplex, the installation should specify names that form patterns so
that all the names can be specified in one value that contains wildcards. In the
IEATDUMP macro, you can use wildcards, * and ?, to identify all or some names,
based on the patterns for the names. For example, jobs can be named TRANS1,
TRANS2, TRANS3, ... , TRANS17. A jobname of TRANS* in the IEATDUMP macro
will dump all of them.

Note: If a Transaction dump uses the REMOTE parameter to dump one or more
address spaces on a pre-release 4 system, the result will be a single SVC dump
containing the requested data, instead of one or more Transaction dumps written
to data set names specified with the DSN parameter. Issue the DISPLAY
DUMP,STATUS command to determine the name of this SVC dump. In the

Chapter 20. Dumping virtual storage (SDUMPX, SDUMP, and IEATDUMP macros) 447

IEATDUMP macro, you can use wildcards in system names, address space
identifiers, job names, XCF groups, XCF members, and data space names.

448 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 21. Protecting the system

Protecting or maintaining system integrity is a major consideration in large
systems. This topic includes information concerning the following:
v System integrity
v Using the authorized program facility (APF)
v Using the resource access control facility (RACF)
v System authorization facility (SAF)
v Using the command authorization service
v Changing system status (MODESET)
v Protecting the vector facility

System integrity
System integrity is defined as the inability of any program not authorized by a
mechanism under the installation's control to circumvent or disable store or fetch
protection, access a resource protected by the z/OS Security Server (RACF), or
obtain control in an authorized state; that is, in supervisor state, with a protection
key less than eight (8), or Authorized Program Facility (APF) authorized.

Documentation on system integrity
This topic contains information about system integrity. The related topic of security
is discussed in the following publications:
v The Considerations of Physical Security in a Computer Environment

v Data Security Controls and Procedures - A Philosophy for DP Installations

v Security Assessment Questionnaire

v MVS Planning: Security

Installation responsibility
To ensure that system integrity is effective and to avoid compromising any of the
integrity controls provided in the system, the installation must assume
responsibility for the following:
v Physical environment of the computing system.
v Adoption of certain procedures (for example, the password protection of

appropriate system data sets) that are a necessary complement to the integrity
support within the operating system itself.

v That its own modifications and additions to the system do not introduce any
integrity exposures. That is, all installation-written authorized code (for example,
an installation SVC) must perform the same or an equivalent type of validity
checking and control that the system uses to maintain its integrity.

Elimination of potential integrity exposures
System integrity support restricts only unauthorized problem programs. It is the
responsibility of the installation to verify that any authorized programs added to
the system control program will not introduce any integrity exposures. To do this
effectively, an installation should consider these areas for potential integrity
exposure:

© Copyright IBM Corp. 1988, 2016 449

v User-supplied addresses for user storage areas.
v User-supplied addresses for protected control blocks.
v Resource identification.
v SVC routines calling SVC routines.
v Control program and user data accessibility.
v Resource serialization. (See “Locking” on page 38.)

Each of the following descriptions is a guideline to aid the installation in:
v Eliminating the areas identified above as a potential integrity exposure.
v Determining whether an impact on existing installation-written code might

occur, especially where that code is dependent on the use of non-intended
interfaces to the system control program.

User-supplied addresses for user storage areas
A potential integrity exposure exists whenever a routine having PSW key 0-7
accepts a user-supplied address of an area to which a store or fetch is to be done.
If the system routine does not adequately validate the user-supplied address to
ensure that it is the address of an area accessible to the user for storing and
fetching data, an integrity violation can occur when the system-key routine:
v Stores into (overlays) system code or data (for example, in the nucleus or the

system queue area), or into another user's code or data.
v Moves data from a fetch-protected area that is not accessible to the user (for

example, fetch-protected portion of the common service areas) to an area that is
accessible to the user.

To eliminate this problem system-key routines should always verify that the entire
area to be stored into, or fetched from, is accessible (for storing or fetching) to the
user in question. The primary validation technique is the generally established
convention that PSW key 0-7 routines obtain the protection key of the user before
accessing the user-specified area of storage.

User-supplied addresses for protected control blocks
A potential integrity exposure exists whenever the control program (system
key/privileged mode) accepts the address of a protected system control block from
the user. For most system control blocks, this situation should not be permitted to
exist. However, in certain cases it is necessary to allow the user to provide the
address of a system control block that describes his allocation/access to a
particular resource (for example, a data set), in order to identify that resource from
a group of similar resources (for example, an user might have many data sets
allocated). Inadequate validity checking in this situation can create an integrity
exposure, because an unauthorized problem program could provide its own
(counterfeit) control block in place of the system block and thereby gain the ability
to:
v Access a resource in an uncontrolled manner (because the control block in this

case would normally define the restrictions, such as read-only for a data set, on
the user's allocation to the resource).

v Gain control in an authorized state (because such control blocks might contain
the addresses of routines that run in supervisor state with PSW key 0-7.

v Cause various other problems depending on exactly what data is in the control
block involved.

To avoid this type of exposure, the control program must verify, for every such
address accepted from a problem program, that the address is that of:

450 z/OS V2R2 MVS Authorized Assembler Services Guide

1. A protected control block created by the control program.
2. The correct type of control program block (for example, a TCB versus a DEB, or

a QSAM DEB versus an ISAM DEB).
3. A control block created for use in connection with the user (job step) that

supplied the address.

In the system, verification is generally accomplished by establishing a chain or
table of the particular type of control block to be validated. This chain or table is
located via a protected and jobstep-related control block that is known to be valid.
Addresses that are not allowed to be supplied by the user, are located via a chain
of protected control blocks that begins with a control block known to be valid or
fixed at a known location at IPL time, such as the CVT. Therefore, a control block
can only be entered in the chain/table by:
v An authorized program satisfying point 1.
v Definition, where the chain/table establishes the type of control block satisfying

point 2.
v Definition, where each chain/table is located only through a jobstep-related

control block satisfying point 3.

Note: This does not imply that a system routine must go back to the CVT or
similar control block every time it wants to establish a valid chain. Typically, a
control block address not too far down on such a chain is available and already
validated in a register.

Resource identification
Resource identification is another area that can be subject to integrity exposures.
Exposures can result if the control program does not maintain and use sufficient
data to uniquely distinguish one resource from other similar resources. For
example, a program must be identified by both name and library to distinguish it
from other programs. The consequences of inadequate resource identification are
problems such as the ability of an unauthorized problem program to create
counterfeit control program code or data, or to cause varying types of integrity
problems by intermixing incompatible pieces of control program code or data, or
both.

The general solution can only be stated as the reverse of the problem; that is, the
control program must maintain and use sufficient (protected) data on any control
program resource to distinguish between that resource and other control program
or user resources. The following are examples of the controls that the system
employs to comply with the requirement:
v In general, authorized program requests to load other authorized programs are

satisfied only from authorized system libraries (see “Control Program
Extensions” described in this information.)

v The operating system takes explicit steps to ensure that routines loaded from
authorized system libraries are used only for their intended purpose. This
includes expanded validity checking to remove any potential for the
unauthorized program to specify explicitly which of the authorized library
routines are to gain control in any given situation.

v Sensitive system control blocks are validated as being the “correct” blocks to be
used in any given control program operation. (See “User-Supplied Addresses of
Protected Control Blocks” described earlier in this information.)

Chapter 21. Protecting the system 451

SVC routines calling SVC routines
A potential problem area exists whenever a problem program is allowed to use one
SVC routine (routine A) to invoke a second SVC routine (routine B) that the
problem program could have invoked directly. An integrity exposure occurs if:
v SVC routine B bypasses some or all validity checking based on the fact that it

was called by SVC routine A (an authorized program) or
v User-supplied data passed to routine B by routine A either is not validity

checked by routine A, or is exposed to user modification after it was validated
by routine A.

These problems will not exist if the user calls SVC routine B directly, because the
validity checking will be performed on the basis of the caller being an
unauthorized program.

SVC routine A, which is aware that it has been called by an unauthorized
program, must ensure that the proper validity checking is accomplished. However,
it is usually not practical for SVC routine A to do the validity checking itself,
because of the potential for user modification of the data before or during its use
by SVC routine B. The general solution should be for SVC routine A to provide an
interface to SVC routine B, informing routine B that the operation is being
requested with user-supplied data in behalf of an unauthorized problem program
(implying that normal validity checking should be performed).

In practice, most of the SVC B-type system routines that could be subject to this
problem use the key of their caller as a basis for determining whether or not to
perform validity checking. Therefore, most SVC A-type system routines have
simply adopted the convention of assuming the key of their caller before calling
the SVC B routine. (For additional information, see “Writing SVC Routines”.)

Control program and user data accessibility
Important in maintaining system integrity is the consideration of what system data
is sensitive and must be protected from the user, and what data can be exposed to
user manipulation. The implications of the exposure of the wrong type of data are
obvious.

In general, it is necessary to store protect the following types of data:
v Code, and the location of code, that is to receive control in an authorized state.
v Work areas for such code, including areas where it saves the contents of

registers.
v Control blocks that represent the allocation or use of system resources.

The operating system maintains such items in its storage, or in a separate address
space in the case of some APF-authorized programs.

It might also be necessary to protect, for a limited period, certain data that is
normally under the control of the user (for example, to prevent its modification
during a critical operation). In this case the system provides fetch protection for
such data if:
v The data consists of proprietary information (such as passwords).
v The control program cannot determine the nature of the contents of the data

area.

452 z/OS V2R2 MVS Authorized Assembler Services Guide

Fetch protection provided for the PSA
The last 2K locations of the PSA (addresses 2048 through 4095) contain sensitive
system data that must be protected. These locations are key 0 fetch protected. This
means that only key 0 programs can fetch data from the last 2K of the PSA. Also
the entire PSA of one processor is key 0 fetch-protected from programs attempting
to access the PSA while executing on another processor.

Control program extensions
This potential problem area involves the somewhat hazy distinction that exists
between the control program and certain types of unauthorized programs. In most
installations, there are unauthorized programs that are actually extensions to the
control program in that they are allowed (by means of various special SVCs, and
so forth) to bypass normal system controls over access to system resources. For
example, a special utility program that scans all the data on a pack might be able
to avoid the normal system extent checking on a direct access volume.

If an installation has its own control program extensions and SVCs that allow the
bypass of normal system security or integrity checks (for example, an SVC that
returns control in key 0), and if such SVCs are not currently restricted from use by
an unauthorized program, the APF should be used to restrict them and to
authorize the control program extensions that use them.

Authorized programs
Many system functions, such as entire supervisor calls (SVC) or special paths
through SVCs, are sensitive. Access to these functions must be restricted to
authorized programs to avoid compromising the security and integrity of the
system. A program must be authorized before it can access a restricted SVC. The
system considers a program authorized if the program has one or more of the
following characteristics:
v Runs in supervisor state (bit 15 of the PSW is zero)
v Runs with PSW key 0-7 (bits 8-11 of the PSW are in the range 0-7)
v Runs under an APF-authorized job step task.

The system does not allow APF-authorized programs to use some resources that
programs running in supervisor state or PSW key 0-7 are allowed to use. For
example, certain macro keywords are restricted to programs running in supervisor
state or PSW key 0-7. Programs that are APF-authorized, but not running in
supervisor state or with PSW key 0-7, cannot use these keywords when invoking
the associated macros.

MVS itself has authorized programs, which are:
v Programs residing in SYS1.LINKLIB or SYS1.SVCLIB
v SVC routines
v Program call (PC) routines
v Certain exit and I/O appendage routines that are called by authorized programs.

Any user can submit a job that runs an authorized program. To restrict a program
to an individual user or a group of users, you can use library security facilities to
place the program in a library (other than SYS1.LINKLIB, SYS1.SVCLIB, or a
library in the LPALST) that is protected by a security product such as RACF. If a
program is an APF-authorized program, it must reside in a library that is in the
APF list or in the link pack area (pageable LPA, modified LPA, fixed LPA, or
dynamic LPA).

Chapter 21. Protecting the system 453

Note: You can also restrict the use of a program by defining it in the RACF
PROGRAM class, unless the program resides in the link pack area. See z/OS
Security Server RACF Security Administrator's Guide for more information about
functions of program control.

Using APF to restrict access to system functions
The authorized program facility (APF) allows your installation to identify system
or user programs that can use sensitive system functions.

APF:
v Restricts the use of sensitive system SVC routines (and sensitive user SVC

routines, if you need them) to APF-authorized programs
v Allows the system to fetch all modules in an authorized job step task only from

authorized libraries, to prevent programs from counterfeiting a module in the
module flow of an authorized job step task.

To authorize a program, the installation must first assign the authorization code to
the first load module of the program. APF prevents authorized programs from
accessing any load module that is not in an authorized library. When the system
attaches the first load module of a program, the system considers the program
APF-authorized if the module meets both of the following criteria:
v The module is contained in an authorized library or resides in the link pack area

(pageable LPA, modified LPA, fixed LPA, or dynamic LPA) (see “APF-authorized
libraries” on page 455).

v The module is link-edited with authorization code AC=1 (to indicate that you
want to authorize the job step task). This code is contained in a bit setting in the
partitioned data set (PDS) directory entry for the module. For more information
about how to assign an authorization code to a module, see “Assigning APF
authorization to a load module” on page 458.

If the system does not consider a program APF-authorized when it attaches the first
load module, the program cannot become authorized for the life of the job step.

Note: This description applies to batch jobs and started tasks, where the initiator
attaches the jobstep task and determines the APF authorization for that jobstep.
The TSO/E terminal monitor program (TMP), and UNIX System Services can also
run programs with APF authorization, as the initiator does. Other system
environments generally do not support running programs with APF authorization.

The authorization code (AC) is meaningful only when the load module resides in an
authorized library and runs as the first module of a job step task, or when run by
the TSO/E terminal monitor program or UNIX System Services with appropriate
configuration parameters. When a program is run with APF authorization, the
system verifies that all subsequent modules for that program are contained in
authorized libraries or the link pack area (pageable LPA, modified LPA, fixed LPA,
or dynamic LPA). If one or more of the programs are not contained in authorized
libraries or the link pack area, the system issues abend X'306'.

Guidelines for using APF
Installations using APF authorization must control which programs are stored in
authorized libraries and in the link pack area (pageable LPA, modified LPA, fixed
LPA, and dynamic LPA). If the first module in a program sequence is authorized,
the system assumes that the flow of control to all subsequent modules is known

454 z/OS V2R2 MVS Authorized Assembler Services Guide

and secure as long as these subsequent modules come from authorized libraries or
the link pack area. To ensure that this assumption is valid, the installation should:
v Ensure that all programs that run as authorized programs adhere to the

installation's integrity guidelines.
v Ensure that no two load modules with the same name exist across the set of

authorized libraries or the link pack area. Two modules with the same name
could lead to accidental or deliberate mix-up in module flow, possibly
introducing an integrity exposure.

v Link edit with the authorization code (AC=1) only the first load module in a
program sequence. Do not use the authorization code for subsequent load
modules, thus ensuring that a user cannot call modules out of sequence, or
bypass validity checking or critical logic flow.

IBM recommends that you protect the libraries in the APF list with a security
product, such as RACF, and ensure that only appropriate users with system
maintenance responsibilities can update these libraries. You should also apply
similar controls to any library that contributes modules to the link pack area
(pageable LPA, modified LPA, fixed LPA, or dynamic LPA) and to any libraries
specified in RACF PROGRAM profiles.

APF-authorized libraries
APF-authorized programs must reside in the link pack area (pageable LPA,
modified LPA, fixed LPA, dynamic LPA) or in an authorized library:
v SYS1.LINKLIB
v SYS1.SVCLIB
v Another library in the linklist (depending on the LNKAUTH= parameter in your

PARMLIB members)
v Another authorized library specified by your installation.

The LNKLSTxx parmlib member indicates the libraries that are to be concatenated
to SYS1.LINKLIB. The libraries in the LNKLST concatenation are considered
authorized unless the system programmer specifies LNKAUTH=APFTAB in the
IEASYSxx parameter list. If the system accesses the libraries in the LNKLST
concatenation through JOBLIB or STEPLIB DD statements, the system does not
consider those libraries authorized unless you enter the library names in the APF
list using one of the methods described in “APF-authorized library list” on page
456. For more information about the LNKLSTxx parmlib member, see z/OS MVS
Initialization and Tuning Reference.

If a load module resides in the link pack area or in an authorized library, an
authorized program can load the module. To help avoid integrity exposures, do
not duplicate module names across the link pack area or the authorized libraries.

Note:

1. If a JCL DD statement concatenates an authorized library in any order with an
unauthorized library, the entire set of concatenated libraries is treated as
unauthorized.

2. SYS1.LPALIB and other libraries that contribute to the link pack area (pageable
LPA, modified LPA, fixed LPA, dynamic LPA) are treated as authorized when
the system places modules into the link pack area. You should protect those
libraries as you would protect any APF-authorized library. When accessed via a
tasklib DCB, or via a STEPLIB or JOBLIB DD statement, these libraries are
considered authorized only if you have specified them in the APF list.

Chapter 21. Protecting the system 455

APF-authorized library list
The libraries that contain APF-authorized programs must be defined in an APF list.
The APF list contains the following information for each library:
v The library name
v An identifier for the volume that contains the library (or “SMS”, if the library is

SMS-managed).

Note: The system considers all modules in the link pack area (pageable LPA,
modified LPA, fixed LPA, dynamic LPA) as having come from an authorized
library whether or not the library is defined in the APF list).

The system automatically places SYS1.LINKLIB and SYS1.SVCLIB in the first two
APF list entries. Your installation can create the remaining entries in the APF list.

Note: When LNKAUTH=APFTAB is specified, the system considers SYS1.MIGLIB,
SYS1.CSSLIB,SYS1.SIEALNKE and SYS1.SIEAMIGE to be APF-authorized when
they are accessed as part of the concatenation (even when they are not included in
the APF list).

Defining Aliases in the APF List: Do not define aliases in the APF list because
data management services of IBM (for example, OPEN processing) map an alias to
its actual library name and query the APF list by the actual library name. An alias
in the APF list thus does not actually authorize anything.

You can specify a dynamic format for the APF list, which allows you to:
v Update the APF list without having to reIPL the system, and
v Specify as many APF-authorized libraries as you need; there is no

system-imposed maximum number.

You can also specify a static format for the APF list, which has the following
limitations:
v You can define the static APF list only at IPL, using the IEAAPFxx or PROGxx

parmlib member
v You can only specify a maximum of only 253 libraries in the static APF list (255

entries are allowed, but SYS1.LINKLIB and SYS1.SVCLIB occupy two entries in
the list).

Because of the limitations associated with a static APF list, IBM recommends that
you maintain a dynamic APF list.

“Requesting APF list services (CSVAPF macro)”explains how to create, update, and
change the format and contents of the APF list.

Requesting APF list services (CSVAPF macro)
As you read this information, use the description of the CSVAPF macro in z/OS
MVS Programming: Authorized Assembler Services Reference ALE-DYN.

Programs can issue the CSVAPF macro to:
v Change the format of the APF list from static to dynamic.
v Add and delete libraries in a dynamic APF list (you cannot use CSVAPF to add

and delete entries in a static APF list).

456 z/OS V2R2 MVS Authorized Assembler Services Guide

Your installation can also use a parmlib member or an operator command to
specify the format and contents of the APF list. For more information, see the
descriptions of the PROGxx and IEAAPFxx parmlib members in z/OS MVS
Initialization and Tuning Reference and the descriptions of the SETPROG and SET
PROG=xx commands in z/OS MVS System Commands.

Before you change the format of the APF list to dynamic, contact the system
programmer to validate that all programs and vendor products are converted to
use dynamic APF services and that the proper program products are installed.

Restricting the use of SVC routines
You can use one of the following methods to restrict the use of sensitive SVC
routines to authorized callers:
1. Specify the APF=YES parameter on the SVCUPDTE macro, or specify APF(YES)

in the IEASVCxx parmlib member. With this specification in place, a X'047'
abend results if an unauthorized program tries to access the restricted SVC.

2. Insert the TESTAUTH macro at appropriate locations in an SVC routine to
return the caller's authorization. Then the SVC routine can restrict either the
entire routine or particular paths through the routine to authorized callers.
When using TESTAUTH to return the caller's authorization, test only the
criteria (supervisor state, PSW key 0-7, APF authorized or any combination of
the three) that you consider essential. TESTAUTH returns an indication of
whether the calling program meets any of the three criteria. For example,
various system functions use TESTAUTH to make the following distinctions:
a. The caller is running in supervisor state, PSW key 0-7, or both.
b. The caller is an APF-authorized task.
c. Either a or b.

The TESTAUTH macro is not used to test the use of I/O appendages, which are
instead controlled through the IEAAPP00 parmlib member. (See the description of
this member in z/OS MVS Initialization and Tuning Reference.)

Restricting load module access
To authorize a program, the installation must:
1. Assign the authorization code AC(1) to the first load module of the program;

and
2. Place the module in an APF-authorized library or in the link pack area; and
3. Invoke the program via the initiator (// EXEC PGM=program in batch or an

STC), or via the TSO/E terminal monitor program (with appropriate
configuration statements in SYS1.PARMLIB(IKJTSOxx), or via UNIX System
Services (again, possibly requiring configuration statements in
SYS1.PARMLIB(BPXPRMxx).

When the program runs with APF authorization, the system prevents it from
accessing any other load module that is not in either the link pack area or an
authorized data set. If an authorized program tries to access a module that is not
in an authorized data set, the system searches the authorized data sets for a copy
of the module. If the system finds a copy of the module, processing continues. If
the system does not find a copy of the module, the system issues abend X'306'.

Chapter 21. Protecting the system 457

Assigning APF authorization to a load module
You can use the PARM field on the link edit step to assign the APF-authorization
code to a load module. To assign an authorization code using JCL, code AC=1 in
the operand field of the PARM parameter of the EXEC statement:
//LKED EXEC PGM=HEWL,PARM=’AC=1’,...

This method causes the system to consider every load module created by the
linkage editor to be authorized.

The authorization code of a load module has meaning only when it resides in the
link pack area or an APF-authorized data set and when the initiator attaches it as a
jobstep task in a batch job or STC, or when the TSO/E terminal monitor program
attaches the program (with appropriate TSO/E configuration) or when UNIX
System Services attaches the program (again with appropriate UNIX System
Services configuration). If no authorization code is assigned in the linkage editor
step, the system assigns the default of unauthorized.

No security or integrity exposure exists if a program is link-edited into an
unauthorized data set with authorization code AC=1. The job step task is not
authorized when the first module of the job step task is loaded and no abend
occurs. However, if the loaded module tries to execute functions or SVCs that
require authorization, the system abnormally ends the program.

Overriding an authorization code - SETCODE statement
You can override the authorization code for an output load module with the
SETCODE control statement. The SETCODE statement establishes authorization for
a specific output load module. You must place the SETCODE statement before the
NAME statement for the load module. The format of the SETCODE statement is:
SETCODE AC(1)

If you assign more than one SETCODE statement to a given output load module,
the system uses the last SETCODE statement coded.

Figure 62 shows how the SETCODE statement assigns an authorization code to the
output load module MOD1:

Authorization results under various conditions
When a program issues an SVC or accesses a load module through a LINK, LOAD,
or XCTL macro, the system considers the following factors when checking
authorization:
v Whether or not the calling program is authorized
v Whether the called program is a restricted SVC or a load module in an

authorized data set or the link pack area.

//LKED EXEC PGM=HEWL
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,5))
//SYSLMOD DD DSNAME=SYS1.LINKLIB,DISP=OLD
//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,PASS),
// UNIT=SYSDA
// DD *

SETCODE AC(1)
NAME MOD1(R)

/*

Figure 62. Assigning Authorization via SETCODE

458 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 64 describes the authorization rules:

Table 64. Authorization Rules

Rule Abend Resulting From Violation

An unauthorized routine cannot call a
restricted SVC.

047

A routine running in supervisor state,
system key, or APF-authorized cannot call
programs residing outside APF-authorized
data set or the link pack area.

306

The rules shown in Table 64 are also true when the ATTACH macro is used unless
the RSAPF keyword is specified. An attaching task that specifies RSAPF=YES and
is running in supervisor state or PSW key 0-7 can attach programs residing outside
APF-authorized data set or the link pack area if the following conditions are met:
v The caller is not running APF-authorized.
v The caller is attaching a subtask in problem state.
v The attached task's TCB key is 8-15 (non-system key).

The newly attached subtask does not run APF-authorized. If the attaching task is
not in supervisor state or PSW key 0-7, the default, RSAPF=NO, is taken and a 306
abend might result.

However, if the subtask comes from an APF-authorized data set or the link pack
area and is link edited with the APF-authorized attribute, then the task executes
with APF authorization.

Resource Access Control Facility (RACF)
The Resource Access Control Facility (RACF) provides software access control
measures that can be used to enhance data security in a computing system. RACF
can be used in addition to any data security measure currently being used.

RACF provides the ability to specify access authorities under which the permanent
DASD data sets, tape volumes, DASD volumes, terminals, and other resources are
made available to the users of the system. RACF can protect VSAM, non-VSAM,
cataloged, and uncataloged data sets, including program libraries and individual
programs.

When the security administrator defines users, groups, DASD data sets, tape
volumes, DASD volumes, terminals, and other resources to RACF, RACF builds
and stores their descriptions in profiles on the RACF data base. RACF uses these
profiles for authorization checking and user identification and verification.

For a description of the RACROUTE macro, see z/OS Security Server RACROUTE
Macro Reference For information on how to use RACF to protect resources, see z/OS
Security Server RACF Security Administrator's Guide.

System Authorization Facility (SAF)
The System Authorization Facility (SAF) provides a system interface that
conditionally directs control to the Resource Access Control Facility (RACF), if
RACF is present, and/or a user-supplied processing routine when receiving a
request from a resource manager. Another external security product may be

Chapter 21. Protecting the system 459

substituted for RACF. SAF does not require any other program product as a
prerequisite, but overall system security functions are greatly enhanced and
complemented by the concurrent use of an external security product. The key
element in SAF is the MVS router.

MVS router
SAF provides an installation with centralized control over system security
processing by using a system service called the MVS router. The MVS router
provides a focal point and a common system interface for all products providing
resource control. The resource managing components and subsystems call the MVS
router as part of certain decision-making functions in their processing, such as
access control checking and authorization-related checking. These functions are
called “control points”. This single SAF interface encourages the use of common
control functions shared across products and across systems.

The router is always present whether or not an external security product is present.
If an external security product is available in the system, the router passes control
to the external security product. Before it calls the external security product, the
router calls an optional, user-supplied security processing exit if one has been
installed.

Control points that issue the RACROUTE macro enter the MVS router in the same
key and state as the RACROUTE issuer. Control points that continue to issue the
independent RACF system macros (RACDEF, RACINIT, RACHECK, RACLIST,
RACXTRT, and FRACHECK) go directly to the external security product,
bypassing the router.

MVS router exit
The MVS router provides an optional installation exit that is invoked whether or
not RACF or another external security product is installed and active on the
system. If an external security product is not available, the router exit acts as an
installation-written security processing (or routing) routine. If an external security
product is available, the exit acts as an external security product preprocessing exit.

For more information on the MVS router exit, see z/OS MVS Installation Exits.

Interface to the MVS router (RACROUTE)
The RACROUTE macro accepts all valid parameters for any of the independent
RACF system macros (RACDEF, RACINIT, RACHECK, RACLIST, RACXTRT, and
FRACHECK) and internally issues the appropriate independent RACF system
macro to generate a RACF parameter list. When the RACROUTE macro internally
invokes the independent RACF system macros, RACROUTE verifies that only
valid parameters have been coded and then passes the parameters to the MVS
router.

Existing control points that invoke external security product processing via the
supervisor call interface can continue to do so or can replace the supervisor calls
with the RACROUTE macro.

Note: To invoke RACF or RACF-compatible functions that were available in RACF
1.8 or an earlier release, you can use the independent RACF system macros
directly or you can use the RACROUTE macro. IBM recommends that you use the
RACROUTE macro. To use the new RACF or RACF-compatible functions, you
must use the RACROUTE macro.

460 z/OS V2R2 MVS Authorized Assembler Services Guide

See z/OS Security Server RACROUTE Macro Reference for a description of the
RACROUTE macro and the RACROUTE return and reason codes.

Defining a resource (RACROUTE REQUEST=DEFINE)
The RACROUTE macro with the REQUEST=DEFINE parameter defines or deletes
a resource profile (for example, a tape volume profile or a DASD data set profile)
for an external security product.

Identifying a user (RACROUTE REQUEST=VERIFY and
REQUEST=VERIFYX)

RACROUTE REQUEST=VERIFY: The RACROUTE macro with the
REQUEST=VERIFY parameter determines if a userid is defined to an external
security product and if the user has supplied a valid password, group name,
submitter node, security label, or operator identification. The external security
product builds an access environment element for the user if the userid, password,
group name, and terminal id (for the terminal user) are accepted. The identification
and verification in the case of a terminal or batch job user, is based on the
information contained in the TSO LOGON or IMS™ /SIGN command or data
specified in the JOB statement for the batch job. The access environment element
identifies the scope of the user's authorization to be used during the current
terminal session or batch job.

RACROUTE REQUEST=VERIFYX: The RACROUTE macro with the
REQUEST=VERIFYX parameter uses information about the caller to generate the
correct security identity of the new job. It verifies that a submitted job has a valid
user ID, group ID, security label, and password. The verified job information fills a
UTOKEN (a security token associated with a user) that RACROUTE passes to the
caller.

Checking resource authorization (RACROUTE REQUEST=AUTH
and REQUEST=FASTAUTH)

RACROUTE REQUEST=AUTH: The RACROUTE macro with the
REQUEST=AUTH parameter determines if a user is authorized to obtain use of a
resource (for example, DASD data set, tape volume, or DASD volume) protected
by the external security product. When a user requests access to a protected
resource, acceptance of the request is based upon the identity of the user and
whether the user has been permitted sufficient access authority to the resource.

The external security product performs system authorization checking when a
resource manager that controls a protected resource issues RACROUTE
REQUEST=AUTH before allowing a user access to the resource.

The system programmer using this macro to check a user's authorization to a
resource has available three parameters (CSA, LOG, and PROFILE) that are not
available to the application programmer. These parameters permit the system
programmer to specify that a profile is to be copied and maintained in central
storage for the resource and that different types of access attempts are or are not to
be recorded on the SMF data set.

RACROUTE REQUEST=FASTAUTH: The RACROUTE macro with the
REQUEST=FASTAUTH parameter provides a fast-path way to perform a function
similar to RACROUTE REQUEST=AUTH. RACROUTE REQUEST=FASTAUTH,
however, requires that the profile of the resource being checked be in storage. To
build an in-storage profile, issue RACROUTE REQUEST=LIST before issuing
RACROUTE REQUEST=FASTAUTH.

Chapter 21. Protecting the system 461

Retrieving and encoding data (RACROUTE REQUEST=EXTRACT)
The RACROUTE macro with the REQUEST=EXTRACT parameter can be used to
retrieve or update fields from any profile maintained by RACF or an external
security product. RACROUTE REQUEST=EXTRACT can also be used to encode
certain clear-text (readable) data.

Building in-storage profiles (RACROUTE REQUEST=LIST)
The RACROUTE macro with the REQUEST=LIST parameter builds in-storage
profiles from class resources defined to the external security product. RACROUTE
REQUEST=LIST processes only general resources. Once RACROUTE
REQUEST=LIST brings profiles into central storage, you can issue RACROUTE
REQUEST=AUTH for the resources and the in-storage profiles are used for
authorization checking.

Checking auditing options (RACROUTE REQUEST=AUDIT)
The RACROUTE macro with the REQUEST=AUDIT parameter checks the auditing
options for a given resource and class, and logs a record for a given event.

Checking user authority (RACROUTE REQUEST=DIRAUTH)
The RACROUTE macro with the REQUEST=DIRAUTH parameter verifies the
mandatory access authority of the user to a resource. It allows the system to audit
the control of message transmission at the resource class level.

SAF interface to an external security product
If RACF is not present in the system, an installation can use an external
(non-RACF) security product to provide system security functions. An external
security product supplies module ICHRFR00 (called the security product router) as
the entry for security processing from SAF.

The MVS router passes control to ICHRFR00 when a control point issues the
RACROUTE macro to request a security function that is not completely processed
by SAF.

In addition to supplying module ICHRFR00, the external security product must
also place the address of ICHRFR00 into field SAFVRACR in the router vector
table (mapped by ICHSAFV). The router vector table is built during SAF
initialization, but the field SAFVRACR should be filled during the initialization of
the external product. The following illustration describes the location of the field
SAFVRACR.

CVTSAFF8

0 'SAFV'

SAFVRACR

CVT (location x'10')

Router Vector Table
(mapped by ICHSAFV)

Requirements for the external security product router
Module ICHRFR00 is an LPA-resident module. Installation procedures for the
security product put ICHRFR00 in SYS1.LPALIB. If the installation replaces
ICHRFR00, a re-IPL is needed for the change to take effect.

462 z/OS V2R2 MVS Authorized Assembler Services Guide

The following general requirements apply for module ICHRFR00.

Environmental factor Requirement
Authorization: Supervisor state or problem state, and in any PSW key
Dispatchable unit mode: Task mode or SRB mode
Cross-memory mode: PASN = HASN = SASN
Amode: 24-bit or 31-bit (same as caller of RACROUTE request)
ASC mode: Primary
Locks: No locks held
Linkage conventions: Standard

Input parameters to the external security product router
On entry to ICHRFR00, register 1 contains the address of the following area:

Table 65. Input Parameters to the External Security Product Router
Offset Length Description
0 4 Paramater list address - points to the RACROUTE

parameter list (mapped by macro ICHSAFP). See
data area SAFP in z/OS Security Server RACROUTE
Macro Reference and z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/
systems/z/os/zos/bkserv/).

4 4 Work area address - points to a 152-byte work area
that the module can use.

For more information, see z/OS Security Server RACROUTE Macro Reference and see
z/OS MVS Data Areas in the z/OS Internet library (http://www.ibm.com/systems/
z/os/zos/bkserv/).

Return and reason codes from the external security product
router
On exit from module ICHRFR00 and return to the MVS router:
v Register 15 contains one of the following return codes:

Hex (Decimal)
Meaning

0 (0) The requested function completed successfully.

4 (4) The requested function was not processed.

8 (8) The requested function was processed and has been failed.
v The RACROUTE parameter list (SAFP) contains the function return code in field

SAFPRRET and the function reason code in field SAFPRREA for the requested
function.
See z/OS Security Server RACROUTE Macro Reference for a description of the
RACROUTE function return and reason codes.

Programming considerations
When an external security product processes a RACROUTE REQUEST=VERIFY
request, SAF expects the product to build data area ACEE, which is mapped by
macro IHAACEE. For token processing, SAF uses field ACEETOKP to reference the
token. Token processing is not required, but to be fully compatible with MVS, the
security product should fill in field ACEETOKP with the address of the token.

Chapter 21. Protecting the system 463

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

SAF does not reference any other areas that are chained off the ACEE; therefore,
the security product need not fill in the addresses of any other data areas in the
ACEE.

Using the command authorization service
Command processors that need to find out whether a user is RACF-authorized to
issue a command, should use the command authorization service. If you are not
sure whether your command processor should use this service, check with your
installation security administrator. Use of the command authorization service
increases the path length required to process a command.

To use the command authorization service, a command processor issues the
CMDAUTH macro. The service provides a return code that indicates the user's
authorization status. Under certain conditions, the command authorization service
is unable to make a decision. For example, a decision cannot be made if RACF 1.9
or later is not installed or is inactive. A return code and reason code together
indicate why a decision could not be made. IBM recommends the use of this
service by all command processors that must verify the authorization status of a
user.

The CMDAUTH macro has a number of keywords that are functionally equivalent
to corresponding RACROUTE macro keywords. These keywords have the same
characteristics as their corresponding RACF macro keywords. The following
discussion identifies these keywords. The CMDAUTH macro is described in z/OS
MVS Programming: Authorized Assembler Services Reference ALE-DYN. The RACF
macros are described in z/OS Security Server RACF Macros and Interfaces.

The CMDAUTH macro has several required keywords. To indicate whether you
want the list form or the execute form of the macro, use the MF keyword. You
must also supply the resource name of the command being checked and indicate
the access authority for which the service is to check. For an explanation of how to
create a command resource name, see “Command resource names” on page 465. To
provide the resource name, use the ENTITY keyword. To indicate the access
authority, use the ATTR keyword. The ENTITY keyword and the ATTR keyword
correspond to similar keywords on the REQUEST=AUTH form of the RACROUTE
macro.

In addition, the CMDAUTH macro requires one of the following:
v The command text that is to be authority checked and the user security token

that is to be used for the authority check. The LOGSTR keyword identifies the
information that is to be included in the RACF SMF PROCESS records and the
UTOKEN keyword identifies the user security token. These keywords
correspond to similar keywords on the REQUEST=AUTH form of the
RACROUTE macro. If you need to obtain a user security token, see z/OS Security
Server RACF Macros and Interfaces for information on how to use the
REQUEST=TOKENXTR form of the RACROUTE macro.

v A command input buffer (CIB), and an indication that you have provided a CIB.
The CNTLBLK keyword identifies the CIB and the CBLKTYPE keyword
indicates that you have provided a CIB.

The CMDAUTH macro also has several optional keywords. Each of these
keywords correspond to similar keywords on the RACROUTE macro.
v The keywords MSGRTN, MSGSUPP, and MSGSP enable you to control the

routing of messages related to your request. To indicate whether you want

464 z/OS V2R2 MVS Authorized Assembler Services Guide

messages returned to your program, use the MSGRTN keyword. The default is
to not return messages. To indicate whether you want to suppress messages
issued by SAF and RACF, use the MSGSUPP keyword. If you do not want the
operator to see the messages, suppress them. The default is to not suppress these
messages. If messages are returned to your program, by default the system
returns them to subpool 229. If you want the messages returned to a different
subpool, use the MSGSP keyword to identify the subpool.

v To provide a control point name to RACF, use the REQSTOR keyword. To find
out which control point names you can use, see your RACF administrator.

v To provide RACF with the name of the calling subsystem, use the SUBSYS
keyword. To find out which subsystem names you can use, see your RACF
administrator.

Command resource names
Command resource names (sometimes called entity names) enable you to logically
group your own commands and name each group for the purpose of controlling
access to the commands. After you have defined the groups of commands and
given each group a resource name, your RACF administrator must define the
command groups to RACF. You must also define who is allowed to issue
commands from each group and have the RACF administrator supply this
information to RACF. After the administrator has provided the required
information to RACF, you can use the command resource name on the CMDAUTH
macro to perform authorization checking.

Syntax
IBM recommends that command resource names use the syntax described in this
topic.

A command resource name can include up to four parts: a system identifier, the
command or a variation of the command, a command qualifier, and a command
object. These parts enable you to define a naming hierarchy that can identify
specific commands or command subsets.

All command resource names must include a system identifier and the command
name or a variation of the command name. The use of the command qualifier and
the command object is optional and depends on the naming structure you want to
define.

Periods must separate the parts of a command resource name. A command
resource name can be up to 39 bytes long including the periods.

system_identifier .command [.command_qualifier [.command_object]]

system_identifier
Identifies the system, subsystem, or application to which the command
belongs. For example, IBM uses MVS to identify MVS operator commands,
JES2 to identify JES2 commands, and JES3 to identify JES3 commands.

system_identifier is a required part of the name.

command
Identifies a specific command or some variation of a command. Where
possible, use the command name. In cases where the command name does not
provide the level of identification you require, use a variation of the command
name. You might use a variation of a command name under the following
conditions:

Chapter 21. Protecting the system 465

v When coding a particular keyword on a command causes command
processing to be significantly different than if you omitted the keyword

v When coding a particular keyword on a command requires the issuer of the
command to have a higher authority than is required if the keyword is
omitted.

For example, the appearance of the ARM keyword on the MVS FORCE
command causes significantly different processing than occurs when the ARM
keyword is omitted. Therefore, if you were defining command resource names
for the FORCE command, you might use the following variations:

MVS.FORCE.DEV.device
The resource name that identifies the FORCE device command.

MVS.FORCEARM.DEV.device
The resource name that identifies the FORCE device,ARM command.

command is a required part of the name.

[.command_qualifier]
command_qualifier allows you to more precisely identify the command variation
in question. For example, if you were defining a command resource name for
the MVS SET command, you might use the keywords IOS or SMS. The
command resource names would appear as:
v MVS.SET.IOS
v MVS.SET.SMS

command_qualifier is an optional part of the name.

[.command_object]
command_object identifies the object of the command. For example,
command_object might identify:
v the device on a CANCEL command
v the jobname on a MODIFY command

Including the command_object as part of the command resource name enables
you to control access to commands based on the object the command affects.

command_object is an optional part of the name.

Examples
The following are examples of some MVS commands and their corresponding
command resource names:

command
command resource name

CANCEL jobname
MVS.CANCEL.JOB.jobname

MVS.CANCEL.STC.jobname

CANCEL U=userid
MVS.CANCEL.TSU.userid

CANCEL device
MVS.CANCEL.DEV.device

SET CLOCK
MVS.SET.TIMEDATE

466 z/OS V2R2 MVS Authorized Assembler Services Guide

SET DATE
MVS.SET.TIMEDATE

For a list of the MVS provided command resource names, see z/OS MVS Planning:
Operations.

Changing system status (MODESET)
The MODESET macro alters selective fields of the program status word (PSW) and
other control information associated with the unit of work. It can update the PSW
key, the PSW state bit, and the PSW Key Mask. You can code the standard form of
MODESET in two separate ways: one form generates an SVC and the other form
generates inline code.

Generating an SVC
This form of MODESET, which executes as APF-authorized, in supervisor state, or
under PSW key 0-7, changes the status of programs between supervisor state and
problem program state, and key zero and non-key zero. The parameters that must
be specified to perform the changes are MODE and KEY respectively.

The MODE parameter specifies whether bit 15 of the PSW is to be set to one or
zero. When PSW bit 15 is one, the processor is in the problem state. For problem
state, the caller’s PSW Key Mask (PKM) is set according to the following rules:
v The bit matching the resulting PSW key is set on.
v The bit matching key 9 is set on.
v For a task attached with ATTACHX using the KEY=NINE parameter, the bits

that were on in the PKM of the ATTACHX issuer are set on.
v All other bits are set off.

When PSW bit 15 is zero, the processor is in supervisor state and the PSW Key
Mask is unchanged.

The KEY parameter specifies whether bits 8-11 are to be set to zero or set to the
value in the caller's TCB. Bits 8-11 form the processor protection key. The key is
matched against a key in storage whenever information is stored, or whenever
information is fetched from a location that is protected against fetching.

Generating inline code
This form of MODESET is used to ensure that storage areas and the control
program functions they are associated with have the same protection key. The
EXTKEY parameter of MODESET indicates the key to be set in the current PSW.

You can set the following keys:
v Key of zero
v Key of TCB
v Key of caller of type 1 SVC issuing MODESET
v Key of caller of type 2, 3, or 4 SVC issuing MODESET

Other parameters of MODESET allow the original key to be saved and restored
upon completion of the desired changes. The inline form of the MODESET macro
does not result in a change to the caller’s PSW Key Mask.

Chapter 21. Protecting the system 467

468 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 22. Exit routines

This information includes the following:
v Using asynchronous exit routines
v Establishing a timer disabled exit routine
v Using dynamic exits services.

Using asynchronous exit routines
An authorized caller can request an asynchronous exit routine to run on behalf of a
specific task.

Before the asynchronous exit routine runs, the calling program must initialize an
interrupt request block (IRB) to identify the exit to the system and then schedule
the asynchronous exit to run. The system then completes processing to get the
asynchronous exit ready to run. See “System processing to run an asynchronous
exit” on page 474.

There are several macros you can use to initialize the IRB and schedule the exit
routine:
v Initialize an IRB - The SCHEDIRB macro is the recommended interface for

initializing an IRB for an asynchronous exit routine. See “Using the SCHEDIRB
macro to initialize and schedule an IRB” on page 470.
You can also use the CIRB macro to initialize IRBs. This method allows you to
reuse IRBs. See “Using the CIRB macro to initialize an IRB” on page 471.

v Schedule the asynchronous exit - The SCHEDIRB macro is the IBM
recommended interface for scheduling an asynchronous exit. Using SCHEDIRB
both to initialize and to schedule the IRB allows you more control over when
your exit runs.
If you initialized the IRB for the exit using the CIRB macro, you can also use the
SCHEDXIT macro to schedule your asynchronous exit, see “Using the
SCHEDXIT macro to schedule an IRB” on page 473.

Asynchronous exits (IRBs) must save and restore all the Floating Point Registers
and the Floating Point Control register if they use them. If an asynchronous exit
uses Binary Floating Point (BFP) instructions, it can cause the IEEE exception flags
and DXC in the Floating Point Control (FPC) register to change at unpredictable
times relative to the main program. Therefore, asynchronous exits that use BFP
instructions must save and restore the entire Floating Point Control register.

Note: Asynchronous exits that use decimal arithmetic instructions can cause the
DXC to be set to zero if they take a data exception and the MVS task is enabled to
save and restore the Additional Floating Point and Floating Point Control registers.
In this case the asynchronous exit may, but is not required to, save and restore the
Floating Point Control register. (The main program should not be affected by the
DXC being set to zero because the DXC is normally used only when handling a
data exception.)

© Copyright IBM Corp. 1988, 2016 469

Using the SCHEDIRB macro to initialize and schedule an IRB
The SCHEDIRB macro is the recommended interface for initializing an IRB for an
asynchronous exit and scheduling the exit routine to run. Use the SCHEDIRB
macro to initialize and schedule an exit routine, rather than the CIRB and
SCHEDXIT macros.

When you use the SCHEDIRB macro both to initialize the IRB and to schedule the
asynchronous exit to run, you can control when it runs by scheduling the IRB for
the exit in the following ways:
v Schedule the IRB to run under any task in the current address space by

specifying a TCB address on the TCBPTR parameter.
v Schedule the IRB to run prior to any RB under the current task in the current

address space by specifying an RB address on the RBPTR parameter. This type
of IRB is called a directed IRB.

The best way to use directed IRBs is to make sure that the calling program is
running under an IRB. If the system has suppressed asynchronous exits or the
current task is in process-must-complete mode when SCHEDIRB is invoked, the
calling program will get a non-zero return code unless the calling program is
running under an IRB. You can make sure the calling program is running under an
IRB by first invoking the SCHEDIRB macro with the TCBPTR option or by
invoking the STIMER macro.

Detailed information about coding the SCHEDIRB macro appears in z/OS MVS
Programming: Authorized Assembler Services Reference LLA-SDU.

The options you choose to specify on the SCHEDIRB macro affect the
characteristics of the asynchronous exit routine. Consider the following when
coding the SCHEDIRB macro:
v The exit routine runs in the mode specified on the MODE parameter.
v The exit routine runs in the key specified on the KEY parameter.
v If you specify the TCBPTR parameter, you can also request a save area using the

SVAREA parameter.
v SCHEDIRB passes a parameter list to the exit routine if you specify it on the

PARAMPTR parameter.
v Register contents upon entry to the exit routine are:

Register
Contents

0 Does not contain any information for use by the exit routine

1 Parameter list address (PARAMPTR), if any

2-12 Do not contain any information for use by the exit routine

13 Problem program register save area address, if SVAREA=YES was
specified.

14 Return address

15 Entry point address

Using the SCHEDIRB macro to schedule an IRB
You can also use the SCHEDIRB macro only to schedule an initialized IRB for an
asynchronous exit. In this case, use the CIRB macro to initialize the IRB and
SCHEDIRB to schedule the IRB initialized by the CIRB macro. This technique

470 z/OS V2R2 MVS Authorized Assembler Services Guide

allows you to take advantage of the capacity for reusing IRBs that the CIRB macro
allows. On the SCHEDIRB macro, specify the IQEPTR parameter, using the address
of the IQE for the IRB initialized by the CIRB macro. When you use SCHEDIRB
with the CIRB macro, you cannot use the TCBPTR or RBPTR parameters that
SCHEDIRB provides to control when your exit runs.

Using the CIRB macro to initialize an IRB
You can use the CIRB macro to initialize an IRB for an asynchronous exit. You can
reuse an initialized IRB by omitting STAB=DYN on the CIRB macro. Thus, you
need to invoke the CIRB macro only once for two or more invocations of an exit
routine.

Detailed information about using the CIRB macro appears in z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN.

When the system returns control to the caller, it returns the IRB address in register
1. The IQE, if requested via the WKAREA parameter of the CIRB macro, occupies
storage contiguous to the IRB and is pointed to by the RBNEXAV field in the IRB.
The problem program work area, if requested, is pointed to by the RBPPSAV1
word in the IRB. The data area configuration is shown in Figure 63.

The caller must initialize the IQE. The fields to be initialized are:
v IQEPARAM -- optional address of the parameter list to be passed to the exit

routine.
v IQEIRB -- address of the IRB as returned in register 1 by the CIRB macro.
v IQETCB -- address of the TCB for the task under which the user's exit routine is

to run. If this is not the task that issued CIRB then, if you specified the
STAB=DYN option of the CIRB macro to ask the system to free the IRB and IQE,
you need to have specified the BRANCH=YES option of the CIRB macro, having
placed the address of the IQETCB task into register 4 before issuing CIRB, in
order for the freeing to succeed.

The fields in the IRB initialized by the CIRB macro are:

RBPPSAV1

IQE

Register 1
LSQA

(Subpool 253)
Problem Program Storage

(Subpool 250)

Broken lines indicate optionally acquired storage.

72-byte
Save AreaIRB

IRB Prefix

Figure 63. Asynchronous Exit Data Area Configuration

Chapter 22. Exit routines 471

v RBEP -- entry point address of the exit routine.
v RBSTAB -- flags indicating how the IRB and IQE are to be treated upon

termination of the exit routine (defined according to the STAB and RETRN
parameters of CIRB).

v RBIQETP -- flag indicating the type of queue element (RQE or IQE) associated
with the exit request.

Note: Only the EXCP processor uses RQEs.
v RBSIZE -- the size of the IRB (including the size of the IQE if the CIRB

specification included the WKAREA parameter).
v RBOPSW -- PSW to be loaded to initiate execution of the exit routine:

– PSW is enabled for interrupts.
– Protection key: 0 if KEY=SUPR specified on CIRB macro; TCB key of the

caller if KEY=PP is specified on CIRB.
– Mode: Supervisor state if MODE=SUPR on the CIRB macro; problem program

state if MODE=PP on CIRB.
– The AMODE parameter of the CIRB macro determines the addressing mode.

v RBNEXAV -- the address of the IQE if WKAREA was specified (occupies the
first four bytes of the work area). This field is also used as the anchor of the
queue of IQEs for completed IQEs which specified RETIQE=NO and
RETRN=YES.

v RBPPSAV1 -- the address of the problem program save area if SVAREA was
specified.

The options you choose to specify on the CIRB macro affect the characteristics of
the asynchronous exit routine. Consider the following when coding the CIRB
macro:
v The exit routine runs enabled in the key and state requested by the CIRB macro.
v Upon entry, the exit routine runs with an empty dispatchable unit access list

(DU-AL). To establish addressability to a data space created by the mainline
routine, the exit routine can use the ALESERV macro with the ADD parameter,
and specify the STOKEN of the data space.

v Register contents upon entry to the exit routine are:

Register
Contents

0 IQE address

1 Parameter list address (IQEPARAM)

2-12 Do not contain any information for use by the routine.

13 Problem program register save area address, if any

14 Return address

15 Entry point address
v When the asynchronous exit completes:

– If you did not specify the STAB=DYN option on the CIRB macro, you can
reuse the IRB when the IRB has completed execution. To know the IRB has
completed, you can:
- Make sure that the IRB has received control.
- Obtain the local lock and check the RBFACTV bit.

472 z/OS V2R2 MVS Authorized Assembler Services Guide

If the IRB has received control and the RBFACTV bit is off, then the IRB has
completed execution, and you can reuse the IRB.

– If the caller specified the SVAREA and STAB=DYN options on the CIRB
macro, the problem program register save area is freed.

– If the caller specified the STAB=DYN option of the CIRB macro, the IRB and
IQE are freed. If the IRB ran under a task other than the task that issued
CIRB, you need to have specified the BRANCH=YES option of the CIRB
macro, having placed the address of the TCB of the task under which the IRB
ran into register 4 before issuing CIRB, in order for the freeing to succeed.

v If your program provided the IQE, you can update the IQE if you hold the local
lock and have verified that the IRB has received control.

Using the SCHEDXIT macro to schedule an IRB
You can use the SCHEDXIT macro to schedule an asynchronous exit to run. The
calling program supplies an initialized interrupt queue element (IQE) to the
SCHEDXIT macro. The IQE identifies the task the exit routine is to run under and
the associated IRB. It also contains information about the exit routine's
characteristics.

The caller must initialize the IQE to define to the system the task under which the
exit routine is to run. The fields to be initialized are:
v IQEPARAM -- optional address of the parameter list to be passed to the exit

routine.
v IQEIRB -- address of the IRB as returned in register 1 by the CIRB macro.
v IQETCB -- address of the TCB for the task under which the user's exit routine is

to run.

When IRB/IQE initialization is complete, the caller should invoke SCHEDXIT to
queue the request (IQE) to the appropriate system asynchronous exit queue. The
caller can invoke SCHEDXIT in one of two ways, depending primarily on the
location of the IQE:
v If the IQE is in 31-bit storage, the caller must invoke the SCHEDXIT macro.

Detailed information about using the SCHEDXIT macro is in z/OS MVS
Programming: Authorized Assembler Services Reference LLA-SDU.

v If the IQE is in 24-bit storage, the caller can use the SCHEDXIT macro only if the
IQE address passed is a clean 31-bit address (that is, the high-order byte of the
address is zero). Otherwise, the caller must use branch entry, where the branch
entry point address is in field CVT0EF00 of the communications vector table
(CVT).
For branch entry, the interface is defined as follows:

Register
Contents

0 Irrelevant

1 Twos-complement IQE address

2-13 Irrelevant

14 Return address

15 Irrelevant
Upon return, the registers contain the following:

Chapter 22. Exit routines 473

Register
Contents

0 Used as a work register by the system

1 True (non-complemented) IQE address

2-13 Unchanged

14, 15 Used as work registers by the system

Whether the caller uses the SCHEDXIT macro or branch entry, the caller must:
v Hold the local lock
v Have addressability to the address space in which the exit routine is to be

dispatched
v Be in supervisor state with PSW key zero.

System processing to run an asynchronous exit
Once scheduled by the SCHEDIRB or SCHEDXIT macro, the asynchronous exit
routine is logically ready to be dispatched.

If the target TCB was waiting, the system brings the target TCB out of the wait
state, and the exit routine processes when the task gets dispatched next (according
to its dispatching priority). If the target TCB was running, the exit routine
processes after the task gets preempted for reasons unrelated to the exit, such as a
page fault, a WAIT macro, or expiration of the task time to run on the processor.

If you used SCHEDIRB with the RBPTR=rb addr option to use directed IRBs, the
system allows the directed IRB to run directly prior to the specified RB. The
system processes the asynchronous exit routine in the next dispatch of the task,
unless a subsequent non-directed IRB was scheduled for the same task. In that
case, the directed IRB's exit routine will still get control just before its target RB,
but the target RB might not run next. A subsequent IRB could get control first.

Linkage stack considerations for asynchronous exit routines
When an asynchronous exit routine (for example, an STIMER exit) gets control, it
cannot access the last entry (if any) on the linkage stack, because that entry was
created by the interrupted routine. The extract stacked registers (EREG) instruction,
extract stacked state (ESTA) instruction, and the modify stacked state (MSTA)
instruction will cause a linkage stack exception to occur.

Any routines to which the exit routine passes control are also subject to the same
restriction. However, the exit routine, and any routines to which it passes control,
can manipulate linkage stack entries that they add.

Establishing a timer disabled interrupt exit
The system provides a function called set DIE that allows a user-written program
to establish a disabled interrupt exit (DIE) routine. The DIE routine gains control
asynchronously after a specified real time interval has elapsed.

The set DIE function is available only to programs executing in supervisor state
with PSW key zero. The set DIE function allows users to initiate a real time
interval by branching to the set DIE system service. When the time interval
expires, the user's DIE routine gains control as an extension of the timer second
level interrupt handler. It is also possible for a user to set a new time interval from
the DIE routine.

474 z/OS V2R2 MVS Authorized Assembler Services Guide

Although a program can have an unlimited number of outstanding time intervals
at one time, storage and system performance considerations may impose practical
and reasonable limits.

Note: The time during which a DIE routine is executing is not charged to the job
step time of the interrupted address space.

The caller of the set DIE service routine can be executing in either task control
block (TCB) or service request block (SRB) mode, but must be in PSW key zero
and supervisor state. The entry point to the set DIE service routine is in field
TPCSDIE in the timer supervision work area mapped by macro IEAVVTPC. The
address of this work area is in CVT field CVTTPC.

DIE routines execute in an MVS-recognized disabled state, and therefore do not
need to obtain the CPU lock. They must, however, comply with the special
characteristics and restrictions that apply only to DIE routines, as described in this
information.

Note that except where explicitly documented, register descriptions apply to 32-bit
GPRs. The exception is for AMODE 64 cases, either invoking a service in AMODE
64 or where an exit routine gets control in AMODE 64.

The caller of the set DIE service routine must provide the following input
environment.
1. Register 1 must contain the address of a user-supplied timer queue element

(TQE) whose fields are available from the IHATQE mapping macro. This user
TQE must:
v Be a contiguous block of 128 bytes aligned on a double word boundary.
v Reside in SQA.
v Include the following field initialization:

TQEAID -- zero or a valid ASID, important in case of an address space
failure (see “Obtaining and freeing the TQE” on page 478).
TQEVAL -- the desired real time interval (a 64 bit unsigned binary number
with bit 51=1 microsecond).
TQEAMODE bit -- set to 1 if you wish +o indicate that the address of the
user's DIE in TQEEXIT is pointer defined.
TQEEXIT -- address of the user's DIE. If the TQEAMODE bit is set to 1, the
high-order bit of this field, TQEXMODE, must indicate the addressing mode
of the user's DIE. If the user's DIE is to execute in 24-bit addressing mode,
TQEXMODE=0; if the user's DIE is to execute in 31-bit addressing mode,
TQEXMODE=1.

v Have all the other fields cleared to zero.
2. Registers 2 - 12 must be parameter registers whose input values will be

restored in the same registers on entry to the DIE routine.
3. Register 14 must contain the caller's return address.

Loss of the contents of register 1 and 11-13 occurs upon return from the set DIE
service routine. Register 15 contains a return code as follows:

Code Meaning

0 The TQE was successfully enqueued onto the system's real time queue.

4 Failure - needed clocks are unavailable.

Chapter 22. Exit routines 475

The set DIE service routine does not establish its own recovery routine. Any
program calling the set DIE service routine should have its own FRR or ESTAE
routine. A program check occurs in the set DIE service routine if the caller is not
both in PSW key zero and in supervisor state.

The DIE routine gains control under the system's FRR on the current stack. The
DIE itself can optionally establish its own FRR, which should terminate by
percolation to let the timer supervision FRR gain control. For additional
information on the environmental factors on entry to an FRR, see “Environment on
entry to an FRR” on page 389.

DIE characteristics
The entry environment is:

Environmental factor Requirement
Authorization: Supervisor state and PSW key 0.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24-bit or 31-bit depending on TQEXMODE bit when the DIE

was set.
ASC mode: Primary
Interrupt status: Disabled for I/O and external interrupts
Locks: The local, CMS, and/or CPU locks may be held.
Control parameters: No requirement.

Register contents upon entry are as follows:
v The contents of register 0 is unpredictable.
v Register 1 contains the address of the TQE. At this time the TQE is not

enqueued upon the real time queue. Fields TQETCB and TQEASCB respectively
contain a TCB address and an ASCB address, if previously set by the user on
entry to the set DIE service routine.

v The low-order words of registers 2 - 12 are as they were upon entry to the set
DIE service routine (or as changed by a previous DIE entry -- see “DIE
execution” on page 477).

v The contents of register 13 is unpredictable.
v Register 14 contains the return address.
v Register 15 contains the entry point of the DIE routine.
v The contents of floating point registers are unpredictable.
v The contents of vector registers (VRs) are unpredictable. The DIE must not use

VRs.
v Access registers and the high halves of general purpose registers are

unpredictable on entry to a DIE routine.

While a system program has a TQE enqueued upon the real time queue, it must
ensure that the associated DIE routine is available for the timer SLIH (second level
interrupt handler) to access from any address space. Additionally, because the DIE
is entered disabled, its code must be resident or fixed to avoid a page fault at
entry.

Exit from the DIE routine
Must be to the address specified in register 14. This exit must also occur in
supervisor state with PSW key zero, and disabled. The routine needs not save or
restore any part of the general purpose or access registers that it uses.

476 z/OS V2R2 MVS Authorized Assembler Services Guide

|
|

On entry to the DIE, the contents of the Floating Point Registers (FPRs) and
Floating Point Control (FPC) register are unpredictable. If the DIE uses the FPRs or
FPC register, it must ensure that these registers are restored to the values they had
on entry. See “Floating point protocol for user exits” on page 485.

On entry to the DIE, the contents of the Vector Registers (VRs) are unpredictable.
The DIE is not allowed to use VRs.

DIE execution
Must be like the execution of an interrupt handler. Specifically, the DIE routine
executes under the following restrictions:
v The DIE must be capable of executing in any address space because the timer

interruption may occur while any address space enabled for external
interruptions is executing.

v The DIE may not reference any private storage areas.
v The DIE may not use ALET=2 in AR ASC mode.
v The DIE must execute disabled. Hence, it may not cause a page fault.
v The DIE may not request a local lock or the CMS lock because these are suspend

locks and might therefore already be in use. Furthermore, the DIE routine may
not assume whether or not these locks are held upon entry.

v The DIE may not execute any SVCs.

The DIE routine may re-enqueue the TQE to set another real time interval by using
the timer's TQE ENQUEUE routine (whose entry point is in CVT field CVTQTE00).
The DIE routine must issue SETLOCK OBTAIN,TYPE=DISP,MODE=UNCOND
upon entry to the TQE ENQUEUE routine.

The input environment for the TQE ENQUEUE routine must be as follows:
v Supervisor state, key zero.
v Register 1 must contain the address of the TQE supplied to the DIE routine.

Only the following TQE fields can be changed.
TQEVAL -- This field should contain the clock comparator value for the next
interruption. This value is equivalent to the desired interval added to the value
in TQEVAL when the DIE routine was entered. Alternatively, TQEVAL can be
calculated by adding the desired interval to the current TOD clock reading (as
obtained by a STCK instruction). The choice of which method to use is further
discussed under “Clock Failure”.
TQEAMODE bit -- set to 1 to indicate that the address of the user's DIE in
TQEEXIT is pointer defined.
TQEEXIT -- This field should contain the new address if a DIE routine address
different from the current one is desired. Otherwise the field should remain
unchanged. If the TQEAMODE bit is set to 1, the high-order bit of this field,
TQEXMODE, must indicate the addressing mode of the user's DIE. If the user's
DIE is to execute in 24-bit addressing mode, TQEXMODE=0; if the user's DIE is
to execute in 31-bit addressing mode, TQEXMODE=1.
TQEDREGS -- If the parameter values in the low halves of registers 2 - 12 are to
be changed for the subsequent DIE routine entry, the new values should be set
in this 11-word field.

v Register 2 must contain the caller's return address.

Upon return from the TQE ENQUEUE routine, all registers are as they were on
entry except for registers 13 and 15. The DIE routine must issue SETLOCK
RELEASE,TYPE=DISP.

Chapter 22. Exit routines 477

Although the set DIE function is similar to the TQE ENQUEUE function, the
routines differ in the following respects:
v Although TQE ENQUEUE expects an already established and fully initialized

TQE as input, the set DIE service routine completes the user-supplied TQE to
make it acceptable to timer supervision.

v For TQE ENQUEUE, TQEVAL in the TQE must be set to the clock comparator
value for the next interruption. With the set DIE service routine, it must be set to
the desired interval. The set DIE service routine then converts it to the proper
clock comparator value.

v TQE ENQUEUE assumes that the clocks are functioning correctly. The set DIE
service routine must use the clocks directly and therefore verifies (rather than
assumes) that the clocks are functioning correctly. The set DIE service routine is
therefore capable of advantageously using alternate clocks in a multiprocessing
environment in which one or more clocks have failed.

Timer queue element control
The major aspects of controlling the timer queue element (TQE) associated with the
user's DIE routine are:
v Obtaining and freeing the TQE
v Serializing the use of each TQE
v Time-of-day clock failure
v Interval cancellation

Descriptions of each of these aspects follow.

Obtaining and freeing the TQE
Is your responsibility as user of the set DIE function because the TQE resides in
SQA. Thus, you must explicitly free the TQE when it is no longer necessary and
(with one exception) in error situations as well. Timer supervision frees a TQE for
you for a failing address space only if the TQE is enqueued on the real time queue
and has field TQEAID set to the ASID of the failing address space.

Before freeing the TQE, however, you must ensure that it is not currently on the
real time queue. There are several ways to accomplish this:
v Always free the TQE in the DIE routine because it is never on the real time

queue when the routine receives control.
v Before freeing the TQE, use timer supervision's TQE DEQUEUE routine. This

routine either removes the TQE from the real time queue or, if the TQE is not on
the queue, takes no action.

Note:

1. You must not alter the TQE (other than in the fields previously described).
2. The interface for the TQE DEQUEUE routine is described in “Interval

Cancellation”.

Serializing the use of each TQE
Is also your responsibility. Serialization includes the execution of the set DIE
service routine, TQE ENQUEUE, and TQE DEQUEUE routines for a given TQE
because these routines update the supplied TQE. Never update a TQE, however,
while it is on the real time queue.

478 z/OS V2R2 MVS Authorized Assembler Services Guide

Clock failure
Can keep a DIE routine from receiving control. If a clock required by a DIE
routine's TQE fails while the TQE is on the real time queue, timer supervision
leaves the TQE on the queue, thereby denying control to the DIE routine. To
permit the DIE routine to receive control, a properly functioning TOD clock and
clock comparator must be varied online. For this remedy to work, the DIE routine
must be in resident or fixed storage as long as its TQE is on the real time queue.
These storage locations make the DIE routine available to the system from any
address space.

When the DIE routine gains control under these circumstances, the clock
comparator value in TQEVAL could be behind the TOD clock. If the DIE routine
re-enqueues the TQE on each successive entry and adds a new interval to
TQEVAL, then the DIE routine gains control each time, immediately upon
enablement of the external interruptions. This sequence continues until the value in
TQEVAL is equal to the TOD clock value. To avoid this synchronization loop, the
DIE routine can calculate the new TQEVAL as the sum of the new interval plus the
current TOD clock value. This method, however, requires that the DIE routine
contain error recovery code in case the STCK instruction fails due to a bad TOD
clock in the executing processor.

Interval cancellation
Can occur by using timer supervision's TQE DEQUEUE routine. This routine
removes a specific TQE from the real time queue and resets clocks if necessary. The
entry point to the TQE DEQUEUE routine is in CVT field CVTQTD00. Entry to
this routine must be by branch entry, in supervisor state, with PSW key zero. You
must be in primary ASC mode and the primary address space must be the home
address space (PASH=HASH). Before entering the TQE DEQUEUE routine, you
must issue SETLOCK OBTAIN,TYPE=DISP,MODE=UNCOND. The input
environment is as follows:
v Register 1 must contain the address of the TQE to be dequeued.
v Register 2 must contain the caller's return address.

Upon return, all registers except 13 and 15 are the same as they were on entry.
Register 15 contains a return code:

Code Meaning

0 The TQE was on the queue and has been removed.

4 The TQE was not on the queue.

Using dynamic exits services
The CSVDYNEX macro provides exits and controls their use; it also provides a
way for you to associate one or more exit routines with those exits. You might be
familiar with system installation exits that offer your programs an opportunity to
interrupt the system's processing for any number of good reasons; generally the
reason is for the system to obtain information on which to base its processing.
Often, however, programs or vendor products take advantage of an installation
exit to do processing of their own. CSVDYNEX allows you to define exits and
control their use just as the system does when it offers installation exits.

The dynamic exits facility is a set of services implemented by:

Chapter 22. Exit routines 479

v The EXIT statement of the PROGxx parmlib member. The EXIT statement allows
an installation to add exit routines to an exit, delete an exit routine for an exit,
change the state of an exit routine, change the attributes of an exit, and undefine
an implicitly defined exit.
The PROGxx EXIT statement interacts with the PROG=xx parameter of
IEASYSxx and the SET PROG=xx command. At IPL, operators can use PROG=xx
to specify the particular PROGxx parmlib member the system is to use. During
normal processing, operators can use the SET PROG=xx command to set a
current PROGxx parmlib member. See z/OS MVS Initialization and Tuning
Reference for information about the PROGxx parmlib member.

v The SETPROG EXIT operator command. This command performs the same
functions as the EXIT statement of the PROGxx parmlib member. See z/OS MVS
System Commands for information about the SETPROG EXIT command.

v The CSVDYNEX macro.

An installation can use any of these methods to control dynamic exits. For
example, an exit routine can be associated with an exit using the CSVDYNEX ADD
request, the SETPROG EXIT,ADD operator command, or the EXIT statement of
PROGxx.

Through the CSVDYNEX macro you can define an exit, control its use, and
associate exit routines with it. None of these actions require a system IPL. The
macro is of interest to two kinds of applications:
v The application that wants to offer an opportunity for another program, an exit

routine, to intercept the application's processing. This application, known as the
exit provider, defines the exit and calls the exit routine or routines.

v The application that wants one of its own routines to get control through an exit
defined through CSVDYNEX. This application is known as the exit associator.
CSVDYNEX, for example, allows you to associate one or more routines you are
currently using, or plan to develop, with the existing SMF and allocation
installation exits. Those exits have been defined to the dynamic exits facility.

The same application might be both exit provider and exit associator.

CSVDYNEX terminology
An exit is a set of information defined by the exit provider. That set of information
includes:
v Characteristics of (or rules for) exit routines that are to get control at the exit

point
v Directions for how the system is to transfer control to an exit routine, process

the exit routine, and handle recovery.

Control passes to exit routines when the exit provider issues a call; the location of
that call request is known as the exit point. The exit provider code defines an exit
and later issues the call, as the following diagram shows:
exit provider setup

define the exit

exit provider processing

_____ exit point

480 z/OS V2R2 MVS Authorized Assembler Services Guide

_____ / exit routine
issue the call v--------------------------- ______
_____ ______
_____ ______

return

You will find the macro easier to use if you understand some facts about exits, exit
routines, and callers in CSVDYNEX terms.

An exit that is defined through CSVDYNEX:
v Has a name unique within the system
v Can have one or more exit routines associated with it
v Is invoked by a caller
v When invoked, causes exit routines associated with it to run
v Exists over a defined span of time: for the life of the defining task, the life of the

defining address space, or the life of the IPL
v Consists of exit criteria, the characteristics of (or rules for) exit routines that can

get control when the exit is invoked
v Can be enabled for FASTPATH processing, which means there is less system

processing
v Can have its definition removed through CSVDYNEX.

An exit routine that is associated through CSVDYNEX with an exit:
v Can be in an active or inactive state. An active routine is called; an inactive

routine is not.
v Can have any valid exit routine name
v Can be added to an exit (or associated with an exit) at any time; likewise, it can

be deleted from the exit
v Will not be called if it does not conform to the exit criteria specified when it was

added to the exit
v Can get control with specific GPRs containing specific information
v Can return information to the caller in registers and a caller-provided parameter

list according to the documented interface.

A caller (that is, the exit provider) that invokes an exit through CSVDYNEX:
v Causes the active exit routine or routines associated with the exit to run
v Processes the return codes from the exit routines
v Receives information from the exit routines in a return area

v Receives information about exit routine processing
v Can specify what the contents of certain GPRs are to be when the exit routines

get control
v Can request that the CALL request for the exit have FASTPATH processing.

You can do three main tasks through the CSVDYNEX requests: defining an exit,
calling an exit routine, and adding an exit routine to an exit. The first parameter on
the CSVDYNEX macro specifies the request. For example, the ADD request is
CSVDYNEX REQUEST=ADD, with appropriate parameters. The requests, listed by
task, are as follows:
v Defining an Exit; see “Defining an exit” on page 482

– DEFINE request
– UNDEFINE request

Chapter 22. Exit routines 481

– ATTRIB request
v Calling an Exit Routine or Routines; see “Calling an exit routine or routines” on

page 484
– CALL request
– RECOVER request
– QUERY request with QTYPE=CALL

v Associating an Exit Routine with an Exit; see “Associating an exit routine with
an exit” on page 488
– ADD request
– MODIFY request
– DELETE request
– QUERY request with QTYPE=ADD

An additional request, the LIST request, is useful for obtaining information about
the exits that are defined through the CSVDYNEX macro.

Defining an exit
Defining an exit means telling the system the set of information that comprises the
exit. You define the exit through the CSVDYNEX DEFINE request. A scenario of an
exit provider defining an exit named EX1 would look like this:
exit provider setup

CSVDYNEX REQUEST=DEFINE,EXITNAME==CL16’EX1’...

exit provider processing

the call ------------------------ routine or routines

associated with the
exit named EX1

Questions you need to ask when you define the exit are:
v What is the name of the exit?

The 16-character name must be unique within the system. Each CSVDYNEX
request requires that you specify the name of the exit.

v What should the addressing mode of the exit routines be?

If you are providing data above 16 megabytes, you might require that exit
routines be AMODE 31.

v Should the exit routines be reentrant?

If an exit routine can get control from more than one task or SRB before
returning to the caller, require that exit routines be reentrant.

v How long is the exit to remain in effect?

The exit provider is likely one task of many tasks that constitute the application
or subsystem. The exit provider must decide whether the exit is to remain for
the life of the exit provider's task, for the life of the exit provider's address
space, or if it is to persist throughout the IPL. The PERSIST parameter choices
are TASK, ADDRESSSPACE, or IPL, as follows:
– If the exit provider's task ends and PERSIST=TASK, then the system deletes

the exit.
– If the address space containing that task ends and PERSIST=ADDRESSSPACE

(or PERSIST=TASK), then the system deletes the exit.

482 z/OS V2R2 MVS Authorized Assembler Services Guide

– If the address space containing that task ends and PERSIST=IPL, then the exit
remains (in which case frequently the application would be restarted).

v How many times should the system continue to call an exit routine that
consistently ends abnormally?

On the ABENDNUM parameter, you tell the system how many times an exit
routine can abnormally end (and not retry from its recovery routine) before the
system changes the state of the exit routine to inactive (that is, before the system
stops calling it). On the ABENDCONSEC parameter, you describe how the
system is to do the counting: does it count consecutive abnormal endings, or
does it count by simply tallying the number of abnormal endings, ignoring the
times the exit routine runs successfully? For example, suppose ABENDNUM has
the value 2; if you then code:
– ABENDCONSEC=YES, the system stops calling the exit routine after a total of

2 consecutive abnormal endings; in other words, the system resets the count
to zero if the exit routine runs successfully.

– ABENDCONSEC=NO, the system stops calling the exit routine after a total of
2 abnormal endings have occurred. An abend is counted when both of the
following conditions exist:
- The exit routine does not provide recovery, or the exit routine does provide

recovery but percolates the error
- The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.
v How should the system process the return codes from the multiple exit

routines associated with the exit?

Each exit routine that runs at an exit has return information, including return
and reason codes. On the DEFINE and CALL requests, you tell the system
which routine's return information is to be placed into an area called the return
area. This topic, which requires your understanding of parameters on the
DEFINE and CALL requests, is described in “Returning information from
multiple exit routines” on page 485.

v Is the exit to be enabled for FASTPATH processing?

The topic of FASTPATH Processing is covered in “FASTPATH processing.”

FASTPATH processing
FASTPATH processing means that the system does not provide as much function,
and thus the overall processing time is less. In particular:
v Exit processing runs in the caller's PSW key
v The exit routines run in the caller's state: supervisor or problem
v The system does not provide recovery
v The caller must provide a work area for the system to use if exit routines

abnormally end
v The system does not use a security program, such as RACF, to do

authorization-checking.

FASTPATH processing occurs when the DEFINE request enables the exit for
FASTPATH processing and the CALL request specifies that exit routines are to
have FASTPATH processing. Recovery for routines with FASTPATH processing is
described in “Recovery for the CALL request” on page 487.

IBM recommends that you do not use FASTPATH processing except when
performance is a key consideration.

Chapter 22. Exit routines 483

Removing the definition of an exit
The definition of the exit is removed through the UNDEFINE request. When a
definition is removed, exit routines associated with that exit remain associated. In
this case, the undefined exit is sometimes called an implicitly-defined exit.

Calling an exit routine or routines
The CALL request is done by the exit provider; it can also be done by other
applications. At a CALL request, the system passes control to the active exit
routine or routines that are associated with the exit. If multiple exit routines are
associated with the exit, control passes to one routine after another, in no
predictable order. If you require that the exit routines run in a particular order, you
must do the routing. The CALL request does not include the name of an exit
routine or routines; the system knows which routines are associated with the exit.
The scenario of calling the exits that are associated with the exit EX1 would look
like this:
exit provider setup

CSVDYNEX REQUEST=DEFINE,EXITNAME==CL16’EX1’...

exit provider processing

CSVDYNEX REQUEST=CALL,EXITNAME==CL16’EX1’... routine or routine
_____ associated with the

exit named EX1

Specifying the CALL request is somewhat determined by the definition of the exit.
For example, you cannot issue a call specifying that the routines get FASTPATH
processing if the exit is not enabled for FASTPATH processing. In other words, you
cannot specify FASTPATH=YES on the CALL request if the exit was defined with
FASTPATH=NO. However, if the exit was defined with FASTPATH=YES, you can
specify either FASTPATH=YES or FASTPATH=NO on the CALL request. There is
no requirement that all CALL requests be of the same FASTPATH type.

Questions you need to ask when you call an exit are:
v How is the system to return information to the caller?

One of the decisions you make on the CALL request is what return information
the system returns. Does it return the return information from all exit routines or
from one exit routine. Parameters on the CALL request are RETINFO,
RETAREA, and RETLEN.
– RETINFO specifies whether the caller receives return information from the

exit routine with the LOWEST return code (RETINFO=LOWEST), from the
exit routine with the HIGHEST return code (RETINFO=HIGHEST), from all
exit routines (RETINFO=ALL), or from the last exit routine to run
(RETINFO=LAST).

– RETAREA and RETLEN tell the system where the return area is and how
large it is.

If you specify LOWEST or HIGHEST on RETINFO, you can also specify related
parameters on the DEFINE request. For more information about this topic, see
“Returning information from multiple exit routines” on page 485.

v Is the CALL request for the exit to have FASTPATH processing?

484 z/OS V2R2 MVS Authorized Assembler Services Guide

To have FASTPATH processing, the definer of the exit must have enabled the
exit for FASTPATH processing. Then, the caller can request that the CALL
request for the exit have FASTPATH processing. For more information, see
“FASTPATH processing” on page 483 and “Recovery for the CALL request” on
page 487.

v Are the GPRs to contain certain values at entry to the exit routines?

You most likely want the exit routines to get control with certain values placed
in certain GPRs. The RUB parameter provides an area where you tell the system
which GPRs are to contain the data and what the data is to be. z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN describes the
format of the RUB and contains an example of its use.

v Did any exit routines get control at an exit?

Appropriate return and reason codes indicate that an exit routine ran.
v Did all exit routines get control at an exit?

If one or more one exit routines didn't run (usually because the return area was
not large enough to contain all the return information):
– The appropriate reason code indicates that fact.
– The area provided on the NEXTTOKEN parameter contains a token that

identifies the next exit routine that the system is to call.
– The return area contains return information for any exit routine that ended, or

contains the return information that the DEFINE and ADD requests specified.
You provided this area for the system to return information needed if not all
exit routines were called.

The caller can reissue the CALL request, using the value in NEXTTOKEN. The
system will pass control to the exit routine that is the next to run.

Floating point protocol for user exits
Your exit routine will receive control with the caller's Floating Point Register and
Floating Point Control register. If your exit routine uses any of the Floating Point
Registers or the Floating Point Control register it must be sure to save and restore
them.

Ensuring that exit routines exist at the CALL
If the work involved in setting up information for the CALL request is costly, you
might issue the QUERY request with the QTYPE=CALL parameter to find out
whether any exit routines are associated with the exit. This step would help you
avoid the steps that lead up to a CALL request. Here is an example, in
pseudocode, of using the QUERY request:
Issue REQUEST=QUERY with TYPE=CALL
IF retcode indicates "there are exit routines" THEN

set up parameter list
Issue REQUEST=CALL

ELSE
do "no exit routine" default processing

ENDIF

Returning information from multiple exit routines
On the CALL and RECOVER requests, CSVDYNEX provides a return area for the
caller to receive information relating to successful and unsuccessful processing of
one or more exit routines. As it processes an exit, the system places information
(called return information) in that return area. Before you issue the CALL request,
you obtain the storage for the return area; on both the CALL and RECOVER
requests, you specify its address on the RETAREA parameter and its length on the
RETLEN parameter. The following illustration shows the return information from

Chapter 22. Exit routines 485

two exit routines associated with EX1, where the CALL specified RETINFO=ALL.

For description of CSVEXRET, see z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/).

The caller might not want to receive all the return information from all the exit
routines. The RETINFO parameter on the CALL request tells the system which
information the caller should receive. If the caller wants the system to receive
return information from only one of the potentially many exit routines, the
DEFINE request with RCFROM, RCTO, RCCOMPARE, and RCCVAL parameters
can specify how the system is to choose which return information to return. The
process of choosing involves merging return codes.

On the CALL request, you choose which return information the system places in
the return area:
v The caller receives return information from all routines (the RETINFO=ALL

parameter). In this case the system does not need to merge the return codes and
none of the RCxx parameters on the DEFINE request apply. The caller must
provide a large enough return area for all the information; if the area becomes
full, the system does not call any more exit routines and returns to the caller
with a token in the NEXTTOKEN parameter. The caller can reissue the CALL
request, using the NEXTTOKEN parameter. The system then continues calling
the exit routines where it left off.

v The caller receives return information from only the last routine (the
RETINFO=LAST parameter). In this case the system does not need to merge the
return codes and none of the RCxx parameters on the DEFINE request apply.

v The caller receives return information from the exit routine that returns with the
highest return code or the exit routine that returns with the lowest return code.
In this case, the RCFROM, RCCOMPARE, RCTO, and RCCVAL parameters on
the DEFINE request tell the system to compare and possibly modify return
codes, before choosing the lowest or highest. “Merging return codes” contains
more information about this topic.

Merging return codes: This information describes the situation in which the
CALL request uses the RETINFO=HIGHEST or RETINFO=LOWEST parameters. In
this case, the DEFINE request must tell the system how to merge the return codes
before it chooses which return information to return to the caller. The relevant
parameters on the DEFINE request are as follows:
v RCFROM specifies the RCFROM return code. The system compares the actual

return code from each exit routine to the RCFROM return code, using the
comparison designated by RCCOMPARE.

v RCCOMPARE indicates the type of comparison the system is to make. For
example, if a definer used RCCOMPARE=LT, the system would compare the

return area for EX1

Return information
from the first

routine
Mapped by CSVEXRET

Return information
from the second

routine
Mapped by CSVEXRET

486 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

actual return code to the RCFROM return code. If the actual return code is less
than the RCFROM return code, the system replaces the actual return code with
the value specified on RCTO.

The best way to describe the use of these parameters is through an example.
Suppose the caller wants to handle only the return code with a value of 4. You
would code the following values:
v On the CALL request, you would specify RETINFO=HIGHEST
v On the DEFINE request, you would specify:

– The value 4 on RCFROM
– The value 0 on RCTO
– RCCOMPARE=NE

These settings tell the system to compare the return code from the exit routine
with the number 4. If the return code is not 4, the system changes that value to 0.
When all exit routines have completed, the system looks at all return codes (some
with changed values) and returns the return information for the exit routine that
had the highest return code.

If three exit routines get control at that exit, and their return codes are 0, 4, and 8,
the system examines each code:
v 0 is not equal to 4, so it remains 0
v 4 is equal to 4, so it remains 4
v 8 is not equal to 4 so it is replaced with 0.

In this case, the highest return code is 4; the system places return information for
that exit routine in the return area.

If two exit routines return with the same value in GPR15, the system places in the
return area the return information from the first exit routine that had the value.

You can also use the ATTRIB request to change settings for how the system merges
return codes.

Recovery for the CALL request
As definer of the exit and caller of exit routines, you need to know what to expect
in the event that an exit routine abnormally ends. The CSVDYNEX service
responds to such a failure according to whether or not the exit routines have
FASTPATH processing:
v If FASTPATH processing is in effect (that is, the CALL request has

FASTPATH=YES specified), the CSVDYNEX service does not provide recovery
for a failing exit routine. The issuer of the CALL request must provide it. If an
exit routine abnormally ends, control passes to the caller's recovery routine. That
routine must issue the RECOVER request to complete the processing of the exit
and return control to the system.

v If FASTPATH processing is not in effect and an exit routine abnormally ends, the
CSVDYNEX service performs recovery and continues processing the exit,
perhaps passing control to the next exit routine. The CSVDYNEX service places
information in the return area indicating that the routine abnormally ended.

When you define an exit, you can limit the number of abnormal endings an exit
routine can have before the system stops calling it.

Chapter 22. Exit routines 487

Recovery for exit routines with FASTPATH processing: FASTPATH processing
requires the caller to write a recovery routine to cover abnormal endings for the
exit routines. The recovery routine must contain the RECOVER request. On that
request, the caller provides:
v The address of a work area (on the WORKAREA parameter)

The CSVDYNEX service needs this area for its own use. The work area must be
the same area specified on the CALL request.

v The address of the SDWA (on the SDWA parameter)
The caller must specify the address of the SDWA associated with the abnormally
ended exit routine on the SDWA parameter. The caller can find this address in
GPR1 when it gets control from RTM in its recovery routine. If the SDWA was
not passed (GPR0 has a value of 12), the caller must provide an SDWA address
of zero.

v An area for the NEXTTOKEN (on the NEXTTOKEN parameter)
In this area, the CSVDYNEX service returns a token that identifies the exit
routine that abnormally ended.

v A return area (on RETAREA and RETLEN parameters)
In this area, the CSVDYNEX service stores the return information of the
abnormally ended exit routine.

Associating an exit routine with an exit
You associate an exit routine with an exit using the CSVDYNEX ADD request. If
the exit routine is not in the LPA list or in the nucleus, and you did not use the
MODADDR keyword, the system loads the exit routine into common storage.

It is important that the exit associator know the exit criteria established by the exit
definer. To find out the exit criteria, check the requirements imposed by the exit
definer (the system, for SMF and allocation exits; or a vendor or customer
application).

When you use the ADD request, you tell the system the name of the exit with
which you are associating the exit routine. You also tell the system where to find
the exit routine code. Other important questions you need to ask are:
v Do you want the exit routine to be called only if a certain address space is

primary (STOKEN parameter), or if a certain job (JOBNAME parameter) is
running?

You can change the STOKEN or JOBNAME specification through the MODIFY
request.

v Do you want the exit routine to be called even if on previous calls it has
abnormally ended?

The ADDABENDNUM and ABENDCONSEC parameters on the ADD request
are similar to the ABENDNUM and ABENDCONSEC parameters on the
DEFINE request. On the ADD request, you can override the settings that were
defined on the DEFINE request.

The following scenario shows the associating of an exit routine named RTN1 with
an exit named EX1.
exit associator code

488 z/OS V2R2 MVS Authorized Assembler Services Guide

CSVDYNEX REQUEST=ADD,MODNAME==CL8’RTN1’,
EXITNAME==CL16’EX1’...

You can associate an exit routine with an exit that does not exist (perhaps because
it has not been defined yet). In this case, the system maintains the association;
however, the exit routine does not get control until the exit is defined and the
CALL is issued.

You can change two of the parameter specifications of the ADD request. Through
the MODIFY request, you can:
v Change the state of an exit routine from active to inactive, or vice versa
v Change the requirement that the exit routine runs while a specific job runs or

while a certain address space is the primary address space.

Example of associating an exit routine with an installation exit: Although you
might use the system command SETPROG to associate an exit routine with an
installation exit, you can also accomplish this action through a program. The
following example shows how you would associate the routine named MYMOD
with the SMF installation exit known as IEFUJI, defined through the SYS statement
in SMFPRMxx parmlib member. The load module is in data set MY.DSN.

CSVDYNEX REQUEST=ADD,EXITNAME=LEX,
MODNAME=LMOD,STATE=ACTIVE,DSNAME=LDSN,
RETCODE=LRETCODE,RSNCODE=LRSNCODE,MF=(E,DYNEXL)

*
* Place code to check return/reason codes here......
* Data Declarations
LEX DC CL16’SYS.IEFUJI’
LMOD DC CL8’MYMOD’
LDSN DC CL44’MY.DSN’

CSVEXRET Return code information
DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F

CSVDYNEX MF=(L,DYNEXL)

Ensuring that exit routines exist at the time of the association
If the work involved in issuing the ADD request is costly, you might issue the
QUERY request with the QTYPE=ADD parameter to find out whether any exit
routines are associated with the exit. This step would help you avoid unnecessary
processing. Here is an example, in pseudocode, of using the QUERY request:
QTYPE=ADD:

Issue REQUEST=QUERY with QTYPE=ADD
IF the return code indicates "there are no exit routines" THEN

(perhaps no PROGxx parmlib member associated a exit routine
with this exit)

Add a "default" module to the exit.
ENDIF

Deleting an exit routine from an exit
When the exit routine is no longer needed, the exit provider should use the
DELETE request to remove the association between the exit and the exit routine.
At a DELETE request, the system generally frees the storage that contained the exit
routine once it determines that the exit routine is not in use. The following rules
describe the system's freeing of storage:

Chapter 22. Exit routines 489

v It does not free storage:
– When the exit routine originally resided in the LPA list or in the nucleus.
– When the exit routine was associated with the exit (the ADD request) using

the MODADDR parameter.
– When the exit has FASTPATH processing and the DEFINE request includes

FORCE=NO (the default), and the exit definer specified PSW key 8 to 15.
v It frees the storage immediately, without checking to see if the exit routine is

in use:
– When the DELETE request is for a FASTPATH exit, the exit definer specified

PSW key 8 to 15, and the DELETE request specifies FORCE=YES. (In this
case, the issuer of the DELETE request must determine whether the exit
routine is in use.)

v In all other cases, it frees the storage after it determines that the exit routine is
not in use.

As you decide whether you need to free the storage, consider the effects of address
space termination. If the exit routine resides in the private area of an address space
(this can only happen if you use the MODADDR keyword), make sure that you
use either the JOBNAME or STOKEN parameter, and that the exit itself is not
called after the address space terminates. If you don't limit the use of the exit
routine, the system could end up trying to call the exit routine after its storage no
longer exists due to the termination of the job or address space.

490 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 23. User-written SVC routines

This information explains how to provide a supervisor state service to an
application, including how to do the following:
v Write SVC routines
v Insert SVC routines into the control program
v Screen subsystem SVCs.

Writing SVC routines
You can introduce user-written SVC routines into the control program whenever
you IPL the system. When you write an SVC routine, you must follow the same
programming conventions used by SVC routines supplied with the system. Five
types of SVC routines are supplied, and the programming conventions for each
type are different.

SVC routines, including user-written ones, can either be part of the resident control
program (the nucleus), or be part of the fixed or pageable link pack area. Types 1,
2, and 6 SVC routines become part of the resident control program, and types 3
and 4 go into the link pack area. Before IPLing the system, you must place your
SVC routine in SYS1.NUCLEUS or SYS1.LPALIB. You must also create, before
IPLing the system, an IEASVCxx member in SYS1.PARMLIB with SVCPARM
statements that describe the characteristics of your SVC routine.

SVC routines receive control with PSW key zero and in supervisor state. They
must be reenterable and, if you want to aid system facilities in recovering from
machine malfunctions, they must also be refreshable. If you write two or more
SVC routines that must serialize with each other, use the locking facilities or the
ENQ and DEQ macros.

When you insert an SVC routine into the control program, you specify which locks
the routine will require. When an SVC routine receives control, it is normally
enabled and it can be holding one or more locks. However, if you specified that
the routine requires a CPU lock, the routine is disabled when it receives control.
The routine is also entered in a disabled state if it is a type 6 SVC routine.

If the SVC needs to update the PSW in the current or prior RB, it should use the
IEARBUP service. IEARBUP allows part or all of the PSW in RBOPSW to be
updated. Updates made directly to RBOPSW may be ignored.

Type 6 SVC routines
You must define your user-written SVC routine as being one of the five valid
types, including type 6. The type 6 SVC routine performs functions similar to the
type 1 SVC routine. However, the type 6 routine offers performance advantages
over the type 1. The type 6 SVC routine cannot require the LOCAL lock, as noted
later.

The type 6 SVC also provides a more efficient way to change from TCB mode to
SRB mode processing. The type 1 SVC must schedule an SRB, which then goes

© Copyright IBM Corp. 1988, 2016 491

through queuing and dequeuing operations before it is eventually dispatched. The
type 6 SVC, however, normally results in immediate scheduling and dispatching of
the SRB.

Because a type 6 SVC routine executes under the control of the SVC first level
interrupt handler (FLIH), it must preserve disablement and it cannot obtain any
locks. When a type 6 SVC routine exits, it always returns to the SVC FLIH. There
are three exit options for a type 6 SVC:
v Return to the caller directly
v Return to the dispatcher
v Dispatch an SRB (service request block)

To exit from a type 6 SVC routine, either issue the T6EXIT macro or use the
original contents of register 14 as a return address. The use of T6EXIT results in the
register conditions described in the following paragraphs.

If a type 6 SVC uses the RETURN=CALLER exit option on the T6EXIT macro, or if
it returns by branching on register 14, registers 0, 1, and 15 are returned to the
caller. The rest of the caller's registers are unchanged. All of the caller's registers
are unchanged if the type 6 SVC uses the RETURN=SRB or DISPATCH exit option
on the T6EXIT macro.

If a type 6 SVC uses the RETURN=SRB exit option on the T6EXIT macro, register 1
must point to an SRB. The SRBASCB field must indicate the current address space.

The system neither acquires nor releases any locks for type 6 SVCs. Because a type
6 SVC executes in an MVS-recognized disabled state, it has exclusive use of the
processor. Because the type 6 SVC routine runs in disabled state, the routine can
only reference data in non-pageable storage. Type 6 SVC routines should be short
enough to minimize any adverse effect on performance and they should provide
for recovery by using the SETFRR macro.

Non-preemptable SVC routines
You can use the SVCUPDTE macro or the IEASVCxx parmlib member to define a
user-written SVC routine as non-preemptable for I/O interruptions. If a
non-preemptable SVC routine sustains an I/O interrupt, the SVC, rather than the
highest priority ready work, gets control when I/O processing is complete. The
non-preemptable SVC cannot issue other SVCs and remain non-preemptable. If a
non-preemptable SVC issues a STAX DEFER=NO macro, the SVC routine remains
non-preemptable until it exits. For a description of the STAX macro and its syntax,
see z/OS TSO/E Programming Services.

Programming conventions for SVC routines
Table 66 summarizes the programming conventions for the five types of SVC
routines. Details about many of the conventions are in the reference notes that
follow the figure. The numbers in the far right column of the figure correspond to
the reference notes.

Table 66. Programming Conventions for SVC Routines

Conventions Type 1 Type 2 Type 3 Type 4 Type 6 Reference
Code

Part of resident control
program

Yes Yes No No Yes

492 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 66. Programming Conventions for SVC Routines (continued)

Conventions Type 1 Type 2 Type 3 Type 4 Type 6 Reference
Code

Size of routine Any Any Any Any Any

Reenterable routine Yes Yes Yes Yes Yes 1

Refreshable routine No No Yes Yes No 2

Locking requirements Yes No No No No 3

Entry point: Must be on a
halfword boundary and
must be the first
instruction to get control.
Need not be the first byte
of the module

Number of routine:
Numbers assigned to your
SVC routine should be in
descending order from 255
through 200

Name of routine IGCnnn IGCnnn IGC00nnn IGC00nnn IGCnnn 4

Register contents at entry
time: Registers 3, 4, 5, 6, 7,
and 14 contain
communication pointers;
registers 0, 1, 13, and 15
are parameter registers

Supervisor request
block(SVRB) used

No SVRB
exists

Yes Yes Yes No SVRB
exists

6

May issue WAIT macro No Yes Yes Yes No 7

May suspend their caller Yes No No No Yes 8

May issue XCTL macro No Yes Yes Yes No 9

May pass control to what
other types of SVC
routines

None Any Any Any None 10

Type of linkage with other
SVC routines

Not
Applicable

Issue
supervisor
call (SVC)
instruction

Issue
supervisor
call (SVC)
instruction

Issue
supervisor
call (SVC)
instruction

Not
Applicable

11

Exit from SVC routine Branch using
return
register 14

Branch using
return
register 14

Branch using
return
register 14

Branch using
return
register 14

T6EXIT
or BR 14

12

Method of abnormal
termination

ABEND ABEND ABEND ABEND ABEND

Recovery FRR ESTAE or
FRR

ESTAE or
FRR

ESTAE or
FRR

FRR 13

Reference
Code

SVC Routine
Types

Reference Notes

1 all If your SVC routine is to be reenterable, you cannot use macros whose expansions
store information into an inline parameter list.

Chapter 23. User-written SVC routines 493

Reference
Code

SVC Routine
Types

Reference Notes

2 3,4 Types 3 and 4 in the pageable LPA must be refreshable. Types 3 and 4 in the fixed
LPA must be reenterable, but not necessarily refreshable.

3 all The following conventions on locking requirements apply:

v Type 1 SVC routines always receive control with the LOCAL lock held and
must not release the LOCAL lock. Additional locks may be requested prior to
entry via the IEASVCxx member of SYS1.PARMLIB or the SVCUPDTE macro
or may be requested dynamically within the SVC routine.

v Types 2, 3, and 4 may also request locks via the IEASVCxx member of
SYS1.PARMLIB or the SVCUPDTE macro or may obtain them dynamically.

v Types 1 and 2 may request that any locks be held on entry. Types 3 and 4 may
only request that the LOCAL or LOCAL and CMS be held.

v If no locks are held or obtained, or only suspend locks (LOCAL and CMS) are
held or obtained, the SVC routine executes in supervisor state key zero,
enabled mode.

v If the CPU lock is held or obtained, the SVC routine executes in supervisor
state, key zero, disabled mode. No SVCs may be issued.

v SVCs may not take disabled page faults. Therefore, if the CPU lock is held, the
SVC routines must ensure that any referenced pages are fixed. For types 3 and
4, all pages containing code must be fixed.

v An FRR may be defined for any SVC routine that holds or obtains locks to
provide for abnormal termination (see reference code 13).

v Type 6 may not request any locks.

4 all You must use the following conventions when naming SVC routines:

v Types 1, 2, and 6 can have either IGCnnn or non-IGCnnn names.

– When using an IGCnnn name (where nnn is the decimal number of the SVC
routine), you must specify this name in an ENTRY, CSECT, or START
instruction.

– When using a non-IGCnnn name, you must add the name to the nucleus
region through the NMLDEF macro or NUCLSTxx parmlib member.

v Types 3 and 4 must be named IGC00nnn; nnn is the signed decimal number of
the SVC routine. For example, SVC 251 would be IGC0025A and SVC 245
would be IGC0024E.

The following conventions regarding type 3 and 4 SVCs are not enforced by SVC
processing, but have traditionally been used to distinguish between the two types:

v A type 3 SVC identifies a function that is contained in a single load module.

v A type 4 SVC identifies a function that loads additional modules. You can
identify these loaded modules as IGC01nnn, IGC02nnn,..., and IGC0xnnn.
(IGC01nnn is the first module that IGC00nnn loads, IGC02nnn is the second
module that IGC00nnn loads, and IGC0xnnn is the last module that IGC00nnn
loads.)

494 z/OS V2R2 MVS Authorized Assembler Services Guide

Reference
Code

SVC Routine
Types

Reference Notes

5 all Before your SVC routine receives control, the contents of all registers are saved. In
general, the location of the register save area is unknown to the routine that is
called. When your SVC routine receives control, the status of the general purpose
registers is as follows:

* Registers 0 and 1 are unchanged from when the SVC instruction was
issued.

* Register 2 is used as a work register by the system.

* Register 3 contains the starting address of the communication vector
table (CVT).

* Register 4 contains the address of the task control block (TCB) of the task
that called the SVC routine.

* Register 5 contains the address of the supervisor request block (SVRB), if
a type 2, 3, or 4 SVC routine is in control. If a type 1 or 6 SVC routine is
in control, register 5 contains the address of the last active request block.

* Register 6 contains the entry point address.

* Register 7 contains the address of the address space control block
(ASCB).

* Registers 8-12 are used as work registers by the system.

* Register 13 is unchanged from when the SVC instruction was issued.

* Register 14 contains the return address.

* Register 15 is unchanged from when the SVC instruction was issued.

The access registers (AR) are unchanged from when the SVC instruction was
issued.

You must use register 0, 1, and 15 if you want to pass information to the calling
program. The contents of General Purpose registers 2 through 14 are restored
when control is returned to the calling program, Access registers are not.

6 2,3,4 When a type 2, 3, or 4 SVC routine receives control, register 5 contains the
address of the SVRB.

This SVRB
contains a 48-byte
“extended save
area,” RBEXSAVE,
for use by the SVC
routine.

7 2,3,4 You can issue the WAIT macro if you hold no locks. You can issue WAIT macros
that await either single or multiple-events. The event control block (ECB) for
single-event waits on the ECB list and ECBs for multiple-event waits must be in
virtual storage. Type 6 SVCs may not issue WAIT but may issue SUSPEND.

8 1,6 Both type 1 and 6 SVC routines can issue SUSPEND RB=CURRENT to suspend
their callers.

9 2,3,4 When you issue an XCTL(X) macro in a routine under control of a type 2, 3, or 4
SVC, the new load module must be located in the fixed or pageable link pack
area.

Chapter 23. User-written SVC routines 495

Reference
Code

SVC Routine
Types

Reference Notes

The contents of registers 2 through 13 are unchanged when control is passed to
the load module; register 15 contains the entry point of the called load module.

An SVC routine will get control with the caller's Floating Point Registers and
Floating Point Control register.

An SVC routine will get control with the caller's Floating Point Registers and
Floating Point Control register. The S/390 linkage convention applies. For more
information on the S/390, see "Linkage Convention" in z/OS MVS Programming:
Assembler Services Guide.

10 all No SVC routines except ABEND may be called if locks are held. ABEND may be
called at any time.

11 all No locks may be held. If locks are held, branch entry to SVCs is acceptable, or the
locks may be freed, the SVC issued, and the locks obtained again.

12 all Branch using return register 14 should be used. SVC routines that exit via BR 14
or T6EXIT must return control in the same state in which they received control,
such as, key zero, supervisor state. Otherwise, if locks are held, returning to the
system will result in abnormal termination. Note: To ensure that control is
returned to the dispatcher, the SVC routine can load register 14 with the address
in the CVTEXP1 field of the CVT before issuing BR 14.

13 all If an SVC routine is entered with a lock held or if an SVC routine obtains a lock,
it should specify a functional recovery routine (FRR) for as long as the lock is
held (see SETFRR macro). The FRR receives control if an error occurs, and ensures
the validity of the data being serialized by the lock; the FRR either recovers or
releases the lock and continues with termination.

If no FRR is specified, the recovery termination manager releases the lock and
terminates the task. No cleanup of the data is performed. (Note that the lock is
released before any STAI/ESTAI/ESTAE (or STAE) recovery routine is entered.

If no locks are acquired for or by an SVC routine, then an ESTAE may be used to
define your recovery processing (see ESTAE and SETRP macros).

Inserting SVC routines into the control program
There are two kinds of SVC entries: standard and extended. Standard user SVC
entries are in the range of 200 - 255. For information on how to use extended SVC
routines, see “Extended SVC routines” on page 499.

Standard SVC routines
To supply user-written SVC routines to the system, you place descriptions of your
user SVC routines in SYS1.PARMLIB, and you place the actual routines in
SYS1.NUCLEUS or SYS1.LPALIB. When the system is IPLed, the system translates
the SVC definitions that you placed on SYS1.PARMLIB into SVC table entries. See
“Customizing the nucleus region” on page 332 for more information on placing
routines in the nucleus.

When the system is IPLed, the system searches for member names that it uses to
build the SVC table. These member names have the form, IEASVCxx, where xx is
the field specified by the SVC= option in the IPL system parameters.

496 z/OS V2R2 MVS Authorized Assembler Services Guide

In the IEASVCxx members, you code SVCPARM statements. The SVCPARM
statements describe the properties and attributes of individual SVC routines. Each
SVCPARM statement that you code describes a single SVC routine; it generates one
entry in the SVC table. Using the SVCPARM statement, you specify the SVC
number, type, entry point name, lock requirements, authorization level, and
whether or not the SVC is preemptable. See z/OS MVS Initialization and Tuning
Reference for a description of the SVC= and SVCPARM statements.

The user SVC entries, which are represented by the SVC numbers 200-255, are the
only ones you are allowed to define. You should not attempt to modify SVCs that
are in the range of 0-199. Doing so will cause unpredictable results. When you
define an SVC with an SVCPARM statement, you define its type as type 1, 2, 3, 4
or 6. The system provides no SVC routines in the range 200-255. Therefore, unless
the user defines some SVC routines in this range, execution of an SVC 200 through
255 will cause an abend.

Example of adding user SVC routines to system libraries
Once you have modified the SVC table for your SVC routine, you must add your
SVC routine to an appropriate library. Type 1, 2, and 6 SVCs must be added as
CSECTs to an IEANUC0x load module in the SYS1.NUCLEUS data set, or added
to the nucleus region through the NMLDEF macro or NUCLSTxx parmlib member.
Type 3 and 4 SVCs must be added as load modules to the SYS1.LPALIB data set.
When adding these SVC routines, SMP/E will require them to be associated with
an FMID that is known to the system. The examples that follow are using
FMID(IPOFMID). If you want to use IPOFMID you will first have to run job
SMPUCL in IPO1.JCLLIB to add it as a valid FMID that the system recognizes. If
you have run job SMPUCL already, you do not have to run it again.

The following example uses SMP/E to add SVC 255 as a type 1, 2, or 6 SVC to
member IEANUC01 in SYS1.NUCLEUS:
//ADDSVC1 EXEC IPOSMPE
//SMPCNTL DD *

SET BDY(GLOBAL) .
RECEIVE SELECT(SVC255V) SYSMOD .
SET BDY(MVSTZN) .
APPLY SELECT(SVC255V) .
LIST SYSMOD(SVC255V) USERMOD .

//SMPPTFIN DD *
++ USERMOD (SVC255V) .
++ VER(Z038) FMID(IPOFMID) .
++ MOD(IGC255) DISTLIB(USERLIB) LMOD(IEANUC01) .
* * * object deck for IGC255 follows here * * *
/*
//USERLIB DD DSN=USER.USERLIB,DISP=SHR

Note: The LMOD keyword on the above ++MOD modification control statement
informs SMP/E that the module IGC255 is to be included in load module
IEANUC01, the nucleus.

The following example uses SMP/E to add SVC 255 as a type 3 or 4 SVC to
SYS1.LPALIB:
//ADDSVC3 EXEC IPOSMPE
//SMPEIN DD *

SET BDY(GLOBAL) .
RECEIVE SELECT(SVC255V) SYSMOD .
SET BDY(MVSTZN) .
APPLY SELECT(SVC255V) .
LIST SYSMOD(SVC255V) USERMOD .

//SMPPTFIN DD DATA,DLM=$$

Chapter 23. User-written SVC routines 497

++ USERMOD (SVC255V) .
++ VER(Z038) FMID(IPOFMID) .
++ JCLIN /* note inline JCLIN */ .
//LINKSVC EXEC PGM=IEWL,PARM=’NCAL,LET,RENT,LIST,XREF’
//SYSLMOD DD DSN=SYS1.LPALIB,DISP=SHR
//USERLIB DD DSN=USER.USERLIB,DISP=SHR
//SYSLIN DD *

INCLUDE USERLIB(IGC0025E)
NAME IGC0025E(R)

//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSPRINT DD SYSOUT=A
++ MOD(IGC0025E) DISTLIB(USERLIB) .
* * * object deck for IGC0025e follows here * * *
/*
$$

Once you have added your SVC routine to the appropriate system library and
updated the IEASVCxx parmlib member, you will have to re-IPL your system to
have this take effect. If SYS1.LPALIB was the system library you updated, you
need to specify CLPA or MLPA in the IEASYSxx parmlib member at the next IPL.

Modifying the SVC table at execution time (SVCUPDTE macro)
After the IPL, the SVC table can be dynamically modified by authorized users via
the SVCUPDTE macro. For example, authorized subsystems such as VTAM® can
alter the SVC table when the subsystem starts and restore the table when the
subsystem terminates. For additional flexibility, the EPNAME and EXTRACT
parameters of the SVCUPDTE macro allow the authorized user to dynamically
associate SVC numbers with entry points of SVC routines.

NOT Programming Interface Information

An SVC update recording table is maintained in parallel with the SVC table. This
table provides a record of changes to the SVC table. Entries are created whenever a
change is made to the SVC table with IEASVCxx parmlib member statements or
the SVCUPDTE macro.

End NOT Programming Interface Information

Intercepting an SVC routine
When you execute an SVC instruction, the unique program to which control is
passed is called the SVC routine. A common programming technique is to intercept
an SVC routine by inserting another program in the path between the SVC
instruction and the SVC routine. The inserted program is sometimes called a front
end to the original SVC routine. After the front end program is inserted, the
resulting body of code, including the front end program and the original SVC
routine, is the new SVC routine.

Intercepting SVC routines can be recursive. Thus, if an SVC routine already has a
front end, you can still add another front end onto it, and so on, indefinitely.

To intercept an SVC routine, you must obtain and save the address of the existing
SVC routine for use by the front end program. To change the entry in the SVC
table so it points to the front end program, you must use the REPLACE function of
the SVCUPDTE macro.

In a user environment where the interception of SVC routines is recursive, it might
be necessary to serialize the modification of the SVC table. To serialize, use the
ENQ and DEQ macros to secure and hold the SYSZSVC TABLE resource while you
are changing the SVC table.

498 z/OS V2R2 MVS Authorized Assembler Services Guide

Before you obtain the SVC table entry, use ENQ to secure this resource, and hold it
until you have replaced the SVC table entry with the pointer to the front end
routine. Then you can DEQ the resource. The major and minor names of this
resource are, respectively, SYSZSVC and TABLE.

When securing the resource using the ENQ macro, specify the E parameter (to
indicate an exclusive ENQ) if the resource is modified while under control of the
task, and a scope of SYSTEM.

Extended SVC routines
SVC 109 provides you with extended SVCs that are available for you to define.
Extended SVCs with function codes 0-199 are reserved for IBM. You may define
only extended SVC with function codes 200-255. SVC 109 assumes the
characteristics of a type 3 or 4 SVC. You can use the SVCUPDTE macro to specify
those attributes your extended SVC routine requires, such as: locks required,
restriction to APF authorized callers only, non-preemptable, and whether the SVC
can be called from AR mode. Place the extended SVC routine in the LPA list and
name the routine IGX00yyy where yyy is the number (200 - 255), in character
format, that is loaded into register 15.

To execute an extended SVC routine:
v Load register 15 with a function code (200-255), and
v Issue SVC 109.

Subsystem SVC screening
After you write an SVC routine and insert it into the system, the routine is
generally available unless you take steps to regulate access to the routine.
Subsystem SVC screening allows a system routine to define those SVCs that a
specific task can validly issue. When SVC screening is active for a task, the system
determines, for each SVC issued by that task, whether the task can request that
SVC function. If the SVC request is invalid, control is given to a special error
subroutine supplied by the routine that activated the screening function.

The subsystem, executing under PSW key zero, activates SVC screening by setting
two fields in each TCB for which screening is desired. The two fields consist of a
screen flag bit and a one-word field containing the address of the subsystem screen
table, which provides the interface between the SVC FLIH and the subsystem
subroutine. In addition to these fields, the subsystem may optionally set the
TCBSVCSP bit to indicate that ATTACH processing is to pass the SVC screening
information to the attached task. The important SVC screening fields in the TCB
are:
v TCBSVCS - A flag bit. When set to one, it indicates that screening is in effect for

this task.
v TCBSVCA2 - Address of the subsystem screen table.
v TCBSVCSP - Propagation bit. When set to one, it indicates that ATTACH

processing should pass the SVC screening information in these three fields to the
attached task.

When the screening facility detects an invalid SVC, it gives control to the specified
error routine. The error routine receives control as an SVC and is subject to the
same restrictions as SVC routines. Before giving control to the subroutine, the SVC
FLIH provides the setup for the subroutine as defined by the subsystem SVC entry
(SSTSVCN) in the subsystem screen table. This setup includes:

Chapter 23. User-written SVC routines 499

v Initializing the SVRB if the subroutine is to execute as a type 2, 3, or 4 SVC.
v Obtaining the LOCAL lock if the subroutine is to execute as a type 1 SVC.
v Acquiring all locks necessary for the subroutine's execution.

The subsystem that needs SVC screening obtains storage via GETMAIN for an area
called the subsystem screen table. For non-extended SVC screening, the subsystem
screen table is 264 bytes in size. For extended SVC screening, the subsystem screen
table is 1288 bytes in size. To prevent a page fault, this area must come from the
LSQA (subpool 253-255), the SQA (subpool 245), or must be in fixed storage. If the
subsystem screen table is in fixed storage, the subsystem must ensure that the
storage is protected from user modification. The subsystem screen table contains
two areas as follows:

1) SSTSVCN -- Subsystem SVC entry (8 bytes)

Byte Bit Contents

0-3 0 One of the following:

v 0 - Indicates 24-bit addressing mode

v 1 - Indicates 31-bit addressing mode

1-31 Entry point address of the subsystem subroutine that will
get control whenever a task has issued an SVC against
which there is a screening restriction.

Byte 4
X'00' The subroutine is to run as a Type 1 SVC

X'08' The subroutine may be used only by a program
that is APF authorized

X'80' The subroutine is to execute as a Type 2 SVC

X'C0' The subroutine is to execute as a Type 3 or Type 4
SVC

X'20' The subroutine is to execute as a Type 6 SVC

Byte 5 One of the following:

v Bit 0 is used to indicate if the SVC may be issued in AR
mode. Set bit 0 to 1 to indicate that the SVC may be
issued in AR mode.

v Bit 7 is used to screen individual extended SVCs. Set bit
7 to 1 to screen individual extended SVCs. When
screening extended SVCs, the SVC screening mask must
be 1280 bytes in size instead of 256 bytes.

Bytes 6-7 Locks to be held on entry to the subroutine. If the
appropriate lock bit is one, the lock will be acquired by
the SVC FLIH. The lock bits are:

Bit Lock

0 LOCAL

1 CMS

Bits 2–15 are always zero (off).

2) SSTMASK -- SVC screening mask (256 bytes or 1280 bytes)

500 z/OS V2R2 MVS Authorized Assembler Services Guide

If you are not screening extended SVCs (bit 7 of byte 6 of the SSTSVCN is zero),
then SSTMASK will be 256 bytes long. If you are screening extended SVCs (bit 7 of
byte 6 of the SSTSVCN is one), then SSTMASK must be 1280 bytes long.

Bytes Content

8-263 Each byte corresponds to an SVC number in ascending order in the range
0-255. When the high order bit in a byte is one, the task may validly issue
the respective SVC; when the bit is zero, there is a screening restriction that
prohibits the task from issuing the SVC.

264-519
Each byte corresponds to an SVC routing number in ascending order in the
range 0-255 for SVC 109.

520-775
Each byte corresponds to an SVC routing number in ascending order in the
range 0-255 for SVC 116.

776-1031
Each byte corresponds to an SVC routing number in ascending order in the
range 0-255 for SVC 122.

1032-1287
Each byte corresponds to an SVC routing number in ascending order in the
range 0-255 for SVC 137.

Note: Each SVC's data must be 256 bytes long, even though the system only
supports all 256 routing codes for extended SVC 109.

When you use SVC screening with the ESR function, and a program issues an
extended SVC, the system ignores the screening information provided for the SVC
number itself (for example, 109). Instead, it looks only at the screening information
provided for the particular routing code. See SVCUPDTE in z/OS MVS
Programming: Authorized Assembler Services Reference SET-WTO for more information
about specifying the ESR parameter.

Note: Before terminating, the subsystem must clear the TCBSVCS bit, in all of the
effected TCBs, before freeing the storage used for the screening table. Failure to
turn off SVC screening by clearing the TCBSVCS bit can result in the loss of one or
more systems. It is also recommended that the TCBSVCA2 screening table pointer
be zeroed, and that the TCBSVCSP bit be cleared.

Chapter 23. User-written SVC routines 501

502 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 24. Accessing unit control blocks (UCBs)

Each device in a configuration is represented by a unit control block (UCB).
Primarily, you use UCB macros to:
v Scan for UCBs with certain characteristics or certain device numbers and receive

a copy of each UCB or the addresses of its segments.
v Obtain the addresses of UCB segments.

Scanning for UCBs
There are two methods to scan for UCBs: the UCBSCAN macro and the UCB scan
service. IBM recommends that you use the UCBSCAN macro rather than the UCB
scan service.

The UCBSCAN macro is the general method for scanning UCBs. You can use it to
scan for any UCB, including UCBs for dynamic devices, UCBs with 4-digit device
numbers, and UCBs that reside above 16 megabytes. See “Obtaining UCB
information (general methods)” on page 519 for more information about the
UCBSCAN macro.

The UCB scan service is an older, limited method. It scans only for UCBs for static
or installation-static devices, UCBs with 3-digit device numbers, and UCBs residing
below 16 megabytes. The limited UCB scan service is described in “Obtaining UCB
information (limited method)” on page 522.

Obtaining UCB addresses
You can obtain the address of a UCB segment for a given UCB common segment
address or a given device number. There are several services that you can use to
obtain addresses of UCB segments.

Figure 64 shows UCB segments. Information about the segments and how to access
them follows.

UCB Prefix Area

UCB Common

N - X'200'

N

UCB Common
Extension

UCB Prefix
Extension

Figure 64. UCB Segments

© Copyright IBM Corp. 1988, 2016 503

UCB Common Segment
This segment resides below or above 16 megabytes depending on the UCB location
that you specify for the HCD device definition. You can obtain its address with the
following services:
v UCBLOOK
v UCBSCAN

Use the IEFUCBOB mapping macro to map the UCB common segment.

UCB Common Extension
This segment resides below or above 16 megabytes depending on the UCB location
that you specify for the HCD device definition. You can obtain its address with the
following services:
v IOSCMXA
v IOSCMXR
v UCBLOOK UCBCXPTR
v UCBSCAN UCBCXPTR

Use the UCBCMEXT DSECT of the IEFUCBOB mapping macro to map the UCB
common extension.

UCB Prefix Extension
This segment always resides above 16 megabytes. You obtain its address with the
following services:
v IOSUPFA
v IOSUPFR
v UCBLOOK UCBPXPTR
v UCBSCAN UCBPXPTR

Use the IOSDUPFX mapping macro to map the UCB prefix extension.

UCB Prefix Area

NOT Programming Interface Information

This segment resides below or above 16 megabytes depending on the UCB location
that you specify for the HCD device definition. The UCB prefix area is always the
X'200' bytes preceding the UCB common segment. Therefore, if a UCB common
segment is at address N, you can base the UCB on address N-X'200'. Use the
IEFUCBOB mapping macro to map the UCB prefix area.

End NOT Programming Interface Information

UCB details
There are two methods to obtain a UCB segment address for a given device
number: the UCBLOOK and IOSLOOK macros. IBM recommends that you use the
UCBLOOK rather than IOSLOOK macro.

The UCBLOOK macro is the general method to obtain a UCB segment address for
a given device. You can obtain any UCB address, including UCBs for dynamic

504 z/OS V2R2 MVS Authorized Assembler Services Guide

devices, UCBs with 4-digit device numbers, and UCBs which reside above 16
megabytes. See “Obtaining UCB information (general methods)” on page 519 for
more information about UCBLOOK.

The IOSLOOK macro is an older, limited method to obtain a UCB segment for a
given device. It obtains addresses only for static or installation-static devices with
3-digit device numbers and with UCBs residing below 16 megabytes.

Although the IOSCMXA, IOSCMXR, IOSUPFA, and IOSUPFR macros might
provide better performance than the UCBLOOK macro, other factors need to be
considered. Table 67 can help you determine which of the macros for obtaining the
addresses of UCB segments is most appropriate for your application.

Table 67. Comparison of macros that return addresses of UCB segments

Feature UCBLOOK IOSCMXA
IOSUPFA

IOSCMXR
IOSUPFR
IOSDCXR

Function Obtains the address of
the following segments
for a given device
number:

v UCB common segment

v UCB common
extension

v UCB prefix extension

Pins the UCB with the
PIN parameter.

IOSCMXA — Obtains the address
of UCB common extension for a
given UCB common segment
address. Note that the captured
address is obtained for a given
captured UCB common segment
address.

IOSUPFA — Obtains the address
of UCB prefix extension

IOSCMXR — Obtains the address
of UCB common extension for a
UCB common segment address.
Note that the captured address is
obtained for a given captured
UCB common segment address.

IOSUPFR — Obtains the address
of UCB prefix extension

IOSDCXR — Obtains the address
of UCB device class extension for
a UCB common segment address.
Note that the captured address is
obtained for a given captured
UCB common segment address.

Parameter
Handling

In a parameter list In a parameter list Not in a parameter list

The addresses are passed in
general purpose registers (GPRs).

Recovery Provided by macro Caller must provide Caller must provide

Environment Can be issued in primary
or access register (AR)
ASC mode

Must be issued in primary ASC
mode

Must be issued in primary ASC
mode

The IOSCMXA, IOSCMXR, IOSDCXR, IOSUPFA, and IOSUPFR macros are
described in z/OS MVS Programming: Authorized Assembler Services Reference
EDT-IXG.

You can use the UCBINFO macro to obtain device information from a UCB. For
example, you can obtain information about device pathing, information about alias
UCBs for a parallel access volume, and reasons why a device is offline. The
UCBINFO macro is described in z/OS MVS Programming: Authorized Assembler
Services Reference SET-WTO.

The following topics precede the description of the general methods for obtaining
UCB information:
v “Ensuring that UCBs are not deleted” on page 506
v “Requesting notification of I/O configuration changes” on page 509

Chapter 24. Accessing unit control blocks (UCBs) 505

v “Detecting I/O configuration changes” on page 515
v “Retrieving the current MIH time interval” on page 516
v “Retrieving information about I/O hardware on an I/O path” on page 516
v “Validating I/O paths” on page 518
v “Obtaining device information for an allocation request” on page 518
v “Accessing above 16-megabyte UCBs” on page 526

These topics provide basic information to help you develop application programs
that are to run in an environment where dynamic I/O configuration is used.

Ensuring that UCBs are not deleted
In a dynamic configuration environment, any program that obtains a UCB address
must ensure that the UCB will not be deleted before the program has finished
referencing the UCB. Pinning prevents a device's UCB and other related data
structures from being deleted. Pinning a UCB ensures that the returned address for
that UCB is valid as of the moment the system returned the address. It also
ensures that the address remains valid as long as the UCB is pinned. You can pin a
UCB by specifying the PIN parameter on the UCBLOOK macro, the UCBPIN
macro, or the UCBSCAN ADDRESS macro. When the PIN parameter is specified
on any of these macros, the system returns a pin token. The pin token identifies
the pin, and will be required for unpinning the UCB.

Programs that pin a UCB are also responsible for unpinning it once the UCB is no
longer being used. Unpinning allows a device's UCB and other related data
structures to be deleted. Unpinning is done through the UCBPIN macro.

For a description of the circumstances under which pinning is not required, see
“When pinning is not required” on page 509.

Pinning and unpinning UCBs
You can pin a UCB in either of the following ways:
v When issuing the UCBLOOK and UCBSCAN macros, specify the PIN parameter

on these macros.
Specifying the PIN parameter when obtaining UCB information with UCBLOOK
and UCBSCAN ensures that the UCB cannot be deleted through a dynamic
configuration change.

v Issue the UCBPIN macro, specifying the PIN parameter.
Specifying the PIN parameter with UCBPIN ensures that the UCB whose
address is supplied as input cannot be deleted through dynamic configuration
changes. For example, assume that your program has allocated a device and
must save the UCB address for later use after the device is unallocated. You
could issue UCBPIN with the PIN parameter, providing the address of the UCB
for the device as input. Pinning the UCB ensures that the UCB (and therefore the
device itself) cannot be deleted once the device is unallocated.

You can unpin UCBs by issuing the UCBPIN macro with the UNPIN option; you
must provide the pin token that the system returned when the UCB was pinned.

Programs that pin UCBs must provide information documenting the reason for the
pin request. If a configuration change involving a pinned UCB is attempted, this
information is displayed as part of a message that explains why the configuration

506 z/OS V2R2 MVS Authorized Assembler Services Guide

change was rejected. Use the TEXT parameter to provide the text for the message.
Potential text might record what is using the device, for example:
v THE XYZ SERVICE IS USING THE ABC DEVICE.

The system will reject any requested I/O configuration changes involving a device
whose UCB is pinned. Therefore, you might want a program to receive notification
of configuration change requests that involve a device whose UCB has been
pinned by the program. The program could then unpin the UCB, allowing the
configuration change to occur. See “Requesting notification of I/O configuration
changes” on page 509 for further information.

Each program that needs to obtain UCB information must ensure that the UCB will
not be deleted. Thus, any UCB might be pinned by several different programs at
one time. Each program must subsequently unpin the UCB before the device can
be deleted. For example, if a UCB has been pinned by three different programs and
is later unpinned by two of those programs, the UCB is still pinned because of the
one outstanding pin request.

If a program fails to unpin a UCB that it had previously pinned, the system will
automatically free the pin at the time of termination of the task or address space
with which the pin is associated, unless the LASTING parameter was specified
when the UCB was pinned. The following list identifies four environments in
which the system will automatically free an outstanding pin:
v A program that is in task mode and not in cross memory mode has pinned a

UCB. The pin request is associated with the current job step task. If the pin is
still in force when the job step task terminates, the system automatically frees
the pin.

v A program that is in SRB mode and not in cross memory mode has pinned a
UCB. The pin request is associated with the currently-executing address space. If
the pin is still in force when the address space terminates, the system
automatically frees the pin.

v A program that is in task mode and cross memory mode has pinned a UCB. The
pin request is associated with the current job step task of the current home
address space. If the pin is still in force when the job step task terminates, the
system automatically frees the pin.

v A program that is in SRB mode and cross memory mode has pinned a UCB. The
pin request is associated with the home address space. If the pin is still in force
when the address space terminates, the system automatically frees the pin.

If LASTING is specified on the pin request, the system will not automatically free
the pin.

When pinning is required
A UCB must be pinned in the following environments:
v The device represented by the UCB is offline and unallocated, but a program

might still require access to the UCB and its related control block structures.

Note: For a dynamic device to be deleted, it must be offline and unallocated,
and its UCB must not be pinned. When a device is in the offline and unallocated
state, the only way for a program to prohibit the deletion of the device is to pin
the UCB for the device.

v The device represented by the UCB can become offline or unallocated while the
program is accessing it.

Chapter 24. Accessing unit control blocks (UCBs) 507

v The UCB address is passed between programs that are running asynchronously.

Example: Pinning an unallocated and offline device
A program receives a device number for a DASD as input. The program is to
format the specified device, and needs to ensure that the device cannot be deleted
while it is being formatted. To accomplish these things the program must do the
following:
v Pin the device by issuing the UCBLOOK macro with the PIN parameter,

specifying the device number as input. UCBLOOK pins the UCB, and returns
the UCB address and a pin token to the program.

v Format the DASD.
v Unpin the UCB through the UCBPIN macro with the UNPIN option, using the

pin token returned when the UCB was pinned.

Example: Passing an UCB address between asynchronously
running programs
A program dynamically allocates a device. Once the device is successfully
allocated, it is not eligible for deletion. After the device is allocated, the program
finds the UCB associated with the device. Because the program has allocated the
device, there is no need to pin it.

However, if the program passes the address to another program or unit of work,
the passing program must pin the UCB. Then the passing program can pass the
UCB address and the pin token to another unit of work (such as a task) for its use.
For example, a program stores the UCB address in a commonly addressable
storage location and posts another task. Before issuing the POST macro, the
program must pin the UCB with the UCBPIN macro and specify the LASTING
parameter, and then pass the UCB address and pin token to the task. The task
must then unpin the UCB after it has finished using the UCB.

Note: If you do not issue UCBPIN with LASTING prior to the POST, the following
can occur:
1. The first program places the UCB address in a commonly addressable storage

location and issues the POST macro without preceding it with a UCBPIN
LASTING.

2. The program terminates after issuing the POST macro. The system frees the pin
at task or address space termination because you did not specify LASTING on
UCBPIN. The device whose UCB address the program passed is deallocated.
(Assume that there are no other outstanding allocations against the device).

3. Before the posted work unit begins execution, the installation varies the device
offline and then activates a new I/O configuration definition that does not
include the device.

4. After the activation, the posted program begins execution and obtains the
passed UCB address and attempts to reference it. In this instance, the posted
task references invalid storage because the UCB is deleted after the device is
deleted.

If the UCB had been pinned with UCBPIN LASTING by the first program before
the POST macro was issued, the device could not have been deleted when the first
program unallocated the device.

508 z/OS V2R2 MVS Authorized Assembler Services Guide

When pinning is not required
UCB pinning is not required if the program accessing the device can guarantee that
the device will not be deleted while the program is accessing the UCB. A program
can guarantee that the device (and thus the UCB) will not be deleted if:
v The environment is one in which dynamic I/O configuration changes cannot

occur.
v The device cannot become unallocated and enter the offline state while the work

unit is accessing the control structures that represent the device.
v The program receives a UCB address for the device as input, but does not

invoke any asynchronous processing requiring that UCB address.

Note: In this case, the calling program is responsible for pinning or allocating
the UCB.

Example: Allocating a device
A device can be allocated to a program either through a JCL allocation or through
the dynamic allocation interface. Once the device is allocated, it cannot be
dynamically deleted. As long as the program keeps the device allocated, it can
access the corresponding UCB without pinning. If the program needs to unallocate
the device but still maintain the UCB address in its control structures for later use,
it must first pin the UCB for the device through the UCBPIN macro before it
unallocates the device.

Requesting notification of I/O configuration changes
If you have code that monitors or works with software I/O configuration, you can
code authorized programs that track dynamic I/O configuration changes, and
respond to requested and completed configuration changes.

You can use either the ENFREQ macro or the CONFCHG macro to request
notification of I/O configuration changes. The ENFREQ macro is recommended
because it is a general interface that allows authorized programs to listen for
different types of system events. In contrast, CONFCHG can only be used to listen
for I/O configuration changes.

Authorized programs can request the system to notify them of the following
events:
v A requested or rejected I/O configuration change that involves deleting either a

device or a path to a device (event code=31 on the ENFREQ macro, or CHGREQ
parameter on the CONFCHG macro). A program that pins UCBs might need to
know when a configuration change is requested that involves a device whose
UCB the program has pinned. The program can then unpin the UCB to allow
the requested change to be made. If the request is subsequently rejected, the
program can re-pin the device.

Note: See “Pinning and unpinning UCBs” on page 506 for more information on
pinning and unpinning.

v A successful configuration change (event code=32 on the ENFREQ macro, or
CHGCOMPL parameter on the CONFCHG macro). Programs might need to
know when a change completed successfully so they can keep track of devices
that are added, deleted or modified.

A program that requests notification of dynamic I/O configuration changes must
be authorized, unlocked, enabled, and in task mode.

Chapter 24. Accessing unit control blocks (UCBs) 509

To request notification of dynamic I/O configuration changes in your installation,
do the following:
v Code configuration change exit routines that will receive control for a particular

notification. (See “Coding a configuration change user exit routine.”) Code a
different configuration change exit routine for each type of notification.

v Issue the ENFREQ or CONFCHG macro within your program for each
notification you request. You must issue the macro separately for each type of
notification.

The subtopics of this topic deal with how to use CONFCHG to request notification
of I/O configuration changes. See Chapter 8, “Listening for system events,” on
page 167 for how to use ENFREQ to establish a listen request and code a listener
user exit routine.

Using the CONFCHG macro
You must code the following parameters on CONFCHG to request notification of
dynamic I/O configuration changes in your installation:
v The NOTIFY parameter to indicate that you want to be notified of I/O

configuration changes
v The CHGREQ parameter or the CHGCOMPL parameter:

– Code the CHGREQ parameter if you want to be notified of requested or
rejected I/O configuration changes that involve deleting a device or deleting a
path to a device.

– Code the CHGCOMPL parameter if you want to be notified of I/O
configuration changes that completed successfully.

v The EXIT parameter to identify the configuration change user exit routine that is
to receive control

v The TOKEN parameter to cancel the notification request

If you no longer want to be notified of changes, you must cancel any notification
requests by issuing CONFCHG CANCEL. If you plan to cancel notification
requests, you must code the TOKEN parameter when you issue CONFCHG
NOTIFY. The system then returns a token that you use when you code CONFCHG
CANCEL. If your program terminates, you must cancel the notification request. If
recovery is done through percolation, you must cancel each notification request
separately.

See z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN for
information on how to code the CONFCHG macro.

Coding a configuration change user exit routine
When an authorized program wants to be notified by the system about dynamic
I/O configuration changes, the program identifies a configuration change exit
routine on the CONFCHG macro (EXIT parameter). The configuration change exit
routine pins, unpins, or tracks devices as required by the program.

Exit routine environment
The configuration change exit routine receives control in the following
environment:

Environmental factor Requirement
Authorization: Supervisor state and PSW key 0.
Dispatchable unit mode: Task

510 z/OS V2R2 MVS Authorized Assembler Services Guide

Environmental factor Requirement
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

Programming considerations
Consider the following when coding your configuration change exit routine:
v The exit routine is required to save and restore the contents of GPR 13.
v The exit routine must reside in common storage.
v The exit routine should not wait for asynchronous work to complete. Otherwise,

system deadlocks might occur.
v Code a different configuration change exit routine for each type of notification,

rather than coding one exit routine to respond to all notification types.

Entry specifications
The system passes information to the configuration change exit routine in a
parameter list and in registers.

Registers at entry: On entry to the configuration change exit routine, the general
purpose registers (GPRs) contain the following information:

Register Contents

GPR 0 Undefined

GPR 1 Address of a pointer to the exit parameter list

GPRs 2-13 Undefined

GPR 14 Return address

GPR 15 Entry point address of the configuration change exit

Parameter list contents: The parameter list that the system passes to the
configuration change exit routine is mapped by the IOSDDCCD mapping macro,
and its address is pointed to by GPR 1. The parameter list includes information
about the change that occurred, such as the specific devices being added, modified,
or deleted.

For complete field names and lengths, offsets, and description of the fields mapped
by the IOSDDCCD mapping macro, see z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Return specifications
On return to the system, the configuration change exit routine does not have to set
any return codes or place any information in the GPRs. The configuration change
exit routine must restore the contents of GPR 13.

Exit recovery
If the exit routine terminates abnormally, and the exit provides a recovery routine,
the system passes control to the exit's recovery routine. If the exit does not provide
a recovery routine, the system invokes its own recovery to terminate the
notification request.

Chapter 24. Accessing unit control blocks (UCBs) 511

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Exit routine processing
When an ACTIVATE command is issued, the system ensures that the devices to be
deleted are offline and unallocated. If the activate request has passed this
validation step, and an authorized program issues CONFCHG CHGREQ, the
system passes control to the exit routine. When a requested activation change that
involves deleting a device or deleting a path to a device is rejected, the system also
passes control to the exit routine.

If the program issues CONFCHG CHGCOMPL, the system passes control to the
exit routine when a dynamic I/O configuration change completes successfully.

You are responsible for writing the configuration change exit routine. This routine
takes actions based on the needs of your program, and can do such things as
pinning and unpinning devices, and keeping track of devices that are added,
modified, or deleted.

Example: The following example illustrates a request to delete several devices,
and explains the interaction between the installation program that requests
notification of I/O configuration changes, the configuration change exit routine
that receives control, and the system:
v An operator or system programmer wants to delete several devices, and

activates an installation's I/O definition file (IODF) that causes the deletion of
the devices.

v The system ensures that the devices to be deleted are offline and unallocated. If
the request passes this validation step, the system passes control to the
configuration change exit that the program specified on the CONFCHG
CHGREQ macro (and to any other configuration change exit routines specified
by other installation programs).

Note: If the request does not pass this initial validation, the system rejects the
change and issues notification messages to the operator.

v On entry to the exit routine, GPR 1 contains the address of a parameter list,
which contains an indication of the change that was requested, and information
about the devices being deleted. The parameter list data structure (the DCCD) is
mapped by the IOSDDCCD mapping macro, described in z/OS MVS Data Areas
in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).
To distinguish between a configuration change that was requested and a
configuration change that was rejected, the exit routine can check the
DCCDFUNC field in the parameter list. DCCDFUNC=DCCDFPFC (where
DCCDFPFC is a system-defined constant) when this is a request for a
configuration change.

v Depending on your installation needs, the configuration change exit might unpin
the UCBs that were pinned by installation programs, so that the new
configuration definition can take effect. To unpin the UCBs, the exit must issue
the UCBPIN macro.

v After all the configuration change exits complete, the system determines if all
the UCBs for devices to be deleted have been unpinned by all the exit routines.
If this validation step succeeds, and if the configuration change completes
successfully, the system passes control to the configuration change exit routine
that the program specified on the CONFCHG CHGCOMPL macro (and to any
other configuration change exit routines specified by other installation
programs).

v The exit routine can then take the appropriate action. For example:

512 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/

– The routine might be keeping a table of all tape devices. Based on the
information in the parameter list, the routine might then update its table.

– The routine might pin UCBs for devices that were being added to the system.
v If any of the UCBs for the devices to be deleted have not been unpinned, the

system rejects the entire configuration change. The system passes control to the
configuration change exit routine the program specified on the CONFCHG
CHGREQ macro. The system passes the parameter list to the exit routine with
DCCDFUNC=DCCDFCCR (where DCCDFCCR is a system-defined constant),
indicating the requested change was rejected. In this case, the exit routines might
want to re-pin any UCBs they have unpinned, because the deletion will not take
place. If the exit routines had deleted the devices from any tables they maintain,
they might then add the devices back into the tables.

Coded example: CONFCHG macro invocation of configuration
change user exit

In this example of using the CONFCHG macro and user exit, the exit resides in
common storage and comes from an authorized library.
INVOCATION OF USER EXIT:

MODESET MODE=SUP Enter supervisor state

...
LA R03,CHGEXIT Address of notify exit
O R03,HIBIT_ON Make sure high bit on
ST R03,EXIT_ADD Save exit address

*
* Issue the CONFCHG macro so that CHGEXIT gets control
* when a configuration change completes
*

CONFCHG NOTIFY,CHGCOMPL,EXIT=EXIT_ADD,TOKEN=TOKEN, X
MF=(E,CONFPARM)

MODESET MODE=PROB Return to problem state

CANCELLATION OF USER EXIT INVOCATION:
* Use CONFCHG to indicate CHGEXIT should not be called
* after configuration changes
*

MODESET MODE=SUP Enter supervisor state

...
CONFCHG CANCEL,CHGCOMPL,TOKEN=TOKEN,MF=(E,CONFPARM)
MODESET MODE=PROB Return to problem state

CONFIGURATION CHANGE USER EXIT:

CHGEXIT DS 0H
BAKR R14,0 Save regs on link stack
LR R12,R15 Set up base reg
USING CHGEXIT,R12
L R03,0(R01) Save DCCD address
LA R02,DYNLEN(0) Dynamic area length
STORAGE OBTAIN,LENGTH=(R02),ADDR=(R09),SP=0
USING DYNAREA,R09 Get addressability to dyn area
LA R13,SAVEAREA Get addressability to save area
MVC SAVEAREA+4(4),FIRSTSAV First save area in chain
USING DCCD,R03

*
* Get addressability to DCCD entry array
*

LR R04,R03
A R04,DCCDSTRT Reg 4 gets address of 1st entry
USING DCCDARRY,R04

Chapter 24. Accessing unit control blocks (UCBs) 513

*
* Calculate end address of DCCD
*

LR R05,R03
A R05,DCCDSIZE Reg 5 gets address of 1 byte

passed end of DCCD
*
* Process each array entry
* Use UCBLOOK to get the UCB address for each added UCB
*
LOOP DS 0H

CLI DCCDETYP,DCCDDEV Device entry ?
BNZ NEXT Branch if no
CLI DCCDEREQ,DCCDDADD Add device entry ?
BNZ NEXT Branch if no
TM DCCDEFLG,DCCDESFT Software entry ?
BNO NEXT Branch if no

*
* Use UCBLOOK to find UCB address of added device:
*

UCBLOOK DEVN=DCCDDEVN,UCBPTR=ADD_UCB,NOPIN,DYNAMIC=YES, X
RANGE=ALL,MF=(E,LOOKP)

*
* Process the added UCB
*
NEXT DS 0H

LA R04,DCCDELEN(R04) Next entry
CR R04,R05
BL LOOP

*

* Prepare to return to caller
*

DROP R09
*

* Free the dynamic area
*

LA R02,DYNLEN(0)
STORAGE RELEASE,LENGTH=(R02),ADDR=(R09),SP=0
PR Return to caller
EJECT

*
* Register equates
*
R01 EQU 1
R02 EQU 2
R03 EQU 3
R04 EQU 4
R05 EQU 5
R06 EQU 6
R07 EQU 7
R08 EQU 8
R09 EQU 9
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
* Static area declares
*

DS 0F
FIRSTSAV DC CL4’F1SA’ First save area ID
HIBIT_ON DC X’80000000’ Mask to turn on high bit
*
* Dynamic area declares
*
DYNLEN EQU DEND-DYNAREA Dynamic area length

514 z/OS V2R2 MVS Authorized Assembler Services Guide

DYNAREA DSECT
SAVEAREA DS 18F
TOKEN DS F Token from CONFCHG NOTIFY
ADD_UCB DS F
EXIT_ADD DS F
*
* Declare CONFCHG parameter list
*

CONFCHG MF=(L,CONFPARM)
*
* Declare UCBLOOK parameter list
*

UCBLOOK MF=(L,LOOKP)
DEND DS 0H

IOSDDCCD
END

Detecting I/O configuration changes
You can use the MVS I/O configuration token to detect I/O configuration changes.
The MVS I/O configuration token is a 48-byte token that uniquely identifies an
I/O configuration to the system. The token will change whenever the software
configuration definition changes. Thus, if your program obtains the current I/O
configuration token and compares it to one previously obtained, the program can
determine whether there has been a change in the I/O configuration: If the tokens
do not match, the I/O configuration has changed.

Both the MVS I/O configuration token and the ENFREQ macro (or the CONFCHG
macro) with its related exit can be used to detect I/O configuration changes. (See
“Requesting notification of I/O configuration changes” on page 509 for
information on the ENFREQ or CONFCHG macro and related exit routine.)
However, there are two important differences:
v The ENFREQ macro (or the CONFCHG macro) and related exit are available

only to authorized programs, whereas both authorized and unauthorized
programs can use the MVS I/O configuration token.

v With the ENFREQ macro (or the CONFCHG macro) and related exit, you can
also receive notification of requested configuration changes that involve deleting
a device or deleting a path to a device but have not yet occurred. With the MVS
I/O configuration token, you can only detect changes that have already taken
place.

An optional parameter, IOCTOKEN, is available with the UCB macros. Specifying
IOCTOKEN ensures that the system will notify the caller through a return code
and will not return any data if the current I/O configuration is not consistent with
the configuration represented by the token that was specified as input by the caller.

There are two ways to obtain the current I/O configuration token:
v Issue the IOCINFO macro. See z/OS MVS Programming: Assembler Services

Reference IAR-XCT for information on how to code the IOCINFO macro.
v Issue any of the UCB macros, setting the input specified by the IOCTOKEN

parameter to binary zeroes. The macro will then return the current I/O
configuration token.

Note: For the UCBSCAN macro, setting the IOCTOKEN to binary zeroes returns
the I/O configuration token at the start of the scan.

Chapter 24. Accessing unit control blocks (UCBs) 515

Use of the I/O configuration token can help prevent data inconsistencies that
might occur if the I/O configuration changes between the time the caller obtained
the token and the time the service returns the information. For example, you can
use the configuration token to identify a case in which the I/O configuration
changes during a UCB scan. If the IOCTOKEN parameter is specified with
UCBSCAN, the system will notify the caller through a return code if the set of
UCBs changes while the scan is in progress. Checking for the return code would
allow the caller to restart the scan to ensure that all UCBs in the current
configuration are referenced.

Specifying IOCTOKEN also allows the caller to receive notification if a dynamic
device reconfiguration (DDR) swap occurs. DDR SWAP causes a token change.

The I/O configuration token can also serve to identify that the relationship
between a device number and a UCB address has changed. This could be useful
when a device number or UCB address is saved along with a configuration token
and used for later processing. For example, a program may obtain a device
number from the EDTINFO macro. The program may then want to issue
UCBLOOK to obtain the UCB address for that device number. To ensure that the
device definition of the UCB address obtained from UCBLOOK is consistent with
the definition of the device number obtained by EDTINFO, the configuration token
can be used.

In some cases, a change in the relationship between device number and UCB can
only be detected through the use of an I/O configuration token. For example:
v A dynamic configuration change occurs that deletes a UCB and adds a different

UCB at the same device number.
v A dynamic configuration change occurs that deletes a UCB. Then, a subsequent

dynamic configuration change adds a new UCB at the same address as that of
the deleted one.

v A dynamic device reconfiguration (DDR) swap occurs that swaps the contents of
two UCBs.

Retrieving the current MIH time interval
When an I/O operation completes, an I/O interrupt occurs to signal the end of the
operation. The MIH time interval is the period of time that the missing interrupt
handler (MIH) waits before reporting that an expected interrupt from an I/O
device is missing. At system initialization, MIH uses control statements in
SYS1.PARMLIB to assign MIH time intervals to devices. If there is a missing
interrupt, the system tries to resolve it and make the device usable again. It might
clear the subchannel, end the operation, or try the operation again.

To retrieve the current MIH time interval for a device, use the MIHQUERY macro.
This macro requires you to specify the address of the UCB or a copy of the UCB
for the device. To determine the address of the UCB for a device, see “Obtaining
UCB information (general methods)” on page 519.

Retrieving information about I/O hardware on an I/O path
By using the IOSCDR macro, you can retrieve information that uniquely identifies
I/O hardware located along a specific I/O path. For example, you can obtain the
model number and serial number, which you can use to uniquely identify a device
across multiple systems.

516 z/OS V2R2 MVS Authorized Assembler Services Guide

The information that IOSCDR retrieves is returned in an area called a configuration
data record (CDR), which is mapped by the mapping macro IHACDR. This CDR,
sometimes called the self-description record, is generated by the device's control
unit. If you try to obtain these records on devices that do not support
self-description and you have specified READ=IO on the IOSCDR macro, you will
receive a return code indicating that the device does not support the channel
command words (CCWs) needed to generate the records.

The format of the IHACDR is documented in z/OS MVS Data Areas in the z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/). For more
information about the contents of CDRs, see ESA/390 Common I/O Device
Commands.

When you are coding the IOSCDR macro, you must consider the following:
v Length of the area that receives the CDR
v How IOSCDR retrieves the CDR
v The time that IOSCDR takes to perform I/O

Length of the CDR area
When coding IOSCDR, you must ensure that the CDR area is large enough to
receive the entire CDR. If the length you specify on the CDRLEN parameter is
smaller than the size returned in the CDRSIZE parameter, IOSCDR retrieves a
partial CDR. As shown in Figure 65, the size of the actual CDR is 256 bytes, but
CDRAREA is only 128 bytes. In this case, CDRAREA could hold only half of the
actual CDR. To obtain the entire CDR, reissue IOSCDR with a CDRLEN value that
is equal to or greater than the 256 bytes returned in CDRSIZE.

How IOSCDR retrieves the CDR
There are three ways that IOSCDR can retrieve a CDR:
v Directly from the specified device. Specified as READ=IO, this option is slower

because it requires I/O, but it provides more current information than

CDRAREA

CDRLEN
128 bytes

256 bytes

Actual CDR

CDRSIZE

Figure 65. Comparison of CDRLEN to CDRSIZE

Chapter 24. Accessing unit control blocks (UCBs) 517

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

READ=NOIO. This option will always give you the CDR that the control unit is
currently providing when you issue IOSCDR.

v From the system. IOSCDR retrieves the last CDR known to MVS for the
specified device and path. Specified as READ=NOIO, this option is quicker than
READ=I/O, but it is not as current.

v Either from the system or directly from the device, depending upon whether the
device and path are online. Specified as READ=COND, this option allows the
system to decide how to retrieve the CDR. READ=COND returns the most
accurate CDR in the shortest time possible, because it performs no I/O if the
device and path are online.

Time that IOSCDR performs I/O
When coding the IOSCDR macro, you must also decide how long you want the
macro to perform I/O before being purged. IOSCDR runs until one of the
following occurs:
v IOSCDR completes, successfully or unsuccessfully
v The interval that you specify on the TIME parameter expires
v The MIH interval for the device expires.

Note that the TIME parameter allows you to set an expiration time that is specific
to IOSCDR. The MIH interval, however, is used by all services associated with the
device.

Validating I/O paths
The IOSPTHV macro enables authorized callers to determine if a channel path to a
device is valid without changing the online/offline status of a path. It recognizes a
channel path as valid if it is available. A path is considered available if an I/O
operation can be initiated down a path, and the device can be selected. Validation
does not, however, guarantee that the device and path are error free, because
intermittent errors can exist.

You can find more specific information about the IOSPTHV macro in z/OS MVS
Programming: Authorized Assembler Services Reference EDT-IXG.

Obtaining device information for an allocation request
The IEFDDSRV macro enables authorized callers to find the devices associated
with an allocation request. For example, for a JCL input statement that requests the
allocation of one or more data sets, you can use IEFDDSRV to obtain the addresses
of the UCBs for the devices containing those data sets. When you specify that an
above 16 megabyte UCB not be captured during dynamic allocation, you must use
the IEFDDSRV macro to retrieve the UCB address.

You can find more specific information about the IEFDDSRV macro in z/OS MVS
Programming: Assembler Services Reference IAR-XCT

Configuring a channel path online or offline
Use the IEEMCF macro to configure a channel path online or offline, or to
determine the physical status of the channel path.

Before using IEEMCF, you must do the following:
v Decide how many channel paths you would like to reconfigure or query.

518 z/OS V2R2 MVS Authorized Assembler Services Guide

v Obtain a contiguous area of storage from subpool 247. Specify an area whose
length is equivalent to 36 bytes multiplied by the number of channel paths that
you are reconfiguring.

v Include the mapping macro IEEMRCFP.

To configure a channel path or determine its physical status, you must issue
IEEMCF twice: once with TYPE=BUILD and once with TYPE=INVOKE.
TYPE=BUILD builds the parameter list containing information about the devices to
be reconfigured or queried. TYPE=INVOKE configures or queries the physical
status of the devices in the list built by TYPE=BUILD and receives data and return
codes from the system.

Obtaining UCB information (general methods)
Use the UCB macros described in this topic to obtain UCB information. These
macros can be used for any UCB, including those defined as dynamic (dynamic
UCBs).

Obtaining UCB addresses for a specified device number
You can use the UCBLOOK macro to obtain actual (not captured) addresses of the
following segments for a UCB:
v UCB common segment
v UCB common extension segment
v UCB prefix extension segment

The input UCBs can be associated with:
v A device with a 3-digit hexadecimal number
v A device with a 4-digit hexadecimal number
v For DASD and tape devices, the volume serial number

IBM recommends using the UCBLOOK macro to obtain UCB addresses.

The PIN parameter on the UCBLOOK macro allows the caller to pin the UCB
whose address is to be obtained. See “Pinning and unpinning UCBs” on page 506
for more information on pinning and unpinning.

The IOSLOOK macro is restricted to below 16 megabyte UCBs for static or
installation-static devices with 3-digit device numbers. Like UCBLOOK, IOSLOOK
returns the UCB address associated with a given device number. However,
UCBLOOK has several advantages that IOSLOOK does not:
v UCBLOOK can be used for dynamic devices, as well as static and

installation-static devices. UCBLOOK provides the option to limit the look-up to
static and installation-static devices, or to also include dynamic devices.

v UCBLOOK can be used for devices with 4-digit device numbers as well as for
devices with 3-digit device numbers.

v UCBLOOK can be used for above 16 megabyte UCBs as well as below 16
megabyte UCBs.

v UCBLOOK allows an EBCDIC device number or, for DASD and tape devices, a
volume serial number, to be used as a look-up argument.

v UCBLOOK supports AR-mode callers.

Chapter 24. Accessing unit control blocks (UCBs) 519

Scanning UCBs
Use the UCBSCAN macro to scan UCBs, returning UCB information on each
invocation. The scan can include all UCBs in the system, or be restricted to a
specific device class. For example, you can use UCBSCAN to find all DASD
devices currently defined in the I/O configuration.

There are two kinds of information that UCBSCAN can return on each invocation.
If you specify the COPY keyword, UCBSCAN returns a copy of a UCB in a
user-supplied work area. If you specify the ADDRESS keyword, UCBSCAN returns
a UCB common segment address. With the ADDRESS keyword, you can also
request a UCB common extension or prefix extension address. Unauthorized
programs must specify the COPY keyword when invoking the UCBSCAN macro.

When you use UCBSCAN to obtain UCB addresses for devices, it is necessary to
ensure that these devices will not be dynamically deleted while the scan is taking
place. The PIN parameter on the UCBSCAN macro allows the caller to pin each
UCB whose address is to be obtained. As with UCBLOOK, specifying the PIN
parameter ensures that the returned address for the UCB is valid as of the moment
the UCB is pinned, and that the address remains valid as long as the pin is in
effect. As in any other case where a program pins a UCB, the program is
responsible for unpinning the UCB once the UCB is no longer subject to
processing.

IBM recommends the use of the UCBSCAN macro for UCB scans. The limited
method UCB scan service (described under “Obtaining UCB information (limited
method)” on page 522) is restricted to below 16 megabyte UCBs for static and
installation-static devices with 3-digit device numbers. However, the UCBSCAN
macro can perform the same functions as the UCB scan service, and also provides
these additional advantages:
v You can use UCBSCAN for dynamic devices, as well as for static and

installation-static devices. It is also possible to limit the scan to static and
installation-static devices, or to also include dynamic devices.

v You can use UCBSCAN for devices with 4-digit numbers as well as for devices
with 3-digit numbers.

v You can use UCBSCAN COPY for copies of below and above 16 megabyte
UCBs.

v You can use UCBSCAN ADDRESS for addresses of below and above 16
megabyte UCBs.

v You can use UCBSCAN ADDRESS to obtain the address of the UCB common
extension and UCB prefix extension.

v UCBSCAN supports AR-mode callers.
v UCBSCAN allows you to start the scan at a specific device number.
v UCBSCAN returns UCBs in ascending order by device number.

Examples: Using the UCB macros

Example 1
Obtain the UCB address for the device whose volume serial number is specified by
VOL. The look-up should include UCBs for dynamic devices. Pin the UCB, and
return the UCB address at the address specified by UCBPTR. After all processing
related to the UCB has completed, unpin the UCB.

520 z/OS V2R2 MVS Authorized Assembler Services Guide

UCBLOOK VOLSER=VOL,UCBPTR=UCBPTR,DYNAMIC=YES,PIN, X
TEXT=TEXTLOOK,PTOKEN=PTOKLOOK

*
* Process UCB
*

UCBPIN UNPIN,PTOKEN=PTOKLOOK
*
* ...
*
UCBPTR DS F
VOL DS CL6 VOLSER searching for
TEXTLOOK DC CL58’PIN TEXT FOR UCBLOOK’ Pin Text
PTOKLOOK DS CL8 Pin Token

Example 2
Obtain the addresses of the UCBs for all tape devices. The scan should include
UCBs for dynamic devices. On each invocation of UCBSCAN, return a UCB
address at the address specified by UCBPTR and pin the UCB whose address is
returned. After all processing related to each UCB has completed, unpin the UCB.
*
*
*
SETUP DS 0H

XC SCANWORK,SCANWORK Clear work area
SEARCH DS 0H

UCBSCAN ADDRESS,UCBPTR=UCBPTR,WORKAREA=SCANWORK, X
DEVCLASS=TAPE,DYNAMIC=YES,PIN,TEXT=TEXTSCAN, X
PTOKEN=PTOKSCAN

LTR R15,R15 Has a UCB been returned?
BNZ DONE No end of device class

*
* Process UCB
*

UCBPIN UNPIN,PTOKEN=PTOKSCAN
B SEARCH

DONE DS 0H
*
*
*
UCBPTR DS F UCB copy from SCAN
PTOKSCAN DS CL8 Pin Token
SCANWORK DS CL100 Work area for UCBSCAN
TEXTSCAN DC CL58’PIN TEXT FOR UCBSCAN’ Pin Text

Determining if the UCB macros (general methods) are
available

Programs that need to determine if the UCB macros are installed can use one of
the following procedures. These procedures are provided for programs that can
also run on versions of MVS which do not support the UCB macros.

Note: The UCB macros (general methods) are supported on MVS/SP Version 4
and above, as well as on MVS/SP Version 3 systems if the dynamic I/O
configuration compatibility APARs are installed.

Procedure for pre-MVS/SP Version 4 libraries
Use this determination method when the source code is compiled against
pre-MVS/SP Version 4 macro libraries. (Note: The UCB macros must be included
in the macro library concatenation.)

L 10,X’10’ Load CVT pointer
USING CVT,10
TM CVTDCB,X’08’ Is the OSLEVEL extension present?

Chapter 24. Accessing unit control blocks (UCBs) 521

BNO INVOKE_LIM No, pre-MVS/SP Version 3 system
TM X’4F0’(10),X’08’ General methods supported?
BNO INVOKE_LIM No, general methods unavailable
UCBLOOK Invoke general method
B BYPASS_LIM Branch around limited method

INVOKE_LIM DS 0H
IOSLOOK Invoke limited method

BYPASS_LIM DS 0H

Procedure for MVS/SP Version 4 and above libraries
Use this determination method when the source code is compiled against MVS/SP
Version 4 and above macro libraries.

L 10,X’10’ Load CVT pointer
USING CVT,10
TM CVTDCB,CVTOSEXT Is the OSLEVEL extension present?
BNO INVOKE_LIM No, pre-MVS/SP Version 3 system
TM CVTOSLV0,CVTUCBSV General methods supported?
BNO INVOKE_LIM No, general methods unavailable
UCBLOOK Invoke general method
B BYPASS_LIM Branch around limited method

INVOKE_LIM DS 0H
IOSLOOK Invoke limited method

BYPASS_LIM DS 0H

Obtaining UCB information (limited method)

Note: IBM recommends that you use the UCBSCAN macro rather than the UCB
scan service.

The UCB scan service described in this topic can be used only for UCBs that have
not been defined as dynamic. See “Scanning UCBs” on page 520 for information
on performing scans that include UCBs defined as dynamic.

The UCB scan service
The UCB scan service allows you to scan each UCB in the system or in a specified
device class. The device classes are: tape, communication, channel-to-channel
adapter, direct access, display, unit record, and character reader. Using UCB scan
services you can, for example, find the UCB currently associated with a particular
VOLSER or find all tape devices currently defined.

The UCB scan service runs in the caller's key, state, and addressing mode. The
caller can be in either task or SRB mode; if in task mode, the caller must be
enabled and hold no locks. Unlike the IOSLOOK macro, the UCB scan service does
not require the user to be in supervisor state or to provide the device number as
input.

Invoking the UCB scan service
Each time that you invoke the UCB scan service, you will obtain the address of the
common segment of one UCB. To scan several UCBs, you must invoke the UCB
scan service repeatedly, once for each UCB. The UCB scan service keeps track of
your position in the UCB chain by information that it stores in the 100-byte work
area that you provide as input. To start your scan, clear this work area to binary
zeroes. The zeroes indicate that the UCB scan service is to start the scan at the first
UCB in the system or device class. If you want to continue the scan to obtain the
next UCB, do not change the work area.

522 z/OS V2R2 MVS Authorized Assembler Services Guide

When you have obtained the address of a UCB common segment, you can use the
UCBDEVN macro to convert the device number referred to by the UCB into a
four-byte printable EBCDIC form.

Input to the UCB scan service
To use the UCB scan service, the caller must:
v Obtain a 100-byte work area that starts on a doubleword boundary. To start with

the first UCB in the system or the first UCB in a device class, clear the work area
to binary zero. To continue scanning UCBs, do not change the work area
between calls to the scan service routine.

v Build a parameter list.

Parameter List for the UCB Scan Routine:
v Address of the 100-byte work area provided by the caller.
v Address of the byte containing the device class to which the search is being

restricted. See the topic “Limiting the UCB Scan” for information on how to
restrict the search to a specific device. If all UCBs are to be scanned, the byte
pointed to must contain X'00'.

v Address of the word in which the UCB scan service is to return the UCB
address. The high order bit of this field must be 1 to indicate it is the last word
in the parameter list.

Set up the registers to contain the following information:

Register
Contents

1 Address of the parameter list

13 Address of caller's 18-word save area

14 Caller's return address

15 Entry point of the UCB scan routine. (The CVTUCBSC field in the CVT
contains the entry point address.)

Note: The data areas that the caller passes to the UCB scan service must be
addressable in the addressing mode of the caller. If the program runs in 31-bit
addressing mode, the data areas can be anywhere; otherwise, the data areas must
be below 16 megabytes.

Limiting the UCB scan
If you want to limit the UCB scan to a specific device class, you must provide the
address of a one-byte field containing the hexadecimal code for that class. These
fields are defined in the UCBDVCLS (or UCBTBYT3) bit string in the UCB.
Figure 66 on page 524 lists the valid device class specifications with their UCB
definitions. For example, to restrict the search to tapes, set the byte containing the
device class equal to the constant UCB3TAPE. If you use the UCB definitions in
your program, you must include the UCB mapping macro (IEFUCBOB). To scan all
of the UCBs in the system, provide the address of a one-byte field containing X‘00’.

Chapter 24. Accessing unit control blocks (UCBs) 523

Output from the UCB scan service
When the UCB scan service returns, register l5 contains one of the following return
codes:

Return Code
Meaning

00 The UCB scan service stored a UCB address in the location specified in the
third word of the parameter list.

04 There are no more UCBs. The UCB scan service set the 100-byte work area
to binary zeros.

Note:

1. A dynamic device reconfiguration (DDR) swap might occur during a scan.
Because this type of swap results in the interchange of information in UCBs, it
might cause a UCB address to be skipped or returned twice.

2. Do not place any dependencies on the order in which the UCB addresses
appear during a scan. The address of the UCB representing device 250, for
example, might be returned before the one representing device 140.

3. Devices with optional channels are associated with only one UCB. Therefore,
the UCB scan service returns only one UCB address for those devices. Devices
with multiple exposures have one UCB associated with each exposure.
Therefore, the UCB scan service returns one UCB address for each exposure.

Example: Using the UCB scan service
The following is an example of how to use the UCB scan service to find the UCB
currently associated with a particular VOLSER. The search is limited to direct
access UCBs.

FINDVOL CSECT
PROLOG STM 14,R12,12(R13)

BALR R12,0
PSTART DS OH

USING PSTART,R12

UCB Definition
Device Class

UCB3TAPE
Tape

UCB3COMM
Communication

UCB3CTC
Channel-to-channel adapter

UCB3DACC
Direct access

UCB3DISP
Display

UCB3UREC
Unit record

UCB3CHAR
Character reader

Figure 66. Device Classes

524 z/OS V2R2 MVS Authorized Assembler Services Guide

ST R13,MYSAVE+4 SAVE CALLER’S REGISTER 13
LA R2,MYSAVE GET MY SAVE AREA ADDRESS
ST R2,8(R13) CHAIN SAVE AREA TO CALLER’S
LR R13,R2 SET UP TO USE LOCAL SAVE AREA
......
......

SETUP DS OH SET UP FOR UCB SCAN SERVICE
L R3,CVTPTR GET CVT ADDRESS
USING CVTMAP,R3 SET UP ADDRESSABILITY TO CVT
XC WORKAREA,WORKAREA CLEAR WORK AREA
LA R1,WORKAREA GET ADDRESS OF WORK AREA
ST R1,PARMWA STORE ADDRESS IN THE PARMLIST
LA R1,DEVCLASS GET ADDRESS OF AREA CONTAINING X

THE DEVICE CLASS TO BE SEARCHED
ST R1,PARMDEVT STORE ADDRESS IN THE PARMLIST
MVI DEVCLASS,UCB3DACC INDICATE ONLY DIRECT ACCESS UCBS

* ARE TO BE SEARCHED.
* NOTE: IF ALL UCBS WERE TO BE
* SEARCHED, DEVCLASS WOULD
* BE SET TO X’00’.

LA R1,ADDRUCB GET ADDRESS OF WORD WHERE SCAN X
SERVICE WILL STORE THE UCB ADDRESS

ST R1,PARMUCB STORE ADDRESS IN THE PARMLIST
OI PARMUCB,X’80’ INDICATE END OF PARMLIST
USING UCBOB,R2 SET UP ADDRESSABILITY TO UCB

SEARCH DS OH
LA R1,PARMLIST PUT PARMLIST ADDRESS IN REGISTER 1
L R15,CVTUCBSC GET SCAN SERVICE ADDRESS
BALR R14,R15 GO TO SCAN SERVICE.

* INTERFACE:
* REGISTER 1 = ADDRESS OF THE
* PARAMETER LIST
* REGISTER 13= ADDRESS OF AN
* 18-WORD SAVE AREA
* REGISTER 14= RETURN ADDRESS
* REGISTER 15= SCAN SERVICE ENTRY
* POINT ADDRESS

LTR R15,R15 HAS A UCB BEEN RETURNED?
BNZ NOMATCH NO, AT END OF DEVICE CLASS AND X

NO MATCH FOUND
L R2,ADDRUCB GET UCB ADDRESS THAT THE SCAN X

SERVICE RETURNED

CLC UCBVOLI,SRCHVOL IS THIS THE VOLSER WE’RE LOOKING X
FOR?

BNE SEARCH NO, CONTINUE SCAN OF UCBS.
* NOTE: THE WORK AREA MUST NOT BE
* CHANGED BETWEEN CALLS TO THE
* SCAN SERVICE ROUTINE
FOUND DS OH

......

......
NOMATCH DS OH

......

......
ENDIT DS OH

L R13,MYSAVE+4 RESTORE CALLER’S REGISTER 13
LM R14,R12,12(R13) RESTORE REMAINDER OF CALLER’S X

REGISTERS
BR R14
EJECT

PARMLIST DS 3F PARMLIST MAPPING
ORG PARMLIST

PARMWA DS F ADDRESS OF 100-BYTE WORK AREA
PARMDEVT DS F ADDRESS OF BYTE CONTAINING X

THE DEVICE TYPE TO BE SEARCHED
PARMUCB DS F ADDRESS OF WORD TO CONTAIN THE X

Chapter 24. Accessing unit control blocks (UCBs) 525

UCB ADDRESS
SPACE

DEVCLASS DS CL1 BYTE CONTAINING DEVICE CLASS TO X
BE SEARCHED FOR

ADDRUCB DS F WORD IN WHICH UCB SCAN WILL PLACE X
THE ADDRESS OF THE UCBS. ALIGN

DS 0D ON DOUBLE-WORD BOUNDARY. (THE
* WORK AREA FOR SCAN SERVICE MUST
* BE ON A DOUBLE-WORD BOUNDARY.)
WORKAREA DS CL100 WORK AREA
MYSAVE DS 18F

......

......
DSECT
IEFUCBOB UCB MACRO ID
CVT DSECT=YES

EJECT
END FINDVOL

Obtaining the subchannel number for a unit control block
(UCB)

The IOSINFO macro obtains the subchannel number for a specified UCB from the
system without being dependent on the location or format of the information as it
is maintained in the UCB. The macro returns the subsystem identification word
(SID), which identifies the subchannel number of the UCB, in a user-specified
location. The SID is a fullword value; it contains the subchannel number in its
ending halfword. (The first halfword contains X'0001'.)

IOSINFO obtains the number of the subchannel that was associated with the UCB
at NIP time. However, the subchannel and the UCB might become disassociated
during system operation. Any disassociation of the UCB and the subchannel means
the subchannel number in the SID might not be valid. Therefore, IOSINFO returns
information consistent with NIP time but does not guarantee that the subchannel
will always be associated with the UCB.

If the UCB is disassociated from the subchannel at the time of the IOSINFO macro
invocation, IOSINFO can detect the situation and notify the user through a return
code. If the UCB is disassociated from the subchannel after the IOSINFO macro
invocation, IOSINFO can not notify the caller. Instructions for coding the macro
appear in z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG.

Accessing above 16-megabyte UCBs
To conserve below 16-megabyte common virtual storage, you can define a device's
UCB above 16 megabytes. You specify whether a UCB can exist above 16
megabytes in the hardware configuration definition (HCD) device definition. For
application programs that require 24-bit addresses, the system enables above 16
megabyte UCBs to be accessed in below 16 megabyte private, virtual storage.

During allocation, the system automatically creates a below 16 megabyte view into
the actual above 16 megabyte UCB. The view is known as a captured UCB. It
enables an application to access the UCB in the private storage of its address space.
The system automatically captures an above 16 megabyte UCB at allocation and
releases the UCB at deallocation. With dynamic allocation, you can choose not to
capture a UCB if affected applications can handle above 16 megabyte UCBs.

If you are not using standard IBM services, for example, you are building your
own data extent block (DEB), you might need to control capturing of an above 16

526 z/OS V2R2 MVS Authorized Assembler Services Guide

megabyte UCB explicitly. For example, a program might allocate a device in one
address space but perform I/O in another address space. A captured UCB created
during allocation in the first address space is not accessible in the second address
space. The program could explicitly capture the UCB in the second address space.
You use the IOSCAPU macro to explicitly capture and release UCBs.

Although it is not recommended, you can use the CAPTCOM parameter on the
IOSCAPU macro to capture a UCB in common rather than private storage.
Capturing in common storage enables a UCB pointer in a common control block to
be accessed in any address space. For this reason, the system automatically
captures the UCBs for devices with the SYS1.LINKLIB, SYS1.SVCLIB, or logrec
data sets in common rather than in private storage. To enable support for JES2
spool data sets, the UCBs for these devices are also captured in common storage.
Therefore, if your common storage is constrained, the UCBs for these devices
should remain below 16 megabyte UCBs.

Programs can also use the IOSCAPU macro to determine a captured UCB's actual
UCB address. The IOSCAPF macro also provides a method of receiving an actual
UCB address and handles parameter passing in general purpose registers (GPRs).
IOSCAPF does not provide parameter validation or recovery.

With the UCBLOOK and UCBSCAN ADDRESS macros, you can use the LOC
parameter to indicate whether you want to receive above 16 megabyte UCB
addresses. The default is to receive only below 16 megabyte UCBs.

Macros that receive a UCB address accept the address of a below 16 megabyte
UCB, above 16 megabyte UCB, or captured UCB. The UCBLOOK and UCBSCAN
ADDRESS macros, which return UCB addresses, only return actual UCB addresses,
not captured UCB addresses. The IOSUPFA and IOSUPFR macros also only return
an actual, not captured, UCB address. Other macros that return addresses of UCB
segments, such as the IOSCMXA, IOSCMXR, and IOSDCXR macros return the
address of an actual UCB segment given an actual UCB address and the address of
a captured UCB segment given a captured UCB address.

Chapter 24. Accessing unit control blocks (UCBs) 527

528 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 25. Dynamic allocation

This information provides the following introductory information about dynamic
allocation:
v An allocation overview
v Choosing the type of allocation for your program
v Dynamic allocation functions

– In a batch environment
– In an interactive environment

v Installation Options for Dynamic Allocation Functions.

If you have experience using dynamic allocation functions, you might want to skip
this information and go on to Chapter 26, “Requesting dynamic allocation
functions,” on page 553, which describes the interfaces needed to code a dynamic
allocation request.

If you are unfamiliar with the concept of allocation, read “An allocation overview,”
and all of the information that apply to your program.

To decide whether dynamic allocation is appropriate for your program, read
“Choosing the type of allocation for your program” on page 530.

To learn which dynamic allocation functions are meaningful in your programming
environment, read:
v “Using dynamic allocation functions in either a batch or interactive

environment” on page 533, if your program is to run in a batch environment.
v “Using dynamic allocation functions in either a batch or interactive

environment” on page 533 and “Using dynamic allocation functions in an
interactive environment” on page 546, if your program is to run in an interactive
environment, such as TSO/E. The functions described in both topics are useful
in an interactive environment.

To find out what installation defaults can affect dynamic allocation, read
“Installation options for DYNALLOC macro functions” on page 550.

Note:

BPXWDYN is a text interface to a subset of the SVC 99 (dynamic allocation) and
SVC 109 (dynamic output) services. BPXWDYN supports data set allocation,
unallocation, concatenation, and the addition and deletion of output descriptors.
BPXWDYN is designed to be called from REXX, but it may be called from several
other programming languages, including Assembler, C, and PL/I. For more
information, see z/OS Using REXX and z/OS UNIX System Services.

An allocation overview
Allocation is the process by which the system assigns, or allocates, I/O resources
to your job. An I/O resource is a ddname-data set combination, with any
associated volumes and devices.

© Copyright IBM Corp. 1988, 2016 529

Deallocation is the process by which the system releases, or deallocates, I/O
resources that were allocated to your job.

Choosing the type of allocation for your program
There are two basic types of allocation: job step allocation and dynamic allocation.
The two types allocate resources at different points in program processing. Job step
allocation assigns resources to your program before your program runs, and
dynamic allocation assigns resources to your program while it is running. The
needs of your program determine which type of allocation you should use.

Characteristics of job step allocation
When using job step allocation, you request I/O resources through JCL. The
system allocates those I/O resources before your program runs, as part of initiating
the job step, and deallocates resources after your program runs, as part of job step
termination. This type of allocation ensures that the resources you request are
available before your program runs, and throughout program execution.

Characteristics of dynamic allocation
When using dynamic allocation, you request I/O resources by coding the
DYNALLOC macro and filling in the fields of the SVC 99 parameter list. The
system allocates and deallocates those I/O resources while your program is
running. Dynamic allocation also allows you to request information about your
allocation environment, and to deallocate or modify characteristics of your
allocation environment that were acquired either dynamically or through JCL.

Dynamic allocation allows you to tailor your device allocations based on input to
your program. You can design your program to dynamically allocate only those
devices that are necessary in a particular programming path, rather than allocating
all possible device requirements before your program runs.

Dynamic allocation also allows you to use common resources more efficiently.
When there is high contention for a resource, dynamic allocation allows you to
acquire an I/O resource just before you need it and to release it just after you need
it, so that your program holds the resource for a shorter length of time.

When to avoid using dynamic allocation
Do not use dynamic allocation in the following types of programs, because their
characteristics, combined with a dynamic allocation request, can cause the program
to end abnormally:
v Programs running in cross memory mode.

For further information on the use of cross memory services, see z/OS MVS
Programming: Extended Addressability Guide.

v Programs running under an interruption request block (IRB).
Requesting dynamic allocation functions in routines that run under an IRB and
issue OPEN, OPENJ, CLOSE, EOV, or FEOV, or any other service that enqueues
on SYSZTIOT can cause a X'138' abend.

v Installation exits that get control during the start of the job entry subsystem.
v Installation exits that get control before batch allocation is complete.
v User exits for OPEN/CLOSE/EOV, or for any other routines that enqueue on

SYSZTIOT.
v Multitasking programs in which one task issues the DYNALLOC macro with the

S99TIONQ bit on in S99FLAG2, and other tasks issue the DYNALLOC, OPEN,
OPENJ, CLOSE, EOV, FEOV, or LOCATE macros.

530 z/OS V2R2 MVS Authorized Assembler Services Guide

v MVS command installation exits.
For further information about this restriction and about command installation
exits, see z/OS MVS Installation Exits.

Additional requirements and restrictions for dynamic allocation are outlined in
“Programming considerations for using the DYNALLOC macro.”

Programming considerations for using the DYNALLOC macro
Before deciding to use any of the dynamic allocation functions, consider the
environment of the program that invokes the DYNALLOC macro. Your program
interacts with the job entry subsystem, with data management functions, and with
system components that control the jobs, in addition to dynamic allocation itself.

The following list contains more specific programming considerations for using the
DYNALLOC macro. Other considerations are included with the topics to which
they apply.
v Serialization of Resources

Your program might serialize the same resources as DYNALLOC. Dynamic
allocation can serialize the following resources, depending on the path taken in
processing.

Major Name
Minor Name

SYSDSN
data set name

SYSIEFSD
CHNGDEVS

SYSIEFSD
DDRDA

SYSIEFSD
DDRTPUR

SYSIEFSD
Q4

SYSZOPEN
data set name

SYSZPCCB
PCCB

SYSZTIOT
address of the DSAB QDB.asid

SYSZVMV
ucbaddr

SYSZVOLS
volume serial number

v Other system routines and dynamic allocation

System routines invoked by various paths of dynamic allocation processing also
might serialize a system resource. Some of the system functions invoked by
dynamic allocation processing are LOCATE, OBTAIN, CATALOG, SCRATCH,
and DADSM Allocate.

Chapter 25. Dynamic allocation 531

For the same reason, installation exits for OPEN/CLOSE/EOV, or for any other
routines that enqueue on SYSZTIOT, should not issue dynamic allocation
requests.

v AMODE and RMODE considerations

There are no AMODE or RMODE restrictions for the caller of DYNALLOC.
However, all addresses in the parameter list must be in 31-bit addressing mode
format. 24-bit addresses must be 4 bytes long, with the high-order byte set to
zero.

v Avoiding 05C abends

Note:

Programs that issue DYNALLOC should not receive control during START
(initialization) processing for LOGONs, MOUNTs, or started tasks.

Programs that get control during START processing (installation exits, for
example) should not issue LOCATE, OPEN, OBTAIN, CATALOG, SCRATCH, or
DADSM Allocate for data sets that have not been preallocated to the program; to
do so will cause an 05C abend.
Subsystems that receive control during step allocation as a result of the JCL
SUBSYS parameter should not issue DYNALLOC; to do so might cause an 05C
abend.

v Changes to the TIOT

Dynamic allocation might cause changes to the task input/output table (TIOT).
Depending on the function requested through the DYNALLOC macro, an entry
could be added, deleted, or reordered; you cannot assume a fixed order for
TIOT entries.
You should make sure your program can handle changes to the TIOT. This is
especially important when the EXTRACT macro is being used in your program,
or in the program that will gain control when dynamic allocation processing is
finished,
If you need to reference TIOT entries after DYNALLOC is invoked, use the
GETDSAB macro.

NOT Programming Interface Information

v Accessing ICF CATALOGS

Programs that get control during ‘START’ (installation exits, for example) should
not issue LOCATE, OPEN, OBTAIN, CATALOG, SCRATCH, or DADSM allocate
for data sets that have not been preallocated to the program; to do so could
cause the system to issue message IEC331I with return code X'4' and reason
code X'84'.

End NOT Programming Interface Information

Selecting the type of allocation based on program
requirements

The table below recommends the type of device allocation to use based on the
needs of your program.

When... Choose:

You need data to be available for the duration of your program JCL

532 z/OS V2R2 MVS Authorized Assembler Services Guide

When... Choose:

You need to know that the program has access to all data before
execution begins

JCL

Your data requirements are constant for all program conditions JCL

You need data only in certain paths of program processing Dynamic
allocation

Your program can wait or fail if the data is not available when you
issue the DYNALLOC macro

Dynamic
allocation

Your program is a long-running job or server that could cause
contention for system resources

Dynamic
allocation

Dynamic allocation functions
Most dynamic allocation functions are useful in either a batch environment or an
interactive environment, such as TSO/E. These functions are discussed in “Using
dynamic allocation functions in either a batch or interactive environment.” Some
dynamic allocation functions are useful only in an interactive environment. These
are described in “Using dynamic allocation functions in an interactive
environment” on page 546.

If you are coding a program to run in a batch environment, read “Using dynamic
allocation functions in either a batch or interactive environment.”

If you are coding a program to run in an interactive environment, read both
“Using dynamic allocation functions in either a batch or interactive environment”
and “Using dynamic allocation functions in an interactive environment” on page
546 for a complete description of the dynamic allocation functions available to
your program.

Using dynamic allocation functions in either a batch or
interactive environment

The dynamic allocation functions described in Table 68 are useful in a batch
environment or an interactive environment. They are:

Table 68. Dynamic Allocation Functions in a Batch or Interactive Environment

Function Described in topic Purpose

Dsname or pathname
allocation

“Using dsname or
pathname allocation”
on page 534

Dynamically assigns a data set or z/OS
UNIX file to a job by its data set name.

Ddname allocation “Using ddname
allocation” on page 548

Dynamically reuses a not-in-use data
set.

Deallocation “Deallocating
resources” on page 541

Dynamically releases resources assigned
to a job through JCL or dynamic
allocation

Concatenation “Concatenating
resources” on page 544

Logically associates allocated data sets.

Deconcatenation “Deconcatenating
resources” on page 545

Logically disassociates concatenated
data sets.

Chapter 25. Dynamic allocation 533

Table 68. Dynamic Allocation Functions in a Batch or Interactive Environment (continued)

Function Described in topic Purpose

Information retrieval “Obtaining allocation
environment
information” on page
545

Retrieves information about your
allocation environment.

Functions that are useful only in an interactive environment are described in
“Using dynamic allocation functions in an interactive environment” on page 546.

Note: Throughout this information, the word “deallocate” is used to denote the
action, and the word “unallocated” is used to denote the state. In cases where the
common usage is hard to change – for example, in the name of a dynamic
allocation function – without causing confusion, the words “unallocate/
unallocation” have been retained.

Using dsname or pathname allocation
The major function performed by dynamic allocation, and the function most often
requested, is that of dynamically allocating a data set or z/OS UNIX file according
to its name (dsname or pathname). Dynamic allocation by dsname or pathname is
equivalent to data set or file allocation during job step initiation, except that the
resource is allocated as your program runs.

Before using dsname or pathname allocation, you should ensure that the service
you need is available through dynamic allocation. You can request most of the JCL
facilities that you can code in a DD statement – such as data set disposition,
volume label information, expiration date, and SYSOUT destination – by specifying
the appropriate text units in the parameter list. However, some JCL facilities do not
have dynamic allocation equivalents. These facilities are described in “JCL DD
statement facilities not supported by dynamic allocation” on page 535.

Consult the detailed description of each text unit key (see “SVC 99 parameter list
verb codes and text units, by function” on page 636) for the capabilities supported
by the key. The system might support a JCL subparameter but not support all
values of that subparameter. For example, the system might support DCB=DSORG
without supporting DCB=DSORG=IS.

After you have determined that you can use dsname allocation to fulfill your
request, you might be concerned about doing it efficiently. You make the most
efficient use of dsname allocation processing when you reuse existing allocations.
Consider the following questions:
v Does an existing resource conflict with this request? (See “Checking for conflicts

with your existing allocation environment” on page 535.)
v Can I use an existing resource for this request? (See “Using an existing allocation

to fulfill a dsname allocation request” on page 536.)
v Can I modify an existing resource for this request? (See “Changing the

parameters of an existing allocation” on page 538.)

If the answers to all the questions above are "no," the system uses a new allocation
to satisfy your request, as described in “Using a new allocation to fulfill a dsname
or pathname allocation request” on page 539. Allocating a new resource requires
more processing than using an existing one, and so is less efficient.

534 z/OS V2R2 MVS Authorized Assembler Services Guide

JCL DD statement facilities not supported by dynamic allocation
Table 69 lists JCL DD statement facilities that cannot be used in dynamic allocation.

Table 69. JCL DD Statement Facilities Not Supported by Dynamic Allocation

Restricted DDnames JOBCAT, STEPCAT, JOBLIB, and STEPLIB

Keyword Parameters CHKPT, DDNAME, DLM, and DSID

Positional Parameters *, DATA, and DYNAM

Selected Subparameters of
Keywords Keyword

Subparameter Not Supported

DCB reference to ddname of a previous step
CYLOFL
NTM
RKP

DISP PASS specification

DSN reference to ddname (as in *.ddname) ISAM area
name

SPACE ABSTR specification

UNIT AFF

VOLUME
RETAIN specification
REF=ddname

Dynamic allocation facilities without JCL equivalents
Dsname allocation allows you to request the following data set characteristics,
which are not available through JCL:
v The password for a password-protected data set. If you specify the password in

your program through the SVC 99 parameter list, the system does not prompt
the operator.

v The permanently allocated attribute.
v The convertible attribute.
v The insulated DD attribute (for authorized programs).
v Bypass security processing (for authorized programs).
v Return of certain information.

Checking for conflicts with your existing allocation environment
When you invoke the DYNALLOC macro to perform dsname dynamic allocation,
an “allocation environment” already exists for your request. It consists of the
allocation requests made through your JCL or earlier dynamic allocations, that
have not yet been deallocated. The system considers these resources to be existing
allocations, and goes to them first to fill your dynamic allocation requests.

Dynamic allocation cannot satisfy a dsname allocation request that is in conflict
with your existing allocation environment. Environmental conflicts can cause your
request to fail when your dsname allocation request specifies:
v A ddname that is associated with an existing allocation that is in use.

Chapter 25. Dynamic allocation 535

|

|

v A ddname that is associated with a group of concatenated data sets defined as
permanently concatenated. (For a definition of permanently concatenated, see
“Requesting the permanently concatenated attribute” on page 544.)

v A ddname that is associated with an existing allocation that does not have the
convertible attribute or that does not fulfill the conditions listed under “Using an
existing allocation to fulfill a dsname allocation request.”

v A new non-temporary data set with the same dsname as that of an existing
allocation.
This is not a conflict if the request specifies a different volume serial number.
Non-temporary data sets can have the same dsname if they do not reside on the
same volume.

v An existing data set (by specifying a disposition of OLD or SHR) that is not
permanently allocated, not in-use, and has a disposition of DELETE. A data set
with these characteristics might be deleted before your program requests it.
This is not a conflict if your request specifies a different volume serial number,
and the allocation on the specified volume is permanently allocated and does
not have a disposition of DELETE.

MVS might allocate a different data set than you intend when you have multiple
versions of the same data set, with the same data set name, residing on different
volumes. When a data set with the same name as the intended data set has been
previously allocated (perhaps using an alias name) but not freed, then the current
allocate request might not allocate the intended version.

Avoid allocation of the incorrect data set in the following ways:
v Specify the volume and unit where the data set to be allocated resides by using

the DALVSER and DALUNIT text units in the dynamic allocation parameter list.
See “Dsname allocation text units” on page 642 for more information.
If the data set to be allocated is not cataloged in the master catalog, and a data
set with the same name is cataloged in the master catalog, then you must
specify DALVSER and DALUNIT.

v Free existing allocations for the same data set name (or alias names) using
dynamic unallocation.

v Use a unique data set name.
v Set the no-conversion flag in the dynamic allocation block (S99NOCNV in

S99FLAG1) to prevent the use of existing allocations for the same data set name.
See “Setting up the request block” on page 557 for more information. An
alternate method is to code the IEFDB401 installation exit to set the S99NOCNV
flag. See z/OS MVS Installation Exits for more information.

Using an existing allocation to fulfill a dsname allocation request
If possible, dynamic allocation will use an existing allocation — an allocated
resource marked not-in-use — to satisfy your dsname allocation request. Although
some parameters can be changed if necessary, the request and the existing
allocation must match according to several criteria before the allocation can be
selected to satisfy your request.

Characteristics required in your request: To be satisfied by an existing allocation,
your request must be for one of the following:
v An explicit data set name (dsname)
v The allocation of your terminal as an I/O device
v A dummy data set.

536 z/OS V2R2 MVS Authorized Assembler Services Guide

Characteristics prohibited in your request: To be satisfied by an existing
allocation, your request must not specify any of the following:
v Data set sequence number.
v DCB reference.
v Label type.
v Parallel mounting.
v Path name.
v Private volume.
v Unit count.
v Unit description. (If the dsname is in the form “&dsname”, the unit name

description is ignored.)
v Volume count.
v Volume reference.
v Volume sequence number.
v Attributes represented by text units keys from X'8000' through X'BFFF'.
v Insulated DD attribute.

Characteristics required in the existing allocation: To be used to satisfy your
request, the data set that is the existing allocation must have the following
properties:
v It must not be in use.
v It must not be a member of a concatenated group.
v It must have the same volume serial number as any explicitly specified in the

request.
v It must have the permanently allocated attribute, if its disposition is DELETE

and the request specifies a status of MOD.
v It must not be a generation data group data set.
v It must not be a z/OS UNIX file.
v It must either have the convertible attribute (described in “Convertible attribute”

on page 548) or, if the request is in a form other than “&dsname”, all of the
following must be true:
– The request does not specify a ddname; or the specified ddname matches the

ddname associated with the existing allocation. A terminal request that does
not specify a ddname cannot be satisfied by an existing allocation that does
not have the convertible attribute.

– For partitioned data sets, the member name specified in the request is the
same as the member name associated with the existing allocation; or a
member name is neither specified in the request nor associated with the
existing allocation.

– The request does not specify input only, output only, or any DCB parameters.
– If the request specifies a status of MOD, MOD is also associated with the

existing allocation; or it is neither specified in the request nor associated with
the existing allocation.

– The request does not specify that the convertible attribute be assigned to the
allocation.

– The request does not specify that only existing allocations with the
convertible attribute may be used.

If the request specifies dsname in the form “&dsname”, the request does not
specify a ddname; or the specified ddname matches the ddname associated with

Chapter 25. Dynamic allocation 537

|

the existing allocation. A terminal request that does not specify a ddname cannot
be satisfied by an existing allocation that does not have the convertible attribute.

System selection from multiple matching allocations: Even with all the
restrictions listed here, more than one existing allocation could match your dsname
request. Then, if you specified a ddname and one of the matching existing
allocations is associated with that ddname, that is the allocation that dynamic
allocation selects to satisfy your request.

If you did not specify a ddname, dynamic allocation selects the matching existing
allocation whose in-use attribute was most recently removed. (Data sets allocated
through JCL are considered to have had their in-use attributes removed at step
allocation.)

System creation of new ddname for existing allocation: An existing allocation
might not match your request even though it is associated with the same ddname
you specify. Because the ddname is going to be associated with the resource that is
allocated to your program, the system gives the existing allocation a new ddname,
of the form ‘SYS’ followed by five digits. The association of a system-generated
ddname with an existing allocation cannot occur when the existing allocation:
v Is in use
v Is open
v Does not have the convertible attribute
v Is associated with a permanently concatenated group that does not represent an

entire generation data set group or a multi-device-type VSAM data set.

Changing the parameters of an existing allocation
When dynamic allocation uses an existing allocation to satisfy a dsname allocation
request, some of the parameters of the existing allocation might have to be
changed to match the parameters specified in the request. Only existing allocations
that were dynamically allocated, with the convertible attribute, can have their
parameters changed. (The convertible attribute is described in “Convertible
attribute” on page 548.) Resources allocated through JCL or the TSO/E ALLOCATE
command cannot have their parameters changed (with the exception of status and
disposition specified through JCL), but they may be used if no changes are
necessary.

The following parameters are eligible for change by dynamic allocation:
v Ddname
v Member name
v Status
v Normal disposition
v Conditional disposition
v Space
v Deallocation at CLOSE
v Input only
v Output only
v DCB attributes
v Password
v Permanently allocated attribute.

No other parameters may be changed.

538 z/OS V2R2 MVS Authorized Assembler Services Guide

Note:

1. You cannot change an exclusive status to shared status. For example, you
cannot change OLD to SHR. However, it is possible to change SHR to OLD if
no other jobs are enqueued on the requested data set.

2. You cannot change the parameters on an explicitly referenced OUTPUT JCL
statement (DALOUTPT).

3. The status (DALSTATS) of an existing allocation to be reused/converted must
always be SHR, OLD, or MOD. A Dynamic Allocation Information Retrieval
request may return a status (DINRTSTA) of NEW for that existing allocation,
because DINRTSTA will return the status as of the beginning of the step.
DALSTATS must specify the status at the time that the dynamic allocation is
being performed. See “Obtaining allocation environment information” on page
545 for more on requesting allocation status.

If a DD statement created the allocation environment as NEW:

//OUTDATA DD DSN=TSI.TP31.DEV.OUTDATA.KAM,
// DISP=(NEW,DELETE),
// UNIT=SYSDA,SPACE=(TRK,(9,9),RLSE)

and you specify Information retrieval as:

DINDDNAM ’OUTDATA ’

and receive back information as:

DINRTDSN ’TSI.TP31.DEV.OUTDATA.KAM’
DINRTSTA X’04’ (NEW) <=============
DINRTNDP X’04’ (DELETE)
DINRTCDP X’00’
DINRTATT X’20’ (Permanently allocated)
DINRTTYP X’00’

In order to convert the Normal Disposition from DELETE to CATLG
you must specify:

DALDDNAM ’OUTDATA ’
DSLDSNAM ’TSI.TP31.DEV.OUTDATA.KAM
DALSTATS X’08’ (OLD) <===================
DALNDISP X’02’ (CATLG)
DALPERMA

Using a new allocation to fulfill a dsname or pathname allocation
request
Dynamic allocation attempts a new allocation when it cannot satisfy your request
with an existing allocation. New allocations cannot be processed by dynamic
allocation while a job step holds (for possible reuse) more dynamically allocated
resources than permitted by the control limit. See “Control limit” on page 547 for
more information about the control limit, and “Permanently allocated attribute” on
page 548 for an explanation of which data sets are eligible for automatic
deallocation.

Considerations when requesting dsname or pathname allocation
The following topics describe how the system processes your dsname allocation
request based on the attributes of your allocation environment and your request.

Allowing the system to generate a ddname: If you do not specify a ddname, the
system generates one. The ddname created consists of the characters ‘SYS’
followed by five digits, with a maximum value of SYS65535.

Chapter 25. Dynamic allocation 539

Specifying a password: You may specify passwords as part of a dynamic
allocation request to bypass prompting the operator.

Allocating a data set with a status of MOD: If you allocate a data set with a
status of MOD but do not specify any volume information, and the data set cannot
be found in the catalog, it is treated as a new data set.

Allocating a dummy z/OS UNIX file: If you specify both the DUMMY and
pathname text units in the DYNALLOC macro parameter list, dynamic allocation
processing treats the allocation as a dummy. You can also allocate a dummy file by
specifying a pathname of /dev/null for the pathname text unit.

Determining the status of a z/OS UNIX file: Dynamic allocation determines
whether the z/OS UNIX file to be allocated is NEW, OLD, or MOD from the
pathname options specified on the DALPOPT text unit:
v The file is NEW if OEXCL and OCREAT are both specified.
v The file is MOD if OCREAT is specified but OEXCL is not specified.
v The file is OLD if OCREAT is not specified or if the DALPOPT text unit is not

specified.

Cataloging a data set: If you specify a normal disposition of CATLG for a new
direct access data set, the system catalogs the data set when it is allocated rather
than when it is deallocated. If the data set cannot be cataloged, then no allocation
will take place; if the data set cannot be allocated, it will not be cataloged.

Requesting a data set that is in use: Rather than wait for another user to release
a data set, volume, or device to obtain use of it, dynamic allocation fails a request
by an unauthorized program. If an authorized program specifically requests a wait,
dynamic allocation will wait.

Retrieving information from allocation: You can request that the ddname, data
set name, volume serial number, and other information assigned by allocation be
returned in the DYNALLOC macro parameter list.

Retrieving data set organization information from allocation: You can also
request that the data set organization (DSORG) of the allocated data set be
returned in the DYNALLOC macro parameter list. Dynamic allocation returns
whatever you specify as the DSORG, if anything. If you do not specify a DSORG
on the allocation request, the system assigns and returns a data set organization
according to the following defaults:
v If the allocation request is for a terminal as an I/O device or for a SYSOUT data

set, ‘PS’ (physical sequential) is returned as a default value.
v If the allocation request is for a tape data set, ‘PS’ is returned as a default value.
v If the allocation request is for a NEW direct access data set, ‘PO’ (partitioned

organization) is returned if you specified a non-zero directory space quantity;
otherwise, the data set is assigned the DSORG of ‘PS’. The ‘PS’ default value is
not stored into the data set control block (DSCB) until the data set has been
opened. If the newly allocated data set has not been unallocated, the default
DSORG value can be obtained by issuing the information retrieval function. (See
“Obtaining allocation environment information” on page 545 and “Dynamic
information retrieval text units” on page 713.)

v If the allocation request is for an existing direct access data set, the data set
organization obtained from the data set control block (DSCB) is returned. If the
DSORG cannot be obtained from the DSCB, the allocation request fails.

540 z/OS V2R2 MVS Authorized Assembler Services Guide

v If the allocation request is for a non-existing non-SMS-managed data set, for
which a status of SHR or OLD has been specified, a request for return of the
DSORG causes the dynamic allocation to fail unless a DSORG value is also
supplied on the request.

v For other types of allocation requests in which you do not specify a DSORG for
the data set, the system returns zeros in the DYNALLOC macro parameter list
field.

Access methods that are not available with dynamic allocation: You cannot
create ISAM data sets through dynamic allocation.

You can create VSAM data sets through dynamic allocation only when the storage
management subsystem (SMS) is active.

Requesting an allocated but unavailable data set: If you request an allocation by
dsname and the dsname is already allocated but not available, dynamic allocation
allocates the data set to the same unit and volume. “Using an existing allocation to
fulfill a dsname allocation request” on page 536 describes the conditions under
which an allocated data set will not be available to satisfy your request.

Allocating a GDG data set: An allocation of a GDG data set refers to the same
data set for the life of the job (or TSO/E logon session), even if another generation
is added during the job, unless the bit S99GDGNT is set in the FLAGS1 field of the
request block. When this bit is on, the system issues a LOCATE to find the GDG
base level. See “Flags (S99FLAG1)” on page 558 for a description of the bit, and
Table 73 on page 559 for an example using S99GDGNT. See z/OS MVS JCL User's
Guide for more information about GDG data sets.

Retrieving volume information: Dynamic allocation retrieves volume information
from the volume serial number, a VOL=REF, or, if the data set is cataloged, from
the catalog. Dynamic allocation will not use passed data set information to retrieve
volume information.

Exceeding the control limit: The control limit, described on “Control limit” on
page 547, limits the number of DD statements in a job step. Usually, the control
limit is a concern only in an interactive environment. However, some utilities that
can be used in a batch environment might require that you modify the control
limit. Utilities such as IDCAMS expect a control limit that is larger than the
number of DD statements in the job step. If the control limit is not larger, these
utilities could receive an X'043C' error reason code from DYNALLOC (see Table 79
on page 616). If a batch program requires a large number of allocations, use the
DYNAMNBR parameter on the EXEC statement to increase the control limit. Refer
to z/OS MVS JCL User's Guide to choose a value for the DYNAMNBR parameter.

Deallocating resources
Deallocation releases resources allocated to your program. You can dynamically
deallocate resources that were allocated either dynamically or through JCL, unless
the data set is:
v Open
v A member of an open concatenated group
v A private catalog.

In any of these cases, the data set is not deallocated.

Data sets are unallocated:

Chapter 25. Dynamic allocation 541

v When you explicitly deallocate them
v When they are closed if FREE=CLOSE is specified
v At the end of the job step if not deallocated earlier

Note: A data set is not DEQed until it is unallocated by the last step whose JCL
references it

When a data set is unallocated:
v You can use the ddname in subsequent dynamic allocation requests.
v The system processes the data set disposition.
v The system frees the unit to which the data set was allocated if it is not being

used for any other DD within the step.
v The system releases the volumes on which the data set was allocated if it is not

being used for any other DD within the step.
v The data set is DEQed and other jobs can use the data set, except when the:

– System has deleted it as part of disposition processing (the data set will no
longer exits and therefore cannot be referenced by any other jobs).

– Data set is referenced in the JCL of a later step of this job (the data set is not
DEQed until it is unallocated by the last step whose JCL references it).

v Although temporary data sets are never able to be used by other jobs, if the last
reference to a temporary data set in the job is PASS, the system releases a:
– Temporary VIO data set at the end of the last step in which it is referenced

Note: The system never ENQs VIO data sets.
– Releases a batch-allocated temporary non-VIO data set at the end of the job.

Deallocating resources by dsname or pathname
The following considerations apply to unallocation requests specifying a dsname
or pathname. For a description of unallocation by ddname, see “Deallocating
resources by ddname.”
v If you do not specify a ddname, and the dsname or pathname is associated with

more than one ddname, all associated data sets or z/OS UNIX files are
deallocated. If an error occurs while deallocating one ddname, processing
continues for the others and an error code is returned in the SVC 99 parameter
list. If errors occur for more than one ddname, the error code applies to the last
ddname for which there was an error.

v If you specify a member name with the dsname, only those associations
containing both the member name and dsname are deallocated. If you code a
member name text unit key, you must also code the dsname text unit key for a
valid request.

v To dynamically deallocate a z/OS UNIX file by pathname, you must specify the
same pathname that you specified to allocate the file. If the pathname specified
differs, the unallocation request will fail. For example, suppose that the file
pay.time can be accessed through multiple paths. It was allocated as
/usr/applics/pay.time but can also be accessed as /comn/pgms/pay.time.
Deallocating the file through the /comn/pgms path is not possible. It must be
deallocated by the /usr/applics/pay.time pathname.

Deallocating resources by ddname
The following considerations apply to deallocation requests specifying a ddname:
v Only the occurrence of the data set associated with the specified ddname is

deallocated, even if that data set is associated with other ddnames.

542 z/OS V2R2 MVS Authorized Assembler Services Guide

v If a dsname, pathname, or dsname and member name, are specified in addition
to the ddname, they must be associated with that ddname or the request fails.

Deallocating concatenated groups
If the specified resource is associated with a permanently concatenated group,
described in “Requesting the permanently concatenated attribute” on page 544, the
in-use attribute is removed from all members of the group, and the count of the
number of resources held for reuse is increased by the number of members in the
group. (See “In-use attribute” on page 546 for a description of the in-use attribute.)

An exception occurs when the concatenated group was generated by the system,
such as generation data groups that are GDG ALL groups. In these cases, the
group is treated as a single resource.

If a concatenated group has the permanently concatenated attribute and you
specify a ddname with a dsname, or GDG ALL, the entire group is released. If you
specify a dsname with GDG ALL, the request for dynamic unallocation fails. (See
“Deallocating resources by ddname” on page 542 for considerations when
deallocating resources by ddname.)

GDGs are described in z/OS MVS JCL User's Guide.

If the concatenated group does not have the permanently concatenated attribute,
the group is deconcatenated and the member associated with the specified dsname
is released. (The first member is released if the group's ddname is specified.)

Changing parameters at dynamic unallocation
With your dynamic unallocation request, you can include text units to change a
data set's or z/OS UNIX file's parameters as it is being deallocated. If your request
is in the form of verb code 02, key 8, the changes are honored when the data set or
z/OS UNIX file is actually released, unless they have been overridden in the
meantime. If your dynamic unallocation request is in the form of verb code 02, key
7, the changes take effect immediately.

The parameters that can be changed at deallocation are:
v Output class — see “Overriding SYSOUT class specification - Key = '0018'” on

page 707
v HOLD/NOHOLD parameters — see “Overriding SYSOUT nohold specification -

Key = '000A'” on page 706 and “Overriding SYSOUT hold queue specification -
Key = '0059'” on page 707

v Remote work station destination — see “Overriding SYSOUT remote
workstation specification - Key = '0058'” on page 707:
– For a JES2 environment SYSOUT data can be routed to:

- Remote workstation
- Node
- Special local
- Userid

– For a JES3 environment SYSOUT data can be routed to:
- ANYLOCAL
- JES3-defined device name
- Device number
- JES3-defined symbolic group name
- NJE node

Chapter 25. Dynamic allocation 543

v Userid — see “Overriding SYSOUT user ID specification - Key = '0063'” on page
707

Note: For a JES2 environment only.
v Data set or z/OS UNIX file disposition — see “z/OS UNIX overriding file

disposition specification - Key = '801A'” on page 709
v When the SYSOUT output is to be printed (JCL DD statement SPIN parameter)

— see “z/OS UNIX file path specification - Key = '8017'” on page 721.

Allocation disposition cannot be overridden for the following (see “Overriding
disposition specification - Key = '0005'” on page 705):
v Passed data sets
v VSAM data sets, when SMS is not active
v System-named data sets, except for subsystem data sets.

For all other types of data sets, the disposition specified on an unallocation request
overrides the disposition specified at allocation.

You cannot delete members of partitioned data sets with a disposition of DELETE;
the system deletes the entire data set. An overriding disposition of DELETE for
data sets allocated as shared is not valid; the system fails the overriding
disposition request.

Concatenating resources
Dynamic concatenation logically connects allocated data sets into a concatenated
group. You can identify data sets to be concatenated only by their associated
ddnames. These data sets must not be open; if they are, the request for dynamic
concatenation fails.

The order in which you specify the ddnames is the order in which the system
concatenates their associated data sets. The name associated with the concatenated
group is the ddname that was specified first; the other ddnames are no longer
associated with any data set.

If a ddname you specify is associated already with a concatenated group, that
entire group is included in the new concatenation.

After the request for dynamic concatenation is satisfied, all members of the
dynamically concatenated group are assigned the in-use attribute. The in-use
attribute is described on “In-use attribute” on page 546.

Requesting the permanently concatenated attribute
You can request that a concatenated group created through DYNALLOC be
assigned the permanently concatenated attribute. A group with the permanently
concatenated attribute has the following characteristics:
v The group cannot be dynamically deconcatenated into its member data sets.
v Except for the first data set in the concatenation, the data sets in the

concatenation are no longer associated with their original ddnames. Instead, all
data sets in the concatenation are associated with the ddname of the first data
set in the concatenated group.

v If a permanently concatenated group is dynamically concatenated with other
data sets to form a new non-permanently concatenated group, the permanently
concatenated group remains intact if the new group is dynamically
deconcatenated.

544 z/OS V2R2 MVS Authorized Assembler Services Guide

v If the group is not a system-defined permanently concatenated group, it is
automatically assigned the permanently allocated attribute.

Note: To dynamically release a non-system-defined permanently concatenated
group, you specify the ddname, not the dsname, in the unallocation request.

A concatenated group defined through JCL is automatically assigned the
permanently concatenated attribute, as is a concatenated group defined by the
system through JCL or DYNALLOC. A GDG ALL request and a request for a
VSAM data set that spans device types are examples of the latter situation.

Deconcatenating resources
Dynamic deconcatenation logically disconnects the members of a dynamically
concatenated group. You identify the concatenated group to be deconcatenated by
specifying the ddname of the group.

When a concatenated group is dynamically deconcatenated, the ddnames that were
associated with the data sets before they were concatenated are restored unless this
would result in duplicate ddnames. This situation could arise if a dynamic
allocation with the ddname to be restored occurred after a dynamic concatenation.
In this case, the deconcatenation request fails.

The request for dynamic deconcatenation also fails if the concatenated group is
open.

Dynamic deconcatenation has no effect on the in-use attributes associated with the
members of the group.

Obtaining allocation environment information
Dynamic information retrieval provides you with information about your current
allocation environment. You can request allocation information using any of the
following:
v The dynamic information retrieval function (verb code 07)
v The dsname allocation function
v The ddname allocation function.

The information returned is the information available at the time that the allocation
information request is processed. In cases where the requested information is not
applicable or not available, you receive 0 in the length field of the text unit, unless
otherwise specified in the text unit description. For example, if you request that the
system return the member name of a sequential data set, the system returns 0 in
the length field, because sequential data sets do not have member names.

You can ask for information about any or all of your currently-allocated requests
by specifying a relative request number. For example, you can obtain information
about all your allocation requests by successively asking for information about the
1st, 2nd,...nth allocation request. Code the DINRTLST text unit key (key 13) with
this series of requests, to receive an indication of the last relative entry.

Some of the information that you can request using verb code 07 includes:
v Data set name
v Ddname
v Pathname
v Member name

Chapter 25. Dynamic allocation 545

v Data set organization
v Status
v Normal disposition
v Abnormal disposition

Note: Dynamic information retrieval returns the compressed version of the z/OS
UNIX pathname (multiple slashes are reduced to a single slash). Information
retrieval will return a pathname of /dev/null for dummy z/OS UNIX files,
regardless of the pathname originally specified on the JCL or dynamic allocation.

“Dynamic information retrieval text units” on page 713 describes the information
that you can retrieve.

Using dynamic allocation functions in an interactive
environment

Dynamic allocation provides some controls designed specifically for the interactive
environment. The following features help to avoid tying up resources that are not
being used, or allow you to reuse resources that have already been allocated.

Feature Described in
topic

Purpose

In-use attribute “In-use
attribute”

Determines whether a data set is eligible to
be used by another dynamic allocation, or
determines whether a data set or z/OS
UNIX file can be deallocated if the control
limit is reached.

Control limit “Control
limit” on page
547

Limits the number of data sets that can be
allocated but not in use.

Permanently allocated
attribute

“Permanently
allocated
attribute” on
page 548

Prevents the system from automatically
deallocating a data set to meet the control
limit.

Convertible attribute “Convertible
attribute” on
page 548

Allows dynamic allocation to change certain
parameters of an existing allocation to
match a dynamic allocation request.

Ddname allocation “Using
ddname
allocation” on
page 548

Allows you to reuse a previously allocated
data set that is not in use.

In-use attribute
When a data set or a z/OS UNIX file is dynamically allocated, the system assigns
it the in-use attribute. You can request that the system remove the in-use attribute
by requesting that the system deallocate the data set or z/OS UNIX file, or by
requesting the remove-in-use function. When the system marks a dynamically
allocated data set or z/OS UNIX file as “not-in-use,” it does not deallocate the
resource:
v For a data set that has been marked “not-in-use”, the data set becomes eligible

for use in a subsequent dynamic allocation request.

546 z/OS V2R2 MVS Authorized Assembler Services Guide

v For an z/OS UNIX file that has been marked “not-in-use”, the file cannot be
reused by a subsequent allocation. Because there is no benefit to marking an
z/OS UNIX file “not-in-use”, rather than deallocating it, you should always
deallocate z/OS UNIX files.

In addition, the system keeps track of data set use, and knows which data sets
have not been in use for the longest time. These data sets might be deallocated
automatically when the number of allocations for a step exceeds the control limit.
See “Control limit” and “Permanently allocated attribute” on page 548 for more
information on when and why a data set is deallocated automatically.

Removing the in-use attribute by dsname or ddname
Remove the in-use attribute by specifying verb code 02 with text unit key 8 in the
SVC 99 parameter list. This function marks the data set as not-in-use. Marking a
data set not-in-use makes it eligible for automatic deallocation if the control limit is
exceeded.

If you code verb code 02 without specifying key 7 or key 8, dynamic unallocation
removes the in-use attribute from data sets allocated through JCL, the TSO/E
ALLOCATE command, or dynamically with the permanently allocated option;
dynamic allocation releases data sets that were allocated dynamically without the
permanently allocated option.

You use key 7 and key 8 to specify explicitly the type of processing you prefer. An
explicit specification is satisfied in all but one case: dynamic allocation will not
remove the in-use attribute from a non-permanently allocated, non-ampcdsname
data set with a disposition of DELETE. Such a resource cannot be used to satisfy a
subsequent request, so it is released.

Removing the in-use attribute by task ID
In addition to requesting removal of the in-use attribute by specifying a ddname or
dsname, you may request, through verb code 05, that the in-use attribute be
removed based on task ID. The attribute may be removed from all resources
associated with a specified task, or all resources except those associated with the
current task, its higher-level tasks, and the initiator.

Control limit
The control limit limits the number of data sets or z/OS UNIX files that can be
allocated but marked “not-in-use.”

This control limit is determined by the JCL parameter DYNAMNBR on the EXEC
statement and the number of DD statements. If the control limit is exceeded when
an application program requests a new dynamic allocation, the system
automatically attempts to deallocate enough data sets or z/OS UNIX files to meet
the control limit, starting with eligible data sets or z/OS UNIX files that have been
not-in-use for the longest time.

If the control limit is still exceeded after all eligible resources have been
deallocated, the request for a new allocation fails. In this case, you must explicitly
request deallocation of an existing allocation before the new allocation can be
satisfied. Refer to the z/OS MVS JCL User's Guide for information on choosing a
value for the DYNAMNBR parameter.

Note that if an allocation done with a DD statement is not OPEN, it is considered
not in-use and is counted in the current number of not in-use allocations. If it is
OPEN, it is not counted in the current number of not in-use allocations.

Chapter 25. Dynamic allocation 547

Permanently allocated attribute
The permanently allocated attribute prevents the system from automatically
deallocating a particular data set or z/OS UNIX file to meet the control limit. The
effect of this attribute is to determine eligibility for automatic deallocation.

The permanently allocated attribute is assigned automatically to data sets or z/OS
UNIX files allocated through JCL and the TSO/E ALLOCATE command. In
addition, you can request (through the DYNALLOC macro parameter list) that a
data set be assigned this attribute when you dynamically allocate the data set.

Note: Because permanently allocated resources are not automatically deallocated,
and all resources allocated through the TSO/E ALLOCATE command and JCL are
permanently allocated, the control limit is the primary factor that controls the
number of resources that a TSO/E user can have allocated at the same time. For
information on setting a control limit, see “Control limit” on page 547.

Convertible attribute
Because a data set requested by an application program might be allocated already,
dynamic allocation first checks for an existing allocation that matches the current
request. This check avoids redundant allocation processing. In some cases, an
existing allocation matches the current request except for some parameters.
Dynamic allocation can change certain unmatching parameters of the existing
allocation to meet the current request if the existing allocation has the convertible
attribute and the data set is not in use. The convertible attribute allows dynamic
allocation to change the following parameters of the existing allocation:
v Ddname
v Member name
v Status
v Normal disposition
v Conditional disposition
v Space
v Deallocation at CLOSE
v Input only
v Output only
v DCB attributes
v Password
v Permanently allocated attribute.

The convertible attribute is assigned automatically to all data sets that are
dynamically allocated without the permanently allocated attribute. You can,
however, assign both the convertible attribute and the permanently allocated
attribute to a resource; although you might want to prevent a data set from being
automatically deallocated, you might also want to allow some of its parameters to
be changed to satisfy a new allocation.

Using ddname allocation
Ddname allocation allows you to reuse, by specifying only the associated ddname,
a previously allocated data set that was marked not-in-use. Ddname allocation
causes the system to assign the in-use attribute to the data set.

548 z/OS V2R2 MVS Authorized Assembler Services Guide

You request dynamic allocation by ddname by specifying verb code 06 and putting
the ddname to be allocated in the DYNALLOC macro parameter list. For the
system to satisfy your ddname dynamic allocation request, the existing allocation
must not be in use. In addition, it must not have the convertible attribute; or it
must be permanently concatenated. In other words, it must have properties that
ensure that the ddname could not have been disassociated from the existing
allocation. (See “Requesting the permanently concatenated attribute” on page 544
for a description of this attribute.)

If the existing allocation with the specified ddname does not meet these
requirements, or if the ddname is not associated with any of your program's
existing allocations, the system fails the request and returns an error reason code in
the SVC 99 parameter list.

If the existing allocation meets the requirements, the system assigns it the in-use
attribute and the request has been satisfied. If the existing allocation is a member
of a concatenated group, all members of the group are assigned the in-use
attribute, so the entire group has been allocated.

To request that the system return an indication of whether the existing allocation
that satisfies the request is associated with a dummy data set, use verb code 6 with
key 2.

Insulated DD attribute
To protect against accidental modification of a resource by other SVC 99 services,
you can request that the system assign the insulated DD attribute. The insulated
DD attribute is available on z/OS 1.13 and later systems with APAR OA47824
installed.

To request the insulated DD attribute when dynamically allocating a resource, your
program must be APF-authorized, in supervisor state, or running in PSW key 0 - 7.
An allocation with the insulated DD attribute has the following characteristics:
v The convertible attribute cannot be assigned to the resource.
v The in-use attribute may not be removed from the resource.
v The permanently allocated attribute is assigned to the resource.

In order to dynamically unallocate a resource that was allocated with the insulated
DD attribute, it is necessary to specify the corresponding insulated DD text unit in
the dynamic unallocation parameter list. Any resource allocated with the insulated
DD attribute will be unallocated at the end of the job step if it is not deallocated
earlier.

When dynamically concatenating resources, it is not possible to create a group
where some resources have the insulated DD attribute and some do not. If any
resource in the group has the insulated DD attribute, all resources in the group
must have the insulated DD attribute.

In order to dynamically concatenate a group of resources that were allocated with
the insulated DD attribute, it is necessary to specify the corresponding insulated
DD text unit in the dynamic concatenation parameter list. In order to dynamically
deconcatenate a group of resources that were allocated with the insulated DD
attribute, it is necessary to specify the corresponding insulated DD text unit in the
dynamic deconcatenation parameter list.

Chapter 25. Dynamic allocation 549

|
|
|
|
|

|
|
|

|

|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

Use of the insulated DD text units requires that your program be APF-authorized,
in supervisor state, or running in PSW key 0-7. This effectively prevents
unauthorized callers from unallocating, concatenating, or deconcatenating
resources allocated with the insulated DD attribute.

It is an error to specify the insulated DD text units for a dynamic unallocation,
concatenation, or deconcatenation request when the resource to be processed does
not have the insulated DD attribute.

Dynamic remove in-use processing (verb code 05) is used to remove the in-use
attribute of a resource. Since resources with the insulated DD attribute must
always have the in-use attribute, dynamic remove in-use processing ignores any
resources with the insulated DD attribute.

Dynamic ddname allocation (verb code 06) is used to assign the in-use attribute to
an existing resource that does not have the in-use attribute assigned. Since a
resource with the insulated DD attribute must also have the in-use attribute, the
system rejects any attempt to assign the in-use attribute to a resource with the
insulated DD attribute.

Additionally, the following services are not supported for resources with the
insulated DD attribute:
v IEFDDSRV MODIFY, TYPE=ALLOCATION
v OPEN TYPE=J
v CLOSE with the FREE option

Installation options for DYNALLOC macro functions
This information describes the types of default values and options your installation
might want to use to control dynamic allocation processing. These values and
options include:
v Default values for space, unit, and TIOT information
v Mounting volumes and bringing devices online
v Installation validation routine.

Using default values
For information about using the following default values for dynamic allocation
processing, see the ALLOCxx parmlib member in z/OS MVS Initialization and
Tuning Reference:
v Space values (SPACE keyword)
v Unit information (UNIT keyword)
v TIOT values (TIOT keyword).

Mounting volumes and bringing devices online
Dynamic allocation processing can bring devices online and have volumes
mounted.

This function is optional for TSO/E users, because it is time-consuming and
requires operator intervention; it is not always desirable in an interactive
environment. If selected, the option is assigned through the UADS entries.

By default, other users of DYNALLOC can always have volumes mounted and
devices brought online. The ALLOCxx member of SYS1.PARMLIB, described in

550 z/OS V2R2 MVS Authorized Assembler Services Guide

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|

|

|

|

z/OS MVS Initialization and Tuning Reference, defines the defaults for mounting
volumes and bringing devices online. If you do not want volumes mounted or
devices brought online during dynamic allocation, you can indicate it in the SVC
99 parameter list.

In addition, the operator may inform dynamic allocation that a volume is not to be
mounted or that a device is not to be brought online. If the operator prevents the
mounting or bringing online of a volume or device, the allocation request fails.

If you allow volume mounting, dynamic allocation waits for tape volumes to be
mounted. Batch allocation processing, by contrast, does not wait for tape volumes
to be mounted. When a volume is mounted for a dynamic allocation request, the
system verifies that it is the correct volume when it opens the data set.

If the option to have volumes mounted and devices brought online is not in effect,
tape and direct access devices that have an outstanding mount request, or that are
not ready, are not eligible for use by dynamic allocation.

Installation input validation routine for dynamic allocation
An exit (IEFDB401) from dynamic allocation allows an installation-written routine
to validate or alter any DYNALLOC request.

Through IEFDB401, your installation can:
v Control the amount of direct access space requested
v Check for authorization to use specified units
v Check for authorization to use specified data sets
v Check for authorization to hold certain resources for reuse.

See z/OS MVS Installation Exits for information about IEFDB401.

Chapter 25. Dynamic allocation 551

552 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 26. Requesting dynamic allocation functions

This information explains how to code a dynamic allocation request.

To submit a dynamic allocation request, read the following topics:
v “Building the SVC 99 parameter list” describes what you must code to submit

the dynamic allocation request, and what information the system returns to you.
v “SVC 99 parameter list verb codes and text units, by function” on page 636

describes how to code text units to supply the parameters for a dynamic
allocation request. The text units are listed by function.

To diagnose errors in your dynamic allocation request, see “Processing messages
and reason codes from dynamic allocation” on page 565, which describes the
return and reason codes, and supplies actions for correcting the error.

To process dynamic allocation messages and reason codes, see “Processing
messages and reason codes from dynamic allocation” on page 565, which describes
how to set the fields of the request block extension to request message processing,
and how to process the messages you receive from dynamic allocation.

If you are unfamiliar with dynamic allocation, or are not sure that dynamic
allocation is right for your program or your programming environment, read
Chapter 25, “Dynamic allocation,” on page 529 before using this information to
code a dynamic allocation request. This information describes allocation, when to
use dynamic allocation and when not to, and which dynamic allocation functions
are meaningful in a batch or an interactive environment.

Note:

BPXWDYN is a text interface to a subset of the SVC 99 (dynamic allocation) and
SVC 109 (dynamic output) services. BPXWDYN supports data set allocation,
unallocation, concatenation, and the addition and deletion of output descriptors.
BPXWDYN is designed to be called from REXX, but it may be called from several
other programming languages, including Assembler, C, and PL/I. For more
information, see z/OS Using REXX and z/OS UNIX System Services.

Building the SVC 99 parameter list
You request dynamic allocation functions by coding the DYNALLOC macro. The
DYNALLOC macro has no operands. To use it, you must supply information about
your request to the system by using the SVC 99 parameter list. “Building the SVC
99 parameter list” describes the following steps for submitting your dynamic
allocation request:

To determine the amount of storage that you'll need for your dynamic allocation
request, see “Obtaining storage for the parameter list” on page 555.

To construct your parameter list, see “Mapping storage for the parameter list” on
page 556, which describes the mapping macros you need to use to map the storage
you've obtained.

To submit your dynamic allocation request, see the following information:

© Copyright IBM Corp. 1988, 2016 553

v “Setting up the request block pointer” on page 557, which describes setting up
the pointer to the request block

v “Setting up the request block” on page 557, which describes how to set the fields
in the request block for your request

v “Setting up the text unit pointer list” on page 564, which describes how to set
the text unit pointer list to the addresses of your text units

v “Setting up the text units” on page 563 and “SVC 99 parameter list verb codes
and text units, by function” on page 636 to code the text units that provide the
specifics for your dynamic allocation request.

Coding a dynamic allocation request
The following table describes what you must code to submit a dynamic allocation
request.

Code: To:

IEFZB4D0 mapping macro Construct the parameter list.

IEFZB4D2 mapping macro Provides mnemonics for the text units.

Request block pointer Specify the address of the request block.

Request block Indicate which dynamic allocation function you want, how
the system should fulfill your request, and point to other
information about the request.

Request block extension Use message processing and receive reason codes.

Text Unit Pointer List Specify the addresses of the text units.

Text Units Tell the system the specifics of the request.

The request block indicates the function you want DYNALLOC to perform, and
the request block extension contains message processing information and fields
into which the system returns reason codes. The text unit pointers are the
addresses of the text units, and the text units contain the keys and parameters for
the dynamic allocation functions. Figure 67 on page 555 illustrates the structure of
the SVC 99 parameter list.

554 z/OS V2R2 MVS Authorized Assembler Services Guide

Obtaining storage for the parameter list
The amount of storage that you need for your parameter list depends on the
number and type of text units you need to describe your request to the system. At
a minimum, you will need storage for the request block (S99RB), the request block
extension (S99RBX), the text unit pointer list, and possibly, some of the text units.

The text units into which the system returns information must be in dynamic
storage. These include information retrieval keys (described in “Dynamic
information retrieval text units” on page 713) and some of the non-JCL dynamic
allocation functions keys (described in “Non-JCL dynamic allocation functions” on
page 689). Use the GETMAIN or STORAGE macros to obtain storage for these text
units.

Text units that the system does not use to return information need not be in
dynamic storage. They can be in static storage in your program.

Estimating the amount of storage for your request
The following guidelines will help you decide how much storage to request.
Table 70 on page 556 outlines the minimum amount of storage required for a
request that includes information retrieval text units. You might want to obtain

Register 1

S99RBPTR

1 Request Block

Request Block - S99RB

LENGTH
=20

Verb
Code FLAGS1

Error Code Info.
Code

Text Pointers

FLAGS2

Text Pointers
S99TUPL

TextUnit

TextUnit

0

1

Key LEN PARM

Text Units - S99TUNIT

Key #

#

LEN PARM

Must be on 0

4

8

12

16

Request Block Extension

Request Block Extension S99RBX

RBX Identifier

Message
Block
Subpool

Version
Number

Pro-
cessing
Options

Storage
Key

Severity
Level

Number
of
Message
Blocks

CPPL Address

Reserved Message
Pro-
cessing
Reason
Code

Message
Block
Freeing
Reason
Code

PUTLINE or WTO Return Code

Message Block Chain Address

SMS Reason Code

Information
Retrieval Error
Code

Erroneous
Information
Retrieval
Key

Figure 67. Structure of the SVC 99 Parameter List

Chapter 26. Requesting dynamic allocation functions 555

enough storage for all of your text units; if so, increase the amount of storage you
request to accommodate your additional text units.

Table 70. Minimum Amount of Storage for a Dynamic Allocation Request

Amount of storage
(in bytes)

Purpose

20 Construct the RB (described in “Setting up the request block” on
page 557) to submit your dynamic allocation request.

36 Construct the RBX (described in “Setting up the request block
extension” on page 565) to use message processing and SJF
information reason codes.

4 per text unit Construct the text unit pointer list with the addresses of your text
units. Each text unit pointer is 4 bytes long. Multiply 4 times the
number of text units to determine the amount of storage you need
for the text unit pointer list.

4 + (2 × number of text
unit PARM fields) +
(length of all text unit
PARM fields) per
information retrieval
text unit

Construct your text unit (described in “SVC 99 parameter list verb
codes and text units, by function” on page 636). For each
information retrieval text unit, you will need 4 bytes to contain:

v The text unit key

v The number of length and parameter pairs.

For each information retrieval text unit, you require another 2
bytes to contain the length (LEN) of the parameter (PARM) field. If
you code multiple PARM fields, you need 2 bytes for each PARM
field you code.

In addition, you need enough storage for the text unit PARMs.

Characteristics of storage for parameter list
Storage for the parameter list must begin on a fullword boundary. The entire
parameter list structure must be created in storage with the same key as the one
for the caller of DYNALLOC. In addition, the request block, the extension, and any
information retrieval text units must be in non-store-protected storage. This
requirement prevents an 0C4 abend when DYNALLOC stores the information
retrieval text units into the caller's storage.

Clearing the storage: It is a good programming practice to clear the storage you
obtain before using it. The GETMAIN and STORAGE macros do not always clear
the storage for you.

Passing the address of the obtained storage to DYNALLOC
On entry to DYNALLOC, register 1 must contain the address of a pointer to the
request block. The STORAGE and GETMAIN macros return the address of the
obtained storage in general purpose register 1.

Mapping storage for the parameter list
IBM supplies mapping macros to aid in constructing the SVC 99 parameter list.
They are:

Mapping Macro Purpose
IEFZB4D0 Provides symbolic names (DSECTs) for the positional information in the

structure.
IEFZB4D2 Provides mnemonics for the text units.

556 z/OS V2R2 MVS Authorized Assembler Services Guide

The names in Figure 67 on page 555 are those assigned by the macro IEFZB4D0.
For a complete list of the fields mapped by IEFZB4D2 and IEFZB4D0, see z/OS
MVS Data Areas in the z/OS Internet library (http://www.ibm.com/systems/z/
os/zos/bkserv/).

Note: DYNALLOC stores only the information retrieval text units originally
specified by the caller and validated by the IEFDB401 exit routine (see z/OS MVS
Installation Exits). Text units added or modified by IEFDB401 are not stored in the
calling program's storage.

Setting up the request block pointer
The request block pointer S99RBPTR is a single fullword containing the address of
the request block. The high-order bit in this field must be set to one.

Place the address of the storage you obtain for the request block into the request
block pointer.

Setting up the request block
The request block consists of fields in which you provide information about your
request, and into which the system stores information about the success of the
request. The following table indicates the fields into which you must place a value
and those that the system uses to return information.

RB Fields That You Must Initialize RB Fields Into Which the System Returns
Information

S99RBLN
S99VERB
S99FLAG1
S99TXTPP
S99FLAG2
S99S99X

S99ERROR
S99INFO

The request block is required input to DYNALLOC. It must begin on a fullword
boundary. Mapping macro IEFZB4D0 assigns it a DSECT name of S99RB. It
contains the following fields (the names in parentheses are those assigned by
IEFZB4D0):

S99RB fields

Length (S99RBLN): A one-byte field containing the length of the request block.
Determine the length of the request block by calculating the mathematical
difference between the address of S99RBEND (see “S99RBEND” on page 562) and
the address of S99RB.

Verb code (S99VERB): A one-byte field that identifies the dynamic allocation
function to be performed. You must specify one of the following verb codes:

Verb Code Name Meaning
01 S99VRBAL Request for dsname allocation
02 S99VRBUN Request for deallocation (based on dsname or ddname)
03 S99VRBCC Request for concatenation
04 S99VRBDC Request for deconcatenation
05 S99VRBRI Request for removing the in-use attribute based on task-ID
06 S99VRBDN Request for ddname allocation
07 S99VRBIN Request for information retrieval

Chapter 26. Requesting dynamic allocation functions 557

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Note: For a matrix version of S99NOMNT, S99OFFLN and S99MOUNT
interrelationships see Table 74 on page 562 and Table 75 on page 563.

Flags (S99FLAG1): A two-byte field that instructs the system on how to satisfy
dynamic allocation requests. S99FLAG1 bit settings (except for S99CNENQ and
S99MSGL0) are used only for dsname allocation requests. The bits in the field are
as follows:

Table 71. S99FLG11 — First byte of S99FLAG1

Bit Bit Name Meaning When On

0 S99ONCNV Only use an existing allocation that has the convertible attribute to
satisfy the request.

1 S99NOCNV Do not use an existing allocation to satisfy this request.

2 S99NOMNT Do not mount volumes or consider off-line devices. (This bit
overrides S99MOUNT and S99OFFLN in S99FLAG2.) If this bit is
on and the request causes a private catalog to be allocated,
mounting will not be allowed for that catalog.

3 S99JBSYS Used for SYSOUT data sets, this flag indicates that the system is to
treat the data set as part of the job's normal output. The data set is
not expected to be dynamically deallocated (spun off). If the data
set is dynamically deallocated, it will be printed immediately, but
paging space will not be released until the job ends.

4 S99CNENQ Issue a conditional ENQ on the TIOT resource. If the TIOT is not
available, an error code is returned to the user.

5 S99GDGNT When the bit is on, the system is to use a LOCATE to determine
the relative generation number based on the most recent catalog
information. The relative generation number will reflect GDG data
sets created or deleted by other jobs in a multitasking
environment.

When the bit is off, the system is to determine the relative
generation number based on the catalog information that was
available the first time the GDG was referenced during the job or
TSO/E session. The relative generation number will reflect only
those GDG data sets created or deleted by this job. See z/OS MVS
JCL User's Guide for more information about GDG data sets, and
Table 73 on page 559 for an example using S99GDGNT.

6 S99MSGL0 Requests that no messages be issued for this dynamic allocation.
Use this bit together with S99ERMSG (described in bit 1 of
“Processing options (S99EOPTS)” on page 565) to obtain necessary
messages. This bit overrides the MSGLEVEL parameter on the JOB
card of the JCL with MSGLEVEL=(,0). Specifying S99EIMSG
(described in bit 0 of “Processing options (S99EOPTS)” on page
565) for a dynamic allocation will override the specification of
S99MSGL0.

7 S99NOMIG Do not recall migrated data sets, referenced either directly (for
example, through text unit DALDSNAM) or indirectly (for
example, through text units DALDCBDS or DALVLRDS). When
the volume on which the data set resides is migrated and
S99NOMIG is on, the CATALOG facility returns the volume name
MIGRAT to allocation, and the system fails the allocation request
with error reason code x'278'. If you are using a product other than
DFHSM, ensure that it returns the volume name MIGRAT to the
CATALOG facility under these conditions.

558 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 72. S99FLG12 — Second byte of S99FLAG1

Bit Bit Name Meaning When On

8 S99NOSYM Disable symbolic substitution for the current request.

9 S99ACUCB Use 4 byte actual UCB addresses, which is known as the
NOCAPTURE option.
Note:

1. VSAM, BSAM, BPAM, QSAM and EXCP support the
S99ACUCB option.

2. The S99ACUCB “NOCAPTURE” option causes creation of an
XTIOT even if S99TIOEX has not been coded. S99ACUCB does
not require authorization as S99TIOEX does.

3. When set, S99DXACU overrides this flag.

10 S99DSABA Request that the DSAB for this allocation be placed above the
16MB line.
Note:

1. S99TIOEX (authorized users only) must be set to get an
above-the-line DSAB.

2. VSAM, BSAM, BPAM, QSAM and EXCP support the
S99DSABA option.

3. When you use S99DSABA you need to understand how the
DSAB that represents the DD allocation statement is queued.
Most programs use the IEFDDSRV or GETDSAB interfaces with
LOC=ANY to locate information about the DD allocation;
however, programs before z/OS V1R13 might access the DSAB
without using these services. When you set S99DSABA, you
must update your code either to use the IEFDDSRV or
GETDSAB interfaces or to use the proper queuing fields in the
DSAB mapping.

4. When set, S99DXACU overrides this flag.

11 S99DXACU Request that the DSAB for this allocation be placed above the
16MB line, that the 4 byte actual UCB address, which is known as
the NOCAPTURE option, be used and that an XTIOT be created.
This results in bypassing the TIOT limits and below-the-line
storage constraints associated with concurrently allocating many
data sets.

When this bit is set, the settings of S99DSABA, S99TIOEX and
S99ACUCB are ignored.
Note: To retrieve information about the allocation, you must
specify LOC=ANY on the GETDSAB or IEFDDSRV services. These
services are recommended instead of coding TIOT or DSAB search
routines, as queuing is different for above the line DSABs and
TIOTs.

12 - 15 Not an intended programming interface; set to zero.

Table 73. Example of Using the S99GDGNT bit of the S99FLAG1 field

Job 1 Job 2

DYNALLOC allocates GDG.XX(+1) as
DD1

Event A

DYNALLOC unallocates DD1 Event B

Event C Allocate GDG.XX(+1), either through
JCL or DYNALLOC

Chapter 26. Requesting dynamic allocation functions 559

Table 73. Example of Using the S99GDGNT bit of the S99FLAG1 field (continued)

Job 1 Job 2

Event D Job ends

DYNALLOC allocates GDG.XX(+1) Event E

Events occur in alphabetical order. At
the beginning of Job 1, the base GDG
is GDG.XX.G0000V00:

With S99GDGNT flag off for Event E:

v Event A allocates
GDG.XX.G0001V00.

v Event C allocates
GDG.XX.G0002V00.

v Event E allocates
GDG.XX.G0001V00.

With S99GDGNT flag on for Event E:

v Event A allocates
GDG.XX.G0001V00.

v Event C allocates
GDG.XX.G0002V00.

v Event E allocates
GDG.XX.G0003V00.

Error code (S99ERROR): A two-byte field into which the system returns error
reason codes when DYNALLOC has completed processing. See “Interpreting
DYNALLOC return codes” on page 596.

Info code (S99INFO): A two-byte field that contains information reason codes
when DYNALLOC has completed processing. See “Interpreting information reason
codes from DYNALLOC” on page 597.

Text unit pointers' address (S99TXTPP): A fullword field that contains the
address of a list of pointers to the text units. Initialize this field by storing into it
the address of the list of pointers to the text units.

Request block extension address (S99S99X): A fullword field containing the
address of the request block extension. If you want to use the message processing
function and information reason codes provided by dynamic allocation, initialize
this field with the address of the request block extension (RBX). If you don't want
this capability, this field should contain zeroes. The RBX is described in
“Processing messages and reason codes from dynamic allocation” on page 565.

Additional flags (S99FLAG2): A four-byte field of indicators. These indicators
may be set only by authorized programs. To be authorized, the requesting program
must meet at least one of the following criteria:
v It must have a PSW key of 0 - 7.
v It must be in supervisor state.
v It must be APF-authorized.

The S99FLAG2 indicators (except S99TIONQ) are used only for dsname allocation
requests.

The S99FLAG2 bits are:

Bit Bit Name Meaning When On

0 S99WTVOL Wait for volumes.

1 S99WTDSN Wait for dsname.
Note: In a JES3 environment, authorizing a
dynamic allocation request to wait for data set
availability might cause a system interlock.

560 z/OS V2R2 MVS Authorized Assembler Services Guide

Bit Bit Name Meaning When On

2 S99NORES Do not reserve (serialize) data sets.
Note: Data sets being allocated are normally
serialized via ENQ with MAJOR name SYSDSN,
MINOR name -data set name-. When S99NORES is
set, there is NO data set serialization and multiple
tasks may reference or update the data set
simultaneously, resulting in unpredictable effects.
It is the responsibility of the authorized program
setting S99NORES to provide the necessary
serialization.

3 S99WTUNT Wait for units.

4 S99OFFLN Consider off-line devices.

The system ignores this bit if S99NOMNT in
S99FLAG1 is on.

For a matrix version of S99NOMNT, S99OFFLN
and S99MOUNT interrelationships see Table 74 on
page 562 and Table 75 on page 563.

5 S99TIONQ Exclusive TIOT ENQ already performed in this
ASID under this TCB with the SYSTEM option.

6 S99CATLG Set special catalog data set indicators.

7 S99MOUNT Volumes may be mounted.

The system ignores this bit if S99NOMNT in
S99FLAG1 is on.

For a matrix version of S99NOMNT, S99OFFLN
and S99MOUNT interrelationships see Table 74 on
page 562 and Table 75 on page 563.

8 S99UDEVT Unitname parameter for DALUNIT is a device
type. If you are using the output from the
DEVTYPE macro, be sure the shared DASD bits
are turned off.

9 Not an intended programming interface. Must be
zero.

10 S99DYNDI Do not perform JES3 data set integrity processing.

11 S99TIOEX Build XTIOT entry.
Note:

1. The XTIOT is a non-contiguous TIOT entry that
is not accessible through the contiguous TIOT.

2. VSAM, BSAM, BPAM, QSAM and EXCP
support the S99TIOEX option.

3. Setting this bit requires APF authorization,
supervisor state, or system key.

4. When set, S99DXACU overrides this flag.

Chapter 26. Requesting dynamic allocation functions 561

Bit Bit Name Meaning When On

12 S99DASUP Used by authorized programs to suppress the
DD-level accounting. Setting this bit can affect the
SMF data created for the following:

v The EXCP section of SMF Record Type 30.

v SMF Record Type 40.

v SMF Record Type 14 for the fields SMF14NTR
and SMF14NER.

This bit is only recommended for programs
allocating VSAM data sets with generated DD
names, or when the exploiting program has
established that the usefulness of the SMF data is
less than the benefit to system performance.
Because the data is used by an installation and
suppressed by the exploiting program, an external
switch controlling the program's use of this bit is
strongly recommended.

13 - 31 Not an intended programming interface. Must be
zero.

In using any of the following flags, the caller sets up a condition in which a job
might wait for a resource to be available:
v S99WTVOL
v S99WTDSN
v S99WTUNT
v S99OFFLN
v S99MOUNT

Use care when you set these flags; setting any one of them might cause a deadlock
situation. For example, consider the situation where JOBA owns a resource that
JOBB wants and JOBB owns a resource that JOBA wants. If one of the above flags
are on, the two jobs will wait until one job is cancelled. To avoid deadlocks, you
might use an STIMERM macro across the call.

S99RBEND: A marker indicating the end of the request block.

Relationships among selected fields
Table 74. Relationship of S99NOMNT, S99OFFLN and S99MOUNT. (NON-TSO Dynamic)

S99NOMNT S99OFFLN S99MOUNT ALLOW
OFFLINES

ALLOW
MOUNTS

0 0 0 Y Y

0 0 1 N Y

0 1 0 Y N

0 1 1 Y Y

1 any any N N

562 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 75. Relationship of S99NOMNT, S99OFFLN and S99MOUNT. (TSO User)

S99NOMNT UADS MNT
OPT

S99OFFLN S99MOUNT ALLOW
OFFLINES

ALLOW
MOUNTS

0 0 0 0 N N

0 0 0 1 N Y

0 0 1 0 Y N

0 0 1 1 Y Y

0 1 any any Y Y

1 any any any N N

Setting up the text units
The text unit consists of fields in which you provide information about your
request. The system uses text unit fields to return information only when you
request an information retrieval function.

Each text unit is a variable-length field (assigned the DSECT name S99TUNIT by
macro IEFZB4D0) that contains the following subfields:

Key (S99TUKEY)
A two-byte field in which you specify a hexadecimal number that identifies the
function that the DYNALLOC macro is to perform. DYNALLOC ignores a KEY
field of zero.

Number (S99TUNUM): A two-byte field in which you specify, in hexadecimal,
the number of length and parameter combinations in the text unit.

Combination (S99TUENT): The label for length and parameter combinations.
IEFZB4D0 provides a separate DSECT (named S99TUFLD) for use when specifying
multiple parameters in a single text unit. This DSECT places the length field at
displacement 0 for the second and subsequent combinations:

S99TUFLD
Label for the DSECT

S99TULEN
Label for the length field

S99TUPRM
Label for the parameter

Length (S99TULNG): A two-byte hexadecimal number specifying the length of
the parameter field (S99TUPAR) that follows. For information retrieval text units,
the system uses this field to indicate the length of the information it is returning,
or to indicate that the information was not available, by setting it to 0.

Parm (S99TUPAR): A variable-length field in which you put the parameter
information identified by the value in the KEY field. See “SVC 99 parameter list
verb codes and text units, by function” on page 636 for a description of the values
you can code for each text unit key.

Structure of the text units
When setting up your text units, follow the rules below. You will find rules for
coding specific text units in “SVC 99 parameter list verb codes and text units, by
function” on page 636.

Chapter 26. Requesting dynamic allocation functions 563

Using special characters in text units: In general, special characters, such as those
requiring apostrophes in JCL statements, are not valid in PARM values. However,
you may code special characters:
v In the DALUSRID text unit
v In a dsname, when specifying the dsname in apostrophes.

Using trailing blanks in text units: Parameters whose values consist of
alphameric and national (@, $, #) characters may include trailing blanks.

Order of text units: The text units may be in any order.

Independence of text unit key meaning across DYNALLOC functions: Each
dynamic allocation function has an associated set of text unit keys, and each set is
independent of any other. For example, the functions of allocation and unallocation
may both use a KEY value of X'0007', but that value does not necessarily have the
same meaning for both functions.

Setting up the text unit pointer list
The text unit pointer list is a variable-length list of fullwords containing pointers to
the text units. Mapping macro IEFZB4D0 assigns the DSECT name S99TUPL to the
list, and the label S99TUPTR to each pointer in the list.

Establishing addressability to the text unit pointer list
One way to establish addressability to the text unit pointer list is to find the
address at the end of the request block (by adding S99RB and S99RBLEN) and
base S99TUPL at this address.

You might want to set up your SVC 99 parameter list differently. For example, you
might want the request block extension to follow the request block, instead of the
text unit pointer list. You can do so as long as your pointers are correct.

Filling in the text unit pointer list
Once you have established addressability to the text unit pointer list, you can fill in
the addresses of the text units. Do this by storing the address of the first text unit
into the first word of the text unit pointer list, moving to the next text unit pointer
in the list, and storing the address of the second text unit in it. Continue until you
have stored the addresses of all of your text units in the list; then indicate the end
of the text unit pointer list.

The system ignores a fullword of zeros in the text unit pointer list.

Setting the end of list indicator
You indicate the end of the list by setting the high-order bit of the last pointer to
one. Mapping macro IEFZB4D0 assigns label S99TUPLN to an equate that allows
you to turn on the end-of-list indicator.

Failure to set the end of list indicator can cause dynamic allocation to interpret
data as addresses and cause a storage exception.

564 z/OS V2R2 MVS Authorized Assembler Services Guide

Processing messages and reason codes from dynamic allocation
To help you diagnose errors that can occur when using dynamic allocation
functions, dynamic allocation supplies information reason codes and IBM supplies
an extended message processing program. You must code the request block
extension (RBX) to receive reason codes in addition to those returned in the
S99ERROR and S99INFO request block fields, and to use the message processing
function.

Setting up the request block extension
The RBX consists of fields in which you provide information about your request,
and into which the system stores information about the success of the request. The
following table indicates the fields into which you must place a value and those
that the system uses to return information.

RBX Fields That You Must Initialize RBX Fields Into Which the System Returns
Information

S99EID
S99EVER
S99EOPTS
S99ESUBP
S99EKEY
S99EMGSV
S99ECPPL

S99ENMSG
S99ERCO
S99ERCF
S99EWRC
S99EMSGP
S99EERR
S99EINFO
S99ERSN

The request block extension must begin on a fullword boundary. Mapping macro
IEFZB4D0 assigns it a DSECT name of S99RBX. It contains the following fields (the
names in parentheses are those assigned by IEFZB4D0):

S99RBX fields

Request block extension identifier (S99EID): A six-byte field containing the
request block extension identifier. In your program, define the string 'S99RBX' as a
character constant with a length of 6, and move in into the S99EID field.

Version (S99EVER): A one-byte version number of the request block extension.
Set S99EVER to the constant S99RBXVR in IEFZB4D0.

Processing options (S99EOPTS): A one-byte field that defines the dynamic
allocation message processing options. Select the processing options that you want
by setting bits in this field as follows:

Bit Bit Name Meaning When On

0 S99EIMSG The system issues error messages before control
returns to the caller of DYNALLOC. This bit must
be set on if Bit 5 (S99EWTP) is set on.

1 S99ERMSG The system returns the unformatted messages in
message blocks to the caller of DYNALLOC. The
system does not issue the messages unless
S99EIMSG is set.

2 S99ELSTO The system returns the message blocks to the caller
in virtual storage below 16 megabytes.

Chapter 26. Requesting dynamic allocation functions 565

Bit Bit Name Meaning When On

3 S99EMKEY The caller has specified a storage key in S99EKEY.
When building message blocks, the system builds
them in a storage area whose key is equal to the
key specified in S99EKEY.

4 S99EMSUB The caller has specified a storage subpool in
S99ESUBP. The system builds the message blocks
in that subpool when S99EMSUB is set.

5 S99EWTP If this bit is set, Bit 0 (S99EIMSG) must also be set,
and the system uses a WTO macro to issue the
error messages. Otherwise, the system uses a TSO
PUTLINE command to issue the messages.

6 - 7 Not an intended programming interface. These bits
must be zero.

Note:

1. If your program requested that message blocks be returned from the SVC 99
request, the storage that contains those blocks has a storage key that matches
the PSW key value of your program, unless you overrode the storage key using
the S99EKEY or S99ESUBP field.

2. If message blocks are returned, your calling program must ensure that the
message blocks are deleted (via FREEMAIN). Failure to do so will cause the
message blocks to accumulate in storage, eventually leading to an
out-of-storage condition. You may use the IEFDB476 program to process the
message blocks. (See “Using the functions of the IEFDB476 program” on page
590). Even if you choose not to use IEFDB476 to manage the process, you may
still invoke the program simply to free the message blocks.

3. Programs attempting to process message blocks using the IEFDB476 program
must run with a PSW key value of zero, or with the key that matches the
storage key of the storage that contains the message blocks.

Message block subpool (S99ESUBP): A one-byte field in which you specify the
subpool containing the message blocks returned to the caller. The system ignores
this field unless you have indicated, by setting bit S99EMSUB in the field
S99EOPTS, that you will be specifying a storage subpool. If you do not indicate a
subpool, the system uses a default subpool of 0. The valid subpools are subpools
0-255, and they must be specified in binary. An unauthorized program cannot
request a system subpool.

Storage key (S99EKEY): A one-byte in which you specify the storage key for the
storage in which the message blocks are returned. The system ignores this field
unless you have indicated, by setting bit S99EMKEY in the field S99EOPTS, that
you will be specifying a storage key. If you do not supply a storage key, the system
uses the same key as the caller's TCB. The valid keys are 0-15, and they must be
specified in binary. An unauthorized program cannot request a storage key that is
different from its own key.

Severity level (S99EMGSV): A one-byte field in which you indicate the minimum
severity of the messages that should be processed by DYNALLOC. The severity
levels, which are informational, warning, and severe, are defined by S99XINFO,
S99XWARN, and S99XSEVE in the IEFZB4D0 mapping macro.

Number of message blocks returned (S99ENMSG): A one-byte field in which the
system indicates the number of message blocks returned from DYNALLOC.

566 z/OS V2R2 MVS Authorized Assembler Services Guide

CPPL address (S99ECPPL): A fullword that contains the address of the command
processor parameter list. This field is required if PUTLINE is used to issue
messages. See z/OS TSO/E Programming Guide for information about the CPPL.

Not an intended programming interface (S99ERCR): A one-byte reserved field
containing zeroes.

Not an intended programming interface (S99ERCM): A one-byte reserved field
containing zeroes.

Message processing reason code (S99ERCO): A one-byte reason code by which
the system indicates the failure of a message processing function.

Hexadecimal Code
Meaning and Action

03 Meaning: WTO failed.

Application Programmer Action: S99ERWC contains the return code from
WTO. See z/OS MVS Programming: Authorized Assembler Services Reference
SET-WTO for the meaning and action for the specific return code.

04 Meaning: PUTLINE failed.

Application Programmer Action: S99ERWC contains the return code from
PUTLINE. See z/OS TSO/E Programming Services for the meaning and
action for the specific return code.

05 Meaning: Unable to obtain storage for message blocks.

Application Programmer Action: Resubmit the request. If the problem
recurs, consult the system programmer to determine why storage is
unavailable.

06 Meaning: Unable to obtain storage for PUTLINE macro.

Application Programmer Action: Resubmit the dynamic allocation or
IEFDB476 request. If the problem recurs, consult the system programmer to
determine why storage is unavailable.

07 Meaning: A CPPL address was not supplied for the PUTLINE message
output function. By invoking one of the following, you have requested that
the system issue messages through PUTLINE.
v DYNALLOC with the S99EIMSG flag on and the S99EWTP flag off
v IEFDB476 with EMPUTLIN flag on and a value of 50 in EMIDNUM.

Application Programmer Action: See z/OS TSO/E Programming Guide for
information about the CPPL.

08 Meaning: The message block chain was not valid. This is a system error,
possibly a storage overlay.

Application Programmer Action: Ask your system programmer to contact
the appropriate IBM support personnel.

09 Meaning: Message extraction failed because the message block chain was
not valid.

Application Programmer Action: Verify that the message blocks to which
S99EMSGP points have not been modified by your code. If they have not,
this might be a storage overlay error. Ask your system programmer to
contact the appropriate IBM support personnel.

Chapter 26. Requesting dynamic allocation functions 567

0A Meaning:Message extraction was requested through bit EMRETURN in the
EMFUNCT field, but no message buffer address was supplied.

Application Programmer Action: Supply the message buffer address in
field EMBUFP and resubmit the request.

0B Meaning: The Dynamic Allocation Request was unsuccessful but no
messages were returned. The reason is unknown.

Application Programmer Action: The S99RB field S99ERROR contains the
Dynamic Allocation Error Reason Code. Using that reason code, locate the
meaning and suggested actions in “Interpreting error reason codes from
DYNALLOC” on page 601.

0C Meaning: Bit S99ERMSG in the RBX was not set on to request that the
system return messages in the message block

Application Programmer Action: Set bit S99ERMSG in the RBX, or change
the application program so that it does not invoke the IEFDB476 program
when messages are not being returned.

0D Meaning: The Dynamic Allocation Request was successful, and no
messages were returned. Change the application program so that it does
not invoke the IEFDB476 program when no messages are expected.

Application Programmer Action: Change the application program so that
it does not invoke the IEFDB476 program when no messages are expected.

Message block freeing reason code (S99ERCF): A one-byte reason code that
explains why the system cannot free the message block storage area.

Hexadecimal Code
Meaning and Action

01 Meaning: A message block chain is not valid.

Application Programmer Action: Verify that the message blocks to which
S99EMSGP points have not been modified by your code. If they have not,
this might be a storage overlay error. Ask your system programmer to
contact the appropriate IBM support personnel.

02 Meaning: A FREEMAIN failed.

Application Programmer Action: See z/OS MVS Programming: Assembler
Services Reference ABE-HSP for reasons and actions for a FREEMAIN
failure.

03 Meaning: Either the caller specified a storage key that was greater than 15,
or an unauthorized caller specified a storage key that was different from
the caller's key.

Application Programmer Action: Specify a valid key and resubmit the
request. See Chapter 10, “Virtual storage management,” on page 221 for
information about storage keys.

04 Meaning: An unauthorized caller specified a system subpool.

Application Programmer Action: Specify a valid subpool and resubmit the
request. See Chapter 10, “Virtual storage management,” on page 221 for
information about subpools.

PUTLINE/WTO macro return code (S99EWRC): The fullword return code from
the WTO macro or PUTLINE macro.

568 z/OS V2R2 MVS Authorized Assembler Services Guide

Message block chain address (S99EMSGP):

NOT Programming Interface Information

A full word that contains the address of a chain of message blocks.

End NOT Programming Interface Information

See “Processing messages from dynamic allocation” on page 590 for information
about processing error messages.

Information retrieval error code (S99EERR): A two-byte code that the system
returns to explain errors found in information retrieval text units of dynamic
allocation. This two-byte code applies only to verb code 01, described in “Non-JCL
dynamic allocation functions” on page 689. See “Interpreting DYNALLOC return
codes” on page 596 for an explanation of the codes.

If there was a text unit in error, the field S99EINFO (described in “Information
retrieval information code (S99EINFO)”) will contain the text unit key.

The S99EERR code does not indicate whether the allocation was successful. The
system indicates allocation errors in the request block fields S99ERROR and
S99INFO. These fields are described in “Error code (S99ERROR)” on page 560 and
“Info code (S99INFO)” on page 560.

Information retrieval information code (S99EINFO): A two-byte field in which
the system returns an erroneous text unit key. The text unit is an information
retrieval text unit. This two-byte code applies only to verb code 01.

SMS reason code (S99ERSN): A fullword field that contains the SMS reason code
explaining the failure. The system returns a reason code in this field only when an
error code beginning with X'97xx' is returned in the S99ERROR field of the request
block.

IGD messages accompany the SMS reason code depending on the allocation
message processing options in the S99EOPTS field of the request block. (See
“Processing options (S99EOPTS)” on page 565.) The SMS reason code also
corresponds to an IGD system message that further describes the error. For
example, if the reason code is X'4379' (decimal 17273), the IGD message that
contains the decimal equivalent, IGD17273I, describes the error.

If the IGD messages are suppressed, the following procedure could be followed to
get further details:
v For error code X'970C', SMS creates entries in the logrec data set. Because there

are no problem IDs associated with SMS reason codes, locate the logrec data set
entry for the error that corresponds to the reason code.

v For error codes other than X'970C', SMS will not always create entries in the
logrec data set. Try to recreate the error by executing in batch mode instead of
using dynamic allocation.

The system returns a reason code in S99ERSN when a failure occurs during SMS
processing. For any reason code returned in S99ERSN that is not described in the
following list and that does not convert to a recognizable IGD system message,
search the decimal code under Storage Management Subsystem reason codes in
z/OS DFSMSdfp Diagnosis. If you still cannot locate the reason code, have the

Chapter 26. Requesting dynamic allocation functions 569

system programmer locate the logrec data set entry associated with the error and
report the failure to the IBM support center.

Hexadecimal Code (Decimal)
Meaning and Action

12C (300)
Meaning: An abend occurred during storage management subsystem
processing. Message IGD300I will be issued to the operator with a
symptom dump.

System Programmer Action: Examine message IGD300I and the symptom
dump to determine why the abend occurred.

12D (301)
Meaning: The data set is not eligible for allocation on an SMS volume.

Application Programmer Action: Determine whether the request is
attempting to allocate to an SMS volume a data set that is not managed by
SMS. Do not attempt to allocate the following types of data sets to an SMS
volume:
v ISAM data set
v SYSOUT data set
v Subsystem data sets
v TSO/E data sets coming from or going to a terminal
v In-stream data sets
v Data sets having the same name as a previously-cataloged data set
v Data sets that are not cataloged in the integrated catalog facility (ICF)

catalog

12E (302)
Meaning: The selected storage class requires that explicitly specified
volumes are to be honored. The requirement to honor explicit volumes
cannot be met for one of the following reasons:
v Not all of the volumes are SMS-managed
v Not all of the volumes are defined to the same storage group
v The storage group containing the volumes was not selected for this data

set allocation.

Application Programmer Action: If specific volumes are not required,
remove the explicit volume specification and reissue the request. If the
explicitly specified volumes are required, contact the system programmer
for assistance.

System Programmer Action: Make sure that all of the volumes are
SMS-managed and are defined to the same storage group. Also, make sure
the volumes have the properties that this storage group requires; or modify
the storage class routine to select a non-guaranteed space storage class.
Then have the application programmer reissue the request.

12F (303)
Meaning: A storage class was not derived for the data set. Therefore, the
data set is not SMS-managed. The system ignores the specified
management class.

Application Programmer Action: If the data set is supposed to be
SMS-managed, get help from the system programmer to determine why a
storage class was not derived for the data set.

570 z/OS V2R2 MVS Authorized Assembler Services Guide

132 (306)
Meaning: An unexpected error occurred during storage management
subsystem processing.

System Programmer Action: Use the logrec data set to obtain information
about the error that occurred. Refer to z/OS DFSMSdfp Diagnosis for an
explanation of the reason code and return code.

133 (307)
Meaning: An installation exit either:
v Ended abnormally with an abend code
v Returned an unknown return code

System Programmer Action: Use the logrec data set and SYS1.DUMPnn to
determine why the installation exit failed.

134 (308)
Meaning: The storage class or management class was derived for a data
set, but the owner is not authorized to use the specified storage or
management class.

Application Programmer Action: Either obtain authorization to use the
storage class or the management class or use a storage or management
class that you are already authorized to use. Reissue the request.

135 (309)
Meaning: An SMS data set is not allowed in the scope of a JOBCAT or
STEPCAT.

Application Programmer Action: One of two actions can be taken:
v If the storage class was explicitly specified, remove the JOBCAT,

STEPCAT, or storage class specification to ensure that the data set is not
SMS-managed. Then reissue the request.

v If the JOBCAT or STEPCAT is required and the storage class was
installation derived, use a data set specification that will not create an
SMS-managed data set when reissuing the request.

136 (310)
Meaning: MGMTCLAS or STORCLAS cannot be specified for a data set
that is not eligible to be SMS-managed.

Application Programmer Action: Do not attempt to specify MGMTCLAS
or STORCLAS for the following types of data sets, which are not managed
by SMS:
v ISAM data set
v SYSOUT data set
v Subsystem data sets
v TSO/E data sets coming from or going to a terminal
v In-stream data sets
v Data sets having the same name as a previously-cataloged data set
v Data sets that are not cataloged in the integrated catalog facility (ICF)

catalog

139 (313)
Meaning: DSNTYPE cannot be specified for a data set that is not eligible
to be SMS-managed.

Application Programmer Action: Do not attempt to specify DSNTYPE for
the following types of data sets, which are not managed by SMS:

Chapter 26. Requesting dynamic allocation functions 571

v ISAM data set
v SYSOUT data set
v Subsystem data sets
v TSO/E data sets coming from or going to a terminal
v In-stream data sets
v Data sets having the same name as a previously-cataloged data set
v Data sets that are not cataloged in the integrated catalog facility (ICF)

catalog

13A (314)
Meaning: The data class that was derived for the data set contains a
DSNTYPE attribute that is not supported with the current level of the
operating system.

System Programmer Action: Make sure the ACS routines will derive a
data class with a DSNTYPE attribute that is supported with the current
level of operating system.

13B (315)
Meaning: An attempt was made to read from an SMS-managed scratch
tape volume. This is not allowed.

Application Programmer Action: If a scratch volume is derived from an
SMS tape library, specify a volume of SCRTCH. If the tape volume is
private, either eject the volume from the SMS tape library and access it
outside the library, or contact the system programmer so that the status of
the volume can be changed from scratch to private using IDCAMS or
ISMF, and access it within the library.

13D (317)
Meaning: A DSNTYPE of PIPE was specified when the PATH keyword
was not specified. This is not allowed.

Application Programmer Action: Add the PATH keyword, or remove the
DSNTYPE of PIPE.

140 (320)
Meaning: An OPEN/MVS request cannot be processed because
OPEN/MVS is not installed.

Application Programmer Action: Process OPEN/MVS requests only on
systems that have OPEN/MVS installed.

FA0 (4000)
Meaning: The data set is processed as a non-SMS-managed data set
because the volumes are not SMS-managed.

Application Programmer Action: No action is required.

FA1 (4001)
Meaning: An unexpected error occurred in catalog processing while
attempting to locate a data set.

System Programmer Action: Locate the logrec data set entry for this error
and determine the return code and the reason code for the catalog locate
error under message IDC3009I.

FA2 (4002)
Meaning: The data set is an SMS-managed data set that is referenced in
one of the following:
v A job containing a JOBCAT

572 z/OS V2R2 MVS Authorized Assembler Services Guide

v A step containing a STEPCAT
v Both a job containing a JOBCAT and a step containing a STEPCAT.

Application Programmer Action: Do one of the following:
v If there is no need for the JOBCAT or STEPCAT DD statements, remove

them and resubmit the job.
v If a JOBCAT DD statement is specified, remove it and insert STEPCAT

DD statements only on the required steps. Then resubmit the job.
v If a STEPCAT DD statement is necessary, then divide the step into

several steps so the steps that do reference SMS-managed data sets do
not contain a STEPCAT DD statement. Then resubmit the job.

v If none of the above apply, contact the system programmer.

System Programmer Action: Make sure all referenced ICF catalogs are
connected to the system master catalog.

FA4 (4004)
Meaning: The catalog entry indicates that a data set is not SMS-managed,
but an SMS-managed volume serial was specified.

Application Programmer Action: Do one of the following:
v Remove the VOL=SER, and reissue the request
v Specify the correct VOL=SER, and reissue the request

FA6 (4006)
Meaning: The system attempted to allocate a data set on two tape volumes
which are in different system-managed tape libraries. Both volumes must
be in the same library for the job to run. If more than two volumes are
involved, an error is returned for the first mismatch encountered.

Application Programmer Action: If the volume serial numbers are
specified incorrectly, then correct the specification. If the numbers are
correct, then contact the tape librarian to ensure that all the tape volumes
reside in the same library. When one of the two actions has been taken,
reissue the request.

FA7 (4007)
Meaning: The system attempted to allocate a data set on a DASD volume
and on a tape volume that resides in a system-managed tape library. Mixed
media types are not allowed for a single data set. If more than two
volumes are involved, an error is returned for the first incorrect allocation.

Application Programmer Action: If the volume serial numbers are
specified incorrectly, then correct the specification. If the numbers are
correct, then contact the tape librarian to eject the tape volumes from the
system-managed tape library and access them on non-system managed
tape drives.

FD3 (4051)
Meaning: The data set is processed as a non-SMS-managed data set
because it was determined that the data set was an uncataloged special
system data set.

Application Programmer Action: No action is required.

FD6 (4054)
Meaning: The specified data set was not found.

Chapter 26. Requesting dynamic allocation functions 573

Application Programmer Action: Ensure that the data set name was
specified correctly, and that the data set is cataloged in the appropriate
catalog. Contact the system programmer to check if the alias entries point
to the catalog. Reissue the request.

1324 (4900)
Meaning: An attempt to get the file status for a file in a z/OS UNIX file
system failed.

Application Programmer Action: Submit a batch job to locate the z/OS
UNIX file to determine the return and reason codes returned in the
corresponding IGD04900I message.

1325 (4901)
Meaning: A path name was not specified for an allocation of a file in a
z/OS UNIX file system during an SMS catalog services request.

Application Programmer Action: Add a path name to the requested
allocation.

138C (5004)
Meaning: All volumes for a guaranteed space request are defined to SMS,
but do not belong to the same storage group.

Application Programmer Action: Specify volumes that are within a single
storage group, or remove volume specification and allow SMS to select
volumes. Reissue the request.

1392 (5010)
Meaning: None of the volumes for a guaranteed space request are defined
to SMS.

Application Programmer Action: Specify volumes that are defined to SMS
and are within a single storage group, or remove volume specification and
allow SMS to select volumes. Reissue the request.

1393 (5011)
Meaning: Some of the volumes for a guaranteed space request are not
defined to SMS.

Application Programmer Action: Specify volumes that are defined to SMS
and within a single storage group, or remove volume specification and
allow SMS to select volumes. Reissue the request.

1B59 (7001)
Meaning: An unexpected error occurred in the catalog while attempting to
roll a generation data set (GDS) into a generation data group (GDG).

System Programmer Action: Submit a batch job to roll the generation data
set into the generation data group, and use the return and reason codes
from any corresponding IGD messages when contacting the IBM support
center to determine the cause of the catalog failure.

1B5A (7002)
Meaning: The storage management subsystem was invoked to delete a
data set. The volume associated with that data set was either not defined
to the configuration or was not currently mounted. The volume may have
been deleted from the active configuration.

Application Programmer Action: Contact the system programmer to make
the necessary modifications. Then delete the data set after the
modifications have been completed.

574 z/OS V2R2 MVS Authorized Assembler Services Guide

System Programmer Action: Either modify the configuration to include the
volume, or make sure the volume is online.

1EDC (7900)
Meaning: A path name is required for the allocation of a file in a z/OS
UNIX file system during an SMS disposition processing request.

Application Programmer Action: Add a path name for the requested
allocation.

1EDD (7901)
Meaning: An attempt to delete a z/OS UNIX file failed.

Application Programmer Action: Submit a batch job to delete the z/OS
UNIX file to determine the return and reason codes returned in the
corresponding IGD07901I message.

1EDE (7902)
Meaning: An invalid disposition was specified for a z/OS UNIX file.

Application Programmer Action: Correct the disposition for the z/OS
UNIX file.

2B5C (11100)
Meaning: A dynamic allocation request specified the RECFM keyword
with the KS, ES, RR, or LS value on the RECORG keyword. This
combination is not allowed because the RECFM keyword only applies to
non-VSAM data sets, while the KS, ES, RR, and LS values of the RECORG
keyword only apply to VSAM data sets.

Application Programmer Action: Change or remove the RECORG value or
RECFM keyword on the dynamic allocation request; then reissue the
request.

2B5D (11101)
Meaning: A dynamic allocation request specified the DSNTYPE keyword
with the ES, RR, or LS value on the RECORG keyword. This combination
is not allowed because the DSNTYPE keyword only applies to non-VSAM
and KSDS VSAM data sets, while the ES, RR, and LS values of the
RECORG keyword only apply to VSAM data sets.

Application Programmer Action: Correct the RECORG or DSNTYPE value
on the dynamic allocation request; then reissue the request.

3E82 (16002)
Meaning: The disposition field of the referencing data set was not OLD,
MOD or NEW.

Application Programmer Action: Change the disposition of the referencing
data set to OLD, MOD, or NEW. If the disposition was set correctly,
contact the system programmer.

System Programmer Action: Locate the correct logrec data set entry for the
error and report the failure to the IBM support center.

3E83 (16003)
Meaning: The disposition field of the referenced data set was not OLD,
MOD or NEW.

Application Programmer Action: Change the disposition of the referenced
data set to OLD, MOD, or NEW. If the disposition was set correctly,
contact the system programmer.

Chapter 26. Requesting dynamic allocation functions 575

System Programmer Action: Locate the correct logrec data set entry for the
error and report the failure to the IBM support center.

3E91 (16017)
Meaning: A non-SMS-managed data set referenced an SMS-managed data
set.

Application Programmer Action: Do not attempt to reference an
SMS-managed data set from a non-SMS-managed data set.

3E96 (16022)
Meaning: The referenced data set is not cataloged.

Application Programmer Action: Correct the specified data set name. If
data set name is valid, catalog the data set before attempting to reference
it. Reissue the request.

3E97 (16023)
Meaning: The referencing data set is not cataloged.

Application Programmer Action: Correct the specified data set name. If
data set name is valid, catalog the data set before using it to reference an
SMS-managed data set. Reissue the request.

3EB5 (16053)
Meaning: The ACS storage class routine rejected the storage class that was
derived from the referenced data set.

Application Programmer Action: Reference a data set that is in a valid
storage class, and reissue the request, or contact the system programmer to
have the same storage class assigned to the referencing data set as the
referenced data set.

3EB6 (16054)
Meaning: The request failed because an ACS routine created by the
installation failed.

System Programmer Action: Contact your storage administrator, and
supply the reason code.

3EB9 (16057)
Meaning: A VOL=REF was done to a data set which is a generation data
set (GDS) base. A VOL=REF to a GDS base is not valid as there are no
volumes associated with a GDS base.

Application Programmer Action: Correct the VOL=REF so that the data
set referenced is not a GDS base, or remove the VOL=REF.

4269 (17001)
Meaning: A duplicate data set name appears on the volume.

Application Programmer Action: Use a different data set name, and
reissue the request. Contact the system programmer to resolve the
duplicate data set names on the volume.

426A (17002)
Meaning: While trying to create a data set, DADSM indicated to SMS
VTOC data set services that the VTOC or VTOC index on the volume is
full. Therefore, SMS attempted to select another volume.

System Programmer Action: Reorganize the VTOC or VTOC index on the
indicated volume.

576 z/OS V2R2 MVS Authorized Assembler Services Guide

426B (17003)
Meaning: An I/O error occurred on a volume while the data set was being
deleted or renamed.

System Programmer Action: Use the record in the logrec data set, the
return code, and the diagnostic information to determine the error. Use
z/OS DFSMSdfp Diagnosis to determine the meaning of the DADSM historic
return code and the diagnostic information.

426E (17006)
Meaning: The average block length is greater than 65535, the maximum
allowable length.

Application Programmer Action: Reduce the average block length
specified, and reissue the request.

4274 (17012)
Meaning: DADSM determined one of the following:
v The user is not authorized to create the data set specified
v The data set requires a discrete RACF profile, but RACF is not active.

Application Programmer Action: If the data set name was incorrectly
specified, correct the name and reissue the request. Otherwise, contact the
system programmer.

System Programmer Action: Use z/OS DFSMSdfp Diagnosis to determine
the meaning of the DADSM historic return code and the DADSM
diagnostic information from the corresponding logrec data set entry. If the
return code and the diagnostic information indicate that the user is
unauthorized to create the data set, then alter the user's RACF profile to
grant authorization. Otherwise, remove the automatic data set protection
characteristic from the user's profile.

4276 (17014)
Meaning: A track or cylinder space quantity was zero.

Application Programmer Action: Specify a non-zero value in tracks or
cylinders for space, or specify a valid data class with space, and reissue the
request.

428C (17036)
Meaning: During the allocation of a data set, the system found that the
space requested exceeded the primary space available on all eligible
volumes.

Application Programmer Action: Either reduce the directory space or
increase the primary space, and reissue the request. If there is little or no
space available to allocate the data set, contact the system programmer.

System Programmer Action: If volumes are fragmented, run DEFRAG or
run DFSMShsm space management to create space for new data sets. If
space is not available to be freed, add volumes to the storage group, or
add an overflow storage group to the list of storage groups selected.

428D (17037)
Meaning: The DADSM installation exit rejected the request with a return
code of 8.

System Programmer Action: Determine the reason for the rejection.
Modification of the installation exit may be required.

Chapter 26. Requesting dynamic allocation functions 577

428E (17038)
Meaning: The DADSM installation exit rejected the request with a return
code of 4.

System Programmer Action: Determine the reason for the rejection.
Modification of the installation exit may be required.

4295 (17045)
Meaning: Space was not specified for the creation of a data set.

Application Programmer Action: Specify a value for space, or specify a
data class with non-zero space information, and reissue the request.

429B (17051)
Meaning: The primary space for the data set exceeds 65535 tracks.

Application Programmer Action: Decrease the primary space to less than
65535 tracks and reissue the request.

429E (17054)
Meaning: DADSM was unable to locate the data set on the volume.

Application Programmer Action: If the data set is not SMS managed,
correct the volume specification and reissue the request. If it is a cataloged
data set, and the catalog indicates that the data set resides on the volume,
contact the system programmer.

System Programmer Action: Locate the logrec data set entry associated
with the error to verify that the volume list passed to DADSM is correct.

42A0 (17056)
Meaning: The volume that was specified for the rename request already
has a data set with the new name on it.

Application Programmer Action: Either delete the existing data set, or
change the new name to a name other than the indicated data set.

42A1 (17057)
Meaning: The data set could not be deleted because it has not expired.
Disposition processing cannot delete an unexpired data set.

Application Programmer Action: You can delete the data set by specifying
the PURGE option on IEHPROGM SCRATCH or IDCAMS DELETE.

42A3 (17059)
Meaning: While trying to delete or rename the data set, the volume could
not be mounted.

System Programmer Action: Locate the logrec data set entry associated
with the error to determine the DADSM historic return code and the
DADSM diagnostic information. If the error cannot be corrected, contact
the IBM support center.

42A4 (17060)
Meaning: The data set cannot be deleted or renamed because it is currently
in use.

Application Programmer Action: Retry the request later.

42A5 (17061)
Meaning: While trying to delete or rename the data set, the user lacks
security authorization.

Application Programmer Action: If the user has access to the data set,
contact the system programmer for assistance.

578 z/OS V2R2 MVS Authorized Assembler Services Guide

System Programmer Action: Locate the logrec data set entry associated
with the error and contact the IBM support center.

42AE (17070)
Meaning: The data set specified was allocated as an extended format data
set.

Application Programmer Action: No action required.

42AF (17071)
Meaning: The data set specified was not allocated as an extended format
data set.

System Programmer Action: If the data set was intended to be an
extended format data set, the volumes in the storage group may not
support extended format allocations.

42B0 (17072)
Meaning: The extended sequential format requirement could not be met.

System Programmer Action: Determine why the extended sequential
format requirement could not be met and ensure the storage groups and
their volumes have the correct requirements for allocating an extended
sequential format data set. Locate the logrec data set entry to determine if
there are any other messages associated with this error.

42B1 (17073)
Meaning: The extended sequential format request will be allocated as a
non-extended sequential format data set.

System Programmer Action: If this is acceptable, ignore the reason code. If
not, determine why the extended sequential format requirement could not
be met and ensure the storage groups and their volumes have the correct
requirements for allocating an extended sequential format data set.

42B2 (17074)
Meaning: The list of volumes for the guaranteed space storage class is not
valid.

Application Programmer Action: Correct the volume list for the data set
or remove the volume list and let the system select the volumes. Reissue
the request.

42B3 (17075)
Meaning: An attempt was made to allocate a data set that was not a
physical sequential data set as an extended format data set on a system
that only supports extended format data sets for physical sequential data
sets.

Application Programmer Action: Ensure the data set to be allocated is
physical sequential, and reissue the request.

42B4 (17076)
Meaning: An attempt was made to allocate a data set that was not
SMS-managed as an extended format data set.

Application Programmer Action: Ensure the data set to be allocated will
be an SMS-managed data set, and reissue the request.

42B8 (17080)
Meaning: The data set is not eligible to be allocated as a VSAM extended
format data set, and will be allocated as a non-extended format data set.

Chapter 26. Requesting dynamic allocation functions 579

Application Programmer Action: Determine why the data set was not
allocated as a VSAM extended format data set, and make the changes
necessary to reissue the request. If necessary, contact the system
programmer for assistance.

42CC (17100)
Meaning: A catalog error or exceptional condition has caused the
allocation attempt to fail.

Application Programmer Action: Examine the return code and reason code
in the accompanying message IGD17100I, as described in “SMS reason
code (S99ERSN)” on page 569.

42CD (17101)
Meaning: A duplicate data set name exists in the catalog.

Application Programmer Action: Allocate the data set using a different
name and reissue the request.

42CE (17102)
Meaning:While trying to define a non-VSAM data set, a catalog error or
exceptional condition caused the allocation attempt to fail.

Application Programmer Action: Examine the return code and reason code
in accompanying message IGD17102I in z/OS MVS System Messages, Vol 8
(IEF-IGD).

42D6 (17110)
Meaning: The referenced data set does not exist.

Application Programmer Action: Correct the data set name in the
VOL=REF reference, and reissue the request.

42D8 (17112)
Meaning: The system programmer has overridden the expiration date or
retention period specified for the data set using the ACS routines. The
expiration date now meets the criteria specified in the management class
for the data set.

Application Programmer Action: If the new expiration date is
unacceptable, contact the system programmer to take a corrective action, if
any.

42DE (17118)
Meaning: The data set referred to on the LIKE parameter is neither a
non-VSAM data set nor a VSAM cluster name.

Application Programmer Action: Specify a valid data set name of a
non-VSAM data set or a VSAM cluster name on the LIKE parameter, and
reissue the request.

4308 (17160)
Meaning: The requested data set allocation is eligible for compression.

Application Programmer Action: If the data set should not be compressed,
contact the system programmer for assistance.

4309 (17161)
Meaning: The requested data set allocation will not be compressed because
compression services failed with a return code of 8.

580 z/OS V2R2 MVS Authorized Assembler Services Guide

System Programmer Action: Determine if compression services are
available. If they are, locate the logrec data set entry associated with the
error and contact the IBM support center. Otherwise, bring up compression
services.

430A (17162)
Meaning: The requested data set allocation will not be compressed because
compression services failed with a return code other than 8.

System Programmer Action: Determine if the data set characteristics met
the criteria for compression. If so, locate the logrec data set entry
associated with the error and contact the IBM support center. Otherwise,
have the application programmer change the characteristics for the data set
to ensure it will be eligible for compression.

430B (17163)
Meaning: The requested data set allocation will not be compressed because
the data set characteristics do not meet the criteria for compression.

Application Programmer Action: If possible, change the characteristics for
the data set to ensure it will be eligible for compression, and reissue the
request.

430D (17165)
Meaning: A multi-volume temporary data set cannot be allocated as an
extended format data set.

Application Programmer Action: The multi-volume temporary data set
will be allocated as a non-extended format data set. The reason code can
be ignored.

4331 (17201)
Meaning: SMS construct access services indicated that the data class,
management class, storage class, or storage group construct for the data set
does not exist in the active configuration.

Application Programmer Action: If the construct is explicitly specified,
make sure the specification is correct and reissue the request. Otherwise,
contact the system programmer.

System Programmer Action: If the construct was supplied by the ACS
routines, the ACS routines may have to be modified.

4333 (17203)
Meaning: While trying to allocate the SMS-managed data set, SMS VTOC
data set services could not retrieve a volume definition. In the volume list
passed to SMS VTOC data set services, one or more of the volumes might
be non-SMS-managed volumes.

System Programmer Action: If a volume list was explicitly specified, then
correct the volume list and reissue the request. If you did not explicitly
specify the volume list, then locate the logrec data set entry associated with
the error and contact the IBM support center.

4335 (17205)
Meaning: The volumes specified are not in the same storage group for a
guaranteed space request.

Application Programmer Action: Specify volumes within the same storage
group, or remove the volumes, and reissue the request. If necessary,
contact the system programmer for assistance.

Chapter 26. Requesting dynamic allocation functions 581

4336 (17206)
Meaning: A space request for a data set failed because:
v No accessible volumes had sufficient space to satisfy the single-volume

request
v Not enough accessible volumes had sufficient space to satisfy the

multi-volume request
v In the guaranteed space request for the data set, the specified volume

does not belong to any of the storage groups that the storage class
mapped.

A volume is accessible if all of the following are true:
v The storage group that contains the volume is enabled to the system
v The volume itself is enabled to SMS
v The volume itself is online to MVS.

Application Programmer Action: Reissue the request, specifying less space
than before. If this error message still occurs, contact the system
programmer.

System Programmer Action: Determine which storage class and storage
group were used for the request, and check the amount of available space
on all volumes in the storage group. Then either force the selection of
another storage class, or make more space available on the volumes within
the selected storage group. If necessary, add more volumes to the selected
storage group, add an overflow storage group to the selected storage
group list, or move data off volumes using DFSMShsm.

4337 (17207)
Meaning: There are no volumes for which all of the following are true:
v The storage group that contains the volume is enabled to the system
v The volume itself is enabled to SMS
v The volume itself is online to MVS.

System Programmer Action: Determine which storage class and storage
group were used for the request, and check the amount of available space
on all volumes in the storage group. Then either force the selection of
another storage class, or make more space available on the volumes within
the selected storage group. If necessary, add more volumes to the selected
storage group, add an overflow storage group to the selected storage
group list, or move data off volumes using DFSMShsm.

433F (17215)
Meaning: Space was not specified or not derived from a data class for the
creation of a VSAM data set.

Application Programmer Action: Specify a valid space value or contact the
system programmer to have the ACS routines assign a data class that has
the space specified, and then reissue the request.

4340 (17216)
Meaning: Unable to allocate space on a specified volume for a guaranteed
space request.

Application Programmer Action: Have the system programmer free more
space on the specified volume, specify another volume, or remove the
volume, and reissue the request.

4341 (17217)
Meaning: During creation of a VSAM data set, SMS VTOC data set

582 z/OS V2R2 MVS Authorized Assembler Services Guide

services volume selection was unable to select a volume for a guaranteed
space request due to one of the following reasons:
v The volume is offline to MVS
v The volume is not enabled to SMS
v The volume does not contain adequate space
v The status of the storage group containing the volume was not enabled,

quiesced nor quiesced new.

Application Programmer Action: Specify another volume, remove the
volume, or get a non-guaranteed space storage class derived for the data
set, then reissue the request. If the problem persists, contact the system
programmer.

System Programmer Action: Make sure the volume is online, enabled, and
has adequate space for the data set; and make sure the status of the
storage group containing the volume is either enabled, quiesced, or
quiesced new. Then have the application programmer reissue the request.

4344 (17220)
Meaning: More than 59 volumes were specified. The maximum number of
volumes allowed is 59.

Application Programmer Action: Reduce the number of volumes specified,
and reissue the request.

4345 (17221)
Meaning: A request was submitted for more than one volume for a
temporary VSAM data set. Only one volume may be requested.

Application Programmer Action: Ensure that no more than one volume is
specified for a temporary VSAM data set when you reissue the request.

4348 (17224)
Meaning: During creation of an SMS-managed VSAM data set, storage
groups were not assigned by the automatic class selection.

System Programmer Action: Correct the storage group ACS routines.

4349 (17225)
Meaning: In the guaranteed space request for the data set, the specified
volume does not belong to any of the storage groups that the storage class
mapped.

Application Programmer Action: Specify another volume or remove the
volume and let the system select the volume when the request is
resubmitted. If not successful, contact the system programmer for
assistance.

System Programmer Action: Determine which storage group contains the
volume, and which storage classes map to that storage group. Ensure that
the volume is online to MVS and enabled to SMS. Then force the selection
of one of those storage classes when the request is resubmitted.

434A (17226)
Meaning: SMS volume selection for VSAM data sets has determined that
no storage group contains enough volumes to satisfy the current request.

System Programmer Action: Do one of the following:
v Determine whether there is another storage group available that will

contain the required number of volumes

Chapter 26. Requesting dynamic allocation functions 583

v Try to match the number of required volumes to the number available in
one of the eligible storage groups.

436C (17260)
Meaning: An attempt to allocate an SMS-managed data set failed because:
v The volume that the data set resides on is not enabled to the storage

management subsystem on the system from which the request was
made.

v The storage group that contains the data set's volume is not enabled to
SMS.

System Programmer Action: Determine whether the volume or the storage
group needs to be enabled; you can enable either by using the VARY SMS
command. Then try to allocate the data set again.

436D (17261)
Meaning: SMS VTOC data set services was not able to allocate the data set
because the first volume serial number in the data set's volume serial list is
either blanks or null. The volume list was built incorrectly, possibly
because of one of the following:
v The allocation request was for a VTOC index, VVDS, or VTOC data set,

and the request did not specify a volume serial number.
v The allocation request was for a temporary data set and specified an

incorrect volume reference.

Application Programmer Action: Make sure the allocation request specifies
a volume serial number or a valid volume reference; then reissue the
request.

4377 (17271)
Meaning: A request was made to allocate a SMS-managed, non-VSAM,
non-guaranteed-space data set. The volume count specified (or derived
from the data class) is greater than the number of available online volumes
in any of the storage groups that were selected.

Application Programmer Action: Reduce the volume count and reissue the
request, or contact the system programmer for assistance.

System Programmer Action: Add volume to the storage group, or ensure
the storage group selected has a sufficient number of available online
volumes.

4379 (17273)
Meaning: In an SMS VTOC data set services request involving the data set,
one or more volumes were specified, but could not be selected. Then
volume selection was reentered until all eligible volumes were tried. SMS
may have been unable to select any volumes because:
v DADSM may not have found enough space
v The volume might not have been initialized as an SMS volume
v The dataset you are trying to allocate may already exist and may not be

currently cataloged.

System Programmer Action: Do the following:
v If DADSM could not find enough space, put additional volumes online

to MVS and enabled to SMS in one of the eligible storage groups and
have the application programmer reissue the request.

v Check to see if the dataset you are trying to allocate already exists. Don't
assume the dataset is currently cataloged.

584 z/OS V2R2 MVS Authorized Assembler Services Guide

v Verify that the volumes have been initialized as SMS volumes.

Otherwise, refer to the logrec data set entry associated with this error to
determine if there are any messages that could describe this error further.

437A (17274)
Meaning: Volumes specified for a guaranteed space request do not belong
to an eligible storage group allocation for the data set.

Application Programmer Action: Specify volumes that belong to an
eligible storage group, and reissue the request.

437C (17276)
Meaning: A DISP=MOD request would exceed the maximum volume
count of 59.

Application Programmer Action: Make sure no more than 59 volumes are
allocated to the data set when the request is resubmitted.

437D (17277)
Meaning: A non-VSAM volume selection failed.

System Programmer Action: Locate the logrec data set entry associated
with this error and determine if there are any other SMS messages that
were logged with this failure.

4395 (17301)
Meaning: The volume (or volumes) on which the data set resides is either
not online, or not enabled to the storage management subsystem at the
time of a delete or rename request.

System Programmer Action: If the volume is offline, then have the
operator vary it online. If the volume is disabled, then either enable it, or
deny the delete or rename request.

4398 (17304)
Meaning: SMS VTOC data set services delete or rename processing was
not able to delete the catalog entry for the data set; the data set is
non-SMS-managed, and resides on one or more SMS-managed volumes
that are not in initial status.

System Programmer Action: Use AMS ALTER to assign a storage class for
the data set and attempt to delete it again.

4399 (17305)
Meaning: The volume definitions for the data set indicate that the data set
resides on both SMS and non-SMS volumes. If any piece of a multi-volume
data set resides on an SMS-managed volume, then all volumes on which
the data set resides must be defined to the same storage group, and
therefore be defined to SMS.

Application Programmer Action: Define all volumes on which the data set
resides to the same storage group, and reissue the delete or rename
request. If the catalog entry is bad, execute IDCAMS ALTER to remove
volumes for the non-SMS-managed volumes, and delete the data set.

439F (17311)
Meaning: SMS VTOC data set services was called to delete or rename a
data set and received a list of SMS-managed volumes. However, the data
set is a non-SMS-managed data set, and does not reside on the
SMS-managed volumes listed.

Chapter 26. Requesting dynamic allocation functions 585

Application Programmer Action: If the volume list is incorrect, correct the
volume list for the data set and reissue the delete or rename request.
Otherwise, contact the system programmer for the corrective action.

43C7 (17351)
Meaning: The track or cylinder request was too large.

Application Programmer Action: Specify a smaller track or cylinder space
quantity.

43C9 (17353)
Meaning: SMS-managed volumes were specified for a non-SMS request.

Application Programmer Action: Specify non-SMS-managed volumes and
reissue the request.

43CD (17357)
Meaning: An attempt to reclaim a deferred roll-in generation data set
(GDS) failed.

System Programmer Action: Locate the logrec data set entry associated
with this error and determine the cause of the error using the logged
messages, and then take the appropriate actions to correct the error.

43CF (17359)
Meaning: The request involving the data set specified a password.
Passwords for the request are ignored for SMS-managed data sets.

Application Programmer Action: This reason code is returned for
informational purposes; therefore, no action is required.

43D0 (17360)
Meaning: The retention period or expiration date specified for a temporary
data set is ignored.

Application Programmer Action: A retention period or expiration date
need not be specified for temporary data sets.

43D1 (17361)
Meaning: SMS VTOC data set services VSAM extend processing received
non-SMS-managed volumes for an SMS-managed data set.

System Programmer Action: If the volumes in the catalog are in error,
correct them by changing the volumes to '*'.

43D2 (17362)
Meaning: SMS VTOC data set services VSAM EOV processing issued a
locate request for the data set to the catalog. The locate failed because the
catalog entry for the data set was deleted from the catalog; all
SMS-managed data sets must be cataloged.

System Programmer Action: Locate the logrec data set entry associated
with the error to determine why the locate request failed. Then catalog the
data set, and reissue the request.

43D4 (17364)
Meaning: On the request for a data set, the expiration date or retention
period specified is greater than the maximum allowed for the management
class that is effective for that data set. Therefore, the maximum value for
the expiration date or retention period, is computed from the management
class and assigned to the data set.

Application Programmer Action: If the expiration date is acceptable, no
response is required. Otherwise, do one of the following:

586 z/OS V2R2 MVS Authorized Assembler Services Guide

v Ask the storage administrator to change the expiration date in the
current management class before resubmitting the request.

v Assign a different management class to the data set before resubmitting
the request.

43DB (17371)
Meaning: During allocation of the referenced data set, the UNIT for the
selected VIO storage group is not defined to the system.

System Programmer Action: Disable the VIO storage group to the selected
system, or change the unit name in the VIO storage group to match a unit
defined to the system.

43F8 (17400)
Meaning: SMS VTOC data set services processing could not find the data
set in the catalog. The data set was specified in a LIKE reference, but either
was not cataloged, or included a PDS member name or a generation data
group (GDG) relative generation number.

Application Programmer Action: Specify another data set in the LIKE
reference, and reissue the request.

43FB (17403)
Meaning: SMS VTOC data set services like processing was unable to
enqueue on a data set that was specified in a LIKE reference. SMS VTOC
data set services was trying to enqueue on the data set to count the
number of directory blocks.

Application Programmer Action: Remove the LIKE reference and specify a
data class that meets the required criteria. Then reissue the request.

4402 (17410)
Meaning: The data set pointed to by the LIKE parameter does not reside
on a direct access volume.

Application Programmer Action: Specify a data set that resides on a direct
access volume and reissue the request.

4416 (17430)
Meaning: The data set referenced by the LIKE parameter is a VSAM data
set. The data set referenced by LIKE must be a non-VSAM data set for
creating a tape data set.

Application Programmer Action: Correct the reference or remove the LIKE
parameter. Then reissue the request.

4417 (17431)
Meaning: An attempt was made to create a partitioned data set (PDS) by
specifying DSNTYPE=PDS. The system could not determine the directory
blocks quantity from any of the following:
v The directory blocks from the request
v The data class
v A model data set referenced by the LIKE keyword

Note: The directory block quantity cannot be picked up from a model data
set that is a PDSE.

Application Programmer Action: Specify the directory blocks quantity by
one of the specified means, and reissue the request.

Chapter 26. Requesting dynamic allocation functions 587

4418 (17432)
Meaning: An inconsistent data set structure was found for the data set
because of the following conditions:
v AMP=AMORG is specified in the request
v A new SMS-managed data set is being created
v No RECORG is available, either from the request or from the

DATACLAS or from a data set referenced by the LIKE parameter.

Application Programmer Action: Specify a RECORG or have one assigned
through the data class ACS routines. If this is not successful, contact the
system programmer.

System Programmer Action: If the AMP=AMORG parameter is required
but a RECORG cannot be provided at allocation, force this data set to be
non-SMS-managed. This may require modification of ACS routines.
Otherwise, provide the RECORG value by assigning a data class.

4419 (17433)
Meaning: The allocation of the tape data set failed because the LIKE
parameter references a data set that has been migrated to tape.

Application Programmer Action: Change the LIKE reference to a data set
that has not been migrated or remove the LIKE reference and specify a
data class that meets the required criteria. Reissue the request.

4466 (17510)
Meaning: A DSNTYPE of PIPE was specified when the PATH keyword
was not specified. This is not allowed.

Application Programmer Action: Add the PATH keyword, or remove the
DSNTYPE of PIPE. Then reissue the request.

4467 (17511)
Meaning: A PATH keyword was expected, but was not specified.

Application Programmer Action: Add the PATH keyword. Then reissue
the request.

4468 (17512)
Meaning: An invalid DSNTYPE was specified for the request. A DSNTYPE
of PIPE is the only valid value when a PATH keyword is specified.

Application Programmer Action: Set the DSNTYPE to PIPE, or remove the
PATH keyword.

4588 (17800)
Meaning: SMS construct access services indicated that the data class,
management class, storage class, or storage group for the data set does not
exist in the active configuration.

Application Programmer Action: If you explicitly specified the construct,
make sure your specification is correct and reissue the request. Otherwise,
if the construct was supplied by the ACS routines, contact the system
programmer.

System Programmer Action: Change the ACS routines so that a valid
construct is assigned.

458A (17802)
Meaning: In a guaranteed space request for a data set, the caller selected
specific volumes, and selected a storage class with the guaranteed space

588 z/OS V2R2 MVS Authorized Assembler Services Guide

attribute; therefore, the specific volumes must be honored. However, not all
of the specified volumes are in the same storage group.

Application Programmer Action: Change the request so that all volumes
specified are in the same storage group or remove all the specified
volumes and have the system select the volumes; then reissue the request.

458B (17803)
Meaning: A space request for a data set failed because:
v No accessible volumes had sufficient space to satisfy the single-volume

request.
v Not enough accessible volumes had sufficient space to satisfy the

multi-volume request.
v In the guaranteed space request for data set dsn, the specified volume

does not belong to any of the storage groups that the storage class
mapped.

A volume is accessible if all of the following are true:
v The storage group that contains the volume is enabled to the system
v The volume itself is enabled to SMS
v The volume itself is online to MVS.

Application Programmer Action: Reissue the request, specifying less space
than before. If you still get this error message, contact the system
programmer.

System Programmer Action: Determine which storage class and storage
group were used for the request, and check the amount of available space
on all volumes in the storage group. Then either force the selection of
another storage class, or make more space available on the volumes within
the selected storage group.

458C (17804)
Meaning: There are no volumes for which all of the following are true:
v The storage group that contains the volume is enabled to the system
v The volume itself is enabled to SMS
v The volume itself is online to MVS.

System Programmer Action: Determine the status of all storage groups
and volumes used for this request. You may need to enable some storage
groups or bring some volumes online to MVS and enabled to SMS.

458E (17806)
Meaning: In an SMS VTOC data set services request involving the data set,
one or more volumes were specified, but could not be selected. Then
volume selection was reentered until all eligible volumes were tried.
DADSM may not have found enough space or the volume might not have
been initialized as an SMS volume.

System Programmer Action: If DADSM could not find enough space, put
additional volumes online in one of the eligible storage groups, or run
DFSMShsm space management cycle to provide more space on the
volumes, and have the application programmer reissue the request.
Otherwise, refer to the logrec data set entry associated with this error to
determine if there are any messages that could describe this error further.

Chapter 26. Requesting dynamic allocation functions 589

4590 (17808)
Meaning: The guaranteed space rules for allocating the data set have been
relaxed, and the allocation will occur without enforcing the guaranteed
space rules.

Application Programmer Action: No action is required.

Processing messages from dynamic allocation
Dynamic allocation indicates the outcome of an allocation request by a return code
in general register 15 and a reason code in S99ERROR in the request block. Even
when the return code indicates a successful allocation, the reason code may show
that a low-level error occurred, one that was not serious enough to cause a failure.
The reason code has a message associated with it, and programs that invoke
dynamic allocation can process the reason code or the associated message.

Although using the message processing function is optional, failure to do so can
result in difficulty diagnosing a dynamic allocation error.

This information does not describe techniques for processing the reason code; it
only describes techniques for processing the message. Programs that elect to
process the reason code can use IEFDB476 or DAIRFAIL to convert the reason code
into the message. IEFDB476 and DAIRFAIL are IBM-supplied programs. IEFDB476
is described in “Using the functions of the IEFDB476 program.” DAIRFAIL is an
IBM-supplied program that is described in z/OS TSO/E Programming Services.

When you want messages to be issued to the end user, it is more efficient to
request it through the S99EOPTS field of the request block extension, than to
convert a reason code into a message by using IEFDB476.

Sending dynamic allocation messages to the end user
When a program invokes dynamic allocation, it normally does so in behalf of an
end user. In a TSO/E environment, the end user is a TSO/E terminal. In a batch
environment, the end user is the job. The message that dynamic allocation
generates might be useful to the end user, and you can write programs to send the
users these messages. Use the S99EIMSG and S99EWTP fields of the request block
extension to specify that the system is to issue messages to the end user.

Some installations might need to write special message-sending programs. In this
case, use the S99ERMSG field of the request block extension to request that the
system return the message block to your program instead of being sent.

When you request the messages to be returned or issued, you can control the
severity level of the returned or issued messages through the S99EMGSV field of
the request block extension.

If you request that messages be returned, or you want to convert a reason code to
a message, link to the IBM-supplied IEFDB476 program (as described in “Linking
to the IEFDB476 program” on page 592) after dynamic allocation gives control back
to your program.

Using the functions of the IEFDB476 program
IEFDB476 is the dynamic allocation error message processing program. It provides
the following functions:
v Extracting and formatting messages
v Sending messages to an end user

590 z/OS V2R2 MVS Authorized Assembler Services Guide

v Freeing or retaining message blocks after a message has been extracted or sent.

You control the functions of IEFDB476 through an input parameter list that is
mapped by IEFZB476. In the following list, the names in parentheses are those
assigned by IEFZB476. For a complete description of the fields in this structure, see
also EMPARMS and EMBUFS in z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/). And see Figure 68 on page
592 for an illustration.

Extracting messages (EMRETURN): This function extracts each dynamic
allocation message from the system, formats it, and places it in a location that you
specify. To extract, obtain an area of storage large enough to hold all the messages
that you want to extract. Multiply 256 by the value returned in the S99ENMSG
field of S99PARMS to calculate the amount of storage you need. When you invoke
IEFDB476, you pass in the field EMBUFP the address of the storage you obtained.
IEFDB476 places the extracted messages in the storage you've indicated. Then your
program can process the messages as required. Your program is responsible for
freeing this area after it has completed processing the extracted messages.

Sending messages (EMPUTLIN or EMWTP): This function sends the message to
the end user. When you use this function, you must identify the end user that
receives the message.

The EMPUTLIN field is for TSO/E users; the EMWTP field is for WTO users. If
you specify both, EMWTP will override EMPUTLIN, and messages will be sent
through WTO. If EMWTP is specified authorized callers may also request
overriding the default descriptor and routing codes using the EMWTPCDE,
EMWTPCDP, and EMWTDERT fields.

Freeing or retaining message blocks (EMKEEP): This function retains the storage
area where the system keeps the message blocks. When you request message
extraction or message sending, IEFDB476 will automatically free the associated
dynamic allocation message blocks unless you explicitly specify otherwise. To
request that message blocks be retained, set flag EMKEEP to one in the EMFUNCT
field. After invoking IEFDB476 for message extraction or message sending, you
must invoke IEFDB476 again to free the message blocks if, and only if, you
requested that message blocks be retained by setting flag EMKEEP on. Free the
message blocks by setting all of the function indicators in EMFUNCT to zero.
Failure to free the message blocks will cause the message blocks to accumulate in
storage, eventually leading to an out-of-storage condition.

The caller of IEFDB476 must be running with a PSW key value of zero, or with the
same key value that matches the storage key of the storage that contains the
message blocks. The storage key is specified or defaulted by the program that
issues the original SVC 99 request.

Note: Besides extracting messages, sending messages, and freeing storage, IEFDB476 can
also convert an error reason code into the corresponding message. However, because
DAIRFAIL also performs the same conversion function, older programs using DAIRFAIL
for this purpose should continue to do so.

Chapter 26. Requesting dynamic allocation functions 591

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Linking to the IEFDB476 program
Use the LINK macro to link to IEFDB476. When issuing the LINK to IEFDB476, the
requirements for the caller are:

Authorization:
Problem state or supervisor state, and any PSW key

AMODE:
31-bit

RMODE:
ANY

Interrupt Status:
Enabled for I/O and external interrupts

Locks: No requirement

Register 1

EMPARMS

EMPARMS

Flags

SVC 99 or DAIR return code

CPPL

Message buffer

Reserved

EMWTPCDP

Message buffers

1st message length

2nd message length

2nd message text

1st message text

0

4

8

12

16

20

24

0

4

256

260

512

The failing SVC 99 or

DAIR parameter list

ID

number
Reserved

offset

offset

of mes-

sage blocks

.

.

.

Figure 68. Structure of Input Parameter List to IEFDB476

592 z/OS V2R2 MVS Authorized Assembler Services Guide

In addition, general purpose register 1 must contain a pointer to the error
messages processing parameter list (EMPARMS) and general purpose register 13
must contain the address of a 72-byte save area.

Providing input to IEFDB476 through EMPARMS
The fields in EMPARMS control the processing of IEFDB476. Initialize the storage
for EMPARMS to 0 before setting the fields to your processing options. For a
complete description of EMPARMS, see z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Function flags (EMFUNCT): A one-byte field that identifies the functions to be
performed:

Bit Bit Name Meaning When On
0 EMPUTLIN Issue the messages using PUTLINE
1 EMWTP Issue the messages using WTO to the programmer
2 EMRETURN Return messages in the user-supplied buffer
3 EMKEEP Do not free the storage associated with the

message blocks chained out of the request block
extension

4 EMWTPCDE Authorized caller is overriding default ROUTCDE
and DESC codes

5-7 EMRSV01 Not an intended programming interface

Caller identification number (EMIDNUM): A one-byte field that identifies the
caller:

Value Name Meaning
1 EMDAIR General caller with a DAIR error
50 EMSVC99 General caller with a DYNALLOC error
51 EMFREE FREE command with a DYNALLOC error

Number of message blocks (EMNMSGBK): A one-byte field containing a count
of the number of message blocks from which the text is to be extracted. The count
of the number of message blocks that is returned from DYNALLOC is in field
S99ENMSG of the request block extension. The default count is 2.

(EMRSV0x) - Not an intended programming interface: A one-byte field
containing zeros.

Parameter list address (EMS99RBP): A four-byte field containing the address of
the failing SVC 99 parameter list.

Parameter list address (EMDAPLP): A four-byte field containing the address of
the failing DAIR parameter list.

Return code (EMRETCOD): A four-byte field containing the DYNALLOC or
DAIR return code.

CPPL address (EMCPPLP): A four-byte field containing the address of the
command processor parameter list. This is required only when PUTLINE is
requested.

Message buffer address (EMBUFP): A four-byte field containing the address of
the message buffers in which the messages are to be returned. This field is
required only when bit EMRETURN in field EMFUNCT is set on.

Chapter 26. Requesting dynamic allocation functions 593

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

(EMRSV0y) - Not an intended programming interface: A four-byte field
containing zero.

Parameter address (EMWTPCDP): When EMWTPCDE is set, this is a four-byte
address of the descriptor and route codes supplied by an authorized user to
override the default DESC (7 - task related) and ROUTCDE (11 - programmer
information) codes. The area can be mapped by EMWTDERT.

Parameter area (EMWTDERT) maps user-supplied descriptor and routing codes
that are contiguous areas as follows:
v Descriptor codes (EMWTDESC): A 16-bit field which has a bit on for each

descriptor code requested.
v Routing codes (EMWTRTCD): A 128-bit (16 byte) field which has a bit on for

each routing code requested.

Not an intended programming interface: An eight-byte field containing zero.

Using EMABUFFS to receive message information from the
system
The system uses the fields of the message buffer array (EMABUFFS) structure to
return message information. You do not have to initialize any fields in EMABUFFS.
The EMABUFFS structure is described in EMPARMS in z/OS MVS Data Areas in
the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Length of message text (EMABUFLN): A two-byte field containing the length of
the message. The length includes the lengths of EMABUFLN and EMABUFOF.

Offset (EMABUFOF): A two-byte field containing zeros.

Message text (EMABUFTX): A two-hundred fifty one byte field containing the
returned message text.

Not an intended programming interface: A one-byte field containing zeroes.

Using EMBUFS to receive message information from the system
The system uses the message buffers (EMBUFS) to return message information.
You do not have to initialize any fields in EMBUFS.

The EMBUFS structure is described in EMPARMS in z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Length of the first message (EMBUFL1): A two-byte field containing the length
of the first message. The length includes the lengths of EMBUFL1 and EMBUF01.

Offset (EMBUF01): A two-byte field containing zeros.

First message text (EMBUFT1): A two hundred fifty-one byte field containing the
first returned message text.

Not an intended programming interface: A one-byte field containing zero.

Length of second message (EMBUFL2): A two-byte field containing the length of
the second message returned. The length includes the length of EMBUFL2 and
EMBUF02.

Offset (EMBUF02): A two-byte field containing zeroes.

594 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Second message text (EMBUFT2): A two hundred fifty-one byte field containing
the second returned message text.

Interpreting return codes from IEFDB476
IEFDB476 produces return codes in general purpose register 15. It does not
produce reason codes unless the DYNALLOC caller uses a request block extension.
The system returns the reason codes in the following fields of the request block
extension:
v “Message processing reason code (S99ERCO)” on page 567
v “Message block freeing reason code (S99ERCF)” on page 568
v “PUTLINE/WTO macro return code (S99EWRC)” on page 568.

Hexadecimal Return Code
Meaning and Action

00 Meaning: The request is successful.

Application Programmer Action: None required.

04 Meaning: The identification number of the caller is invalid

Application Programmer Action: Correct the value supplied in the
EMPARMS field EMIDNUM and resubmit the request. Valid values are
described in “Caller identification number (EMIDNUM)” on page 593.

08 Meaning: An error occurred in PUTLINE or WTO while issuing a message.
The PUTLINE or WTO return code, if any, is in the S99EWRC field of the
request block extension.

Application Programmer Action: If a request block extension was
supplied, the field S99ERCO contains a reason code. See “Message
processing reason code (S99ERCO)” on page 567 for the appropriate action
for that reason code.

If no RBX was supplied, see the descriptions of reason codes 03, 04, 06,
and 07 in “Message processing reason code (S99ERCO)” on page 567 for
possible causes and actions to take for this error.

0C Meaning: The IEFDB476 program is unable to return messages for one of
the following reasons:
v A request block extension (RBX) was supplied, but the RBX field

S99ENMSG contains 0, indicating that the dynamic allocation request
did not return messages. The dynamic allocation request might not have
returned messages because:
– The request was successful, and no messages were returned. The RBX

field S99ERCO contains a reason code of 0D.
Application Programmer Action: See the description of reason code
0D in “Message processing reason code (S99ERCO)” on page 567 for
the appropriate action.

– o The request was unsuccessful but no messages were returned. The
reason is unknown. The RBX field S99ERCO contains a reason code of
0B.
Application Programmer Action: See the description of reason code
0B in “Message processing reason code (S99ERCO)” on page 567 for
the appropriate action.

– Bit S99ERMSG in the RBX was not set on to request that the system
return messages in the message block. The RBX field S99ERCO
contains a reason code of 0C.

Chapter 26. Requesting dynamic allocation functions 595

Application Programmer Action: See the description of reason code
0C in “Message processing reason code (S99ERCO)” on page 567 for
the appropriate action.

v The RBX supplied to the IEFDB476 program was not valid.
Application Programmer Action: Verify that the RBX being supplied to
IEFDB476 is the correct RBX and has not been modified.

v Message extraction was requested through bit EMRETURN in the
EMFUNCT field, but no message buffer address was supplied. The RBX
field S99ERCO contains a reason code of 0A.
Application Programmer Action: See the description of reason code 0A
in “Message processing reason code (S99ERCO)” on page 567 for the
appropriate action.

v An RBX was supplied but the message block chain was not valid. The
RBX field S99ERCO contains a reason code of 09.
Application Programmer Action: See the description of reason code 09
in “Message processing reason code (S99ERCO)” on page 567 for the
appropriate action.

10 Meaning: The IEFDB476 program is unable to free the storage associated
with the message block chained out of the request block extension.
Hexadecimal return code 10 applies only to DYNALLOC callers that have
a request block extension.

Application Programmer Action: The S99ERCF field in the request block
extension contains a reason code. Take the action described for that reason
code in “Message block freeing reason code (S99ERCF)” on page 568.

Interpreting DYNALLOC return codes
When DYNALLOC returns control to your program, register 15 contains a return
code. Depending on the return code, the S99ERROR and S99INFO fields in the
input request block (S99RB) may also contain error and information reason codes.
The return codes that can appear in register 15 are shown in Table 76.

The data area labels discussed in this topic are assigned by macros IEFZB4D0 and
IEFZB4D2. For a complete list of the fields mapped by IEFZB4D2 and IEFZB4D0,
see z/OS MVS Data Areas in the z/OS Internet library (http://www.ibm.com/
systems/z/os/zos/bkserv/).

Table 76. DYNALLOC Return Codes

Decimal Code Meaning and Action

0 Meaning: Successful completion; there will also be an information
reason code returned in S99INFO if a non-terminating error
occurred during request processing.

Application Programmer Action: None required. If the system
returned an information reason code, determine whether to correct
it based on the needs of the application.

596 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 76. DYNALLOC Return Codes (continued)

Decimal Code Meaning and Action

4 Meaning: An error resulted from:

v the current environment, the unavailability of a system resource
(the system will also return a class 2 error reason code in
S99ERROR), or a system routine failure.

v the current environment (the system will also return a class 4
error reason code in S99ERROR), or

v a system routine failure (the system will also return a class 7
error reason code in S99ERROR).

Application Programmer Action: See the error reason code
description and appropriate action in

v Table 77 on page 602,

v Table 79 on page 616, or

v Table 80 on page 625

See also the associated message for the appropriate action.

8 Meaning: The installation validation routine denied this request.

Application Programmer Action: Consult with your system
programmer to determine whether this dynamic allocation function
can be made available.

12 Meaning: The parameter list was not valid; the system will also
return a Class 3 error reason code in S99ERROR.

Application Programmer Action: See the Class 3 reason codes and
actions listed in Table 78 on page 611, as well as any associated
messages, for the appropriate action to take.

The next two topics describe the information and error reason codes that
DYNALLOC returns in the request block when the return code is 0.

Interpreting information reason codes from DYNALLOC
When DYNALLOC encounters a non-terminating error during processing, the
system places a return code of 0 in register 15, and an information reason code in
the request block field labelled S99INFO. The information reason codes indicate
that, although DYNALLOC performed the requested function, some element of the
request was not processed or was overridden by system action. The actions
provided with these reason codes are optional. The application programmer should
determine, based on the individual program, whether it is necessary to correct the
condition that caused the reason code.

Note that information reason codes (S99INFO) which accompany error reason
codes (S99ERROR) in the 47zz range are actually DADSM subfunction reason
codes, which are explained in z/OS DFSMSdfp Diagnosis. The 47zz error codes are
DYNALLOC terminating errors.

Corresponding messages listed for any information reason code are issued or
returned based on the message processing options specified by the dynamic
allocation caller. See “Processing messages and reason codes from dynamic
allocation” on page 565 for more information about the handling of dynamic
allocation messages.

The possible reason codes and their meanings are:

Chapter 26. Requesting dynamic allocation functions 597

|
|
|
|
|

Hexadecimal reason code
Meaning and action

0008 Meaning: The data set is deallocated using the disposition specified when
the request was allocated. The overriding disposition ignored for one of the
following reasons:
v The data set was originally allocated with a disposition of PASS.
v The data set is a non-subsystem data set that has a system-generated

name; you cannot override disposition on this type of data set.
v The data set is a VSAM data set and the storage management subsystem

(SMS) is not active.

Application programmer action: Determine which condition caused the
code and take the appropriate action:
v Correct the overriding disposition.
v Ensure that the data set was allocated with a disposition other than

PASS.
v Ensure that the data set was not a temporary data set.
v Check with your system programmer to determine if SMS is active.

Corresponding message: IKJ68501

002n The data set was successfully deallocated but processing of the requested
CATLG or UNCATLG disposition was unsuccessful. The digit “n”
represents the reason for the failure, as follows:

n Meaning and action

1 Meaning: A control volume is required; a utility program must be
used to catalog the data set.

Application programmer action: Run the required utility program,
ensuring that the required control volume is mounted.

2 Meaning: One of the following has occurred:
v A catalog entry already exists for the specified DSNAME.
v A catalog entry for an alias of another data set matches the

specified dsname.
v The data set was (or became) a multivolume data set with a

disposition of CATLG and no change was made to the volume
serial list.

v The system could not locate the data set to be uncataloged.
v The dsname of a data set to be cataloged in an integrated catalog

facility (ICF) catalog has the same low level qualifier
(GnnnnVnn) as a GDG.

v The RACF authorization to access the data set, GDG base, or
catalog was improper.

v You did not specify a password for writing the catalog, or
specified it incorrectly.

v The name of the data set to be cataloged has the same high-level
qualifiers as an existing alias entry in the same catalog. For
example, data set A.B.C.D cannot be cataloged if an alias entry
for A.B or A.B.C pointing to a different catalog already exists in
the catalog.

Application programmer action: Correct the DSNAME and
resubmit the request. If the catalog is password-protected and the

598 z/OS V2R2 MVS Authorized Assembler Services Guide

system issued message IEC301A, ask your system programmer to
supply the correct password to the message. Obtain authorization
and the password from the system administrator or owner of the
private catalog. If a RACF failure has occurred, contact the
installation RACF administrator to get proper authorization.

3 Meaning: The specified index does not exist.

Application programmer action: Correct the dsname and resubmit
the request.

4 Meaning: The data set could not be cataloged because the space
was not available in the catalog.

Application programmer action: Increase the size of the catalog
data set or delete unused catalog entries, and use a utility program
to catalog the data set.

5 Meaning: Because too many volumes were specified for the data
set, not enough storage was available to catalog it.

Application programmer action: Reduce the number of volumes
specified, and resubmit the request.

6 Meaning: The data set to be cataloged in a generation index is
improperly named.

Application programmer action: If the dsname is G0000V00:
1. Use IEHLIST to list all the data set names for the GDG
2. Use IEHPROGM to rename the data sets in the order in which

they exist, starting with G0001V00 or higher. Uncatalog the data
sets using the original data set names, then catalog the data sets
using the new names.

If the dsname is not G0000V00, correct the dsname and resubmit
the request.

7 Meaning: The data set to be cataloged has not been opened, and
the following information was not supplied:
v Density: for dual density tape requests only
v Recording mode: for requests for which compaction information is

required.

Application programmer action: If you want to catalog the data
set, supply the required information and resubmit the request.

9 Meaning: An non-correctable I/O error occurred in reading or
writing the catalog, or the catalog is protected by an expiration
date but the purge date has not passed, or RACF denied access to
the catalog.

Application programmer action: Resubmit the job, or catalog the
data set using some alternate method, such as the IDCAMS utility.
If a RACF failure has occurred, contact the installation RACF
administrator to get proper authorization.

A Meaning: The VTOC of a DOS volume could not be converted to
OS format.

Application programmer action: Either scratch or remove the split
cylinder data set that is causing the error, and resubmit the request.

Corresponding message: IKJ56851I

Chapter 26. Requesting dynamic allocation functions 599

003n The data set was successfully deallocated, but processing of the requested
DELETE disposition was unsuccessful. The digit “n” represents the reason
for the failure, as follows:

n Meaning

1 Meaning: The expiration date has not occurred. The expiration
date is specified on one of the following:
v The EXPDT or RETPD parameter of the JCL DD statement
v The EXPDT or RETPD subparameter of the JCL DD statement

LABEL parameter
v The DALEXPDT or DALRETPD text unit of a previous dynamic

allocation request
v The data class used for this DD statement.

Application programmer action: Do not attempt to delete the data
set.

4 Meaning: No device was available for mounting the volume
during deletion.

In a JES3 system, this reason code might occur if a data set was
passed from one job step but not received by the job step in which
it was to be deleted, as when:
v The data set was allocated to a permanently resident device that

was online to MVS but off-line to JES3.
v JES3 assigned the data set to a device that was varied off-line

from JES3 before the data set was deleted.

Application programmer action: Ensure that the correct volumes
can be mounted. In a JES3 system, ensure that the device
containing the data set is online to JES3.

5 Meaning: Because too many volumes were specified for deletion,
not enough storage was available to perform the specified deletion.

Application programmer action: For DASD data sets, delete the
VTOC entries for the data set from each volume by breaking the
request up into several steps. In each step, allocate and unallocate
the data set, specifying a portion of the volumes for the data set in
each step. For TAPE data sets, no action is necessary.

6 Meaning: Either no volumes were mounted or volumes that were
mounted could not be demounted to permit the remaining
volumes to be mounted.

Application programmer action: Ensure that the correct volumes
can be mounted.

8 Meaning: The SCRATCH routine returned an error code. If the
user's JCL JOB statement requested allocation or termination
messages, message IEF283I appears in the SYSOUT listing. This
message lists the volume serial numbers of the data sets that were
not deleted; following each number is a code that explains why
each data set was not deleted.

Application programmer action: Take the appropriate action based
on the SCRATCH error code:

Code Action

600 z/OS V2R2 MVS Authorized Assembler Services Guide

1,5,6 Ensure that the correct volume can be mounted.

2 Supply the correct password.

3 Do not attempt to delete the data set.

4 Resubmit the request.

7 Do not specify SHR as the data set disposition.

8 Contact the RACF administrator to either properly define
the data set or provide the correct RACF authorization.

9 Request the owners of the RACF-defined entities to delete
the profiles from the RACF data set.

Corresponding message: IKJ5685I. If the JOB statement requested
allocation or termination messages, message IEF283I appears in the
SYSOUT listing.

0044 Meaning: A reserved temporary data set name was used for a SYSOUT
allocation. The job continued, but the system used the job name instead of
the reserved name.

Application programmer action: Change the temporary data set name
associated with the SYSOUT data set allocation.

Corresponding message: IKJ56898I

0050 Meaning: The system successfully allocated the data set, but could not
catalog it because the data set name is in apostrophes. The system used a
disposition of KEEP instead.

Application programmer action: Correct the disposition, or use a dsname
that is not enclosed in apostrophes.

Corresponding message: IKJ56851I

0054 Meaning: The system successfully allocated the dataset. The Dynamic
Allocation specified the 2-digit year Expiration Date (yyddd) Text Unit
(DALEXPDT) and the 2DGT_EXPDT Policy of WARN is in effect.

A 2-digit Expiration Date year implies a year date of the form 19xx where
xx is the 2-digit year specified by DALEXPDT (yyddd). Therefore, use of
DALEXPDT does not allow the specification of an Expiration Date after
December 31, 1999.

Application programmer action: Modify the Dynamic Allocation
parameter input to replace the DALEXPDT text unit with the DALEXPDL
text unit which uses the 4-digit year format (yyyyddd).

Corresponding message: IEF405I

Interpreting error reason codes from DYNALLOC
When the DYNALLOC macro routines return a nonzero return code in register 15,
the request block field labelled S99ERROR contains a code that explains the reason
for the error.

Corresponding messages listed for any error reason code are issued or returned
based on the message processing options specified by the dynamic allocation caller.
See “Processing messages and reason codes from dynamic allocation” on page 565
for more information about the handling of dynamic allocation messages.

Error reason codes are divided into the following classes:

Chapter 26. Requesting dynamic allocation functions 601

|
|
|
|

Class Description

1 Used for internal diagnostic purposes only. Record this code and supply it
to the appropriate IBM support personnel.

2 Unavailable system resource

3 Invalid parameter list

4 Environmental error

5 Used for internal diagnostic purposes only. Record this code and supply it
to the appropriate IBM support personnel.

6 Used for internal diagnostic purposes only. Record this code and supply it
to the appropriate IBM support personnel.

7 System routine error

The error reason codes are shown in Table 77 through Table 80 on page 625. The
class designations listed here appear as the second digit of the reason code.

Note: The explanations of the codes in these figures are followed, in parentheses,
by an indication of the kind of request associated with the code.

Table 77. Class 2 error reason codes (unavailable system resource - ENVIRONMENTAL ERROR)

Hex code (Decimal) Meaning and action

0204 (516) Meaning: Virtual storage unavailable.

Application programmer action: Resubmit the request. Corresponding
message: IKJ56863I

020C (524) Meaning: Unable to honor a request to upgrade an existing shared data set
allocation for this address space to an exclusive allocation (such as OLD
OR MOD), because the data set is also allocated to another address space,
possibly on a different system in the sysplex.1

Application programmer action: Change the allocation request and
resubmit the request. Corresponding message: IKJ56241I

0210 (528) Meaning: Requested data set unavailable. The data set is allocated to
another job and its usage attribute conflicts with this request. (dsname
allocation)1

Application programmer action: Change the allocation request and
resubmit the request. Corresponding message: IKJ56225I

0214 (532) Meaning: Device(s) not available; or, if allocating an internal reader, all
defined internal readers are already allocated. (dsname allocation)1

Application programmer action: Ensure that the device collections of the
specified device can supply the required number of devices. If necessary,
change the device specification. Resubmit the request. System programmer
action: If the device(s) should have been available based on the
configuration defined to the system, search the problem reporting data
bases for a fix for the problem. If no fix exists, contact the IBM Support
Center. The S99INFO field may contain an internal informational code
which can be reported to the IBM Support Center.

Corresponding message: IKJ56241I

602 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 77. Class 2 error reason codes (unavailable system resource - ENVIRONMENTAL ERROR) (continued)

Hex code (Decimal) Meaning and action

0218 (536) Meaning: Specified volume or an acceptable volume is not mounted, and
user does not have volume mounting authorization through the
DYNALLOC request. (dsname allocation)1

Application programmer action: Change volume specification, or have the
required volume mounted, or change the allocation request to allow
volume mounting. Resubmit the request.

Some possible reasons for this error are:

v The dynamic allocation tried to use a VIO-eligible unit, but the data set
name was not a temporary dsname (DSN=&&dsname).

v The dynamic allocation tried to put a data set with a non-temporary
dsname (DSN=dsname) onto a real DASD volume but

– No volume serial number was supplied, and

– No volumes on the system were mounted with a USE attribute of
STORAGE.

Corresponding message: IKJ56221I
021C (540) Meaning: Device name specified is undefined. (dsname allocation)

Application programmer action: Correct the device name subparameter
and resubmit the allocation request. If the device name subparameter
correctly identifies a device in the current configuration and a dynamic
configuration change has just occurred, resubmit the request. System
programmer action: If the problem recurs, search the problem reporting
data bases for a fix. If none exits, contact the IBM Support Center.

Corresponding message: IKJ56241I
0220 (544) Meaning: Requested volume not available. (dsname allocation)

Application programmer action: Resubmit the request. Corresponding
message: IKJ56221I

0224 (548) Meaning: Eligible device types do not contain enough devices. (dsname
allocation)1

Application programmer action: Change the device specification and
resubmit the request. Ensure that the specified device type can supply the
required number of devices.

System programmer action: If the problem recurs, and the I/O
configuration was built by the MVS configuration program (MVSCP),
search the problem reporting data bases for a fix for the problem. If no fix
exists, contact the IBM Support Center.

Corresponding message: IKJ56880I
0228 (552) Meaning: Specified volume or device in use by system. (dsname allocation)

Application programmer action: Resubmit the request when the system
function has completed. Corresponding message: IKJ56880I

022C (556) Meaning: Volume mounted on ineligible permanently resident or reserved
device. (dsname allocation)

Application programmer action: Ensure that the device and volume
specifications are correct. If necessary, correct them. Resubmit the request.

One possible reason for this error is that the dynamic allocation specified a
valid volume serial number along with an invalid UNIT name.
Corresponding message: IKJ56221I

Chapter 26. Requesting dynamic allocation functions 603

Table 77. Class 2 error reason codes (unavailable system resource - ENVIRONMENTAL ERROR) (continued)

Hex code (Decimal) Meaning and action

0230 (560) Meaning: Permanently resident or reserved volume on required device.
(dsname allocation)

Application programmer action: Specify another device number or request
the volume that is mounted on the device.

Corresponding message: IKJ56880I
0234 (564) Meaning: More than one device required for a request specifying a specific

device. (dsname allocation)

Application programmer action: Change the request to specify an esoteric
or generic name representing more than one device; or, if the volume is
reserved and you do not wish it to be, ask the operator to unload it.
Resubmit the request. Corresponding message: IKJ56880I

0238 (568) Meaning: Space unavailable in task input output table (TIOT). (dsname
allocation, concatenation)

Application programmer action: Reduce the total number of allocated DDs
and devices. Deallocate data sets that are not needed simultaneously.
Corresponding message: IKJ56220I
Note: The size of the TIOT increases by four (4) bytes for every SMS
candidate volume per DD statement or dynamic allocation.

023C (572) Meaning: Required catalog not mounted, and user does not have volume
mounting authorization. (dsname allocation)

Application programmer action: Ask the operator to mount the required
volume and resubmit the allocation request. Corresponding message:
IKJ56880I

0240 (576) Meaning: Requested device is a console. (dsname allocation)

Application programmer action: Change the incorrect device address and
resubmit the request. Corresponding message: IKJ56881I

0244 (580) Meaning: Telecommunication device not accessible. (dsname allocation)

Application programmer action: Ask the operator to enter VARY
commands to ensure that the necessary device is accessible. Resubmit the
request.

024C (588) Meaning: Operating-system-managed resource was unavailable to the
subsystem. (dsname allocation)2

Application programmer action: Consult the subsystem message. Correct
the error and resubmit the allocation request.

0250 (592) Meaning: Subsystem resource not available. (dsname allocation)2

Application programmer action: Correct the incorrect subsystem name.
Resubmit the request. System programmer action: If the subsystem name
was correct, consult the subsystem documentation to determine if the
subsystem supports dynamic allocation of subsystem data sets.

0254 (596) Meaning: The TIOT resource is currently unavailable and the user
requested conditional ENQ on the resource. (all dynamic allocation
functions)

Application programmer action: Resubmit the request. If acceptable, turn
off the conditional ENQ request by setting bit S99CNENQ in the request
block to 0.

604 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 77. Class 2 error reason codes (unavailable system resource - ENVIRONMENTAL ERROR) (continued)

Hex code (Decimal) Meaning and action

0258 (600) Meaning: There was not a sufficient number of non-restricted devices to
satisfy the request, or JES3 selected a JES3-managed restricted device to
satisfy the request.

Application programmer action: Ensure that the device type is correctly
specified. If this error code occurred because JES3 selected a device that is
restricted and either JES3-managed or jointly managed, remove the device
from JES3 management.

System programmer action: If the problem recurs and the I/O
configuration was built by the MVS configuration program (MVSCP),
search the problem reporting data base for a fix for the problem. If no fix
exists, contact the IBM Support Center.

025C (604) Meaning: Requested device is boxed and cannot be accessed, as a result of
an I/O error condition or the operator issuing a VARY X, OFFLINE,
FORCE command. (dsname allocation)

Application programmer action: Resubmit the request when the device has
been brought back online.

0260 (608) Meaning: The device does not meet the specified status requirements.
(MVS issues this reason code after a device allocation or deallocation
request has failed.)

System programmer or operator action: Depending on the message
accompanying this error reason code, different actions are required. Follow
the actions specified in the accompanying message.

0264 (612) Meaning: Due to its current status, the request made to the device is
invalid. (MVS issues this reason code after a device allocation or
deallocation request has failed.)

System programmer or operator action: Depending on the message
accompanying this error reason code, different actions are required. Follow
the actions specified in the accompanying message.

0268 (616) Meaning: The tape device is not responding to request; a hardware
malfunction might have occurred. (dsname allocation)

Application programmer action: Change the tape device address and
resubmit the request.

026C (620) Meaning: Request requires more SMS-managed volumes than are eligible.

Application programmer action: Change the UNIT, VOLUME, or
STORCLAS requirements on the allocation request to specify an eligible
SMS-managed volume.

Corresponding message: IKJ56241I
0270 (624) Meaning: Request requires more non-SMS-managed volumes than are

eligible.

Application programmer action: Change the UNIT, VOLUME
requirements on the allocation request to specify an eligible
non-SMS-managed volume.

Corresponding message: IKJ56241I

Chapter 26. Requesting dynamic allocation functions 605

Table 77. Class 2 error reason codes (unavailable system resource - ENVIRONMENTAL ERROR) (continued)

Hex code (Decimal) Meaning and action

0274 (628) Meaning: Telecommunication device deleted from I/O configuration. The
accompanying message IEF358I contains the device name information.

Application programmer action: Ensure that the teleprocessing device is
correctly specified and is currently defined in the system configuration.

System programmer action: If the error recurs, search the problem
reporting data base for a fix for the problem. If no fix exists, contact the
IBM Support Center.

Corresponding message: IEF358I
0278 (632) Meaning: The requested data set is migrated, but the S99NOMIG bit is on.

(S99NOMIG is described in “Flags (S99FLAG1)” on page 558)

Application programmer action: Recall the data set and resubmit the
request.

Corresponding message: IKJ56240I
0284 (644) Meaning: No tape library contains enough devices to satisfy the request.

The accompanying message IEF115I contains the number of devices
needed.

Application programmer action: Reduce the number of tape devices
required and resubmit the allocation request, or, if this is not possible,
notify the system programmer.

System programmer action: Determine whether it is possible to satisfy the
device requirements with another library. If so, assign a storage group in
that library to this request. Otherwise, notify the owner of the job either to
reduce the device requirements or change the request to a non-library
request.

Corresponding message: IEF115I
028C (652) Meaning: Unable to allocate tape devices to the same generic device name.

The accompanying message IEF112I contains the device name information.

Application programmer action: Reduce the tape device requirements and
resubmit the request.

Corresponding message: IEF112I
0290 (656) Meaning: The allocation failed because the system could not assign all the

required tape devices within one eligible system-managed tape library. The
accompanying message IEF333I contains the libraries that are eligible to
this allocation request.

Application programmer action: Do one of the following:

v Reduce the number of devices required by the DD statement.

v Reduce the number of devices required by the step.

v Balance the total number of required devices among the DD statements
in the step.

Then resubmit the job.

Corresponding message: IEF333I

606 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 77. Class 2 error reason codes (unavailable system resource - ENVIRONMENTAL ERROR) (continued)

Hex code (Decimal) Meaning and action

0294 (660) Meaning: A non-tape-library request specified a tape library device. The
accompanying message IEF120I contains the device name information.

Application programmer action: If you can avoid requesting a specific
device (a demand request), change the device specification to either a
generic device name or an esoteric device name and resubmit the allocation
request. However, if you require a demand request, ensure that the
required tape device is not in a tape library and resubmit the request.

Corresponding message: IEF120I
0298 (664) Meaning: No tape device pools available for allocation.

Application programmer action: Ensure that tape device pools are defined
to this system and resubmit the request.

Corresponding message: IEF147I
029C (668) Meaning: There was a library automation communication services (LACS)

mount failure for a device in a IBM 3495 Tape Library Dataserver.

System programmer or operator action: Depending on the messages
accompanying this error reason code, different actions are needed. For
required actions, see the accompanying message.

02A0 (672) Meaning: Attempt to mount a volume on the device specified, but the
mount failed.

System programmer action: Depending on the messages accompanying
this error reason code, different actions are needed. For required actions,
see the accompanying message.

Corresponding Messages: IEF116I, IEF118I, IEF788I, IEF789I, IEF790I,
IEF791I

02A4 (676) Meaning: Attempt to allocate a request to a single library failed. The
accompanying message IEF333I contains the device and library name
information.

Application programmer action: Reduce the tape device requirements and
resubmit the request.

Corresponding message: IEF333I
02A8 (680) Meaning: Attempt to obtain library ID for the requested device failed. The

accompanying message IEF155I contains the device name information.

System programmer action: Review the logrec record related to this error
for information that might help resolve why the system could not obtain
the tape library ID.

Corresponding message: IEF155I
02AC (684) Meaning: A volume required for a non-tape-library request was mounted

on library device. The accompanying message IEF151I contains the library
and volume name information.

System programmer action: Contact the storage administrator to check the
tape volume inventory and update it as necessary.

Corresponding message: IEF151I

Chapter 26. Requesting dynamic allocation functions 607

Table 77. Class 2 error reason codes (unavailable system resource - ENVIRONMENTAL ERROR) (continued)

Hex code (Decimal) Meaning and action

02B0 (688) Meaning: A volume required for a tape-library request was mounted on a
non-library device. The accompanying message IEF152I contains the library
and volume names.

System programmer action: Contact the storage administrator to check the
tape volume inventory and update it as necessary.

Corresponding message: IEF152I
02B4 (692) Meaning: The volume required for a tape-library request is mounted on a

device in a library that was not eligible. The accompanying message
IEF153I contains the library and volume name information.

System programmer action: Contact the storage administrator to check the
tape volume inventory and update it as necessary.

Corresponding message: IEF153I
02B8 (696) Meaning: Unable to obtain library status for the specified tape library. The

accompanying message IEF156I contains the library name information.

System programmer action: Review the logrec record related to this error
for information that might help to resolve why the system could not obtain
the tape library name.

Corresponding message: IEF156I
02BC (700) Meaning: A non-tape-library request specified a library device. The

accompanying message IEF113I contains the device name information.

System programmer action: Choose a device that resides in the same
library as the volume(s) to be allocated.

Corresponding message: IEF113I
02C0 (704) Meaning: Unable to allocate a tape device because the device is not in the

same library as the requested volume. The accompanying message IEF111I
contains the device name and library name information.

System programmer action: Choose a device that resides in the same
library as the volume(s) to be allocated.

Corresponding message: IEF111I
02C4 (708) Meaning: The allocation failed because the volume record for the specified

volume could not be retrieved from the tape configuration database. The
accompanying message IEF150I contains the volume serial number.

System programmer action: Review the logrec record related to this error
for information that might help to resolve why the system could not obtain
the volume record for the specified volume serial number.

Corresponding message: IEF150I
02C8 (712) Meaning: Request failed for a library record from the tape configuration

database.

Application programmer action: None.

Corresponding message: IEF357I

608 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 77. Class 2 error reason codes (unavailable system resource - ENVIRONMENTAL ERROR) (continued)

Hex code (Decimal) Meaning and action

02CC (716) Meaning: The JES Client Token (CTOKEN) was not available from the
currently-running JES subsystem. The usual cause of this problem is that
the JES2 or JES3 version installed does not support a CTOKEN request.

System programmer action: Verify that the current level of JES supports
CTOKENs (which were introduced in conjunction with Client Print
support). If the proper JES version is active and the problem recurs, search
the problem reporting data base for a fix for the problem. If no fix exists,
contact the IBM support center. The S99INFO field may contain an internal
informational code which can be reported to the IBM Support Center.

02D0 (720) Meaning: Allocation failed in an attempt to unload a volume needed by
this job from the device where it is currently mounted. The reason for the
failure is either the device ENQ failed or the device ASSIGN failed.

Corresponding message: IEF017I

System programmer action: Resubmit the job or allocation request.
02D3 (723) Meaning: Allocation failed because the eligible volume was not on an

online device, and the request did not allow allocation to consider offline
devices.

System programmer action: Vary the eligible device online and resubmit
the request.

02D4 (724) Meaning: Allocation attempted to ALESERV the ALLOCAS address space,
and the ALESERV service returned a non-zero return code.

System programmer action: This error may indicate that the DU-AL is full.
If the issuing program has issued many ALESERV ADDs and the DU-AL is
full, delete some of the entries on the DU-AL and retry the request. If the
error continues, search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

02D5 (725) Meaning: Allocation was already active when IEFDB440 was running as an
IRB under a task.

Application programmer action: IEFDB440 should not be invoked in this
environment. Make sure that you adhere to this restriction. Contact the
owner of the subsystem that scheduled the IRB.

System programmer action: None.
02D6 (726) Meaning: Allocation failed because there were no available offline devices

within the specified esoteric, so there are no eligible devices to be brought
online by Recovery Allocation processing to satisfy the request.

System programmer action: Verify that the volume serial specified is valid,
and that it is online in the specified esoteric. Correct the volume serial or
unit information if necessary.

02D7 (727) Meaning: The current environment cannot support dynamic allocation
requests.

System programmer action: Retry allocation request at a later time.

Chapter 26. Requesting dynamic allocation functions 609

Table 77. Class 2 error reason codes (unavailable system resource - ENVIRONMENTAL ERROR) (continued)

Hex code (Decimal) Meaning and action

02D8 (728) Meaning: When attempting to allocate devices to this request, Allocation
was prevented from using EAV devices because of the “USEEAV(NO)”
setting in the IGDSMSxx parmlib member. For a request with specific
volumes in the volume list, the setting prevented the allocation. For a
non-specific request, such as one with UNIT=SYSDA and no volume list,
the exclusion of the EAV volumes did not leave enough volumes to allocate
the request.

Application programmer action: Select another esoteric unit name for the
UNIT parameter, a different volume serial for the request, or contact the
System Programmer.

System programmer action: See System Programmer response for IEF021I.
If EAV volumes are needed, use the SETSMS command to change the
USEEAV setting in IGDSMSxx.

02D9 (729) Meaning: Allocation failed because there were not enough available tape
library devices to satisfy the request.

System programmer action: If possible, make more tape devices available
in the requested library by varying them available or by varying them
online. Resubmit the request.

02DA (730) Meaning: The dynamic allocation request specified DALSMSHR for a tape
library request, but the unit name on the DALUNIT is not valid.

Application programmer response: Correct the dynamic allocation request
to use a valid unit name, and resubmit the request.

02DB (731) Meaning: The dynamic allocation request specified DALSMSHR and
DALUNIT for a single device, but it is a restricted device.

Application programmer response: Correct the dynamic allocation request
to use a device that is not restricted, and resubmit the request.

02DC (732) Meaning: The request specified DALSMSHR and DALUNIT for a single
device, but the device is in use by the system.

Application programmer response: Correct the error either by using
another device or by waiting until the device is no longer in use by the
system, and resubmit the request.

02DD (733) Meaning: The request specified DALSMSHR and DALUNIT for a single
device, but the device is boxed.

Application programmer response: Correct the error either by using
another device or by issuing a VARY ONLINE command for the boxed
device, and resubmit the request.

02DE (734) Meaning: The request specified DALSMSHR and DALUNIT for a specific
device, but the device is marked unavailable for allocation.

Application programmer response: Correct the dynamic allocation request
to use another device, or make the device available by issuing VARY
ONLINE or VARY AVAILABLE commands, and resubmit the request.
Note: The application programmers probably cannot issue the VARY
commands themselves, but they must ask the system programmer to
ensure that the device is online and available.

610 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 77. Class 2 error reason codes (unavailable system resource - ENVIRONMENTAL ERROR) (continued)

Hex code (Decimal) Meaning and action

02DF (735) Meaning: The MOUNT command for a tape library device with a tape
library volume specified a device which was not found in the device pools
returned by the system. This could be because the media types of the
device and volume requested are different.

Application programmer response: Specify another device or request
another volume.

Corresponding message: IKJ56231I

Notes:
1 The conditions that cause these return codes are detected by MVS or JES3.
2 The information reason code contains a subsystem-defined value to further

describe the error. This value is documented in publications associated
with the particular subsystem.

Table 78. Class 3 error reason codes (invalid parameter list - PROGRAM ERROR)

Hex code (Decimal) Meaning and action

0304- 0338 (772- 824) Assigned by DAIR4.
0358 (856) Meaning: Overriding disposition of DELETE invalid for data set allocated

as SHR. (unallocation)1

Application programmer action: Do not specify a data set disposition in
your input parameter list, or code a valid disposition (such as KEEP,
CATALOG, or UNCATLG). If a disposition of DELETE is required, allocate
the data set as OLD.

Corresponding message: IKJ56860I
035C (860) Meaning: Invalid PARM specified in text unit. The accompanying message

IKJ56231I identifies the text unit in error. (all dynamic allocation functions)2

Application programmer action: See the description of the text unit and
correct the error.

Corresponding message: IKJ56231I
0360 (864) Meaning: Invalid key specified in text unit. The accompanying message

IKJ56231I identifies the text unit in error. (all dynamic allocation functions)2

Application programmer action: See the description of the text unit key for
the desired function and correct the error.

Corresponding message: IKJ56231I
0364 (868) Meaning: JOBLIB/STEPLIB specified as a ddname, or associated with

specified dsname or pathname. These ddnames are allowed only for special
data sets. The accompanying message IKJ56236I identifies which of the
above ddname types is in error. (dsname allocation, ddname allocation,
unallocation, concatenation, deconcatenation)1

Application programmer action: Use a different ddname, or consult your
system programmer for the proper ddname to use.

Corresponding message: IKJ56236I

Chapter 26. Requesting dynamic allocation functions 611

Table 78. Class 3 error reason codes (invalid parameter list - PROGRAM ERROR) (continued)

Hex code (Decimal) Meaning and action

0368 (872) Meaning: Authorized function requested by unauthorized user. (all
dynamic allocation functions)

Application programmer action: Obtain authorization from your system
administrator, or request only those services (functions) that are available
to unauthorized programs.

Corresponding message: IKJ56864I
036C (876) Meaning: Invalid parameter list format. (all dynamic allocation functions)

Application programmer action: Consult the description of the
DYNALLOC parameter list and make corrections.

Corresponding message: IKJ56231I
0374 (884) Meaning: Invalid # specified in text unit. The accompanying message

IKJ56231I indicates the number of the text unit in error. (all dynamic
allocation functions)2

Application programmer action: Consult the description of the text unit in
error and correct the number parameter.

Corresponding message: IKJ56231I
0378 (888) Meaning: Duplicate key specified in text unit. The accompanying message

IKJ56231I indicates the number of the text unit in error. (all dynamic
allocation functions)2

Application programmer action: Remove the duplicate key from the text
unit list, or substitute the intended key.

Corresponding message: IKJ56231I
037C (892) Meaning: Invalid LEN specified in text unit. The accompanying message

IKJ56231I indicates the number of the text unit in error. (all dynamic
allocation functions)2

Application programmer action: Correct the LEN field and resubmit the
request.

Corresponding message: IKJ56231I
0380 (896) Meaning: Mutually exclusive key specified. Two keys that cannot be used

together were used in the request. (dsname allocation, unallocation,
information retrieval, remove-in-use processing)2

Application programmer action: Consult the descriptions of the keys
specified and determine which should be used.

Corresponding message: IKJ56876I
0384 (900) Meaning: Mutually inclusive key not specified. One key was used; two

should have been used. (dsname allocation, unallocation)2

Application programmer action: Consult the description of the key in
error, and the key(s) for the desired function to determine which additional
key should be used.

Corresponding message: IKJ56877I

612 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 78. Class 3 error reason codes (invalid parameter list - PROGRAM ERROR) (continued)

Hex code (Decimal) Meaning and action

0388 (904) Meaning: Required key not specified. (ddname allocation, information
retrieval, concatenation, deconcatenation, remove-in-use processing,
unallocation)

Application programmer action: Consult the description of the key for the
desired function to determine which key needs to be added.

Corresponding message: IKJ56878I
038C (908) Meaning: Duplicate ddnames specified. (concatenation)

Application programmer action: Determine which ddname is a duplicate,
and remove it from the list of ddnames to be concatenated (text unit 0001).
For data set concatenation to a ddname, first allocate the data set under
another ddname, then concatenate the two ddnames.

Corresponding message: IKJ56869I
0390 (912) Meaning: GDG group name specified with relative generation number

exceeds the maximum of 35 characters. (dsname allocation).

Application programmer action: Change the GDG name so it does not
exceed 35 characters.

Corresponding message: IKJ56870I
0394 (916) Meaning: Status and relative generation number are incompatible. (dsname

allocation)

Application programmer action: Correct either the disposition specified or
the relative generation level requested.

Corresponding message: IKJ56871I
0398 (920) Meaning: Volume sequence number exceeds the number of volumes.

(dsname allocation)

Application programmer action: Ensure that the volume sequence number
is equal to or less than the number of volume serials specified. Correct the
DD specifications.

Corresponding Message: IKJ56880I
039C (924) Meaning: Device type and volume are incompatible. (dsname allocation)

Application programmer action: Correct the DD statement and resubmit
the job. If the DD statement was correct, notify the system programmer.

System programmer action: Verify that the I/O configuration was built
correctly. If so, search problem reporting data bases for a fix for the
problem. If no fix exists, contact the IBM Support Center. Check your SMS
ACS routines to ensure that your non-tape and non-dasd devices have been
omitted.

Corresponding message: IKJ56880I
03A0 (928) Meaning: Subsystem detected an invalid parameter. (dsname allocation)3

Application programmer action: See note 3 below. If the subsystem name
was not specified (thus defaulting to the primary subsystem), check with
your system programmer to obtain the name of the primary subsystem.
Then consult the documentation for that subsystem and correct the
parameter list error.

Chapter 26. Requesting dynamic allocation functions 613

Table 78. Class 3 error reason codes (invalid parameter list - PROGRAM ERROR) (continued)

Hex code (Decimal) Meaning and action

03A4 (932) Meaning: Unable to protect data set/volume because of conflicting
keyword specification. The following requirements may not have been met:

v If PROTECT was specified for a DASD data set, the data set must be a
non-temporary data set with a disposition of 'NEW' or 'MOD' treated as
'NEW'. If specified, normal and abnormal dispositions must be other
than DELETE, and the data set has a non-temporary data set name.

v If PROTECT was specified for a tape volume, the tape label specification
must be SL, AL, SUL, AUL, or NSL. Both the file sequence count and
volume sequence count must be set to one (except for NSL), or must
default to one, and the tape volume must have a volume use attribute of
PRIVATE.

Application programmer action: See the description of the PROTECT
specification key (0061) and remove any conflicting keys, or change the
data set/volume specification to comply with the above rules. See the
description of the DD statement PROTECT parameter in z/OS MVS JCL
Reference for more information.

Corresponding message: IKJ56890I
03A8 (936) Meaning: DYNALLOC request block extension has invalid format.

Application programmer action: See the description of the DYNALLOC
request block extension and correct the error.

Corresponding message: IKJ56231I
03AC (940) Meaning: The CPPL (command processor parameter list) address is not

specified in the request block extension. This field is required if PUTLINE
is used to issue messages.

Application programmer action: Specify a CPPL address in the request
block extension.

Corresponding message: IKJ56231I
03B0 (944) Meaning: The overriding disposition key specified is not compatible with

the file type of the specified DD.

Application programmer action: If the DD represents a z/OS UNIX file,
use the overriding path disposition (DUNOVPDS) key, otherwise use the
normal overriding disposition (DUNOVDSP) key.

Corresponding message: IKJ56233I
03B4 (948) Meaning: Override affinity (DALOVAFF) was specified, but a SYSOUT

program name (DALSPGNM) of 'INTRDR' was not specified.

Application programmer action: Specify a program name for the internal
reader.

Corresponding message: None.

614 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 78. Class 3 error reason codes (invalid parameter list - PROGRAM ERROR) (continued)

Hex code (Decimal) Meaning and action

03B8 (952) Meaning: The system does not allocate the data set and fails the dynamic
allocation that specified a two-digit year expiration Date (yyddd) Text Unit
(DALEXPDT) and the 2DGT_EXPDT Policy of Fail is in effect. A two-digit
Expiration Date year implies a year date of the form 19xx where xx is the
two-digit year specified by DALEXPDT (yyddd). Therefore, the use of
DALEXPDT does not allow the specification of an Expiration Date after
December 31, 1999.

Application programmer action: Modify the application's dynamic
allocation parameter input to replace the DALEXPDT text unit with the
DALEXDPL text unit which uses the 4-digit year format.

Corresponding message: IEF406I.
03BC (956) Meaning: The system does not allocate the data set and fails the dynamic

allocation request. The request was for a new VSAM generation data set,
which is not valid because generation data sets cannot be VSAM.

Application programmer action: Correct the application's dynamic
allocation input to either create a generation data set that is not a VSAM
data set, or a VSAM data set that is not a member of a generation data
group, depending on the intent of the original allocation request. The data
set name and relative generation number are indicated by the DALDSNAM
and DALMEMBR text units. A data set can be explicitly defined as a
VSAM data set by the DALRECO text unit, or implicitly defined by a
reference to another data set or DD name using the DALDCBDS or
DALDCBDD text units.

Corresponding message: None.
03BD (957) Meaning: The request specified DALSMSHR and DALUNIT for a

non-library request.

Application programmer response: Correct the dynamic allocation request
to specify a different unitname for the DALUNIT text unit, or remove the
DALSMSHR text unit.

03BE (958) Meaning: The request specified DALUNIT with a specific device number,
DALUNCNT with a device count greater than 1, and DALSMSHR. This is
not valid.

Application programmer response: Correct the dynamic allocation request
to remove the DALUNCNT text unit or to specify a device count of 1 on
the DALUNCNT text unit.

03BF (959) Meaning: The request specified DALSMSHR and DALUNIT for a specific
device, but it is not a tape device.

Application programmer response: Correct the dynamic allocation request
to use another device, and resubmit the request.

03C0 (960) Meaning: The request specified DALSMSHR and DALUNIT for a specific
device, but it is not a system-managed tape library device.

Application programmer response: Correct the dynamic allocation request
to use another device, and resubmit the request.

Chapter 26. Requesting dynamic allocation functions 615

Table 78. Class 3 error reason codes (invalid parameter list - PROGRAM ERROR) (continued)

Hex code (Decimal) Meaning and action

03C1 (961) Meaning: The request specified DALSMSHR and DALUNIT for a specific
device, but the device is not in the list of tape library devices selected by
SMS.

Application programmer response: Correct the dynamic allocation request
to use another device, and resubmit the request. If the correct device was
specified, consult with the system programmer to determine why SMS did
not select the correct tape library for this request.

System programmer action: Verify that the SMS settings (ACS routines,
ISMF settings, and so on.) are returning tape library devices that are
consistent with the dynamic allocation parameters, especially the
DALUNIT parameter. Correct the SMS settings or help the application
programmer select a more appropriate device.

03C2 (962) Meaning: The request specified DALSMSHR and DALUNIT, but the unit is
not an esoteric name.

Application programmer response: Correct the dynamic allocation request
to use an esoteric name, and resubmit the request.

03C4 (964) Meaning: Insulated DD error. An attempt was made to unallocate,
concatenate, or deconcatenate a resource with the insulated DD attribute
without specifying the insulated DD text unit, or the insulated DD text unit
was specified but the resource was not allocated with the insulated DD
attribute.
Application programmer response: Verify that the proper ddname was
used on the request; correct it, if necessary. If the ddname is correct, add or
remove the insulated DD text unit and resubmit the request.s

Notes:
1 The information reason code field contains 0004 if the requested function

was performed, although an error occurred, as the error reason code
indicates.

2 The information reason code contains the value of the key that caused the
error.

3 The information reason code field contains a subsystem-defined value to
further describe the error. This value is documented in publications
associated with the particular subsystem.

4 See the description of DAIR return codes in z/OS TSO/E Programming
Services.

Table 79. Class 4 Error Reason Codes (Environmental Error)

Hex code (Decimal) Meaning and action

0410 (1040) Meaning: Specified ddname unavailable. (dsname allocation, ddname
allocation)

Application programmer action: Change ddname.

Corresponding message: IKJ56246I

616 z/OS V2R2 MVS Authorized Assembler Services Guide

|||
|
|
|
|
|
|
|

Table 79. Class 4 Error Reason Codes (Environmental Error) (continued)

Hex code (Decimal) Meaning and action

0420 (1056) Meaning: Specified ddname or dsname associated with an open data set.
(ddname allocation, concatenation, deconcatenation, unallocation, dsname
allocation)1

Application programmer action: Change ddname or dsname, or close the
open data set needed.

Corresponding message: IKJ56861I
0424 (1060) Meaning: Deconcatenation would result in duplicate ddnames

(deconcatenation).1

Application programmer action: Ensure the ddname is available before
resubmitting the deconcatenation request.

Corresponding message: IKJ56853I
0434 (1076) Meaning: Ddname specified in ddname allocation request is associated

with a convertible or non-permanently allocated resource. (ddname
allocation)

Application programmer action: Change ddname.

Corresponding message: IKJ56865I
0438 (1080) Meaning: Specified ddname not found. (information retrieval, ddname

allocation, concatenation, deconcatenation, unallocation)

Application programmer action: Change ddname.

Corresponding message: IKJ56868I
043C (1084) Meaning: The system could not deallocate enough of the resources being

held in anticipation of reuse to meet the control limit. (dsname allocation) 2

Application programmer action: Deallocate some resources or increase the
control limit.

Corresponding message: IKJ56220I
0440 (1088) Meaning: Specified data set name or pathname not found. (information

retrieval, unallocation)

Application programmer action: Ensure that the data set or z/OS UNIX
file, for which the information was requested, exists or correct the data set
name or pathname.

Corresponding message: IKJ56247I
0444 (1092) Meaning: Relative entry number specified in information retrieval request

not found. (information retrieval)

Application programmer action: Change relative entry number.

Corresponding message: IKJ56867I
0448 (1096) Meaning: Request for a new data set failed; the data set already exists.

(dsname allocation)

Application programmer action: Change dsname or allocate the data set as
an existing data set.

Corresponding message: IKJ56248I

Chapter 26. Requesting dynamic allocation functions 617

Table 79. Class 4 Error Reason Codes (Environmental Error) (continued)

Hex code (Decimal) Meaning and action

044C (1100) Meaning: Request was made for a data set that has a disposition of delete;
this request cannot be honored because the data set might be deleted at
any time. (dsname allocation)

Application programmer action: Change the data set disposition to NEW
or change the requested dsname.

Corresponding message: IKJ56249I
0450 (1104) Meaning: Request caused the limit of concurrent allocations to be

exceeded. (dsname allocation)

v If no extended TIOT is requested, the limit is determined by the TIOT
size. TIOT size is specified in the ALLOCxx member of PARMLIB, or by
system default.

v If extended TIOT is requested, there is no limit.

Application programmer action: Deallocate data sets that are no longer
needed.

Corresponding message: IKJ56866I
0454 (1108) Meaning: Ddname in DCB reference not found. (dsname allocation)

Application programmer action: Change ddname.

Corresponding message: IKJ56234I
0458 (1112) Meaning: Dsname in DCB reference or volume reference is a GDG group

name. (dsname allocation)

Application programmer action: Change dsname in DCB reference to a
non GDG group name.

Corresponding message: IKJ56879I
045C (1116) Meaning: Specified dsname to be deallocated is a member of a

permanently-concatenated group. (unallocation)1

Application programmer action: Do not attempt to deallocate by dsname a
data set that is permanently concatenated. Remove the request or change it
to deallocate the entire concatenation.

Corresponding message: IKJ56230I
0460 (1120) Meaning: Specified data set name, member name, or pathname to be

deallocated is not associated with specified ddname. (unallocation)

Application programmer action: Change ddname, data set name, member
name, or pathname.

Corresponding message: IKJ56872I
0464 (1124) Meaning: Specified dsname to be deallocated is a private catalog.

(unallocation)1

Application programmer action: Do not attempt to deallocate a private
catalog.

Corresponding message: IKJ56873I

618 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 79. Class 4 Error Reason Codes (Environmental Error) (continued)

Hex code (Decimal) Meaning and action

0468 (1128) Meaning: Error while allocating or opening a private catalog. (dsname
allocation)

System programmer action: List the master catalog to obtain further
information about the private catalog.

Corresponding message: IKJ56874I
046C (1132) Meaning: Remote work station not defined to job entry subsystem.

(dsname allocation, unallocation)

Application programmer action: Change remote user ID.

System programmer action: If the application programmer action does not
resolve the issue, search the problem reporting data bases for a fix for the
problem. If no fix exists, contact the IBM Support Center. The S99INFO
field may contain an internal informational code which can be reported to
the IBM Support Center.

Corresponding message: IKJ56875I
0470 (1136) Meaning: User unauthorized for subsystem request. (dsname allocation)

System programmer action: Contact the RACF administrator for assistance.
If the problem recurs, search the problem reporting data bases for a fix for
the problem. If no fix exists, contact the IBM Support Center. The S99INFO
field may contain an internal informational code which can be reported to
the IBM Support Center.

Corresponding message: IKJ56864I
0474 (1140) Meaning: Error while attempting to select optimum device. (dsname

allocation).

System programmer action: If the problem recurs, search problem
reporting data bases for a fix for the problem. If no fix exists, contact the
IBM Support Center.

Corresponding message: No corresponding dynamic allocation message
0478 (1144) Meaning: Unable to process job entry subsystem request. (dsname

allocation, unallocation)

System programmer action: If the problem recurs, search problem
reporting data bases for a fix for the problem. If no fix exists, contact the
IBM Support Center. The S99INFO field may contain an internal
informational code which can be reported to the IBM Support Center.

Corresponding message: IKJ56884I
047C (1148) Meaning: Unable to establish ESTAE environment. (all dynamic allocation

functions)

Application programmer action: Resubmit the request.

Corresponding message: IKJ56231I

Chapter 26. Requesting dynamic allocation functions 619

Table 79. Class 4 Error Reason Codes (Environmental Error) (continued)

Hex code (Decimal) Meaning and action

0480 (1152) Meaning: The number of units needed to satisfy the request exceeds the
limit. (dsname allocation)

Application programmer action: Reduce the number of volumes needing
to be mounted at the same time. An allocation for the base name of a
VSAM data set includes all components. Ensure that there are less than 59
volumes requested for all components of the VSAM data set.

Corresponding message: IKJ56882I
0484 (1156) Meaning: Request denied by one of the following: (dsname allocation)

v The operator

v The default policy specified in SYS1.PARMLIB member ALLOCxx

v The installation exit specified in SYS1.PARMLIB member EXITxx.

Application programmer action: Contact the system programmer for
assistance.

System programmer action: Verify allocation defaults and exits that were
active at the time when the request was denied. If the problem recurs,
search the problem reporting data bases for a fix for the problem. If no fix
exists, contact the IBM Support Center. The S99INFO field may contain an
internal informational code which can be reported to the IBM Support
Center.

Corresponding message: IKJ56883I, IEF336I, IEF876I
0488 (1160) Meaning: GDG pattern DSCB not mounted. (dsname allocation)

Application programmer action: Ensure that the volume containing the
pattern DSCB is mounted and resubmit the request.

Corresponding message: IKJ56880I
048C (1164) Meaning: GDG pattern DSCB not found. (dsname allocation)

Application programmer action: Check the catalog volume VTOC for a
DSCB for the GDG group. Correct the error and resubmit the request.

Corresponding message: IKJ56880I
0490 (1168) Meaning: Error changing allocation assignments. (dsname allocation)

System programmer action: If the problem recurs, search problem
reporting data bases for a fix for the problem. If no fix exists, contact the
IBM Support Center.

Corresponding message: No corresponding dynamic allocation message
04A4 (1188) Meaning: Subsystem request in error. (dsname allocation)3

Application programmer action: Ensure that the subsystem is installed on
the processor on which the allocation request will run.

Corresponding message: No corresponding dynamic allocation message
04A8 (1192) Meaning: Subsystem does not support allocation through key DALSSNM.

(dsname allocation)

Application programmer action: Do not attempt to dynamically allocate a
data set for this subsystem.

Corresponding message: No corresponding dynamic allocation message

620 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 79. Class 4 Error Reason Codes (Environmental Error) (continued)

Hex code (Decimal) Meaning and action

04AC (1196) Meaning: Subsystem is not operational.

Application programmer action: Ensure that the operator makes the
subsystem operational on the processor on which the allocation request
will run. Resubmit the request.

Corresponding message: No corresponding dynamic allocation message
04B0 (1200) Meaning: Subsystem does not exist.

Application programmer action: Ensure that the subsystem is installed on
the processor on which the allocation request will run.

Corresponding message: No corresponding dynamic allocation message
04B4 (1204) Meaning: Protect request not processed; RACF not in system or not active.

Application programmer action: If DASD data set or tape volume
protection is required, contact the RACF administrator for assistance.

Corresponding Messages: IJK56891I, IKJ56892I
04C0 (1216) Meaning: Protect request failed; user not defined to RACF. (dsname

allocation)

Application programmer action: If DASD data set or tape volume
protection is required, contact the RACF administrator for assistance in
getting defined to RACF.

Corresponding message: No corresponding dynamic allocation message
04C4 (1220) Meaning: The last request was for a VOL=REF to a dsname or

DCB=dsname that exceeded the maximum allowable dsname backward
references. (A maximum of 1489 backward references are allowed if the
data set names are 44 characters in length.)

Application programmer action: Reduce the number of dsname backward
references.

Corresponding message: No corresponding dynamic allocation message
04C8 (1224) Meaning: Unexpected return code encountered in internal MVS processing.

This problem might have resulted from installation modification of the
eligible device table (EDT). (system or installation error)

System programmer action: If the installation has modified the EDT, use
the ACTIVATE command or re-IPL the system to restore the EDT that
existed prior to modification. If the installation has not modified the EDT,
contact the IBM support center.

Corresponding message: IKJ56231I
04CC (1228) Meaning: Invalid output descriptor or invalid ddname reference.

System programmer action: Check and correct the list of output
descriptors and ddname references. Resubmit the request.

Corresponding message: IJK56895I

Chapter 26. Requesting dynamic allocation functions 621

Table 79. Class 4 Error Reason Codes (Environmental Error) (continued)

Hex code (Decimal) Meaning and action

04D0 (1232) Meaning: SMS (Storage Management Subsystem) is not available or is at
the wrong level. For allocation requests specifying pathname, the correct
release of DFSMS/MVS must be installed.

Application programmer action: Determine whether the data set currently
resides on or is to reside on an SMS-managed volume. Contact your system
programmer to find out the status of SMS on your system.

Corresponding message: No corresponding dynamic allocation message
04D4 (1236) Meaning: User does not have RACF authority to allocate the specified

device.

Application programmer action: Request a device that you are authorized
to access or notify your security administrator.

Security Administrator Action: Determine if the user should have access to
the given device. If so, define a RACF profile authorizing the user access to
that device.

Corresponding message: IJK56899I.
04D8 (1240) Meaning: Unable to concatenate data sets allocated with incompatible

services. Application programmer action: Do not attempt to concatenate a
data set with a TIOT entry and a data set with an extended TIOT entry.

Corresponding message: No corresponding dynamic allocation message
04DC (1244) Meaning: The Scheduler JCL Facility (SJF) is not available. It either does

not exist in the current system or the system is unable to locate it.

Application programmer action: Notify the system programmer.

System programmer action: Search problem reporting data bases for a fix
for the problem. If no fix exists, first determine if ABEND05C RSN 0701
was issued. IF not, take a Console Dump of Master, and if an IPL is needed
to resolve the problem, a Stand Alone Dump. Then contact the IBM
Support Center, providing the above dump or dumps.

Corresponding message: No corresponding message for this error
condition. Similar conditions may result in message IEF345I. The actions
are the same in either case.

04E0 (1248) Meaning: The actual or captured UCB attributes for the DD statements to
be concatenated to not match.

Application programmer action: Ensure that the actual or captured UCB
attributes for the DDs being concatenated are compatible.

Corresponding message: No corresponding dynamic allocation message.

622 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 79. Class 4 Error Reason Codes (Environmental Error) (continued)

Hex code (Decimal) Meaning and action

04E4 (1252) Meaning: Unable to unload volume on an Autoswitch device due to a
Coupling Facility error.

Application programmer action: Rerun the job. If the error persists, notify
the system programmer.

System programmer action: If the system goes into automatic rebuild state,
wait until the rebuild completes (indicated by message IEF268I). If the
rebuild was not successful, or did not occur, take actions to correct the
hardware errors indicated by the coupling facility. Once corrected, if the
system does not initiate an automatic rebuild, then issue the SETXCF
START,REBUILD command with the appropriate options to perform a
manual rebuild of the IEFAUTOS structure. Once the rebuild is successful
(indicated by message IEF268I), rerun the job. If you cannot resolve the
problem, search the problem reporting data bases for a fix. If not fix exists,
contact your IBM support center, providing the SYS1.LOGREC error record.

Corresponding message: IEF241I
04E5 (1253) Meaning: The system cannot allocate tape devices, because a tape

allocation subsystem eliminated all eligible devices from consideration.

Application programmer action: Notify the system programmer.

System programmer action: Determine which subsystem is causing the
problem. Contact the appropriate tape subsystem vendor or service
personnel.

Corresponding message: IEF391I
04EC (1260) Meaning: Unable to allocate an automatically switchable tape device,

because the only eligible device(s) is(are) assigned to a foreign host (for
example, a system not connected to the same IEFAUTOS structure, or is
connected to the same structure but is using the device as a dedicated
device).

Application programmer action: Notify the system operator.

System Operator Action: Determine which system has the device assigned.
Issue the DISPLAY U,,, command from each system that can vary the
device online. In response, message IEE457I identifies the devices assigned
to that system with the letter R, (meaning reserved). If message IEE457I
does not also identify the device with the letter A (meaning allocated), or
one of the other status codes for message IEE457I meaning allocated to
system (SYS), hardware error (BOX), busy (BSY) or other code indicating
the device is unavailable, and you want to make the device available to the
system on which the job or application was running, do the following:

v Vary the device offline from the system it is currently assigned to.

v Vary the device online to the system the job or application was running
on at the time of error.

v Rerun the job or restart the application that encountered the error.

Otherwise, CANCEL the job or application and try again later when the
device becomes availale.

Corresponding message: IEF284I

Chapter 26. Requesting dynamic allocation functions 623

Table 79. Class 4 Error Reason Codes (Environmental Error) (continued)

Hex code (Decimal) Meaning and action

04F0 (1264) Meaning: On a request to dynamically concatenate DD statements, the
system detected that the DSABs for the requested concatenation do not all
reside in the same (above-the-line or below-the-line) storage location.
Note: All DSABs for batch allocated DD statements (JCL) reside in
below-the-line storage. Dynamically allocated DD statements can request
that their DSABs not reside in below-the-line storage by setting the
S99DSABA or S99DXACU indicator in the SVC 99 Request Block (S99RB).

Application programmer action: Ensure that the DSABs for all DDs being
concatenated reside below the line or that they all reside above the line.

Corresponding message: IEF893I
04F4 (1268) Meaning: On a request to generate a DDNAME for a dynamic allocation,

the system detected that the task was at its maximum allowable limit of
99,999 for system-generated DDNAMEs.

Application programmer action: Either reduce the number of concurrent
DDNAME allocations or avoid using system-generated DDNAMEs.

Corresponding message: IKJ56227I
04F8 (1272) Meaning: During a spool data set browse allocation request, JES2

determined that the data set was uninitialized (PDBMTTR was zero).

Application programmer action: Resubmit the spool browse request.

System programmer action: If the application programmer action does not
resolve the issue, search the problem reporting data bases for a fix for the
problem. If no fix exists, contact the IBM Support Center. The S99INFO
field may contain an internal informational code which can be reported to
the IBM Support Center.

Corresponding message: IEF016I
04FC (1276) Meaning: The request being processed would cause the TCT I/O table to

exceed the maximum allowable size.

Application programmer action: If the job that received the message has
JCL DD statements that specify a high volume count, or the job that
received the message uses dynamic allocation to allocate data sets and
specifies a high volume count, reduce the volume count and rerun the job.
If the volume count is derived from the data class, use a data class which
has a lower volume count or contact the Storage Administrator.

Storage Administrator Action: Reduce the volume count or dynamic
volume count specified in the DATACLAS.

Corresponding message: IEF020I
04FD (1277) Meaning: Dynamic allocation request was for an esoteric that contains both

TAPE and NONTAPE devices.

Application programmer action: Change the request to use a different
esoteric that does not contain both TAPE and NONTAPE devices and
resubmit. Otherwise, notify the system programmer.

System programmer action: Change the esoteric definition in the IODF so
it will not mix TAPE and NONTAPE devices. ACTIVATE the new IODF
and resubmit the request.

Corresponding message: IEF898I

624 z/OS V2R2 MVS Authorized Assembler Services Guide

|

Table 79. Class 4 Error Reason Codes (Environmental Error) (continued)

Hex code (Decimal) Meaning and action

04FE (1278) Meaning: Dynamic allocation request was for a tape device that was
marked unavailable for allocation.

Application programmer action: Change the device status using the VARY
dev,AVAILABLE or VARY dev,ONLINE command and resubmit the request.
Otherwise, notify the system programmer.

System programmer action: Vary the device available and resubmit the
request.

Corresponding message: IEF022I

Notes:
1 The information reason code field contains 0004 if the requested function

was performed, although an error occurred as the error reason code
indicates.

2 See “Control limit” on page 547 and “Considerations when requesting
dsname or pathname allocation” on page 539 for a description of these
resources.

3 The information reason code contains a subsystem-defined value to further
describe the error. This value is documented in publications associated
with the particular subsystem.

Table 80. Class 7 Error Reason Codes (System Routine Error)

Hex code Meaning and action

17zz CATALOG LOCATE error. LOCATE, DADSM, CATALOG, and OBTAIN
errors are explained in z/OS DFSMSdfp Advanced Services. '08', '18', '2C', 'BA'
are the only expected LOCATE return codes. 'FF' is returned as the value of
zz if an unexpected return code is returned by LOCATE. (dsname allocation)

The expected return codes are:
1704 Meaning: Unknown HSM error.

Application programmer action: See message IDC3009I return code 38,
reason code 4 for further explanation.

Corresponding message: IKJ56238I

Chapter 26. Requesting dynamic allocation functions 625

Table 80. Class 7 Error Reason Codes (System Routine Error) (continued)

Hex code Meaning and action

1708 Meaning: One of the following occurred:

v The data set name specified is in error. (program error)

v A system error occurred when processing the data set name.

In the request block, the S99INFO field contains the text unit key instead of
an information reason code. See the corresponding message for the specific
error.

Application programmer action: Ensure that the correct data set name was
specified. If a generation data group (GDG) level of index was coded for a
non-GDG data set, remove the level of index and resubmit the job.
Otherwise, this is probably a system error. Resubmit the request. If the
problem persists, report the associated messages and DYNALLOC error
codes to your system programmer.

System programmer action: If the problem recurs and no installation action
corrects the problem, search problem reporting data bases for a fix for the
problem. If no fix exists, contact the appropriate IBM support personnel.

Corresponding Messages: IKJ56228I or IKJ56229I
1718 Meaning: Permanent I/O error processing cataloged data set. (system error)

Application programmer action: Report the messages and DYNALLOC
error codes to your system programmer or operator.

System programmer action: Contact hardware support.

Corresponding message: IKJ56231I
172C Meaning: Insufficient real or virtual storage for processing cataloged data

set. (environmental error)

Application programmer action: Resubmit the request. If the problem
persists, consult the operator to determine if another user in the installation
is causing the problem, or if the entire installation is experiencing storage
constraint problems.

Corresponding message: IKJ56863I
1732 Meaning: During a dynamic allocation, a request was made to recall a

migrated data set. This recall normally runs synchronously, but the
installation's storage administrator has implemented a standard patch to
HSM to cause the recall to be done in the background (asynchronously).

Application programmer action: Retry the dynamic allocation later.

Corresponding message: IKJ56242I
1734 Meaning: During a dynamic allocation, a request was made to recall a

migrated data set. This recall normally runs synchronously, but the user
converted it to a background (asynchronous) request by pressing the ATTN
or PA1 keys.

TSO user action: Retry the dynamic allocation later.

Corresponding message: IKJ56243I

626 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 80. Class 7 Error Reason Codes (System Routine Error) (continued)

Hex code Meaning and action

17BA Meaning: An unsuccessful attempt was made to access a catalog that was
locked for recovery. The job does not have the proper authorization to
perform this function. (program error)

Application programmer action: Either obtain the proper authorization, or
wait until the catalog is unlocked and resubmit the request.

Corresponding message: IKJ56896I
17FF Meaning: An unexpected return code was returned by catalog LOCATE.

(system error)

Application programmer action: If a GDG level of index was coded for a
non-GDG data set, remove the level of index and resubmit the job.
Otherwise, this is probably a system error. Report this message to the
system programmer.

System programmer action: If the problem recurs, search problem reporting
data bases for a fix for the problem. If no fix exists, contact the IBM Support
Center.

Corresponding message: IKJ56231I
47zz DADSM allocate error. LOCATE, DADSM, CATALOG, and OBTAIN errors

are explained in z/OS DFSMSdfp Advanced Services. (dsname allocation)

Information reason codes which accompany error reason codes of 47zz are
actually DADSM subfunction reason codes, which are explained in z/OS
DFSMSdfp Diagnosis.

The expected reason codes are as follows:
4704 Meaning: Duplicate data set name on the volume identified by message

IKJ56229I. (program error)

Application programmer action: If the specified data set is a new data set,
select a unique name for it. If you intended to specify a data set that is
already on the direct access device, specify OLD, SHR, or MOD in the DISP
keyword. Resubmit the request.

Corresponding message: IKJ56229I
4708 Meaning: The volume table of contents (VTOC) for the specified or

defaulted volume for a new data set request

v Had insufficient space in the VTOC index for a new entry, or

v Did not have the minimum number of data set control blocks (DSCBs)
required to allocate the data set. (environmental error).

Application programmer action: Request space on a different volume and
resubmit the request.

Corresponding message: IKJ56229I

Chapter 26. Requesting dynamic allocation functions 627

Table 80. Class 7 Error Reason Codes (System Routine Error) (continued)

Hex code Meaning and action

470C Meaning: Space on the direct access storage device (DASD) containing the
requested volume could not be obtained because of one of the following
environmental or installation errors:

v A permanent I/O error.

v A incorrect format-1 data set control block (DSCB).

v A structure error in the volume table of contents (VTOC) index.

Application programmer action: Request space on a different volume and
resubmit the request. Record the error codes and associated messages and
report the problem to your operator or system programmer.

System programmer action: Record the error codes, associated messages,
and failing device, and report the problem to the appropriate hardware
support personnel.

Corresponding message: IKJ56231I
4710 Meaning: Requested absolute track not available (environmental error).

Application programmer action: Request different absolute tracks, or
request non-specific space, or request space on a different volume. Resubmit
the request.

Corresponding message: IKJ56231I
4714 Meaning: More space was requested than is available on the DASD volume,

or the DASD volume's VTOC is full, or the DASD volume's VTOC Index
(VTOCIX) is full. (environmental error)

Application programmer action: Check the validity of the track quantity
specified on the space quantity specification text unit keys. If it was
incorrect, change it. If it was correct, change the request to a different
volume. Resubmit the request. System programmer action: Enlarge the
VTOC or VTOCIX as necessary.

Corresponding message: IKJ56245I
4718 Meaning: The average block length specified on text unit key DALAVGR

(key 0009) was greater than the track capacity of the requested DASD
volume. (environmental error)

Application programmer action: Reduce the lengths of the records to make
the average length no greater than the track capacity of the device, or
specify a device with a greater track capacity. Resubmit the request.

Corresponding message: IKJ56229I
4730 Meaning: Invalid DADSM REALLOC parameter list.

Application programmer action: Consult the z/OS DFSMSdfp Advanced
Services, correct the parameter list, and resubmit the request.

4738 Meaning: The system did not allocate the directory for a new partitioned
data set (PDS) because the space requested for the directory on text unit key
DALDIR (key 000C) exceeded the space available on the specified volume.
(environmental error)

Application programmer action: Reduce the directory quantity specified or
request a different volume. Resubmit the request.

Corresponding message: IKJ56244I

628 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 80. Class 7 Error Reason Codes (System Routine Error) (continued)

Hex code Meaning and action

474C Meaning: No space parameter given for a new data set or zero space
requested at absolute track zero.

Application programmer action: Correct the specification of space
information and resubmit.

Corresponding message: IKJ56231I
47A8 Meaning: A profile for the specified data set on this volume already exists

in the Resource Access Control Facility (RACF) data set. (environmental
error)

Application programmer action: Action may not be necessary. You may
change the data set name or volume serial, or have the installation RACF
administrator delete from the RACF data set the profile for the specified
data set on this volume, and resubmit the request.

Corresponding message: IKJ56889I
47AC Meaning: User not authorized to define this data set. The user has the

automatic data set protection characteristic without the RACF authorization
to define data sets. (program error)

Application programmer action: Contact your RACF administrator to
remove the automatic data set protection characteristic from the user profile,
or to authorize the user to define data sets. Resubmit the request.

Corresponding message: IKJ56888I
47B0 Meaning: Installation exit rejected this request with return code 8. The

information reason code (S99INFO) contains a reason code returned by the
installation exit. (installation or environmental error

Application programmer action: Refer to your installation procedures to
determine the cause of the failure as indicated by the reason code. If
appropriate, notify your system programmer of the problem.

Corresponding message: IKJ56222I
47B4 Meaning: Space request rejected by installation exit. (environmental error)

Application programmer action: Refer to your installation procedures to
determine the cause of the failure as indicated by the reason code that was
assigned by the installation. Check the space specification text unit keys to
ensure that they follow installation requirements for space requests. If they
do not, correct the text unit keys and resubmit the request. If the text unit
keys specify the space request correctly, notify your system programmer of
the problem.

Corresponding message: IKJ56223I
47C0 Meaning: Non-SMS managed data set cannot be created on an

SMS-managed volume. Message IKJ56897I indicates the specific operation
that was rejected. (program error)

Application programmer action: Change the text unit requirements and
resubmit the request.

Corresponding message: IKJ56897I

Chapter 26. Requesting dynamic allocation functions 629

Table 80. Class 7 Error Reason Codes (System Routine Error) (continued)

Hex code Meaning and action

47FF Meaning: An unexpected or internal error code was received by Allocation.
(system, installation, or environmental error)

Application programmer action: Note the information reason code
(S99INFO). If it appears in the list of DADSM CREATE Return Codes in
z/OS DFSMSdfp Diagnosis, then take appropriate action for that return code.
If not, record the error codes and associated messages and report the
problem to your system programmer.

Corresponding message: IKJ56231I
57zz CATALOG error. LOCATE, DADSM, CATALOG, and OBTAIN errors are

explained in z/OS DFSMSdfp Advanced Services. (dsname allocation)

The specific meanings for expected CATALOG return codes are as follows:
5704 Meaning: Required CATALOG volume is currently not mounted.

(environmental error)

Application programmer action: If possible, use another catalog. Otherwise,
check with your system administrator or operator to see if the volume
containing this catalog can be mounted.

Corresponding message: IKJ56880I
5708 Meaning: Either the existing catalog structure is inconsistent with the

operation, or the program was not authorized to perform the operation.

Application programmer action: Consult the z/OS DFSMSdfp Advanced
Services, correct the error, and resubmit the request.

5710 Meaning: The index structure necessary to catalog the data set does not
exist.

Application programmer action: Consult the z/OS DFSMSdfp Advanced
Services, correct the error, and resubmit the request.

5714 Meaning: CATALOG space is exhausted on the control volume.
(environmental error)

Application programmer action: If possible, use another catalog. Otherwise,
record the error codes and associated messages and report the error to your
system programmer.

Corresponding message: IKJ56231I
5718 Meaning: A CATALOG I/O error has occurred (system error).

Application programmer action: Resubmit the request. If the problem
persists, record the error codes and associated message(s) and report the
error to your system programmer.

System programmer action: Record the error codes, associated messages,
and failing device, and report the problem to the appropriate hardware
support personnel.

Corresponding message: IKJ56231I

630 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 80. Class 7 Error Reason Codes (System Routine Error) (continued)

Hex code Meaning and action

571C Meaning: One of the following occurred:

v An error was found in a parameter list

v There was a non-zero return code from ESTAE or GETMAIN

v A permanent I/O or unrecoverable error was encountered.

Application programmer action: Consult the z/OS DFSMSdfp Advanced
Services, to correct an error in the CATALOG parameter list, and resubmit
the request. For actions to take for a non-zero return code from ESTAE or
GETMAIN, consult z/OS MVS Programming: Assembler Services Reference
ABE-HSP (for unauthorized programs), or z/OS MVS Programming:
Authorized Assembler Services Reference EDT-IXG for authorized programs. For
a permanent I/O or unrecoverable error, contact your system programmer
and supply the reason code.

67zz OBTAIN error. LOCATE, DADSM, CATALOG, and OBTAIN errors are
explained in z/OS DFSMSdfp Advanced Services. (dsname allocation,
information retrieval)

The expected OBTAIN return codes are:
6708 Meaning: Data set not on volume as indicated in the catalog or volume text

unit (installation or system error). See message IKJ56232I for more
information.

Application programmer action: Delete the catalog entry (use DELETE
command with NOSCRATCH keyword) and recreate the data set if
necessary.

Corresponding message: IKJ56232I
670C Meaning: OBTAIN I/O error During data set allocation, an uncorrectable

I/O error occurred when the system attempted to obtain a data set control
block (DSCB). (system error)

Application programmer action: Resubmit the request. If the problem
persists, record the error codes and associated messages and report the error
to your system programmer.

System programmer action: Record the error codes, associated message(s)
and failing device and report the problem to the appropriate hardware
support personnel.

Corresponding message: IKJ56231I
6710 Meaning: An invalid work area pointer was supplied.

Application programmer action: Consult the z/OS DFSMSdfp Advanced
Services, correct the work area pointer, and resubmit the request.

6714 Meaning: The absolute address passed was not within the boundaries of the
VTOC.

Application programmer action: Consult the z/OS DFSMSdfp Advanced
Services, correct the absolute address, and resubmit the request.

7700 Meaning: Subsystem error. (dsname allocation)

Application programmer action: Consult the publications associated with
the particular subsystem for the meaning of the subsystem-defined value,
and take the appropriate action.

Chapter 26. Requesting dynamic allocation functions 631

Table 80. Class 7 Error Reason Codes (System Routine Error) (continued)

Hex code Meaning and action

7704 Meaning: A subsystem interface system error occurred while processing a
request for allocation of a subsystem data set (text key DALSSNM - key
005F).

Application programmer action: Resubmit the request. If the problem
persists, consult the subsystem documentation and installation
documentation to ensure both the subsystem name and data set are
supported in your installation. If the request is correct, record the name of
the requested subsystem and subsystem data set, error code and any
associated messages and report the problem to your system programmer.

System programmer action: Ensure that the requested subsystem and
subsystem data set are correct and available. If so, supply the subsystem
name, data set name, error code, and associated messages to the appropriate
IBM support personnel.

Corresponding message: IKJ56231I
8700 Meaning: Scheduler JCL Facility (SJF) error. This may be due to a system

failure due to insufficient storage when allocating a VIO data set.
(environmental or system error)

Application programmer action: Resubmit the request. If the problem
persists, report the DYNALLOC error code and any associated messages to
your system programmer, who can supply it to the appropriate IBM support
personnel.

Corresponding message: No corresponding dynamic allocation message
8704 Meaning: Scheduler JCL Facility access function error. (system error)

Application programmer action: Resubmit the request. If the problem
persists, report the DYNALLOC error code, information reason code, and
any associated message(s) to your system programmer, who can supply it to
the appropriate IBM support personnel.

Corresponding message: No corresponding dynamic allocation message
8708 Meaning: Mutual exclusivity checker error.(system error)

Application programmer action: Resubmit the request. If the problem
persists, report the DYNALLOC error code, information reason code, and
any associated messages to your system programmer, who can supply it to
the appropriate IBM support personnel.

Corresponding message: No corresponding dynamic allocation message
870C Meaning: Scheduler JCL facility (SJF) information retrieval service error, for

which there is no corresponding specific dynamic allocation reason code.

Application programmer action: Resubmit the request. If the problem
persists, report the DYNALLOC error code and information code and any
associated messages to your system programmer, who can supply it to the
IBM Support Center.

Corresponding message: No corresponding dynamic allocation message

632 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 80. Class 7 Error Reason Codes (System Routine Error) (continued)

Hex code Meaning and action

9700 Meaning: Severe storage management subsystem (SMS) IDAX, ACS and
Construct Access Services error.

Application programmer action: Check field S99ERSN for a non-zero value.
A non-zero value in S99ERSN is a reason code. See “SMS reason code
(S99ERSN)” on page 569 for the possible reason codes. If the system
displayed message IKJ56893I, SMS messages for the error follow IKJ56893I.
If the system displayed message IKJ56894I, no messages were returned.
Request the message processing option of dynamic allocation to obtain
related messages and resubmit the request. If you still cannot obtain
messages, contact your system programmer for assistance.

Corresponding Messages: IKJ56893I (messages were displayed) or IKJ56894I
(messages not displayed).

9704 Meaning: Severe SMS CATALOG service error.

Application programmer action: Check field S99ERSN for a non-zero value.
A non-zero value in S99ERSN is a reason code. See “SMS reason code
(S99ERSN)” on page 569 for the possible reason codes. If the system
displayed message IKJ56893I, SMS messages for the error follow IKJ56893I.
If the system displayed message IKJ56894I, no messages were returned.
Request the message processing option of dynamic allocation to obtain
related messages and resubmit the request. If you still cannot obtain
messages, contact your system programmer for assistance.

Corresponding Messages: IKJ56893I (messages were displayed) or IKJ56894I
(messages not displayed).

9708 Meaning: Severe SMS VOLREF service error.

Application programmer action: Check field S99ERSN for a non-zero value.
A non-zero value in S99ERSN is a reason code. See “SMS reason code
(S99ERSN)” on page 569 for the possible reason codes. If the system
displayed message IKJ56893I, SMS messages for the error follow IKJ56893I.
If the system displayed message IKJ56894I, no messages were returned.
Request the message processing option of dynamic allocation to obtain
related messages and resubmit the request. If you still cannot obtain
messages, contact your system programmer for assistance.

Corresponding Messages: IKJ56893I (messages were displayed) or IKJ56894I
(messages not displayed).

970C Meaning: Severe SMS VTOC service error.

Application programmer action: Check field S99ERSN for a non-zero value.
A non-zero value in S99ERSN is a reason code. See “SMS reason code
(S99ERSN)” on page 569 for the possible reason codes. If the system
displayed message IKJ56893I, SMS messages for the error follow IKJ56893I.
If the system displayed message IKJ56894I, no messages were returned.
Request the message processing option of dynamic allocation to obtain
related messages and resubmit the request. Because SMS creates entries in
the logrec data set, if you still cannot obtain messages, locate the logrec data
set entry for the error that corresponds to the reason code. If you need
further assistance contact your system programmer.

Corresponding Messages: IKJ56893I (messages were displayed) or IKJ56894I
(messages not displayed).

Chapter 26. Requesting dynamic allocation functions 633

||
|

|
|
|
|
|
|
|
|

|
|

Table 80. Class 7 Error Reason Codes (System Routine Error) (continued)

Hex code Meaning and action

9710 Meaning: Severe SMS DISP service error.

Application programmer action: Check field S99ERSN for a non-zero value.
A non-zero value in S99ERSN is a reason code. See “SMS reason code
(S99ERSN)” on page 569 for the possible reason codes. If the system
displayed message IKJ56893I, SMS messages for the error follow IKJ56893I.
If the system displayed message IKJ56894I, no messages were returned.
Request the message processing option of dynamic allocation to obtain
related messages and resubmit the request. If you still cannot obtain
messages, contact your system programmer for assistance.

Corresponding Messages: IKJ56893I (messages were displayed) or IKJ56894I
(messages not displayed).

9714 Meaning: Severe SMS COPY SWB service error.

Application programmer action: Check field S99ERSN for a non-zero value.
A non-zero value in S99ERSN is a reason code. See “SMS reason code
(S99ERSN)” on page 569 for the possible reason codes. If the system
displayed message IKJ56893I, SMS messages for the error follow IKJ56893I.
If the system displayed message IKJ56894I, no messages were returned.
Request the message processing option of dynamic allocation to obtain
related messages and resubmit the request. If you still cannot obtain
messages, contact your system programmer for assistance.

Corresponding Messages: IKJ56893I (messages were displayed) or IKJ56894I
(messages not displayed).

9718 Meaning: Error during SMS UNITAFF processing.

Application programmer action: Check field S99ERSN for a non-zero value.
A non-zero in S99ERSN is a reason code. See “SMS reason code (S99ERSN)”
on page 569 for the possible reason codes. If the system displayed message
IKJ56893I, SMS messages for the error follow IKJ56893I. If the system
message IKJ56894I, no messages were returned. Request the message
processing option of dynamic allocation to obtain related messages and
resubmit the request. If you still cannot obtain messages, contact your
system programmer for assistance.

Corresponding messages: IKJ56893I (messages were displayed) or IKJ56894I
971C Meaning: Severe SMS dataset stacking error.

Application programmer action: Check field S99ERSN for a non-zero value.
See “SMS reason code (S99ERSN)” on page 569 for the possible reason
codes. If the system displayed message IKJ56893I, SMS messages for the
error follow IKJ56893I. If the system displayed message IKJ56894I, no SMS
messages were returned. Request the message processing option of dynamic
allocation to obtain related messages and resubmit the request since SMS
creates entries in the logrec data set. If you still cannot obtain messages,
locate the logrec data set entry for the error that corresponds to the reason
code. If you need assistance, contact your system programmer.

Corresponding message: IKJ56893I (messages were displayed) or IKJ56894I.

634 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 80. Class 7 Error Reason Codes (System Routine Error) (continued)

Hex code Meaning and action

9720 Meaning: Severe SMS device pool service error.

Application programmer action: Check field S99ERSN for a non-zero value.
See “SMS reason code (S99ERSN)” on page 569 for the possible reason
codes. If the system displayed message IKJ56893I, SMS messages for the
error follow IKJ56893I. If the system displayed message IKJ56894I, no SMS
messages were returned. Request the message processing option of dynamic
allocation to obtain related messages and resubmit the request since SMS
creates entries in the logrec dataset. If you still cannot obtain messages,
locate the logrec dataset entry for the error that corresponds to the reason
code. If you need further assistance, contact your system programmer for
assistance.

Corresponding messages: IKJ56893I (messages were displayed) or IKJ56894I
(messages not displayed).

9724 Meaning: The allocation request failed because SMS provided MVS
Allocation with a Library Device Pool name that could not be found in the
active EDT for this allocation.

This condition is primarily caused during the time after a job has entered,
but has not yet completed. Device Allocation and a new SMS Library Device
Pool is introduced into the configuration via a Dynamic Activate.

System programmer action: Ensure that there are no outstanding
configuration Activates. If there are none, search problem reporting
databases for a fix for the problem. If no fix is found, contact the IBM
Support Center.

Corresponding message: IEF124I
9728 Meaning: System error while allocating a device (allocation ABEND

occurred - system error).

Application programmer action: Resubmit the request. If the problem
persists, report the error code and any associated messages to your system
programmer, who can supply it to the appropriate IBM support personnel.

Corresponding message: No corresponding dynamic allocation message

Chapter 26. Requesting dynamic allocation functions 635

Table 80. Class 7 Error Reason Codes (System Routine Error) (continued)

Hex code Meaning and action

A700 Meaning: The automatic restart manager (ARM) encountered an error
retrieving a copy of the symbol table from the system on which this job
originated. Some of the possible errors (return code/reason code) are:

08 / AE8
A problem occured verifying the input ASCB's storage.

08 / AF0
Data was found in one or more of the reserved fields in the input
parameter list.

08 / AFC
No ARB was found through the ASCB in the CopyTable.

08 / BA4
The ASST header is not valid or the ARB does not show a table.

08 / BB0
The Area for CopyTable is not valid.

System programmer action: Search problem reporting data bases for a fix
for the problem. If no fix exists, contact the IBM Support Center. Provide the
SYSLOG or OPERLOG from the failing system and any dumps taken by the
system.

Corresponding message: No corresponding dynamic allocation message

SVC 99 parameter list verb codes and text units, by function
The following pages contain descriptions of each of the text units you can use in
the SVC 99 parameter list that is input to the DYNALLOC macro. The text units
are arranged according to the functions they request, in ascending order of their
KEY values. See Figure 67 on page 555 for a general description of the text unit
and text unit keys.

You request a particular dynamic allocation function by coding the appropriate
verb code in the request block of the SVC 99 parameter list. The text units are
grouped within verb codes; the largest group (verb code 01) is further divided into
three subgroups. The verb codes and the functions they represent are listed below:

Verb Code
DYNALLOC Function

X'01' Dsname allocation

X'02' Unallocation

X'03' Concatenation

X'04' Deconcatenation

X'05' Remove-in-use processing based on task-ID

X'06' Ddname allocation

X'07' Information retrieval

The mnemonics given for the text units are those assigned by mapping macro
IEFZB4D2. The text unit structure is mapped by mapping macro IEFZB4D0. For a

636 z/OS V2R2 MVS Authorized Assembler Services Guide

complete list of the fields mapped by IEFZB4D2 and IEFZB4D0, see z/OS MVS
Data Areas in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/).

If the text unit requires that you code a parameter in the PARM field, the length
that you specify in the LEN field cannot be 0, unless otherwise indicated by the
text unit description. Character data must be left-justified in PARM.

Table 82 on page 642 through Table 93 on page 714 present the dynamic allocation
text units in list form, introductory to the descriptions of the text units in each verb
code group.

Coding a dsname allocation text unit
To request dynamic allocation by dsname, use verb code 01 and the appropriate
text unit key for the dsname allocation function that you require.

A suggested approach to setting up your dsname text unit keys is to code the
applicable JCL DD statement and then look up the text unit keys you need, by JCL
DD statement parameter, in Table 81 on page 638. The table is arranged by JCL
parameter, and provides the equivalent text unit mnemonic, text unit key and the
topic on which the text unit is described.

Table 82 on page 642 is provided to help you translate your text units by text unit
key.

Note:

1. The values you specify in the text units are in hexadecimal and EBCDIC.
2. The dsname can contain system symbols. See “Using system symbols in text

units” on page 638.

For dsname allocation text units that do not have a JCL equivalent, see Table 87 on
page 690 and “Non-JCL dynamic allocation functions” on page 689.

JCL DD statement parameters and equivalent text units
Use Table 81 on page 638 to convert a JCL DD statement into dsname allocation
text units. This table lists JCL DD statement parameters in alphabetical order, along
with the equivalent verb code 01 text unit key and mnemonic. Some JCL DD
statement parameters have multiple text unit keys associated with them. In these
cases, the same JCL DD statement is repeated in the table for each text unit key
associated with it.

JCL statement DD DCB subparameters are listed in Table 85 on page 676, although
you can code them directly on a DD statement without using the DCB parameter.

The following JCL statement DD parameters do not have equivalent text units and
do not appear in the table.
v *
v AMP
v CHKPT
v DATA
v DDNAME
v DLM
v DSID

Chapter 26. Requesting dynamic allocation functions 637

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Using system symbols in text units
You can use system symbols to represent data set names, member names, and path
names in text units.

You can specify system symbols in the following text units:
v Verb code 01 - Dsname Allocation Text Units

– DALDSNAM
– DALMEMBR
– DALPATH

v Verb code 02 - Dynamic Unallocation Text Units
– DUNDSNAM
– DUNMEMBR
– DUNPATH

v Verb code 07 - Dynamic Information Retrieval Text Units
– DINDSNAM
– DINPATH

For detailed information about defining and using system symbols, see z/OS MVS
Initialization and Tuning Reference.

Table 81. JCL DD Statement Parameters and Equivalent Text Units

JCL DD Statement Parameter Text Unit
Mnemonic

Text Unit
Key

Described in:

ACCODE DALACODE 8001 “Access specification - Key = '8001'” on page 662

AVGREC DALAVGR 8010 “Average record specification - Key = '8010'” on
page 665

BLKSZLIM DALBSLM 8022 “Block size limit specification - Key = '8022'” on
page 670

BURST DALBURST 0064 “Burst specification - Key = '0064'” on page 659

CHARS DALCHARS 0065 “Character arrangement table specification - Key =
'0065'” on page 659

CNTL DALCNTL 8003 “CNTL specification - Key = '8003'” on page 663

COPIES=group-value DALCOPYG 0066 “Copy groups specification - Key = '0066'” on page
659

COPIES=nnn DALCOPYS 001D “SYSOUT copies specification - Key = '001D'” on
page 652

CCSID=nnnnn DALDCCS 8020 “CCSID specification - Key = '8020'” on page 670

DATACLAS DALDACL 8006 “Data class specification - Key = '8006'” on page
663

DCB=*.ddname DALDCBDD 002D “DCB reference to a ddname specification - Key =
'002D'” on page 656

DCB=dsname DALDCBDS 002C “DCB reference to a dsname specification - Key =
'002C'” on page 656

ddname label of DD statement DALDDNAM 0001 “Ddname specification - Key = '0001'” on page 645

DEST=node DALSUSER 0058 “SYSOUT remote work station specification - Key
= '0058'” on page 656

DEST=userid DALUSRID 0063 “SYSOUT user ID specification - Key = '0063'” on
page 658

DISP=abnormal termination disposition DALCDISP 0006 “Data set conditional disposition specification -
Key = '0006'” on page 647

DISP=normal termination disposition DALNDISP 0005 “Data set normal disposition specification - Key =
'0005'” on page 647

638 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 81. JCL DD Statement Parameters and Equivalent Text Units (continued)

JCL DD Statement Parameter Text Unit
Mnemonic

Text Unit
Key

Described in:

DISP=status DALSTATS 0004 “Data set status specification - Key = '0004'” on
page 646

DSNAME=dsname DALDSNAM 0002 “Dsname specification - Key = '0002'” on page 645

DSNAME=dsname(member)
DSNAME=dsname(generation)

DALMEMBR 0003 “Member name specification - Key = '0003'” on
page 646

DSNTYPE DALDSNT 8012 “Data set type specification - Key = '8012'” on page
665

DSNTYPE 2nd parameter DALDSNV 802C “DSNTYPE version - Key = '802C'” on page 674

DUMMY DALDUMMY 0024 “Dummy data set specification - Key = '0024'” on
page 654

EATTR DALEATT 8028 “Extended attributes specification - Key = '8028'”
on page 673

EXPDT=yyddd DALEXPDT 0022 “Expiration date specification (short form) - Key =
'0022'” on page 654

EXPDT=yyyy/ddd DALEXPDL 006D “EXPIRATION DATE specification (long form) -
Key = '006D'” on page 661

FCB=fcb-name DALFCBIM 0025 “Forms control buffer (FCB) image identification
specification - Key = '0025'” on page 654

FCB=ALIGN
FCB=VERIFY

DALFCBAV 0026 “Form alignment and image verification
specification - Key = '0026'” on page 654

FILEDATA DALFDAT 801D “Organization of a z/OS UNIX file - Key = '801D'”
on page 670

FLASH=count DALFCNT 0068 “Flash forms overlay count specification - Key =
'0068'” on page 660

FLASH=overlay-name DALFFORM 0067 “Flash forms overlay specification - Key = '0067'”
on page 659

FREE DALCLOSE 001C “Unallocation at CLOSE specification - Key =
'001C'” on page 652

FREEVOL DALFRVL 8029 “FREEVOL specification - Key = '8029'” on page
673

GDGORDER DALGDGO 802E “DALGDGO specification – Key = '802E'” on page
675

HOLD DALSHOLD 0059 “SYSOUT hold queue specification - Key = '0059'”
on page 657

KEYENCD1 DALKYC1 8025 “Key encode 1 specification - Key = '8025'” on
page 672

KEYENCD2 DALKYC2 8026 “Key encode 2 specification - Key = '8026'” on
page 672

KEYLABL1 DALKYL1 8023 “Key label 1 specification - Key = '8023'” on page
671

KEYLABL2 DALKYL2 8024 “Key label 2 specification - Key = '8024'” on page
671

KEYOFF DALKEYO 800C “Key offset specification - Key = '800C'” on page
664

LABEL=data set sequence number DALDSSEQ 001F “Data set sequence number specification - Key =
'001F'” on page 653

LABEL=EXPDT=yyddd DALEXPDT 0022 “Expiration date specification (short form) - Key =
'0022'” on page 654

LABEL=EXPDT=yyyy/ddd DALEXPDL 006D “EXPIRATION DATE specification (long form) -
Key = '006D'” on page 661

LABEL=,IN
LABEL=,OUT

DALINOUT 0021 “Input only or output only specification - Key =
'0021'” on page 653

Chapter 26. Requesting dynamic allocation functions 639

|

Table 81. JCL DD Statement Parameters and Equivalent Text Units (continued)

JCL DD Statement Parameter Text Unit
Mnemonic

Text Unit
Key

Described in:

LABEL=label-type DALLABEL 001E “Label type specification - Key = '001E'” on page
652

LABEL=,PASSWORD
LABEL=,NOPWREAD

DALPASPR 0020 “Password protection specification - Key = '0020'”
on page 653

LABEL=RETPD=nnnn DALRETPD 0023 “Retention period specification - Key = '0023'” on
page 654

LIKE DALLIKE 800F “Copy model specification - Key = '800F'” on page
665

LGSTREAM DALLGST 801F “VSAM RLS log stream specification - Key =
'801F'” on page 670

MAXGENS DALMAXG 802D “Maximum PDSE Generation - Key = '802D'” on
page 675

MGMTCLAS DALMGCL 8005 “Management class specification - Key = '8005'” on
page 663

MODIFY=module-name DALMMOD 0069 “Copy modification module specification - Key =
'0069'” on page 660

MODIFY=trc DALMTRC 006A “Copy module table reference specification - Key =
'006A'” on page 660

OUTLIM DALOUTLM 001B “SYSOUT output limit specification - Key = '001B'”
on page 652

OUTPUT DALOUTPT 8002 “OUTPUT statement reference - Key = '8002'” on
page 662

PATH DALPATH 8017 “z/OS UNIX file path specification - Key = '8017'”
on page 666

PATHDISP=normal termination disposition DALPNDS 801A “z/OS UNIX file normal disposition specification -
Key = '801A'” on page 669

PATHDISP=abnormal termination
disposition

DALPCDS 801B “z/OS UNIX file abnormal disposition
specification - Key = '801B'” on page 669

PATHMODE DALPMDE 8019 “z/OS UNIX file access attributes - Key = '8019'”
on page 668

PATHOPTS DALPOPT 8018 “z/OS UNIX file options - Key = '8018'” on page
667

PROTECT DALPROT 0061 “PROTECT specification - Key = '0061'” on page
658

QNAME DALQNAME 0027 “QNAME specification - Key = '0027'” on page 655

RECORG DALRECO 800B “Record organization specification - Key = '800B'”
on page 664

REFDD DALREFD 800D “Copy DD specification - Key = '800D'” on page
664

RETPD DALRETPD 0023 “Retention period specification - Key = '0023'” on
page 654

RLS DALRLS 801C “Record-level sharing specification - Key = '801C'”
on page 669

SECMODEL DALSECM 800E “Copy profile specification - Key = '800E'” on page
664

SEGMENT DALSEGM 8014 “Segment spin data set specification - Key = '8014'”
on page 666

SPACE=TRK DALTRK 0007 “Track space type (TRK) specification - Key =
'0007'” on page 647

SPACE=CYL DALCYL 0008 “Cylinder space type (CYL) specification - Key =
'0008'” on page 647

640 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 81. JCL DD Statement Parameters and Equivalent Text Units (continued)

JCL DD Statement Parameter Text Unit
Mnemonic

Text Unit
Key

Described in:

SPACE=blklgth DALBLKLN 0009 “Block length specification - Key = '0009'” on page
647

SPACE=primary-quantity DALPRIME 000A “Primary space quantity specification - Key =
'000A'” on page 648

SPACE=secondary-quantity DALSECND 000B “Secondary space quantity specification - Key =
'000B'” on page 648

SPACE=directory DALDIR 000C “Directory block specification - Key = '000C'” on
page 648

SPACE=RLSE DALRLSE 000D “Unused space release (RLSE) specification - Key =
'000D'” on page 648

SPACE=CONTIG
SPACE=MXIG
SPACE=ALX

DALSPFRM 000E “Format of allocated space specification - Key =
'000E'” on page 649

SPACE=ROUND DALROUND 000F “Whole cylinder allocation (ROUND) specification
- Key = '000F'” on page 649

SPACE=PRIVATE DALPRIVT 0011 “Private volume specification - Key = '0011'” on
page 649

SPIN DALSPIN 8013 “Spin data set specification - Key = '8013'” on page
665

STORCLAS DALSTCL 8004 “Storage class specification - Key = '8004'” on page
663

SUBSYS=subsystem-name DALSSNM 005F “Subsystem name request specification - Key =
'005F'” on page 657

SUBSYS=subsystem-parameter DALSSPRM 0060 “Subsystem parameter specification - Key = '0060'”
on page 658

SYMLIST=(sym1,sym2,..) DALSYML 802B “SYMLIST on a DD statement - Key = '802B'” on
page 674

SYSOUT=class DALSYSOU 0018 “SYSOUT specification - Key = '0018'” on page 651

SYSOUT=writer-name
SYSOUT=INTRDR

DALSPGNM 0019 “SYSOUT program name specification - Key =
'0019'” on page 651

SYSOUT=INTRDR DALOVAFF 0070 “Override job affinity - Key = '0070'” on page 661

SYSOUT=form-name DALSFMNO 001A “SYSOUT form number specification - Key =
'001A'” on page 652

TERM DALTERM 0028 “Terminal specification - Key = '0028'” on page 655

UCS=character-set-code DALUCS 0029 “Universal character set (UCS) specification - Key
= '0029'” on page 655

UCS=FOLD DALUFOLD 002A “Fold mode specification - Key = '002A'” on page
655

UCS=VERIFY DALUVRFY 002B “Character set image verification specification -
Key = '002B'” on page 656

UNIT=device-number
UNIT=device-type
UNIT=group-name

DALUNIT 0015 “Device description specification - Key = '0015'” on
page 650

UNIT=unit-count DALUNCNT 0016 “Device count specification - Key = '0016'” on page
651

UNIT=P DALPARAL 0017 “Parallel mount specification - Key = '0017'” on
page 651

UNIT=DEFER DALDEFER 006C “DEFER specification - Key = '006C'” on page 660

UNIT=SMSHONOR DALSMSHR 0076 “SMSHONOR specification – Key = '0076'” on
page 662

VOLUME=SER DALVLSER 0010 “Volume serial specification - Key = '0010'” on
page 649

Chapter 26. Requesting dynamic allocation functions 641

Table 81. JCL DD Statement Parameters and Equivalent Text Units (continued)

JCL DD Statement Parameter Text Unit
Mnemonic

Text Unit
Key

Described in:

VOLUME=volume-sequence-number DALVLSEQ 0012 “Volume sequence number specification - Key =
'0012'” on page 649

VOLUME=volume-count DALVLCNT 0013 “Volume count specification - Key = '0013'” on
page 650

VOLUME=REF=dsname DALVLRDS 0014 “Volume reference to a dsname specification - Key
= '0014'” on page 650

Note: References to previous DD statements are not supported.

Dsname allocation text units
Most of the information that can be specified on a JCL DD statement can also be
specified in text units for the dsname allocation function (verb code '01'). These
text units are listed in Table 82 and described on the pages that follow.

The text units that represent DCB attributes are described in “DCB attribute text
units” on page 677 and listed in Table 86 on page 677. The JCL DD statement DCB
parameters and their equivalent text units are described in Table 85 on page 676.

The meaning of the parameters is the same as when specified on a DD statement
as described in z/OS MVS JCL Reference.

In addition to allocating a data set, you can request that the system return
information about either a dsname or a ddname dynamic allocation request by
specifying either of the following:
v Information retrieval keys greater than C000, described in “Dynamic information

retrieval text units” on page 713
v The non-JCL dynamic allocation functions keys 0055-0057 and 005D, described in

“Non-JCL dynamic allocation functions” on page 689, which request that the
system return information about your dsname allocation request.

Table 82. Verb Code 01 (Dsname Allocation) – Text Unit Keys, Mnemonics, and Functions

Hex Text
Unit Key

Mnemonic Dsname Allocation Function

0001 DALDDNAM Associates a ddname with an allocation request.
0002 DALDSNAM Names the data set to be allocated.
0003 DALMEMBR Specifies data set number or relative generation number.
0004 DALSTATS Specifies the data set status.
0005 DALNDISP Specifies the data set's normal disposition.
0006 DALCDISP Specifies the data set's conditional disposition.
0007 DALTRK Specifies the space allocation in tracks.
0008 DALCYL Specifies the space allocation in cylinders.
0009 DALBLKLN Specifies the average data block length.
000A DALPRIME Specifies a primary space quantity.
000B DALSECND Specifies a secondary space quantity.
000C DALDIR Specifies the number of PDS directory blocks.
000D DALRLSE Deletes unused space at data set closure.
000E DALSPFRM Ensures a specific allocated space format.
000F DALROUND Specifies space allocation in whole cylinders.
0010 DALVLSER Specifies volume serial numbers.
0011 DALPRIVT Specifies the private volume use attribute.
0012 DALVLSEQ Specifies the volume sequence number processing.

642 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 82. Verb Code 01 (Dsname Allocation) – Text Unit Keys, Mnemonics, and Functions (continued)

Hex Text
Unit Key

Mnemonic Dsname Allocation Function

0013 DALVLCNT Specifies the data set's volume count.
0014 DALVLRDS Specifies volume reference to a cataloged data set.
0015 DALUNIT Describes the unit specification.
0016 DALUNCNT Specifies the number of devices to be allocated.
0017 DALPARAL Specifies parallel mounting for a data set's volumes.
0018 DALSYSOU Specifies the SYSOUT data set and defines its class.
0019 DALSPGNM Specifies the SYSOUT program name.
001A DALSFMNO Specifies the SYSOUT form number.
001B DALOUTLM Limits the SYSOUT data set's logical record count.
001C DALCLOSE Frees a data set at closure.
001D DALCOPYS Specifies the SYSOUT listing copies count.
001E DALLABEL Specifies the type of volume label.
001F DALDSSEQ Specifies a tape data set's relative position.
0020 DALPASPR Password protects the created data set.
0021 DALINOUT Specifies “input only” or “output only” data set processing.
0022 DALEXPDT Specifies the data set's expiration date.
0023 DALRETPD Specifies the data set's retention period.
0024 DALDUMMY Allocates a dummy data set.
0025 DALFCBIM Identifies the forms control buffer image.
0026 DALFCBAV Requests operator verification of the image display or forms

alignment.
0027 DALQNAME Names a TPROCESS macro.
0028 DALTERM Specifies a time sharing terminal as an I/O device.
0029 DALUCS Specifies a universal character set.
002A DALUFOLD Specifies “fold mode” for loading the requested print chain or train.
002B DALUVRFY Requests operator verification of the correct print chain or train

mounting.
002C DALDCBDS Specifies the retrieval of DCB information from a cataloged data

set's label.
002D DALDCBDD Specifies the retrieval of DCB information from a ddname-related,

currently allocated data set.
0058 DALSUSER Specifies the destination to which the SYSOUT data set is to be

routed.
Note: Keys 0058 and 0063 are equivalent to the JCL DEST=
parameter, where DEST=(dalsuser) or DEST=(dalsuser,dalusrid).

0059 DALSHOLD Specifies hold queue routing for the SYSOUT data set.
005F DALSSNM Requests allocation of a subsystem data set.
0060 DALSSPRM Specifies subsystem-defined parameters for use with key

DALSSNM.
0061 DALPROT Requests that the direct access data set or the tape volume be

RACF-protected.
0063 DALUSRID Specifies the destination user ID to which the SYSOUT data set is to

be routed. If used, requires that DALSUSER also be specified.
Note: Keys 0058 and 0063 are equivalent to the JCL DEST=
parameter, where DEST=(dalsuser) or DEST=(dalsuser,dalusrid).

0064 DALBURST Specifies which stacker of the 3800 Printing Subsystem is to receive
the paper output.

0065 DALCHARS Specifies the name or names of character arrangement tables for
printing a data set on the 3800.

0066 DALCOPYG Specifies how copies are to be grouped if printing is done on a
3800.

0067 DALFFORM Specifies the forms overlay to be used on the 3800 Printing
Subsystem.

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 643

Table 82. Verb Code 01 (Dsname Allocation) – Text Unit Keys, Mnemonics, and Functions (continued)

Hex Text
Unit Key

Mnemonic Dsname Allocation Function

0068 DALFCNT Specifies the number of copies on which the forms overlay is to be
printed.

0069 DALMMOD Specifies the name of the copy modification module to be loaded
into the 3800 Printing Subsystem.

006A DALMTRC Specifies the table reference character that corresponds to a
character arrangement table used for printing the copy modification
data.

006C DALDEFER Specifies that the system should allocate a device to the data set,
but defer mounting the volume(s) until the data set is opened.

006D DALEXPDL Specifies the data set's expiration date. This differs from
DALEXPDT because the year is specified with 4 digits instead of 2.

0070 DALOVAFF Specifies the override of system affinity for a job submitted to the
internal reader.

0071 DALRTCTK Specifies that the JES Client Token (CTOKEN) be returned to the
caller of DYNALLOC.

0076 DALSMSHR Indicates that the system must attempt to allocate to the device or
the esoteric on the unit name for an SMS tape library request.

8001 DALACODE Specifies an access code for an IOS/ANSI/FIPS Version 3 tape data
set.

8002 DALOUTPT Refers to a specific OUTPUT JCL statement or dynamic output
descriptor

8003 DALCNTL Refers to a JCL CNTL statement.
8004 DALSTCL Specifies the storage class of a new SMS-managed data set.
8005 DALMGCL Specifies the management class of a new SMS-managed data set.
8006 DALDACL Specifies the data class of a new SMS-managed data set.
800B DALRECO Specifies the record organization of a VSAM data set.
800C DALKEYO Specifies the key offset of a VSAM data set.
800D DALREFD Specifies the name of the JCL DD statement from which the

attributes are to be copied.
800E DALSECM Specifies the name of the RACF profile from which the RACF

profile is to be copied.
800F DALLIKE For SMS-managed data sets, specifies the name of a model data set

from which the attributes are to be copied.
8010 DALAVGR Specifies the allocation unit to be used when the data set is

allocated.
8012 DALDSNT Specifies a data set type attribute.
8013 DALSPIN Specifies whether the output for the SYSOUT data set is to be

printed immediately upon unallocation of the data set, or at the
end of the job.

8014 DALSEGM Specifies the number of logical, line-mode pages (the segment) to be
produced for a SYSOUT data set before the segment becomes
eligible for immediate printing.

8017 DALPATH Specifies the z/OS UNIX file pathname.
8018 DALPOPT Specifies the z/OS UNIX file options.
8019 DALPMDE Specifies the z/OS UNIX file access attributes.
801A DALPNDS Specifies the disposition of the z/OS UNIX file during normal step

termination.
801B DALPCDS Specifies the disposition of the z/OS UNIX file during abnormal

step termination.
801C DALRLS Specifies the record-level sharing protocol for a VSAM data set.
801D DALFDAT Specifies the organization of a z/OS UNIX file.
801F DALLGST Specifies the VSAM RLS log stream.
8020 DALDCCS Specifies the Coded Character Set Identifier.

Verb code 01 - Dsname allocation text units

644 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 82. Verb Code 01 (Dsname Allocation) – Text Unit Keys, Mnemonics, and Functions (continued)

Hex Text
Unit Key

Mnemonic Dsname Allocation Function

8022 DALBSLM Specifies the upward limit that is used by the system-determined
block size processing.

8023 DALKYL1 Specifies the label for the key encrypting key used by the key
manager. The key encrypting key is used to encrypt the data
(encryption) key.

8024 DALKYL2 Specifies the label for the key encrypting key used by the key
manager. The key encrypting key is used to encrypt the data
(encryption) key.

8025 DALKCD1 Specifies how the label for the key encrypting key specified by
DALKYL1 for this DD is to be encoded by the key manager and
stored on the tape cartridge.

8026 DALKCD2 Specifies how the label for the key encrypting key specified by
DALKYL2 for this DD is to be encoded by the key manager and
stored on the tape cartridge.

8028 DALEATT Indicates whether the data set can support extended attributes
(format 8 and 9 DSCBs).

8029 DALFRVL Specifies whether to allow other jobs to read freed volumes of a
multivolume tape file as the volume is dismounted by the job

802A DALSPI2 Specifies the SPIN interval for the allocated SYSOUT data set.
802B DALSYML Lists the symbol names to be passed to JES when an internal reader

is allocated.
802C DALDSNV Specifies the data set type version information.
802D DALMAXG Specifies the maximum number of PDSE member generations to be

retained by the system.
802E DALGDGO Specifies the order in which the individual generation data sets

(GDSs) are concatenated.

Ddname specification - Key = '0001'
DALDDNAM specifies a ddname to be associated with a dsname allocation
request. When you code this key, # must be one, LEN is the length of the ddname,
up to a maximum of 8, and PARM contains the ddname.

Example: To specify the ddname DD1, code:
KEY # LEN PARM
0001 0001 0003 C4 C4 F1

Dsname specification - Key = '0002'
DALDSNAM specifies the name of the data set to be allocated. The data set name
can contain special characters, if the data set name is enclosed in apostrophes. The
system cannot catalog a data set name enclosed in apostrophes; it will use a
disposition of KEEP instead. The data set name can contain system symbols. See
the information on using system symbols in z/OS MVS Initialization and Tuning
Reference for more information.

Dynamic allocation does not support backward references. See Table 69 on page
535.

The QNAME (DALQNAME) and IPLTXTID (DALIPLTX) keys are mutually
exclusive with DALDSNAM. When you code this key, # must be one, LEN is the
length of the dsname, and PARM contains the dsname.

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 645

|||
|

The maximum length of the data set name is 44 characters, excluding any
enclosing apostrophes and compressing any double apostrophes within the data
set name.

Example: To specify the dsname MYDATA, code:
KEY # LEN PARM
0002 0001 0006 D4 E8 C4 C1 E3 C1

Example: To specify the temporary dsname &LOAD, code:
KEY # LEN PARM
0002 0001 0005 50 D3 D6 C1 C4

Example: To specify the dsname A.B, code:
KEY # LEN PARM
0002 0001 0003 C1 4B C2

Member name specification - Key = '0003'
DALMEMBR specifies that a particular member of a data set is to be allocated,
rather than the entire data set. If the member does not exist and DISP=OLD or
DISP=SHR is specified, the allocation will succeed but the job will fail when the
data set is opened for input. If the member does not exist and the data set is
opened for output, the system will add the member to the data set. The data set
member name can contain system symbols. See the information on using system
symbols in z/OS MVS Initialization and Tuning Reference for more information. A
relative generation group number may be specified as the member name.

When you specify DALMEMBR, you must also specify the dsname key
(DALDSNAM). The QNAME (DALQNAME) and IPLTXTID (DALIPLTX) keys are
mutually exclusive with DALMEMBR. When you code this key, # must be one,
LEN is the actual length of the member name, and PARM contains the member
name.

Example: To specify the member name MEM1, code:
KEY # LEN PARM
0003 0001 0004 D4 C5 D4 F1

Example: To specify the relative generation number +1, code:
KEY # LEN PARM
0003 0001 0002 4E F1

Data set status specification - Key = '0004'
DALSTATS specifies the data set status desired. It is mutually exclusive with the
SYSOUT key (DALSYSOU). When you code DALSTATS, # and LEN must be one,
and PARM contains one of the following values:

X'01' OLD

X'02' MOD

X'04' NEW

X'08' SHR

Example: To specify a status of NEW, code:
Key # LEN PARM
0004 0001 0001 04

Do not code MOD for temporary data sets dynamically allocated as &&dsname.

Verb code 01 - Dsname allocation text units

646 z/OS V2R2 MVS Authorized Assembler Services Guide

Data set normal disposition specification - Key = '0005'
DALNDISP specifies the normal data set disposition desired. It is mutually
exclusive with the SYSOUT key (DALSYSOU). When you code DALNDISP, # and
LEN must be one, and PARM contains one of the following values:

X'01' UNCATLG

X'02' CATLG

X'04' DELETE

X'08' KEEP

Example: To specify a normal disposition of DELETE, code:
KEY # LEN PARM
0005 0001 0001 04

Data set conditional disposition specification - Key = '0006'
DALCDISP specifies the conditional data set disposition desired. It is mutually
exclusive with the SYSOUT key (DALSYSOU). The values for #, LEN, and PARM
are the same as for normal disposition.

Example: To specify a conditional disposition of DELETE, code:
KEY # LEN PARM
0006 0001 0001 04

Track space type (TRK) specification - Key = '0007'
DALTRK specifies that space is to be allocated in tracks. The primary quantity
space key (DALPRIME) or the secondary quantity space key (DALSECND) must
also be specified when you code DALTRK. The text unit keys that define space in
terms of cylinders (DALCYL, DALROUND) or blocks (DALBLKLN) are mutually
exclusive with DALTRK. When you code this key, # must be zero; LEN and PARM
are not specified.

Example: To specify a space request in tracks, code:
KEY # LEN PARM
0007 0000 - -

Cylinder space type (CYL) specification - Key = '0008'
DALCYL specifies that space is to be allocated in cylinders. The primary quantity
space key (DALPRIME) or secondary quantity space key (DALSECND) must also
be specified when you code this key. The text unit keys that define space in terms
of tracks (DALTRK) or blocks (DALBLKLN) are mutually exclusive with DALCYL.
When you code this key, # must be zero; LEN and PARM are not specified.

Example: To specify a space request in cylinders, code:
KEY # LEN PARM
0008 0000 - -

Block length specification - Key = '0009'
If you do not code DALAVGR, DALBLKLN specifies the average data block
length the system will use when computing the amount of space to allocate.

If you do code DALAVGR (with SMS), DALBLKLN specifies the average record
length in bytes of the data. The system computes the block size and the number of
tracks to allocate.

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 647

You must also specify the primary quantity space key (DALPRIME) or the
secondary quantity space key (DALSECND) when you code this key. The text unit
keys that request space in terms of tracks (DALTRK) or cylinders (DALCYL,
DALROUND) should not be specified with DALBLKLN. When you code this key,
must be one, LEN must be three, and PARM contains the average data block
length or average record length. The maximum PARM value is '00FFFF' (65,535).

Example: To specify an average data block length of 80 or an average record length
of 80, code:
KEY # LEN PARM
0009 0001 0003 00 00 50

Primary space quantity specification - Key = '000A'
DALPRIME specifies a primary space quantity. You must also code one of the
space type keys (DALBLKLN, DALCYL, DALTRK) when you specify DALPRIME.
When you code this key, # must be one, LEN must be three, and PARM contains
the primary quantity value.

Example: To specify a primary quantity of 20, code:
KEY # LEN PARM
000A 0001 0003 00 00 14

Secondary space quantity specification - Key = '000B'
DALSECND specifies a secondary space quantity. You must also code one of the
space type keys (DALBLKLN, DALCYL, DALTRK) when you specify DALSECND.
When you code this key, # must be one, LEN must be three, and PARM contains
the secondary quantity value.

Example: To specify a secondary space quantity of 10, code:
KEY # LEN PARM
000B 0001 0003 00 00 0A

Directory block specification - Key = '000C'
DALDIR specifies the number of blocks to be contained in the directory of a
partitioned data set. You may also specify a space type key (DALBLKLN,
DALCYL, or DALTRK) and the primary quantity key (DALPRIME) when coding
DALDIR. With SMS, the number of blocks that you specify with DALDIR
overrides the number that is specified in the data class of the data set. When you
code this key, # must be one, LEN must be three, and PARM contains the number
of directory blocks.

Example: To specify two directory blocks, code:
KEY # LEN PARM
000C 0001 0003 00 00 02

Unused space release (RLSE) specification - Key = '000D'
DALRLSE specifies that space allocated to an output data set, but not used, is to be
released when the data set is closed. Unused space is released only if the data set
is open for output and the last operation was a write. When you code this key, #
must be zero and LEN and PARM must not be coded.

Example: To specify the release of unused space, code:
KEY # LEN PARM
000D 0000 - -

Verb code 01 - Dsname allocation text units

648 z/OS V2R2 MVS Authorized Assembler Services Guide

Format of allocated space specification - Key = '000E'
DALSPFRM specifies a particular format of allocated space. When you code this
key, # and LEN must be one, and PARM contains one of the following values:

X'02' Different areas of contiguous space are to be allocated (ALX)

X'04' Maximum contiguous space is required (MXIG)

X'08' Space must be contiguous (CONTIG)

Example: To specify contiguous space format, code:
KEY # LEN PARM
000E 0001 0001 08

Whole cylinder allocation (ROUND) specification - Key = '000F'
DALROUND specifies that allocated space is to be equal to one or more whole
cylinders when requested in units of blocks. When you code this key, # must be
zero; LEN and PARM are not specified.

Example: To specify allocation of whole cylinders, code:
KEY # LEN PARM
000F 0000 - -

Volume serial specification - Key = '0010'
DALVLSER specifies volume serial numbers. It is mutually exclusive with the
SYSOUT (DALSYSOU) and volume reference (DALVLRDS) keys. When you code
DALVLSER, # contains the number of volume serials being specified, LEN contains
the length of the immediately following volume serial, and PARM contains the
volume serial. Do not specify duplicate volume serial numbers in DALVLSER.
Each volume must have a unique volume serial number, regardless of whether it is
a tape or disk volume.

Example: To specify the volume serials 231400 and 231401, code:
KEY # LEN PARM LEN PARM
0010 0002 0006 F2 F3 F1 F4 F0 F0 0006 F2 F3 F1 F4 F0 F1

Private volume specification - Key = '0011'
DALPRIVT specifies that the volume(s) allocated are to be assigned the volume
use attribute of private. This key is mutually exclusive with the SYSOUT key
(DALSYSOU). When you code DALPRIVT, # must be zero; LEN and PARM are not
specified.

Example: To specify the private volume attribute, code:
KEY # LEN PARM
0011 0000 - -

Volume sequence number specification - Key = '0012'
DALVLSEQ specifies which volume, of a multi-volume data set, processing is to
begin with. This key is mutually exclusive with the SYSOUT key (DALSYSOU).
When you code DALVLSEQ, # must be one, LEN must be two, and PARM
contains the volume sequence number. The maximum PARM value is '00FF' (255).

Example: To specify a volume sequence number of two, code:
KEY # LEN PARM
0012 0001 0002 0002

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 649

Volume count specification - Key = '0013'
DALVLCNT specifies the maximum number of volumes an output data set may
require. This key is mutually exclusive with the SYSOUT key (DALSYSOU). When
you code DALVLCNT, # and LEN must be one, and PARM contains the volume
count.

Example: To specify a volume count of 10, code:
KEY # LEN PARM
0013 0001 0001 0A

Volume reference to a dsname specification - Key = '0014'
DALVLRDS indicates that the system is to obtain volume serial information from
the specified cataloged data set. This key is mutually exclusive with the SYSOUT
(DALSYSOU) and volume serial (DALVLSER) keys. (You cannot use a volume
reference to a ddname for dynamic allocation.) For a given job step, the system
allows a maximum of 1489 backward references (for a VOL=REF to a dsname or
DCB=dsname) when the data set names are 44 characters long.

When you code this key, # must be one, LEN is the actual length of the dsname,
and PARM contains the dsname (a name of all blanks is invalid).

Example: To specify volume reference to the data set DSN1, code:
KEY # LEN PARM
0014 0001 0004 C4 E2 D5 F1

Device description specification - Key = '0015'
DALUNIT specifies a device as a group (esoteric) name, a device type (generic), or
a specific device number (in EBCDIC). When you code DALUNIT, # must be one,
LEN is the actual length of the device description, and PARM contains the device
description. To code a 4-digit specific unit address, precede the EBCDIC device
number, PARM, with a slash (/). Include the slash as a character when
determining the length. Failure to include the slash will cause the specified 4-digit
number to be treated as a device type instead of a device address. A 3-digit specific
unit address may also be preceded with a slash.

Example: To specify the group name SYSDA, code:
KEY # LEN PARM
0015 0001 0005 E2 E8 E2 C4 C1

Example: To specify the device type 3390, code:
KEY # LEN PARM
0015 0001 0004 F3 F3 F9 F0

Example: To specify the device number 230, code:
KEY # LEN PARM
0015 0001 0003 F2 F3 F0

Example: To specify the device number 2302, which must be preceded by an
EBCDIC slash (61), code:
KEY # LEN PARM
0015 0001 0005 61 F2 F3 F0 F2

Verb code 01 - Dsname allocation text units

650 z/OS V2R2 MVS Authorized Assembler Services Guide

Device count specification - Key = '0016'
DALUNCNT specifies the number of devices to be allocated. It is mutually
exclusive with the parallel mount key (DALPARAL). When you code DALUNCNT,
and LEN must be one, and PARM contains the device count. The maximum
PARM value is '3B' (59).

Example: To specify a device count of ten, code:
KEY # LEN PARM
0016 0001 0001 0A

Parallel mount specification - Key = '0017'
DALPARAL specifies that each volume of a data set is to be mounted on a
separate device. It is mutually exclusive with the unit count key (DALUNCNT).
When you code DALPARAL, # must be zero; LEN and PARM are not specified.

Example: To specify parallel mount, code:
KEY # LEN PARM
0017 0000 - -

SYSOUT specification - Key = '0018'
DALSYSOU specifies that a system output data set is to be allocated and defines
the output class of the data set. When you code this key and want a class other
than the default, # and LEN must be one, and PARM contains the output class. To
use the default output class, code zero in the # field; LEN and PARM are not
specified. The default output class is determined as follows:
v From the OUTPUT DD statement, if present
v From the default message class, if there is no OUTPUT DD statement.

DALSYSOU is mutually exclusive with the following text unit keys:
v DALSTATS, DALNDISP and DALCDISP
v DALVLSER, DALPRIVT, DALVLSEQ, DALVLCNT, and DALVLRDS
v DALQNAME
v DALSSNM, DALSSPRM, and DALSSATT

Note: Using DALSYSOU with any of these keys will cause dynamic allocation to
issue an error code 0380.

Example: To specify a SYSOUT data set in class A, code:
KEY # LEN PARM
0018 0001 0001 C1

Example: To specify a SYSOUT data set and to default the class, code:
KEY # LEN PARM
0018 0000 - -

SYSOUT program name specification - Key = '0019'
DALSPGNM specifies the SYSOUT program name. The SYSOUT key (DALSYSOU)
must also be specified when you code DALSPGNM. The subsystem name request
(DALSSNM), subsystem parameter (DALSSPRM), and SYSOUT userid
(DALUSRID) keys are mutually exclusive with DALSPGNM. When you code this
key, # must be one, LEN is the length of the program name, and PARM contains
the program name. The maximum length is 8.

Example: To specify the program name MYWRITER, code:

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 651

KEY # LEN PARM
0019 0001 0008 D4 E8 E6 D9 C9 E3 C5 D9

SYSOUT form number specification - Key = '001A'
DALSFMNO specifies the SYSOUT form number. The SYSOUT (DALSYSOU) key
must also be specified when you code DALSFMNO. The subsystem name request
(DALSSNM) and subsystem parameter (DALSSPRM) keys are mutually exclusive
with DALSFMNO. When you code this key, # must be one, LEN is the length of
the form number, up to a maximum of 4, and PARM contains the form number.

Example: To specify the form number 1234, code:
KEY # LEN PARM
001A 0001 0004 F1 F2 F3 F4

SYSOUT output limit specification - Key = '001B'
DALOUTLM specifies the number of logical records in a SYSOUT data set. The
SYSOUT key (DALSYSOU) must also be specified when you code DALOUTLM.
When you code this key, # must be one, LEN must be three, and PARM contains
the output limit.

Example: To specify an output limit of 1000, code:
KEY # LEN PARM
001B 0001 0003 00 03 E8

Unallocation at CLOSE specification - Key = '001C'
DALCLOSE requests unallocation when a DCB is closed rather than at step
unallocation. When you code DALCLOSE, # must be zero; LEN and PARM are not
specified. See the description of FREE=CLOSE in z/OS MVS JCL Reference for
restrictions on the FREE parameter.

Note: The DALCLOSE text unit is ignored for VSAM data sets.

Example:: To specify unallocation at CLOSE, code
KEY # LEN PARM
001C 0000 - -

SYSOUT copies specification - Key = '001D'
DALCOPYS requests up to 255 hardcopy listings of a particular SYSOUT data set.
The SYSOUT key (DALSYSOU) must also be specified when you code
DALCOPYS. When you code this key, # and LEN must be one, and PARM
contains the number of copies being requested.

Example:: To specify a request for 25 copies, code
KEY # LEN PARM
001D 0001 0001 19

Label type specification - Key = '001E'
DALLABEL specifies the type of label associated with a volume. It is mutually
exclusive with the SYSOUT (DALSYSOU) key. When you code DALLABEL, # and
LEN must be one, and PARM contains one of the following values:

X'01' The volume has no label (NL)

X'02' The volume has an IBM standard label (SL)

X'04' The volume has a non-standard label (NSL)

X'0A' The volume has both an IBM standard label and a user label (SUL)

Verb code 01 - Dsname allocation text units

652 z/OS V2R2 MVS Authorized Assembler Services Guide

X'10' Label processing is to be bypassed (BLP)

X'21' The system is to check for and bypass a leading tape mark on DOS
unlabeled tape (LTM)

X'40' The volume has an American National Standard label (AL)

X'48' The volume has an American National Standard label and an American
National Standard user label (AUL)

Example:: To specify no labels, code
KEY # LEN PARM
001E 0001 0001 01

Note: If your installation has not specified the BLP feature in the JES2 reader
cataloged procedure, specifying BLP has the same effect as specifying NL.

Data set sequence number specification - Key = '001F'
DALDSSEQ specifies the relative position of a data set on a tape volume (data set
sequence number). It is mutually exclusive with the SYSOUT (DALSYSOU) key.
When you code DALDSSEQ, # must be one, LEN must be two, and PARM
contains'' the sequence number. The maximum PARM value is 270F (9999).

Example: To specify a data set sequence number of: 2, code
KEY # LEN PARM
001F 0001 0002 00 02

Password protection specification - Key = '0020'
DALPASPR specifies that the data set being created is to be password protected. It
is mutually exclusive with the SYSOUT (DALSYSOU) key. When you code
DALPASPR, # and LEN must be one, and PARM contains one of the following
values:

X'10' The data set should not be read, changed, extended, or deleted without the
password.

X'30' The data set should not be changed, extended, or deleted without the
password. Reading is permitted.

Example: To specify complete password protection,: code
KEY # LEN PARM
0020 0001 0001 10

Input only or output only specification - Key = '0021'
DALINOUT specifies that the data set is to be processed for input only or output
only. In the case of BDAM and BSAM data sets, this key overrides OPEN macro
options (INOUT, UPDAT, OUTIN, OUTINX) the same way the JCL LABEL
parameter options IN and OUT do. See z/OS MVS JCL Reference for details.

DALINOUT is mutually exclusive with the SYSOUT (DALSYSOU) key. When you
code DALINOUT, # and LEN must be one, and PARM contains one of the
following values:

X'40' Output only is to be requested.

X'80' Input only is to be requested.

Example:: To specify processing for input only, code
KEY # LEN PARM
0021 0001 0001 80

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 653

Expiration date specification (short form) - Key = '0022'
DALEXPDT specifies the date when the data set can be deleted or overwritten by
another data set. This key is mutually exclusive with the long form of the
expiration date (DALEXPDL), the retention period (DALRETPD), and SYSOUT
(DALSYSOU) keys. IBM recommends that you use the DALEXPDL rather than
DALEXPDT to specify an expiration date.

When you code DALEXPDT, # must be one, LEN must be five, and PARM
contains– five digits a two-digit year value and a three-digit day value (yyddd).

Example: To specify an expiration date of January: 1, 1985 (85001), code
KEY # LEN PARM
0022 0001 0005 F8 F5 F0 F0 F1

Retention period specification - Key = '0023'
DALRETPD specifies the number of days that must pass before the data set can be
deleted or overwritten by another data set. It is mutually exclusive with the
expiration date (DALEXPDT) and SYSOUT (DALSYSOU) keys. When you code
DALRETPD, # must be one, LEN is the length of the retention period (minimum of
2, maximum of 3), and PARM contains the retention period. The maximum PARM
value is X'16B48' or 93000.

Example: To specify a retention period of 10 days, code:
KEY # LEN PARM
0023 0001 0002 000A

Example: To specify a retention period of 93000 days, code:
KEY # LEN PARM
0023 0001 0003 01 6B 48

Dummy data set specification - Key = '0024'
DALDUMMY requests that a dummy data set be allocated. When you code this
key, # must be zero; LEN and PARM are not specified.

Example: To request allocation of a dummy data set,: code
KEY # LEN PARM
0024 0000 - -

Forms control buffer (FCB) image identification specification -
Key = '0025'
DALFCBIM specifies the code that identifies the image to be loaded into the forms
control buffer (FCB). It is mutually exclusive with the DCB INTVL (DALINTVL)
and FRID (DALFRID) keys (described in “DCB attribute text units” on page 677).
When you code DALFCBIM, # must be one, LEN contains the length of the
image-id (maximum of 4), and PARM contains the image-id.

Example:: To specify the image-id STD1, code
KEY # LEN PARM
0025 0001 0004 E2 E3 C4 F1

Form alignment and image verification specification - Key =
'0026'
DALFCBAV requests that the operator be prompted to check the alignment of the
printer forms before the data set is printed, or to visually verify the image
displayed on the printer as the desired one. The FCB image-id (DALFCBIM) key

Verb code 01 - Dsname allocation text units

654 z/OS V2R2 MVS Authorized Assembler Services Guide

must also be coded when DALFCBAV is specified. When you code this key, # and
LEN must be one, and PARM contains one of the following values:

X'04' Verification is requested (VERIFY).

X'08' Alignment is requested (ALIGN).

Example:: To specify verification, code
KEY # LEN PARM
0026 0001 0001 04

QNAME specification - Key = '0027'
DALQNAME specifies the name of a TPROCESS macro. The dsname
(DALDSNAM), member name (DALMEMBR), IPLTXTID (DALIPLTX), and
SYSOUT (DALSYSOU) keys are mutually exclusive with DALQNAME. The DCB
BLKSIZE (DALBLKSZ), BUFL (DALBUFL), LRECL (DALLRECL), OPTCD
(DALOPTCD) and RECFM (DALRECFM) keys (see “DCB attribute text units” on
page 677) are meaningful with DALQNAME.

When you code this key, # must be one, LEN is the length of the entire process
name (maximum of eight characters for each name, plus a period if you are coding
two names; total of 17), and PARM contains the process name itself.

Example:: To specify the process name TP1, code
KEY # LEN PARM
0027 0001 0003 E3 D7 F1

Terminal specification - Key = '0028'
DALTERM specifies that a time-sharing terminal is to be used as an I/O device. In
a batch environment, the specification is not used, but is checked for syntax. In a
time-sharing environment, all other specifications except DCB specifications are
ignored when DALTERM is coded. When you code this key, # must be zero; LEN
and PARM are not specified.

Example:: To specify a terminal allocation, code
KEY # LEN PARM
0028 0000 - -

Universal character set (UCS) specification - Key = '0029'
DALUCS identifies a special character set to be used for printing a data set. The
DCB INTVL (DALINTVL) and RESERVE (DALRSRVF and DALRSRVS) keys (see
“DCB attribute text units” on page 677) are mutually exclusive with DALUCS.
When you code this key, # must be one, LEN is the length of the character set
name code (maximum is four) and PARM contains the character set code.

Example:: To specify the character set code AN, code
KEY # LEN PARM
0029 0001 0002 C1 D5

Fold mode specification - Key = '002A'
DALUFOLD specifies that the chain or train corresponding to the desired character
set is to be loaded in the fold mode. You must also specify the universal character
set key (DALUCS) when you code DALUFOLD. When you code this key, # must
be zero; LEN and PARM are not specified.

Example:: To specify fold mode, code

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 655

KEY # LEN PARM
002A 0000 - -

Character set image verification specification - Key = '002B'
DALUVRFY requests that the operator be prompted to verify that the correct chain
or train is mounted before the data set is printed. You must also specify the
universal character set key (DALUCS) when you code DALUVRFY. When you
code this key, # must be zero; LEN and PARM are not specified.

Example: To specify character set image verification,: code
KEY # LEN PARM
002B 0000 - -

DCB reference to a dsname specification - Key = '002C'
DALDCBDS specifies that DCB information is to be retrieved from the data set
label of a cataloged data set. This data set must reside on a direct access volume
and the volume must currently be mounted.

The DSORG, RECFM, OPTCD, BLKSIZE, LRECL, and KEYLEN DCB attributes,
and the volume sequence number and expiration date are copied from the data set
label. If text units for those parameters are coded in addition to this key, the text
unit specifications override the parameters copied from the data set label.

DALDCBDS is mutually exclusive with DCB reference to a ddname (DALDCBDD).

For a given job, the system allows a maximum of 1489 backward references (for a
VOL=REF to a dsname or DCB=dsname) when the data set names are 44
characters long. When DALDCBDS is specified, # must be one, LEN is the length
of the dsname, and PARM contains the data set name. (A dsname of all blanks is
invalid.)

Example: To specify DCB reference to the dsname ABC,: code
KEY # LEN PARM
002C 0001 0003 C1 C2 C3

DCB reference to a ddname specification - Key = '002D'
DALDCBDD specifies that DCB information is to be retrieved from the currently
allocated data set associated with the specified ddname. For time-sharing users, the
expiration date and INPUT/OUTPUT ONLY specifications are also retrieved. This
key is mutually exclusive with DCB reference to a dsname (the DALDCBDS key).
Any DCB attributes, expiration date (DALEXPD), and INPUT/OUTPUT ONLY
(DALINOUT) keys specified in addition to this key override the corresponding
DCB parameters associated with the ddname.

When you code DALDCBDD, # must be one, LEN is the length of the ddname,
and PARM contains the ddname.

Example: To specify DCB reference to the ddname DD1,: code
KEY # LEN PARM
002D 0001 0003 C4 C4 F1

SYSOUT remote work station specification - Key = '0058'
In a JES2 environment, DALSUSER requests that, upon deallocation, the SYSOUT
data set being allocated be routed to a LOCAL or ANYLOCAL, JES2-defined
symbolic name, node, node and work station, remote work station, special local, or
user ID.

Verb code 01 - Dsname allocation text units

656 z/OS V2R2 MVS Authorized Assembler Services Guide

In a JES3 environment, DALSUSER requests that, upon deallocation, the SYSOUT
data set being allocated be routed to ANYLOCAL, JES3-defined device name,
device number, or JES3-defined symbolic group name, or NJE node. When coded
in conjunction with the user ID key (DALUSRID), this key represents the node to
which the user ID, remote workstation, or special local is assigned. This key is
equivalent to the JCL DEST= parameter, where DEST=(dalsuser) or
DEST=(dalsuser,dalusrid). The SYSOUT key (DALSYSOU) is required with this key.

When you code DALSUSER, # must be one, LEN is the length of the destination
specified in PARM, up to a maximum of 8, and PARM contains the work station
name, node, special local, or user ID.

Example:: To specify the work station USER01, code
KEY # LEN PARM
0058 0001 0006 E4 E2 C5 D9 F0 F1

SYSOUT hold queue specification - Key = '0059'
DALSHOLD requests that the SYSOUT data set being allocated be placed on the
hold queue when it is deallocated. The SYSOUT key (DALSYSOU) must also be
specified when DALSHOLD is specified.

Note: If the data set being allocated is the internal reader, then specifying
DALSHOLD will cause the job to be held after conversion and before execution.

When you code this key, # must be zero; LEN and PARM are not specified.

Example:: To specify hold, code
KEY # LEN PARM
0059 0000 - -

Subsystem name request specification - Key = '005F'
DALSSNM specifies a subsystem name. You must specify the name of the
subsystem that is to process the request for allocation unless you want the request
processed by the default subsystem.
v When you code DALSSNM to request a subsystem other than the default

subsystem, # must be one, LEN specifies the length of the subsystem name
(maximum of four) and PARM contains the subsystem name (one to four
characters).
The first character of the subsystem name must be either alphabetic or national
and the remaining characters must be either alphameric or national. See z/OS
MVS JCL Reference for a list of the alphameric and national character sets.

v When you code DALSSNM to request the default subsystem, # must be zero;
LEN and PARM are not be specified.

DALSSNM is mutually exclusive with the SYSOUT (DALSYSOU), SYSOUT
program name (DALSPGNM) and SYSOUT form number (DALSFMNO) keys.

Your installation's system programming staff can identify the subsystems at your
installation that support DALSSNM requests.

Example 1:: To request subsystem SUB1, code
KEY # LEN PARM
005F 0001 0004 E2 E4 C2 F1

Example 2:: To request the default subsystem, code

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 657

KEY # LEN PARM
005F 0000 - -

Subsystem parameter specification - Key = '0060'
DALSSPRM specifies parameters that will be processed by a subsystem. When
coding DALSSPRM, you must also specify the subsystem name (DALSSNM) key.
DALSSPRM is mutually exclusive with the SYSOUT (DALSYSOU), SYSOUT
program name (DALSPGNM), and SYSOUT form number (DALSFMNO) keys.

When you code this key, # contains the number of parameters to be passed to the
subsystem (maximum of 254), LEN specifies the length of the immediately-
following parameter (value range from 0 to 67), and PARM contains the parameter
to be passed to the subsystem. When you code a LEN value of 0, do not code a
PARM value.

Example: To specify two parameters, PARM1 and PARAMETER2,: code
KEY # LEN PARM LEN PARM
0060 0002 0005 D7 C1 D9 D4 F1 000A D7 C1 D9 C1 D4 C5 E3 C5 D9 F2

Note: For additional information about subsystem data sets and subsystem
parameters, refer to the documentation for the particular subsystem.

PROTECT specification - Key = '0061'
DALPROT requests that the specified direct access data set or tape volume be
RACF-protected when defined (DASD) or used (tape). It is mutually exclusive with
the SYSOUT (DALSYSOU), FCB (DALFCBIM), QNAME (DALQNAME), terminal
(DALTERM) and UCS (DALUCS) keys.

When you code DALPROT, # must be zero; LEN and PARM are not specified. See
z/OS MVS JCL Reference for additional information about specifying the PROTECT
function.

Example:: To specify PROTECT, code
KEY # LEN PARM
0061 0000 - -

SYSOUT user ID specification - Key = '0063'
In a JES2 environment, DALUSRID requests that, upon deallocation, the SYSOUT
data set being allocated be routed to the specified user ID, JES2 remote device, or
JES2 special local device.

In a JES3 environment, DALUSRID requests that, upon deallocation, the SYSOUT
data set being allocated be routed to the specified user ID, or JES3-defined device
name.

The SYSOUT (DALSYSOU) and SYSOUT remote work station (DALSUSER) keys
are required with this key. This key is equivalent to the JCL DEST= parameter,
where DEST=(dalsuser,dalusrid). The SYSOUT program name key (DALSPGNM) is
mutually exclusive with DALUSRID. If these keys are used together, dynamic
allocation will issue an error code 0380.

When you code this key, # must be one, LEN is the length of the destination
specified in PARM, up to a maximum of 8, and PARM contains the user ID, remote
device, or special local device. The user ID may be any EBCDIC characters,
including special characters.

Verb code 01 - Dsname allocation text units

658 z/OS V2R2 MVS Authorized Assembler Services Guide

Example: To send the Class A SYSOUT data set to user: ID D58-VWM at remote
work station (node) DALLAS, code
KEY # LEN PARM
0063 0001 0007 C4 F5 F8 60 E5 E6 D4
0018 0001 0001 C1
0058 0001 0006 C4 C1 D3 D3 C1 E2

Burst specification - Key = '0064'
DALBURST specifies which stacker of the 3800 Printing Subsystem is to receive the
paper output.

When you code this key, # and LEN must be one, and PARM contains one of the
following values:

X'02' Burster-trimmer-stacker

X'04' Continuous form stacking

Example:: To specify continuous form stacking, code
KEY # LEN PARM
0064 0001 0001 04

Character arrangement table specification - Key = '0065'
DALCHARS specifies the name or names of character arrangement tables for
printing a data set on the 3800 Printing Subsystem.

When you code this key, # contains the number of character arrangement tables
being specified up to a maximum of 4. LEN contains the length of the
immediately-following character arrangement table, up to a maximum of 4, and
PARM contains the name of the character arrangement table.

Example: To specify the character arrangement tables: GS10 and GS12, code
KEY # LEN PARM LEN PARM
0065 0002 0004 C7E2F1F0 0004 C7E2F1F2

Copy groups specification - Key = '0066'
DALCOPYG specifies how multiple copies of 3800 output are to be grouped. The
copies specification (DALCOPYS) key is required with this key.

When you code DALCOPYG, # contains the number of group values being
specified (up to a maximum of 8), LEN must be one, and PARM contains the
number of copies of each page that are to be grouped together.

Example: To indicate that six copies of the data set are to be printed in three
groups; and that the first group is to contain one copy of each page, the second
group is to contain three copies of each: page, and the third group is to contain
two copies of each page, code
KEY # LEN PARM LEN PARM LEN PARM
001D 0001 0001 06
0066 0003 0001 01 0001 03 0001 02

Flash forms overlay specification - Key = '0067'
DALFFORM specifies the forms overlay to be used on the 3800 Printing
Subsystem.

When you code this key, # must be one, LEN contains the length of the form name,
up to a maximum of 4. and PARM contains the name of the forms overlay frame
that the operator is to insert into the printer before printing begins.

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 659

Example: To specify the forms overlay frame named: ABCD, code
KEY # LEN PARM
0067 0001 0004 C1C2C3C4

Flash forms overlay count specification - Key = '0068'
DALFCNT specifies the number of copies on which the forms overlay is to be
printed. When specifying DALFCNT, you must also specify the flash forms overlay
(DALFFORM) key.

When you code DALFCNT, # and LEN must be one, and PARM contains the
number of copies.

Example: To specify that the first five copies are: to be flashed with the forms
overlay, code
KEY # LEN PARM
0068 0001 0001 05

Copy modification module specification - Key = '0069'
DALMMOD specifies the name of the copy modification module to be loaded into
the 3800 Printing Subsystem.

When you code DALMMOD, # must be one, LEN contains the length of the
module name up to a maximum of 4, and PARM contains the name of the copy
modification module.

Example: To specify that the data in the copy modification: module named A is to
replace the variable data in the data set, code
KEY # LEN PARM
0069 0001 0001 C1

Copy module table reference specification - Key = '006A'
DALMTRC specifies the table reference character that corresponds to a character
arrangement table specified on the DALCHARS text unit key, and used for
printing the copy modification data. When specifying DALMTRC, you must also
specify the copy modification module specification (DALMMOD) key.

When you code this key, # and LEN must be one and PARM contains one of the
following values:

X'00' The first character arrangement table specified on the DALCHARS text
unit

X'01' The second character arrangement table specified

X'02' The third character arrangement table specified

X'03' The fourth character arrangement table specified

Example: To indicate that the first character arrangement: table specified on the
DALCHARS key is to be used, code
KEY # LEN PARM
006A 0001 0001 00

DEFER specification - Key = '006C'
DALDEFER specifies that the system should allocate a device to the data set, but
the volume(s) on which the data set resides should not be mounted until the data
set is opened.

Verb code 01 - Dsname allocation text units

660 z/OS V2R2 MVS Authorized Assembler Services Guide

When you code DALDEFER, # must be zero; LEN and PARM are not specified. See
z/OS MVS JCL Reference for the rules regarding the use of DEFER.

Example: To specify a request for deferred mounting: of a volume or volumes,
code
KEY # LEN PARM
006C 0000 - -

EXPIRATION DATE specification (long form) - Key = '006D'
DALEXPDL specifies the date when the data set can be deleted or overwritten by
another data set. The key is mutually exclusive with the retention period
(DALRETPD), SYSOUT (DALSYSOU), and expiration date short form
(DALEXPDT) keys. IBM recommends that you use DALEXPDL rather than
DALEXPDT to specify an expiration date. When you code DALEXPDL, # must be
1, LEN must be 7, and PARM must contain— seven digits a four-digit year value
and a three-digit day value (yyyyddd).

Example: To specify an expiration date of January: 1, 2005 (2005001), code
KEY # LEN PARM
006D 0001 0007 F2 F0 F0 F5 F0 F0 F1

Override job affinity - Key = '0070'
DALOVAFF applies to internal readers only. It specifies that any job submitted to
the internal reader must run on the system on which the job is submitted.
DALOVAFF overrides any affinity specification within the JCL or default affinity
for the input device or job class. Only an authorized program may use this text
unit.

When you specify DALOVAFF, you must code:
v DALSYSOU (SYSOUT)
v DALSPGNM (SYSOUT program name) with a parameter length of 6 and a

parameter value of INTRDR

This key is mutually exclusive with the following text units: DALSTATS,
DALNDISP, DALCDISP, DALVLSER, DALPRIVT, DALVLSEQ, DALVLCNT,
DALVLRDS, DALLABEL, DALDSSEQ, DALPASPR, DALINOUT, DALEXPDT,
DALRETPD, DALQNAME, DALSSNM, DALSSPRM, DALPROT, DALEXPDL,
DALSSATT, and DALUSRID.

When you code DALOVAFF, # must be 0; LEN and PARM are not specified.

Example: To specify that a job submitted to the internal reader must run on the
system on which the job is submitted, code:
KEY # LEN PARM
0070 0000 - -

CTOKEN return specification - Key = '0071'
DALRTCTK requests that the JES Client Token (CTOKEN) associated with the
SYSOUT allocation be returned to the caller of DYNALLOC. When you code
DALRTCTK, # must be 1, and LEN must be hex '0050' (decimal 80) and PARM is
an 80-byte field.

Dynamic allocation places the allocated CTOKEN in PARM upon completion of the
associated SYSOUT allocation request.

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 661

When you specify DALRTCTK, you must also specify the SYSOUT key
(DALSYSOU - X'0018').

Example: To request that the CTOKEN associated with: the allocated SYSOUT
dataset be returned, code
KEY # LEN PARM
0071 0001 0050 --------- ... -------- 80 bytes in length

This specification would be updated upon the assignment of the CTOKEN as:
follows
KEY # LEN PARM
0071 0001 0050 xxxxxxxxx ... xxx JES-supplied 80-byte CTOKEN

SMSHONOR specification – Key = '0076'
DALSMSHR indicates that the system must honor the device name or the esoteric
specified on the unit name for an SMS tape library request. When you code
DALSMSHR, # must be zero; LEN and PARM are not specified. See z/OS MVS JCL
Reference for the rules regarding the use of SMSHONOR.

Example: To specify a request to honor the unit name for an SMS tape library
request, code
KEY # LEN PARM
0076 0000 - -

Access specification - Key = '8001'
DALACODE specifies an accessibility code for protecting ISO/ANSI/FIPS Version
3 and ISO/ANSI Version 4 labelled tape data sets.

When you code DALACODE, # must be 1, LEN is the length of the accessibility
code (maximum of 8), and PARM contains the accessibility code. For
ISO/ANSI/FIPS Version 3, the accessibility code must begin with an uppercase
letter from– A Z. For ISO/ANSI Version 4, the accessibility code must begin with––
an uppercase letter from A Z, a number from 0 9, or one of: the following special
characters
%&:<! * " ’ () + , - . / ; = > ? _

See z/OS MVS JCL Reference for more information about the DD ACCODE
parameter.

Example: To specify an accessibility code of Z for: an ANSI tape data set, code
KEY # LEN PARM
8001 0001 0001 E9

OUTPUT statement reference - Key = '8002'
DALOUTPT explicitly associates a SYSOUT data set with the OUTPUT JCL
statement specified in the PARM field or an output descriptor created by
OUTADD. See Chapter 27, “Dynamic output,” on page 735 for a description of
OUTADD. The SYSOUT (DALSYSOU) text unit key is required with this key.

When you code DALOUTPT, # contains the number of output statements being
specified, up to a maximum of 128 (X'0080'), LEN is the length of the OUTPUT
statement, up to a maximum of 26 (X'001A'), and PARM contains the name of the
OUTPUT statement in one of the following forms:
v name
v stepname.name

Verb code 01 - Dsname allocation text units

662 z/OS V2R2 MVS Authorized Assembler Services Guide

v stepname.procstepname.name

Example: To reference an OUTPUT JCL statement named OUT1 in the job step
named STEP1, and another named OUTX in the current step,: code
KEY # LEN PARM LEN PARM
8002 0002 000A E2 E3 C5 D7 F1 4B D6 E4 E3 F1 0004 D6 E4 E3 E7

CNTL specification - Key = '8003'
DALCNTL references a JCL CNTL statement that appears earlier in the job. The
system searches for an earlier CNTL statement with a label that matches the label
specified in the PARM field.

Use DALCNTL to dynamically allocate a printer in direct-printing mode. For more
information, see z/OS Communications Server: IP Network Print Facility

When you code DALCNTL, # must be one, LEN is the length of the CNTL
statement label, up to a maximum of 26 (X'001A'), and PARM contains the name of
the CNTL statement label in one of the following forms:
v name
v stepname.name
v stepname.procstepname.name

Example: To request the system to use the program"" control statements following
the CNTL statement named WKLYPGM located: in this step or preceding the first
step, code
KEY # LEN PARM
8003 0001 0007 E6 D2 D3 E8 D7 C7 D4

Storage class specification - Key = '8004'
DALSTCL specifies the storage class of an SMS-managed data set. When you code
DALSTCL, # must be one, LEN is the length of the storage class name, up to a
maximum of 8, and PARM contains the name of the storage class.

Example:"" To specify the storage class of SAM for: an SMS-managed data set,
code
KEY # LEN PARM
8004 0001 0003 E2 C1 D4

Management class specification - Key = '8005'
DALMGCL specifies the management class of an SMS-managed data set. When
you code DALMGCL, # must be one, LEN is the length of the management class
name (up to 8 characters), and PARM contains the name of the management class.

Example:"" To specify the management class, SAM,: of an SMS-managed data set,
code
KEY # LEN PARM
8005 0001 0003 E2 C1 D4

Data class specification - Key = '8006'
DALDACL specifies the data class of the data set. When you code DALDACL, #
must be one, LEN is the length of the data class name (up to 8 characters), and
PARM contains the name of the data class.

Example:“” To specify the data class of SAM for: an SMS-managed data set, code
KEY # LEN PARM
8006 0001 0003 E2 C1 D4

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 663

Record organization specification - Key = '800B'
DALRECO specifies the record organization of a VSAM data set. When you code
DALRECO, # and LEN must be 1, and PARM contains one of the following:

X'80' VSAM key-sequenced data set

X'40' VSAM entry-sequenced data set

X'20' VSAM relative record data set

X'10' VSAM linear space data set

Example: To specify a key-sequenced record organization,: code
KEY # LEN PARM
800B 0001 0001 80

Key offset specification - Key = '800C'
DALKEYO specifies the key offset. The key offset is the position of the first byte of
the key in each logical record of a the specified VSAM data set. If the key is at the
beginning of the logical record, the offset is zero. When you code DALKEYO, #
must be 1 and LEN must be 4, and PARM contains the key offset.

Example: To specify a key offset of 18 decimal (12: hexadecimal) bytes, code
KEY # LEN PARM
800C 0001 0004 12

Copy DD specification - Key = '800D'
DALREFD specifies the name of the JCL DD statement from which the attributes
are to be copied.

The name can be a ddname, a stepname.ddname, or a stepname.procstepname.ddname
where ddname is the label on a JCL DD statement, and stepname and procstepname
are labels that appear on JCL EXEC statements. When you code DALREFD, # must
be 1, and LEN is the length of the name field, up to a maximum of 44 (X'2C'), and
PARM contains the name.

Example: To copy the data set attributes from the“”: JCL DD statement named
SAM, code
KEY # LEN PARM
800D 0001 0003 E2 C1 D4

Copy profile specification - Key = '800E'
DALSECM specifies the name of the RACF profile to be copied.

To specify a RACF profile that was defined generically, (such as one defined with
the GENERIC subparameter on the JCL DD statement SECMODEL parameter), #
must be 2, LEN1 is the length of the profile name, and PARM1 contains the profile
name. LEN2 must be 1, and PARM2 must contain X'80'.

To specify a profile that was not defined generically, # must be 1, LEN is the length
of the profile name, and PARM contains the profile name. Do not specify
additional LEN or PARM fields.

Example:“” To copy the generic RACF profile, RPROF,: code
KEY # LEN1 PARM1 LEN2 PARM2
800E 0002 0005 D9 D7 D9 D6 C6 0001 80

Verb code 01 - Dsname allocation text units

664 z/OS V2R2 MVS Authorized Assembler Services Guide

Copy model specification - Key = '800F'
DALLIKE specifies the name of the model data set from which the attributes are to
be copied. When you code DALLIKE, # must be one, LEN is the length of the
model data set name, up to a maximum of 44 (X'2C'), and PARM contains the data
set name.

Example: To copy the attributes of the model data“”: set, SAM, code
KEY # LEN PARM
800F 0001 0003 E2 C1 D4

Average record specification - Key = '8010'
DALAVGR specifies the allocation unit to be used when the data set is allocated.

When you code DALAVGR, # and LEN must be 1, and PARM is one of the
following:

X'80' Represents single-record units.

X'40' Represents thousand-record units.

X'20' Represents million-record units

Example:: To specify single-record units, code
KEY # LEN PARM
8010 0001 0001 80

Data set type specification - Key = '8012'
DALDSNT specifies the type attribute of a data set as PDS, PDSE, HFS data set,
OpenMVS first-in-first-out (FIFO) special file, extended format, basic, or large.

When you code DALDSNT, # and LEN must be 1; PARM must contain one of the
following:

X'80' Represents a library (PDSE).

X'40' Represents a partitioned data set (PDS).

X'20' Represents a FIFO special file (PIPE).

X'10' Represents an HFS data set (HFS). This type of UNIX file system is
different from a z/OS File System (zFS) that resides in a linear data set.

X'08' Represents an extended format required data set (EXTREQ).

X'04' Represents an extended format preferred data set (EXTPREF).

X'02' Represents a basic format data set (BASIC).

X'01' Represents a large format data set (LARGE = greater than 65,535 tracks).

Example:: To specify a PDS data set, code
KEY # LEN PARM
8012 0001 0001 40

Spin data set specification - Key = '8013'
DALSPIN specifies whether the output for the SYSOUT data set is to be printed
immediately upon unallocation of the data set, or at the end of the job.

When you code DALSPIN, # and LEN must be 1; PARM must contain one of the
following:

X'80' Data set available for printing when it is unallocated

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 665

X'40' Data set available for printing at the end of the job.

Example: To specify that the output be printed at the end of the job, code:
KEY # LEN PARM
8013 0001 0001 40

Segment spin data set specification - Key = '8014'
DALSEGM specifies the number of logical, line-mode pages (the segment) to be
produced for a SYSOUT data set before the segment becomes eligible for
immediate printing.

When you code DALSEGM, # must be 1 and LEN must be 4; PARM must contain
a positive hexadecimal integer from X'00000001' to X'0001869F' (equivalent decimal
value from 1 to 99,999).

Example: To specify a segment of 100 pages, code:
KEY # LEN PARM
8014 0001 0004 00000064

z/OS UNIX file path specification - Key = '8017'
DALPATH specifies the pathname of the z/OS UNIX file to be allocated.

You can code DALPATH only with the DALDUMMY, DALTERM, DALDDNAM,
DALPOPT, DALPMDE, DALPNDS, DALPCDS, DALBLKSZ, DALBUFNO,
DALLRECL, DALNCP, DALRECFM, DALLRECK, DALFDAT and DALDSNT keys.
DALPATH is mutually exclusive with all other keys. In JCL, the information
conveyed by this key is specified using the PATH keyword.

Dynamic allocation does not support backward or forward references. See Table 69
on page 535.

When you code this key, # must be 1, LEN is the length of the pathname, and
PARM contains the pathname. The maximum length of the pathname is 255
characters. Refer to Table 83 on page 667 for values.

If
v You specify either:

– The hex integers representing OCREAT alone
or

– The hex integers representing both OCREAT and OEXCL

on the DALPOPT key,
And if

v The file does not exist,

Then MVS performs an open() function. The options from DALPOPT, the
pathname from the DALPATH key, and the options DALPMDE (if specified) are
used in the open(). MVS uses the close() function to close the file before the
application program receives control.

For status group options other than OCREAT and OEXCL, the description in this
information assumes that the application passes the values to the open() function
without modification. That is, this application uses dynamic allocation information
retrieval (the DYNALLOC macro) to retrieve the values specified for DALPOPT
and passes the values to the open() function. The application program can ignore
or modify the information specified in the JCL.

Verb code 01 - Dsname allocation text units

666 z/OS V2R2 MVS Authorized Assembler Services Guide

Example: To specify the z/OS UNIX file pathname /u/myuid/myapp/scr.dat:, code
KEY # LEN PARM
8017 0001 0016 61 A4 61 94 A8 A4 89 84 61 94 A8 81 97 97 61 A2 83 99 4B 84 81 A3

Example: To specify a dummy z/OS UNIX file, /dev/null:, code
KEY # LEN PARM
8017 0001 0009 61 84 85 A5 61 95 A4 93 93

Note: Specifying the DALDUMMY key with any pathname achieves the same
result.

z/OS UNIX file options - Key = '8018'
DALPOPT specifies the file options for the z/OS UNIX file. You can code
DALPOPT only when you also code the pathname (DALPATH) key.

If
v You specify either

– The hex integers representing OCREAT alone
or

– The hex integers representing both OCREAT and OEXCL

on the DALPOPT key,
And if

v The file does not exist,

Then MVS performs an open() function. The options from DALPOPT, the
pathname from the DALPATH key, and the options DALPMDE (if specified) are
used in the open(). MVS uses the close() function to close the file before the
application program receives control.

For status group options other than OCREAT and OEXCL, the description in this
information assumes that the application passes the values to the open() function
without modification. That is, this application uses dynamic allocation information
retrieval (the DYNALLOC macro) to retrieve the value specified for DALPOPT and
passes the value to the open() function. The application program can ignore or
modify the information specified in the JCL.

When you code DALPOPT, # must be 1 and LEN must be 4; PARM must contain
one of the following values or an “inclusive OR” result from any combination of
the following values:

Table 83. DALPOPT Options
Four-byte Hex Integers JCL Equivalent

X'00000100' OSYNC
X'00000080' OCREAT
X'00000040' OEXCL
X'00000020' ONOCTTY
X'00000010' OTRUNC
X'00000008' OAPPEND
X'00000004' ONONBLOCK
X'00000003' ORDWR
X'00000002' ORDONLY
X'00000001' OWRONLY

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 667

Example: To specify a file option of read-only for a z/OS UNIX file option
specification, code
KEY # LEN PARM
8018 0001 0004 00000001

Example: To specify a file option of create, if the file does not already exist with
the intent to read and write the file, use the “inclusive OR”+: result of
OCREATOEXCL and code
KEY # LEN PARM
8018 0001 0004 000000C3

z/OS UNIX file access attributes - Key = '8019'
DALPMDE specifies the file access attributes for the z/OS UNIX file. You can code
DALPMDE only when you also code the pathname (DALPATH) key.

If
v You specify either

– The hex integers representing OCREAT alone
or

– The hex integers representing both OCREAT and OEXCL

on the DALPOPT key,
And if

v The file does not exist,

Then MVS performs an open() function. The options from DALPOPT, the
pathname from the DALPATH key, and the options DALPMDE (if specified) are
used in the open(). MVS uses the close() function to close the file before the
application program receives control.

For status group options other than OCREAT and OEXCL, the description in this
information assumes that the application passes the values to the open() function
without modification. That is, this application uses dynamic allocation information
retrieval (the DYNALLOC macro) to retrieve the value specified for PATHOPTS
and passes the value to the open() function. The application program can ignore or
modify the information specified in the JCL.

When you code DALPMDE, # must be 1 and LEN must be 4; PARM must contain
one of the following values or an “inclusive OR” result from any combination of
the following values:

Table 84. DALPMDE Attributes
Four-byte Hex Integers JCL Equivalent

X'00000800' SISUID
X'00000400' SISGID
X'00000100' SIRUSR
X'00000080' SIWUSR
X'00000040' SIXUSR
X'000001C0' SIRWXU
X'00000020' SIRGRP
X'00000010' SIWGRP
X'00000008' SIXGRP
X'00000038' SIRWXG
X'00000004' SIROTH
X'00000002' SIWOTH

Verb code 01 - Dsname allocation text units

668 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 84. DALPMDE Attributes (continued)
Four-byte Hex Integers JCL Equivalent

X'00000001' SIXOTH
X'00000007' SIRWXO

Example: To specify a file access attribute allowing users in the owners access
group read access to the z/OS UNIX file being dynamically allocated, code:
KEY # LEN PARM
8019 0001 0004 00000020

Example: To specify a file access attribute allowing the owner of the file to write
the file and users in the same file group class to read the file, use the “inclusive
OR”+ expression for SIWUSRSIRGRP: and code
KEY # LEN PARM
8019 0001 0004 000000A0

z/OS UNIX file normal disposition specification - Key = '801A'
DALPNDS specifies the normal z/OS UNIX file disposition desired. You can code
DALPNDS only when you also code the pathname (DALPATH) key.

When you code DALPNDS, # and LEN must be 1, and PARM contains one of the
following values:
v X'04' - the file is to be deleted
v X'08' - the file is to be kept

Example: To specify a normal disposition of file: deletion, code
KEY # LEN PARM
801A 0001 0001 04

z/OS UNIX file abnormal disposition specification - Key = '801B'
DALPCDS specifies the abnormal z/OS UNIX file disposition desired. You can
code DALPCDS only when you also code the pathname (DALPATH) key.

When you code DALPCDS, # and LEN must be 1, PARM contains one of the
following values:
v X'04' - the file is to be deleted
v X'08' - the file is to be kept

Example: To specify an abnormal disposition of file: deletion, code
KEY # LEN PARM
801B 0001 0001 04

Record-level sharing specification - Key = '801C'
DALRLS specifies the VSAM record-level sharing (RLS) protocol to be used with a
VSAM data set. For more information about using RLS, see z/OS DFSMS Using
Data Sets.

When you code DALRLS, # and LEN must be 1, and PARM contains one of the
following:

X'80' NRI (DALNRI) No read integrity

X'40' CR (DALCR) Consistent read

X'20' CRE (DALCR) Consistent read explicit

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 669

Example: The following code specifies that an application program can ensure that
records read by a unit of recovery are not changed by other units of recovery until
the reading unit of recovery issues a syncpoint:
KEY # LEN PARM
801C 0001 0001 20

Organization of a z/OS UNIX file - Key = '801D'
DALFDAT specifies the organization of a z/OS UNIX file. You can code DALFDAT
only when you also code the pathname (DALPATH) key.

When you code DALFDAT, # and LEN must be 1, and PARM contains one of the
following values:
v X'80'— - the file organization is binary records not delimited
v X'40'— - the file organization is text records are EBCDIC delimited by newline

characters (x'15')
v X'20'— - the file organization is data records with a prefix indicating the length

of the following record.

Note:
The record prefix for FILEDATA=RECORD is mapped by the IGGRPFX macro.
This is different from the record descriptor word (RDW) that is in z/OS physical
sequential format-V data sets.

Example: To specify that a file has records delimited by newline characters, code:
KEY # LEN PARM
801D 0001 0001 40

VSAM RLS log stream specification - Key = '801F'
DALLGST specifies the prefix of the name of the log stream for the SMS managed
VSAM data set.

Example: To specify a Log Stream prefix of 'SSAB1234.NEW', code:
KEY # LEN PARM
801F 0001 000C E2 E2 C1 C2 F1 F2 F3 F4 4B D5 C5 E6

CCSID specification - Key = '8020'
DALDCCS specifies the Coded Character Set Identifier indicating the character
code conversion performed on reads from and writes to tapes accessed in
ISO/ANSI Version 4 format.

When you code DALDCCS, # must be one, LEN must be four, and PARM contains
a positive hexadecimal value from X'00000001' to X'0000FFFF' (equivalent decimal
value from 1 to 65535). See z/OS MVS JCL Reference for more information about the
DD CCSID parameter.
KEY # LEN PARM
8020 0001 0004 0000FFFF

Block size limit specification - Key = '8022'
DALBSLM specifies the maximum length system-determined block size processing
is to use when determining a block size appropriate for the media type to which
the data is being written. When you code DALBSLM, # must be one, LEN must be
1 to 10, and PARM contains the block size limit in EBCDIC. The maximum PARM
value is 2,147,483,648. The minimum value is 32,760.

Example: To specify the maximum block size limit of 2,147,483,648, code:

Verb code 01 - Dsname allocation text units

670 z/OS V2R2 MVS Authorized Assembler Services Guide

KEY # LEN PARM
8022 0001 000A F2 F1 F4 F7 F4 F8 F3 F6 F4 F8

or (2097152K)
KEY # LEN PARM
8022 0001 0008 F2 F0 F9 F7 F1 F5 F2 D2

or (2048M)
KEY # LEN PARM
8022 0001 0005 F2 F0 F4 F8 D4

or (2G)
KEY # LEN PARM
8022 0001 0002 F2 C7

Example: To specify a block size limit of 20 megabytes, code:
KEY # LEN PARM
8022 0001 0003 F2 F0 D4

Key label 1 specification - Key = '8023'
DALKYL1 specifies the label for the key encrypting key used by the key manager.
The key encrypting key is used to encrypt the data (encryption) key.

When you code DALKYL1, # must be one, LEN must be 1 to 64, and PARM
contains the key label in EBCDIC. You must also include the DALKYC1 text unit.

Code the DALKYL1 text unit to do either of the following tasks:
v Specify the label for the key encrypting key used by the encryption key

manager.
v Override the label for the key encrypting key defined in the data class of the

data set.

Specification of the key labels does not by itself enable encryption. Encryption
must be enabled by a data class that specifies an encryption format, for example
EEFMT2. For complete documentation on using tape encryption, see z/OS DFSMS
Software Support for IBM System Storage TS1140, TS1130, and TS1120 Tape Drives
(3592).

Example: To specify a key label 1 of "LABELQ1.LABELQ2.LABELQ3", code:
KEY # LEN PARM
8023 0001 0017 D3C1C2C5D3D8F14BD3C1C2C5D3D8F24BD3C1C2C5D3D8F3

Key label 2 specification - Key = '8024'
DALKYL2 specifies the label for the key encrypting key used by the key manager.
The key encrypting key is used to encrypt the data (encryption) key.

When you code DALKYL2, # must be one, LEN must be 1 to 64, and PARM
contains the key label in EBCDIC. You must also include the DALKYC2 text unit.

Code the DALKYL2 text unit to do either of the following tasks:
v Specify the label for the key encrypting key used by the encryption key

manager.
v Override the label for the key encrypting key defined in the data class of the

data set.

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 671

Specification of the key labels does not by itself enable encryption. Encryption
must be enabled by a data class that specifies an encryption format, for example
EEFMT2. For complete documentation on using tape encryption, see z/OS DFSMS
Software Support for IBM System Storage TS1140, TS1130, and TS1120 Tape Drives
(3592).

Example: To specify a key label 2 of "LABELQ1.LABELQ2.LABELQ3", code:
KEY # LEN PARM
8024 0001 0017 D3C1C2C5D3D8F14BD3C1C2C5D3D8F24BD3C1C2C5D3D8F3

Key encode 1 specification - Key = '8025'
DALKYC1 specifies the encoding of the label for the key encrypting key used by
the encryption key manager. The key encrypting key is used to encrypt the data
(encryption) key.

When you code DALKYC1, # must be 1, LEN must be 1, and PARM contains one
of the following values:

L(X'03')
Indicates that the key label 1 is to be stored as part of the EEDK structure
on the tape cartridge.

H(X'08')
Indicates that a hash of the public key referenced by key label 1 is to be
stored on the cartridge rather than the key label.

You must also include the DALKYL1 text unit.

Code the DALKYC1 text unit when you want to specify the encoding for the label
for the key encrypting key used by the encryption key manager. For complete
documentation on using tape encryption, see z/OS DFSMS Software Support for IBM
System Storage TS1140, TS1130, and TS1120 Tape Drives (3592).

Example: To specify a key encode 1 of "L", code:
KEY # LEN PARM
8025 0001 0001 D3

Key encode 2 specification - Key = '8026'
DALKYC2 specifies the encoding of the label for the key encrypting key used by
the encryption key manager. The key encrypting key is used to encrypt the data
(encryption) key.

When you code DALKYC2, # must be 1, LEN must be 1, and PARM contains one
of the following values:

X'01' Indicates that No Extended Attributes allowed.

X'02' Indicates that a hash of the public key referenced by key label 2 is to be
stored on the cartridge rather than the key label.

You must also include the DALKYL2 text unit.

Code the DALKYC2 text unit when you want to specify the encoding for the label
for the key encrypting key used by the encryption key manager. For complete
documentation on using tape encryption, see z/OS DFSMS Software Support for IBM
System Storage TS1140, TS1130, and TS1120 Tape Drives (3592).

Example: To specify a key encode 2 of "H", code:

Verb code 01 - Dsname allocation text units

672 z/OS V2R2 MVS Authorized Assembler Services Guide

KEY # LEN PARM
8026 0001 0001 C8

Extended attributes specification - Key = '8028'
DALEATT indicates whether the data set can support extended attributes (format 8
and 9 DSCBs). By definition, a data set with extended attributes can reside in EAS
(extended address space) on an EAV (extended address volume). These attributes
can be specified for non-VSAM data sets as well as for VSAM data sets.

When you code DALEATT, # must be one, LEN must be one, and PARM contains
one of the following values:

X'01' No Extended Attributes allowed.

X'02' Extended attributes are optional, and will be created if the data set is
created on an EAV. In addition, the data set can be created in the EAS of
the EAV.

Example: To specify extended attributes of OPT, code:
KEY # LEN PARM
8028 0001 0001 02

FREEVOL specification - Key = '8029'
FREEVOL specifies whether to allow other jobs to read freed volumes of a
multivolume tape file as the volume is dismounted by the job.

When you code FREEVOL, # must be one, LEN must be one, and PARM contains
one of the following values:

X'01' Requests that volumes be dequeued at the end of the job step

X'02' Requests that when reading a multivolume data set, the system finish
reading the current volume and then dequeue the volume serial number
and demount the volume. This makes the volume immediately available to
another job in another system. An attempt by the same task to reprocess
the volume using the same JCL DD statement will result in an abnormal
end.

Example: To specify that the data set volume is to be freed as it is dismounted,
code:
KEY # LEN PARM
8029 0001 0001 02

SPIN interval for the allocated SYSOUT data set - Key = '802A'
DALSPI2 specifies the interval for spinning a SYSOUT data set when DALSPIN is
also coded with a PARM of X'80''.

When you code DALSPI2, # must be one, LEN is 3 to 8 and the PARM field is the
character (EBCDIC) representation of the SPIN interval, such as F9F9F9 for '999' or
F1F27AF0F0 for '12:00' with the following values:

hh:mm
Data set will be spun at the time ‘hh:mm' each 24 hour period where ‘hh'
is hours and has a range of 00 through 23 and ‘mm' is minutes and has a
range of 00 through 59. The time must be specified within apostrophes.

+hh:mm
Data set will be spun every 'hh:mm' time interval where ‘hh' is hours and
has a range of 00 through 23 and ‘mm' is minutes and has a range of 00

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 673

through 59. The minimum interval that can be specified is 10 minutes. ‘hh'
must be specified even if zero. For example, the following specification
indicates that the data set is to be spun at 20 minute intervals:
SPIN=(UNALLOC,’+00:20’)

The time interval must be specified within apostrophes.

nnn

nnnK

nnnM Data set will be spun when it has nnn lines, where nnn is the number of
lines and must start with a minimum of 500, K is thousands, and M is
millions.

NOCMND
Data set cannot be spun before it is unallocated.

CMNDONLY
Data set will only be spun when an operator issues a command to spin the
data set.

Example: To specify a SPIN interval of 999 lines, code:
KEY # LEN PARM
802A 0001 0003 F9F9F9

SYMLIST on a DD statement - Key = '802B'
DALSYML lists the symbol names to be passed to JES when an internal reader is
allocated. This key is allowed only when text unit DALSYSOU is also coded, and
its value must be the 6-character string INTRDR. This is because it is meant for
allocations to an internal reader only.

When you code this key, # contains the number of symbol names being specified
up to a maximum of 128 (X'0080'), LEN is the length of the PARM, and PARM
contains valid symbol names. In addition, '*' is a valid value for a symbol name to
indicate that all symbols can be used in JCL; refer to the SYMLIST keyword in the
DD statement in z/OS MVS JCL Reference.

Example: To specify SYMLIST with symbol name NAMES on a DD, code:
KEY # LEN PARM
802B 0001 0005 D5 C1 D4 C5 E2
0018 0001 0001 5C
0019 0001 0006 C9 D5 E3 D9 C4 D9

The DSNTYPE text unit key section has a format for multiple text units.

DSNTYPE version - Key = '802C'
DALDSNV specifies the data set type version information.

When you code DALDSNV, # must be 1, LEN must be 1, and the PARM field
contains the DSNTYPE version number. For more information, refer to the
DSNTYPE=LIBRARY keyword in the DD statement in z/OS MVS JCL Reference.

Example: To specify the data set type (DALDSNT) and version (DALDSNV) for the
DD statement with name DD1, code:
KEY # LEN PARM
0001 0001 0003 C4 C4 C1
8012 0001 0001 80
802C 0001 0001 02

Verb code 01 - Dsname allocation text units

674 z/OS V2R2 MVS Authorized Assembler Services Guide

In this example, the data set type represents a library (PDSE) version 2.

Note: DALDSNV is meaningless without the proper DALDSNT value. Be sure to
specify both when using DALDSNV.

Maximum PDSE Generation - Key = '802D'
DALMAXG specifies the maximum number of PDSE member generations to be
retained by the system.

When you code DALMAXG, # must be 1, LEN must be 4 and the PARM field
contains a value between 1 and 2,000,000,000.

Example: To specify 255 as the maximum number of PDSE member generations
(DALMAXG) for the DD statement with name DD1, code:
Key # LEN PARM
0001 0001 0003 C4 C4 C1
802D 0001 0004 000000FF

In this example, the data set type represents a library (PDSE) version 2.

Note: DALMAXG is relevant only for data sets of type LIBRARY. You may need to
specify DALDSNT to set the DSNTYPE.

For more information, refer to z/OS Summary of Message and Interface Changes.

DALGDGO specification – Key = '802E'
For a DD that specifies the base name of a GDG data set, indicating a GDG ALL
request, this text unit specifies the order in which the individual generation data
sets (GDSs) will be concatenated.

When you code DALGDGO, # must be one, LEN must be the length of the PARM
value (1), and PARM contains one of the following values:

x'80' USECATLG – the GDS concatenation will be ordered as specified in the
GDG data set catalog entry.

X'40' LIFO – the GDS concatenation is ordered with the newest GDS defined
first and the oldest GDS last. This is the default behavior when FIFO or
LIFO is not specified on the IDCAMS utility when defining the GDG data
set, and in releases prior to z/OS V2R1.

X'20' FIFO – the GDS concatenation is ordered with the oldest GDS defined first
and the newest GDS last.

Example: To specify that the GDSs of a GDG data set request be allocated with
oldest data first, code:
Key # LEN PARM
802E 0001 0001 20

JCL DD statement DCB subparameters and equivalent text
units

Use the following table to convert JCL DD statement DCB parameters into text
units. The table lists JCL DD statement DCB subparameters in alphabetical order,
along with the equivalent verb code 01 text unit key and mnemonic. Some DCB
subparameters have multiple text unit keys associated with them. In these cases,
the same DCB subparameter is repeated in the table for each text unit key
associated with it.

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 675

|
|
|
|

|
|

||
|

||
|
|
|

||
|

|
|

|
|

|

The following JCL statement DD DCB subparameters do not have equivalent text
units and do not appear in the table:
v CYLOFL
v NTM
v RKP.

The following text unit keys are obsolete. The system checks these text units for
syntax and ignores them. They appear in Table 86 on page 677 and are described in
the text unit descriptions for your reference when using old code, but they are not
included in this table.
v DALBUFRQ (Key X'0037')
v DALCODE (Key X'0039')
v DALSOWA (Key X'004C')
v DALFRID (Key X'0058').

Table 85. JCL DD Statement DCB Subparameters and Equivalent Text Units

JCL DD Statement
DCB Subparameter

Text Unit
Mnemonic

Text
Unit
Key

Described in:

BFALN DALBFALN 002E “BFALN specification - Key = '002E'” on page 678

BFTEK DALBFTEK 002F “BFTEK specification - Key = '002F'” on page 678

BLKSIZE DALBLKSZ 0030 “BLKSIZE specification - Key = '0030'” on page 679

BUFIN DALBUFIN 0031 “BUFIN specification - Key = '0031'” on page 679

BUFL DALBUFL 0032 “BUFL specification - Key = '0032'” on page 679

BUFMAX DALBUFMX 0033 “BUFMAX specification - Key = '0033'” on page 679

BUFNO DALBUFNO 0034 “BUFNO specification - Key = '0034'” on page 679

BUFFOFF DALBUFOF 0035 “BUFFOFF specification - Key = '0035'” on page 680

BUFFOUT DALBUFOU 0036 “BUFOUT specification - Key = '0036'” on page 680

BUFSIZE DALBUFSZ 0038 “BUFSZ specification - Key = '0038'” on page 680

CPRI DALCPRI 003A “CPRI specification - Key = '003A'” on page 681

DEN DALDEN 003B “DEN specification - Key = '003B'” on page 681

DIAGNS DALDIAGN 0054 “Diagnostic trace specification (DIAGNS=TRACE) - Key =
'0054'” on page 687

DSORG DALDSORG 003C “DSORG specifications - Key = '003C'” on page 681

EROPT DALEROPT 003D “EROPT specification - Key = '003D'” on page 682

FUNC DALFUNC 005A “FUNC= specification - Key = '005A'” on page 687

GNCP DALGNCP 003E “GNCP specification - Key = '003E'” on page 682

INTVL DALINTVL 003F “INTVL specification - Key = '003F'” on page 682

KEYLEN DALKYLEN 0040 “KEYLEN specification - Key = '0040'” on page 683

LIMCT DALLIMCT 0041 “LIMCT specification - Key = '0041'” on page 683

LRECL=bytes DALLRECL 0042 “LRECL specification - Key = '0042'” on page 683

LRECL=nnnnnK DALLRECK 006B “Record length specification - Key = '006B'” on page 688

MODE DALMODE 0043 “MODE specification - Key = '0043'” on page 683

NCP DALNCP 0044 “NCP specification - Key = '0044'” on page 683

OPTCD DALOPTCD 0045 “OPTCD specification - Key = '0045'” on page 684

Verb code 01 - Dsname allocation text units

676 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 85. JCL DD Statement DCB Subparameters and Equivalent Text Units (continued)

JCL DD Statement
DCB Subparameter

Text Unit
Mnemonic

Text
Unit
Key

Described in:

PCI=receiving PCI DALPCIR 0046 “Receiving PCI specification - Key = '0046'” on page 684

PCI=sending PCI DALPCIS 0047 “Sending PCI specification - Key = '0047'” on page 685

PRTSP DALPRTSP 0048 “PRTSP specification - Key = '0048'” on page 685

RECFM DALRECFM 0049 “RECFM specification - Key = '0049'” on page 685

RESERVE=bytes1 DALRSRVF 004A “First buffer reserve specification - Key = '004A'” on page 686

RESERVE=bytes2 DALRSRVS 004B “Secondary buffer reserve specification - Key = '004B'” on page
686

STACK DALSTACK 004D “STACK specification - Key = '004D'” on page 686

THRESH DALTHRSH 004E “THRESH specification - Key = '004E'” on page 686

TRTCH DALTRTCH 004F “TRTCH specification – Key = '004F'” on page 687

DCB attribute text units
Use verb code 01 and the text unit keys listed in Table 86 and described on the
following pages to specify the DCB attributes of the data set being dynamically
allocated. These attributes are described in z/OS MVS JCL Reference under the DCB
parameter, and in z/OS DFSMS Macro Instructions for Data Sets.

Table 86. –Verb Code 01 (DCB Attributes) Text Unit Keys, Mnemonics, and Functions

Hex Text
Unit Key

Mnemonic DYNALLOC Function

002E DALBFALN Specifies buffer alignment.
002F DALBFTEK Specifies the buffering technique.
0030 DALBLKSZ Specifies blocksize.
0031 DALBUFIN Specifies the receiving buffer count.
0032 DALBUFL Specifies the buffer length.
0033 DALBUFMX Specifies the buffer count per line.
0034 DALBUFNO Specifies the buffer count per DCB.
0035 DALBUFOF Specifies the buffer offset.
0036 DALBUFOU Specifies the sending buffer count.
0037 DALBUFRQ Obsolete. The system checks the text unit for syntax and ignores it.
0038 DALBUFSZ Specifies the line group buffer size.
0039 DALCODE Obsolete. The system checks the text unit for syntax and ignores it.
003A DALCPRI Specifies the relative sending and receiving priority.
003B DALDEN Specifies the magnetic tape density.
003C DALDSORG Specifies the data set organization.
003D DALEROPT Specifies reading and writing error options.
003E DALGNCP Specifies the GAM-I/O count per WAIT macro.
003F DALINTVL Specifies the line polling interval per group.
0040 DALKYLEN Specifies the data set key lengths.
0041 DALLIMCT Specifies the search limit.
0042 DALLRECL Specifies the logical record length.
0043 DALMODE Specifies card punch/reader operational mode.
0044 DALNCP Specifies the READ/WRITE count per CHECK.
0045 DALOPTCD Specifies the control program's operational services.
0046 DALPCIR Specifies the relationship of the receiving PCI to the allocation and

freeing of buffers.

Verb code 01 - Dsname allocation text units

Chapter 26. Requesting dynamic allocation functions 677

Table 86. –Verb Code 01 (DCB Attributes) Text Unit Keys, Mnemonics, and Functions (continued)

Hex Text
Unit Key

Mnemonic DYNALLOC Function

0047 DALPCIS Specifies the relationship of the sending PCI to the allocation and
freeing of buffers.

0048 DALPRTSP Specifies printer line spacing.
0049 DALRECFM Specifies the record format.
004A DALRSRVF Specifies the first buffer's reserve byte count for insertion of data.
004B DALRSRVS Specifies the secondary buffer's reserve byte count for insertion of

data.
004C DALSOWA Obsolete. The system checks the text unit for syntax and ignores it.
004D DALSTACK Specifies the card punch's stacker bin.
004E DALTHRSH Specifies the use percentage of non-reusable direct access message

queue records per flush closedown.
004F DALTRTCH Specifies the 7-track tape recording technique.
0054 DALDIAGN Requests OPEN/CLOSE/EOV diagnostic trace option.
005A DALFUNC Specifies the type of data set to be opened for the 3525

Card-Read-Punch-Print.
005B DALFRID Obsolete. The system checks the text unit for syntax and ignores it.
006B DALLRECK Specifies that a record length is in increments of 1,024 (K).
0072 DALKILO Specifies a block size type of Kilobyte.
0073 DALMEG Specifies a block size type of Megabyte.
0074 DALGIG Specifies a block size type of Gigabyte.

BFALN specification - Key = '002E'
DALBFALN specifies the buffer alignment. It is mutually exclusive with the
GAM-I/O count key (DALGNCP). When you code DALBFALN, # and LEN must
be one, and PARM contains one of the following values:

X'01' Fullword not a doubleword boundary (F)

X'02' Doubleword boundary (D)

Example: To specify doubleword boundary, code:
KEY # LEN PARM
002E 0001 0001 02

BFTEK specification - Key = '002F'
DALBFTEK specifies the buffering technique to be used. It is mutually exclusive
with the GAM-I/O count key (DALGNCP). When you code DALBFTEK, # and
LEN must be one, and PARM contains one of the following values:

X'08' Dynamic buffering (D)

X'10' Exchange buffering (E)

X'20' Record buffering (R)

X'40' Simple buffering (S)

X'60' Record area buffering (A)

Example: To specify exchange buffering, code:
KEY # LEN PARM
002F 0001 0001 10

Verb code 01 - DCB attribute text units

678 z/OS V2R2 MVS Authorized Assembler Services Guide

BLKSIZE specification - Key = '0030'
DALBLKSZ specifies the block size. It is mutually exclusive with the buffer size
key (DALBUFSZ). When you code DALBLKSZ, # must be one, LEN must be two
or eight, and PARM contains the block size. The maximum PARM value is '7FF8'
(32,760) for DASD and '80000000' (2,147,483,648) for tape. A LEN value of eight
must be used for block size specifications greater than '7FF8'. You may also code
one of the block size type keys (DALKILO, DALMEG or DALGIG) when you
specify DALBLKSZ. If you do not specify one of those keys, the value coded on
DALBLKSZ is considered to be in bytes.

Example: To specify a block size of 80, code:
KEY # LEN PARM
0030 0001 0002 00 50

BUFIN specification - Key = '0031'
DALBUFIN specifies the number of buffers to be initially assigned for receiving
operations for each line in the line group. It is mutually exclusive with the buffer
number (DALBUFNO) and buffer request (DALBUFRQ) keys. When you code
DALBUFIN, # and LEN must be one, and PARM contains the number of buffers.
The maximum PARM value is '0F' (15).

Example: To specify 2 buffers, code:
KEY # LEN PARM
0031 0001 0001 02

BUFL specification - Key = '0032'
DALBUFL specifies the buffer length. When you code this key, # must be one, LEN
must be two, and PARM contains the buffer length. The maximum PARM value is
'7FF8' (32,760).

Example: To specify a buffer length of 80, code:
KEY # LEN PARM
0032 0001 0002 00 50

BUFMAX specification - Key = '0033'
DALBUFMX specifies the maximum number of buffers to be allocated to a line at
one time. It is mutually exclusive with the NCP key (DALNCP). When you code
DALBUFMX, # and LEN must be one, and PARM contains the number of buffers.
The maximum PARM value is '0F' (15).

Example: To specify 4 buffers, code:
KEY # LEN PARM
0033 0001 0001 04

BUFNO specification - Key = '0034'
DALBUFNO specifies the number of buffers to be assigned to the data control
block. It is mutually exclusive with the BUFIN (DALBUFIN), BUFOUT
(DALBUFOU), and BUFRQ (DALBUFRQ) keys. When you code DALBUFNO, #
and LEN must be one, and PARM contains the number of buffers.

Example: To specify 2 buffers, code:

or

KEY # LEN PARM
0030 0001 0008 00 00 00 00 00 00 00 50

Verb code 01 - DCB attribute text units

Chapter 26. Requesting dynamic allocation functions 679

KEY # LEN PARM
0034 0001 0001 02

BUFFOFF specification - Key = '0035'
DALBUFOF specifies the buffer offset. When you code this key, # and LEN must
be one, and PARM contains one of the following values:

X'80' The block prefix is four bytes long and contains the block length (L)

X'nn' The length of the block prefix (maximum of X'63' (99))

Example: To specify an offset of 16, code:
KEY # LEN PARM
0035 0001 0001 10

BUFOUT specification - Key = '0036'
DALBUFOU specifies the number of buffers to be assigned initially for sending
operations for each line in the group. It is mutually exclusive with the BUFNO
(DALBUFNO) and BUFRQ (DALBUFRQ) keys. When you code DALBUFOU, #
and LEN must be one, and PARM contains the number of buffers. The maximum
PARM value is '0F' (15).

Example: To specify 4 buffers, code:
KEY # LEN PARM
0036 0001 0001 04

BUFRQ specification - Key = '0037'
DALBUFRQ specifies the number of buffers to be requested in advance for the
GET macro. It is mutually exclusive with the BUFNO (DALBUFNO), BUFIN
(DALBUFIN), and BUFOUT (DALBUFOU) keys. When you code DALBUFRQ, #
and LEN must be one, and PARM contains the number of buffers.

Example: To specify 4 buffers, code:
KEY # LEN PARM
0037 0001 0001 04

BUFSZ specification - Key = '0038'
DALBUFSZ specifies the length in bytes of each of the buffers to be used for all
lines in a particular line group. It is mutually exclusive with the block size key
(DALBLKSZ). When you code DALBUFSZ, # must be one, LEN must be two, and
PARM contains the buffer length.

Example: To specify a buffer length of 80, code:
KEY # LEN PARM
0038 0001 0002 00 50

CODE specification - Key = '0039'
DALCODE specifies the paper tape code in which the data is punched. It is
mutually exclusive with the key length (DALKYLEN), MODE (DALMODE),
printer spacing (DALPRTSP), STACK (DALSTACK), and TRTCH (DALTRTCH)
keys. When you code DALCODE, # and LEN must be one, and PARM contains
one of the following values:

X'02' Teletype 5-track (T)

X'04' USASCII 8-track (A)

X'08' National Cash Register 8-track (C)

X'10' Burroughs 7-track (B)

Verb code 01 - DCB attribute text units

680 z/OS V2R2 MVS Authorized Assembler Services Guide

X'20' Friden 8-track (F)

X'40' IBM BCD 8-track (I)

X'80' No conversion (N)

Example: To specify USASCII, code:
KEY # LEN PARM
0039 0001 0001 04

CPRI specification - Key = '003A'
DALCPRI specifies the relative priority to be given to sending and receiving
operations. It is mutually exclusive with the THRESH key (DALTHRSH). When
you code DALCPRI, # and LEN must be one, and PARM contains one of the
following values:

X'01' Send priority (S)

X'02' Equal priority (E)

X'04' Receiving priority (R)

Example: To specify equal priority, code:
KEY # LEN PARM
003A 0001 0001 02

DEN specification - Key = '003B'
DALDEN specifies the magnetic tape density. When you code this key, # and LEN
must be one, and PARM contains one of the following values:

X'03' 200 bpi 7-track (0)

X'43' 556 bpi 7-track (1)

X'83' 800 bpi 7-track, 800 bpi 9 - track (2)

X'C3' 1600 bpi 9-track (3)

X'D3' 6250 bpi 9-track (4)

Example: To specify 1600 bpi 9 - track, code:
KEY ## LEN PARM
003B 0001 0001 C3

DSORG specifications - Key = '003C'
DALDSORG specifies the data set organization. When you code this key, # must be
one, LEN must be two, and PARM contains one of the following values:

X'0008'
VSAM

X'0080'
Graphics (GS)

X'0200'
Partitioned organization (PO)

X'0300'
Partitioned organization unmovable (POU)

X'0400'
Government of message transfer to or from a telecommunications message
processing queue (MQ)

Verb code 01 - DCB attribute text units

Chapter 26. Requesting dynamic allocation functions 681

X'0800'
Direct access message queue (CQ)

X'1000'
Communication line group (CX)

X'2000'
Direct access (DA)

X'2100'
Direct access unmovable (DAU)

X'4000'
Physical sequential (PS)

X'4100'
Physical sequential unmovable (PSU)

Example: To specify Partitioned Organization, code:
KEY # LEN PARM
003C 0001 0002 02 00

EROPT specification - Key = '003D'
DALEROPT specifies the option to be executed if an error occurs in writing or
reading a record. When you code this key, # and LEN must be one, and PARM
contains one of the following values:

X'10' Online BSAM testing (T)

X'20' To cause abnormal end of task (ABE)

X'40' To skip the block causing the error (SKP)

X'80' To accept the block causing the error (ACC)

Example: To specify the SKP error option, code:
KEY # LEN PARM
003D 0001 0001 40

GNCP specification - Key = '003E'
DALGNCP specifies the maximum number of GAM input/output macros that will
be issued before a WAIT macro is issued. It is mutually exclusive with the BFTEK
(DALBFTK) and BFALN (DALBFAL) keys. When you code DALGNCP, # and LEN
must be one, and PARM contains the GNCP value. The maximum PARM value is
'63' (99).

Example: To specify a GNCP value of four, code:
KEY # LEN PARM
003E 0001 0001 04

INTVL specification - Key = '003F'
DALINTVL specifies the polling interval for the lines in the line group. This key is
mutually exclusive with the UCS (DALUCS) and FCB (DALFCB) keys. When you
code this key, # and LEN must be one, and PARM contains the INTVL value.

Example: To specify an INTVL value of 10, code:
KEY # LEN PARM
003F 0001 0001 0A

Verb code 01 - DCB attribute text units

682 z/OS V2R2 MVS Authorized Assembler Services Guide

KEYLEN specification - Key = '0040'
DALKYLEN specifies the length, in bytes, of the keys used in the data set. It is
mutually exclusive with the CODE (DALCODE), MODE (DALMODE), PRTSP
(DALPRTSP), STACK (DALSTACK), and TRTCH (DALTRTCH) keys. When you
code this key, # and LEN must be one, and PARM contains the key length.

Example: To specify a key length of eight, code:
KEY # LEN PARM
0040 0001 0001 08

LIMCT specification - Key = '0041'
DALLIMCT specifies the search limit. When you code this key, # must be one, LEN
must be three, and PARM contains the search limit value. The maximum PARM
value is '007FF8' (32,760).

Example: To specify a search limit of 1000, code:
KEY # LEN PARM
0041 0001 0003 0003E8

LRECL specification - Key = '0042'
DALLRECL specifies the actual or maximum length, in bytes, of a logical record.
When you code this key, # must be one, LEN must be two, and PARM contains
one of the following values:

X'8000'
Variable length spanned records processed under QSAM and BSAM, the
logical records exceed 32,756 bytes (X)

X'nnnn'
The logical record length. The maximum value for nnnn is '7FF8' (32,760).

Example: To specify a logical record length of 80, code:
KEY # LEN PARM
0042 0001 0002 0050

MODE specification - Key = '0043'
DALMODE specifies the mode of operation for a card reader or punch. It is
mutually exclusive with the CODE (DALCODE), KEYLEN (DALKYLEN), PRTSP
(DALPRTSP), and TRTCH (DALTRTCH) keys. When you code DALMODE, # and
LEN must be one, and PARM contains one of the following values:

X'40' EBCDIC mode (E)

X'50' EBCDIC, read column eliminate mode (ER)

X'60' EBCDIC, optical mark read mode (EO)

X'80' Card image mode (C)

X'90' Card image, read column eliminate mode (CR)

X'A0' Card image, optical mark read mode (CO)

Example: To specify EBCDIC mode, code:
KEY # LEN PARM
0043 0001 0001 40

NCP specification - Key = '0044'
DALNCP specifies the maximum number of READ or WRITE macros issued
before a CHECK macro is issued. It is mutually exclusive with the BUFMAX

Verb code 01 - DCB attribute text units

Chapter 26. Requesting dynamic allocation functions 683

(DALBUFMX) key. When you code DALNCP, # and LEN must be one, and PARM
contains the NCP value. The maximum PARM value is X'FF' (255).

Example: To specify an NCP value of two, code:
KEY # LEN PARM
0044 0001 0001 02

OPTCD specification - Key = '0045'
DALOPTCD specifies optional services to be performed. When you code this key, #
and LEN must be one, and PARM contains one of the following values:

X'01' Relative block addressing (R), or to select character arrangement tables for
the 3800 printer (J)

X'02' User totaling facility (T)

X'04' Reduced tape error recovery or direct DASD search (Z)

X'08' Direct addressing (A), or translation of ASCII to or from EBCDIC (Q)

X'10' Feedback (F), or hopper-empty exit (H), or online correction for optical
readers (O)

X'40' Disregarding end-of-file recognition for tape (B), or allowance of data
checks caused by an invalid character.

X'80' Write validity check.

Note: When you are specifying more than one OPTCD value, PARM contains the
sum of the values.

For more information regarding the OPTCD specification key, see z/OS DFSMS
Macro Instructions for Data Sets.

Example: To specify OPTCD value B, code:
KEY # LEN PARM
0045 0001 0001 40

Example: To specify OPTCD values B and Z, code:
KEY # LEN PARM
0045 0001 0001 44

Receiving PCI specification - Key = '0046'
DALPCIR specifies the relationship of program-controlled interrupts (PCI) during
receiving operations to the allocation and freeing of buffers. When you code
DALPCIR, # and LEN must be one, and PARM contains one of the following
values:

X'02' A PCI and no new buffer allocated (R)

X'08' No PCIs (N)

X'20' A PCI and new buffer allocated (A)

X'80' A PCI, new buffer allocated, and the first buffer remains allocated (X)

Example: To specify no PCIs during receiving operations, code:
KEY # LEN PARM
0046 0001 0001 08

Verb code 01 - DCB attribute text units

684 z/OS V2R2 MVS Authorized Assembler Services Guide

Sending PCI specification - Key = '0047'
DALPCIS specifies the relationship of PCIs during sending operations to the
allocation and freeing of buffers. When you code DALPCIS, # and LEN must be
one, and PARM contains one of the following values:

X'01' A PCI and no new buffer allocated (R)

X'04' No PCIs (N)

X'10' A PCI and a new buffer allocated (A)

X'40' A PCI, new buffer allocated, and first buffer remains allocated (X)

Example: To specify no PCIs during sending operations, code:
KEY # LEN PARM
0047 0001 0001 04

PRTSP specification - Key = '0048'
DALPRTSP specifies printer line spacing. It is mutually exclusive with the CODE
(DALCODE), KEYLEN (DALKYLEN), MODE (DALMODE), STACK (DALSTACK),
and TRTCH (DALTRTCH) keys. When you code DALPRTSP, # and LEN must be
one, and PARM contains one of the following values:

X'01' No spacing (0)

X'09' One-line spacing (1)

X'11' Two-line spacing (2)

X'19' Three-line spacing (3)

Example: To specify no spacing, code:
KEY # LEN PARM
0048 0001 0001 01

RECFM specification - Key = '0049'
DALRECFM specifies the record format. When you code this key, # and LEN must
be one, and PARM contains one of the following values:

X'02' Machine code printer control characters in record (M), or complete QTAM
record (R)

X'04' ASA printer control characters in record (A), or complete QTAM message
(G)

X'08' Standard fixed records, spanned variable records, or segment of QTAM
message (S)

X'10' Blocked records (B)

X'20' Variable ASCII records (D), or track overflow (T)

X'40' Variable records (V)

X'80' Fixed records (F)

X'C0' Undefined records (U)

Note: When you code combinations of RECFM values, PARM contains the sum of
the values.

Example: To specify fixed records, code:
KEY # LEN PARM
0049 0001 0001 80

Verb code 01 - DCB attribute text units

Chapter 26. Requesting dynamic allocation functions 685

Example: To specify variable blocked (VB) records, code:
KEY # LEN PARM
0049 0001 0001 50

First buffer reserve specification - Key = '004A'
DALRSRVF specifies the number of bytes to be reserved in the first buffer for
insertion of data by the DATETIME and SEQUENCE macros. The UCS (DALUCS)
key is mutually exclusive with DALRSRVF. When you code this key, # and LEN
must be one, and PARM contains the number of bytes to reserve.

Example: To reserve 8 bytes in the first buffer, code:
KEY # LEN PARM
004A 0001 0001 08

Secondary buffer reserve specification - Key = '004B'
DALRSRVS specifies the number of bytes to be reserved in buffers other than the
first for insertion of data by the DATETIME and SEQUENCE macros. The UCS
(DALUCS) key is mutually exclusive with DALRSRVS. When you code this key, #
and LEN must be one, and PARM contains the number of bytes to reserve.

Example: To reserve 8 bytes in secondary buffers, code:
KEY # LEN PARM
004B 0001 0001 08

SOWA specification - Key = '004C'
DALSOWA specifies the size, in bytes, of the user-provided input work areas for
telecommunication jobs. When you code this key, # must be one, LEN must be
two, and PARM contains the number of bytes. The maximum PARM value is '7FF8'
(32,760).

Example To specify a 256-byte work area, code:
KEY # LEN PARM
004C 0001 0002 0100

STACK specification - Key = '004D'
DALSTACK specifies the stacker bin to receive cards. The CODE (DALCODE),
KEYLEN (DALKYLEN), PRTSP (DALPRTSP), and TRTCH (DALTRTCH) keys are
mutually exclusive with DALSTACK. When you code this key, # and LEN are one,
and PARM contains one of the following values:

X'01' Bin 1 (1)

X'02' Bin 2 (2)

Example: To specify stacker 2, code:
KEY # LEN PARM
004D 0001 0001 02

THRESH specification - Key = '004E'
DALTHRSH specifies the percentage of non-reusable disk message queue records
to be used before a flush closedown occurs. The CPRI (DALCPRI) key is mutually
exclusive with DALTHRSH. When you code this key, # and LEN must be one, and
PARM contains the percentage. The maximum PARM value is '64' (100).

Example: To specify a THRESH percentage of 99, code:
KEY # LEN PARM
004E 0001 0001 63

Verb code 01 - DCB attribute text units

686 z/OS V2R2 MVS Authorized Assembler Services Guide

TRTCH specification – Key = '004F'
DALTRTCH specifies the recording technique for 7-track tape. It is mutually
exclusive with the CODE (DALCODE), KEYLEN (DALKYLEN), MODE
(DALMODE), PRTSP (DALPRTSP), and STACK (DALSTACK) keys. When you
code DALTRTCH, # and LEN must be one, and PARM contains one of the
following values:

X'04' Non-compaction mode

X'08' Compaction mode

X'13' Data conversion (C)

X'23' Even parity (E)

X'2B' Even parity and BCD/EBCDIC translation (ET)

X'3B' BCD/EBCDIC translation (T)

Example: To specify even parity, code:
KEY # LEN PARM
004F 0001 0001 23

Diagnostic trace specification (DIAGNS=TRACE) - Key = '0054'
DALDIAGN requests the OPEN/CLOSE/EOV trace option, which gives a
module-by-module trace of OPEN/CLOSE/EOV's work area and the user's DCB.
When you code DALDIAGN, # must be zero; LEN and PARM are not specified.
GTF must be active in the system while the job that requested the trace is running.

Example: To specify the diagnostic trace specification, code:
KEY # LEN PARM
0054 0000 - -

FUNC= specification - Key = '005A'
DALFUNC can be used with BSAM and QSAM; it specifies the type of data set to
be opened for the 3525 Card Read-Punch-Print. When you code DALFUNC, # and
LEN must be one, and PARM contains one of the following values:

X'10' W

X'12' WT

X'14' WX

X'16' WXT

X'20' P

X'30' PW

X'34' PWX

X'36' PWXT

X'40' R

X'50' RW

X'52' RWT

X'54' RWX

X'56' RWXT

X'60' RP

Verb code 01 - DCB attribute text units

Chapter 26. Requesting dynamic allocation functions 687

X'68' RPD

X'70' RPW

X'74' RPWX

X'76' RPWXT

X'78' RPWD

X'80' I

Where:

D is data protection for a punch data set

I is interpret punch data set

P is punch

R is read

T is two line printer

W is print

X is printer

Note:

1. In the absence of this information, the system assumes P.
2. D, X, and T cannot be coded alone.
3. If you specify D as part of a value, you must also specify the FCB image-id key

(DALFCBIM), giving the image identifier for the data protection image.

Example: To specify FUNC=RPWD, code:
KEY # LEN PARM
005A 0001 0001 78

FRID= specification - Key = '005B'
DALFRID specifies the last four characters of a SYS1.IMAGELIB member name to
be used in the interpretation of documents for input to the IBM 3886 character
reader. The FCB (DALFCBIM) key is mutually exclusive with DALFRID.

When you code DALFRID, # must be one, LEN is the number of characters
specified, and PARM contains the characters of the IMAGELIB member name. The
characters must be alphanumeric or national. If the length of the member name is
four or less, code the entire name.

Example: To specify the last four characters of member name SHARK1, code:
KEY # LEN PARM
005B 0001 0004 C1 D9 D2 F1

Record length specification - Key = '006B'
DALLRECK indicates that the record length of an ISO/ANSI/FIPS Version 3 tape
data set is specified in increments of 1,024 (K).

When you code DALLRECK, # must be zero; LEN and PARM are not specified.
You code DALLRECK only if specifying DALLRECL. When DALLRECL is
specified with DALLRECK, the maximum value of DALLRECL is 16,383 (3FFF).
See z/OS MVS JCL Reference for the restrictions regarding the use of LRECL for
nnnnnK.

Verb code 01 - DCB attribute text units

688 z/OS V2R2 MVS Authorized Assembler Services Guide

Example: To specify a record length of 80K, code:
KEY # LEN PARM
006B 0000 - -

Kilobyte BLKSIZE type specification - Key = '0072'
DALKILO specifies a block size in kilobytes. (1 kilobyte = 1024 bytes.) It is
mutually exclusive with the megabyte and gigabyte block size keys (DALMEG and
DALGIG), and is used to specify that the block size requested on DALBLKSZ is in
kilobytes. When you specify DALKILO, you must also code the DALBLKSZ key.
When you specify DALKILO, the maximum PARM value for DALBLKSZ is
'00200000'. When you code DALKILO, # must be zero, and you do not specify LEN
and PARM.

Example: To specify block size in kilobytes, code:
KEY # LEN PARM
0072 0000 - -

Megabyte BLKSIZE type specification - Key = '0073'
DALMEG specifies a block size in megabytes. (1 megabyte = 1024 kilobytes.) It is
mutually exclusive with the kilobyte and megabyte block size type keys
(DALKILO, DALGIG), and is used to specify that the block size requested via
DALBLKSZ is in megabytes. When you specify DALMEG, the maximum PARM
value for DALBLKSZ is '0080'. When you code DALMEG, # must be zero, and you
do not specify LEN and PARM.

Example: To specify block size in megabytes, code:
KEY # LEN PARM
0073 0000 - -

Gigabyte BLKSIZE type specification - Key = '0074'
DALGIG specifies a block size in gigabytes. (1 gigabyte = 1024 megabytes.) It is
mutually exclusive with the kilobyte and megabyte block size type keys
(DALKILO and DALMEG), and is used to specify that the block size requested on
DALBLKSZ is in gigabytes. When you specify DALGIG, you must also code the
DALBLKSZ key. When you specify DALGIG, the maximum PARM value for
DALBLKSZ is '0002'. When you code DALGIG, # must be zero, and you do not
specify LEN and PARM.

Example: To specify block size in gigabytes, code:
KEY # LEN PARM
0074 0000 - -

Non-JCL dynamic allocation functions
The keys listed in Table 87 on page 690 and described on the following pages do
not have JCL equivalents; they have meaning only when you request dynamic
allocation by dsname (verb code 01). You can request that the system return
information about either a dsname or a ddname dynamic allocation request by
specifying either of the following:
v The non-JCL dynamic allocation functions keys 0055-0057, 005D, and 007B-007D,

which request that the system return information about your dsname allocation
request

v Information retrieval keys greater than C000, described in “Dynamic information
retrieval text units” on page 713

Verb code 01 - DCB attribute text units

Chapter 26. Requesting dynamic allocation functions 689

|
|
|

For either verb code 01 or verb code 07 information retrieval, the data returned in
the PARM field is valid only for the number of bytes returned in the LEN field. If
on input the PARM field is longer than the information returned on output, the
remaining bytes in PARM might contain data from previous invocations of
DYNALLOC. The information retrieval function does not pad the remaining bytes
with blanks.

For example, on Input the text unit initializes the PARM field to "AAAAAAAA".
On Output the text unit contains the name "MYDD" and a LEN of X'0004'. Beyond
the valid length (4 bytes) of "MYDD", the PARM field might contain data from the
previous request ("MYDDAAAA").

KEY # LEN PARM
Input: 0055 0001 0008 C1C1C1C1C1C1C1C1

Output: 0055 0001 0004 D4E8C4C4C1C1C1C1

When you request information for multiple parameters, the LEN and PARM fields
of the next parameter immediately follow the information returned from the
previous parameter. For example, on Output the text unit below contains a second
LEN and PARM pair. The request returns the information "X" in the PARM2 field.
The information in the fields is contiguous; spaces are shown in the example only
for readability.

KEY # LEN1 PARM1 LEN2 PARM2
Output: nnnn 0002 0004 D4E8C4C4 0001 E7

Table 87. Verb code 01 (non-JCL dynamic allocation functions) – Text units, mnemonics,
and functions

Hex text
unit key Mnemonic DYNALLOC function

0050 DALPASSW Specifies the password for a protected data set.
0052 DALPERMA Specifies the permanently allocated attribute.
0053 DALCNVRT Specifies the convertible attribute.
0055 DALRTDDN Requests the return of the associated ddname.
0056 DALRTDSN Requests the return of the allocated data set's

name.
0057 DALRTORG Requests the return of data set organization.
005C DALSSREQ Specifies allocation of a subsystem data set.
005D DALRTVOL Requests the return of the volume serial

number.
0062 DALSSATT Specifies allocation of a subsystem data set to

SYSIN.
006E DALBRTKN Specifies a spool data set browse token that

contains information about a JES2 spool data set
that a user asks to browse.

006F DALINCHG Specifies the tape recording technique and
media type to use for a new data set request.

0075 DALUASSR Specifies allocation of a subsystem data set.
0077 DALUNQDS Specifies a uniquely allocated temporary data

set.
0078 DALReqIEFOPZ Request IEFOPZ processing.
0079 DALINSDD Specifies the insulated DD attribute.
007A DALNOSEC Specifies bypass security processing.
007B DALRetInfo Return allocation information.
007C DALRetIEFOPZnewDSN Return IEFOPZ-new data set name.
007D DALRetIEFOPZnewVOL Return IEFOPZ-new volume serial.

Verb code 01 - Non-JCL dynamic allocation functions

690 z/OS V2R2 MVS Authorized Assembler Services Guide

Password specification - Key = '0050'
DALPASSW specifies the password for a password-protected data set. The dsname
key (DALDSNAM) is required with this key. When you code DALPASSW, # must
be one, LEN contains the length of the password, up to a maximum of 8, and
PARM contains the password.

Example: To specify the password, MYKEY, code:
KEY # LEN PARM
0050 0001 0005 D4 E8 D2 C5 E8

Permanently allocated attribute specification - Key = '0052'
DALPERMA specifies that the permanently allocated attribute is to be assigned to
this allocation. (See “Permanently allocated attribute” on page 548 for a description
of the permanently allocated attribute.) When you code this key, # must be zero;
LEN and PARM are not specified.

Example: To specify assignment of the permanently allocated attribute, code:
KEY # LEN PARM
0052 0000 - -

Convertible attribute specification - Key = '0053'
DALCNVRT specifies that the convertible attribute is to be assigned to this
allocation. (See “Convertible attribute” on page 548 for a description of the
convertible attribute.)

Note: This specification is the default if the permanently allocated attribute key
(DALPERMA) is not coded.

When you code DALCNVRT, # must be zero; LEN and PARM are not specified.

Example: To specify assignment of the convertible attribute, code:
KEY # LEN PARM
0053 0000 - -

Ddname return specification - Key = '0055'
DALRTDDN requests that the ddname associated with the allocation be returned
to the caller of DYNALLOC. When you code DALRTDDN, # must be one, and
LEN must be at least the length of the ddname, and can be longer, up to a
maximum of 255 characters. The PARM field must be the length specified by the
value in LEN. Dynamic allocation places the allocated ddname in PARM and
updates LEN to the length of the returned ddname.

The system does not fail the dynamic allocation request if it cannot return the
ddname. Therefore, when you use this key, provide an SVC 99 request block
extension (see “Setting up the request block extension” on page 565). Upon return,
verify that fields S99EERR and S99EINFO in the request block extension are zero.
If either or both of these fields are non-zero, do not use the returned ddname.

Example: To request that the allocated ddname be returned, code:
KEY # LEN PARM
0055 0001 0008 --------

This specification would be updated upon the assignment of the ddname DD1 as
follows:
KEY # LEN PARM
0055 0001 0003 C4 C4 F1-----

Verb code 01 - Non-JCL dynamic allocation functions

Chapter 26. Requesting dynamic allocation functions 691

|

|

Dsname return specification - Key = '0056'
DALRTDSN requests that the dsname that is allocated be returned to the caller of
DYNALLOC. When you code DALRTDSN, # must be one, and LEN must be at
least the length of the dsname, and can be longer, up to a maximum of 255
characters. The PARM field must be the length specified by the value in LEN.
Dynamic allocation places the allocated dsname in PARM and updates LEN to the
length of the returned dsname.

The system does not fail the dynamic allocation request if it cannot return the
dsname. Therefore, when you use this key, provide an SVC 99 request block
extension (see “Setting up the request block extension” on page 565). Upon return,
verify that fields S99EERR and S99EINFO in the request block extension are zero.
If either or both of these fields are non-zero, do not use the returned dsname.

Example: To request that the allocated dsname be returned, code:
KEY # LEN PARM
0056 0001 002C --------...--

This specification would be updated for the allocation of the dsname ABC as
follows:
KEY # LEN PARM
0056 0001 0003 C1 C2 C3-----...--

DSORG return specification - Key = '0057'
DALRTORG requests that the data set organization of the allocated data set be
returned to the caller of DYNALLOC When you code DALRTORG, # must be one,
LEN must be two, and PARM is a two-byte field. Dynamic allocation puts one of
the following values into PARM. Note that when the requested information is not
available, the system returns a value of X'0000' in PARM rather than a LEN of 0.

X'0000'
Dynamic allocation cannot determine the DSORG

X'0004'
TR

X'0008'
VSAM

X'0020'
TQ

X'0040'
TX

X'0080'
GS

X'0200'
PO

X'0300'
POU

X'0400'
MQ

X'0800'
CQ

Verb code 01 - Non-JCL dynamic allocation functions

692 z/OS V2R2 MVS Authorized Assembler Services Guide

|

|

X'1000'
CX

X'2000'
DA

X'2100'
DAU

X'4000'
PS

X'4100'
PSU

X'8000'
IS

X'8100'
ISU

The system does not fail the dynamic allocation request if it cannot return the data
set organization (DSORG). Therefore, when you use this key, provide an SVC 99
request block extension (see “Setting up the request block extension” on page 565).
Upon return, verify that fields S99EERR and S99EINFO in the request block
extension are zero. If either or both of these fields are non-zero, do not use the
returned DSORG.

Example: To specify that the DSORG be returned, code:
KEY # LEN PARM
0057 0001 0002 --

This specification would be updated for a DSORG of PS as follows:
KEY # LEN PARM
0057 0001 0002 4000

Subsystem request specification - key = '005C'
DALSSREQ requests that a subsystem data set be allocated and, optionally,
specifies the name of the subsystem for which the data set is to be allocated.

When you code DALSSREQ without specifying a subsystem name, # must be zero
and LEN and PARM are not specified. The data set is then allocated to the primary
subsystem.

When you code the subsystem name in the DALSSREQ key, # must be one, LEN is
the length of the subsystem name, up to a maximum of 4, and PARM contains the
subsystem name.

Note: To specify DALSSREQ, your program must be APF-authorized, in
supervisor state, or running with PSW key 0 - 7. If your program does not meet
these requirements, you may be able to use the DALUASSR text unit instead.

Example 1: To request a subsystem data set for the primary subsystem, code:
KEY # LEN PARM
005C 0000 - -

Example 2: To request a subsystem data set for JES2, code:
KEY # LEN PARM
005C 0001 0004 D1 C5 E2 F2

Verb code 01 - Non-JCL dynamic allocation functions

Chapter 26. Requesting dynamic allocation functions 693

|

|

Volume serial return specification - Key = '005D'
DALRTVOL requests that the volume serial number associated with the allocated
data set be returned. Only the first volume serial of a multiple-volume data set is
returned, and the volume sequence number, if any, is ignored.

When you code DALRTVOL, # must be one, LEN must be six, and PARM is a
six-byte field.

If the allocated volume serial is available at the completion of allocation, dynamic
allocation puts the number in PARM. If the volume serial is not available at the
completion of allocation, dynamic allocation sets LEN to zero.

The volume serial will not be available at the completion of allocation if either of
the following is true:
v No volume serial is allocated to the data set (a VIO or job entry subsystem data

set)
v The request results in the allocation of a new data set on magnetic tape without

a specific volume serial having been assigned.

The system does not fail the dynamic allocation request if it cannot return the
volume serial number. Therefore, when you use this key, provide an SVC 99
request block extension (see “Setting up the request block extension” on page 565).
Upon return, verify that fields S99EERR and S99EINFO in the request block
extension are zero. If either or both of these fields are non-zero, do not use the
returned volume serial number.

Example: To specify that the allocated volume serial be returned, code:
KEY # LEN PARM
005D 0001 0006 ------

This specification would be updated for the allocation of data set ABC on volume
123456 as follows:
KEY LEN PARM
005D 0001 0006 F1 F2 F3 F4 F5 F6

Subsystem request type specification - Key = '0062'
DALSSATT specifies that the subsystem data set being requested is to be allocated
to SYSIN. The subsystem request key (DALSSREQ) is required with this key.

Note: To specify DALSSATT, you must be APF-authorized, or in supervisor state,
or running with PSW key 0 - 7.

When you code DALSSATT, # and LEN must be one, and PARM contains '80', for
SYSIN data set.

Example: To specify a subsystem SYSIN data set, code:
KEY # LEN PARM
0062 0001 0001 80

Spool data set browse token specification - Key = '006E'
DALBRTKN specifies a spool data set browse token that contains information
about a JES2 spool data set that a user asks to browse. In addition to parameters
about the spool data set, the token also contains parameters that you can use with
the System Authorization Facility to check the user's browse authorization.

Verb code 01 - Non-JCL dynamic allocation functions

694 z/OS V2R2 MVS Authorized Assembler Services Guide

|

|

When you code DALBRTKN, # must be 7. Mapping macro IAZBTOKP maps the
length and parameter portion of this text unit. For a description of the IAZBTOKP
mapping macro, see z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

Example: Define the spool data set browse token in IAZBTOKP as follows:
v BTOK is the name of the spool data set browse token (BTOKID).
v 1 is the version number of the parameter list for BTOK (BTOKVERNM).
v 01001302 is the I/O table (IOT) module track record (MTTR) pointer

(BTOKIOTP).
v A9BC2033 is the spool data set job key (BTOKJKEY).
v 017E is the ASID of the job that owns the spool data set (BTOKASID).
v IBMUSER is the RECVR userid you can use on a SAF call to check the authority

of the browse request (BTOKRCID).
v DATA SET BROWSE is the LOGSTR data associated with IBMUSER

(BTOKLOG5).
KEY # LEN1 PARM1 LEN2 PARM2 ... LEN7 PARM7
006E 007 IAZBTOKP DSECT containing the values associated with BTOK

Using the IAZBTOKP field names, the result is:
KEY # BTOKPL1 BTOKID BTOKPL2 BTOKVRNM BTOKPL3 BTOKIOTP
006E 0007 0004 C2E3D6D2 0002 0001 0004 01001302

BTOKPL4 BTOKJKEY BTOKPL5 BTOKASID BTOKPL6 BTOKRCID
0004 A9BC2033 0002 017E 0008 C9C2D4E4 C2C5D940

BTOKPL7 BTOKLOGS
00FF 0FC4C1E3 C140E2C5 C340C2D9 D6E6E2C5

Volume interchange specification - Key = '006F'
DALINCHG specifies the media type and track recording technique required for
system-managed tape library allocation.

Whenever possible, IBM suggests that you use an installation-defined DATACLAS
construct name to control cartridge media type and track recording technique. Use
this key only when it is not possible to use a pre-defined DATACLAS construct
because of the dynamic nature of the program and because the program must
control the media type and track recording technique. Contact your storage
administrator before using this key.

Note: To specify DALINCHG, your program must be APF-authorized, in
supervisor state, or running in PSW key 0-7. The specification of DALINCHG will
be ignored if a non-system-managed tape volume is allocated.

When you code this key, # must be one, but LEN and PARM can be either 1 byte
or 2 bytes in length. PARM must contain one of the following values:

01
0001

Cartridge System Tape requested; no specific track recording technique
requested.

11
0101

Cartridge System Tape requested; 18-track recording technique requested.

21

Verb code 01 - Non-JCL dynamic allocation functions

Chapter 26. Requesting dynamic allocation functions 695

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

0201
Cartridge System Tape requested; 36-track recording technique requested.

02
0002

Enhanced Capacity Cartridge System Tape requested; no specific track
recording technique requested.

22
0202

Enhanced Capacity Cartridge System Tape requested; 36-track recording
technique requested.

03
0003

High Performance Tape Cartridge requested; no specific track recording
technique requested.

33
0303

High Performance Tape Cartridge requested; 128-track recording technique
requested.

43
0403

High Performance Tape Cartridge requested; 256-track recording technique
requested.

53
0503

High Performance Tape Cartridge requested; 384-track recording technique
requested.

04
0004

Extended High Performance Tape Cartridge requested; no specific track
recording technique requested.

34
0304

Extended High Performance Tape Cartridge requested; 128-track recording
technique requested.

44
0404

Extended High Performance Tape Cartridge requested; 256-track recording
technique requested.

54
0504

Extended High Performance Tape Cartridge requested; 384-track recording
technique requested.

05
0005

Enterprise Tape Cartridge 3592 requested; no specific recording technology
requested.

65
0605

Enterprise Tape Cartridge 3592 requested; Enterprise Format 1 recording
technology requested.

Verb code 01 - Non-JCL dynamic allocation functions

696 z/OS V2R2 MVS Authorized Assembler Services Guide

75
0705

Enterprise Tape Cartridge 3592 requested; Enterprise Format 2 recording
technology requested.

85
0805

Enterprise Tape Cartridge 3592 requested; Enterprise Encrypted Format 2
recording technology requested.

95
0905

Enterprise Tape Cartridge 3592 requested; Enterprise Format 3 recording
technology requested.

A5
0A05

Enterprise Tape Cartridge 3592 requested; Enterprise Encrypted Format 3
recording technology requested.

06
0006

Enterprise WORM Tape Cartridge 3592 requested; no specific recording
technology requested.

66
0606

Enterprise WORM Tape Cartridge 3592 requested; Enterprise Format 1
recording technology requested.

76
0706

Enterprise WORM Tape Cartridge 3592 requested; Enterprise Format 2
recording technology requested.

86
0806

Enterprise WORM Tape Cartridge 3592 requested; Enterprise Encrypted Format
2 recording technology requested.

96
0906

Enterprise WORM Tape Cartridge 3592 requested; Enterprise Format 3
recording technology requested.

A6
0A06

Enterprise WORM Tape Cartridge 3592 requested; Enterprise Encrypted Format
3 recording technology requested.

07
0007

Enterprise Economy Tape Cartridge 3592 requested; no specific recording
technology requested.

67
0607

Enterprise Economy Tape Cartridge 3592 requested; Enterprise Format 1
recording technology requested.

77

Verb code 01 - Non-JCL dynamic allocation functions

Chapter 26. Requesting dynamic allocation functions 697

0707
Enterprise Economy Tape Cartridge 3592 requested; Enterprise Format 2
recording technology requested.

87
0807

Enterprise Economy Tape Cartridge 3592 requested: Enterprise Encrypted
Format 2 recording technology requested.

97
0907

Enterprise Economy Tape Cartridge 3592 requested; Enterprise Format 3
recording technology requested.

A7
0A07

Enterprise Economy Tape Cartridge 3592 requested; Enterprise Encrypted
Format 3 recording technology requested.

08
0008

Enterprise Economy WORM Tape Cartridge 3592 requested; no specific
recording technology requested.

68
0608

Enterprise Economy WORM Tape Cartridge 3592 requested; Enterprise Format
1 recording technology requested.

78
0708

Enterprise Economy WORM Tape Cartridge 3592 requested; Enterprise Format
2 recording technology requested.

88
0808

Enterprise Economy WORM Tape Cartridge 3592 requested; Enterprise
Encrypted Format 2 recording technology requested.

98
0908

Enterprise Economy WORM Tape Cartridge 3592 requested; Enterprise Format
3 recording technology requested.

A8
0A08

Enterprise Economy WORM Tape Cartridge 3592 requested; Enterprise
Encrypted Format 3 recording technology requested.

09
0009

Enterprise Extended Tape Cartridge 3592 requested; no specific recording
technology requested.

79
0709

Enterprise Extended Tape Cartridge 3592 requested; Enterprise Format 2
recording technology requested.

89

Verb code 01 - Non-JCL dynamic allocation functions

698 z/OS V2R2 MVS Authorized Assembler Services Guide

0809
Enterprise Extended Tape Cartridge 3592 requested; Enterprise Encrypted
Format 2 recording technology requested.

99
0909

Enterprise Extended Tape Cartridge 3592 requested; Enterprise Format 3
recording technology requested.

A9
0A09

Enterprise Extended Tape Cartridge 3592 requested; Enterprise Encrypted
Format 3 recording technology requested.

B9
0B09

Enterprise Extended Tape Cartridge 3592 requested; Enterprise format 4
recording technology requested.

C9
0C09

Enterprise Extended Tape Cartridge 3592 requested; Encrypted Enterprise
format 4 recording technology requested.

0A
000A

Enterprise Extended WORM Tape Cartridge 3592 requested; no specific
recording technology requested.

7A
070A

Enterprise Extended WORM Tape Cartridge 3592 requested; Enterprise Format
2 recording technology requested.

8A
080A

Enterprise Extended WORM Tape Cartridge 3592 requested; Enterprise
Encrypted Format 2 recording technology requested.

9A
090A

Enterprise Extended WORM Tape Cartridge 3592 requested; Enterprise Format
3 recording technology requested.

AA
0A0A

Enterprise Extended WORM Tape Cartridge 3592 requested; Enterprise
Encrypted Format 3 recording technology requested.

BA
0B0A

Enterprise Extended WORM Tape Cartridge 3592 requested; Enterprise format
4 recording technology requested.

CA
0C0A

Enterprise Extended WORM Tape Cartridge 3592 requested; Encrypted
Enterprise format 4 recording technology requested.

0B

Verb code 01 - Non-JCL dynamic allocation functions

Chapter 26. Requesting dynamic allocation functions 699

000B
Enterprise Advanced Tape Cartridge 3592; no specific recording technology
requested.

BB
0B0B

Enterprise Advanced Tape Cartridge 3592; Enterprise format 4 recording mode.

CB
0C0B

Enterprise Advanced Tape Cartridge 3592; Encrypted Enterprise format 4
recording mode.

0C
000C

Enterprise Advanced WORM Tape Cartridge 3592; no specific recording
technology requested.

BC
0B0C

Enterprise Advanced WORM Tape Cartridge 3592; Enterprise format 4
recording mode.

CC
0C0C

Enterprise Advanced WORM Tape Cartridge 3592; Encrypted Enterprise format
4 recording mode.

0D
000D

Enterprise Advanced Economy Tape Cartridge 3592; no specific recording
technology requested.

BD
0B0D

Enterprise Advanced Economy Tape Cartridge 3592; Enterprise format 4
recording mode.

CD
0C0D

Enterprise Advanced Economy Tape Cartridge 3592; Encrypted Enterprise
format 4 recording mode.

Example: To request Cartridge System Tape recorded in 36-track format, code:
KEY # LEN PARM
006F 0001 0001 21

To request the same thing with a 2 byte DALINCHG parameter, code:
KEY # LEN PARM
006F 0001 0002 0201

Subsystem request specification - Key = '0075'
DALUASSR requests that a subsystem data set be allocated and, optionally,
specifies the name of the subsystem for which the data set is to be allocated.

This request is similar to the DALSSREQ request, but can be used by unauthorized
callers.

Verb code 01 - Non-JCL dynamic allocation functions

700 z/OS V2R2 MVS Authorized Assembler Services Guide

When you code DALUASSR without specifying a subsystem name, # must be zero
and LEN and PARM are not specified. The data set is then allocated to the primary
subsystem.

When you code the subsystem name in the DALUASSR key, # must be one, LEN is
the length of the subsystem name, up to a maximum of 4, and PARM contains the
subsystem name.

Example 1: To request a subsystem data set for the primary subsystem, code:
KEY # LEN PARM
0075 0000 - -

Example 2: To request a subsystem data set for JES2, code:
KEY # LEN PARM
0075 0001 0004 D1 C5 E2 F2

Uniquely allocated temporary data set - Key = '0077'
DALUNQDS indicates that a temporary data set is being allocated and that the
address space allocating the data set will only allocate the specified data set name,
or generated data set name, to the DD currently being allocated, and no other DD.

Dynamic allocation normally tracks temporary data set names when they are
allocated and uses this information to avoid deleting a temporary data set more
than once when the data set is allocated multiple times. Use of this text unit
indicates that the dynamic allocation caller will ensure that the temporary data set
is only allocated once and that the system can avoid this processing.

When you code DALUNQDS, # must be zero. LEN and PARM are not specified.

Example: To indicate that a temporary data set is uniquely allocated:
KEY # LEN PARM
0077 0000 - -

Request IEFOPZ processing - Key = '0078'
DALReqIEFOPZ requests that IEFOPZ processing be performed on the data set
provided by DALDSNAM (and, optionally, by DALVLSER).

When you code this key, # must be zero, and LEN and PARM are not specified.

Example: To request IEFOPZ processing, code:
KEY # LEN PARM
0078 0000 - -

Insulated DD request - Key = '0079'
DALINSDD indicates that the insulated DD attribute is to be assigned to this
allocation.

For a description of this key, see “Insulated DD attribute” on page 549. When you
code this key, # must be zero, and LEN and PARM are not specified.

DALINSDD is mutually exclusive with the DALCNVRT (X'0053') and DALCLOSE
(X'001C') text units.

Use of DALINSDD implies that the DD is permanently allocated.

Verb code 01 - Non-JCL dynamic allocation functions

Chapter 26. Requesting dynamic allocation functions 701

|
|
|

|

|

|
|

|
|
|

|
|

|
|

|

This text unit is available on z/OS 1.13 and later systems with APAR OA47824
installed. When this support is available, the JESIBSAV flag in the JESCT is on. See
the IEFJESCT macro for usage in formation.

Note: To specify DALINSDD, your program must be APF-authorized, in
supervisor state, or running with PSW key 0 - 7.

Example: To specify assignment of the insulated DD attribute, code:
KEY # LEN PARM
0079 0000 - -

Bypass security processing - Key = '007A'
DALNOSEC indicates that no authorization processing is to be done for this
request.

This text unit would typically be used when the caller has already performed the
appropriate authorization checks prior to invoking dynamic allocation.

When you code this key, # must be zero, and LEN and PARM are not specified.

Use of this text unit only applies to authorization processing during dynamic
allocation. Other functions that use the DD, such as OPEN and dynamic
unallocation, may perform authorization checks.

DALNOSEC is mutually exclusive with the following text units:
v DALSYSOU (X'0018')
v DALPASPR (X'0020')
v DALPASSW (X'0050')
v DALSSREQ (X'005C')
v DALSSNM (X'005F')
v DALUASSR (X'0075')
v DALPATH (X'8017')

DALNOSEC is only supported for DASD and tape requests. Other device types,
such as unit record devices, graphic devices, or teleprocessing or communication
devices are also mutually exclusive with DALNOSEC.

This text unit is only available on z/OS 1.13 and later systems with APAR
OA47824 installed. When this support is available, the JESIBSAV flag in the JESCT
is on. See the IEFJESCT macro for usage information.

Note: To specify DALNOSEC, your program must be APF-authorized, in
supervisor state, or running with PSW key 0 - 7.

Example: To request that dynamic allocation bypass security processing, code:
KEY # LEN PARM
007A 0000 - -

Return allocation information - Key = '007B'
DALRetInfo requests indications of the attributes assigned to the specified
resource.

When you code this key, # and LEN must be 1, and PARM is a one-byte field.
Upon return to your program, PARM is set as follows:

Verb code 01 - Non-JCL dynamic allocation functions

702 z/OS V2R2 MVS Authorized Assembler Services Guide

|
|
|

|
|

|

|
|

|
|
|

|
|

|

|
|
|

|

|

|

|

|

|

|

|

|
|
|

|
|
|

|
|

|

|
|

|
|
|

|
|

Bit Meaning

0 ON if IEFOPZ processing found a match for this allocation.

1-7 Not an intended programming interface.

Example: To request allocation information, code:
KEY # LEN PARM
007B 0001 1 -

If IEFOPZ processing was performed, PARM contains the following data upon
return:
KEY # LEN PARM
007B 0001 1 80

Return IEFOPZ-New data set name - Key = '007C'
DALRetIEFOPZNewDSN requests that the IEFOPZ-New data set name from
IEFOPZ processing be returned to the caller.

When you code this key, # must be 1, and LEN must be at least the length of the
dsname (and can be longer, up to a maximum of 44 characters). The PARM field
must be the length specified by the LEN value.

Dynamic allocation places the allocated dsname in PARM and updates LEN to the
length of the returned dsname. If no IEFOPZ-New data set was added, the # field
is set to 0 on output, and the LEN and PARM fields contain no valid data.

Example: To request that IEFOPZ-New data set name be returned, code:
KEY # LEN PARM
007C 0001 002C --------

If an IEFOPZ-New data set is processed, this specification is updated for the
allocation of the dsname ABC, as follows:
KEY # LEN PARM
007C 0001 0003 C1C2C3

If an IEFOPZ-New data set is not processed, the specification is updated, as
follows:
KEY # LEN PARM
007C 0000 ???? ????????????

Return IEFOPZ-New data set volume serial number - Key = '007D'
DALRetIEFOPZNewVol requests that the volume serial number associated with the
IEFOPZ-New data set from IEFOPZ processing be returned to the caller.

When you code th is key, # must be 1, LEN must be 6, and PARM is a six-byte
field.

If no IEFOPZ-New data set was added, the # field is set to 0 on output, and the
LEN and PARM fields contain no valid data.

Note: Only the first volume serial number of a multiple-volume data set is
returned.

Example: To request that the IEFOPZ-New volume serial number be returned,
code:

Verb code 01 - Non-JCL dynamic allocation functions

Chapter 26. Requesting dynamic allocation functions 703

||

||

||

|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

KEY # LEN PARM
007D 0001 0006 ------

If an IEFOPZ-New data set is processed, this specification is updated for the
allocation of the IEFOPZ-New data set on volume 123456, as follows:
KEY # LEN PARM
007D 0001 0006 F1F2F3F4F5F6

If an IEFOPZ-New data set is not processed, the specification is updated, as
follows:
KEY # LEN PARM
007D 0000 ???? ????????????

Dynamic unallocation text units
Use verb code 02 and the text unit keys listed in Table 88 and described on the
following pages to request dynamic unallocation processing by DYNALLOC. To
deallocate a resource, you must specify either the DUNDDNAM key, the
DUNDSNAM key, or the DUNPATH key.

Table 88. Verb code 02 (dynamic unallocation) – Text unit keys, mnemonics, and functions

Hex text
unit key

Mnemonic DYNALLOC function

0001 DUNDDNAM Specifies the ddname of the resource to be
deallocated.

0002 DUNDSNAM Specifies the data set to be deallocated.
0003 DUNMEMBR Specifies the PDS member to be deallocated.
0005 DUNOVDSP Specifies an overriding disposition for the data set to

be unallocated.
0007 DUNUNALC Specifies deallocation even if the resource has the

permanently allocated attribute.
0008 DUNREMOV Specifies removal of the “in-use” attribute, even if

the resource does not have the permanently
allocated attribute.

000A DUNOVSNH Specifies “nohold” status for a deallocated SYSOUT
data set and overrides previous “hold” specification.

0018 DUNOVCLS Specifies an overriding SYSOUT class.
0058 DUNOVSUS Specifies an overriding destination to which the

SYSOUT data set being deallocated is to be routed.
Note: Keys 0058 and 0063 are equivalent to the JCL
DEST= parameter, where DEST=(dunovsus) or
DEST=(dunovsus,dunovuid).

0059 DUNOVSHQ Specifies “hold” status for a deallocated SYSOUT
data set and overrides previous “nohold”
specifications.

0063 DUNOVUID Specifies an overriding destination user ID to which
the SYSOUT data set being deallocated is to be
routed.
Note: Keys 0058 and 0063 are equivalent to the JCL
DEST= parameter, where DEST=(dunovsus) or
DEST=(dunovsus,dunovuid).

0079 DUNINSDD Specifies an insulated DD request.
007A DUNNOSEC Specifies bypass security processing.
8013 DUNSPIN Specifies an overriding decision that determines

whether the output for the SYSOUT data set is to be
printed immediately, or at the end of the job.

Verb code 01 - Non-JCL dynamic allocation functions

704 z/OS V2R2 MVS Authorized Assembler Services Guide

|
|

|
|

|
|

|
|

|
|

|

|||
|||

Table 88. Verb code 02 (dynamic unallocation) – Text unit keys, mnemonics, and
functions (continued)

Hex text
unit key

Mnemonic DYNALLOC function

8017 DUNPATH Specifies the pathname of the z/OS UNIX file to be
deallocated.

801A DUNOVPDS Specifies an overriding disposition for the file to be
deallocated.

Ddname specification - Key = '0001'
DUNDDNAM specifies the ddname of the resource to be deallocated. When you
code this key, # must be one, LEN is the length of the ddname, up to a maximum
of 8, and PARM contains the ddname.

Example: To specify the ddname DD1, code:
KEY # LEN PARM
0001 0001 0003 C4 C4 F1

Dsname specification - Key = '0002'
DUNDSNAM specifies the data set name to be deallocated. The data set name can
contain special characters if the data set name is enclosed in apostrophes. The
dsname can contain system symbols. See the information on using system symbols
in z/OS MVS Initialization and Tuning Reference. When you code this key, # must be
one, LEN contains the length of the dsname, and PARM contains the dsname.

The maximum length of the data set name is 44 characters, excluding any
enclosing apostrophes and compressing any double apostrophes within the data
set name.

Example: To specify the dsname MYDATA, code:
KEY # LEN PARM
0002 0001 0006 D4 E8 C4 C1 E3 C1

Member name specification - Key = '0003'
DUNMEMBR specifies that a particular member of the data set is to be
deallocated. The member name can contain system symbols. See the information
on using system symbols in z/OS MVS Initialization and Tuning Reference.

The dsname unallocation key (DUNDSNAM) is required with this key. When you
code DUNMEMBR, # must be one, LEN is the length of the member name, up to a
maximum of 8, and PARM contains the member name.

Example: To specify the member name MEM1, code:
KEY # LEN PARM
0003 0001 0004 D4 C5 D4 F1

Overriding disposition specification - Key = '0005'
DUNOVDSP specifies a disposition that overrides the disposition assigned to a
data set when it was allocated. When you code DUNOVDSP, # and LEN must be
one, and PARM contains one of the following values:

X'01' An overriding disposition of UNCATLG

X'02' An overriding disposition of CATLG

X'04' An overriding disposition of DELETE

Verb code 02 - Dynamic unallocation text units

Chapter 26. Requesting dynamic allocation functions 705

X'08' An overriding disposition of KEEP

Example: To specify an overriding disposition of CATLG, code:
KEY # LEN PARM
0005 0001 0001 02

Note: Dynamic allocation ignores this key if any of the following are true:
v The overriding disposition was DELETE and the data set was originally

allocated as SHARE.
v The data set was originally allocated with a disposition of PASS.
v The data set is a VSAM data set and SMS is not active on the system.
v The data set is a non-subsystem data set that has a system-generated name.

When dynamic allocation must ignore a DUNOVDSP request, it still performs the
deallocation processing, but uses the disposition from the original allocation
request.

Unallocate option specification - Key = '0007'
DUNUNALC specifies that the resource is to be deallocated even if it has the
permanently allocated attribute. The remove in-use option key (DUNREMOV) is
mutually exclusive with DUNUNALC. When you code this key, # must be zero;
LEN and PARM are not specified.

Example: To specify the unalloc option, code:
KEY # LEN PARM
0007 0000 - -

Remove in-use option specification - Key = '0008'
DUNREMOV specifies that the in-use attribute is to be removed even if the
resource does not have the permanently allocated attribute. The unalloc option key
(DUNUNALC) is mutually exclusive with DUNREMOV. When you code this key,
must be zero; LEN and PARM are not specified.

Example: To specify the remove option, code:
KEY # LEN PARM
0008 0000 - -

Overriding SYSOUT nohold specification - Key = '000A'
DUNOVSNH specifies that the SYSOUT data set being deallocated is not to be
placed on the hold queue. This specification overrides the HOLD/NOHOLD
specification assigned when the data set was allocated.

This key is ignored if the data set is not a SYSOUT data set or if the data set is the
internal reader. The overriding hold key (DUNOVSHQ) is mutually exclusive with
DUNOVSNH. When you code this key. # must be zero; LEN and PARM are not
specified.

Example: To specify nohold, code:
KEY # LEN PARM
000A 0000 - -

Verb code 02 - Dynamic unallocation text units

706 z/OS V2R2 MVS Authorized Assembler Services Guide

Overriding SYSOUT class specification - Key = '0018'
DUNOVCLS specifies a SYSOUT class that overrides the class assigned when the
SYSOUT data set was allocated. This key is ignored if the resource is not a
SYSOUT data set. When you code DUNOVCLS, # and LEN must be one, and
PARM contains the overriding class.

The SYSOUT class characteristics are used in processing the output, with the
exception of the spool space allocation attribute. The spool space allocation for the
SYSOUT is unchanged from what was specified at data set allocation time, either
through the SYSOUT class definition in JES or through dynamic allocation.

Example: To specify an overriding class of C, code:
KEY # LEN PARM
0018 0001 0001 C3

Overriding SYSOUT remote workstation specification - Key =
'0058'
In a JES2 environment, DUNOVSUS specifies that, upon deallocation, the SYSOUT
data set being deallocated is to be routed to a remote workstation, node, special
local, or userid. In a JES3 environment, DUNOVSUS specifies that, upon
deallocation, the SYSOUT data set being deallocated is to be routed to
ANYLOCAL, JES3-defined device name, device number, JES3 defined symbolic
group name, or NJE node. The system ignores DUNOVSUS if the data set is not a
SYSOUT data set.

When you code DUNOVSUS, # must be one, LEN is the length of the destination
name specified in PARM, up to a maximum of 8, and PARM contains the remote
workstation node, special local, userid, ANYLOCAL, device name, device number,
symbolic group name, or NJE node.

Example: To specify the remote work station USER01, code:
KEY # LEN PARM
0058 0001 0006 E4 E2 C5 D9 F0 F1

Overriding SYSOUT hold queue specification - Key = '0059'
DUNOVSHQ specifies that the SYSOUT data set being deallocated, if is a HOLD
class will be placed on the HOLD queue,, otherwise it will be placed in HOLD
status on the WRITER queue. This specification overrides the HOLD/NOHOLD
specification assigned when the data set was allocated. This key is ignored if the
data set is not a SYSOUT data set or if the data set is the internal reader. The
overriding nohold key (DUNOVSNH) is mutually exclusive with this key.

When you code this key, # must be zero; LEN and PARM are not specified.

Example: To specify hold, code:
KEY # LEN PARM
0059 0000 - -

Overriding SYSOUT user ID specification - Key = '0063'
DUNOVUID specifies that, upon deallocation, the SYSOUT data set being
deallocated is to be routed to the specified user ID, remote device, or special local.
Specifying DUNOVUID overrides the user ID, remote device, or special local
specification assigned when the data set was allocated. The system ignores
DUNOVUID in a JES3 environment, or if you specify it for a data set that is not a
SYSOUT data set.

Verb code 02 - Dynamic unallocation text units

Chapter 26. Requesting dynamic allocation functions 707

If you specify DUNOVUID, you must also specify DUNOVSUS.

When you code DUNOVUID, # must be one, LEN is the length of the destination
specified in PARM, up to a maximum of 8, and PARM contains the user ID, remote
device, or special local. The user ID can contain any EBCDIC characters, including
special characters.

Example: To specify that, upon unallocation, the SYSOUT data set is to be routed
to user ID D58-VWM at node USER01, code:
KEY # LEN PARM
0063 0001 0007 C4 F5 F8 60 E5 E6 D4
0058 0001 0006 E4 E2 C5 D9 F0 F1

Insulated DD request - Key = '0079'
DUNINSDD indicates that the insulated DD attribute was previously assigned to
this allocation and that it should be deallocated.

For a description of this key, see “Insulated DD attribute” on page 549. When you
code this key, # must be zero, and LEN and PARM are not specified.

For an unallocation by data set name request using the DUNDSNAM text unit
(X'0002'), only resources with the insulated DD attribute are deallocated when
DUNINSDD is specified; any resources that do not have the insulated DD attribute
are ignored. Alternatively, if the DUNINSDD text unit is not specified, only
resources that do not have the insulated DD attribute are deallocated; any
resources that have the insulated DD attribute are ignored

When you code the DUNINSDD text unit, you must also specify the DUNUNALC
text unit (X'0008').

This text unit is available on z/OS 1.13 and later systems with APAR OA47824
installed. When this support is available, the JESIBSAV flag in the JESCT is on. See
the IEFJESCT macro for usage in formation.

Note: To specify DUNINSDD, your program must be APF-authorized, in
supervisor state, or running with PSW key 0 - 7.

Example: To request unallocation of resources that have the insulated DD
attribute, code:
KEY # LEN PARM
0079 0000 - -

Bypass security processing - Key = '007A'
DUNNOSEC indicates that no authorization processing is to be done for this
request.

This text unit would typically be used when the caller has already performed the
appropriate authorization checks prior to invoking dynamic unallocation.

When you code this key, # must be zero, and LEN and PARM are not specified.

DUNNOSEC is mutually exclusive with the DUNPATH text unit (X'8017').

This text unit is only available on z/OS 1.13 and later systems with APAR
OA47824 installed. When this support is available, the JESIBSAV flag in the JESCT
is on. See the IEFJESCT macro for usage information.

Verb code 02 - Dynamic unallocation text units

708 z/OS V2R2 MVS Authorized Assembler Services Guide

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

|

|
|
|

Note: To specify DUNNOSEC, your program must be APF-authorized, in
supervisor state, or running with PSW key 0 - 7.

Example: To request that dynamic unallocation bypass security processing, code:
KEY # LEN PARM
007A 0000 - -

Overriding spin data set specification - Key = '8013'
DUNSPIN specifies whether the output for the SYSOUT data set is to be printed
immediately or at the end of the job. This specification overrides the SPIN value
assigned when the SYSOUT data set was allocated.

When you code DUNSPIN, both # and LEN must be 1; PARM must contain one of
the following:

X'80' Data set available for printing when it is unallocated

X'40' Data set available for printing at the end of the job.

Example: To specify that the output be printed when the data set is unallocated,
code:
KEY # LEN PARM
8013 0001 0001 80

z/OS UNIX file path specification - Key = '8017'
DUNPATH specifies the path specification for the z/OS UNIX file to be
deallocated. The pathname can contain system symbols. See the information on
using system symbols in z/OS MVS Initialization and Tuning Reference.

When you code DUNPATH, # must be 1 and LEN is the length of the z/OS UNIX
file pathname; PARM contains the z/OS UNIX file pathname. The maximum
length of the pathname is 255 characters.

Example: To specify the z/OS UNIX file pathname /u/myuid/myapp/scr.dat, code:
KEY # LEN PARM
8017 0001 0016 61 A4 61 94 A8 A4 89 84 61 94 A8 81 97 97 61 A2 83 99 4B 84 81 A3

z/OS UNIX overriding file disposition specification - Key = '801A'
DUNOVPDS specifies the file disposition of the z/OS UNIX file being deallocated.
It overrides the disposition assigned to a file when it was allocated.

When you code DUNOVPDS, # must be 1 and LEN must be 1; PARM must
contain one of the following values:
v X'04' - the file is to be deleted
v X'08' - the file is to be kept

Example: To specify that the z/OS UNIX file being deallocated is deleted, code:
KEY # LEN PARM
801A 0001 0001 04

Dynamic concatenation text units
Use verb code 03 and the text units listed in Table 89 on page 710 and described in
the following paragraphs to request dynamic concatenation processing by
DYNALLOC. You must specify DCCDDNAM to dynamically concatenate a
resource.

Verb code 02 - Dynamic unallocation text units

Chapter 26. Requesting dynamic allocation functions 709

|
|

|

|
|

|

Table 89. Verb code 03 (dynamic concatenation) – Text unit keys, mnemonics, and
functions

Hex text
unit key

Mnemonic DYNALLOC function

0001 DCCDDNAM Specifies the ddnames to be concatenated.

0004 DCCPERMC Specifies the permanently concatenated attribute.

0079 DCCINSDD Specifies an insulated DD request.

Ddname specification - Key = '0001'
DCCDDNAM specifies the ddnames that are associated with the data sets to be
concatenated. When you code DCCDDNAM, # is the number of ddnames being
specified, which must be at least 2 and can be up to a maximum of 1635 (X'663').
LEN is the length of the immediately following ddname, up to a maximum of 8,
and PARM contains the ddname.

Example: To specify concatenation of SYSLIB to MYLIB, code:
KEY # LEN PARM LEN PARM
0001 0002 0005 D4E8D3C9C2 0006 E2E8E2D3C9C2

Permanently concatenated attribute specification - Key = '0004'
DCCPERMC specifies that the concatenated group be assigned the permanently
concatenated attribute. A permanently concatenated group cannot be
deconcatenated. When you code this key, # must be zero; LEN and PARM are not
specified.

Example: To specify assignment of the permanently concatenated attribute, code:
KEY # LEN PARM
0004 0000 - -

Insulated DD request - Key = '0079'
DCCINSDD indicates that all of the resources in the concatenated group have the
insulated DD attribute.

For a description of this key, see “Insulated DD attribute” on page 549. When you
code this key, # must be zero, and LEN and PARM are not specified.

It is not possible to have a concatenated group that contains some resources with
the insulated DD attribute and other resources that do not.

This text unit is available on z/OS 1.13 and later systems with APAR OA47824
installed. When this support is available, the JESIBSAV flag in the JESCT is on. See
the IEFJESCT macro for usage in formation.

Note: To specify DCCINSDD, your program must be APF-authorized, in
supervisor state, or running with PSW key 0 - 7.

Example: To request concatenation of resources that have the insulated DD
attribute, code:
KEY # LEN PARM
0079 0000 - -

Verb code 03 - Dynamic concatenation text units

710 z/OS V2R2 MVS Authorized Assembler Services Guide

|||

|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

Dynamic deconcatenation text units
Use verb code 04 and DDCDDNAM to request dynamic deconcatenation
processing by DYNALLOC. You cannot deconcatenate a permanently concatenated
data set.

Table 90. Verb code 04 (dynamic deconcatenation) – Text unit key, mnemonic, and function

Hex text
unit key

Mnemonic DYNALLOC function

0001 DDCDDNAM Specifies the ddname of the group to be
deconcatenated.

0079 DDCINSDD Specifies an insulated DD request.

Ddname specification - Key = '0001'
DDCDDNAM specifies the ddname of the concatenated group that is to be
deconcatenated. DDCDDNAM is required for dynamic deconcatenation.

When you code DDCDDNAM, # must be one, LEN is the length of the ddname,
up to a maximum of 8, and PARM contains the ddname.

Example: To request the deconcatenation of the group of data sets associated with
the ddname DD1, code:
KEY # LEN PARM
0001 0001 0003 C4 C4 F1

Insulated DD request - Key = '0079'
DDCINSDD indicates that all of the resources in the concatenated group to be
deconcatenated have the insulated DD attribute.

For a description of this key, see “Insulated DD attribute” on page 549. When you
code this key, # must be zero, and LEN and PARM are not specified.

This text unit is available on z/OS 1.13 and later systems with APAR OA47824
installed. When this support is available, the JESIBSAV flag in the JESCT is on. See
the IEFJESCT macro for usage in formation.

Note: To specify DDCINSDD, your program must be APF-authorized, in
supervisor state, or running with PSW key 0 - 7.

Example: To request deconcatenation of resources that have the insulated DD
attribute, code:
KEY # LEN PARM
0079 0000 - -

Text units for removing the in-use attribute based on task ID
Use verb code 05 and the text units in Table 91 on page 712 and described as
follows to request that dynamic allocation remove the in-use attribute from
resources based on task-ID. You must specify either the DRITCBAD key or the
DRICURNT key to remove the in-use attribute. You cannot specify both keys for a
single remove in-use request.

Verb code 04 - Dynamic deconcatenation text unit

Chapter 26. Requesting dynamic allocation functions 711

|

|||

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|

Table 91. Verb Code 05 (Remove In-Use Processing Based on Task-ID) – Text Unit Keys,
Mnemonics, and Functions

Hex Text
Unit Key

Mnemonic DYNALLOC Function

0001 DRITCBAD Removes the “in-use” attribute from all resources
associated with the specified TCB address.

0002 DRICURNT Removes the “in-use” attribute from all resources in
the address space associated with tasks that have
terminated.

TCB address specification - Key = '0001'
DRITCBAD specifies that the in-use attribute is to be removed from all resources
associated with the specified TCB address. The current task option key
(DRICURNT) is mutually exclusive with this key.

When you code DRITCBAD, # must be one, LEN must be four, and PARM
contains the TCB address.

Example: To specify the TCB address 22AC0, code:
KEY # LEN PARM
0001 0001 0004 00022AC0

Current task option specification - Key = '0002'
DRICURNT specifies that the in-use attribute is to be removed from all resources
in the address space associated with tasks that have terminated. This key is
mutually exclusive with the TCB address key (DRITCBAD). When you code
DRICURNT, # must be zero; LEN and PARM are not specified.

Example: To specify the current task option, code:
KEY # LEN PARM
0002 0000 - -

Ddname allocation text units
Use verb code 06 and the text units listed in Table 92 and described as follows to
request ddname allocation processing. In ddname allocation, you are specifying
that dynamic allocation is to use a particular existing allocation to satisfy your
allocation request. You identify the data set you wish by specifying the ddname
associated with it.

See “Using ddname allocation” on page 548 for requirements and restrictions when
allocating resources by ddname.

Table 92. Verb Code 06 (Ddname Allocation) – Text Unit Keys, Mnemonics, and Functions

Hex Text
Unit Key

Mnemonic DYNALLOC Function

0001 DDNDDNAM Specifies the ddname to be allocated.
0002 DDNRTDUM Requests a dummy data set indication.

Ddname specification - Key = '0001'
DDNDDNAM specifies the ddname of the resource to be allocated. It is required
for dynamic allocation by ddname.

Verb code 05 - Remove in-use attribute by task ID text units

712 z/OS V2R2 MVS Authorized Assembler Services Guide

When you code DDNDDNAM, # must be one, LEN contains the length of the
ddname, up to a maximum of 8, and PARM contains the ddname.

Example: To specify the ddname SYSLIB, code:
KEY # LEN PARM
0001 0001 0006 E2 E8 E2 D3 C9 C2

Return DUMMY indication specification - Key = '0002'
Code DDNRTDUM to request the return of an indication if the ddname specified
in DDNDDNAM is associated with a dummy data set. When you code
DDNRTDUM, # and LEN must be one, and PARM is a one-byte field. DYNALLOC
sets PARM as follows:

X'80' The ddname is associated with a dummy data set

X'00' Otherwise

Example: To specify that the DUMMY indication be returned, code:
KEY # LEN PARM
0002 0001 0001 -

Dynamic information retrieval text units
Use verb code 07 and the text units listed in Table 93 on page 714 and described as
follows to request that dynamic allocation return certain information about the
allocated resources. You must specify the DINDDNAM key, the DINDSNAM key,
the DINPATH key, or the DINRELNO key to request information retrieval. You
cannot specify more than one of these keys for a single information retrieval
request.

Keys X'0001', X'0002', and X'000F', and X'8017' are input keys. You use them to
supply information to the system. The remaining keys are output keys, which the
system uses to return the information you requested.

If you request that the system return information that does not exist, the system
sets the length field for that parameter to zero, and there will be no data field for
that parameter. The few exceptions to this rule are noted in the individual text unit
descriptions.

For example, if you request information about the storage class of a data set, but
that data set is not SMS-managed, the system returns zero in the length field of the
text unit.

For either verb code 01 or verb code 07 information retrieval, the data returned in
the PARM field is valid only for the number of bytes returned in the LEN field. If
on input the PARM field is longer than the information returned on output, the
remaining bytes in PARM might contain data from previous invocations of
DYNALLOC. The information retrieval function does not pad the remaining bytes
with blanks.

For example, on Input the text unit initializes the PARM field to “AAAAAAAA”.
On Output the text unit contains the name “MYDD” and a LEN of X'0004'. Beyond
the valid length (4 bytes) of “MYDD”, the PARM field might contain data from the
previous request (“MYDDAAAA”).

KEY # LEN PARM
Input: 0004 0001 0008 C1C1C1C1C1C1C1C1

Output: 0004 0001 0004 D4E8C4C4C1C1C1C1

Verb code 06 - Dynamic ddname allocation text units

Chapter 26. Requesting dynamic allocation functions 713

When you request information for multiple parameters, the LEN and PARM fields
of the next parameter immediately follow the information returned from the
previous parameter. For example, the Output text unit below contains a second
LEN and PARM pair. The request returns the information “X” in the PARM2 field.
The information in the fields is contiguous; spaces are shown in the example only
for readability.
KEY # LEN1 PARM1 LEN2 PARM2
Output: nnnn 0002 0004 D4E8C4C4 0001 E7

Table 93. Verb Code 07 (Dynamic Information Retrieval) – Text Unit Keys, Mnemonics, and
Functions

Hex Text
Unit Key

Mnemonic DYNALLOC Function (Input)

0001 DINDDNAM Specifies the ddname identifier of the requested
information.

0002 DINDSNAM Specifies the data set for which the information is
requested.

0004 DINRTDDN Requests the associated ddname.
0005 DINRTDSN Requests the data set name.
0006 DINRTMEM Requests the PDS member name.
0007 DINRTSTA Requests the data set's status.
0008 DINRTNDP Requests the data set's normal disposition.
0009 DINRTCDP Requests of the data set's conditional disposition.
000A DINRTORG Requests the data set's organization.
000B DINRTLIM Requests the number of resources that must be

deallocated before making a new allocation.
000C DINRTATT Requests the special attribute indications.
000D DINRTLST Requests a last relative entry indication.
000E DINRTTYP Requests the data set's type (terminal or dummy).
000F DINRELNO Specifies the desired allocation information retrieval

by relative request number.
0010 DINRTVOL Requests the return of the first volume serial number

associated with the specified allocation.
0011 DINRTDDX Requests the return of the ddname associated with

the specified allocation.
0012 DINRLPOS Requests the return of the relative position of a data

set within a concatenated group.
8017 DINPATH Specifies the pathname of the z/OS UNIX file for

which information is requested.
C003 DINRCNTL Requests the JCL CNTL statement reference.
C004 DINRSTCL Requests the storage class of a new SMS-managed

data set.
C005 DINRMGCL Requests the management class of a new

SMS-managed data set.
C006 DINRDACL Requests the data class of a new data set.
C00B DINRRECO Requests the organization of a new VSAM data set.
C00C DINRKEYO Requests the key offset of a new VSAM data set.
C00D DINRREFD Requests the DD name specified by the REFDD

parameter of the DD statement.
C00E DINRSECM Requests the name of the RACF security data set

profile.
C00F DINRLIKE Requests the data set name on the LIKE parameter.
C010 DINRAVGR Requests the value of the unit of allocation for a

data set.
C012 DINRDSNT Requests the data set type, such as PDS.
C013 DINRSPIN Requests the spin data set specification.

Verb code 07 - Dynamic information retrieval text units

714 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 93. Verb Code 07 (Dynamic Information Retrieval) – Text Unit Keys, Mnemonics, and
Functions (continued)

Hex Text
Unit Key

Mnemonic DYNALLOC Function (Input)

C014 DINRSEGM Requests the number of logical, line-mode pages (the
segment) to be produced for a SYSOUT data set
before the segment becomes eligible for immediate
printing.

C017 DINRPATH Requests the return of the z/OS UNIX file path
specification.

C018 DINRPOPT Requests the return of the z/OS UNIX file options.
C019 DINRPMDE Requests the return of z/OS UNIX file access

attributes.
C01A DINRPNDS Requests the return of the disposition of the z/OS

UNIX file during normal step termination.
C01B DINRPCDS Requests the return of the disposition of the z/OS

UNIX file during abnormal step termination.
C01D DINRFDAT Requests the return of the organization of a z/OS

UNIX file.
C02A DINRSPI2 Requests the SPIN interval specification.
C02B DINRSYML Requests the SYMLIST specification.
C02C DINRDSNV Requests the DSNTYPE version.
C02D DINRMAXG Requests the value of MAXGENS.
C02E DINRGDGO Requests the return of the order in which the

individual generation data sets (GDSs) are
concatenated.

Ddname specification - Key = '0001'
DINDDNAM specifies the ddname associated with the allocation you are
requesting information about. It is mutually exclusive with the dsname
(DINDSNAM), relative entry (DINRELNO), and pathname (DINPATH) keys. When
you code DINDDNAM, # must be one, LEN is the length of the ddname, and
PARM contains the ddname.

Example: To request the return of the z/OS UNIX file pathname that is allocated to
the ddname DD1, code:
KEY # LEN PARM
0001 0001 0003 C4 C4 F1
C017 0001 0016 00...00...00...00...

Dsname specification - Key = '0002'
DINDSNAM specifies the dsname of the allocated resource about which you are
requesting information. The data set name can contain special characters if the data
set name is enclosed in apostrophes. The dsname can contain system symbols. See
the topic on using system symbols and system symbols in z/OS MVS JCL Reference
for more information. If the data set you specify is allocated to more than one
ddname, Dynamic Information Retrieval will retrieve information based on the
first ddname allocated to the specified dsname. It is mutually exclusive with the
ddname (DINDDNAM), relative entry (DINRELNO), and pathname (DINPATH)
keys. When you code DINDSNAM, # must be one, LEN is the length of the
dsname, and PARM contains the dsname.

The maximum length of the data set name is 44 characters, excluding any
enclosing apostrophes and compressing any double apostrophes within the data
set name.

Verb code 07 - Dynamic information retrieval text units

Chapter 26. Requesting dynamic allocation functions 715

Example: To specify the dsname MYDATA, code:
KEY # LEN PARM
0002 0001 0006 D4 E8 C4 C1 E3 C1

Return ddname specification - Key = '0004'
Code DINRTDDN to request the return of the ddname associated with the
specified allocation. If the data set you specify is a member of a concatenated
group, and is not the first member, there is no ddname associated with it. If you
need to retrieve information for a data set that is a member of a concatenated
group, consider using the DINRTDDX text unit instead.

When you code this key, # must be one, LEN must be at least the length of the
ddname, and can be longer, up to a maximum of 8. The PARM field must be the
length specified by the value in LEN. Upon return to your program, PARM will
contain the requested ddname, and LEN will be set to its length.

Example: To request the return of the ddname, code:
KEY # LEN PARM
0004 0001 0008 --------

Return dsname specification - Key = '0005'
Code DINRTDSN to request the return of the dsname of the specified allocation.
When you code this key, # must be one, LEN must be at least the length of the
dsname, and can be longer, up to a maximum of 255 characters. The PARM field
must be the length specified by the value in LEN. Upon return to your program,
PARM will contain the dsname and LEN will be set to its length.

Example: To request that the dsname be returned, code:
KEY # LEN PARM
0005 0001 002C --------

Return member name specification - Key = '0006'
Code DINRTMEM to request the return of the member name associated with the
specified allocation. When you code this key, # must be one, LEN must be at least
the length of the member name, and can be longer, up to a maximum of 255
characters. The PARM field must be the length specified by the value in LEN.
Upon return to your program, PARM will contain the member name and LEN will
be set to its length (or to zero, if no member name is associated with the
allocation.)

Example: To request that the member name be returned, code:
KEY # LEN PARM
0006 0001 0008 --------

Return status specification - Key = '0007'
Code DINRTSTA to request the return of the data set status of the specified
allocation. When you code this key, # and LEN must be one, and PARM is a
one-byte field. Upon return to your program, the PARM field will contain one of
the following values:

X'01' OLD

X'02' MOD

X'04' NEW

X'08' SHR

Verb code 07 - Dynamic information retrieval text units

716 z/OS V2R2 MVS Authorized Assembler Services Guide

Example: To request that the status be returned, code:
KEY # LEN PARM
0007 0001 0001 -

Return normal disposition specification - Key = '0008'
Code DINRTNDP to request the return of the normal disposition of the specified
resource. When you code this key, # and LEN must be one. PARM is a one-byte
field. Upon return to your program, PARM will contain one of the following
values:

X'01' UNCATLG

X'02' CATLG

X'04' DELETE

X'08' KEEP

X'10' PASS

Example: To request that the normal disposition be returned, code:
KEY # LEN PARM
0008 0001 0001 -

Return conditional disposition specification - Key = '0009'
Code DINRTCDP to request the return of the conditional disposition of the
specified resource. When you code this key, # and LEN must be one. PARM is a
one-byte field. Upon return to your program, PARM will contain one of the
following values. Note that the system does not return 0 in the LEN field when the
requested information is not defined.

X'00' Conditional disposition not defined

X'01' UNCATLG

X'02' CATLG

X'04' DELETE

X'08' KEEP

X'10' PASS

Example: To request that the conditional disposition be returned, code:
KEY # LEN PARM
0009 0001 0001 -

Return data set organization specification key = '000A'
Code DINRTORG to request the return of the data set organization (DSORG) of the
specified resource. When you code this key, # must be one, LEN must be two, and
PARM is a two-byte field. Upon return to your program, PARM will contain one of
the following. Note that the system does not return 0 in the LEN field when the
requested information is not defined.

X'0000'
Dynamic allocation cannot determine the DSORG

X'0004'
TR

X'0008'
VSAM

Verb code 07 - Dynamic information retrieval text units

Chapter 26. Requesting dynamic allocation functions 717

X'0020'
TQ

X'0040'
TX

X'0080'
GS

X'0200'
PO

X'0300'
POU

X'0400'
MQ

X'0800'
CQ

X'1000'
CX

X'2000'
DA

X'2100'
DAU

X'4000'
PS

X'4100'
PSU

X'8000'
IS

X'8100'
ISU

Example: To request that the data set organization be returned, code:
KEY # LEN PARM
000A 0001 0002 --

Return limit specification - Key = '000B'
Code DINRTLIM to request the return of the number of permanently allocated
resources that must be deallocated before a new allocation can be made when the
control limit has been exceeded. See “Control limit” on page 547 and “Permanently
allocated attribute” on page 548 for further explanation.

When you code this key, # must be one, LEN must be two, and PARM is a
two-byte field. Upon return to your program, PARM is set to the number of
resources that need to be deallocated. Note that the system does not return 0 in the
LEN field when the requested information is not defined.

Example: To request that the number of not-in-use data sets over the control limit
be returned, code:
KEY # LEN PARM
000B 0001 0002 --

Verb code 07 - Dynamic information retrieval text units

718 z/OS V2R2 MVS Authorized Assembler Services Guide

If three data sets must be deallocated, dynamic allocation returns DINRTLIM as
follows:
KEY # LEN PARM
000B 0001 0002 0003

Return dynamic allocation attribute specification - Key = '000C'
Code DINRTATT to request indications of the attributes assigned to the specified
resource. When you code this key, # and LEN must be one, and PARM is a
one-byte field. Upon return to your program, PARM is set as follows:

Bit 0 On, if permanently concatenated

Bit 1 On, if in use

Bit 2 On, if permanently allocated

Bit 3 On, if convertible

Bit 4 On, if dynamically allocated

Bit 5 On, if insulated DD

Bits 6-7
Not an intended programming interface.

Example: To request return of the data set attributes, code:
KEY # LEN PARM
000C 0001 0001 --

If the allocation has the in-use and permanently allocated attributes, PARM
contains the following on return:
KEY # LEN PARM
000C 0001 0001 60

Return last entry specification - Key = '000D'
Code DINRTLST to determine if the relative entry request number, ddname, or
dsname you specify is the last relative entry. When you code DINRTLST, # and
LEN must be one, and PARM is a one-byte field. Upon return to your program,
PARM contains one of the following values:

X'80' Last relative entry

X'00' Otherwise

Example: To request the return of the last entry indicator, code:
KEY # LEN PARM
000D 0001 0001 -

Return data set type specification - Key = '000E'
Code DINRTTYP to determine the type of the specified data set. When you code
this key, # and LEN must be one, and PARM is a one-byte field. Upon return to
your program, PARM contains one of the following values:

X'80' DUMMY data set

X'40' Terminal allocation

X'20' SYSIN data set

X'10' SYSOUT data set

X'00' otherwise

Verb code 07 - Dynamic information retrieval text units

Chapter 26. Requesting dynamic allocation functions 719

||

|

Example: To request return of the specified data set type, code:
KEY # LEN PARM
000E 0001 0001 -

Relative request number specification - Key = '000F'
DINRELNO specifies the relative request number of the allocation you are
requesting information about. It is mutually exclusive with the ddname
(DINDDNAM), dsname (DINDSNAM), and pathname (DINPATH) keys. When
you code DINRELNO, # must be one, LEN must be two, and PARM contains the
relative number.

Example: To specify that information is to be returned about your tenth
DYNALLOC request, code:
KEY # LEN PARM
000F 0001 0002 000A

Return first volume serial specification - Key = '0010'
Code DINRTVOL to request the return of the first volume serial number associated
with a specified allocated data set. When you code DINRTVOL, # must be one,
LEN must be at least the length of the volume serial number but no more than 6.
The PARM field will be the length specified by the value in LEN. Upon return to
your program, PARM will contain the requested volume serial number and LEN
will be set to its length.

Example: To request the return of the first volume serial number code:
KEY # LEN PARM
0010 0001 0006 --------

Return ddname extended specification - Key = '0011'
Code DINRTDDX to request the return of the ddname associated with the
specified allocation. If the data set you specify is a member of a concatenated
group, this key returns the ddname associated with the first data set in the
concatenation. Otherwise, this key returns the same information as the DINRTDDN
text unit.

When you code this key, # must be one, LEN must be at least the length of the
ddname, and can be longer, up to a maximum of 8. The PARM field must be the
length specified by the value in LEN. Upon return to your program, PARM will
contain the requested ddname, and LEN will be set to its length.

Example: To request the return of the ddname, code:
KEY # LEN PARM
0011 0001 0008 --------

Return relative position specification - Key = '0012'
Code DINRLPOS to request the return of the relative position of a data set within
a concatenated group. The first data set within a concatenated group has a relative
position of zero. Likewise, if the data set you specify is not a member of a
concatenated group, zero is returned.

This text unit can be used in combination with the DINRTDDX text unit to
determine the ddname and relative position of a data set within a concatenated
group.

Verb code 07 - Dynamic information retrieval text units

720 z/OS V2R2 MVS Authorized Assembler Services Guide

When you code this key, # must be one, LEN must be 2, and PARM is a two-byte
field. Upon return to your program, PARM will contain the relative position of the
data set.

Example: To request the return of the relative position within a concatenated
group, code:
KEY # LEN PARM
0012 0001 0002 ----

z/OS UNIX file path specification - Key = '8017'
DINPATH specifies the pathname of the z/OS UNIX file for which you are
requesting information. It is mutually exclusive with the ddname (DINDDNAM),
dsname (DINDSNAM), and relative entry (DINRELNO) keys. The pathname can
contain system symbols. See the information on using system symbols and system
symbols in z/OS MVS JCL Reference for more information.

When you code DINPATH, # must be 1, LEN is the length of the pathname, and
PARM contains the pathname.

Example: To specify the z/OS UNIX file pathname /u/myuid/myapp/scr.dat, code:
KEY # LEN PARM
8017 0001 0016 61 A4 61 94 A8 A4 89 84 61 94 A8 81 97 97 61 A2 83 99 4B 84 81 A3

CNTL specification - Key = 'C003'
DINRCNTL requests the name of the JCL CNTL statement being referenced. When
you code DINRCNTL, # must be one, LEN must be at least 26 and can be longer,
and the PARM field is the length specified by the value in LEN.

If a CNTL statement reference exists, the system returns the name into PARM. If
the name is fewer than 26 bytes long, it is left-justified and padded to the right
with blanks. The system also returns 26 into LEN.

Example: To request the label of the referenced JCL CNTL statement, code:
KEY # LEN PARM
C003 0001 001A - - - ...

Return storage class specification - Key = 'C004'
DINRSTCL requests the storage class of the specified SMS-managed data set. When
you code DINRSTCL, # must be 1, LEN must be at least 8 and can be longer, and
the PARM field must be the length specified by the value in LEN.

If a storage class is associated with the data set, the system returns the storage
class identifier into PARM. If the identifier is fewer than 8 bytes long, it is
left-justified and padded to the right with blanks. The system also returns 8 into
LEN.

Example: To request the storage class of the specified SMS-managed data set, code:
KEY # LEN PARM
C004 0001 0008 - - - - - - - -

Return management class specification - Key = 'C005'
DINRMGCL requests the management class of the specified SMS-managed data
set. When you code DINRMGCL, # must be 1, LEN must be at least 8 and can be
longer, and the PARM field must be the length specified by the value in LEN.

Verb code 07 - Dynamic information retrieval text units

Chapter 26. Requesting dynamic allocation functions 721

If a management class is associated with the data set, the system returns the
management class identifier into PARM. If the identifier is fewer than 8 bytes long,
it is left-justified and padded to the right with blanks. The system also returns 8
into LEN.

Example: To request the management class of the specified SMS-managed data set,
code:
KEY # LEN PARM
C005 0001 0008 - - - - - - - -

Return data class specification - Key = 'C006'
DINRDACL requests the data class of the specified SMS-managed data set. When
you code DINRDACL, # must be 1, LEN must be at least 8 and can be longer, and
the PARM field must be the length specified by the value in LEN.

If a data class is associated with the data set, the system returns the data class
identifier into PARM. If the identifier is fewer than 8 bytes long, it is left-justified
and padded to the right with blanks. The system also returns 8 into LEN.

Example: To request the data class of the specified data set, code:
KEY # LEN PARM
C006 0001 0008 - - - - - - - -

Return record organization specification - Key = 'C00B'
DINRRECO requests the organization of the records in the specified VSAM data
set. When you code DINRRECO, # must be 1, LEN must be at least 1 and can be
longer, and the PARM field must be the length specified by the value in LEN.

The record organization is available only when the data set is first allocated (that
is, when the data set has a disposition of NEW). If the record organization is
available, the system returns the record organization into PARM. The system also
returns 1 into the LEN field. The value returned in PARM is one of the following:

X'80' VSAM key-sequenced data set (KS)

X'40' VSAM entry-sequenced data set (ES)

X'20' VSAM relative record data set (RR)

X'10' VSAM linear space data set (LS)

Example: To determine how records are organized in the specified VSAM data set,
code:
KEY # LEN PARM
C00B 0001 0001 -

Return key offset specification - Key = 'C00C'
DINRKEYO requests the key offset. The key offset is the position of the first byte
of the key in each logical record of the specified VSAM data set. If the key is at the
beginning of the logical record, the offset is zero. When you code DINRKEYO, #
must be 1, LEN must be at least 4 and can be longer, and the PARM field must be
the length specified by the value in LEN.

The system returns into PARM a 4 byte hexadecimal number representing the
offset of the key. If there is a key offset associated with the data set, it stores 4 into
LEN. The value of the offset is less than or equal to 65535 bytes.

Verb code 07 - Dynamic information retrieval text units

722 z/OS V2R2 MVS Authorized Assembler Services Guide

Example: To determine the key offset in a record of the specified VSAM data set,
code:
KEY # LEN PARM
C00C 0001 0004 - - - -

Return copy DD specification - Key = 'C00D'
DINRREFD requests the name of the JCL DD statement from which the attributes
of the specified data set were copied. When you code DINRREFD, # must be 1,
LEN must be at least 26 and can be longer, and the PARM field must be the length
specified by the value in LEN.

If there is a JCL DD statement from which attributes were copied, the system
returns the name of the DD statement into PARM. The name can be a ddname, a
stepname.ddname, or a stepname.procstepname.ddname where ddname is the label on a
JCL DD statement, and stepname and procstepname are labels that appear on JCL
EXEC statements. If the name is fewer than 26 bytes long, it is left-justified and
padded to the right with blanks. The system also returns 26 into LEN.

Example: To determine the name of the JCL DD statement from which the
attributes of the specified data set were copied, code:
KEY # LEN PARM
C00D 0001 001A - - -...

Return copy profile specification - Key = 'C00E'
DINRSECM requests the name of the RACF profile from which the RACF profile
of the specified data set was copied, and to optionally request an indication of
whether the profile was defined generically.

The first LEN and PARM pair in the text unit return the dsname of the profile to
be copied. If coded, the second LEN and PARM pair return an indication of
whether the profile was defined generically, such as a profile defined with the
GENERIC subparameter on the JCL DD statement SECMODEL parameter.

When you code DINRSECM, # is the number of LEN and PARM pairs, LEN1 at
least 44 bytes long, and can be longer, and PARM1 is a field the length of the value
specified in LEN1.

If coded, LEN2 must be at least one byte, and can be longer, and PARM2 is a field
the length of the value specified in LEN2.

If there is a copy profile associated with the data set, the system returns the length
of the dsname into LEN1 and the dsname into PARM1. If the name is fewer than
44 bytes long, it is left-justified and padded to the right with blanks. The system
also returns 44 into LEN.

If LEN2 and PARM2 are coded, the system also returns an indication of whether
the profile is generic. For a generic profile, the system returns 1 in LEN2 and X'80'
in PARM2. For a profile that is not generic, the system returns 0 in LEN2.

Example: To determine the dsname of the RACF profile that was used to supply
the profile of the specified data set, code:
KEY # LEN1 PARM1
C00E 0001 002C - - - ...

Verb code 07 - Dynamic information retrieval text units

Chapter 26. Requesting dynamic allocation functions 723

Example: To determine the dsname of the RACF profile that was used to supply
the profile of the specified data set, and to request and indication of whether the
data set is generic, code:
KEY # LEN1 PARM1 LEN2 PARM2
C00E 0002 002C - - - ... 0001 -

Return copy model specification - Key = 'C00F'
DINRLIKE requests the name of the model data set from which the attributes of
the specified data set were copied.

When you code DINRLIKE, # must be 1, LEN must be at least 44 and can be
longer, and the PARM field must be the length specified by the value in LEN. If
there is a model data set associated with the data set, the system returns the
dsname into PARM. If the dsname is fewer than 44 bytes long, it is left-justified
and padded to the right with blanks. The system also returns 44 into LEN.

Example: To determine the dsname of the model data set from which the attributes
of the specified data set were copied, code:
KEY # LEN PARM
C00F 0001 002C - - - ...

Return average record specification - Key = 'C010'
DINRAVGR requests the allocation unit that was used when the specified data set
was allocated. When you code DINRAVGR, # must be 1, LEN must be at least 1
and can be longer, and the PARM field must be the length specified by the value
in LEN.

If there is an average record length associated with the data set, the system returns
a code into PARM. The system also returns 1 into LEN. The code returned in
PARM is one of the following:

X'80' Single-record units (U)

X'40' Thousand-record units (K)

X'20' Million-record units (M)

Example: To determine the unit of allocation used to allocate the specified data set,
code:
KEY # LEN PARM
C010 0001 0001 - - - ...

Return data set type specification - Key = 'C012'
Code DINRDSNT to request the return of the data set type.

When you code DINRDSNT, # must be 1 and LEN must be at least 1 and can be
longer; the PARM field must be the length specified by the value in LEN. If a data
set type specification is associated with the allocation, the system returns the data
set type in PARM and 0001 in LEN. PARM will contain one of the following:

X'80' Represents a library (PDSE).

X'40' Represents a partitioned data set (PDS).

X'20' Represents a FIFO special file (PIPE).

X'10' Represents an HFS data set (HFS). This type of UNIX file system is
different from a z/OS File System (zFS) that resides in a linear data set.

X'08' Represents an extended format required data set (EXTREQ).

Verb code 07 - Dynamic information retrieval text units

724 z/OS V2R2 MVS Authorized Assembler Services Guide

X'04' Represents an extended format preferred data set (EXTPREF).

X'02' Represents a basic format data set (BASIC).

X'01' Represents a large format data set (LARGE = greater than 65,535 tracks).

Example: To request the data set type, code:
KEY # LEN PARM
C012 0001 0001 - - - ...

Note: For this text unit, the information specified by the user in JCL or via
dynamic allocation text units is retrieved via the Scheduler JCL Facility (SJF). If the
information was not available, no information will be returned.

Return spin data set specification - Key = 'C013'
Code DINRSPIN to request the return of the spin data set specification.

When you code DINRSPIN, # must be 1, LEN must be at least 1, and can be
longer, and the PARM field must be the length specified by the value in LEN.

If there is a spin data set specification associated with the data set, the system
returns 1 into LEN and one of the following into PARM:

X'80' Data set available for printing when it is unallocated

X'40' Data set available for printing at the end of the job

Example: To request the spin data set specification, code:
KEY # LEN PARM
C013 0001 0001 -

Return segment spin data set specification - Key = 'C014'
Code DINRSEGM to request the return of the number of logical, line-mode pages
(the segment) to be produced for a SYSOUT data set before the segment becomes
eligible for immediate printing. When you code DINRSEGM, # must be 1, LEN
must be at least 4, and the PARM field must be the length specified by the value in
LEN.

If there is a segment spin specification associated with the data set, the system
returns a positive hexadecimal integer from X'00000001' to X'0001869F' (equivalent
decimal value from 1 to 99,999) into PARM. The system also returns 4 into LEN.

Example: To request the return of the value of the segment, code:
KEY # LEN PARM
C014 0001 0004 - - - -

Note that for text unit keys 'C003' = 'C014' PARM remains unchanged if no data is
available for the request.

Return z/OS UNIX file path specification - Key = 'C017'
DINRPATH requests the return of the path specification for the z/OS UNIX file
associated with the specified allocation.

When you code DINRPATH, # must be 1 and LEN must be at least the length of
the pathname and can be longer, and the PARM field must be the length specified
by the value in LEN.

Verb code 07 - Dynamic information retrieval text units

Chapter 26. Requesting dynamic allocation functions 725

If a pathname is associated with the allocation, the system returns the pathname in
PARM and its length in LEN.

Example: To request the return of the z/OS UNIX file pathname for ddname
MYDD, code:

Input:
KEY # LEN PARM
0001 0001 0004 D3 E8 C4 C4
C017 0001 00FF 00 00...00...00...00...

Output:
KEY # LEN PARM
C017 0001 0016 61 A4 61 94 A8 A4 89 84 61 94 A8 81 97 97 61 A2 83 99 4B 84 81 A3

The retrieved output indicates that pathname /u/myuid/myapp/scr.dat is associated
with MYDD.

Return z/OS UNIX file options - Key = 'C018'
DINRPOPT requests the return of the options for the z/OS UNIX file associated
with the specified allocation.

When you code DINRPOPT, # must be 1 and LEN must be at least 4 and can be
longer, and the PARM field must be the length specified by the value in LEN.

If there are file options associated with the allocation, the system returns the file
options in PARM and 0004 in LEN. PARM will contain one of the following values
or an “inclusive OR” result from any combination of the following values:

Table 94. DINRPOPT Options
Four-byte Hex Integers JCL Equivalent

X'00000080' OCREAT
X'00000040' OEXCL
X'00000020' ONOCTTY
X'00000010' OTRUNC
X'00000008' OAPPEND
X'00000004' ONONBLOCK
X'00000003' ORDWR
X'00000002' ORDONLY
X'00000001' OWRONLY

Example: To request the return of the z/OS UNIX file options for
/u/myuid/myapp/scr.dat, code:

Input:
KEY # LEN PARM
8017 0001 0016 61 A4 61 94 A8 A4 89 84 61 94 A8 81 97 97 61 A2 83 99 4B 84 81 A3
C018 0001 0004 00000000

Output:
KEY # LEN PARM
C018 0001 0004 000000C3

Verb code 07 - Dynamic information retrieval text units

726 z/OS V2R2 MVS Authorized Assembler Services Guide

The retrieved information indicates a file access mode that is “create the file if it
does not already exist with the intent to read and write the file” (the “inclusive
OR” expression for OCREAT+OEXCL+ORDWR).

Return z/OS UNIX file access attributes - Key = 'C019'
DINRPMDE requests the return of the file options for the z/OS UNIX file being
dynamically allocated.

When you code DINRPMDE, # must be 1 and LEN must be at least 4 and can be
longer, and the PARM field must be the length specified by the value in LEN.

If there are file options associated with the allocation, the system returns the file
options in PARM and 0004 in LEN. PARM will contain one of the following values
or an “inclusive or” result from any combination of the following values:

Table 95. DINRPMDE Attributes
Four-byte Hex Integers JCL Equivalent

X'00000800' SISUID
X'00000400' SISGID
X'00000100' SIRUSR
X'00000080' SIWUSR
X'00000040' SIXUSR
X'000001C0' SIRWXU
X'00000020' SIRGRP
X'00000010' SIWGRP
X'00000008' SIXGRP
X'00000038' SIRWXG
X'00000004' SIROTH
X'00000002' SIWOTH
X'00000001' SIXOTH
X'00000007' SIRWXO

Example: To request the return of the z/OS UNIX file access attributes for
/u/myuid/myapp/scr.dat, code:

Input:
KEY # LEN PARM
8017 0001 0016 61 A4 61 94 A8 A4 89 84 61 94 A8 81 97 97 61 A2 83 99 4B 84 81 A3
C019 0001 0004 00000000

Output:
KEY # LEN PARM
C019 0001 0004 000000A0

The retrieved information indicates a file access attribute allowing the owner of the
file to write the file and users in the same file group class to read the file (the
“inclusive OR” expression for SIWUSR+SIRGRP).

Return z/OS UNIX file normal disposition specification - Key =
'C01A'
DINRPNDS requests the return of the normal disposition for the z/OS UNIX file.

When you code DINRPNDS, # must be 1 and LEN must be at least one and can be
longer, and the PARM field must be the length specified by the value in LEN.

Verb code 07 - Dynamic information retrieval text units

Chapter 26. Requesting dynamic allocation functions 727

If there is a normal file disposition associated with the allocation, the system
returns the disposition in PARM and 0001 in LEN. PARM will contain one of the
following values:
v X'04' - the file is to be deleted
v X'08' - the file is to be kept

Example: To request the return of the z/OS UNIX file normal disposition for
/u/myuid/myapp/scr.dat, code:

Input:
KEY # LEN PARM
8017 0001 0016 61 A4 61 94 A8 A4 89 84 61 94 A8 81 97 97 61 A2 83 99 4B 84 81 A3
C01A 0001 0001 00

Output:
KEY # LEN PARM
C01A 0001 0001 04

The retrieved information indicates a normal disposition of delete for the file.

Return z/OS UNIX file abnormal disposition specification - Key =
'C01B'
DINRPCDS requests the return of the abnormal disposition for the z/OS UNIX
file.

When you code DINRPCDS, # must be 1 and LEN must be at least one and can be
longer, and the PARM field must be the length specified by the value in LEN.

If there is an abnormal file disposition associated with the allocation, the system
returns the disposition in PARM and 0001 in LEN. PARM will contain the
following values:
v X'04' - the file is to be deleted
v X'08' - the file is to be kept

Example: To request the return of the z/OS UNIX file abnormal disposition for
/u/myuid/myapp/scr.dat, code:

Input:
KEY # LEN PARM
8017 0001 0016 61 A4 61 94 A8 A4 89 84 61 94 A8 81 97 97 61 A2 83 99 4B 84 81 A3
C01B 0001 0001 00

Output:
KEY # LEN PARM
C01B 0001 0001 08

Note: The conditional disposition is KEEP for this file.

Return organization of a z/OS UNIX file - Key = 'C01D'
DINRFDAT requests the return of the organization of an z/OS UNIX file.

When you code DINRFDAT, # must be 1, LEN must be at least 1 and can be
longer, and the PARM field must be the length specified by the LEN value. If there

Verb code 07 - Dynamic information retrieval text units

728 z/OS V2R2 MVS Authorized Assembler Services Guide

is an organization associated with the allocation, the system returns the
organization in PARM and 0001 in LEN. PARM will contain one of the following
values:
v X'80' - the z/OS UNIX file organization is binary — records not delimited.
v X'40' - the z/OS UNIX file is text — records delimited by EBCDIC newline

characters (x'15').
v X'20' - the z/OS UNIX file is organized into records that have prefixes. Each

record prefix contains the length of the record that follows. On output, the
access method inserts a record prefix at the beginning of each record. On input,
the access method uses the record prefix to determine the length of each record.
The access method does not return the prefix as part of the record. Code
FILEDATA=RECORD when you cannot code FILEDATA=TEXT because your
data might contain bytes that are considered delimiters.

Example: To request the return of the organization of the z/OS UNIX file
/u/myuid/scr.dat, code:

Input:
KEY # LEN PARM
8017 0001 0010 61 A4 61 94 A8 A4 89 84 61 A2 83 99 4B 84 81 A3
C01D 0001 0001 00

Output:
KEY # LEN PARM
C01D 0001 0001 80

The retrieved information indicates a file organization of binary.

Return spin of interval specification - Key = 'C02A'
Code DINRSPI2 to request the return of the spin interval specification.

When you code DINRSPI2, # must be 1, LEN must be 3 to 8 and the PARM field is
the character (EBCDIC) representation of the SPIN interval, such as F9F9F9 for
'999' or F1F27AF0F0 for '12:00'. If a spin data set specification is associated with the
data set, the system returns the PARM length into LEN and the string specified for
DALSPI2 (or the second parameter of the SPIN keyword value on JCL DD
statement) in PARM: See “SPIN interval for the allocated SYSOUT data set - Key =
'802A'” on page 673 for valid strings.

Example: To request the return of the SPIN interval for the DD statement with
name AA1, code:

Input:
KEY # LEN PARM
0001 0001 0008 C1 C1 F1 40 40 40 40 40
C02A 0001 0008

Output:
KEY # LEN PARM
0001 0001 0008 C1 C1 F1 40 40 40 40 40
C02A 0001 0005 F0 F1 7A F0 F0

Note that the string is not validated until passed to the job entry subsystem
responsible for the SYSOUT allocation.

Verb code 07 - Dynamic information retrieval text units

Chapter 26. Requesting dynamic allocation functions 729

Return symbol list on a DD statement - Key = 'C02B'
Code DINSYML to request the list of symbol names to be passed to JES2 when an
internal reader is allocated.

When you code DINSYML, # must be the number of symbol names to be returned,
from 1 to a maximum of 128 (X'0080'). If # is less than the number of symbol
names that were requested for the DD, only the number of symbol names
requested with # are returned, with no indication that there were additional
symbol names that were not returned. For each value to be returned, LEN should
be 8, and upon return the PARM field will contain the symbol name. Be aware that
if a symbol name is shorter than 8 characters, the returned length may be 8 and
the PARM field may be padded with blanks.

Example: To request the return of two symbol names for the DD statement with
name DD1, code:

Input:
KEY # LEN PARM
0001 0001 0003 C4 C4 C1
C02B 0002 0008

0008

Output:
KEY # LEN PARM
0001 0001 0003 C4 C4 C1
C02B 0002 0008 D5 C1 D4 C5 E2 40 40 40

0008 C1 C2 C3 40 40 40 40 40

Return DSNTYPE version information - Key = 'C02C'
Code DINRDSNV to retrieve the data set type version information.

When you code DINRDSNV, # must be 1, LEN must be 1, and the PARM field will
contain the DSNTYPE version number.

Example: To request the return of the data set type and version for the DD
statement with name DD1, code:

Input:
KEY # LEN PARM
0001 0001 0003 C4 C4 C1
C012 0001 0001
C02C 0001 0001

Output:
KEY # LEN PARM
0001 0001 0003 C4 C4 C1
C012 0001 0001 80
C02C 0001 0001 02

In this example, the data set type represents a library (PDSE) version 2.

Note: For this text unit, the information specified by the user in JCL or via
dynamic allocation text units is retrieved via the Scheduler JCL Facility (SJF). If the
information was not available, no information is returned.

Return MAXGENS generation information - Key = 'C02D'
Code DINRMAXG to retrieve the number of generations of members to keep.

Verb code 07 - Dynamic information retrieval text units

730 z/OS V2R2 MVS Authorized Assembler Services Guide

When you code DINRMAXG, # must be 1, LEN must be 1, length must be 4, and
the PARM field will contain the number of generations to be kept.

Example: To request the number of generations to be kept for the DD statement
with name DD1, code:

Input:
KEY # LEN PARM
0001 0001 0003 C4 C4 C1
C02D 0001 0001

Output:
KEY # LEN PARM
0001 0001 0003 C4 C4 C1
C02D 0001 0001 05

In this example, the maximum number of generations for a member in a PDSE
(Version 2) is 5.

Note: For this text unit, the information specified by the user in JCL or via
dynamic allocation text units is retrieved via the Scheduler JCL Facility (SJF). If the
information was not available, no information is returned.

Return GDGORDER specification – Key = 'C02E'
Code DINRGDGO to request the return of the order in which the individual
generation data sets (GDSs) are concatenated.

When you code DINRGDGO, # must be 1, LEN must be 1, and upon return, the
PARM value will contain one of the following values:

X'80' USECATLG – The GDS concatenation is ordered as specified in the GDG
data set catalog entry.

X'40' LIFO – The GDS concatenation is ordered with the newest GDS defined
first and the oldest GDS last.

X'20' FIFO – The GDS concatenation is ordered with the oldest GDS defined first
and the newest GDS last.

Example: To request the return of the specification of GDGORDER on a batch or
dynamically allocated DD which specified GDGORDER=FIFO on the request, code:

Input:
KEY # LEN PARM
C02E 0001 0001 00

Output:
KEY # LEN PARM
C02E 0001 0001 20

Note: For this text unit, the information specified by the user in JCL or via
dynamic allocation text units is retrieved via the Scheduler JCL Facility (SJF). If the
information was not available, no information is returned. Also, this key does not
return the value of the GDG order setting in the catalog entry for the GDG.

Verb code 07 - Dynamic information retrieval text units

Chapter 26. Requesting dynamic allocation functions 731

|
|

Example of a Dynamic Allocation Request
The example in Figure 69 is a dynamic allocation request allocating SYS1.LINKLIB
with a status of SHARE. It also requests that dynamic allocation returns the
ddname associated with SYS1.LINKLIB.

Figure 70 on page 733 shows the parameter list that is built from the DYNALLOC
invocation in Figure 69.

Note the concepts that the example illustrates:

DYN CSECT
USING *,15
STM 14,12,12(13)
BALR 12,0
BEGIN DS 0H
USING BEGIN,12
LA 0,50 AMOUNT OF STORAGE REQUIRED FOR THIS REQUEST.
GETMAIN R,LV=(0) GET THE STORAGE NECESSARY FOR THE REQUEST.
LR 8,1 SAVE THE ADDRESS OF THE RETURNED STORAGE.
USING S99RBP,8 ESTABLISH ADDRESSABILITY FOR S99RBP DSECT.
LA 4,S99RBPTR+4 POINT FOUR BYTES BEYOND START OF S99RBPTR.
USING S99RB,4 ESTABLISH ADDRESSABILITY FOR RB DSECT.
ST 4,S99RBPTR MAKE ’RBPTR’ POINT TO RB.
OI S99RBPTR,S99RBPND TURN ON THE HIGH-ORDER BIT IN RBPTR.
XC S99RB(RBLEN),S99RB ZERO OUT ’RB’ ENTIRELY.
MVI S99RBLN,RBLEN PUT THE LENGTH OF ’RB’ IN ITS LENGTH FIELD.
MVI S99VERB,S99VRBAL SET THE VERB CODE FIELD TO ALLOCATION FUNCTION.
LA 5,S99RB+RBLEN POINT PAST ’RB’ TO START OF TUP LIST.
USING S99TUPL,5 ESTABLISH ADDRESSABILITY FOR TEXT UNIT PTRS.
ST 5,S99TXTPP STORE ADDRESS OF TUP LIST IN THE RB.
LA 6,DSNTU GET ADDRESS OF FIRST TEXT UNIT
ST 6,S99TUPTR AND STORE IN TUP LIST.
LA 5,S99TUPL+4 GET ADDRESS OF NEXT TUP LIST ENTRY.
LA 6,STATUSTU GET ADDRESS OF SECOND TEXT UNIT
ST 6,S99TUPTR AND STORE IN TUP LIST.
LA 6,S99TUPL+8 POINT PAST END OF TUP LIST.
USING S99TUNIT,6 ESTABLISH ADDRESSABILITY TO TEXT UNIT.
LA 5,S99TUPL+4 GET ADDRESS OF NEXT TUP LIST ENTRY.
ST 6,S99TUPTR STORE ADDRESS OF TEXT UNIT IN TUP LIST.
OI S99TUPTR,S99TUPLN TURN ON HIGH-ORDER BIT IN LAST TUP LIST ENTRY.
MVC S99TUNIT(14),RETDDN MOVE RETURN DDNAME TEXT UNIT TO PARM AREA.
LR 1,8 PUT ADDRESS OF REQUEST BLOCK POINTER IN REG 1.

DYNALLOC INVOKE DYNALLOC TO PROCESS THE REQUEST.
LM 14,12,12(13)

BR 14 RETURN TO CALLER.
RBLEN EQU (S99RBEND-S99RB)
DSNTU DC AL2(DALDSNAM)

DC X’0001’
DC X’000C’
DC C’SYS1.LINKLIB’

STATUSTU DC AL2(DALSTATS)
DC X’0001’
DC X’0001’
DC X’08’

RETDDN DC AL2(DALRTDDN)
DC X’0001’
DC X’0008’
DS CL8
IEFZB4D0
IEFZB4D2

DYN CSECT
END

Figure 69. Example of a Dynamic Allocation Request

Verb code 07 - Dynamic information retrieval text units

732 z/OS V2R2 MVS Authorized Assembler Services Guide

v You need to request storage via the GETMAIN or STORAGE macro for the
request block and the DALRTDDN text unit, because DYNALLOC modifies
them. The DALDSNAM and DSLSTATS text units can be in static storage in
your program.
In the example, the GETMAIN request is for 50 bytes, derived as follows:

Bytes Purpose

4 Pointer to the request block.

20 Request block space.

12 Four bytes each for three text unit pointers.

14 Text unit space for the requested return of the ddname.
v IEFZB4D0 provides DSECTs that map the parameter list structure.
v The example uses IEFZB4D2 mnemonics in the text unit keys. For a complete list

of the fields mapped by the IEFZB4D2 mapping macro, see z/OS MVS Data
Areas in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/).

Figure 70 shows the parameter list that results from the code in Figure 69 on page
732. It is the request block structure needed to allocate data set SYS1.LINKLIB with
a disposition of SHARE, and to return the ddname assigned by DYNALLOC.

+0

+4

+8

+12

+16

+20

14 01 0000

0

0

0

+24

+28

+32

Text Unit 1

Text Unit 2

+36

+54

+61

0002 0001 000C SYS1.LINKLIB

0004 0001 0001 08

0055 0001 0008

Text Unit 380

80 Request Block

Text Pointers

8 bytes in which the
ddname will be returned

Figure 70. Parameter List Resulting from Dynamic Allocation Example

Verb code 07 - Dynamic information retrieval text units

Chapter 26. Requesting dynamic allocation functions 733

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Verb code 07 - Dynamic information retrieval text units

734 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 27. Dynamic output

Note: You can use dynamic output in a JES2 environment or a JES3 4.2.1 or later
environment.

Before a program writes to a system output (SYSOUT) data set, the program must:
1. Describe the processing options for the SYSOUT data set. This means giving

the system information such as what kind of print paper to use, how many
copies, how many lines on a page, and so forth.

2. Allocate the data set.
3. Open the data set.

The first step in the sequence, describing the SYSOUT processing options for the
data set, can be accomplished before the program executes by using an OUTPUT
JCL statement. However, by using dynamic output, a program can describe its
SYSOUT processing options during program execution.

The second step in the sequence, allocating the data set, can also be accomplished
in two ways. Before execution, you can allocate by using the DD JCL statement.
During execution, you can allocate by using dynamic allocation.

To accomplish both steps dynamically, use dynamic allocation with dynamic
output. When you use them together, the available processing options are similar
to the options available through the OUTPUT and DD JCL statements. For
example, you can use dynamic output with dynamic allocation to describe the
same SYSOUT characteristics that you could describe by using the following JCL:
//OUT1 OUTPUT COPIES=10,DEST=FRANCE
//DD1 DD SYSOUT=A,OUTPUT=*.OUT1

Dynamic output has two advantages:
v Flexibility — Dynamic output lets the application change the SYSOUT

processing options based on input data to the application when the application
executes. It provides more flexibility than the OUTPUT JCL statement, which
requires you to specify the SYSOUT processing options before the application
executes.

v Convenience — Dynamic output allows you to write your application program
so that it changes your SYSOUT processing options based on the input your
program receives. This eliminates the need to change your JCL OUTPUT
statement for each of your SYSOUT processing requirements.

Dynamic output affects only SYSOUT data sets. The programs that invoke dynamic
output can be authorized or unauthorized. To use dynamic output, issue the
OUTADD and OUTDEL macros.

For information on the OUTPUT JCL statement, see z/OS MVS JCL Reference. For
general information on JCL, see z/OS MVS JCL User's Guide.

Note: BPXWDYN is a text interface to a subset of the SVC 99 (dynamic allocation)
and SVC 109 (dynamic output) services. BPXWDYN supports data set allocation,
unallocation, concatenation, and the addition and deletion of output descriptors.
BPXWDYN is designed to be called from REXX, but it may be called from several

© Copyright IBM Corp. 1988, 2016 735

other programming languages, including Assembler, C, and PL/I. For more
information, see z/OS Using REXX and z/OS UNIX System Services.

Creating and naming output descriptors
When you issue the OUTADD macro, the system creates an output descriptor. An
output descriptor represents your SYSOUT processing options. (See “Output
descriptors and text units” for an explanation of output descriptors.) When you
issue OUTADD, you either specify a name for the descriptor, or allow the system
to assign one. The name must be unique in the present job step.

The name allows you to reference one or more output descriptors when you
invoke dynamic allocation. (See “OUTPUT statement reference - Key = '8002'” on
page 662.) These descriptors can be created either by the OUTADD macro or by
the OUTPUT JCL statement, as long as they exist when dynamic allocation is
invoked. If you allocate a SYSOUT data set with a DD JCL statement, you must
define the descriptor with an OUTPUT JCL statement. If you allocate a SYSOUT
data set dynamically, you can define the descriptor with the OUTPUT JCL
statement or use dynamic output.

System generated names
In a program that creates a great number of output descriptors, it might be more
convenient to use system-generated names. A system-generated descriptor name
has the form SYSxxxxx, where xxxxx is any character string in the range 00001
through 32767. If you delete an output descriptor with a system-generated name,
the system can generate the same name again after wrapping completely around
another 32767 name generations. However, when the name comes up again, it does
not refer to the deleted descriptor, which remains deleted.

Job step considerations
Once an output descriptor name exists in a job step, the job step cannot have
another descriptor with the same name. Thus, if a descriptor name is produced
within a job step by an OUTPUT JCL statement or by an invocation of dynamic
output, you cannot invoke OUTADD in that job step to create another descriptor
with the same name. An output descriptor that is created dynamically (by
OUTADD) in a particular job step cannot be referenced outside the job step.

When you use OUTADD to create output descriptors in a program that also uses
checkpoint/restart, you must observe the restrictions that are described in z/OS
DFSMSdfp Checkpoint/Restart.

Output descriptors and text units
An output descriptor, which the system creates or deletes when you invoke
dynamic output, includes one or more text units. Each text unit represents a set of
SYSOUT processing options. Thus, the output descriptor represents all the SYSOUT
processing options associated with an invocation of dynamic output.

To select particular SYSOUT processing options, you must code the corresponding
text units. A text unit consists of at least four consecutive fields:

key: A two-byte field that identifies the SYSOUT processing options.

count: A two-byte field that specifies the number of length/value field pairs.

length:
A two-byte field that specifies the size of the value field.

736 z/OS V2R2 MVS Authorized Assembler Services Guide

value: A variable length data field that qualifies the SYSOUT processing option.

Figure 71 shows a group of text units and the text unit pointers that reference
them. The leftmost bit of the last pointer must be 1.

For an invocation of dynamic output, the text unit keys must be unique. To be
unique, a text unit cannot have the same key that another text unit has. If two or
more text units have the same key, dynamic output returns a return code X'0C' and
a reason code X'30E'.

A text unit can have one or more length/value field pairs. Each length/value field
pair represents a SYSOUT processing option. The following example shows a text
unit that has one value field:
DC XL2’0001’ KEY FOR BURST OPTION
DC XL2’0001’ COUNT OF VALUE FIELDS
DC XL2’0001’ LENGTH OF VALUE FIELD
DC XL1’02’ VALUE FIELD: BURST=YES

For some keys, the length/value field may be repeated. The following example
shows a text unit that has two length/value fields:
DC XL2’0002’ KEY FOR ’CHARS’ OPTION
DC XL2’0002’ COUNT OF VALUE FIELDS=2
DC XL2’0004’ LENGTH OF FIRST VALUE FIELD
DC CL4’TAB1’ FIRST VALUE FIELD
DC XL2’0004’ LENGTH OF SECOND VALUE FIELD
DC CL4’TAB9’ SECOND VALUE FIELD

If you need a DSECT to define text unit fields symbolically, use the IEFDOTUM
mapping macro described in z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

Table of dynamic output text units and JCL equivalents
The OUTADD macro is a dynamic version of the OUTPUT JCL statement. You can
use Table 96 on page 740 as a quick reference when you are coding text units. This
figure defines the OUTPUT JCL keyword parameters and their equivalent dynamic
output text units. For example, if you wanted the ADDRESS function, you would
do the following:
1. Locate ADDRESS in the first table column
2. Find the corresponding key that appears in the third table column - X'0027'
3. Code X'0027' as the first field of the text unit
4. Code the length and value fields as defined in columns 4 - 6

TEXT UNIT

TEXT UNIT

TEXT UNIT

TEXT UNIT POINTERS
TEXT UNITS

KEY

KEY

KEY

COUNT

COUNT

COUNT

LENGTH

LENGTH

LENGTH

VALUE

VALUE

VALUE

LENGTH VALUE

LEFT MOST BIT = 1
INDICATES LAST
TEXT UNIT

Figure 71. Text Units and Text Unit Pointers

Chapter 27. Dynamic output 737

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

When a JCL keyword parameter corresponds to more than one text unit, there is a
row in the table for each corresponding text unit. The subparameters
corresponding to the text unit appear in parentheses following the keyword name
in column one.

Relationship between text units and JCL equivalents
While “Table of dynamic output text units and JCL equivalents” on page 737
describes the correspondence between dynamic output text units and OUTPUT JCL
in general terms, this information describes that correspondence in more detail.

If you need more information about a particular processing option, see the
information on the OUTPUT statement in the z/OS MVS JCL Reference.

OUTPUT JCL statement: Figure 72 shows a sample Output JCL statement with
various keywords and subparameters. These elements are used as examples in the
following discussion.

The OUTPUT JCL statement contains keyword parameters (for example, BURST=),
which are referred to in this information simply as keywords. To the right of the
keyword's equal sign is variable information consisting of subparameters. This
variable information can have one of the following forms:
v One subparameter (for example YES)
v More than one subparameter (for example GT12,GB12,GI12)

In this case, the subparameters are separated by commas and enclosed in
parentheses.

Subparameters themselves can consist of one or more parameters. The following
subparameter forms are possible:
v One parameter (for example 3)
v More than one parameter (for example (5,2))

A subparameter that can consist of more than one parameter is called a
subparameter list. The parameters contained in a subparameter list are called
subparameter list elements. These subparameter list elements are separated by
commas and enclosed in parentheses.

A subparameter list element and a subparameter that is not a subparameter list are
referred to as atomic subparameters.

Text units: You can specify the same SYSOUT processing options that are
available through an OUTPUT JCL keyword by using one or more dynamic output

subparameters

atomic subparameters

//OUT1 OUTPUT BURST=YES,CHARS=(GT12,GB12,GI12),COPIES=(3,(5,2))

subparameter list
with

subparameter
list elements

Figure 72. Sample OUTPUT JCL Statement

738 z/OS V2R2 MVS Authorized Assembler Services Guide

text units. Each text unit provides the same SYSOUT processing options as one or
more subparameters of a particular OUTPUT JCL keyword.

To see how a particular OUTPUT JCL keyword corresponds to a dynamic output
text unit, refer to the following columns in Table 96 on page 740.

Table Column 1 — JCL Keyword Parameter
Use this column to locate the keyword that you would like to specify as a
dynamic output text unit. For most keywords, you can use a single text
unit to specify all the SYSOUT processing options available through the
keyword. For these keywords, the keyword and its corresponding text unit
are shown in a single row in the table. Some keywords, however, have
more than one corresponding text unit. For these keywords, the atomic
subparameters corresponding to a single text unit are shown in a single
row of the table. For example, the COPIES data set count subparameter is
specified by text unit key X'0009' and is shown in a single table row. The
COPIES group values subparameter is specified by text unit key X'000A' and
is shown in another separate table row.

Table Column 2 — Symbolic Key from IEFDOKEY Macro
Use this column to find the symbolic key that identifies the text unit.

Table Column 3 — Key in Hex
Use this column to find the text unit's hexadecimal key. This key serves as
the text unit's unique identifier, and is equivalent to the value of the
symbolic key in column 2.

Columns 4, 5 and 6 define the length/value pairs for each text unit. Within a text
unit, each length/value pair corresponds to an atomic subparameter of the text
unit's corresponding OUTPUT JCL keyword. The length/value pair specifies the
same SYSOUT processing option as its corresponding atomic subparameter.
Figure 73 shows an example of a keyword with two corresponding text units. In
this example the COPIES keyword corresponds to the data set count and group
values text units. The data set count text unit has one length/value pair, while the
group values text unit has two length value pairs. Note that there is one
length/value pair for each atomic subparameter.

Table column 4 — Maximum number of value fields
Use this column to determine the maximum number of length/value pairs
that you can code for a text unit. When a text unit can have more than one

data set count
text unit

group values
text unit

0009 0001 01 03 000A 0002 01 05 01 02

length value pair length value pairs

COPIES=(3,(5,2))

Figure 73. COPIES Keyword and its Dynamic Output Text Units

Chapter 27. Dynamic output 739

length/value pair, the length/value pairs must be in the same order as
their corresponding atomic subparameters. For example, in Figure 72 on
page 738, the first through fourth subparameters of the CHARS keyword
correspond, respectively, to the first through fourth length/value pairs of
the text unit with key X'0002'.

Table column 5 — Length of Value Field
Use this column to determine the length of the value field in a text unit's
length/value pair. If the value field contains character data, you can use
any length within the minimum and maximum lengths defined. If,
however, the value field does not contain character data, the length field
must be equal to the length of the value field.

Alternatively, you can have a zero length pair to act as a place holder. A
zero length is allowed whenever the length value pair's corresponding
atomic subparameter may be specified as null. Using a length of zero
indicates a null value for the length/value pair and is equivalent to having
a null atomic subparameter in JCL. For example, in
ADDRESS=(ZOBRE,,POK) the second subparameter is null.

Table column 6 — Value field
Use this column to determine what types of values (for example, EBCDIC
text or binary numbers) are allowed for the value field of a length/value
pair. The value field of a length/value pair has the same syntax as its
corresponding atomic subparameter. However, the value field does not use
JCL delimiters, such as commas and delimiting apostrophes, which are not
part of the actual atomic subparameter. Also, for most atomic
subparameters whose values are a choice of character string constants (for
example, YES or NO), the corresponding text unit value field uses a 1-byte
hexadecimal number instead of a character string constant. For example, in
Figure 72 on page 738, BURST=YES is specified by a text unit with key
X'0001' and a value field X'02'. This column defines value fields that use
hexadecimal numbers in place of character string constants and describes
any other deviations that might exist between a value field's syntax and
the syntax of its corresponding atomic subparameter.

Table 96. Dynamic Output Text Units and their JCL Equivalents

JCL Keyword
Parameter

Symbolic key
from
IEFDOKEY
Macro

Key in
Hex

Maximum
number of
value fields

Length of
value field

Value field Function

ADDRESS DOADDRES 0027 4 0-60 EBCDIC text characters Specifies the delivery address
for the SYSOUT data set.

AFPPARMS DOAFPPRM 0051 1 1-54 Cataloged data set
name

Identifies a data set containing
control parameters for the AFP
Print Distributor feature of
PSF.

AFPSTATS DOAFPST 0048 1 1 X‘40’ for YES
X‘80’ for NO

Specifies to Print Services
Facility (PSF) that an AFP
Statistics report is to be
generated while printing this
SYSOUT data set.

BUILDING DOBUILD 0028 1 1-60 EBCDIC text characters Specifies the building location
associated with the SYSOUT
data set.

BURST DOBURST 0001 1 1 X‘02’ for YES
X‘04’ for NO

Directs output to a stacker on
a 3800 Printing Subsystem.

740 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 96. Dynamic Output Text Units and their JCL Equivalents (continued)

JCL Keyword
Parameter

Symbolic key
from
IEFDOKEY
Macro

Key in
Hex

Maximum
number of
value fields

Length of
value field

Value field Function

CHARS DOCHARS 0002 4 1-4 (see note
1)

Alphanumeric or
national (@, $, #)
characters

Names character-arrangement
tables for printing on a 3800
Printing Subsystem.

CKPTLINE DOCKPTLI 0003 1 2 binary number from 0
to 32767 decimal

Specifies the maximum lines
in a logical page.

CKPTPAGE DOCKPTPA 0004 1 2 binary number from 1
to 32767 decimal

Specifies the number of logical
pages to be printed or
transmitted before JES takes a
checkpoint.

CKPTSEC DOCKPTSE 0005 1 2 binary number from 1
to 32767 decimal

Specifies how many seconds of
printing are to elapse between
each checkpoint of this
SYSOUT data set.

CLASS DOCLASS 0006 1 1 alphanumeric character
or *

Assigns the system data set to
an output class.

COLORMAP DOCOLORM 003A 1 1-8 alphanumeric or
national (@,$,#)
characters

Specifies the AFP resource
(object) for the data set that
contains color translation
information.

COMPACT DOCOMPAC 0007 1 1-8 alphanumeric
characters

Specifies a compaction table
for sending this SYSOUT data
set to a SNA remote terminal.

COMSETUP DOCOMSET 0032 1 1-8 alphanumeric
characters, $, #, @

Specifies the name of a
microfile setup resource.

CONTROL DOCONTRO 0008 1 1 X‘80’ for SINGLE
X‘40’ for DOUBLE
X‘20’ for TRIPLE
X‘10’ for PROGRAM

Specifies that all the data
records begin with carriage
control characters or specifies
line spacing.

COPIES
(dataset count)

DOCOPIE9 0009 1 1
v For JES2: binary

number from 1 to
255 decimal

v For JES3: binary
number from 0 to
255 decimal

Specifies number of copies
printed.

COPIES (group
values)

DOCOPIEA 000A 8 1
v For JES2: binary

number from 1 to
255 decimal

v For JES3: binary
number from 1 to
254 decimal

Specifies number of copies
printed before next page.

COPYCNT DOCOPYCN 0052 1 4 0 to 2147483647 Specifies number of copies
printed.

DATACK DODATACK 2022 1 1 X‘00’ for BLOCK
X‘80’ for UNBLOCK
X‘81’ for BLKCHAR
X‘82’ for BLKPOS

Specifies how errors in
printers accessed through the
functional subsystem Print
Services Facility™ (PSF) are to
be reported.

DEFAULT DODEFAUL 000B 1 1 X‘40’ for YES
X‘80’ for NO

Specifies that this is a default
output descriptor.

DEPT DODEPT 0029 1 1-60 EBCDIC text characters Specifies the department
identification associated with
the SYSOUT data set.

DEST DODEST 000C 1 1-127 See z/OS MVS JCL
Reference.

Sends a SYSOUT data set to
the specified destination.

Chapter 27. Dynamic output 741

Table 96. Dynamic Output Text Units and their JCL Equivalents (continued)

JCL Keyword
Parameter

Symbolic key
from
IEFDOKEY
Macro

Key in
Hex

Maximum
number of
value fields

Length of
value field

Value field Function

DPAGELBL DODPAGEL 0023 1 1 X‘40’ for YES
X‘80’ for NO

Indicates whether the system
should place a security label
on each output page. YES
means the system should place
a label on each page. NO
means the system should not
place a label on each page.

DUPLEX DODUPLEX 003D 1 1 X‘80’ for NO
X‘40’ for NORMAL
X‘20’ for TUMBLE

Specifies whether the job is to
be printed on one or both
sides of the paper. Overrides
comparable FORMDEF
specification.

FCB DOFCB 000D 1 1-4 alphanumeric or
national (@, $, #)
characters

Specifies FCB image, carriage
control tape for 1403 Printer,
or data-protection image for
3525 Card Punch.

FLASH
(overlay name)

DOFLASE 000E 1 1-4 alphanumeric or
national (@, $, #)
characters

For printing on a 3800 Printing
Subsystem, indicates that the
data set is to be printed with
forms overlay.

FLASH (count) DOFLASF 000F 1 1 binary number from 0
to 255 decimal

For printing on a 3800 Printing
Subsystem, specifies how
many copies are to be printed
with forms overlay.

FORMDEF DOFORMD 001D 1 1-6 alphanumeric or
national (@, $, #)
characters

Names a library member that
PSF uses in printing the
SYSOUT data set on a 3800
Printing Subsystem Model 3.

FORMLEN DOFORMLN 003B 1 1-10 See z/OS MVS JCL
Reference.

Specifies the form length to be
used for a print data set when
it is not specified in the
DORMDEF parameter.

FORMS DOFORMS 0010 1 1-8 alphanumeric or
national (@, $, #)
characters

Identifies forms on which the
SYSOUT data set is to be
printed or punched.

FSSDATA DOFSSDAT 0047 1 1-127 EBCDIC text characters Data that JES ignores but
passes to a functional
subsystem application.

GROUPID DOGROUPI 0011 1 1-8 alphanumeric
characters

Specifies that this SYSOUT
data set belongs to a
user-named output group.
(JES2 only)

INDEX DOINDEX 0012 1 1 binary number from 1
to 31 decimal.

Specifies how many print
positions the left margin is to
be indented for a SYSOUT
data set printed on a 3211
Printer with the indexing
feature. (JES2 only)

INTRAY DOINTRAY 003E 1 1-3 binary number from 1
to 255 decimal

Specifies the printer input tray
from which to take paper for
the print job. Overrides
comparable FORMDEF
specification.

742 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 96. Dynamic Output Text Units and their JCL Equivalents (continued)

JCL Keyword
Parameter

Symbolic key
from
IEFDOKEY
Macro

Key in
Hex

Maximum
number of
value fields

Length of
value field

Value field Function

LINDEX DOLINDEX 0014 1 1 binary number from 1
to 31 decimal.

Specifies how many print
positions the right margin is to
be moved in from the full
page width for a SYSOUT data
set printed on a 3211 Printer
with the indexing feature.
(JES2 only)

LINECT DOLINECT 0015 1 1 binary number from 0
to 255 decimal

Specifies the maximum lines
JES2 is to print on each page.
(JES2 only)

MAILBCC DOMAILBC 0049 32 1-60 EBCDIC text characters Specifies one or more e-mail
addresses of the recipients on
the blind copy list.

MAILCC DOMAILCC 004A 32 1-60 EBCDIC text characters Specifies one or more e-mail
addresses of the recipients on
the copy list.

MAILFILE DOMAILFI 004B 1 1-60 EBCDIC text characters Specifies the file name of the
attachment to an e-mail.

MAILFROM DOMAILFR 004C 1 1-60 EBCDIC text characters Specifies the descriptive name
or other identifier of the
sender of an e-mail.

MAILTO DOMAILTO 004D 32 1-60 EBCDIC text characters Specifies one or more e-mail
addresses of the e-mail
recipients.

MODIFY
(module name)

DOMODIF6 0016 1 1-4 alphanumeric or
national (@, $, #)
characters

Specifies a copy-modification
module in SYS1.IMAGELIB to
be used by JES to print the
data set on a 3800 Printing
Subsystem.

MODIFY (trc) DOMODIF7 0017 1 1 binary number from 0
to 3

Specifies which character
arrangement table is to be
used. Related to the CHARS
key.

NAME DONAME 002D 1 1-60 EBCDIC text characters Specifies the preferred name of
the owner of the SYSOUT data
set.

NOTIFY DONOTIFY 002F 4 1-17 node (optional) and
userid

Sends a print complete
message to the specified
destination.

OFFSETXB DOXOFSTB 0043 1-10 1-13 See z/OS MVS JCL
Reference.

Specifies the X offset of the
logical page origin from the
physical page origin for the
back side of each page.
Overrides comparable
FORMDEF specification.

OFFSETXF DOXOFSTF 0041 1-10 1-13 See z/OS MVS JCL
Reference.

Specifies the X offset of the
logical page origin from the
physical page origin for the
front side of each page.
Overrides comparable
FORMDEF specification.

Chapter 27. Dynamic output 743

Table 96. Dynamic Output Text Units and their JCL Equivalents (continued)

JCL Keyword
Parameter

Symbolic key
from
IEFDOKEY
Macro

Key in
Hex

Maximum
number of
value fields

Length of
value field

Value field Function

OFFSETYB DOYOFSTB 0044 1-10 1-13 See z/OS MVS JCL
Reference.

Specifies the Y offset of the
logical page origin from the
physical page origin for the
back side of each page.
Overrides comparable
FORMDEF specification.

OFFSETYF DOYOFSTF 0042 1-10 1-13 See z/OS MVS JCL
Reference.

Specifies the Y offset of the
logical page origin file the
front side of each page.
Overrides comparable
FORMDEF specification.

OUTBIN DOOUTBIN 2023 1 4 binary number from 1
to 65535 decimal

Specifies the printer output
bin ID.

OUTDISP
(normal job
completion)

DOOUTDB 002B 1 1 X'80' for WRITE
X'40' for HOLD
X'20' for KEEP
X'10' for LEAVE
X'08' for PURGE

Specifies the SYSOUT data set
disposition for normal job
completion.

OUTDISP
(abnormal job
completion)

DOOUTDC 002C 1 1 X'80' for WRITE
X'40' for HOLD
X'20' for KEEP
X'10' for LEAVE
X'08' for PURGE

Specifies the SYSOUT data set
disposition for abnormal job
completion.

OVERLAYB DOOVRLYB 0040 1 1-8 alphanumeric or
national ($, #, @)
characters

Specifies that the named
medium overlay is to be
placed on the back side of
each sheet to be printed.

The overlay is printed in
addition to overlays specified
in the FORMDEF.

OVERLAYF DOOVRLYF 003F 1 1-8 alphanumeric or
national ($, #, @)
characters

Specifies that the named
medium overlay is to be
placed on the front side of
each sheet to be printed.

The overlay is printed in
addition to overlays specified
in the FORMDEF.

OVFL DOOVFL 0033 1 1 X'80' for ON
X'40' for OFF

Specifies whether or not JES3
should test for page overflow
on an output printer. (JES3
only)

PAGEDEF DOPAGEDE 001F 1 1-6 alphanumeric or
national (@, $, #)
characters

Names a library member that
PSF uses in printing the
SYSOUT data set on a 3800
Printing Subsystem Model 3.

PIMSG DOPIMSG 0021 2 1 X‘80’ for NO
X‘40’ for YES

The second value field
is a two-byte number
from 0 through 999
decimal, having a
length field of 2.

Indicates that messages from a
functional subsystem should
or should not be printed in the
listing following the SYSOUT
data set. Printing terminates if
the number of printing errors
exceeds the second value field.

744 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 96. Dynamic Output Text Units and their JCL Equivalents (continued)

JCL Keyword
Parameter

Symbolic key
from
IEFDOKEY
Macro

Key in
Hex

Maximum
number of
value fields

Length of
value field

Value field Function

PORTNO DOPORTNO 0045 1 2 binary number from 1
to 65535 decimal

Specifies the TCP port number
at which the FSS (for example,
Infoprint Server) connects to
the printer rather than
connecting to LPD on the
printer. Specify either
PORTNO or PRTQUEUE, but
not both. PRTQUEUE indicates
the queue used when
connecting to LPD on the
printer.

PRMODE DOPRMODE 0018 1 1-8 alphanumeric
characters

Identifies the process mode
required to print the SYSOUT
data set.

PRTATTRS DOPRTATT 0050 1 1-127 EBCDIC text characters Specifies an Infoprint Server
job attribute. The z/OS
Infoprint Server User's Guide
documents job attribute names
and syntax for acceptable
values.

PRTOPTNS DOPROPTN 0039 1 1-16 see z/OS MVS JCL
Reference.

Named entity that can specify
additional print options for
FSS use.

PRTERROR DOPRTERR 003C 1 1 X'80' for QUIT
X'40' for HOLD
X'20' for DEFAULT

Specifies the action to be taken
on a SYSOUT data set while
being printed by PSF/MVS for
a terminating error.

PRTQUEUE DOPRTQUE 0038 1 1-127 see z/OS MVS JCL
Reference.

Identifies the target print
queue for use by the FSS.

PRTY DOPRTY 0019 1 1 binary number from 0
to 255 decimal

Specifies initial priority at
which the SYSOUT data set
enters the output queue.

REPLYTO DOREPLYT 004E 1 1-60 EBCDIC text characters Specifies the e-mail address to
which recipients of the e-mail
can respond.

RESFMT DORESFMT 0046 1 1 X'80' for P249
X'40' for P300

Specifies the resolution used to
format the print data set.

RETAINF DORETANF 0037 1 1-10 see z/OS MVS JCL
Reference.

Specifies the failed
transmission retain time for
use by the FSS.

RETAINS DORETANS 0036 1 1-10 see z/OS MVS JCL
Reference.

Specifies the successful
transmission retain time for
use by the FSS.

RETRYL DORETRYL 0035 1 1-3 see z/OS MVS JCL
Reference.

Specifies the maximum
number of transmission retries
used by the FSS.

RETRYT DORETRYT 0034 1 1-8 see z/OS MVS JCL
Reference.

Specifies the length of time
that the FSS will wait between
retries.

ROOM DOROOM 0026 1 1-60 EBCDIC text characters Specifies the room
identification to be associated
with the SYSOUT data set.

Chapter 27. Dynamic output 745

Table 96. Dynamic Output Text Units and their JCL Equivalents (continued)

JCL Keyword
Parameter

Symbolic key
from
IEFDOKEY
Macro

Key in
Hex

Maximum
number of
value fields

Length of
value field

Value field Function

SYSAREA DOSYSARE 0024 1 1 X‘40’ for YES
X‘80’ for NO

Indicates whether you want to
use the system printable area
of each output page. YES
means you want to use the
area. NO means you do not
want to use the area.

THRESHLD DOTHRESH 0022 1 4 binary number from 1
to 99999999 decimal

Specifies the maximum size
for a sysout data set. Use it to
obtain simultaneous printing
of large data sets or many data
sets from one job. (JES3 only)

TITLE DOTITLE 002A 1 1-60 EBCDIC text characters Specifies a title for the
SYSOUT data set to be placed
on the separator pages.

TRC DOTRC 001A 1 1 X‘80’ for NO
X‘40’ for YES

Specifies whether or not the
SYSOUT data set's records
contain table reference codes
(TRC) as the second character.

UCS DOUCS 001B 1 1-4 alphanumeric or
national (@, $, #)
characters

Specifies universal character
set, print train, or character
arrangement table for a 3800
Printing Subsystem.

USERDATA DOUSERDA 0031 16 1-60 EBCDIC text
'40'X - 'FE'X

User-oriented information as
defined by the installation.

USERLIB DOUSERLI 002E 8 44 cataloged data set
name

Specifies the names of libraries
containing AFP resources.

USERPATH DOUSERPAT 004F 8 1–255 SPECIAL text. See z/OS
MVS JCL Reference.

Specifies up to eight z/OS
UNIX file paths containing
resources to be used by PSF
when processing SYSOUT data
sets.

WRITER DOWRITER 001C 1 1-8 alphanumeric or
national (@, $, #)
characters

Names an external writer to
process the SYSOUT data set
rather than JES.

Note:

1. A "length of value field" greater than 4 characters is acceptable without error
provided you supply no more than 4 significant characters in that field. In the
following example, a length of X'13' is allowed when the 4–character string
"CHAR" is coded; the 5–character string "CHARS" will be flagged as an error.
0002 0001 0013 CL19’CHAR’ is acceptable
0002 0001 0013 CL19’CHARS’ is not acceptable

Deleting output descriptors
To delete an output descriptor, use the OUTDEL macro. The results that you get
from issuing the OUTDEL macro depend on which JES you are using. If you use
the OUTDEL macro in an address space running under JES2 Version 4.1.0 or later,
or JES3 Version 4.2.1 or later, the deleted output descriptor's storage is freed before
or at step termination. If, however, you issue the OUTDEL macro in an address
space running under a version earlier than JES2 4.1.0, the deleted output
descriptor's storage is always freed at the end of the job. The details of these
different results follow.

746 z/OS V2R2 MVS Authorized Assembler Services Guide

OUTDEL is used in an address space running under JES2 Version 4.1.0 or later,
or running under JES3 Version 4.2.1 or later

When you delete an output descriptor, the output descriptor is logically
removed from the system. The deleted output descriptor's storage is freed
before or at step termination. The system frees the output descriptor's
storage once all allocated SYSOUT data sets that refer to the output
descriptor have been either opened or, if they are never opened, when they
are unallocated. If no SYSOUT data sets refer to the output descriptor, the
system frees the storage immediately.

OUTDEL is used in an address space running under an earlier version of JES2
than JES2 4.1.0

As in the case above, when you delete an output descriptor, it is logically
removed from the system. However, the output descriptor's storage is
always freed at the end of the job. If a program creates too many
descriptors, it can run out of storage in the address space. Dynamic output
cannot reuse the storage that a deleted descriptor occupies. An output
descriptor varies in size, depending on the SYSOUT processing options it
contains.

Like OUTADD, the OUTPUT JCL statement also creates an output descriptor. If an
output descriptor was created by an OUTPUT JCL statement, you cannot delete it
by using the OUTDEL macro. If you try to do this, you get return code 4 with
reason code 403 hex.

When a program invokes dynamic allocation to allocate a SYSOUT data set, the
data set can refer to one or more output descriptors. Although the descriptors must
exist before dynamic allocation is invoked, they do not have to exist afterwards.
So, you can delete the descriptor immediately after allocating the data set. Deleting
the descriptor does not affect the data set, which can exist even though its
descriptor is deleted.

A dynamically allocated SYSOUT data set can refer to either a named or a default
output descriptor. The dynamically allocated data set refers to a named output
descriptor by using the dynamic allocation key, X'8002' (DALOUTPT). By omitting
this key, the dynamically allocated data set refers to a default output descriptor.
You define the default output descriptors by using the JCL OUTPUT statement
with a DEFAULT=YES parameter, or by having a program invoke dynamic output
using the text unit key, X‘000B’(DODEFAUL).

If, after the data set is allocated and its descriptor is deleted, you create another
descriptor with the same name but with different text unit characteristics, the
characteristics of the data set are not changed. The processing options of the data
set depend only on the descriptor that was used at allocation time. Also note that,
if you unallocate the data set while its output descriptor exists, the descriptor is
not affected.

The syntax of OUTDEL allows only a list form and an execute form. To specify the
name of the descriptor that is to be deleted, use the execute form.

Specifying SYSOUT without an output descriptor
When you use the OUTADD macro or an OUTPUT JCL statement to specify the
processing options for a SYSOUT data set, the system creates an output descriptor
that you can reference when you invoke dynamic allocation, as described in
“OUTPUT statement reference - Key = '8002'” on page 662. However, a more
convenient method of specifying the processing options for SYSOUT, a method

Chapter 27. Dynamic output 747

that does not create any output descriptor, is to use dynamic allocation. Dynamic
allocation lets you specify, through the use of certain keys, the processing options
for the SYSOUT data set that you are allocating. However, this method has
limitations:
1. The selection of SYSOUT processing options available through dynamic

allocation is very small, compared to the selection available through dynamic
output. (See the third column in Table 97.)

2. Because the SYSOUT processing options are not contained in any output
descriptor, they cannot be referenced by other invocations of dynamic
allocation.

3. Although the options available through dynamic allocation correspond in some
cases to the options available through dynamic output, the correspondence is
not necessarily equivalent. Make sure that the dynamic allocation option is
functionally close enough to the dynamic output option before you decide to
use the dynamic allocation processing option.

If you are planning to write a program that uses both dynamic output and
dynamic allocation, determine if the SYSOUT processing option that you need is
available through dynamic allocation.

For example, the DEST and BURST options of dynamic output are also available
through dynamic allocation. If DEST is all you need, you can use the DALUSRID
option of dynamic allocation; you do not need dynamic output. If you need
BURST, it may be easier to use the DALBURST option of dynamic allocation;
again, you do not need dynamic output. Thus, if the options that you need are
available through dynamic allocation, you can avoid coding the OUTADD macro.
The following table lists the dynamic output SYSOUT processing options (column
two) that are also available through dynamic allocation (column three):

Table 97. Alternate Sources of SYSOUT Processing Options. Comparable SYSOUT processing options in OUTPUT
JCL, dynamic output, dynamic allocation, and DD JCL

OUTPUT JCL
Parameter

Dynamic Output Key,
equivalent to OUTPUT
JCL parameter

Dynamic Allocation
Key, comparable to
dynamic output key

DD JCL Parameter,
equivalent to dynamic
allocation key

BURST DOBURST DALBURST (0064) BURST

CHARS DOCHARS DALCHARS (0065) CHARS

CLASS DOCLASS DALSYSOU (0018) SYSOUT
(class)

COPIES
(data set count)

DOCOPIE9 DALCOPYS (001D) COPIES
(data set count)

COPIES
(group value count)

DOCOPIEA DALCOPYG (0066) COPIES
(group value count)

DEST DODEST DALUSRID (0063),
or
DALSUSER (0058)

DEST

FCB DOFCB DALFCBIM (0025) FCB

FLASH
(overlay name)

DOFLASE DALFFORM (0067) FLASH
(overlay name)

FLASH
(count)

DOFLASF DALFCNT (0068) FLASH
(count)

FORMS DOFORMS DALSFMNO (001A) SYSOUT
(form name)

748 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 97. Alternate Sources of SYSOUT Processing Options (continued). Comparable SYSOUT processing options
in OUTPUT JCL, dynamic output, dynamic allocation, and DD JCL

OUTPUT JCL
Parameter

Dynamic Output Key,
equivalent to OUTPUT
JCL parameter

Dynamic Allocation
Key, comparable to
dynamic output key

DD JCL Parameter,
equivalent to dynamic
allocation key

MODIFY
(module name)

DOMODIF6 DALMMOD (0069) MODIFY
(module name)

MODIFY
(trc)

DOMODIF7 DALMTRC (006A) MODIFY
(trc)

OUTDISP
(normal output
disposition)

DOOUTDB DALSHOLD (0059) HOLD

OUTDISP
(abnormal output
disposition)

DOOUTDC DALSHOLD (0059) HOLD

UCS DOUCS DALUCS (0029) UCS

WRITER DOWRITER DALSPGNM (0019) SYSOUT
(writer name)

Dynamic output programming example
The following example uses dynamic output to create an output descriptor and
allocates a SYSOUT data set that references the descriptor. Then it deletes the
descriptor. The characteristics of the descriptor are specified in the program's input,
except for BURST, which is hard-coded.

Chapter 27. Dynamic output 749

Dynamic output programming example (continued)
The text unit pointer list references four text units. The first is hard coded and the
other three are set up dynamically.

DYN CSECT ENTRY LINKAGE
USING *,15
STM 14,12,12(13)
BALR 12,0

BEGIN DS 0H
USING BEGIN,12

*
* REG 1 POINTS TO TWO INPUT WORDS: WORD 1 POINTS TO
* REQUESTED SYSOUT OPTIONS. WORD 2 POINTS TO OUTPUT
* AREA FOR RETURN AND REASON CODES.
*

LA 4,OUTPUT_DATA ADR OF OUTPUT DATA
ST 4,4(0,1) PUT ADR IN PARM LIST
L 4,0(0,1) POINTER TO INPUT

*
* MOVE INPUT DATA INTO THE TEXT UNITS
*

USING INPUT_DATA,4 MAP INPUT DATA
MVC COPYPRM,COPYIN HOW MANY COPIES
MVC GROUP#1,GROUPIN1 FIRST GROUP VAL
MVC GROUP#2,GROUPIN2 SECOND GROUP VAL
MVC FORMDPRM,FORMDIN WHAT KIND OF FORM
OC POINTER4,ENDMASK HIGH ORDER BIT ON

* INDICATES END OF
* TEXT UNIT POINTER
* LIST
*
* ISSUE OUTADD TO CREATE AN OUTPUT DESCRIPTOR
*

OUTADD NAME=ODNAME,TEXTPTR=TXTPTRS1, C
MF=(E,ADDPARML)

ST 15,OUTADD_RETCODE SAVE RETURN CODE
ST 0,OUTADD_RESCODE SAVE REASON CODE
ST 1,OUTADD_KEY SAVE KEY IN ERROR
LTR 15,15 OUTADD RETCODE
BNZ SKIP BRANCH IF BAD

*
* INVOKE DYNALLOC TO ALLOCATE THE SYSOUT DATA SET THAT
* GOES WITH THE OUTPUT DESCRIPTOR OUT1.
*

B DYNAL DYNALLOC ROUTINE
*
* INVOKE OUTDEL TO DELETE THE DESCRIPTOR, THEN EXIT
*
DELETE OUTDEL NAME=ODNAME,MF=(E,DELPARML)

ST 15,OUTDEL_RETCODE SAVE RETURN CODE
ST 0,OUTDEL_RESCODE SAVE REASON CODE

SKIP DS 0H HERE IF CREATE BAD
LM 14,12,12(13) RETURN TO CALLER
SLR 15,15
BR 14

750 z/OS V2R2 MVS Authorized Assembler Services Guide

Dynamic output programming example (continued)
This is the subroutine that dynamically allocates the SYSOUT data set that
references the output descriptor.

* POINTERS TO FOUR TEXT UNITS.
*
TXTPTRS1 DS 0F TEXT UNIT POINTERS
POINTER1 DC AL4(BURST) ADR TU FOR BURST
POINTER2 DC AL4(COPIES) ADR TU FOR COPIES
POINTER3 DC AL4(COPYGRP) ADR TU FOR GROUPING
POINTER4 DC AL4(FORMDEF) ADR TU FOR FORMDEF
*
BURST DS 0H BURST SELECTION TU

DC AL2(DOBURST) KEY=BURST
DC XL2’0001’ HOW MANY VAL FIELDS
DC XL2’0001’ LEN OF VALUE FIELD
DC XL1’02’ VAL FLD (HARD CODED BURST=Y)

*
COPIES DS 0H NBR COPIES TU

DC AL2(DOCOPIE9) KEY=COPIES
DC XL2’0001’ HOW MANY VAL FIELDS
DC XL2’0001’ LEN OF VALUE FIELD

COPYPRM DS XL1 VALUE FIELD (TO BE ALTERED)
*
COPYGRP DS 0H COPY GROUPING TU

DC AL2(DOCOPIEA) KEY=COPIES(GROUP)
DC XL2’0002’ HOW MANY VAL FIELDS
DC XL2’0001’ LEN OF VALUE FIELD 1

GROUP#1 DS XL1 VALUE FIELD 1 (TO BE ALTERED)
DC XL2’0001’ LEN OF VALUE FIELD 2

GROUP#2 DS XL1 VALUE FIELD 2 (TO BE ALTERED)
*
FORMDEF DS 0H FORMS DEFINITION TU

DC AL2(DOFORMD) KEY=FORMDEF
DC XL2’0001’ HOW MANY VAL FIELDS
DC XL2’0006’ LEN OF VALUE FIELD

FORMDPRM DS CL6 VALUE FIELD (TO BE ALTERED)
*
* CONSTANTS FOR DYNAMIC OUTPUT INVOCATION
*
ODNAME DC CL8’OUT1 ’ OUTPUT DES NAME
ENDMASK DC X’80000000’ HIGH ORDER BIT ON
*
* PARAMETER LISTS FOR OUTADD AND OUTDEL
*
ADDPARML OUTADD MF=L
DELPARML OUTDEL MF=L

IEFDOKEY DEFINES DOBURST, ETC
*
* Program returns ptr to this table to the caller
*
OUTPUT_DATA DS 0XL28 INFORMATION RETURNED
OUTADD_RETCODE DS XL4’0’ OUTADD RETURN CODE
OUTADD_RESCODE DS XL4’0’ OUTADD REASON CODE
OUTADD_KEY DS XL4’0’ OUTADD KEY IN ERROR
OUTDEL_RETCODE DS XL4’0’ OUTDEL RETURN CODE
OUTDEL_RESCODE DS XL4’0’ OUTDEL REASON CODE
DYNAL_RETCODE DS XL4’0’ DYNALLOC RETURN CODE
DYNAL_REASON DS XL4’0’ DYNALLOC REASON CODES

Chapter 27. Dynamic output 751

Dynamic output programming example (concluded)
The SVC 99 text units and request block are shown. Definitions for DALOUTPT
and DALSYSOU, which are mapped by IEFZB4D2, are not shown. See IEFZB4D2
in z/OS MVS Data Areas in the z/OS Internet library (http://www.ibm.com/
systems/z/os/zos/bkserv/).

* INVOKE DYNALLOC TO ALLOCATE A SYSOUT DATA SET. SPECIFY
* SYSOUT CLASS A AND REFERENCE THE OUTPUT DESCRIPTOR
* ’OUT1’. SET UP ADDRESSABILITY TO THE DYNAMIC ALLOCATION
* (SVC 99) REQUEST BLOCK.
*
DYNAL DS 0H

LA 10,SVC99PRM PTR TO SVC 99 RB PTR
LA 11,SVC99PRM+4 PTR TO SVC 99 RB
USING S99RBP,10 RB PTR
USING S99RB,11 RB
ST 11,S99RBPTR SET RB PTR TO RB
OI S99RBPTR,S99RBPND PTR HIGH ORDER BIT ON

*
* INITIALIZE THE SVC 99 REQUEST BLOCK
*

XC S99RB(RBLEN),S99RB ZERO THE RB
MVI S99RBLN,RBLEN RB LENGTH
MVI S99VERB,S99VRBAL RB VERB CODE=ALLOC
LA 1,TXTPTRS2 ADR SVC 99 TEXT PTRS
ST 1,S99TXTPP STORED IN RB
OI POINTERB,S99TUPLN HIGH ORDER BIT ON

* INDICATES LAST TEXT
* UNIT POINTER

LR 1,10 ADR OF RB POINTER
*
* ISSUE DYNALLOC TO ALLOCATE A SYSOUT DATA SET THAT
* REFERENCES THE OUTPUT DESCRIPTOR, OUT1
*

DYNALLOC INVOKES SVC99
ST 15,DYNAL_RETCODE SAVE RETURN CODE
MVC DYNAL_REASON,S99RSC SAVE REASON CODE
B DELETE TO DEL THE OUT DES

*
* DECLARE SPACE FOR THE RB, WHICH IS MAPPED BY IEFZB4D0
*

DS 0F
SVC99PRM DS CL(RBLEN+4) RB PTR & RB STORAGE
RBLEN EQU (S99RBEND-S99RB) LENGTH OF RB

752 z/OS V2R2 MVS Authorized Assembler Services Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

* POINTERS TO THE TWO DYNAMIC ALLOCATION TEXT UNITS
*
TXTPTRS2 DS 0F
POINTERA DC AL4(SYSOUT) PTR TO SYSOUT TU
POINTERB DC AL4(OUTPUT) PTR TO OUTPUT TU
*
SYSOUT DS 0H SYSOUT TU

DC AL2(DALSYSOU) KEY = SYSOUT
DC XL2’0001’ HOW MANY VAL FIELDS
DC XL2’0001’ LEN OF VALUE FIELD
DC CL1’A’ VAL FIELD, SYSOUT=A

*
OUTPUT DS 0H DATA SET NAME TU

DC AL2(DALOUTPT) KEY=OUTPUT REFERENCE
DC XL2’0001’ HOW MANY VAL FIELDS
DC XL2’0008’ LEN OF VALUE FIELD
DC CL8’OUT1’ VAL FLD, OUTPUT=*.OUT1

*
* SVC 99 REQUEST BLOCK DSECT, ABRIDGED EXPANSION
*

IEFZB4D0 MAP SVC 99 REQUEST BLOCK
+S99RBP DSECT
+S99RBPTR DS F REQUEST BLOCK POINTER
+S99RB DSECT REQUEST BLOCK

DS 0F
+S99RBLN DS CL1 LENGTH OF REQUEST BLOCK
+S99VERB DS CL1 VERB CODE
+S99VRBAL EQU X’01’ ALLOCATION
+S99FLAG1 DS 0CL2 FLAGS
+S99FLG11 DS CL1 FIRST FLAGS BYTE
+S99FLG12 DS CL1 SECOND BYTE OF FLAGS
+S99RSC DS 0CL4 REASON CODE FIELDS
+S99ERROR DS XL2 ERROR REASON CODE
+S99INFO DS XL2 INFORMATION REASON CODE
+S99TXTPP DS F ADDR OF LIST OF TEXT UNIT PTRS
+S99S99X DS F ADDR OF REQ BLK EXTENSION
+S99FLAG2 DS 0CL4 FLAGS FOR AUTHORIZED FUNCTIONS
+S99FLG21 DS CL1 FIRST BYTE OF FLAGS
+S99FLG22 DS CL1 SECOND BYTE OF FLAGS
+S99FLG23 DS CL1 THIRD BYTE OF FLAGS
+S99FLG24 DS CL1 FOURTH BYTE OF FLAGS
+S99RBEND EQU * END MARKER

IEFZB4D2 MAP SVC 99 KEY TABLE
*
* FIELDS INDICATING PRINTED OUTPUT CHARACTERISTICS
*
INPUT_DATA DSECT INPUT MAPPING
COPYIN DS XL1 HOW MANY COPIES
GROUPIN1 DS XL1 COPIES GROUP VAL
GROUPIN2 DS XL1 COPIES GROUP VAL
FORMDIN DS CL6 WHAT KIND OF FORMS

END

Chapter 27. Dynamic output 753

754 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 28. Scheduler JCL facility (SJF)

Scheduler JCL facility (SJF) services assist an application in processing the data
definition (DD) and system output (SYSOUT) attributes that can be specified on
JCL or through dynamic output. SJF services can be used by an application that
dynamically allocates SYSOUT data sets.

The SJFREQ macro allows an application to call the following SJF services:

SJFREQ RETRIEVE
Retrieves keyword subparameter information in text unit format from
output descriptors. These output descriptors can be specified either on an
OUTPUT JCL statement or through dynamic output.

SJFREQ SWBTU_MERGE
Updates SYSOUT characteristics by merging two scheduler work block text
unit (SWBTU) lists.

SJFREQ VERIFY
Validates a statement name, operands, and subparameters, and builds text
units that can be used as input for the dynamic output service.

SJFREQ TERMINATE
Cleans up the SJF environment established by an SJF service.

This information discusses SJF services and their use for an application program.
The descriptions of the individual services identify the types of applications likely
to use the services and the circumstances under which an application uses them.

Another SJF macro, SWBTUREQ, allows applications to obtain information from
scheduler work block text units (SWBTUs). The SWBTUREQ macro and the
SJFREQ macro are described in z/OS MVS Programming: Authorized Assembler
Services Reference SET-WTO.

The table that follows outlines the contents of the information.

Topic Content

“Understanding SJF terms” on page 756 Defines terms used in the discussion of SJF
services.

“The SJF environment” on page 757 Describes the SJF environment and
considerations for reusing the environment.

“Retrieving output descriptor information
(SJFREQ macro with RETRIEVE)” on page
757

Describes the SJFREQ RETRIEVE service.

“Merging SWBTUs (SJFREQ macro with
SWBTU_MERGE)” on page 758

Describes the SJFREQ SWBTU_MERGE
service.

“Validating and building text units (SJFREQ
macro with VERIFY)” on page 759

Describes the SJFREQ VERIFY service.

“Freeing the SJF environment (SJFREQ
macro with TERMINATE)” on page 766

Describes the SJFREQ TERMINATE service.

“Understanding the OUTDES statement” on
page 767

Describes the OUTDES statement and
considerations for using it.

© Copyright IBM Corp. 1988, 2016 755

Understanding SJF terms
To use the SJF macros and services, you must understand several terms. These
terms are defined in this information. The statement below illustrates some of the
definitions that follow. The definitions refer to specific portions of the statement.
STMNT OPTIONS(A,B,(c,d,e)) TYPE

operand
A stand-alone word specified on a statement. It has no sub-values specified
with it. In the statement example, TYPE is an operand.

keyword operand
A word specified on a statement that has a value or list of values
(subparameter) specified with it. In the statement example, OPTIONS is a
keyword operand.

subparameter
A value or list of values specified with a keyword operand. In the
statement example, A and B and (c,d,e) are all subparameters.

subparameter number
The position of a subparameter within a keyword operand. In the
statement example, A is subparameter number 1, (c,d,e) is subparameter
number 3.

sublist element number
The position of a sublist element within a sublist. In the statement
example, d is sublist element number 2.

sublist
A single subparameter that consists of a list of values. In the statement
example, (c,d,e) is a sublist.

sublist element
One value within a sublist. In the statement example, c and d and e are
each sublist elements.

choice The data type of a predefined set of subparameters defined for a keyword
operand. Only one subparameter may be selected and specified. In the
following example, only one of the four choices in parentheses may be
specified.
DATACK(BLOCK|UNBLOCK|BLKCHAR|BLKPOS)

character
The data type of a string of characters. Allowable characters and string
length are defined for each keyword. For some keywords the string can be
repeated, delineated by periods. Each delineated string is called a level. In
the example DEST(POK.POST), POK and POST are levels.

numeric
The data type of a character representation of an integer, for example, 2 in
COPIES(2).

text unit
Parameter information that represents a keyword operand and its
subparameters. More than one text unit may be needed to represent an
entire keyword operand. For more information about text units, see
Chapter 27, “Dynamic output,” on page 735.

756 z/OS V2R2 MVS Authorized Assembler Services Guide

text unit pointer list
A contiguous list of 4-byte pointers. Each pointer points to a specific text
unit. The last pointer in the list must have the left-most (high-order) bit set
on.

output descriptor
An object that represents the output format characteristics of a SYSOUT
data set.

OUTDES statement
An alternate form of OUTPUT JCL statements that is used in dynamic
output environments. (See “Understanding the OUTDES statement” on
page 767 for the syntax and other information about OUTDES.)

verb Identification information that appears in the SWBTU prefix.

The SJF environment
The SJF environment consists of a work area and an ESTAE-type recovery routine.
Applications can request that SJFREQ reuse the environment for multiple calls of
the same service.

When multiple calls are required to complete the VERIFY function, an application
must request that the environment be reused. To request SJFREQ to reuse the
environment, the application must use the same value in SJVESTOR field of the
VERIFY parameter list (IEFSJVEP) that was returned on the previous call.

Because an SJF environment can be reused over many calls, the application must
indicate on the last SJFREQ call that the environment should be freed, or the
application can issue SJFREQ TERMINATE to free the environment.

The system establishes an ESTAE-type recovery routine to release the work area in
the event of an abnormal termination. The recovery routine is in effect for the
duration of the SJF call. If an application reuses the work area, the recovery routine
for the work area is still in effect even after the system returns control to the
application.

When the application reuses the SJF environment, the SJF recovery routine protects
the environment on behalf of the application. The SJF recovery routine gets control
under the following conditions:
v If an abnormal termination occurs while the application is processing and while

SJF's environment still exists, then:
– Abnormal termination continues
– The application cannot reuse the environment that was referenced by

SJVESTOR on input for the call that abnormally terminated.
v If the abnormal termination occurs while SJF is processing and the SJF

environment still exists, the application:
– Receives a hexadecimal return code 14 from the SJFREQ macro, indicating an

abnormal termination occurred
– Cannot reuse the environment that was referenced by SJVESTOR on input for

the call that abnormally terminated.

Retrieving output descriptor information (SJFREQ macro with
RETRIEVE)

Applications can use the SJFREQ RETRIEVE service to retrieve keyword
subparameter information in text unit format from output descriptors. These

Chapter 28. Scheduler JCL facility (SJF) 757

output descriptors can be specified either on an OUTPUT JCL statement or
through dynamic output. The application invokes this service to retrieve output
descriptor information in a functional subsystem environment. The following
topics describe the tasks an application must perform to invoke the RETRIEVE
service.

Initializing the keyword list
The application needs to provide a keyword list (SJRELIST) to the RETRIEVE
service. The keyword list contains paired fields; each pair consists of a keyword
field and a pointer field. In the list, the application specifies the JCL keywords for
which information is to be retrieved. For each keyword specified, the RETRIEVE
service returns a pointer to the text unit pointer list associated with the keyword.

The SJFREQ macro description in z/OS MVS Programming: Authorized Assembler
Services Reference SET-WTO shows the SJRELIST paired fields and their offsets and
lengths. The description indicates the fields that the application must initialize.

Establishing a storage area
For each RETRIEVE request, the application needs to establish a storage area in
which SJF is to return the output descriptor information. The size of this storage
area depends on the number of keywords for which the application requests
information.

The application specifies the address and size of this storage area in the SJF
RETRIEVE parameter list. z/OS MVS Programming: Authorized Assembler Services
Reference SET-WTO describes the parameter list.

Information returned from SJF RETRIEVE processing
On return from RETRIEVE processing, the keyword list (SJRELIST) contains paired
fields, each pair consisting of a JCL keyword and a pointer to the text unit pointer
list for that keyword.

The application-provided storage area contains the text unit pointers list and the
individual text units associated with each keyword.

The text units associated with a particular keyword can contain one or more keys.
If the application does not specify data corresponding to a particular key, that key
might not be returned or a key might be returned with a parameter count of zero.
The application must interpret each returned key to determine whether it contains
zero or some other parameter count value.

Merging SWBTUs (SJFREQ macro with SWBTU_MERGE)
Applications sometimes need to update the output characteristics associated with a
system output (SYSOUT) data set. The SJFREQ SWBTU_MERGE service allows an
application to update these SYSOUT characteristics by merging two SWBTU lists.
The application can request that a base SWBTU list be merged with a merge
SWBTU list. A base SWBTU list contains the current data set characteristics; a
merge SWBTU list contains additional data set characteristics or the base list with
changes. The SJFREQ SWBTU_MERGE service also allows an application to
remove SWBTUs from a base SWBTU list.

An application can request the SWBTU_MERGE service to allow certain errors
during input processing by setting the SJSMWARN bit in the parameter list.
Setting the SJSWARN bit allows errors for which the return code is 0, and the
reason code is X'0CA' through X'243'. Use the SJSMWARN bit only when you
know the keywords you are using are not compatible with your current system

758 z/OS V2R2 MVS Authorized Assembler Services Guide

release. Also note that even though you may have more than one error in a
SWBTU list, \JSMEKER and SJSMMKER contain information about only one error
upon return from an invocation. You might need to repeat this process of fixing an
error and invoking the service several times before eliminating all the errors. See
z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO for
information about filling in the parameter list.

Use caution when setting the SJSMWARN bit. When SJSMWARN is on, errors are
allowed for any key or parameter, not just for the keys or parameters for which
you set SJSMWARN on (keys that are not compatible with your current system
release).

Validating and building text units (SJFREQ macro with
VERIFY)

An application's processing may involve the dynamic allocation of SYSOUT data
sets. As part of this processing, the application allows the user (a programmer or
another program) to specify the output format characteristics of the SYSOUT data
set. These characteristics are referred to as output descriptor information. The
application needs to process the output descriptor information and pass the
information to the dynamic output service. Dynamic output requires input in text
unit format.

SJFREQ VERIFY validates the output descriptor information specified by the user
or application and returns data in text unit format. A text unit pointer list, created
by VERIFY, can be used as input to dynamic output. The application then has the
data in the format needed by dynamic output.

An application that provides a menu through which users enter print options
might use SJF to check the user-specified options. For example, an application
might have a menu that allows users to indicate paper size, number of copies,
number of lines per page, font, a delivery address, and a user name. After a user
enters this information, the application can call SJF to validate and process the
options so the system can use the options to create the user's output.

SJFREQ VERIFY functions
VERIFY validates the statement name, operands, keyword operands, and
subparameters that make up the OUTDES statement, and builds text units for
valid statement information. “Understanding the OUTDES statement” on page 767
describes the OUTDES statement syntax and considerations for using the
statement. Use the VERIFY service to validate statement information by filling in
the required fields of the VERIFY parameter list (IEFSJVEP) for the function your
application performs. z/OS MVS Programming: Authorized Assembler Services
Reference SET-WTO defines each parameter list field and summarizes the fields
needed for each of the SJFREQ VERIFY functions. VERIFY performs several
functions that an application can use:
v An application can validate a statement name, or keyword operand, or operand

prior to processing the values of subparameters or sublist elements. To do this
prior validation, the application can provide the following in the VERIFY
parameter list:
– The operand or keyword operand. VERIFY determines that the operand or

keyword operand is defined to the statement, and that the statement name is
OUTDES.

– The statement name. VERIFY determines that the statement being processed
is OUTDES.

Chapter 28. Scheduler JCL facility (SJF) 759

v An application can only process a statement name, keyword operand, and either
a single subparameter or a single sublist element on the same VERIFY call. To
do this statement validation and begin building a text unit, an application must
provide the statement name, keyword operand, and the subparameter or sublist
element on the same call. VERIFY determines if the subparameter or sublist
element value is defined to the keyword operand and the OUTDES statement
and if the values are valid. If the values are valid, VERIFY begins or continues to
build a text unit for the subparameter or sublist element.
To build a text unit for an entire keyword operand, pass each subparameter and
sublist element for the keyword operand to VERIFY on separate calls. For
example, in the statement that follows, VERIFY must be called five times, once
for each subparameter or sublist element.
OPTIONS(A,B,(c,d,e))

To build a text unit for an operand, call VERIFY only once.
Call VERIFY until you finish processing a single OUTDES statement, then use
the text units as input to dynamic output before moving on to the next
statement.

Preparing to use VERIFY for validating and building text units
An application programmer should consider several things in order to code an
application correctly when using VERIFY. These items are listed here and described
in the following paragraphs.
v Error Information
v Parameter Delimiters
v Sequence of Parameter Validation
v Operand Processing
v Parameter Overrides
v Last Call Processing
v Using the SJF Environment
v Text Unit Output Area
v Prefixing Data Set Names

Error information: When VERIFY is passed a subparameter or sublist element,
VERIFY validates the syntax. If the subparameter or sublist element is correct,
VERIFY builds a text unit to represent it. If the subparameter or sublist element is
not valid, VERIFY returns information indicating the data was not valid. The
reason code identifies the type of error. For some errors VERIFY returns error
message text and an operand description. The application can use the text and
description to inform the user how to correct the error. See z/OS MVS Programming:
Authorized Assembler Services Reference SET-WTO for the message text and operand
descriptions.

Parameter delimiters: VERIFY does not process the parentheses or commas that
might appear in the input as delimiters. The application must parse the statement
and identify the input VERIFY is to process. Input passed to VERIFY must not
include enclosing quotation marks. If the input is enclosed in quotation marks and
contains two consecutive single quotation marks, the application must:
v Convert the consecutive single quotation marks to a single quotation mark
v Remove the enclosing quotation marks
v Pass the input to VERIFY.

760 z/OS V2R2 MVS Authorized Assembler Services Guide

For example, pass the string 'BOARD''S' as BOARD'S to VERIFY as the value to
process.

VERIFY provides two functions whose use is determined by whether the input
value is delimited by single quotation marks. When an input value is delimited by
single quotation marks and an application sets parameter field SJVEQUOT on (sets
it to one), VERIFY does additional validation. VERIFY determines if the input
value may be specified within quotation marks on the statement. If an application
does not want to use the quotation mark validation feature, it should set
SJVEQUOT to zero.

When an input value is not delimited by single quotation marks and an
application specifies a value in SJVEPRFX, VERIFY performs a function called
prefixing.

Sequence of parameter validation: For a keyword operand, an application must call
VERIFY for each subparameter and sublist element. Call VERIFY with the
subparameters and sublist elements in the order in which they appear following
the keyword operand. For example, in “Validate and build a text unit for a
keyword operand and subparameters” on page 764 the application calls VERIFY
for the subparameter GT10, and then calls VERIFY again to process the
subparameter GB10. The application must call VERIFY once for each subparameter.

If an application passes VERIFY a subparameter or sublist element that is not
valid, VERIFY must be called again for the same subparameter or sublist element
until the application does one of the following:
v Passes a valid subparameter or sublist element
v Passes a new operand or keyword operand value
v Requests last call
v Issues a SJFREQ TERMINATE request.

In the case of a subparameter or sublist element that is not correct, the application
could prompt its user for a valid value. If the application is unable to produce a
valid value, VERIFY processes no more subparameters or sublist elements for the
keyword operand; VERIFY builds text units for the subparameters and sublist
elements previously processed for the keyword operand. If this is the first
subparameter and the first sublist element, and the caller cannot produce a valid
value, VERIFY builds no text units for the keyword operand.

Operand processing: Operands are stand-alone words specified on a statement.
However, if an application wants a text unit built for an operand, it must pass
VERIFY a null subparameter with the operand. The subparameter must be
specified as follows:
v 1 as the subparameter number
v 0 as the subparameter length.

If an application does not specify an operand with a subparameter, VERIFY
validates the operand, but does not build a text unit.

Parameter overrides: Operands or keyword operands may be processed in any
order. When an application specifies the same keyword operand more than once,
the text unit represents the last value VERIFY validated for the keyword operand.
For example, an application issues the statement below. Assume that the

Chapter 28. Scheduler JCL facility (SJF) 761

application requests VERIFY to process NOTIFY(ALB18.POST) after
NOTIFY(NYS24.BENCH,NYS24.PARKER)
OUTDES out1 NOTIFY(NYS24.BENCH,NYS24.PARKER) NOTIFY(ALB18.POST)

When VERIFY completes processing of the statement, the text unit represents
(ALB18.POST) as the value for the NOTIFY keyword operand.

Last call processing: When the application has processed all the statement
information, it must call VERIFY using the last call indicator. See “Requesting last
call” on page 766 for an example that specifies last call. This call signifies that no
more operands or keyword operands are to be processed for the current statement.
After this call, the text units and text unit pointer list for the current statement are
available for the application to use. Also, the SJF environment has been refreshed
so VERIFY can process another statement with the same environment. (SJVENOCU
must have been set on to save the environment.) To invoke VERIFY and request
last call, use the parameter list returned from the previous call, and set SJVELSTC
on. Setting SJVELSTC on and calling VERIFY makes the text units available for
use. This is an additional call after the last subparameter or sublist element is
processed. No text units are built on this call.

Using the SJF environment: If an application requests VERIFY to build text units,
the application must reuse the SJF environment until a complete statement is
verified. So the application must supply the same value in SJVESTOR on each call
after the first. VERIFY builds the text units in the area addressed by SJVESTOR. If
the application wants to use the same environment to process another OUTDES
statement with VERIFY, the application must indicate last call (set SJVELSTC)
when VERIFY completes processing the first statement. After the application
indicates last call, the application can call VERIFY to process another statement.

Text unit output area: When calling VERIFY to validate information and build text
units, the application must pass VERIFY a pointer to an output area to hold the
text units. This output area is referred to as the SJF VERIFY text unit output area.
Pass the pointer to the output area in SJVETUBP and the length of the output area
in SJVETUBL.

An application using the SJFREQ VERIFY service to validate multiple
subparameters on one keyword operand must make sure to specify the same SJF
VERIFY text unit output area in parameter list field SJVETUBP for each call.

The length of the VERIFY text unit output area must be at least 256 bytes plus area
needed to contain the text units built for the statement. A work area of 1K is large
enough for any set of text units.

If an application needs to provide additional work areas to contain the text units,
the additional work areas can be of any length that will contain at least the text
unit VERIFY builds. If more space is needed in the VERIFY text unit output area,
VERIFY returns return code 4 and reason code 4B2, indicating the problem. The
application must:
v Obtain more storage and call VERIFY again
v Pass the new pointer (SJVETUBP) and text unit output area length (SJVETUBL)
v Pass the subparameter or sublist element that was not processed in the last

request.

762 z/OS V2R2 MVS Authorized Assembler Services Guide

When an application wants to use the same output area to process multiple
keyword operands, the application can request that VERIFY return in parameter
field SJVETUBS the amount of output area used by doing the following:
v Set SJVERSBS on.
v Pass the same value in parameter field SJVETUBP as on the initial call for this

statement. This value is the pointer to the text unit output area.

If the application uses VERIFY to validate the same statement and specifies a
different value in SJVETUBP and SJVERSBS is on, the reason code SJRCIVBD is set.
The application specified that the same output area be used on multiple calls by
setting SJVERSBS on, but proceeded to specify another output area to be used.

Prefixing data set names: Some keyword operands require a data set name as a
subparameter. Data set names may be fully qualified (delimited by single quotation
marks) or unqualified (not delimited by single quotation marks). For unqualified
data set names, VERIFY allows an application to indicate a prefix in parameter
field SJVEPRFX. VERIFY uses this prefix as the first qualifier for the unqualified
data set name on the keyword operands for which VERIFY allows prefixing. To
indicate a prefix, specify a value in SJVEPRFX and set SJVEQUOT to zero.

Examples of using SJFREQ VERIFY functions
The examples that follow are sample SJFREQ VERIFY calls for processing a
statement, operand or keyword operand, subparameter, and sublist element. The
calls process the OUTDES statement shown in Figure 74. (See “Understanding the
OUTDES statement” on page 767 for more detail on OUTDES.) The calls are
written in pseudocode and show the proper sequence of validation. The
application has not previously called VERIFY.

Validate a statement name
The application wants to validate the statement name, OUTDES, prior to
validating, parsing, and processing the remainder of the statement. The application
can do the following:
v Clear the SJF Verify parameter list SJVEP (set to binary zeros).
v Set the id field, SJVEID, to 'SJVE'.
v Set the parameter list version number to SJVECVER.
v Set the parameter list length, SJVELEN, to SJVELGTH.
v Set the no-cleanup bit, SJVENOCU, on. Save the SJF environment across calls.
v Set the unauthorized-caller bit, SJVEUNAU, on if appropriate for your

application.
v Set field SJVEJDVT to zeros.
v Set the statement name field, SJVECMND, to 'OUTDES ' from the statement

above.
v Issue SJFREQ REQUEST=VERIFY,PARM=SJVEP.

VERIFY returns with a return and reason code of zero.

OUTDES out1 CHARS(GT10,GB10) COPIES(1,(2,4,5))

Figure 74. Sample OUTDES Statement for Which an Application Wants Text Units

Chapter 28. Scheduler JCL facility (SJF) 763

Validate a keyword operand
The application now chooses to have VERIFY validate that CHARS is an OUTDES
keyword operand. (In this example, and the other examples that follow in this
information, pointers below the statement are used to indicate values that are
processed in the example.) The application sets OPER_PTR to point to the first
byte of CHARS, and determines the length of the CHARS operand. The application
issues the VERIFY macro to validate CHARS. The pointers are as follows:

v Set the operand pointer field, SJVEOPEP, to OPER_PTR
v Set the operand length field, SJVEOPEL, to 5 (length of 'CHARS')
v Issue SJFREQ REQUEST=VERIFY,PARM=SJVEP

VERIFY returns with a return and reason code of zero. This indicates that VERIFY
understands the statement and that CHARS is a valid keyword operand for the
OUTDES statement.

The application can proceed to validate the keyword operand COPIES or it can
request that VERIFY begin building a text unit for the keyword operand, CHARS,
and the rest of the OUTDES statement. The application can continue to use the SJF
environment established on the VERIFY invocation in this example. To continue to
use the environment, the application must save the value in the SJVESTOR field
when the SJVEP area is cleared.

Validate and build a text unit for a keyword operand and
subparameters
After the application validates the keyword operand CHARS, it calls VERIFY to
process the CHARS keyword operand with the subparameter GT10. The pointers
are set as in Figure 75.
v Obtain 1K of storage for the SJF Verify text unit output area.
v Clear the SJF Verify parameter list SJVEP (set to zeros).
v Set the id field, SJVEID, to 'SJVE'.
v Set the parameter list version number to SJVECVER.
v Set the parameter list length equal to the length of SJVELGTH.
v Set the no-cleanup bit, SJVENOCU, on. Continue to save the SJF environment

across calls.
v Set the unauthorized-caller bit, SJVEUNAU, on if appropriate for your

application.
v Set the statement name field, SJVECMND, to 'OUTDES ' from the statement

above.
v Set the operand pointer field, SJVEOPEP, to OPER_PTR.
v Set the operand length field, SJVEOPEL, to 5.
v Set the subparameter number field, SJVEPARM, to 1 to indicate first

subparameter being processed.
v Set the subparameter pointer field, SJVEPRMP, to PARM_PTR.
v Set the subparameter length field, SJVEPRML, to 4 (length of 'GT10')

OUTDES out1 CHARS(GT10,GB10) COPIES(1,(2,4,5))
| |
| PARM_PTR
OPER_PTR

Figure 75. OUTDES Statement with Pointers Indicating Values To Be Processed

764 z/OS V2R2 MVS Authorized Assembler Services Guide

v Set the VERIFY text unit output area length field, SJVETUBL, to 1024 (1K
obtained above in this example).

v Set the VERIFY text unit output area pointer field, SJVETUBP, to the address of
the obtained storage.

v Issue SJFREQ REQUEST=VERIFY,PARM=SJVEP.

VERIFY returns with a return and reason code of zero. The application updates
PARM_PTR to point to GB10. The adjusted pointers are as follows:

The IEFSJVEP parameter list still contains the results from the previous VERIFY
call. Call VERIFY again to validate subparameter GB10 and build a text unit in the
text unit output area for the entire CHARS keyword operand. Note that we are
still processing the same keyword operand, so the value in SJVETUBP in this
example contains the same value passed for all previous subparameters of the
keyword operand, CHARS.
v Set the subparameter number field, SJVEPARM, to SJVEPARM +1 (which is now

2).
v Set the subparameter pointer field, SJVEPRMP, to PARM_PTR.
v Set the subparameter length field, SJVEPRML, to 4 (length of 'GB10').
v Issue SJFREQ REQUEST=VERIFY,PARM=SJVEP.

VERIFY returns with a return and reason code of zero.

Validate and build a text unit for a keyword operand with a
sublist
After validating and building a text unit for the CHARS subparameters, the
application continues by using VERIFY to validate and build text units for
COPIES(1,(2,4,5)), the next keyword operand and its subparameters. The second
subparameter is a sublist.

The application previously called VERIFY to validate and build the text unit for
the CHARS keyword operand as indicated above. The VERIFY parameter list
contains values returned from the previous call. The pointers have been updated as
shown in the following figure:

The application invokes VERIFY to validate and begin building a text unit for
COPIES with its first subparameter, 1.
v Set the operand pointer field, SJVEOPEP, to OPER_PTR.
v Set the operand length field, SJVEOPEL, to 6 (length of 'COPIES').
v Set the subparameter number field, SJVEPARM, to 1.
v Set the subparameter pointer field, SJVEPRMP, PARM_PTR.
v Set the subparameter length field, SJVEPRML, to 1 (length of '1').

OUTDES out1 CHARS(GT10,GB10) COPIES(1,(2,4,5))
| |
| PARM_PTR
OPER_PTR

Figure 76. OUTDES Statement with New Pointers Indicating Values To Be Processed

OUTDES out1 CHARS(GT10,GB10) COPIES(1,(2,4,5))
| |
| PARM_PTR
OPER_PTR

Figure 77. OUTDES Statement with Adjusted Pointers Indicating Values To Be Processed

Chapter 28. Scheduler JCL facility (SJF) 765

v Issue SJFREQ REQUEST=VERIFY,PARM=SJVEP.

VERIFY returns with a return and reason code of zero. The application updates
PARM_PTR to point to the first byte of the first sublist element of the second
subparameter for the COPIES keyword operand. The adjusted pointers are as
follows:

The application invokes VERIFY to validate and continue building the COPIES text
unit with the first sublist element of the second subparameter, 2.
v Set the subparameter number field, SJVEPARM, to 2.
v Set the sublist element number field, SJVESUBL, to 1.
v Set the sublist element pointer field, SJVEPRMP, to PARM_PTR.
v Set the sublist element length field, SJVEPRML, to 1 (length of '2').
v Issue SJFREQ REQUEST=VERIFY,PARM=SJVEP.

VERIFY returns with a return and reason code of zero. The text unit for the
COPIES keyword operand now contains the first subparameter value, ‘1’, and the
second subparameter, first sublist element value, ‘2’. The application must continue
calling VERIFY with the remaining sublist elements and then specify a last call to
have the COPIES keyword operand text unit completely built. The application
would increment SJVESUBL to the next sublist element number and set SJVEPRMP
and SJVEPRML to represent the corresponding sublist element, and call VERIFY.

Requesting last call
Once the application completes its VERIFY calls to validate and build text units for
the entire OUTDES statement, it issues a separate VERIFY call to request last call.
The last call must directly follow the previous example.

This example shows a VERIFY call to request the last call function. The VERIFY
parameter list contains values returned from previous calls. The application does
not plan to call VERIFY again.
v Set the no-cleanup bit, SJVENOCU, off. This causes the SJF environment to be

freed.
v Set the last-call flag, SJVELSTC, on. This indicates to SJF to complete building

the text unit for the last keyword operand or operand that was processed.

VERIFY returns with a return and reason code of zero. SJVETUPL contains the
address of a text unit pointer list (in the text unit output area) that contains
pointers to the text units for CHARS and COPIES.

Freeing the SJF environment (SJFREQ macro with
TERMINATE)

TERMINATE frees the environment established by an SJF service. The SJF VERIFY
service requires multiple invocations to complete its function and therefore must
reuse the environment. An application using VERIFY may not know when the final
invocation of the VERIFY service occurs (for example, when operands are
processed in a loop). In this case, the application should call TERMINATE to free
the environment after the final invocation. If an application has previously called

OUTDES out1 CHARS(GT10,GB10) COPIES(1,(2,4,5))
| |
| PARM_PTR
OPER_PTR

Figure 78. OUTDES Statement with Adjusted Pointers for Values To Be Processed

766 z/OS V2R2 MVS Authorized Assembler Services Guide

SJFREQ VERIFY with SJVENOCU set off (0) (indicating that the environment is to
be freed), an application cannot call SJFREQ TERMINATE to free that environment.

Understanding the OUTDES statement
An application or its users build OUTDES statements to dynamically define
processing options for a system output (SYSOUT) data set. The OUTDES statement
is an alternate form of an OUTPUT JCL statement that is used in a dynamic output
environment. See Chapter 27, “Dynamic output,” on page 735 for more information
on the dynamic output environment. The OUTDES syntax consists of the OUTDES
statement, operands, keyword operands, subparameters, and sublist elements that
an application or its users can request SJFREQ VERIFY to validate and build text
units to represent. Each OUTDES operand and keyword operand represents an
individual output processing option.

This information describes considerations for using the OUTDES statement
followed by a detailed description of the syntax.

Operand and keyword operand abbreviations
Enter operands and keyword operands spelled exactly as they are shown or use an
abbreviation. The minimum abbreviation for each operand and keyword operand
appears following their descriptions.

For example, in the case of the BUILDING keyword operand, enter at least the first
five characters. The description for the BUILDING keyword operand appears as
follows:

BUILDING('building' or building)
specifies a building location to be used for delivery of system output. One to
60 EBCDIC text characters may be specified. See “Rules for parsing data with
and without quotation marks” on page 768 for the values that may be used
with and without quotation marks.

Minimum abbreviation: 5

Valid abbreviations for BUILDING are:
v BUILD
v BUILDI
v BUILDIN

Comments and line continuation
VERIFY does not account for comments or line continuation. The application is
responsible for handling both comments and line continuation.

Delimiters
Blanks and commas are delimiters between elements in the syntax. Parentheses
mark the bounds between a keyword operand and its subparameters and may
mark the bounds of a sublist within a subparameter as well. Do not use
parentheses as delimiters within sublists.

Quotation marks are delimiters for specific values within subparameters and
sublists. “Rules for parsing data with and without quotation marks” on page 768
describes considerations for using quotation marks.

Chapter 28. Scheduler JCL facility (SJF) 767

The application may have its own delimiters between operands; the application,
however, must handle any deviations from the syntax defined in this information.

Rules for parsing data with and without quotation marks
If an application that parses an OUTDES statement encounters a keyword operand
subparameter value delimited by single quotation marks, the application must do
the following:
v If part of the value is two consecutive single quotation marks, convert the two

single quotation marks to one single quotation mark. Two consecutive single
quotation marks indicates a single quotation mark is to appear in the output. To
include a single quotation mark in the string, specify two consecutive single
quotation marks. For example, to obtain Manager's Report on the TITLE
keyword, specify TITLE('Manager''s Report') on the OUTDES statement.

v Allow any EBCDIC text characters (X'40' to X'FE') as part of the value.

If an application that parses an OUTDES statement encounters a keyword operand
subparameter value that is not delimited by single quotation marks, the application
must allow any EBCDIC text characters (X'40' to X'FE') as part of the value. If the
parser chooses to use any of the characters (X'40' to X'FE') as special delimiter
characters, the parser would not allow these delimiter characters as part of the
value. When an application specifies a keyword operand that allows quoted
strings, it must specify any EBCDIC text character (X'40' to X'FE') within the string.

OUTDES statement syntax
The syntax of the OUTDES statement follows. Definitions of the operands and
keyword operands follow the syntax diagram.

OUTDES
ADDRESS('address'...)
ADDRESS(address...)
ADDRESS('address1','address2',...,'address4')
ADDRESS(address1,address2,...,address4)

BUILDING('building')
BUILDING(building)

BURST
NOBURST

Default: NOBURST

CHARS(charname,...)
CHARS
(charname1,charname2,...,charname4)

CKPTLINE(nnnnn)

CKPTPAGE(nnnnn)

CKPTSEC(nnnnn)

CLASS(output-class)

COMPACT(compaction-table-name)

768 z/OS V2R2 MVS Authorized Assembler Services Guide

CONTROL(PROGRAM)
CONTROL(SINGLE)
CONTROL(DOUBLE)
CONTROL(TRIPLE)

Default: PROGRAM

COPIES(nnn,(group value,...)

DATACK(BLKCHAR)
DATACK(BLKPOS)
DATACK(BLOCK)
DATACK(UNBLOCK)

DEFAULT
NODEFAULT

DEPT('dept')
DEPT(dept)

DEST(destination)
DEST(destination.userid)

DPAGELBL
NODPAGELBL

FCB(fcb-name)

FLASH(overlay,count)

FORMDEF(member-name)

FORMS(forms-name)

GROUPID(output-group-name)

INDEX(nn)

LINDEX(nn)

LINECT(nn)

MODIFY(module-name)
MODIFY(module-name,trc)

NAME('name')
NAME(name)

NOTIFY(node.userid)
NOTIFY(node.userid1,

node2.userid2,...,node4.userid4)

OUTDISP(normal-output-disp,abnormal-output-disp)

PAGEDEF(member-name)

PIMSG(YES,nnn)
PIMSG(NO,nnn)

PRMODE(process-mode)

Chapter 28. Scheduler JCL facility (SJF) 769

PRTY(nnn)

ROOM('room')
ROOM(room)

SYSAREA
NOSYSAREA

THRESHLD(nnnnnnnn)

TITLE('title')
TITLE(title)

TRC
NOTRC

Default: NOTRC

UCS(ucs-name)

USERDATA(userdata1)
USERDATA
('userdata1','userdata2',...,'userdata16')

USERLIB(dsname)
USERLIB(dsname1, dsname2,...,dsname8)

WRITER(external-writer-name)

The elements of the syntax are described as follows:

ADDRESS('address'...)
ADDRESS(address...)
ADDRESS('address1','address2',...,'address4')
ADDRESS(address1,address2,...,address4)

specifies a delivery address for system output. Enter one to four address
values. To skip an address value, enter a comma without specifying an
address, for example, ADDRESS(,'addr2',addr4). One to 60 EBCDIC text
characters may be specified for each sub-address specified. For example, if you
specify ADDRESS(address1,address2), address1 and address2 may each be 60
characters. See “Rules for parsing data with and without quotation marks” on
page 768 for the values that may be used with and without quotation marks.

Minimum abbreviation: 4

BUILDING('building')
BUILDING(building)

specifies a location to be used for delivery of system output. One to 60
EBCDIC text characters may be specified. See “Rules for parsing data with and
without quotation marks” on page 768 for the values that may be used with
and without quotation marks.

Minimum abbreviation: 5

BURST
NOBURST

BURST specifies that 3800 output is to be burst into separate sheets.

Minimum abbreviation: 3

770 z/OS V2R2 MVS Authorized Assembler Services Guide

NOBURST specifies that the printed 3800 output is to be in continuous fanfold
pages. NOBURST is the default.

Minimum abbreviation: 5

CHARS(charname,...)
CHARS(charname1,charname2,...,charname4)

specifies one or more font (character arrangement) tables for printing the
SYSOUT data set on a 3800 printer. You can specify up to four table names.
Specify from 1 to 4 characters (alphabetic, numeric, or @, #, or $) for the
character name.

Minimum abbreviation: 3

CKPTLINE(nnnnn)
specifies the maximum number of lines contained in a logical page. Specify a
value from 1 through 32767. The system uses this value either for job entry
subsystem (JES) checkpointing of printed output or for Systems Network
Architecture (SNA) transmission checkpoints. Use CKPTLINE in combination
with the CKPTPAGE operand.

If you do not specify CKPTLINE, JES2 uses an installation default specified at
initialization.

Minimum abbreviation: 5

CKPTPAGE(nnnnn)
specifies the maximum number of pages to be printed or transmitted before
the next SYSOUT data set checkpoint occurs. Specify a value from 1 through
32767. This value represents the number of pages to be transmitted as a single
SNA chain when data is transmitted to a SNA workstation. Use CKPTPAGE in
combination with the CKPTLINE operand.

If you do not specify CKPTPAGE, JES2 uses the installation default specified at
initialization. The default may also indicate whether checkpoints are to be
based on page count or time.

Minimum abbreviation: 5

CKPTSEC(nnnnn)
specifies the number of seconds that are to elapse between checkpoints of the
SYSOUT data set that is printing. Specify a value from 1 through 32767.

If you do not specify CKPTSEC, JES2 uses the installation default specified at
initialization. The default may also indicate whether checkpoints are to be
based on page count or time.

Minimum abbreviation: 5

CLASS(output-class)
specifies the output class JES is to use for processing the specified SYSOUT
data set. Valid output classes are characters A-Z or 0-9. The default output
class is A.

Minimum abbreviation: 3

COMPACT(compaction-table-name)
specifies the name of the compaction table to be used when the data set is
transmitted to a workstation. Specify a 1- to 8-character alphabetic or numeric
symbolic name.

If you do not specify COMPACT, compaction is suppressed for the data set.

Minimum abbreviation: 3

Chapter 28. Scheduler JCL facility (SJF) 771

CONTROL(PROGRAM)
CONTROL(SINGLE)
CONTROL(DOUBLE)
CONTROL(TRIPLE)

specifies the type of forms control to be used.

PROGRAM indicates that the carriage control character of each data record is
to control line spacing on the form. PROGRAM is the default.

SINGLE indicates forced single spacing.

DOUBLE indicates forced double spacing.

TRIPLE indicates forced triple spacing.

Minimum abbreviation: 3

COPIES(nnn,(group-value,))
specifies the number of copies to be printed for the data set. The number of
copies, nnn, can range from 1 to 255, subject to an installation limit. The
default is 1.

If you use COPIES on a referenced FORMDEF operand, the system ignores the
COPIES value.

If you specify group values, the system ignores the individual value, nnn, for
the 3800 printer. The group values describe how the printed copies are to be
grouped (3800 printer only). Each group value specifies the number of copies
of each page that are to be grouped together. You can specify up to eight group
values. For example, a group value of 3 causes the first page of a data set to be
printed three times before printing is started for the second page, which will
also be printed three times, and so forth.

Minimum abbreviation: 3

DATACK(BLKCHAR)
DATACK(BLKPOS)
DATACK(BLOCK)
DATACK(UNBLOCK)

specifies whether “print positioning” and “invalid character” data check errors
are to be blocked or unblocked for printers accessing through the Print
Services Facility (PSF).

BLKCHAR specifies character errors that are not valid are to be blocked. The
errors are not reported to PSF. Print positioning errors are reported normally.

BLKPOS specifies print positioning errors are to be blocked, and not reported
to PSF.

BLOCK specifies neither print positioning errors nor character errors are
reported to PSF.

UNBLOCK specifies both print positioning errors and character errors are
reported to PSF.

If you do not specify DATACK, the DATACK specification from the PSF
PRINTDEV statement is used. If it is not specified in the PRINTDEV statement,
the default is BLOCK.

Minimum abbreviation: 6

DEFAULT
NODEFAULT

DEFAULT specifies that any SYSOUT data sets that do not explicitly refer to an

772 z/OS V2R2 MVS Authorized Assembler Services Guide

output descriptor (as allocated by the ALLOCATE command) should use
default output characteristics when printing the data set. Minimum
abbreviation: 3

NODEFAULT specifies that to use a specified set of output characteristics, an
explicit reference to the output descriptor needs to be made on the ALLOCATE
command when allocating a SYSOUT data set.

Minimum abbreviation: 5

DEPT('dept')
DEPT(dept)

specifies a department identifier that is to be associated with system output.
The identifier is used to aid in the distribution of output. One to 60 EBCDIC
text characters may be specified. See “Rules for parsing data with and without
quotation marks” on page 768 for the values that may be used with and
without quotation marks.

Minimum abbreviation: 4

DEST(destination)
DEST(destination.userid)

specifies a remote workstation or a user at a specific remote workstation to
which the output is routed for processing. You can specify from 1 to 8
characters for either destination or userid.

Minimum abbreviation: 3

DPAGELBL
NODPAGELBL

DPAGELBL specifies that the system is to print a security-related character
string on each page of output. The character string is associated with a security
label (usually the security label of the user's current session). Your installation
determines the character string used.

Minimum abbreviation: 6

NODPAGELBL specifies that the system-generated security character string is
to be suppressed on the pages of output. You must have the appropriate RACF
access authority to override page labeling. If you need to override DPAGELBL
but are unable to, check your installation security procedures or see your
RACF security administrator.

Minimum abbreviation: 8

FCB(fcb-name)
specifies the name of the forms control buffer (FCB) or image to be used for
the 3211, 3203-5, or 3800 printers. The name of the FCB is a 1- to 4-alphabetic
or numeric string consisting of the last 1 to 4 characters of the following:
v FCB2xxxx member for the 3211 or 3203-5 printer or printers supported by

System Network Architecture (SNA)
v FCB3xxxx member for the 3800 printer.

Minimum abbreviation: 3

FLASH(overlay,count)
specifies the name of the forms overlay to be used on the 3800. The overlay is
“flashed” on a form or other printed information over each page of output.
The overlay name must be 1 to 4 characters (alphabetic, numeric, or @, #, or $).

Chapter 28. Scheduler JCL facility (SJF) 773

FLASH also allows you to specify the number of copies (count) on which the
overlay is to be printed. The count can range from 0 to 255. To flash no copies,
specify a count of zero.

Minimum abbreviation: 3

FORMDEF(member-name)
specifies the member name of a partitioned data set containing information
that the Advanced Function Printer (AFP 3800-3 or 3800-8) uses to print a data
set. The member can contain the following information:
v The overlays that are to be invoked during output processing
v The location on the page where the overlays are to be placed
v The suppressions that can be activated for specified page formats.

The member name contains a maximum of 6 characters, of which the first two
are predefined by your installation. For the last four characters, specify
alphabetic or numeric characters, or the characters @, #, or $.

Minimum abbreviation: 5

FORMS(forms-name)
specifies the name of the form on which the output is to be printed. Specify 1
to 8 characters (alphabetic, numeric or @, #, or $) for the forms name.

If you do not specify FORMS, JES uses the installation default specified at
initialization.

Minimum abbreviation: 5

GROUPID(output-group-name)
specifies the name to be used by JES2 to identify which of a job's SYSOUT data
sets are to form an output group. The output group name consists of 1 to 8
alphabetic or numeric characters and is selected by the system programmer to
define an output group for the job.

Minimum abbreviation: 3

INDEX(nn)
specifies a value indicating the data set indexing print offset (to the right) for
the 3211 printer with the indexing feature. The width of the print line is
reduced by the value of INDEX. Specify a value from 1 through 31. The value
1 indicates flush left. The values 2 through 31 indent the print line by nn-1
positions.

The default is 1, which indicates flush left.

Minimum abbreviation: 3

LINDEX(nn)
specifies a value indicating the data set indexing print offset (to the left) for the
3211 printer with the indexing feature. The width of the print line is reduced
by the value of LINDEX. Specify a value from 1 through 31. The value 1
indicates flush right. The values 2 through 31 move the right margin over by
nn-1 positions.

The default is 1, which indicates flush right. LINDEX is ignored on printers
other than the 3211 printer.

Minimum abbreviation: 4

774 z/OS V2R2 MVS Authorized Assembler Services Guide

LINECT(nnn)
specifies the number of lines that are to be printed before overflow processing.
Specify a value from 0 through 255. If you specify zero, no overflow processing
is done.

If you do not specify LINECT, JES2 obtains the value from one of the
following:
v The linect field of the accounting information parameter on the JCL JOB

statement.
v The installation default specified at JES2 initialization.

Minimum abbreviation: 4

MODIFY(module-name,trc)
specifies the name of a copy modification module, which is loaded into the
3800 printing subsystem. This module contains predefined data such as
legends, column headings, or blanks. The module specifies where and on
which copies the data is to be printed. The module is in the SYS1.IMAGELIB
system data set. Specify 1 to 4 characters (alphabetic, numeric, or @, #, or $) for
the module name.

The table reference character (TRC), which is optional, corresponds to the
character set or sets specified on the CHARS operand. Values are 1 to 4
characters (alphabetic, numeric, or @, #, or $).

Minimum abbreviation: 3

NAME('name')
NAME(name)

specifies a name that is to be associated with system output. The name is used
by your installation to help in the distribution of output. One to 60 EBCDIC
text characters may be specified. See “Rules for parsing data with and without
quotation marks” on page 768 for the values that may be used with and
without quotation marks.

Minimum abbreviation: 4

NOTIFY(node.userid)
NOTIFY (node1.userid1, node2.userid2,...,node4.userid4)

specifies the node and userid for the recipients of the print complete messages
that are issued when a data set completes printing. The message indicates
whether the job completed successfully and identifies the output that has
completed printing. Node may be omitted from any destination. If node is not
specified, it is assumed to be the node where the job was submitted. You may
specify up to four recipients of print complete messages.

If you do not specify NOTIFY, no print complete message is issued.

Minimum abbreviation: 3

OUTDISP(normal-output-disp,abnormal-output-disp)
specifies the disposition of a SYSOUT data set. Possible dispositions include
the various combinations of holding the data set before or after writing it to a
printer or an external writer. Normal-output-disp is the disposition for the data
set if the job completes normally. Abnormal-output-disp is the disposition for
the data set if the job completes abnormally. Both normal-output-disp and
abnormal-output-disp are optional, but one should be specified.

Minimum abbreviation: 5

The following table lists the valid values for normal-output-disp and
abnormal-output-disp.

Chapter 28. Scheduler JCL facility (SJF) 775

Table 98. Values for Normal- and Abnormal-Output-Disp

Value Description

WRITE System output is to be processed and deleted.

HOLD System output is to be held until released by the user or operator. When
the system output is released, its disposition is changed to WRITE.

KEEP System output is to be processed, and upon completion of processing, its
disposition is to be changed to LEAVE

LEAVE System output is to be held until it is released by the user or operator.
When the system output is released, its disposition is changed to KEEP.

PURGE System output is deleted without processing.

PAGEDEF(member-name)
specifies the member of a partitioned data set containing information that the
Advanced Function Printer uses to print the data set. The member can contain
the following information:
v Logical page size and width
v Fonts
v Page segments
v Multiple page types or formats
v Lines within a page; for example, line origin, carriage controls, and spacing
v Multiple logical pages on a physical page.

The member name contains a maximum of 6 characters, of which the first two
are predefined by your installation. For the last four characters, specify
alphabetic or numeric characters, or the characters @, #, or $.

Minimum abbreviation: 3

PIMSG(YES,nnn)
PIMSG(NO,nnn)

specifies whether messages are to be printed. Values are 0 through 999. The
value specifies that the system is to cancel the printing of the current data set
after the specified number of errors have been either:
v Detected by the functional subsystem (FSS)
v Reported to FSS by the printer.

PIMSG(YES) specifies that messages generated by FSS are to be printed.
PIMSG(YES,16) is the default.

PIMSG(NO) specifies that messages are to be suppressed.

If you specify nnn as zero, the system does not cancel the printing of the
current data set.

Minimum abbreviation: 3

PRMODE(process-mode)
specifies the process mode to be used to schedule output data sets either to
output devices running under a functional subsystem (FSS) or to an output
device managed by JES. For a list of valid process modes, contact your system
programmer. If you do not specify PRMODE, JES might determine the process
mode based upon the content of the data. Specify 1 to 8 alphabetic or numeric
characters for the process mode.

Use PRMODE to indicate the type of processing you want for a data set. You
can use it to direct JES scheduling of this data set to a particular output FSS or

776 z/OS V2R2 MVS Authorized Assembler Services Guide

JES writer. You can also use PRMODE to request specific processing of a
Network Job Entry (NJE) transmitted data set at the destination node without
knowing the device name or a SYSOUT class.

Minimum abbreviation: 3

PRTY(nnn)
specifies the initial selection priority for the data set. Specify a value from 0
through 255, where 0 is the lowest output processing priority and 255 is the
highest output processing priority.

Minimum abbreviation: 4

ROOM('room')
ROOM(room)

specifies a room identifier that is to be associated with system output. The
room is used by your installation to help in the distribution of output. One to
60 EBCDIC text characters may be specified. See “Rules for parsing data with
and without quotation marks” on page 768 for the values that may be used
with and without quotation marks.

Minimum abbreviation: 4

SYSAREA
NOSYSAREA

SYSAREA specifies that the system printable area is to be reserved for printing
a character string associated with a security label. SYSAREA is the default.

Minimum abbreviation: 7

NOSYSAREA specifies that you want to print on the entire page of output
(including the system printable area) for the current printing. In this case, the
system area is not reserved for printing a security character string. You must
have the appropriate RACF access authority to override page labeling. If you
need to override the system area but are unable to, check your installation
security procedures or see your RACF security administrator.

Minimum abbreviation: 9

THRESHLD(nnnnnnnn)
specifies a maximum size print work unit or lines for SYSOUT data sets on a
job level, step level, or SYSOUT data set level. Specify a value between 1 to
99999999. When this size is exceeded, a new unit of work is created for print
scheduling.

Units of work are established on data set boundaries. These boundaries allow
multiple printers to print different data sets of a job at the same time. If the
number specified on THRESHLD is exceeded, any excess data sets are queued
as a separate unit of work. THRESHLD assumes that the data set size is the
number of records in the data set multiplied by the number of copies.

If you do not specify THRESHLD, JES3 uses the installation default specified at
initialization.

Minimum abbreviation: 3

TITLE('title')
TITLE(title)

specifies a report title or description that is to be included on the separator
pages of system output. The title is used by your installation to help in the
distribution of output. One to 60 EBCDIC text characters may be specified. See
“Rules for parsing data with and without quotation marks” on page 768 for
the values that may be used with and without quotation marks.

Chapter 28. Scheduler JCL facility (SJF) 777

Minimum abbreviation: 5

TRC
NOTRC

TRC specifies whether the data records contain table reference character (TRC)
codes. The codes identify the font to be used to print each record.

A TRC code immediately follows the carriage control character, if any. Its value
corresponds to either one of the four fonts specified by CHARS or one of the
fonts in the PAGEDEF font list. PAGEDEF allows more than four fonts to be
specified.

Minimum abbreviation: 3

NOTRC specifies that the data set does not contain TRC codes. NOTRC is the
default.

Minimum abbreviation: 5

UCS(ucs-name)
specifies the name for the universal character set. Specify up to 4 alphabetic or
numeric characters, or the characters @, #, or $. If you process the print data
set through PSF and do not specify CHARS, the system uses the UCS as the
font name.

Minimum abbreviation: 3

USERDATA('userdata1','userdata2',...,'userdata16')
USERDATA(userdata1)

specifies the installation-defined values for the installation's prescribed
processing. Refer to your installation's definition on the intent and use of this
keyword operand.
USERDATA(value,...)

You can code up to 16 installation-defined values. Each value may be from 1 to
60 EBCDIC text characters. Null positions in the USERDATA parameter are not
allowed. For example, you cannot code USERDATA(,value) or
USERDATA(value,,value). Each value may be enclosed in apostrophes;
however, apostrophes around each value are not required.
v Valid characters in enclosing apostrophes:

– A USERDATA parameter value enclosed in apostrophes can contain any
EBCDIC text character.

– Enclose a value that contains a blank in apostrophes.
– To code an apostrophe as part of the parameter value, code 2

apostrophes, and enclose the entire value in single apostrophes. For
example:
OUTDES name NEW USERDATA (’USERKEY1=User’’s value’)

v Valid characters without enclosing apostrophes:
– It can contain any character other than a blank, comma, tab, or semicolon.

USERLIB(dsname)
USERLIB(dsname1, dsname2,...,dsname8)

specifies the data set name of a library containing AFP resources. The data set
must be a fully-qualified cataloged data set. The resources in the library specify
how the SYSOUT data set is to be printed and include the following:
v Fonts
v Page segments
v Overlays

778 z/OS V2R2 MVS Authorized Assembler Services Guide

v Pagedefs
v Formdefs

You may specify up to eight libraries.

A valid data set name is 1 to 44 characters (alphabetic, numeric, or @, #, $).
You may specify up to 22 levels separated by periods. The first character of
each level must be alphabetic or @, #, or $.

Each data set containing a library is concatenated to the system resource
libraries. These data sets specified with USERLIB are checked first for
requested resources.

If you do not specify USERLIB, the system and installation print resources are
used.

Minimum abbreviation: 3

WRITER(external-writer-name)
specifies the member name of an installation-written program in the system
library that is to write the SYSOUT data set, instead of JES2 or JES3. If you
specify the external writer name, the output data set is written under the
control of that external writer rather than the control of JES2 or JES3. The
writer name can contain 1 to 8 characters (alphabetic, numeric or @, #, or $).

Minimum abbreviation: 3

Chapter 28. Scheduler JCL facility (SJF) 779

780 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 29. Processing user trace entries in the system trace
table

Formatting a USRn trace table entry
The following brief explanation describes the process involved in formatting a
USRn trace table entry (TTE) using the IBM-supplied routines.

The system trace filter/formatter module, IEAVETEF, uses the home ASID in the
TTE to determine if a particular trace table entry is selected for formatting. If so,
the system formats the following system-supplied status information for the TTE in
the trace output buffer.

Note: The labels in parentheses are those mapped by macro IHATROB.
v The processor number (TROBPRID)
v The HASID (TROBASID)
v The current TCB address (TROBTCBA)
v The USRn acronym for the TTE (TROBID)
v The return address of the issuer of PTRACE (TROBRET)
v The continuation information, if the TTE is part of a multi-part entry

(TROBUNQ1, TROBUNQ2, and TROBUNQ3)
v The PASID (TROBPASN)
v The SASID (TROBSASN)
v The time-of-day value for the TTE (TROBTIME)

The system then calls the appropriate USRn formatting routine (ITRF0n7F), which
calls ITRFDEFU, the default formatting routine.

ITRFDEFU formats the user data, in hexadecimal, in the trace output buffer fields
labelled TROBUNQ1, TROBUNQ2, and TROBUNQ3. These fields correspond to
the columns headed by UNIQUE-1, UNIQUE-2, and UNIQUE-3 in the printed
trace table. The system then calls the print buffer service routine to print the
output line. A single USRn TTE can contain up to five fullwords of user data,
which are formatted on two successive lines in the printed output.

Replacing a USRn TTE formatting routine
You may replace any of the ITRF0n7F formatting routines with one that fits your
installation's requirements, link editing it into load module IEAVETFC in
SYS1.LPALIB. Generally, your routine must conform to the same conventions and
requirements that the ITRF0n7F routines supplied by IBM follow. This information
describes some of those conventions.

References

For a description of the PTRACE macro, see z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU.

© Copyright IBM Corp. 1988, 2016 781

Parameters passed to the USRn formatter
When the system passes control to a USRn formatting routine, the output registers
contain the following values:

Register
Contents

0 Used as a work register by the system

1 Address of a parameter list

2-12 Used as work registers by the system

13 Address of save area

14 Return address

15 Address of entry point

The parameter list addressed by register 1 contains:
1. Address of a token. The print buffer service routine passes the token each time

the formatting routine calls it.
2. Address of the trace output buffer. IHATROB maps the trace output buffer

which is initialized with the status information and, if the TTE is a multi-part
entry, with continuation information in TROBUNQ1, which corresponds to the
UNIQUE-1 column of the formatted output line.

3. Address of the USRn TTE.
4. Address of a 512-byte work area. The USRn formatting routines must be

reentrant. The work area received as the fourth parameter allows this. Your
formatting routine may use the 512 bytes for any purpose; IBM recommends
that it be used as an automatic data area. The same work area is passed to each
USRn formatting routine; it is not cleared between calls. It is, however,
initialized to zeroes before the first call to a USRn routine.

5. Address of a byte containing the subpool number to be used for additional
work space. If your USRn routine needs more than 512 bytes for its processing,
it can obtain more storage through the GETMAIN macro. The fifth parameter is
the subpool that must be used for this GETMAIN request.

Note: If your routine does issue a GETMAIN, be sure that it also issues a
FREEMAIN for that storage. If it does not free the storage reserved for its use
when it is running on behalf of a SNAP dump request, the storage it reserves will
remain allocated and unavailable for the life of the job.

Return codes from the USRn formatter
When your USRn formatting routine returns control to the system, it must put a
return code into register 15, based on whether or not it formatted the TTE. The
possible codes and their meanings are:

Code Meaning

0 The USRn TTE was formatted

4 The USRn TTE was not formatted

The user should restore registers 0 through 13.

782 z/OS V2R2 MVS Authorized Assembler Services Guide

Printing the trace output buffer contents
Your routine must update the trace output buffer with the user data and call the
print buffer service routine, IEAVETPB, to print each output line.

IEAVETPB, entry point in module IEAVETFA, prints the trace output buffer. In the
case of a print dump request, IEAVETPB also keeps track of the number of lines
printed on a page and skips to a new page when the maximum has been printed
or the TTE being printed requires more than the lines left on the page.

When your USRn formatting routine passes control to IEAVETPB, the input
registers must contain the following values:

Register
Contents

1 Address of a five-fullword parameter list

13 Address of save area

14 Return address

15 Address of entry point

The parameter list in register 1 contains:
1. Address of the token received from the system. If it does not receive the token,

it issues a X'09E' ABEND with a reason code of X'00005301', and the system
trace formatter terminates.

2. Address of the trace output buffer (TROB). It locates the output line to be
printed using the address in the second parameter.

3. Address of the relative output line number. The third parameter is the relative
output line number for the formatting of a single TTE. The value in this
parameter indicates which line this is of the total number of output lines
needed to format the TTE.

4. Address of the number of output lines expected. The fourth parameter is the
total number of lines needed to format the TTE; that is, the number of times
the USRn formatting routine will call IEAVETPB to print a particular TTE.

5. Address of the print option for this call. The fifth parameter indicates the kind
of output contained in the trace output buffer:
v X'80000000' means the output buffer contains a TTE
v X'00000000' means the output buffer contains a message

Having printed a line of output, IEAVETPB returns to the USRn formatting routine
with a return code of zero in register 15.

Handling errors during TTE formatting
If your USRn formatting routine encounters a program check, the ESTAE for the
system trace formatter controller gets control. The ESTAE tests the completion
code. If it is X'0C6' through X'0CF', indicating a likely data-dependent arithmetic or
conversion error, the following takes place:
v A message is printed in the trace table output saying that the USRn format

routine failed and is disabled.
v The USRn TTE that caused the failure is formatted by ITRFDEFU, the default

USRn formatter routine.
v Future USRn TTEs that would have been formatted by the failing routine will

also be formatted.

Chapter 29. Processing user trace entries in the system trace table 783

If the completion code is other than X'0C6' through X'0CF', IEAVETFC terminates
and a message is printed saying that the trace formatter failed because of an
unrecoverable error.

Figure 79 is a sample of the assembler language code needed to format a USRn
trace table entry. The sample CSECT formats a USR0 TTE that was created by the
following PTRACE:
PTRACE TYPE=USR0,REGS=(2,4),SAVEAREA=STANDARD

* FORMAT A HIGHLIGHTING MESSAGE *

L R2,TOKEN TOKEN TO BE PASSED
ST R2,ETPBLIST SET 1ST PARAMETER(TOKEN)
LA R2,HILITE 120 CHAR MESSAGE TO BE OUTPUT
ST R2,ETPBLIST+4 SET 2ND PARAMETER
LA R2,LINE1 RELATIVE LINE NUMBER OF THE LINE

* TO BE PRINTED
ST R2,ETPBLIST+8 SET 3RD PARAMETER

ITRF007F CSECT ,
ITRF007F AMODE 31
ITRF007F RMODE ANY
*---------------------------------REGISTER EQUATES
R0 EQU 0
R1 EQU 1
R2 EQU 2
TTEPTR EQU 7 TTE ADDRESSABILITY
R8 EQU 8 MODULE ADDRESSABILITY
R9 EQU 9 DATA AREA ADDRESSABILITY
TROBPTR EQU 12 TROB ADDRESSABILITY
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*---------------------------------STANDARD ENTRY LINKAGE

DS 0H
USING *,R15 TEMPORARY MODULE ADDRESSABILITY
DROP R15 DROP TEMPORARY ADDRESSABILITY
STM R14,R12,12(R13) SAVE REGISTERS
BALR R8,0
USING *,R8 MODULE ADDRESSABILITY

* OBTAIN ADDRESSABILITY TO THE PARAMETERS *

L R9,12(,R1) ADDRESS OF THE AUTOMATIC DATA AREA
* IS THE FOURTH PARAMETER

USING DATA,R9 DATA AREA ADDRESSABILITY
ST R13,SAVE0001+4 BACKWARD CHAIN SAVEAREAS
LA R2,SAVE001 ADDRESS OF MODULE SAVEAREA
ST R2,8(R13) FORWARD CHAIN SAVEAREAS
LR R13,R2 POINT TO CURRENT SAVEAREA

*---------------------------------SAVE THE TOKEN
L R2,0(,R1) ADDRESS OF THE TOKEN
ST R2,TOKEN SAVE TOKEN IN AUTOMATIC AREA

*---------------------------------TRACE OUTPUT BUFFER ADDRESSABILITY
L TROBPTR,4(,R1) GET TROB ADDRESS FROM PARMLIST
USING TROB,TROBPTR TROB ADDRESSABILITY

*---------------------------------USR0 TTE ADDRESSABILITY
L TTEPTR,8(,R1) ADDRESS OF THE CURRENT TTE
USING TTE,TTEPTR SET USR0 TTE ADDRESSABILITY

Figure 79. Sample Code for Formatting USRn Trace Table Entries

784 z/OS V2R2 MVS Authorized Assembler Services Guide

LA R2,MAXLINES NUMBER OF LINES OF OUTPUT EXPECTED
ST R2,ETPBLIST+12 SET 4TH PARAMETER
LA R2,CPMSG THE OUTPUT IS A MESSAGE
ST R2,ETPBLIST+16 SET 5TH PARAMETER
LA R1,ETPBLIST LOAD ADDRESS OF PARAMETER LIST
L R15,IEAVETPB LOAD ADDRESS OF IEAVETPB ROUTINE
BALR R14,R15 CALL IEAVETPB

* INITIALIZE THE OUTPUT BUFFER WITH USR0 DATA WORDS *

MVC WORK5,TTEWRD5 MOVE USER WORD TO WORK AREA
UNPK WORK10,WORK5 UNPACK USER DATA WORD 1
TR WORK10,EBCTABL TRANSLATE TO PRINTABLE HEX
MVC TROBUNQ1,WORK10+1 MOVE TO OUTPUT BUFFER UNIQUE1 COLUMN
MVC WORK5,TTEWRD6 MOVE USER WORD TO WORK AREA
UNPK WORK10,WORK5 UNPACK USER DATA WORD 2
TR WORK10,EBCTABL TRANSLATE TO PRINTABLE HEX
MVC TROBUNQ2,WORK10+1 MOVE TO OUTPUT BUFFER UNIQUE2 COLUMN
MVC WORK5,TTEWRD7 MOVE USER WORD TO WORK AREA
UNPK WORK10,WORK5 UNPACK USER DATA WORD 3
TR WORK10,EBCTABL TRANSLATE TO PRINTABLE HEX
MVC TROBUNQ3,WORK10+1 MOVE TO OUTPUT BUFFER UNIQUE3 COLUMN

* FORMAT THE USR0 TRACE TABLE ENTRY *

L R2,TOKEN TOKEN TO BE PASSED
ST R2,ETPBLIST SET 1ST PARAMETER(TOKEN)
LA R2,TROB TROB TO BE OUTPUT
ST R2,ETPBLIST+4 SET 2ND PARAMETER
LA R2,LINE1 RELATIVE LINE NUMBER OF THE LINE

* TO BE PRINTED
ST R2,ETPBLIST+8 SET 3RD PARAMETER
LA R2,MAXLINES NUMBER OF LINES OF OUTPUT EXPECTED
ST R2,ETPBLIST+12 SET 4TH PARAMETER
LA R2,CPTTE THE OUTPUT IS A PART OF A TTE
ST R2,ETPBLIST+16 SET 5TH PARAMETER
LA R1,ETPBLIST LOAD ADDRESS OF PARAMETER LIST
L R15,IEAVETPB LOAD ADDRESS OF IEAVETPB ROUTINE
BALR R14,R15 CALL IEAVETPB

* RETURN TO THE CALLER WITH A RETURN CODE OF 0 *

EXIT LA R15,0 LOAD UP THE RETURN CODE
L R13,4(R13) LOCATE CALLERS SAVE AREA
L R14,12(R13) RESTORE THE RETURN ADDRESS
LM R0,R12,20(R13) RESTORE REGISTERS
BR 14

*---------------------------------CONSTANTS
DS 0D

EBCTABL EQU * TRANSLATE TABLE FOR PRINTABLE HEX
ORG *+240
DC C’0123456789ABCDEF’

LINE1 DC F’1’ RELATIVE LINE NUMBER 1 FOR HILITE
MAXLINES DC F’1’ TOTAL NUMBER OF OUTPUT LINES
HILITE DC CL120’*****************THE MUCH AWAITED USR0 TRACE EVENT

HAS OCCURRED! ********************************’
*---------------------------------
CPTTE DC X’80000000’ IEAVETPB OPTIONS WORD VALUE
* THE OUTPUT IS A TTE
CPMSG DC X’01000000’ IEAVETPB OPTIONS WORD VALUE
* THE OUTPUT IS A MESSAGE
*---------------------------------
IEAVETPB DC V(IEAVETPB) ADDRESS OF IEAVETPB ROUTINE
*---------------------------------DYNAMIC DATA AREA
DATA DSECT
SAVE0001 DS 18F STANDARD SAVEAREA
ETPBLIST DS 5F IEAVETPB PARAMETER LIST

Chapter 29. Processing user trace entries in the system trace table 785

TOKEN DS F ADDRESS OF THE TOKEN TO BE PASSED
* TO IEAVETPB
WORK5 DS CL5 INPUT WORK AREA FOR USER DATA

DS 0F
WORK10 DS CL10 OUTPUT WORK AREA FOR USER DATA
ENDDATA EQU *
ITRF007F CSECT
SIZDATA DC AL4(((ENDDATA-DATA+7)/8)*8)

IHATROB
IHATTE USRN=YES
END

786 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 30. Using system logger services

When an application is authorized (supervisor state, system PKM) you can use
system logger services that can be used in addition to the general system logger
services available to both authorized and unauthorized programs. See z/OS MVS
Programming: Assembler Services Guide for the general description of system logger
and the services that can be used by any program.

This topic covers the information you need to write a system logger application, as
follows:
v “What is system logger?”
v “The system logger configuration” on page 791
v “Overview of authorized system logger services” on page 793.
v “IXGCONN: Connecting to and disconnecting from a log stream” on page 798
v “IXGDELET: Deleting log blocks from a log stream” on page 804.
v “Setting up the system logger configuration” on page 804.
v “When things go wrong: Recovery scenarios for system logger” on page 813.

What is system logger?
System logger is a set of services that allows an application to write, browse, and
delete log data. You can use system logger services to merge data from multiple
instances of an application, including merging data from different systems across a
sysplex.

For example, suppose you are concurrently running multiple instances of an
application in a sysplex, and each application instance can update a common
database. It is important for your installation to maintain a common log of all
updates to the database from across the sysplex, so that if the database should be
damaged, it can be restored from the backup copy. You can merge the log data
from applications across the sysplex into a log stream, which is simply a collection
of data in log blocks residing in the coupling facility and on DASD (see Figure 80
on page 788).

© Copyright IBM Corp. 1988, 2016 787

The log stream
A log stream is an application specific collection of data that is used as a log. The
data is written to and read from the log stream by one or more instances of the
application associated with the log stream. A log stream can be used for such
purposes as a transaction log, a log for re-creating databases, a recovery log, or
other logs needed by applications.

A system logger application can write log data into a log stream, which is simply a
collection of data. Data in a log stream spans two kinds of storage:
v Interim storage, where data can be accessed quickly without incurring DASD

I/O.
v DASD log data set storage, where data is hardened for longer term access.

When the interim storage medium for a log stream reaches a user-defined
threshold, the log data is offloaded to DASD log data sets.

There are two types of log streams:
v Coupling facility log streams
v DASD-only log streams.

The main difference between the two types of log streams is the storage medium
system logger uses to hold interim log data:
v In a coupling facility log stream, interim storage for log data is in coupling

facility list structures. See “Coupling facility log stream” on page 789.
v In a DASD-only log stream interim storage for log data is contained in local

storage buffers on the system. Local storage buffers are data space areas
associated with the system logger address space, IXGLOGR. See “DASD-only log
stream” on page 790.

Your installation can use just coupling facility log streams, just DASD-only log
streams, or a combination of both types of log streams. The requirements and
preparation steps for the two types of log streams are somewhat different; see
“Setting up the system logger configuration” on page 804.

Application
Instance

2

Application
Instance 1

log block
4

Log stream

log block
3

log block
2

log block
1

Figure 80. System Logger Log Stream

788 z/OS V2R2 MVS Authorized Assembler Services Guide

Some key considerations for choosing either coupling facility log steams or
DASD-only log streams are:
v The location and concurrent activity of writers and readers to a log stream's log

data
v The volume of log data written to a log stream.

Coupling facility log streams are required when:
1. There needs to be more than one concurrent log writer and/or log reader to the

log stream from more than one system in the sysplex.
2. There are high volumes of log data being written to the log stream.

DASD-only log streams can be used when:
1. There is not a need to have more than one concurrent log writer and/or log

reader to the log stream from more than one system in the sysplex.
2. There are low volumes of log data being written to the log stream.

Note: Since DASD-only log streams always use staging data sets, high volume
writers of log data may be throttled back by the I/O required to record each record
sequentially to the log stream's staging data sets.

With z/OS Release 3 and higher, you can also upgrade existing structure-based log
streams to use a different coupling facility structure. See the topic "Upgrading an
Existing Structure-based log stream" in z/OS MVS Programming: Assembler Services
Guide.

Coupling facility log stream
Figure 81 shows how a coupling facility log stream spans two levels of storage; the
coupling facility for interim storage and DASD log data sets for more permanent
storage. When the coupling facility space for the log stream fills, the data is
offloaded to DASD log data sets. A coupling facility log stream can contain data
from multiple systems, allowing a system logger application to merge data from
systems across the sysplex.

DASD log data sets

Sys 1

Application

Structure

Coupling Facility

Youngest data Oldest data

Log stream

Figure 81. Log Stream Data on the Coupling Facility and DASD

Chapter 30. Using system logger services 789

When a system logger application writes a log block to a coupling facility log
stream, system logger writes it first to a coupling facility list structure. System
logger requires that a coupling facility list structure be associated with each log
stream. When the coupling facility structure space allocated for the log stream
reaches the installation-defined threshold, system logger moves (offloads) the log
blocks from the coupling facility structure to VSAM linear DASD data sets, so that
the coupling facility space for the log stream can be used to hold new log blocks.
From a user's point of view, the actual location of the log data in the log stream is
transparent.

DASD-only log stream
Figure 82 shows a DASD-only log stream spanning two levels of storage; local
storage buffers for interim storage, which is then offloaded to DASD log data sets
for more permanent storage.

A DASD-only log stream has a single-system scope; only one system at a time can
connect toa DASD-only log stream. Multiple applications from the same system
can, however, simultaneously connect to a DASD-only log stream.

When a system logger application writes a log block to a DASD-only log stream,
system logger writes it first to the local storage buffers for the system and
duplexes it to a DASD staging data set associated with the log stream. When the
staging data set space allocated for the log stream reaches the installation-defined
threshold, system logger offloads the log blocks from local storage buffers to
VSAM linear DASD data sets. From a user's point of view, the actual location of
the log data in the log stream is transparent.

Both a DASD-only log stream and a coupling facility log stream can have data in
multiple DASD log data sets; as a log stream fills log data sets on DASD, system
logger automatically allocates new ones for the log stream.

DASD log data sets

Sys 1

Application

SYS1 local
storage buffers

Youngest data Oldest data

Log stream

Figure 82. Log Stream Data in Local Storage Buffers and DASD Log Data Sets

790 z/OS V2R2 MVS Authorized Assembler Services Guide

The system logger configuration
See z/OS MVS Setting Up a Sysplex for a complete description of the System Logger
Configuration and setup requirements.

The system logger configuration you use depends on whether or not you use a
coupling facility.

Coupling facility log stream configuration: Figure 83 shows all the parts involved
when a system logger application writes to a coupling facility log stream. In this
example, a system logger application runs on two systems in a sysplex. Both
instances of the application write data to the same log stream, TRANSLOG. Each
system contains a system logger address space. A system logger application uses
system logger services to access the system logger capabilities.

When a system logger application writes data to a coupling facility log stream,
system logger writes the data to a coupling facility list structure associated with
the log stream. Then, when the coupling facility structure fills with data, system
logger offloads the data to DASD log data sets.

You can optionally elect to have coupling facility data duplexed to DASD staging
data sets for a coupling facility log stream.

DASD-only log stream configuration: Figure 84 on page 792 shows all the parts
involved when a system logger application writes to a DASD-only log stream.
System logger writes the data to the local storage buffers on the system, duplexing
it at the same time to the DASD staging data sets associated with the log stream.

Sysplex

Coupling Facility Structure
DASD log data sets

LOGR
couple

data set

SYS2/TRANSLOG
staging

data set

Sys 1

Application
1

Application
2

Local
Storage
buffers

Local
Storage
buffers

S
y
s
t
e
m

S
y
s
t
e
m

l
o
g
g
e
r

l
o
g
g
e
r

Sys 2

TRANSLOG Log Stream

SYS1/TRANSLOG
Staging

Data Set

Figure 83. A Complete Coupling Facility Log Stream Configuration

Chapter 30. Using system logger services 791

Then, when the staging data set fills with data, system logger offloads the data to
DASD log data sets. Duplexing to DASD staging data sets is an option for a
coupling facility log stream; it is a required automatic part of a DASD-only log
stream. A system logger application uses system logger services to access the
system logger capabilities.

The system logger component
The system logger component resides in its own address space on each system in a
sysplex. Some of the component processing will differ, depending on whether a
given log stream is a coupling facility log stream or a DASD-only log stream. The
system logger component does the following:
v Provides a set of system services that allows a system logger application to use

the system logger component. See z/OS MVS Programming: Assembler Services
Reference IAR-XCT and the z/OS MVS Programming: Authorized Assembler Services
Reference EDT-IXG.

v Maintains information in the LOGR policy about the current use of log streams
and if used, coupling facility list structures.

v For coupling facility log streams, system logger interacts with cross-system
extended services (XES) to connect to and use the coupling facility for system
logger applications.

v Obtains local storage buffer space. For a coupling facility log stream, local
storage buffers can be used for duplexing log data. For a DASD-only log stream,
local storage buffers are used as interim storage for log data before it is
offloaded to DASD log data sets.

v Offloads data to DASD log data sets as follows:
For coupling facility log streams, system logger offloads log data from the
coupling facility to DASD log data sets as the coupling facility structure space
associated with the log stream reaches the installation-defined thresholds.
For DASD-only log streams, system logger offloads log data from the local
storage buffers to DASD log data sets as the DASD staging data set space
reaches the installation-defined thresholds.

Application

Local
Storage
buffers

S
y
s
t
e
m

l
o
g
g
e
r

DASD
staging

data sets

Sysplex

Sys 1

LOGR
couple

data set

SYS1
staging

data
set

Figure 84. A DASD-Only Configuration

792 z/OS V2R2 MVS Authorized Assembler Services Guide

v Automatically allocates new DASD log data sets for log streams.
v Maintains a backup copy of (duplexes) log data that is in interim storage for

recovery. Log data in interim storage is vulnerable to loss due to system or
sysplex failure because it has not yet been hardened to DASD log data sets.
System logger duplexes interim storage log data for both coupling facility and
DASD-only log streams.

v Produces SMF record type 88 for system logger accounting on a single system.
Record type 88 focuses on the usage of interim storage (coupling facility or local
storage buffers) and log stream data for a system in the sysplex. Using the
record can help an installation avoid the STRUCTURE FULL or STAGING DATA
SET FULL exceptions, and perform other tuning and/or capacity planning
analysis.
See z/OS MVS System Management Facilities (SMF) for more information on
record type 88 and system logger accounting. Sample program IXGRPT1 in
SYS1.SAMPLIB shows an example of producing a report from SMF record type
88.

v Ensures that:
– When the last connection from a system disconnects from the log stream, all

log data written by that system to the log stream is offloaded to DASD log
data sets.
System logger also deletes any staging data sets in use for a system at this
time.

– When the last connection to a coupling facility log stream in the sysplex
disconnects, all coupling facility log data is offloaded to DASD log data sets
and the coupling facility space is returned to XES for reallocation.

v Provides recovery support in the event of application, system, sysplex, or
coupling facility structure failure for coupling facility log streams. (See Recovery
Performed for DASD-Only Log Streams in z/OS MVS Programming: Assembler
Services Guide for information about recovery for DASD-only log streams.)

Overview of authorized system logger services
This topic provides an overview of general information about system logger
services, including:
v “Summary of system logger services.”
v “Coding a system logger complete exit for IXGBRWSE, IXGWRITE, and

IXGDELET” on page 794.
v “Using ENF event code 48 in system logger applications” on page 797.

Summary of system logger services
System logger provides the following set of services:

IXGINVNT
Define and maintain log stream and coupling facility structure information
in the LOGR policy dynamically. See 'IXGINVNT: Managing the LOGR
Policy' in z/OS MVS Programming: Assembler Services Guide.

You can also use the IXCMIAPU utility to specify log stream and structure
definitions in the LOGR policy. IXCMIAPU also enables you to request a
report of current log stream definitions.

Chapter 30. Using system logger services 793

IXGCONN
Connect and disconnect an application to and from a log stream. See the
topic on “IXGCONN: Connecting to and disconnecting from a log stream”
on page 798.

IXGWRITE
Write user-defined log data to a log stream. See 'IXGWRITE: Writing to a
Log Stream' in z/OS MVS Programming: Assembler Services Guide.

IXGBRWSE
Browse (read) data from a log stream. See 'IXGBRWSE Requests' in z/OS
MVS Programming: Assembler Services Guide.

IXGDELET
Delete data from a log stream. See the topic on “IXGDELET: Deleting log
blocks from a log stream” on page 804.

IXGIMPRT
Import (write) log blocks to a log stream with a log block identifier and
timestamp. See 'IXGIMPRT: Import Log Blocks' in z/OS MVS Programming:
Assembler Services Guide.

IXGQUERY
Retrieve information from a log stream. See 'IXGQUERY: Get Information
About a Log Stream' in z/OS MVS Programming: Assembler Services Guide.

IXGOFFLD
Initiate an offload of log data from the coupling facility structure for
coupling facility log streams and from local storage buffers for DASD-only
log streams to DASD log data sets. See 'IXGOFFLD: Initiate Offload to
DASD Log Data Sets' in z/OS MVS Programming: Assembler Services Guide.

IXGUPDAT
Modify the UTC time stamp maintained in the control information for a
log stream. See 'IXGUPDAT: Modify Log Stream Control Information' in
z/OS MVS Programming: Assembler Services Guide.

The following services contain parameters for both authorized and unauthorized
programs:
v IXGCONN
v IXGBRWSE
v IXGWRITE
v IXGDELET

All other system logger services and their parameters can be used by any program.
See z/OS MVS Programming: Assembler Services Guide and z/OS MVS Programming:
Assembler Services Reference IAR-XCT for the general description of the Logger
services that can be used by any program. Only the guidance for authorized
programs using Logger services is contained in this information.

Coding a system logger complete exit for IXGBRWSE,
IXGWRITE, and IXGDELET

Choose MODE=SYNCEXIT to specify that the request be processed synchronously,
if possible. If the request cannot be completed synchronously, control returns to the
caller with a return and reason code indicating that processing of the request is not
complete. When processing of the request completes, the exit routine specified at
connect time gets control. (The exit routine is specified on the COMPLETEEXIT
parameter on the IXGCONN request.)

794 z/OS V2R2 MVS Authorized Assembler Services Guide

You can use the REQDATA parameter with MODE=SYNCEXIT to specify
user-defined information relating to the request. For example, you can use
REQDATA to specify information about control blocks needed by the complete
exit. Your application must be in supervisor state, system key to use the
MODE=SYNCEXIT and REQDATA parameters.

When a system logger request cannot be completed synchronously, system logger
schedules an SRB to complete processing of the request before it returns control to
the caller. While the SRB runs independent of the requesting task, the SRB might
encounter an error from which it cannot recover. The SRB ensures that the error
condition is percolated to the task that issued the system logger request.

Your complete exit provides a mechanism for system logger services to let you
know when your asynchronously processed system logger IXGBRWSE, IXGDELET,
or IXGWRITE request completes. You provide the address of your complete exit
using the COMPLETEEXIT parameter when you issue the IXGCONN
REQUEST=CONNECT macro to connect to the log stream. You will be informed of
request completion through your complete exit if you specify MODE=SYNCEXIT
and the system processes your request asynchronously.

You must be running in supervisor state and a system key to specify
MODE=SYNCEXIT on a IXGBRWSE, IXGDELET, or IXGWRITE system logger
service request.

Information passed to the complete exit
When the complete exit gains control, it receives the following information about
the system logger request in the complete exit parameter list (CMPL), mapped by
the IXGCMPL macro:

CMPLREQDATA
Information passed to the complete exit by the issuer of the system logger
service request. The use of this optional field is user-defined.

CMPLRETCODE
Return code from the system logger service request.

CMPLRSNCODE
Reason code from the system logger service request.

CMPLANSAREA@
Answer area address. The answer area is mapped by IXGANSAA macro.

CMPLSTREAMTOKEN
Stream token of the log stream connector.

Environment
The complete exit receives control in the following environment:

Authorization:
Supervisor state, and PSW key 0

Dispatchable unit mode:
SRB

Cross memory mode:
PASN=HASN=SASN. PASN, HASN and SASN are equal to the PASN at
the time of the connect to the log stream.

AMODE:
31-bit

Chapter 30. Using system logger services 795

ASC mode:
Primary ASC mode

Interrupt status:
Enabled for I/O and external interrupts

Locks: No locks held.

Control parameters:
None.

Input specifications
System logger services pass information to the complete exit in registers.

Registers at entry: When the complete exit receives control, the GPRs contain the
following information:

Register
Contents

0 Does not contain any information for use by the complete exit.

1 Address of a fullword containing the address of the CMPL

2-12 Do not contain any information for use by the complete exit.

13 Address of a standard 72-byte save area.

14 Return address to system logger services.

15 Entry point address.

When the complete exit receives control, the ARs contain no information for use by
the complete exit.

Return specification: Your exit must return control to the system by branching to
the address provided on entry in register 14. There are no requirements for the
GPRs or ARs to contain any particular value.

Programming considerations
If you have more than one outstanding system logger request being processed
asynchronously, multiple instances of your complete exit might run concurrently as
system logger services process your request completions. Therefore, you should
consider coding your complete exit as a reentrant program.

You must make storage for any of the keywords representing output areas
accessible at the time of the completion exit, such as the following:

Macro Keywords

IXGBRWSE
ANSAREA, BROWSETOKEN, BUFFER, BUFFER64, ANSAREA, BLKSIZE,
TIMESTAMP, RETBLOCKID

IXGDELET
ANSAREA, OBLOCKID

IXGWRITE
ANSAREA, RETBLOCKID, TIMESTAMP

796 z/OS V2R2 MVS Authorized Assembler Services Guide

You may not be able to access the input parameter data area while your complete
exit is running. If you want to save the parameter information for later processing,
make a copy of it before your complete exit returns control to the system.

Consider obtaining separate storage for each logger request to store output fields
and copies of input parameters and passing the storage to the completion exit
using the REQDATA parameter. The storage should be accessible by the logger
requestor and the completion exit.

The return and reason code for the request is stored in
ANSAA_ASYNCH_RETCODE and ANSAA_ASYNCH_RSNCODE.

In certain instances, the system must quiesce the activity of user exits in order to
perform cleanup processing. The following illustrates scenarios where this
processing occurs:
v Connection termination

When a user disconnects while a MODE=SYNCEXIT request is outstanding, the
complete exit will not be called.
If the connecting task terminates, the system will issue a PURGEDQ against SRB
that are associated with the connection. Since all complete exit SRBs are
associated with the connecting task's TCB, any complete exits that are active
when the connecting task terminates could be interrupted with an ABEND x'47B'
reason code 0.

v System logger termination
When the system logger address space terminates, it attempts to inform active
requests of logger termination. If the complete exit has not been scheduled, it is
scheduled at this time with a return code and reason code indicating that the
system logger address space has terminated.

The system logger initializes a recovery environment before it calls the complete
exit. Should the complete exit fail and percolate to the system logger's recovery
routine, the task that did the corresponding connection to the log stream is
abended and retry is not permitted. The abend code will be 1C5 and the abend
reason code 00030006.

Using ENF event code 48 in system logger applications
System logger issues ENF event code 48 to broadcast status changes in the system
logger address space, log streams, and coupling facility structures. Since these
status changes can affect the outcome of system logger service requests, IBM
suggests that you use ENF event code 48 to receive notification of these status
changes, using the ENFREQ service to listen for event 48. Note that your program
must be authorized to use the ENFREQ service. Applications should issue the
ENFREQ service to listen for event 48 before connecting to a log stream.

For example, suppose an IXGWRITE request fails with a return and reason code
indicating that some system logger resource is unavailable, perhaps because the
system logger address space has failed or because a structure rebuild is in progress
for the coupling facility structure for the log stream. Before the application can
resume issuing system logger service requests. it must listen for the event code 48
notification that the resource is available again.

In order to listen for ENF code 48 events, you must code an SRB-type listen exit
for event code 48 events to scan the event 48 parameter list for status information

Chapter 30. Using system logger services 797

on the system logger component, log streams, and coupling facility structures
associated with log streams. The listen exit must be in place before system logger
applications are activated.

If you use ENF event code 48 to receive information about system logger events,
make sure that you take into account the asynchronous nature of the ENF exit. You
might get notified of events out of sequence, being notified for instance, that a
problem has been resolved before you get a return and reason code describing a
problem.

For example, if you issue IXGWRITE to write data to the log stream while the
coupling facility structure space allocated for the log stream is full, you might get
an ENF 48 notification that the structure is no longer full before you get the return
and reason code from IXGWRITE to say that the structure is full.

Applications that do not want to use ENF event code 48 or that are unauthorized
and cannot use ENFREQ will still receive logger service return and reason codes
indicating failure or resource shortages. These applications can simply set a timer
and then retry the requests to see if the problem has resolved itself.

References:

v See “Writing an ENF event 48 listen exit” on page 804 for information on ENF
48 events, and coding your ENF event 48 listen exit.

v See z/OS MVS Programming: Assembler Services Guide for guidance about using
the ENFREQ macro.

v See z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG for
reference information on the ENFREQ macro.

Figure 85 shows an example of how to issue the ENFREQ service to listen for ENF
event code 48 and specify a listen exit to analyze the event 48 parameter list:

IXGCONN: Connecting to and disconnecting from a log stream
Use the IXGCONN service to connect to or disconnect from a log stream. An
application must issue IXGCONN with REQUEST=CONNECT before it can read,
write, or delete data in a log stream.

When the IXGCONN REQUEST=CONNECT request completes, it returns a unique
connection identifier, called a STREAMTOKEN, to the calling program. The
application uses the token in subsequent logger service requests to identify its
connection to the log stream.

See z/OS MVS Programming: Assembler Services Guide for more details on connecting
to a log stream and log stream tokens.

ENFREQ ACTION=LISTEN,
CODE=ENFPC048,
ESTBNME=THISMOD,
EXITNME=LOGLISTEN,
SRBEXIT=(R02),
EOM=YES,
DTOKEN=ENFREQ_DTOKEN,
RETCODE=ENFREQ_RETCODE

Figure 85. Issuing ENFREQ to Listen for ENF Event Code 48

798 z/OS V2R2 MVS Authorized Assembler Services Guide

Connecting as a resource manager
A resource manager is an application you can write and associate with a log
stream to manage resources and processing for a log stream.

For example, via the resource manager user exit, a resource manager might be
notified of a write or delete request issued against a log stream. The resource
manager can then perform further processing to accept, reject, or override the
delete request with a different log block identifier. A resource manager application
can be helpful to perform any management functions on behalf of a log stream.

Before a resource manager can connect to a log stream, the name of the resource
manager must be specified in the log stream definition in the LOGR couple data
set. You can specify one resource manager name for a log stream in the log stream
definition. See z/OS MVS Setting Up a Sysplex for setting up a log stream definition
in the LOGR couple data set.

If you specify a resource manager name for a log stream in the LOGR policy, the
resource manager specified must connect to the log stream. If the resource manager
does not connect, system logger will not process any IXGDELET requests to delete
log data. This is so that the resource manager will not miss any information about
deletes issued against the log stream.

The resource manager connects to the log stream it manages using the RMNAME,
RMEXIT, RMDATA, and RMEVENTS parameters on the IXGCONN service. You
must be running in supervisor state and a system key to use these parameters. The
connect request must be issued from the resource manager address space. The
resource manager address space must be non-swappable with an authorization
index (AX) value of 1, or all invocations of the resource manager exit will fail.

Note that only one resource manager can connect to a log stream from a given
system. The resource manager can connect to multiple log streams.

Use the resource manager parameters as follows:

RMNAME
Specifies the name of the resource manager program connecting to the log
stream. This is the same name specified on the RMNAME parameter in the
LOGR couple data set log stream definition.

RMEXIT
Specifies the name of a resource manager user exit. The resource manager
exit is called when write or delete requests (as specified on the
RMEVENTS parameter) are issued against the log stream that the resource
manager manages. The RMEXIT keyword is required with RMNAME. For
information on the resource manager exit, see “Coding a resource manager
exit for IXGCONN” on page 800.

RMEVENTS
Specifies that write or delete requests issued against the log stream are to
trigger the resource manager exit. RMEVENTS is required with RMNAME.
You can specify RMEVENTS=LBWRITE, RMEVENTS=LBDELETE, or
RMEVENTS=(LBWRITE,LBDELETE).

RMDATA
Specifies user-defined data to the resource manager. This data is then
passed to the resource manager user exit when the exit is called.

RMDATA is required with RMNAME.

Chapter 30. Using system logger services 799

Using ENF event code 48 with a resource manager
System logger issues many ENF event code 48 of use to a resource manager
application.

See:
v “Using ENF event code 48 in system logger applications” on page 797 for using

ENF event code 48 events.
v “Writing an ENF event 48 listen exit” on page 804 for ENF event code 48 events

and coding an ENF listen exit.

Using ENF event 48 when a connect request is rejected
If a connect request is rejected applications should listen for ENF 48 event
informing listeners that the condition has changed or the problem has been
resolved. Upon receipt of the ENF 48 event indicating that the problem is resolved,
the application can retry the request.

Coding a resource manager exit for IXGCONN
A resource manager exit provides a way for system logger to inform a resource
manager of write and delete requests so that the resource manager can perform
further processing.

When the resource manager connects to the log stream, it specifies:
v The name of the resource manager on the RMNAME parameter.
v The address of the resource manager exit on the RMEXIT parameter.
v User-defined data on the RMDATA parameter.
v The requests that will trigger the resource manager user exit (write and/or

delete requests) on the RMEVENTS parameter.

You must be running in supervisor state and a system key to specify the
RMNAME, RMEXIT, RMDATA, or RMEVENTS parameters on the IXGCONN
request. The resource manager address space must be non-swappable with an AX
value of 1, or all invocations of the resource manager exit will fail.

When a write or delete request occurs against the log stream, system logger gives
control to the resource manager exit, passing a parameter list. The resource
manager exit runs in the resource manager address space.

The resource manager exit is called as follows:
v For a write request, the resource manager exit is called after the write request

completes. If staging data sets are in use for the connection, the exit is called
after the write to the staging data set completes.

v For a delete request, the resource manager exit is called before the delete request
is processed. This allows the resource manager exit to accept, reject, or override
the delete request on behalf of the log stream. See “Overriding delete requests”
on page 803.

The resource manager exit is always invoked before the request completion is
reported to the system logger application that issued the request.

Information passed to the resource manager exit
When the resource manager exit gains control, it receives the following information
in the resource manager exit parameter list (RMEPL) mapped by the IXGRMEPL
macro:

800 z/OS V2R2 MVS Authorized Assembler Services Guide

RMEPLDELETEREQUEST
If on, indicates that the request that gave the resource manager exit control
was a delete request.

RMEPLWRITEREQUEST
If on, indicates that the request that gave the resource manager exit control
was a write request.

RMEPLGMTTIMESTAMP
Timestamp obtained immediately prior to calling the resource manager.

RMEPLRMNAME
Name of the resource manager the exit belongs to.

RMEPLRMDATA
Data specified in the RMDATA parameter on the resource manager's
IXGCONN request, if specified.

RMEPLIDENTIFICATION
System-unique identification of the connection on whose behalf the exit is
being called

RMEPLLOGSTREAMNAME
Name of the log stream associated with the resource manager.

RMEPLBLOCKSALLSPECIFIED
If on, BLOCKS=ALL was specified on the IXGDELETE request

RMEPLBLOCKSRANGESPECIFIED
If on, BLOCKS=RANGE was specified on the IXGDELETE request.

RMEPLFORCESPECIFIED
If on, FORCE=YES was specified on the IXGDELET request. This delete request
cannot be overridden by the resource manager.

RMEPLDELETEBLOCKID
The block identifier was specified on a IXGDELET BLOCK=RANGE request.

RMEPLDELETEOVERRIDEBLOCKID
Override block identifier. Resource manager places the override block identifier
in this variable to override the block identifier issued on the IXGDELET
request. If FORCE=YES was specified on the IXGDELET request, the content of
this field is ignored and the block identifier specified on IXGDELET is not
overridden.

RMEPLADDEDBYTES
The number of bytes that system logger adds to a user's log block for prefix
and suffix information. The prefix and suffix areas are not seen in the copy of
the user's buffer presented to the resource manager, but if you add together
fields RmeplWriteBlockID, RmeplLogDataLength and RmeplAddedBytes, you
can calculate the next block identifier that will be assigned for a log block
written to the log stream.

RMEPLLOGDATALENGTH
The number of bytes of user log data specified. This is the BLOCKLEN value
specified on the IXGWRITE request.

RMEPLWRITEBUFFERPTR
Pointer to the buffer containing the log data written to the log stream if the
RMEPLWRITEREQUEST bit is set on.

RMEPLWRITEBLOCKID
Block identifier assigned to the log block written to the log stream.

Chapter 30. Using system logger services 801

RMEPLWRITEGMTTIMESTAMP
Timestamp assigned to the log block written to the log stream.

RMEPLWRITELOCALTIMESTAMP
Local time stamp assigned to the log block written to the log stream.

RMEPL_RMEXIT_WORK_AREA
256 byte work area for use by the resource manager.

Environment
The resource manager exit receives control in the following environment:

Authorization:
Supervisor state with PSW key 0

Dispatchable unit mode:
Task or SRB

Cross memory mode:
PASN=resource manager address space, any HASN, any SASN

AMODE:
31-bit

ASC mode:
Primary ASC mode

Interrupt status:
Enabled for I/O and external interrupts

Locks: No locks held.

Control parameters:
None.

Input specifications
System logger services pass information to the resource manager exit in registers.

Registers at entry
When the resource manager exit receives control, the GPRs contain the following
information:

Register
Contents

0 Does not contain any information for use by the resource manager exit.

1 Address of a fullword containing the address of the RMEPL

2-13 Do not contain any information for use by the resource manager exit.

14 Return address to system logger services.

15 Entry point address.

When the resource manager exit receives control, the ARs contain no information
for use by the resource manager exit.

Return specification
Your exit must return control to the system by branching to the address provided
on entry in register 14. Registers 2-13 must contain the same information at output
that they did on input.

802 z/OS V2R2 MVS Authorized Assembler Services Guide

Programming considerations
v The resource manager exit is called before write or delete event completion is

reported to the unit of work that initiated the IXGWRITE or IXGDELET service
request. Any additional processing by the exit that results in thread suspension
or affects thread response time should be performed under a different work unit.

v The resource manager exit must be prepared to receive control in either SRB or
task mode. The exit should run with an EUT FRR for recovery. While the FRR
remains in effect, no SVCs can be issued, no new asynchronous exits are
dispatched, and no vector instructions can be executed. See z/OS MVS
Programming: Authorized Assembler Services Reference SET-WTO for information on
the SETFRR service.

v All storage obtained by the resource manager exit should be associated with the
TCB that owns the cross-memory resources for that address space, whose
address is the ASCBXTCB.

v You can access the input parameter data area only while your resource manager
exit is running. If you want to save the parameter information for later
processing, make a copy of it before your resource manager exit returns control
to the system.

Overriding delete requests
Your resource manager can override parameters specified on an IXGDELET request
by manipulating the RMEPLDELETEOVERRIDEBLOCKID field mapped by the
IXGRMEPL mapping macro. The resource manager manipulates the field in the
parameter list (RMEPL) passed to the resource manager exit as follows:
v Proceed with the delete operation as requested on the IXGDELET request. This

is specified by placing a return code of binary zeros in register 15.
v Do not proceed with the delete operation requested on the IXGDELET request.

This results in no log blocks being marked for deletion in the log stream. This is
specified by placing a return code of X'08' in register 15.

v Override the log block identifier specified on the IXGDELET request with one
specified by the resource manager. The overriding log block identifier must be
less than or equal to the log block identifier specified on the IXGDELET request.
This is specified by placing a return code of X'04' in register 15.

If you specify FORCE=YES on a delete request, the resource manager exit is called,
but cannot override the delete request.

If you specify AUTODELETE=YES for a log stream and you also manage that log
stream with a resource manager and a resource manager exit, note that the
automatic deletion processing takes precedence over the delete override processing
performed by the resource manager exit. Log data that is deleted by automatic
deletion does not trigger the resource manager exit, so the exit cannot override the
delete request. IBM recommends AUTODELETE=NO for a log stream managed by
a resource manager that needs to override delete requests.

When the resource manager exit hangs
If the resource manager exit hangs, the system logger application that issued the
write or delete request that triggered the exit might not be able to complete. Do the
following to resolve the hang:
v Cancel the task that issued the write or delete request.
v Cancel the resource manager's address space.
v Restart the application that issued the write or delete request.
v Correct the hang condition in the resource manager exit.

Chapter 30. Using system logger services 803

v Restart the resource manager's address space.

If the resource manager abends and percolates the error back to system logger's
recovery environment, the resource manager is disabled. When a resource manager
is disabled, the exit for the resource manager is no longer called by write or delete
requests against the log stream on the system where the resource manager
abended. An ENF 48 event is issued when the resource manager exit is disabled.

IXGDELET: Deleting log blocks from a log stream
Using the IXGDELET service, you can mark some or all of the log blocks in the log
stream for deletion. The IXGDELET service can be invoked from an unauthorized
(non-supervisor state, problem program key mode) with the exception of when the
MODE=SYNCEXIT option is used as described in topic “Coding a system logger
complete exit for IXGBRWSE, IXGWRITE, and IXGDELET” on page 794.
Additionally, when a log stream resource manager is active, it runs authorized
(supervisor state, system PKM) and can affect the delete requests for the log
stream.

Delete requests and resource manager exit processing
If you are using a resource manager exit, your resource manager exit can override
certain delete requests (see “Coding a resource manager exit for IXGCONN” on
page 800). You can keep the resource manager exit from overriding a delete request
by specifying the FORCE=YES parameter. FORCE=NO, which is the default, allows
a resource manager exit to override the delete request. If the resource manager
overrides a delete request, system logger returns the overridden block identifier in
the OBLOCKID output parameter on IXGDELET.

A resource manager program must connect to the a log stream in order to override
delete requests. See “IXGCONN: Connecting to and disconnecting from a log
stream” on page 798 for more information.

Setting up the system logger configuration
v To set up a system logger configuration for a logging function or application, see

the information on planning for system logger functions in z/OS MVS Setting Up
a Sysplex.

v For system logger applications, IBM recommends that you use ENF event code
48 and write an ENF event code 48 listen exit. See “Writing an ENF event 48
listen exit.”

Writing an ENF event 48 listen exit
Before activating system logger applications that write to the log stream, you
should set up an exit to listen for and analyze system logger status information
broadcast by ENF as event code 48. Note that your application must be supervisor
state, system key to set up an ENF listen exit. Event 48 includes status information
about log streams, the system logger component, and log stream coupling facility
structures. System logger applications can use the ENF event 48 listen exit to
monitor status and changes.

Some events are single system in scope, while others are broadcast to all the
systems in the sysplex.

Each application registers interest in ENF event code 48 signals using the ENFREQ
macro (see “Using ENF event code 48 in system logger applications” on page 797).

804 z/OS V2R2 MVS Authorized Assembler Services Guide

When an application is notified through a return and reason code of a problem,
such as a coupling facility structure rebuild in progress, system logger address
services unavailable, or loss of connectivity to a coupling facility structure, the
application can listen for an event 48 signal signifying that the problem has been
resolved. Note that a program must be authorized (supervisor state) to use the
ENFREQ service.

When the application registers interest in event 48 system logger events, system
logger passes the event 48 parameter list containing information about the event to
the listen exit. The parameter list is mapped by macro IXGENF, see z/OS MVS Data
Areas in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/). The parameter list contains the specific code 48 events, the reasons
associated with them, specific information for some reasons, and a section of
information about log streams and coupling facility structures affected by the
event.

When examining the event flag fields in IXGENF, the following information can be
used to determine which variation of the IXGENF data is being presented to the
Listen Exit.
v If IXGENF field IxgenfLogStreamCount is non-zero, the variation of the

IxgenfUnion1 area is an array of IxgenfLogStreamNames structures. The number
of elements in this array is the value contained in the IxgenfLogStreamCount
field.

v Otherwise, the following table applies:

Table 99. IxgenfUnion1 variation when IXGENF bit set to 1

IXGENF bit set to 1 IxgenfUnion1 variation

IxgenfRMDisabled IxgenfResMgrDisabled

IxgenfLogStreamDefUpdate IxgenfInventoryDefUpdate

IxgenfLogStreamDelete IxgenfInventoryDelete

IxgenfLogStreamConnDisc IxgenfConnDiscInfo

IxgenfLogStreamOffloadComplete IxgenfWrOffLoadInfo

The listen exit should only be used to analyze the IXGENF parameter list for event
code 48 to see whether the particular event applies to the particular application or
connector. IBM suggests that the listen exit then communicate with the application
about the event and let the application react or take any necessary actions, such as
stop issuing services, re-IPL, and so forth. This is recommended because:
v The application or connector can determine whether the event actually affects

them before taking any action. All connectors are informed of event 48 events,
whether they affect their particular log stream or coupling facility structure or
not.

v It ensures that the action needed to address an event will be coordinated with
the application program since the listen exit must be in SRB mode while the
application is in task mode. If you code the exit to act on event code 48 status
events, the exit might tie up system logger resources.

The ENF 48 signals issued by System Logger contain different types of
information:
v State of the System Logger system service address space - whether or not

IXGxxxxx services should even be issued.

Chapter 30. Using system logger services 805

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

v State of log stream resources, generally they become available or unavailable for
various reasons, or when a log stream is defined, updated, deleted, and so forth.

v The IXGENF mapping, which is input to the ENF 48 listen exit routine you
establish, is generally organized as follows:

event
Main indication of services or resource state change

even reason
Incident that occurred causing the state change

even specific reason
More details on event reason

The ENF event code 48 events are:
v System logger address space and services have become available.
v System logger address space and services are not available for the life of this

IPL.
v Log streams associated with the coupling facility structure specified in this

parameter list have become available. The event reasons for this event are:
– A coupling facility structure rebuild in progress has completed.
– The coupling facility structure is no longer too full to accommodate more log

data.
– A staging data set full condition has ended.

v Log streams associated with the coupling facility structure specified in this
parameter list are not available. The event reasons for this event are:
– A rebuild has been started for the coupling facility structure.
– A rebuild for the coupling facility structure has failed. The specific reasons for

this condition in the parameter list are:
- The system lost connectivity to the coupling facility structure.
- The coupling facility structure failed.

v A change in the status of resources for a log stream has occurred. The event
reason for this event is possible loss of log stream data.

v A change in the coupling facility resources available to system logger has
occurred. An event reason for this event indicates that ENF event 35 was
received to report the change. If the change affects a specific coupling facility
structure, the name of the structure is specified in the specific information
section of the parameter list.

v A successful connect to or disconnect from a log stream has occurred. The scope
of this event is multi-system; each system in the sysplex is notified of this event.
The structure version value for DASD-only log streams will be the STCK value
for when the log stream staging data set was allocated.

v A log stream definition in the LOGR couple data set has been created. The scope
of this event is multi-system; each system in the sysplex is notified of this event.
– The log stream created is a DASD-only log stream.

- For DASD-only log streams, an indicator in the parameter is set on
(IXGENFINVENTORYDASDONLYYES) and most structure related fields
will be set to zero.

v A log stream definition has been deleted from the LOGR couple data set. The
scope of this event is multi-system; each system in the sysplex is notified of this
event.

806 z/OS V2R2 MVS Authorized Assembler Services Guide

v A log stream definition in the LOGR couple data set has been updated. The
scope of this event is multi-system; each system in the sysplex is notified of this
event.

v System logger completed offload processing for a log stream. All systems with
an active connection to the log stream for which the offload was done are
notified of the event.

v The resource manager associated with a log stream is disabled because of an
abend. The system where the resource manager is disabled is notified.

v The system logger parameter options for the ZAI SERVER/PORT values have
changed.

Logger server address space availability considerations
The logger server address space, IXGLOGR, initializes soon after master scheduler
initialization (MSI) occurs whenever a z/OS system is IPLed. The address space
can be started again after a failure or as a result of certain operator commands. The
following are some considerations on the IXGLOGR address space availability:

ENF 48 and system logger initialization
When system logger initializes and is available, the following ENF 48 indicator
values appear in the log or on the console?
v IxgenfEvents (IxgenfEventsByte0): IxgEnfSystemLogger Avail

During initialization if the system logger address space abnormally ends, the
following values appear in the log or on the console?
v IxgenfEvents (IxgenfEventsByte0): IxgEnfSystemLoggerNotAvailForIPL

IxgenfEventReasons (IxgenfEventReasonsByte1): IxgEnfLoggerNotAvailXcfLocal

Any subsequent IXGxxx requests result in the following reason code condition:

Return code X'8', reason code X'0890', which indicates that the system logger
address space is not available because it has not yet been started or has failed.

If initialization of system logger is occurring but not yet complete, you might
receive the following reason code condition:
v Return code X'8', reason code X'0891', which indicates that the system logger

address space is not available but is in the process of initializing. The 0891
reason code implies that when system logger eventually becomes available, the
system issues the ENF 48 event.

If the system logger server address space is started and later ends either through a
catastrophic error or through the FORCE command, the system does not issue an
ENF 48 signal. However, any subsequent IXGxxxx service requests receive the
reason code condition return code X'8', reason code X'0890' and might also receive
the reason code condition return code X'8', reason code X'0891'.

ENF 48 event code scenarios
In the following scenarios system logger has failed to initialize, and you receive the
ENF 48 event code. The system waits until the operator restarts system logger.

Assume the following:
1. You make an IXGWRITE request to a log stream and receive a X'0890' or

X'0891' reason code that indicates system logger is not available.

Chapter 30. Using system logger services 807

2. You can wait for the system to issue an ENF 48 event code and to have the
system logger address space restarted.

3. When the system logger address space becomes available, you are no longer
connected to the log stream and must issue an IXGCONN connect request to
reconnect to the log stream before you can issue the IXGWRITE request.

Assume the following:
1. You issue an IXGCONN request to connect to a log stream and then issue

IXGWRITE requests to the log stream that complete processing.
2. The system logger address space then fails, and the operator restarts system

logger again.
3. You issue another IXGWRITE request before you process the ENF 48 event

code. However, the request fails with either IxgRsnCodeExpiredStmToken
(return code X'8'; reason code X'082D'?) or IxgRsnCodeBadStmToken (return
code X'8'; reason code X'0806'?) errors.

4. Because the log stream connect token is no longer valid, you must re-connect to
the log stream before you can write to it. See “Considerations for logger log
stream disconnected” on page 810.

Considerations for logger resources temporarily unavailable
Table 100 includes logger service reason codes that indicate a "resource temporarily
unavailable" condition (see IXGCON macro) and identifies the related logger ENF
48 events (see IXGENF macro) that occur for these conditions or resource state
changes.

Table 100. Logger services with "temporary unavailable type reason codes" and expected related ENF 48 events

Reason Code
Hex
Value Logger Services IXGENF event(s) IXGENF event reasons

IxgRsnCodeCFLogStreamStorFull 860 IXGIMPRT, IXGWRITE IxgenfLogstreamsAvailable IxgenfLogstreamStorageAvailable

IxgRsnCodeRebuildInProgress 861 IXGBRWSE, IXGDELET,
IXGIMPRT, IXGOFFLD,
IXGQUERY, IXGUPDAT,
IXGWRITE

v IxgenfLogstreamsNotAvailable,
then

v IxgenfLogstreamsAvailable

v IxgenfStrRebuildStart

v IxgenfStrRebuildComplete or
IxgenfStrRebuildFailed

IxgRsnCodeXESPurge 862 IXGBRWSE, IXGDELET,
IXGIMPRT, IXGOFFLD,
IXGQUERY, IXGUPDAT,
IXGWRITE

v IxgenfLogstreamsNotAvailable,
then

v IxgenfLogstreamsAvailable

v IxgenfStrRebuildStart

v IxgenfStrRebuildComplete or
IxgenfStrRebuildFailed

IxgRsnCodeStructureFailed 863 IXGBRWSE, IXGCONN,
IXGDELET, IXGIMPRT,
IXGOFFLD, IXGQUERY,
IXGUPDAT, IXGWRITE

v IxgenfLogstreamsNotAvailable,
then

v IxgenfLogstreamsAvailable

v IxgenfStrRebuildStart

v IxgenfStrRebuildComplete or
IxgenfStrRebuildFailed

IxgRsnCodeNoConnectivity 864 IXGBRWSE, IXGCONN,
IXGDELET, IXGIMPRT,
IXGOFFLD, IXGQUERY,
IXGUPDAT, IXGWRITE

v IxgenfLogstreamsNotAvailable,
then

v IxgenfLogstreamsAvailable

v IxgenfStrRebuildStart

v IxgenfStrRebuildComplete or
IxgenfStrRebuildFailed

IxgRsnCodeStagingDsFull 865 IXGIMPRT, IXGWRITE IxgenfLogstreamsAvailable IxgenfStagingDsStorageAvailable

IxgRsnCodeStructureFull 866 IXGCONN IxgenfLogstreamsAvailable IxgenfLogstreamStorageAvailable

IxgRsnCodeLocalBufferFull 867 IXGIMPRT, IXGWRITE IxgenfLogstreamsAvailable IxgenfLogstreamStorageAvailable

IxgRsnCodeStagingDsFormat 868 IXGIMPRT, IXGWRITE IxgenfLogstreamsAvailable IxgenfLogstreamStorageAvailable

IxgRsnCodeDsDirectoryFull 85C IXGIMPRT, IXGWRITE IxgenfLogstreamsAvailable IxgenfLogstreamStorageAvailable

IxgRsnCodeWowError 85D IXGIMPRT, IXGWRITE IxgenfLogstreamsAvailable IxgenfLogstreamStorageAvailable

IxgRsnCodeAddrSpaceInitializing 891 IXGBRWSE, IXGCONN,
IXGDELET, IXGIMPRT,
IXGINVNT, IXGOFFLD,
IXGQUERY, IXGUPDAT,
IXGWRITE

IxgenfSystemLoggerAvail n/a

808 z/OS V2R2 MVS Authorized Assembler Services Guide

Table 100. Logger services with "temporary unavailable type reason codes" and expected related ENF 48
events (continued)

Reason Code
Hex
Value Logger Services IXGENF event(s) IXGENF event reasons

IxgRsnCodeConnectRebuild 406 IXGCONN
v IxgenfLogstreamsNotAvailable,

then

v IxgenfLogstreamsAvailable

v IxgenfStrRebuildStart

v IxgenfStrRebuildComplete or
IxgenfStrRebuildFailed

IxgRsnCodeStructureNotAvail 8B0 IXGCONN IxgenfSystemLoggerResourceCheg IxgenfCfResourceChange

The following conditions can result from a coupling facility structure rebuild:
v In Table 100 on page 808 the reason codes indicate that the log stream access is

inhibited and the log stream is temporarily unavailable during the structure
rebuild.

v When the CF structure rebuild completes, system logger issues an ENF 48
indicates whether the log stream resource is available for use. If the rebuild does
not complete successfully, the system issues a new ENF 48 event that indicates
the log stream resource is not available for a new reason.

v Initially, system logger issues an ENF 48 event when a structure rebuild starts,
indicating the affected log streams are unavailable. The following are ENF 48
indicators that are not available:

ENF 48 indicators that are not
available
IxgenfEvents (IxgenfEventsByte0): IxgEnfLogstreamsNotAvailable
IxgenfEventReasons (IxgenfEventReasonsByte0): IxgEnfStrRebuildStart
IxgenfEventSpecificInfo (IxgenfEventSpecificInfoByte0):

v Normally, when the rebuild completes, the system issues an ENF event to
inform the connectors that the log stream is now available. The following are
ENF 48 event indicators that are available:

ENF 48 event indicators that are
available
IxgenfEvents (IxgenfEventsByte0): IxgEnfLogstreamsAvailable
IxgenfEventReasons (IxgenfEventReasonsByte0): IxgEnfStrRebuildComplete
IxgenfEventSpecificInfo (IxgenfEventSpecificInfoByte0):

v If the rebuild processing does not complete successfully, the system issues a new
ENF 48 event to inform the connectors that the log stream state is not available
for a new reason code to be issued. The following ENF 48 event indicators are
not available:

ENF 48 event indicators that are
not available
IxgenfEvents (IxgenfEventsByte0): IxgEnfLogstreamsNotAvailable
IxgenfEventReasons (IxgenfEventReasonsByte0): IxgEnfStrRebuildFailed
IxgenfEventSpecificInfo (IxgenfEventSpecificInfoByte0): IxgEnfStrRebuildFailLossConn or

IxgEnfStrRebuildFailsStrFail

v For the rebuild failure case, some other action needs to occur to cause the log
stream status to change again. The log stream might be disconnected or a
subsequent rebuild might succeed. The system issues ENF 48 events for these
activities as they occur for the log stream.
If a rebuild initiated due to a loss of connectivity fails, system logger service
requests to exploit affected log streams will result in IxgRsnCodeNoConnectivity.

Chapter 30. Using system logger services 809

You may need to change the log stream status again at this point. See the log for
related system messages (such as IXG101I and IXG107I), which will provide
advice on the appropriate actions.

v IxgRsnCodeStagingDsFormat indicates system logger is formatting the staging
data set to be used to duplex the log data that is into the log stream interim
storage. This condition is most likely to occur directly after a log stream
connection on a system that resulted in the staging data set being newly
allocated. Applications should not resume issuing write requests until receiving
the ENF event indicating that the log stream (and staging data set) resource is
available. The following ENF 48 event indicators are available:

ENF 48 event indicators that are
available
IxgenfEvents (IxgenfEventsByte0): IxgEnfLogstreamsAvailable
IxgenfEventReasons (IxgenfEventReasonsByte0): IxgEnfStagingDsStorageAvailable
IxgenfEventSpecificInfo (IxgenfEventSpecificInfoByte0):

v IxgRsnCodeDsDirectoryFull and IxgRsnCodeWowError (85C and 85D) indicates
the following:
– Indicates that the interim storage for the log stream is full and system logger

was unable to offload log data to DASD (that is, the log stream data set
directory is full or some other offload error occurred). System logger will
re-drive its offload attempts for these conditions, which are applicable to both
coupling facility structure and DASD-only type log streams.

– If system logger is able to offload log data, then an ENF event will be issued
informing the connectors that the log stream should be available for writing
more log data (see Figure 81 on page 789).

– You can retry your IXGWRITE (or IXGIMPRT) request periodically or wait for
the ENF signal that the log stream is available, or disconnect from this log
stream and connect to another log stream.

– For additional actions related to log stream offloads, refer to system messages
IXG257I, IXG261E, IXG262A and IXG301I.

v For IxgRsnCodeCFLogStreamStorFull (860) or IxgRsnCodeWowError (85D) on
IXGWRITE requests, while waiting for IxgenfLogstreamsAvailable event with
IxgenfLogstreamStorageAvailable reason, authorized application can also retry
the request after a short wait. When the structure becomes full, system logger
starts offloading, and system logger produces the ENF signal when the offload
processing is able to relieve the full condition. For these two log stream structure
full-type conditions, system logger allows authorized IXGWRITE requests (with
exception for MODE=ASYNCNORESPONSE type requests) to be attempted as
the structure offloads, and these requests may complete successfully before the
ENF signal is received.

Considerations for logger log stream disconnected
See 'System Logger Processing at Disconnection' in z/OS MVS Programming:
Assembler Services Guide for additional details on log stream disconnect processing
and log stream tokens.

Log stream disconnects can occur for a variety of reasons;
v An application explicitly or implicitly disconnects from a log stream
v The result of a CFRM policy
v System environmental conditions
v From internal (system logger component) errors.

810 z/OS V2R2 MVS Authorized Assembler Services Guide

System logger will issue an ENF 48 signal for most of the conditions listed above.
The IXGENF mapping, which is input to the ENF 48 listen exit routine is
organized as follows:

event
Main indication of services or resource state change

event reason
Incident that occurred causing the state change

event specific reason
More details on event reason

However, note that there is a special case for the ENF 48 events when the "event
specific reason" actually designates the significant state of the log stream resource.
That is when a log stream is disconnected and deemed unavailable and an ENF 48
event with IxgEnfLogstreamsNotAvailable and IxgEnfLogstreamDisconnected are
both set on.

The following are ENF 48 events that relate to a log stream being disconnected:
v The log stream connector disconnects from the log stream by issuing an

IXGCONN REQUEST=DISCONNECT,STREAMTOKEN value.
System logger will issue an ENF 48 event that indicates that a connector has
disconnected from the log stream.

ENF 48 event indicators:
IxgenfEvents (IxgenfEventsByte0): IxgEnfLogstreamConnDisc

IxgenfConnDiscInfo section will identify the system and log stream name for the
disconnect event along with some additional indicators:
– IxgEnfConnDiscFlags
– IxgenfConnDiscDisConnect

v For structure-based log streams, system logger can disconnect a requestor when
certain structure failure conditions occurs. An ENF 48 event is issued informing
the connectors that they have been disconnected (CFRM policy action), and any
future system logger service requests using the same log stream token received
the return code 8, reason code 82D response.

ENF 48 event indicators:
IxgenfEvents (IxgenfEventsByte0): IxgEfLogstreamsNotAvailable
IxgenfEventReasons (IxgenfEventReasonsByte0): IxgEnfXESRecommendAction
IxgenfEventSpecificInfo (IxgenfEventSpecificInfoByte0): IxgEnfLogstreamDisconnected

and IxgEnfLossOfConnectivity

v When system logger is unable to allocate a new staging data set when an I/O or
access error occurs for DASD-only logstreams the log stream is automatically
disconnected.
System logger issues an ENF 48 informing the connectors that they have been
disconnected (staging data set error), after which any system logger that uses the
same log stream token receives the return code 8, reason code 82D response.

ENF 48 event indicators:
IxgenfEvents (IxgenfEventsByte0): IxgEnfLogstreamsNotAvailable
IxgenfEventReasons (IxgenfEventReasonsByte0): IxgEnfReqLogResNotAvail
IxgenfEventSpecificInfo (IxgenfEventSpecificInfoByte0): IxgEnfLogstreamDisconnected

and IxgEnfStgAllocErr

Chapter 30. Using system logger services 811

v System logger disconnects all connectors on the target system as a result of an
operator SETLOGR FORCE,DISConnect,LSN=logstremname command. System
logger issues an ENF 48 informing all the connectors that they have been
disconnected (operator command), after which any system logger that uses the
same log stream token receives the return code 8, reason code 82D response.

ENF 48 event indicators:
IxgenfEvents (IxgenfEventsByte0): IxgEnfLogstreamsNotAvailable
IxgenfEventReasons (IxgenfEventReasonsByte1): IxgEnfSetLogrForceDisconnect
IxgenfEventSpecificInfo (IxgenfEventSpecificInfoByte0): IxgEnfLogStreamDisconnected

v When the system logger server address space terminates and is restarted while
the log stream connector is persistent (for example, when application address
space and connecting task remained intact) then any subsequent use of a log
stream token obtained before system logger terminated would be considered
expired. See “Logger server address space availability considerations” on page
807 for more details pertaining to this condition.
When system logger becomes available again, system logger will issue an ENF
48 and the application should connect to the log stream and not make use of the
expired stream token.

ENF 48 event indicators:
IxgenfEvents (IxgenfEventsByte0): IxgEnfSystemLoggerAvail

v There are also severe error conditions that can occur within the system logger
component that might cause the log stream to be disconnected unexpectedly.
An ENF 48 event is issued informing the connectors that they have been
disconnected (component error) and any future Logger service requests using
the same log stream token will receive the rc8,rsn82D response.

ENF 48 event indicators:
IxgenfEvents (IxgenfEventsByte0): IxgEnfLogstreamsNotAvailable
IxgenfEventReasons (IxgenfEventReasonsByte1): IxgEnfComponentError
IxgenfEventSpecificInfo (IxgenfEventSpecificInfoByte0): IxgEnfLogstreamDisconnected

When system logger completes the disconnection processing for all connectors
on a system and the log stream will no longer appear "actively" connected on
that system, the system issues an ENF 48 event. For example, if a DISPLAY
LOGGER,CONN,LSN=logstreamname command is issued after the ENF 48 event,
the resulting IXG601I message indicates the percent of the connectors to the log
stream for the log stream as zero (num_conn =0).
The ENF 48 event indicates that it is a "system level" log stream disconnect
along with the number of systems in the sysplex still connected to this log
stream.

ENF 48 event indicators:
IxgenfEvents (IxgenfEventsByte0): IxgEnfLogStreamConnDisc
IxgenfEventReasons (IxgenfEventReasonsByte1): IxgEnfSystemLevelDisc

IxgEnfConnDiscInfo section identifies the system and log stream name for the
disconnect event along with some additional indicators:

ENF 48 event indicators:
IxgenfConnDiscFlags IxgEnfConnDiscDisConnect
IxgenfConnDiscCount Contains the number of systems still connected

to this log stream in the sysplex.

812 z/OS V2R2 MVS Authorized Assembler Services Guide

Note: A common problem in the early coding is that a non-persistent task will
be used in the log stream connecting address space. The address space
establishes an initialization task to obtain resources. It stores the log stream
token in persistent storage, but then the task terminates. For this situation,
Logger will automatically disconnect from the log stream since the "owning"
task terminated (via task termination resource manager operation). The
correction for this is to simply connect to the log stream in an address space
persistent task (at least keep the task persistent for as long as the connection,
that the STREAMTOKEN, is expected to be kept for use). Logger will not issue
an ENF 48 event for this specific condition. However, the "system level"
disconnect event described above will be issued.

When things go wrong: Recovery scenarios for system logger
This information describes some of the failures that can affect system logger
applications and the action taken by system logger in response. Only the scenarios
specific to authorized programming environments are described here. See z/OS
MVS Programming: Assembler Services Guide for the recovery scenarios that pertain
to both authorized and unauthorized programs.

When a resource manager fails
When a resource manager percolates to the recovery environment of system logger,
it is disabled with abend X'x22', regardless of whether it had the opportunity to
retry. When this happens, the resource manager must disconnect from the log
stream and then reconnect in order to activate the resource manager exit.

When a resource manager is disabled, an ENF 48 event is issued on the system
where it is disabled. If an SDWA is available to system logger's recovery routine,
the abend code is included in the ENF parameter list mapped by macro IXGENF.

The resource manager should examine the abend code and decide whether to
disconnect and terminate or to disconnect and reconnect to the log stream.

See “Writing an ENF event 48 listen exit” on page 804 for information on ENF 48
events.

Chapter 30. Using system logger services 813

814 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 31. System REXX

System REXX is a z/OS component that allows REXX execs to be executed outside
of conventional TSO/E and Batch environments. REXX has long been considered
one of the fastest development languages for system exit and utilities work on
z/OS. The possibilities for exploiting REXX code through the use of System REXX
are vast, whether to provide operator assists or to provide an easy way to process
files and strings. The System REXX environment provides a function package that
allows a REXX exec to invoke system commands and to return results back to the
invoker in a variety of ways. System REXX execs may be initiated through an
assembler macro interface called AXREXX or through an operator command.

There are two different System REXX environments supported:
v TSO=NO
v TSO=YES

In both environments, the exec runs in problem state, key 8, in an APF authorized
address space. Any modules that are loaded, linked or attached from the exec,
must reside in an APF authorized library; otherwise, a X'306' abend occurs. In both
cases, the REXX exec runs under the enclave of the AXREXX invoker when the
invoker can be classified; otherwise, the exec runs under the enclave of AXR.

There can be up to 64 REXX worker tasks running TSO=NO execs and up to 8 TSO
server address spaces running TSO=YES execs. If a worker task is not available for
an inbound TSO=NO request, or if a TSO server address space is not available for
a TSO=YES request, the request is queued and the requestor is suspended if
SYNC=YES is specified. The order in which System REXX processes queued
requests may not be in the same order that the requests have been submitted.
AXREXX invokers that use SYNC=YES should consider the potentially long wait
time.

At most 5000 active and waiting requests are allowed to exist at any time. When
this threshold is reached, subsequent AXREXX requests are rejected until the
number of active and waiting requests drops to 4000. ENF signals (65) are issued
when the threshold is exceeded, when the total number of requests is getting close
to the threshold, and when acceptance of inbound requests is resumed.

TSO=NO environment: When TSO=NO is specified on the AXREXX invocation,
the exec is executed in an MVS host command environment, sharing the address
space where it is executing with up to 63 other concurrently running TSO=NO
execs. In addition to MVS, the following host command environments are
supported:
v APPCMVS
v ATTACH
v ATTCHMVS
v ATTCHPGM
v BCPii
v CPICOMM
v LINK
v LINKMVS
v LU62

© Copyright IBM Corp. 1988, 2016 815

Data set allocation other than provided by the AXREXX macro is not supported in
this environment. Applications that perform input/output to data sets other than
those specified on the REXXINDSN and REXXOUTDSN AXREXX keywords must
use TSO=YES.

TSO=YES environment: The TSO=YES environment supports all of the host
commands listed under the TSO=NO environment, along with some additional
host commands supported by TSO. If you specify TSO=YES on the AXREXX
invocation, the exec will run isolated in a single address space, and can safely
allocate data sets without concern of a DDNAME conflict with a concurrently
running exec. If the exec exits with data sets allocated, System REXX will free the
allocations. The TSO=YES environment is established with the Terminal Monitor
Program (TMP) when AXRRXWKD is specified as an authorized command in
IKTJTSOxx, otherwise the TSO/E Environment Service is used. When established
using the TMP, the TSO=YES environment supports CONSOLE host commands,
the SUBMIT command, and several other foreground initiated background
commands that are unavailable with the TSO/E Environment Service. If the exec is
initiated when the primary subsystem is not active, the exec runs under the
MASTER subsystem which restricts available TSO commands, regardless of
whether the TMP is used. Only the TSO=YES environment supports SYSCALL
(z/OS UNIX) host commands that are only available to requests associated with
RACF user ID's that have OMVS segments defined to them, which establishes the
level of z/OS UNIX authorization. In particular, if execs are initiated from the
operator console, the operator must be logged on for many SYSCALL host
commands to work.

The following list shows additional TSO host commands that are supported in a
TSO=YES environment:
v ALLOCATE (except for the SYSOUT operand)
v ATTLIB
v ATTRIB
v CALL
v DELETE
v EXEC
v FREE
v HELP
v OUTTRAP
v PROFILE
v RECEIVE
v RMM
v SEND
v SMCOPY
v TIME
v TRANSMIT

Note: See z/OS DFSMSrmm Managing and Using Removable Media for details of the
considerations for use of the RMM TSO subcommands.

No other TSO Services and facilities are supported. In particular, when
non-supported host commands are invoked, the following errors might be
encountered:

816 z/OS V2R2 MVS Authorized Assembler Services Guide

v Some authorized host commands may not work under the TSO Environment
Service. Starting System REXX under the TMP should resolve this.

v The PSCBUSER field in the PSCB can be * for a TSO=YES environment when the
security environment specified on the AXREXX invocation is not associated with
a valid userid. When this occurs, the value is returned by the userid() function
in REXX, and can cause problems for TSO/E commands or services that require
a valid user ID.

v JES facilities are available when the primary subsystem is active. When the
primary subsystem is not active, the exec is run under the MASTER subsystem.

When a TSO=YES exec is dispatched, it receives control with the following TSO/E
profile attributes set:
v NOPREFIX
v NOCHAR
v NOLINE
v NOPROMT
v NOINTERCOM
v NOPAUSE
v MSGID
v NOMODE
v WTPMSG
v NORECOVER
v PLANGUAGE(ENU)
v SLANGUAGE(ENU)
v VARSTORAGE(HIGH).

Other restrictions that users should be aware of include:
v System REXX does not support the establishment of additional Language

Processor Environments using any of the TSO/E REXX Customizing Services
(IRXINIT or IRXTERM for example). In addition, when a REXX exec invokes an
assembler program (by LINKMVS or other means), the contents of field
ENVBLOCK_USERFIELD in the IRXENVB data area should not be altered in
any way. If the program needs to maintain a storage area across calls, it must
use the name/token services. See 'Sharing Application Data (Name/Token
Callable Services)' in z/OS MVS Programming: Assembler Services Guide.

v The STORAGE external function can only be used to read storage.
v The BCPii host command environment does not support being invoked in an

exec via the MODIFY AXR command.

Planning to use system REXX
System REXX starts automatically during Master Scheduler Initialization and
should run in the SYSSTC service class. There is a SYS1.PARMLIB member
(CTIAXR00) for controlling Component Trace (Errors are traced by default) and
also a SYS1.SAMPLIB member (AXR00) that may be tailored and copied into
SYS1.PARMLIB to override IBM supplied defaults. Additionally, IEASYSnn
supports a parmlib concatenation of AXRnn members. For more information, see
z/OS MVS Initialization and Tuning Reference. If no alternative AXRnn member has
been configured and AXR00 is not found, REXX&SYSCLONE is the default value
assigned to CPF and SYS1.SAXREXEC the default value assigned to REXXLIB.

Chapter 31. System REXX 817

The System REXX address space (AXR) and eight TSO Server address spaces
(AXR01-AXR08) in which TSO=YES requests are processed must have user IDs
defined and be connected to the installation's designated RACF group for system
address spaces. This RACF group must have READ authority to the
SYS1.PARMLIB and SYS1.SAXREXEC data sets. You must ensure that there are
matching entries in either the started procedures table (ICHRIN03) or that a
STARTED class profile has been defined that matches each new address space
name. If you prefer, both the started procedures table and STARTED class profile
might be in place. This action ensures that the correct user ID and system group
characteristics are assigned.

The following RACF commands can be used to accomplish this simply and
dynamically. If SYS1 is not the RACF group name, substitute it with the correct
group name.
ADDUSER AXR DFLTGRP(SYS1)
ADDUSER AXR01 DFLTGRP(SYS1)
ADDUSER AXR02 DFLTGRP(SYS1)
ADDUSER AXR03 DFLTGRP(SYS1)
ADDUSER AXR04 DFLTGRP(SYS1)
ADDUSER AXR05 DFLTGRP(SYS1)
ADDUSER AXR06 DFLTGRP(SYS1)
ADDUSER AXR07 DFLTGRP(SYS1)
ADDUSER AXR08 DFLTGRP(SYS1)

RDEFINE STARTED AXR*.* STDATA(USER(=MEMBER),GROUP(SYS1))

SETROPTS RACLIST(STARTED) GENERIC(STARTED) REFRESH

For details, see the topic "Using Started Procedures" in the z/OS Security Server
RACF Security Administrator's Guide.

Alternatively, after you substitute installation preferences for user ID and group
name, add the following statements to ICHRIN03 which must then be recompiled
and link-edited. Also, recognize that an IPL is required for the updated started
procedures table to take effect.

Below are entries to be added to ICHRIN03:
*
DC CL8’AXR’ PROCEDURE NAME
DC CL8’AXR’ USERID
DC CL8’SYS1’ GROUP NAME
DC XL1’00’ TRUSTED ATTRIBUTE BIT
DC XL7’00’ RESERVED
*
DC CL8’AXR01’ PROCEDURE NAME
DC CL8’AXR01’ USERID
DC CL8’SYS1’ GROUP NAME
DC XL1’00’ TRUSTED ATTRIBUTE BIT
DC XL7’00’ RESERVED
*
DC CL8’AXR02’ PROCEDURE NAME
DC CL8’AXR02’ USERID
DC CL8’SYS1’ GROUP NAME
DC XL1’00’ TRUSTED ATTRIBUTE BIT
DC XL7’00’ RESERVED
*
DC CL8’AXR03’ PROCEDURE NAME
DC CL8’AXR03’ USERID
DC CL8’SYS1’ GROUP NAME
DC XL1’00’ TRUSTED ATTRIBUTE BIT
DC XL7’00’ RESERVED
*

818 z/OS V2R2 MVS Authorized Assembler Services Guide

DC CL8’AXR04’ PROCEDURE NAME
DC CL8’AXR04’ USERID
DC CL8’SYS1’ GROUP NAME
DC XL1’00’ TRUSTED ATTRIBUTE BIT
DC XL7’00’ RESERVED
*
DC CL8’AXR05’ PROCEDURE NAME
DC CL8’AXR05’ USERID
DC CL8’SYS1’ GROUP NAME
DC XL1’00’ TRUSTED ATTRIBUTE BIT
DC XL7’00’ RESERVED
*
DC CL8’AXR06’ PROCEDURE NAME
DC CL8’AXR06’ USERID
DC CL8’SYS1’ GROUP NAME
DC XL1’00’ TRUSTED ATTRIBUTE BIT
DC XL7’00’ RESERVED
*
DC CL8’AXR07’ PROCEDURE NAME
DC CL8’AXR07’ USERID
DC CL8’SYS1’ GROUP NAME
DC XL1’00’ TRUSTED ATTRIBUTE BIT
DC XL7’00’ RESERVED
*
DC CL8’AXR08’ PROCEDURE NAME
DC CL8’AXR08’ USERID
DC CL8’SYS1’ GROUP NAME
DC XL1’00’ TRUSTED ATTRIBUTE BIT
DC XL7’00’ RESERVED

For details, see the topic "The Started Procedures Table (ICHRIN03)" in the z/OS
Security Server RACF System Programmer's Guide. A full example of ICHRIN03 can
be found in SYS1.SAMPLIB.

The System REXX address space (AXR) and its TSO Server address spaces should
run in the SYSSTC service class and should not be explicitly classified to a different
service class. The service class can be displayed by issuing DISPLAY JOBS,AXR
from the operator console.

The System REXX address space, AXR, is non-cancelable. If absolutely necessary,
you can terminate the AXR address space by issuing the FORCE AXR,ARM
command. Using the FORCE command can have ramifications for your system, so
read FORCE command in z/OS MVS System Commands before using it.

The ENF signals that SYSREXX issues when the AXR address starts and ends are
listed in “ENF event codes and meanings” on page 176. The operator can restart
AXR by using the AXRPSTRT procedure, found in SYS1.PROCLIB. The syntax for
restarting AXR can be one of the following:
START AXRPSTRT
START AXRPSTRT,AXR=aa
START AXRPSTRT,AXR=(aa,bb,...)

where aa and bb are AXRnn parmlib members in SYS1.PARMLIB. If no parmlib
members are specified, values from AXR00 are applied if it exists; otherwise,
default values are assigned.

You can use the command prefix (CPF) defined in AXR00 to invoke a REXX exec
or the SYSREXX STATUS command from a console rather than specifying the
MODIFY AXR command. The installation has the option of defining the prefix to

Chapter 31. System REXX 819

be SYSTEM or SYSPLEX in scope. See z/OS MVS Planning: Operations for more
details about CPF processing. The MODIFY AXR command is discussed in z/OS
MVS System Commands.

The installation should:
v Evaluate the security issues involved with System REXX, including who should

have access to the data sets in the REXXLIB concatenation.
v Determine who should be allowed to issue MODIFY AXR to submit an exec for

execution or to display status from an operator console.

The resource entity for the MODIFY AXR,<exec name> command is
MVS.SYSREXX.EXECUTE.<exec name> and the resource entity for the SYSREXX
STATUS command is MVS.SYSREXX.STATUS. Both profiles are defined under the
OPERCMDS class. For the MODIFY AXR,SYSREXX STATUS command, if SAF
cannot decide whether the request is authorized, it will be allowed. For the
MODIFY AXR,<exec name> command, if SAF cannot decide whether the request is
authorized, it will be allowed only if the invoking console has MASTER authority.

The AXRUSER() keyword parameter in SYS1.PARMLIB(AXRnn) is optional. No
default is assigned to this keyword if an AXRnn member is omitted from
SYS1.PARMLIB. When AXRUSER(siteuserid) is added to SYS1.PARMLIB(AXRnn),
it signifies to System REXX that the security token for siteuserid can be used by
the invoker when the AXREXX macro is coded with SECURITY=BYAXRUSER. The
siteuserid must already be defined to RACF. System REXX uses the RACF
SURROGAT class resource SYSREXX.siteuserid to verify that siteuserid is
authorized to perform this role and will subsequently extract the security token
associated with siteuserid. This security token is then subsequently used to set up
the security environment for any requests specifying SECURITY=BYAXRUSER.
This process is necessary for requests that are initiated under the MASTER address
space and other address spaces that do not have bonafide security environments.
An example of this is an MPF exit invoking a REXX exec in response to a
particular message. This process differs from the way JES uses the SURROGAT
class in which the submission of a job could be performed on behalf of another
user.

Any defined user ID can be selected by specifying AXRUSER(siteuserid) in
SYS1.PARMLIB(AXRnn) where siteuserid is the user ID chosen by the installation
to be used as the surrogate user ID. The only access requirement for the surrogate
user ID is READ authority to SYS1.SAXREXEC and to any data sets included in
the REXXLIB concatenation, unless the installation has imposed some access
requirements of its own. Use of the surrogate user ID can be further restricted
through universal access control and adding just the surrogate user ID to the
permission list.

The following RACF commands are used to establish a surrogate user environment
for System REXX. Substitute your installation preferences for siteuserid and
sitegroupid.
ADDUSER siteuserid DFLTGRP(sitegroupid)
RDEFINE SURROGAT SYSREXX.siteuserid UACC(NONE)
PERMIT SYSREXX.siteuserid CL(SURROGAT) ID(siteuserid) ACCESS(READ)
SETROPTS RACLIST(SURROGAT) REFRESH

For example, if AXRSROGT is the preferred siteuserid specification and SYS1 is the
RACF group name it is connected to, the following commands are entered by the
RACF Security Administrator to complete the setup.

820 z/OS V2R2 MVS Authorized Assembler Services Guide

ADDUSER axrsrogt DFLTGRP(sys1)
RDEFINE SURROGAT SYSREXX.axrsrogt UACC(NONE)
PERMIT SYSREXX.axrsrogt CL(SURROGAT) ID(axrsrogt) ACCESS(READ)
SETROPTS RACLIST(SURROGAT) REFRESH

For more information, see z/OS Security Server RACF Command Language Reference.

The parmlib member AXRnn provides the user with the ability to specify a set
(concatenation) of data sets from which SYSREXX attempts to fetch execs. This set
of data sets is referred to as the REXXLIB concatenation. SYS1.SAXREXEC contains
execs that IBM provides and in general should not be modified. When
SYS1.SAXREXEC is not specified in the REXXLIB concatenation, it is appended to
the end. For details about AXRnn processing, see z/OS MVS Initialization and
Tuning Reference. Any execs that are added to the concatenation cannot start with
the letters A through I that are reserved for IBM execs.

Security
The SECURITY and UTOKEN parameters on the AXREXX macro determine the
security environment that the exec runs in. If omitted, the exec will run under the
same security environment as its invoker. The security environment determines the
data sets that may be accessed and the commands and programs that may be
invoked.
v When SECURITY=BYUTOKEN is specified, the invoker can provide a UTOKEN

to define the specific security environment under which the exec should run (see
z/OS Security Server RACROUTE Macro Reference). By default the AXREXX macro
invocation uses SECURITY=BYUTOKEN. In this situation a security token
always accompanies the request. It is used to establish the security environment
of the invoker under which the exec will run and is limited to the permissions
that are applicable to the invoker. Additionally, if the REXX exec uses the
AXRCMD function to issue a system command, the security token will be
passed to MGCRE ensuring the identical security information is used. The
security token value can be explicitly provided using the optional parameter
UTOKEN, on the AXREXX macro. If the value is omitted, it will be implicitly set
to that of the invoker's security environment.

v When SECURITY=BYAXRUSER is specified, the exec will run under the security
environment associated with the value (siteuserid) of the AXRUSER parameter
specified in the AXR00 parmlib member. This could be useful if the installation
wants to invoke AXREXX in an address space that does not have a security
environment such as the MASTER address space.

The exec should not invoke any services that alter the security environment of the
task running the exec.

If an exec is invoked from a console that is not logged on, or via the AXREXX
macro from an address space that does not have a valid security environment
(using SECURITY=BYUTOKEN without specifying a UTOKEN), certain facilities
such as SYSCALL host commands will not function properly.

Argument and variable processing
The AXREXX macro allows the invoker to specify up to 20 arguments and 256
variables by specifying the REXXARGS or REXXVARS parameter respectively. To
use the REXXARGS and REXXVARS parameters, the AXREXX invoker must create
a header section mapped by AXRARGLST followed in contiguous storage by one
or more AXRARGENTRY sections. For the REXXARGS parameter, the entries

Chapter 31. System REXX 821

mapped by AXRARGENTRY must appear in the same order as the arguments
specified on the ARG statement in the REXX program. The mapping for
AXRARGLST and AXRARGENTRY can be found in AXRZARG.

AXRARGLST contains the following:
v AxrArgLstId - Set this to either AxrArgLstAcro or AxrVarLstAcro depending on

whether this is for the RexxArgs parameter or the RexxVars parameter
v AxrArgLstVer - Set to 0 (the current version)
v AXRARGLstNumber - Set to the number of Arguments or variables (for

example, the number of AXRARGLstEntry's that follow)
v Other fields must be cleared to 0.

AXRARGEntry contains the following:
v AXRARGAddr - Set this to the 64 bit address of the buffer containing the

argument or variable. If the argument or variable resides below 2 gig, use
AXRARGAddrLow and make sure AXRARGAddrHigh is 0.

v AxrNameAddr - Set this to the 64 bit address of the buffer containing the name
of the argument or variable. This field can be set to 0 if this is for an input only
argument. If this name resides below 2 gig, use AXRNameAddrLow and set
AXRNameAddrHigh to 0.

v AXRARGLength - Set this to the length of the buffer containing the argument or
variable. Note that different argument/variable types have specific requirements
regarding lengths.

v AXRARGAlet - Set this to the alet of the argument/variable. It must be a public
entry on the DUAL of the task that invokes AXREXX. If the argument/vairable
resides in the invoker's primary address space, set this to 0.

v AXRARGNameAlet - Set this to the alet of the buffer containing the name of the
argument/vairable. It must be a public entry on the DUAL of the task that
invokes AXREXX. If the name resides in the invoker's primary address space, set
this to 0.

v AXRArgOutLength - System REXX sets this to the length of data returned to the
invoker. Note that this value is in units of bytes for types Signed, Unsigned and
Char, in units of hex digits (half bytes) for type HexString and in units of bits
for type BitString.

v AxrArgNameLength - Set this to the length of the name of the argument. This
must contain the actual length of the name and not include any trailing blanks.

v AxrArgType - Set this to the type of the argument/variable.
v AXRARGInput - Set this if the argument/variable in the REXX exec is to be

initialized to a value on entry to the exec.
v AXRArgOutput - Set this if you want to retrieve the final value of the

argument/variable on exit from the exec for a SYNC=YES request. If the variable
is not set by the exec, System REXX will fail the request.

v Other fields must be cleared to zero.

Since the only data type in REXX is the character string, System REXX must first
convert input arguments or variables into this format. The invoker must specify
the data type of the argument or variable in AXRARGTYPE. The following data
types are supported:
1. AXRARGTYPEUNSIGNED - The input is treated as an unsigned integer value.

The length must be 4 or 8 bytes.
2. AXRARGTYPESIGNED - The input is treated as 2s complement signed integer

value. The length must be 4 or 8 bytes.

822 z/OS V2R2 MVS Authorized Assembler Services Guide

3. AXRARGYTPECHAR - The input is treated as a character string. The length
can be from 0 to 512 bytes.

4. AXRARGTYPEHEXSTRING - The input is treated as a hexadecimal string. The
length is specified in hexadecimal digits (2 per byte) and can be from 0 to 512
hexadecimal digits in length. When processing an output argument/variable
with an odd number of hex digits the half byte after the last hex digit is
cleared. For example, if an output variable is 5 hex digits, then when
processing of the exec is completed, 5 hex digits corresponding to the vairable
will be stored into the AXREXX invoker's storage followed by 4 bits set to zero.

5. AXRARGTYPEBITSTRING - The input is treated as a bit string. The length is
specified in bits (8 per byte) and can be from 0 to 32. When processing an
output argument/variable whose length is not a multiple of 8 bits, the bits
following the bit string up to the next byte will be cleared to zeros. For
example, if an output variable is 9 bits then when processing of the exec is
completed, 9 bits of the AXREXX invoker's storage will be set to the variable
followed by 7 bits of zeros.

If AXREXX encounters an error while attempting to marshal the invoker's input
into a REXX argument or variable, System REXX will indicate in
AXRARGLstEntryInError the number of the argument or variable that caused the
error. AXREXX will return a specific reason code indicating the problem with the
argument or variable and abort the request.

In addition to any input argument or variables that the AXREXX invoker may
provide, System REXX sets the following variables:
1. AXREQTOKEN - Contains a 16 byte value which uniquely identifies the

AXREXX invocation.
2. AXRINDD - If the REXXINDSN keyword is specified, this variable will contain

the name of the DD used for allocating the input data set; otherwise it is not
set.

3. AXROUTDD - If the REXXOUTDSN keyword is specified, this variable will
contain the name of the DD used for allocating the output data set; otherwise it
is not set.

If the exec successfully completes (no run time errors) and the AXREXX invocation
specifies SYNC=YES, System REXX will attempt to obtain the final values of any
output arguments or variables (those that have indicated AXRARGOUTPUT),
convert them into the specified data type and insert their converted values into the
AXREXX invoker's buffers specified by AXRARGADDR/AXRARGALET. The
lengths of output arguments and variables are inserted into
AXRARGOUTLENGTH. If there is any failure with attempting to process a single
output argument or variable, System REXX will abort and not attempt to retrieve
subsequent arguments or variables. Since output arguments are retrieved prior to
output variables, if System REXX fails to process an output argument, no
subsequent output arguments are processed and no output variables are processed.

In addition to output arguments and variables, System REXX also returns the
return code from the exec in the AXRDIAGEXECRETCODE area in the REXXDIAG
parameter (see AXRZARG for the mapping macro). The return code is returned as
a 31 bit signed binary value. If it cannot be converted into such a value, or if the
exec does not return a return code, then AXRDIAGNOEXECRETCODE will be set
on.

Chapter 31. System REXX 823

Input/output files
AXREXX allows TSO=NO invokers to pass an input data set via the REXXINDSN
parameter and both TSO=NO and TSO=YES invokers to specify an output data set
via the REXXOUTDSN parameter. The input data set is used by REXX functions
that require input from a user such as PARSE PULL or could be read directly via
EXECIO, using the DDNAME specified by the REXX variable AXRINDD. If an
output data set is specified, any SAY or TRACE output from the exec is directed
there. Data may also be written to the output data set via EXECIO using the
DDNAME specified by the REXX variable AXROUTDD. Any error message that
the REXX interpreter issues will also be directed to the output data set. If no
output data set is supplied, SAY, TRACE, and REXX messages will be directed to
the console specified by the CONSNAME keyword as part of a multi-line WTO
AXR0500I. The AXREXX user should be careful not to flood the system with
messages and be careful when using REXX Tracing when the output is directed to
a console. If CONSNAME and REXXOUTDSN are both not specified, the output is
lost.

Both the input and output data sets may be sequential or partitioned. In the case
of the latter, the REXXINMEMNAME or REXXOUTMEMNAME keywords must be
specified. If the output data set does not exist, System REXX will create a
sequential or partiitoned data set consisting of 3 primary blocks, 3 secondary
blocks and 1 directory block (if it is a PDS) where each block is 27920 bytes. The
data set will be kept when the exec completes and excess space will be released.
The data set specified by RexxInDsn will be allocated by System REXX with
DISP=SHR, while the data set specified by RexxOutDsn will be allocated with
DISP=OLD (or NEW if it does not exist).

If System REXX detects that the output data set runs out of space, the exec will be
terminated and a return code of 12 will be returned to the AXREXX invoker. If
there is no data for the PARSE PULL instruction in the input data set, the null
string will be returned.

Functions
Six functions are provided:
v AXRWTO
v AXRWTOR
v AXRMLWTO
v AXRCMD
v AXRWAIT
v AXRINFO

AXRWTO is a function that issues the WTO macro containing the specified text,
using the CONSNAME and CART provided on the AXREXX invocation. If
CONSDATA is not specified, the message text is sent to the system log. There is
one required argument for AXRWTO:
v Message text - Containing the message text to be issued via the WTO macro.

The text must be from 1 - 126 characters in length.

The return codes from AXRWTO are displayed as follows:
v 0 - AXRWTO was successful.
v 4 - Input message text was too long. WTO is truncated.

824 z/OS V2R2 MVS Authorized Assembler Services Guide

|

|

v 8 - Input message text was a 0 length string. WTO is not issued.
v 12 - Too many arguments were passed. WTO is not issued.
v 16 - The WTO macro returned a bad code. The REXX variable AXRDIAG

contains the return code from WTO (in hexadecimal).
v 20 - Required argument was omitted. WTO is not issued.

The following are examples for AXRWTO:
WTOResult=AXRWTO(’Hello from a REXX Exec’);
CALL AXRWTO 'Hello from a REXX Exec'; /* The return code from

AXRWTO is set in the variable “Result” */

AXRWTOR is a function that issues the WTOR macro containing the specified text,
using the CONSNAME and CART provided on the AXREXX invocation. If
CONSDATA is not specified, the message text is issued without any routing
attributes. There is one required argument for AXRWTOR:
v Message text - Containing the message text to be issued via the WTOR macro.

The text must be from 1 - 126 characters in length.

The reply to the WTOR will be set to the AXRREPLY variable.

An example follows:
Retcode = AXRWTOR(’A message’)
IF AxrReply = ’YES’ THEN

SAY ’The operator reply was YES’
ELSE

Say ’Some other response’

The WTOR will be issued with descriptor code 7 so that the message is associated
with the issuing task. If the exec were to time out or be cancelled, prior to the
operator reply, the WTOR will be automatically DOM'd since the task running the
exec will terminate under such conditions. Note, however, that if the WTOR is
DOM'd prior to the operator replying to the WTOR, the exec will remain waiting
for the reply indefinitely; the console DOM processor does not notify the WTOR
issuer in this case.

The following shows the return codes from AXRWTOR:
v 0 - WTOR was issued and a reply in AXRREPLY is returned.
v 4 - WTOR message text is too long. Message text is truncated.
v 16 - WTOR returned a non-zero return code. The REXX variable AXRDIAG

contains the return code from the WTOR invocation.
v 20 - Internal error.

The following REXX syntax error messages are returned from AXRWTOR:

AXRWTOR – Missing required argument
The message text was missing.

AXRWTOR – Too many arguments specified
Too many arguments were specified.

AXRMLWTO is similar to AXRWTO, except instead of issuing a single line WTO, a
multi-line WTO is issued. There are three required arguments for AXRMLWTO:
1. Message Text - containing the text of the message and the length of which

depends on the line type.

Chapter 31. System REXX 825

|
|
|
|

|
|

|

|

|
|
|
|
|

|
|
|
|
|
|
|

|

|

|

|
|

|

|

|
|

|
|

2. Name of connect id variable - for the first invocation of the multi-line WTO, the
variable should be set to FIRSTLINE. After the first call, the variable will
contain the connect id and should not be altered by the application until the
multiline WTO is completed. This argument must appear in quotation marks.

3. Line type - there are 5 different line types. For details, see the WTO - Write to
Operator macro in z/OS MVS Programming: Authorized Assembler Services
Reference SET-WTO.
v C - Control Line. The message text must be from 1-35 characters. If used, this

must be the first line of the multi-line.
v L - Label line. The message text must be from 1-71 characters.
v D - Data line. The message text must be from 1-71 characters.
v DE - Data end line. The message text must be from 1-71 characters.
v E - End line. The message text must be omitted.

AXRMLWTO has the following return codes:
v 0 - AXRMLWTO was successful.
v 4 - Message text was too long. Message is truncated.
v 8 - Text length was 0. WTO not issued.
v 12 - too many arguments were passed. WTO not issued.
v 16 WTO macro returned a bad code. The REXX variable AXRDIAG contains the

return code from WTO in hexadecimal.
v 20 - A required argument was omitted. WTO is not issued.
v 24 - Invalid line type. WTO is not issued.
v 28 - Invalid connect id. WTO is not issued.
v 32 - Unable to set connect id variable. The variable name is bad. WTO is issued.

The following are examples of the invocation of AXRMLWTO:
ConnectId = ’firstline’;
MyResult=AXRMLWTO(’Line 1 from a REXX Exec’, ’Connectid’,’c’); /* Issue

the 1st line of the multiline */

IF MyResult^=0 THEN
EXIT 1;

MyResult=AXRMLWTO(’Line 2 from a REXX Exec’, ’Connectid’,’d’); /* Issue
the 2nd line of the multiline */

IF MyResult ^=0 THEN
EXIT 2;

CALL AXRMLWTO ,’ConnectId’,’e’; /* End the multiline. In this case,
return code from AXRMLWTO is set in the
variable “result” */

AXRCMD is used to issue a system command from within the exec and obtain one
or more command responses. The arguments that can be specified are as follows:
v Command text - The system command to be invoked. This is an optional

argument. If it is omitted, no command will be issued, but a response from the
last command issuance will be returned if one exists.

v Msgstem - The stem of a list of variables into which AXRCMD places the
command response message text. This is an optional argument. If it is omitted,
command text must be specified. To place the message text into compound
variables which allows for indexing, msgstem should end with a period (for
example, "messg."). AXRCMD places each line of the retrieved message into
successive variables. For example, if the command response is a 3 line message,
then messg.1 contains line 1, messg.2 contains line 2 and mssg.3 contains line 3.
messg.0 will contain the number of lines. If msgtem does not end with a period,

826 z/OS V2R2 MVS Authorized Assembler Services Guide

the variable names are appended with consecutive numbers. For example,
suppose you specify msgstem as "conmsg" (without a period). If AXRCMD
retrieves a message that has two lines of message text, AXRCMD places the text
in the variables consmsg1 and consmsg2. The variable consmsg0 contains the
number of lines in the message text, which is 2.

v Time - The amount of time in seconds that AXRCMD should wait for a
command response. This is an optional argument. If it is omitted, AXRCMD will
not wait before attempting to determine whether a command response was
returned. A value of 0 - 21474535 seconds may be specified.

Return codes are as follows:
v 0 - The system command was issued and the command response received if

requested. The REXX variable AXRDIAG contains the return code and ASID
(separated by a blank) from MGCRE which are only valid for the START
command.

v 4 - Command was issued but no command response was received in the
specified time limit.

v 8 - The input wait time contained an invalid value. AXRCMD is not processed.
v 12 - Too many arguments were passed. AXRCMD is not processed.
v 16 - The variable name to contain the output of the system command was not

acceptable to REXX. If a command was specified, it is issued, but no command
response is returned.

v 20 - A required argument was omitted. Either the Command text or Msgstem (or
both) must be specified. This return code will also occur if both of these
arguments are 0 in length. AXRCMD is not processed.

v 24 - STIMERM could not be issued to time the request, possibly because there
were too many STIMERM requests already in existence. The command was
issued if the command argument was specified, but the command response is
not returned.

v 32 - The command text is too long, exceeding 126 characters. AXMCMD not
processed.

When command text is specified, AXRCMD invokes the MGCRE macro to issue
the command. Once the command is successfully issued, AXRCMD will retrieve
the command response. Most commands will issue the command response as a
multi-line WTO. However, there are some commands that return the response in a
number of distinct WTOs. In order to obtain all the command responses returned
in distinct WTOs, the AXRCMD command can be reissued without any specified
command until there are no more responses to obtain. For example,
CmdResult=AXRCMD(,OutputVar.,Time). A return code of 4 in CmdResult
indicates that there are currently no more responses to be obtained, although the
command may still be providing responses.

When the START command is invoked, the AXRDIAG variable will contain the
return code from MGCRE in hexadecimal, followed by the ASID of the new
address space (also in hexadecimal), separated by a blank.

Users of AXRCMD can initiate another REXX exec by either specifying the
MODIFY AXR command or by using the System REXX command prefix, but
should be careful not to recursively invoke the same exec using AXRCMD.

The following are some examples of the invocation of AXRCMD.

Chapter 31. System REXX 827

This example will issue a command which returns its response as a multi-line
WTO and will display the output from it:
CmdResult=AXRCMD (’D U,,,480’,’OUTPUTVAR.’,40); /*Issue the D U command */

DO I = 1 TO OUTPUTVAR.0 /* Iterate for the number
of lines returned */

SAY OutputVar.I /* Say the line */
END;

This example will issue a command that returns its response in separate WTOs
and will display the output from them. This can also be used to issue and display
output for commands that return their responses in a multi-line WTO.

Note: Variable OutputVar.0 will only contain the number of lines within a single
WTO issuance.

CmdResult = AXRCMD(’$DI’,OutputVar.,40)
IF CmdResult = 0 THEN

DO WHILE CmdResult = 0
IF OutputVar.0 > 1 THEN

DO LineNum = 1 TO OutputVar.0
CALL AXRWTO OutputVar.LineNum

END
ELSE

CALL AXRWTO OutputVar.1
CmdResult=AXRCMD(,OutputVar.,40) /* Wait up to 40 sec for

a cmd response */
END

ELSE
CALL AXRWTO ’command failed. RC=’ CmdResult

Below is an example of the use of AXRCMD, but not waiting for the command
response. Instead, retrieving the command response at a later time:
MyResult=AXRCMD(’D T’); /* Issue the D T command but don’t wait for

a command response */
/* Do some other work */

MyResult=AXRCMD(, OUTPUTVAR.,10); /* Obtain the command response from
the last command issued and wait 10 seconds
if it hasn’t already arrived */

AXRWAIT is a function that provides the capability for a REXX exec to wait for a
specified amount of time in seconds. A single parameter with a numeric value
between 0 and 21474536 is required. If the input is not syntactically correct,
AXRWAIT ends the exec with a syntax error; otherwise, it returns error codes. The
following statement would be coded to pause an exec for 15 seconds:
X = AXRWAIT(15)

Possible syntax error messages are:

AXRWAIT
Missing argument

AXRWAIT
Extraneous argument

AXRWAIT
Non-numeric time value

Possible return codes are:
v 14 - Wait time was too large.

828 z/OS V2R2 MVS Authorized Assembler Services Guide

v 18 - STIMERM returned a bad code. The variable AXRDIAG contains the code
that STIMERM returned.

AXRINFO method returns information about the environment under which the
exec is running. The following are valid options:

SUBSYSTEM
Returns the name of the Subsystem associated with the home address
space the exec is running in.

AXREXXINVOKERSHOMESTOKEN
Returns the STOKEN associated with the home address space in which
AXREXX was invoked to initiate the currently running exec.

REXXENVTYPE
Returns information about the environment that the exec is running under.
The possibilities are:
v TSO=YES,TMP=NO
v TSO=YES,TMP=YES
v TSP=NO

The following is an example for the parameter option SUBSYSTEM:
X = AXRINFO(’SUBSYSTEM’)

Possible syntax error messages are:

AXRINFO
Missing argument

AXRINFO
Extraneous argument

AXRINFO
Unrecognized argument

Time limits and canceling a request
The AXREXX invoker can limit the amount of time that an exec can run by using
the TIMELIMIT/TIMEINT keywords. When the time limit is reached, System
REXX will invoke Halt Interpretation (HI) in the REXX environment where the
exec is running. However, note that compiled execs must be compiled with the
%TESTHALT option for the HI to work.

If the exec still does not complete after waiting for some time, the task running the
exec will be detached. Invokers who specify a time limit should realize that time
out is an error condition and that for SYNC=YES invokers, the final values of
output arguments and variables will not be returned to the AXREXX invoker.

AXREXX supports an interface to CANCEL an exec. SYNC=NO AXREXX invokers
can obtain the Request Token via the OREQTOKEN parameter for later input to
AXREXX CANCEL. Cancel is processed as if the exec timed out.

Error handling
If a syntax or run time error is encountered during the execution of the exec and
the exec does not trap on it, System REXX will return to the AXREXX invoker with
a return code of X'8', reason code X'xxxx0828'. The AXREXX invoker should look at
the data set specified on the REXXOUTDSN parameter for any error messages. If

Chapter 31. System REXX 829

the invoker specified CONSDATA, but not REXXOUTDSN, the error messages will
be directed to the console specified by the CONSNAME parameter. The message id
corresponding to syntax error message IRXnnnnI is inserted into AXRDIAG1 of the
REXXDIAG parameter, the line number is inserted into AXRDIAG2, and the
message IDs of the last 2 IRX or IKJ messages that were issued are inserted into
AXRDIAG3 and AXRDIAG4. When the exec completes successfully and AXREXX
returns a code of 0 then AXRDIAG1, AXRDIAG2, AXRDIAG3 and AXRDIAG4 will
contain the message ids of the last 4 IRX or IKJ messages issued while the exec
was running. The format of these message ids is packed decimal with the sign bits
shifted out. A value of 1 in the high order byte distinguishes an IKJ message from
an IRX message. The REXXDIAG parameter of the AXREXX macro is mapped by
the AXRDIAG in AXRZARL.

System REXX execs should release any obtained resources prior to exiting. In the
event the exec is aborted due to a syntax error, time out or CANCEL, the task
under which the exec is running will be terminated; thus any task related resources
that were obtained by the exec will be freed. In the TSO=YES environment, any
data sets that were left allocated by the exec are unallocated. Any other address
space or system resources are not freed by System REXX.

Examples
The following is an example of an assembler program using AXREXX to invoke a
REXX exec to parse the output of DISPLAY JOBS to obtain the address of the ASTE
of *MASTER*.
GETASTE CSECT ,
GETASTE AMODE 31
GETASTE RMODE 31
*
* TITLE: GetAste
*
* Function: Obtain the address of MASTER’s aste by invoking
* an exec to parse the output of DISPLAY JOBS,*MASTER*.
* The following exec takes a jobname as an input argument
* and sets the variable OutAste@.
*
*
* NUMERIC DIGITS 25
* ARG InJobname
* MyCmd = ’D JOBS,’ || Strip(InJobname);
* Result = AXRCMD(MyCmd,OutputVar.,10);
* IF Result = 0 THEN
* DO;
* OutAste@ = ’ ’
* DO LineNum = 1 TO OutputVar.0 WHILE(OutASTE@=’ ’);
* PARSE var OutputVar.LineNum ’ASTE=’ OutAste@
* END;
* IF OutAste@ = ’ ’ THEN
* DO;
* MyRetcode = 8;
* OutAste@ = 0;
* END;
* ELSE
* MyRetcode = 0;
* END;
* ELSE
* DO;
* MyRetcode = 12;
* OutAste@ = 0;
* END;
* EXIT MyRetcode;
*

830 z/OS V2R2 MVS Authorized Assembler Services Guide

*
*
**

BAKR 14,0
USING GETASTE,12
LR 12,15
MODID BR=YES
XC MyArgLst,MyArgLst Clear the ArgLst header
XC MyVarLst,MyVarLst Clear the VarLst header
XC MyArgEn1,MyArgEn1 Clear the Arg entry
XC MyVarEn1,MyVarEn1 Clear the Var entry
LA 2,MyArgLst
USING AxrArgLst,2
MVC AxrArgLstId,MyAxrArgLstAcro
LA 5,AxrArgLstCurVer
ST 5,AxrArgLstVer Initialize the version
LA 5,kNumArgs Obtain the number of arguments
STH 5,AxrArgLstNumber Store the number of arguments
DROP 2
USING AxrArgEntry,2
LA 2,MyArgEn1 Addressability to first arg entry
LA 5,kMaster
ST 5,AXRARGADDRLOW Store address of jobname (*master*)
OI AXRARGINPUTFLGS1,AXRARGINPUT Indicate input arg
LA 5,L’kMaster Obtain length of arg
ST 5,AXRARGLENGTH Store length of arg in entry
MVI AxrArgType,AxrArgTypeChar Store type of arg
DROP 2
LA 2,MyVarLst
USING AxrArgLst,2
MVC AxrArgLstId,MyAxrVarLstAcro
LA 5,AxrArgLstCurVer
ST 5,AxrArgLstVer Initialize the version
LA 5,kNumVars Obtain the number of variables
STH 5,AxrArgLstNumber Store the number of variables
DROP 2
USING AxrArgEntry,2
LA 2,MyVarEn1 Addressability to 1st var entry
LA 5,OutAste@
ST 5,AXRARGADDRLOW Store output argument
LA 5,OutArgName
ST 5,AXRARGNameADDRLOW Store address of name of output var
MVI AxrArgNameLength,L’OutArgName
OI AXRARGINPUTFLGS1,AXRARGOutput Indicate output var
MVI AxrArgType,AxrArgTypeHexString Indicate hex string
LA 5,L’OutAste@ Obtain length (in bytes)
SLL 5,1 Mult by 2 - length is in hex digits (not bytes)
ST 5,AxrArgLength Store length in var entry
DROP 2
AXREXX REQUEST=EXECUTE,NAME=kEXECNAME,REXXARGS=MyArgLst, *

REXXVARS=MyVarLst,REXXDIAG=MyAxrDiag
LTR 15,15
JNZ FailLabel
USING AxrDiag,2
LA 2,MyAxrDiag
TM AxrDiagFlgs1,AxrDiagNoExecRetCode
JNZ FailLabel
L 15,AxrDiagExecRetCode
LTR 15,15
JNZ FailLabel

* Everything looks good. Process OutAste@ here
FailLabel DS 0H
* Perform error checking
* OutAste@ should contain Master’s ASTE address

PR
kNumArgs EQU 1
kNumVars EQU 1

Chapter 31. System REXX 831

|

|

DS 0D
MyAxrArgLstAcro DC AL4(AxrArgLstAcro)
MyAxrVarLstAcro DC AL4(AxrVarLstAcro)
kExecName DC CL8’GETASTE ’
kMaster DC CL8’*MASTER*’
OUTArgName DC CL8’OUTASTE@’
MyArgLst DS CL(AXRARGLST_LEN)
MyArgEn1 DS CL(AXRARGENTRY_LEN)
MyVarLst DS CL(AXRARGLST_LEN)
MyVarEn1 DS CL(AXRARGENTRY_LEN)
MyAxrDiag DS CL(AXRDIAG_LEN)
OutAste@ DS A

AXRZARG DSECT=YES,AXRARGLST=YES,AXRARGENTRY=YES,AXRDIAG=YES
END

The following shows an example of a program which sets up an extended MCS
console to receive messages passed back from the exec. In this case, the exec sends
back a portion of the output of a system command.
MCSOPER CSECT ,
MCSOPER AMODE 31
MCSOPER RMODE 31
*
* TITLE: MCSOPER
*
* Function: Set up an EMCS console. Invoke AXREXX, passing
* it the console name and pass 2 arguments to the exec:
* the command text to invoke and the number of lines of the
* output of the command return to the invoker’s EMCS console.
*
*
* /* REXX */
* ARG InCmdText,InNumLines
* AxrCmdRc = AXRCMD(InCmdText,Msg.,4);
* IF AxrCmdRc = 0 THEN
* DO;
* ConnectId = ’FirstLine’
* CALL AXRMLWTO ’Start of cmd output’,’ConnectId’,’C’
* DO I = 1 TO InNumLines
* CALL AXRMLWTO Msg.i,’ConnectId’,’D’
* END;
* CALL AXRMLWTO ,’ConnectId’,’E’ /* End line */
* END;
* EXIT AxrCmdRc
*
*
*
**

BAKR 14,0
USING MCSOPER,12
LAE 12,0(12,0)
LR 12,15
MODID BR=YES
XC MyArgLst,MyArgLst
XC MyArgEn1,MyArgEn1
XC MyArgEn2,MyArgEn2
LA 2,MyArgLst
USING AxrArgLst,2
MVC AxrArgLstId,kAxrArgLstAcro
LA 5,AxrArgLstCurVer
ST 5,AxrArgLstVer Initialize the version
L 5,kNumArgs Obtain the number of arguments
STH 5,AxrArgLstNumber Store the number of arguments
DROP 2
USING AxrArgEntry,2
LA 2,MyArgEn1 Addressability to first arg entry
LA 5,kInCmdText

832 z/OS V2R2 MVS Authorized Assembler Services Guide

|

ST 5,AXRARGADDRLOW Store address of jobname (*master*)
OI AXRARGINPUTFLGS1,AXRARGINPUT Indicate input arg
LA 5,L’kINCmdText Obtain length of arg
ST 5,AXRARGLENGTH Store length of arg in entry
MVI AxrArgType,AxrArgTypeChar Store type of arg
DROP 2
USING AxrArgEntry,2
LA 2,MyArgEn2 Addressability to 2nd arg entry
LA 5,InNumLines
ST 5,AXRARGADDRLOW Store number lines
OI AXRARGINPUTFLGS1,AXRARGInput Indicate input arg
MVI AxrArgType,AxrArgTypeUnsigned Indicate hex string
LA 5,L’InNumLines Obtain length (in bytes)
ST 5,AxrArgLength Store length in arg entry
DROP 2
MODESET MODE=SUP
MCSOPER REQUEST=ACTIVATE,CONSID=MyConsid,TERMNAME=kTERM, *

NAME=kConsname,MCSCSA=MyMcsCsa@,MCSCSAA=MyMcsCsaAlet, *
MsgEcb=MyMsgEcb

AXREXX REQUEST=EXECUTE,NAME=kEXECNAME,REXXARGS=MyArgLst, *
REXXDIAG=MyAxrDiag,CONSDATA=YES,CONSNAME=kConsName, *
CART=kCart

SAC 512
SYSSTATE ASCENV=AR
MCSOPMSG REQUEST=GETMSG,CONSID=MyConsid

* Process the MDB pointed to Reg1/AR1
* The MDB will contain the messages issued by the exec

SYSSTATE ASCENV=P
SAC 0
MCSOPER REQUEST=DEACTIVATE,NAME=kConsName
MODESET MODE=PROB
PR

kExecName DC CL8’MCSOPER ’
kConsname DC CL8’TEST1 ’
kTerm DC CL8’TEST1’
kCart DC F’1’
kNumArgs DC F’2’
kAxrArgLstAcro DC AL4(AxrArgLstAcro)
kInCmdText DC CL12’D JOBS,ALL ’
InNumLines DC F’10’
MyConsid DS F
MyMsgEcb DS F
MyMcsCsa@ DS F
MyMcsCsaAlet DS F
MyAxrDiag DS CL(AXRDIAG_LEN)
MyArgLst DS CL(AXRARGLST_LEN)
MyArgEn1 DS CL(AXRARGENTRY_LEN)
MyArgEn2 DS CL(AXRARGENTRY_LEN)

AXRZARG DSECT=YES,AXRDIAG=YES,AXRARGLST=YES,AXRARGENTRY=YES
END

Chapter 31. System REXX 833

|

|

834 z/OS V2R2 MVS Authorized Assembler Services Guide

Chapter 32. z/OS FBA services

z/OS FBA services provides the ability to manage and perform I/O on z/OS
systems, exploiting the z/OS Distributed Data Backup (zDDB) multi-platform
access feature on DS8700 and subsequent model type devices. The new application
programming interface (API) provides functions to allocate, read from, write to
and deallocate z/OS FBA devices.

z/OS FBA devices are defined using the Hardware Configuration Dialog (HCD) or
Hardware Configuration Manager (HCM). z/OS FBA devices must be online in
order to be used by z/OS FBA Services.

z/OS FBA devices can be used in many ways. For example, z/OS FBA devices can
be used as a data transfer device between a z/OS system and a distributed system.
It can also be used as a shared data device between z/OS and other systems. The
z/OS FBA service encapsulates the management of z/OS FBA devices and
provides capability for I/O channel program creation and execution from z/OS
systems.

z/OS Distributed Data Backup (zDDB)
The z/OS I/O subsystem communicates with the disk controller by sending out
Channel Command Words (CCWs). These disk devices are setup for Extended
Count Key Data (ECKD™) format.

Figure 86. z/OS FBA for data transfer

© Copyright IBM Corp. 1988, 2016 835

zDDB is an optional licensed feature introduced in 2010 for DS8700 storage
controllers (and subsequent models) that allows devices on hosts attached through
FICON® interfaces to access data on fixed block (FB) volumes. Typically, FBA disk
devices are connected to Linux, UNIX®, and Windows® operating systems.

With zDDB, two views of the disk devices are presented, one for z/OS and one for
the distributed system.

For more information about the zDDB feature of the DS8700 storage controller, see
the DS8K information center.

z/OS FBA devices
In order to use z/OS FBA devices, the following must occur:
v The zDDB licensed feature must be installed on the storage controller where

z/OS FBA devices will be used.
v z/OS FBA devices must be defined for the active configuration.
v z/OS FBA devices must be online.

z/OS FBA devices are implemented as a new device or control unit type in the
Unit Record (UR) class of devices. To configure these devices in HCD, first create a
new control unit with TYPE = 2107-FBA. Once the control unit is properly defined,
create new devices of TYPE=FBA attached to this control unit. Given that these
devices are defined as Unit Record devices, they cannot be shared among users on
a single system.

Figure 87. z/OS Distributed Data Backup

836 z/OS V2R2 MVS Authorized Assembler Services Guide

z/OS FBA devices can be designated as “online at IPL” (the default) or can be
explicitly varied online using the VARY device command. Devices must be online
before being used by z/OS FBA services.

z/OS FBA devices may be used by various software products. You should consult
with software product documentation to understand requirements for z/OS FBA
devices.

Note that Unit Control Blocks (UCBs) for z/OS FBA devices have
UCBTBYT3=UCB3UREC and UCBTBYT4 = X’60’.

z/OS FBA devices should only be shared by systems within a single sysplex. The
IOSFBA service uses systems ENQs to serialize the allocation process. Sharing
z/OS FBA devices with systems in different sysplexes may cause allocation issues.

Controlling access to z/OS FBA devices
Access from z/OS systems to z/OS FBA devices may be controlled using a
standard device security profile if desired. See Security Server Administrator’s Guide
for more details. An example using RACF to control access to z/OS FBA device
2000 is:

RDEFINE DEVICE (*.UR.FBA.2000) UACC(NONE)

Remember that the device's class must be on the RACLIST and refreshed for this
checking to be in effect. Once this resource is defined, the PERMIT command can
be used to grant access to users.

Access to LPARs may also be controlled using device candidate lists in HCD. For
more information, see z/OS HCD User's Guide.

Access to z/OS FBA devices from distributed systems may also be controlled.
Storage network administrators can use fabric zoning to control what systems can
access the devices. Storage administrators can also use LUN masking.

When z/OS FBA devices are to be used by both z/OS and distributed systems, the
software product using the devices can provide security controls dynamically using
the SCSI Persistent Reserve command. Using Persistent Reserve, the software
product’s distributed client can isolate access to the disk from other distributed
systems without affecting z/OS’s access to the device.

The combination of using Persistent Reserve, along with security product controls
from z/OS, can create a secure environment for storing data on z/OS FBA devices.

z/OS FBA services
z/OS FBA services are supported by the IOSFBA macro. IOSFBA is an authorized,
supervisor state service that provides a means for callers to manage (allocate and
unallocated) and perform I/O to (read and write) allocated FBA devices. IOSFBA is
used in conjunction with the new IOSDFBA and IOSDIOST mapping macros.
IOSFBA must be invoked in task mode and enabled for I/O interrupts; it can be
called in 31-bit or 64-bit addressing mode.

The IOSFBA API provides the following functions:
v QUERY
v ALLOCATE

Chapter 32. z/OS FBA services 837

v READ
v WRITE
v ERASE
v CLEANUP
v UNALLOCATE

Because some of the areas allocated by the IOSFBA service are task related, all
IOSFBA service calls must be made from the same address space and task when
using the same set of devices to ensure that access to the appropriate control
blocks is available.

Querying and allocating FBA devices
Querying FBA devices

The QUERY function lets the caller gather physical and self-describing information
on the specified devices and an indication if the FBA device is allocated. The caller
must provide a list of devices to query.

The information returned includes the starting block and number of blocks
available for each device, the physical record size (size of each block), and the I/O
Node Element Descriptor (I/O NED).

Using IOSFBA QUERY to gather information on z/OS FBA
devices

First, a program must know what devices are defined for its use. Typically, this
would be done using either parameters or an initialization file. The program could
also perform a UCBSCAN with DEVCLASS=UREC looking for devices with
UCBTBYT4=X’60’. Using an initialization file or parameters is the preferred
method because many software products may be using z/OS FBA devices on a
single system.

Once devices to be used are known, the program would build a list of devices
(mapped by the FBADL DSECT in the IOSDFBA macro) and invoke the IOSFBA
QUERY function.

If successful, IOSFBA QUERY returns a device descriptor list (mapped by the
FBADDL DSECT in the IOSDFBA macro) and one or more FBADDE structures
describing the devices.

The storage containing the FBADDL structure must be freed by the caller when the
information is no longer required. The length field in the FBADDL header is the
total length of storage, including storage for the FBADDE structures.

For input and output to the IOSFBA QUERY service, see Figure 88 on page 839.

838 z/OS V2R2 MVS Authorized Assembler Services Guide

Allocating FBA devices

An FBA device must be online and allocated prior to it being used to read, write,
or erase data from the device.

As with the QUERY function, ALLOCATE requires a list of devices that are to be
allocated. The function dynamically allocates (SVC99) the device and provide the
same information that the QUERY function provides.

The information returned after the IOSFBA ALLOCATE service is issued contains
the same information returned from the IOSFBA QUERY service (the starting block
and number of blocks available for each device, the physical record size (size of
each block), and the I/O Node Element Descriptor (I/O NED)), plus additional
information specific to the IOSFBA ALLOCATE service. This information is used as
input for the READ, WRITE and UNALLOCATE functions.

For input and output to the IOSFBA ALLOCATE service, see Figure 89 on page
840.

Figure 88. Visual representation of IOSFBA query

Chapter 32. z/OS FBA services 839

How the device is to be used dictates how it should be allocated. The ALLOCATE
function provides the following access types for allocating a z/OS FBA device:
v Specifying ACCESS=SINGLE limits the usage of the device to a single z/OS

system within the SYSPLEX.
v Specifying ACCESS=READ or ACCESS=WRITE allows the usage of the device to

two z/OS systems within the SYSPLEX (one as READ and the other as WRITE).
v Specifying ACCESS=ANY provides the caller control of how the device is

serialized on the z/OS systems within the SYSPLEX.

For all access types, distributed systems can still share the device; that is, the
distributed system can read from or write to the device.

Note that with ACCESS=SINGLE, ACCESS=READ, or ACCESS=WRITE, a small
amount of metadata is written to the device. Ensure that important data that may
reside on the disk is not erased by the IOSFBA service. If data exists on the z/OS
FBA disk, using ACCESS=ANY ensures that the IOSFBA does not alter that
pre-existing data.

When selecting the method of allocation by the calling programs, the pool of
devices used for ACCESS=ANY should not be mixed with the pool of devices used
for ACCESS=SINGLE, ACCESS=READ, or ACCESS=WRITE allocations. This
avoids duplicate allocations from different systems within a sysplex because
ACCESS=ANY does not use metadata to control device allocations

Using the IOSFBA ALLOCATE function to allocate z/OS FBA
devices

A program must know what devices are defined for its use. Typically, this is done
using either parameters or an initialization file. The program can also perform a

Figure 89. Visual representation of IOSFBA allocation

840 z/OS V2R2 MVS Authorized Assembler Services Guide

UCBSCAN with DEVCLASS=UREC looking for devices with UCBTBYT4=X’60’.
Using an initialization file or parameters is the preferred method because many
software products may be using z/OS FBA devices on a single system.

Once devices to be used are known, the program builds a list of devices (mapped
by the FBADL DSECT in the IOSDFBA macro) and invokes the IOSFBA
ALLOCATE function.

If successful, IOSFBA ALLOCATE returns a device descriptor list (mapped by the
FBADDL DSECT in the IOSDFBA macro) and one or more FBADDE structures
describing the devices that were allocated. The FBADDL is required input for the
IOSFBA UNALLOCATE service.

The storage containing the FBADDL structure must eventually be freed by the
caller when the information is no longer required. This should be done by the
calling program after calling the IOSFBA UNALLOCATE service. The length field
in the FBADDL header is the total length of storage, including storage for the
FBADDE structures.

Identifying FBA devices with distributed SCSI logical unit
numbers (LUNs) and other z/OS systems

Part of the information returned by both IOSFBA QUERY and IOSFBA ALLOCATE
is an I/O Node Element Descriptor (NED). The I/O NED is 32 bytes long. It
uniquely identifies the FBA device and contains:
v The device manufacturer
v The plant where the device was built
v The model number
v The sequence number
v The logical subsystem
v The unit address

For distributed environments, this information can be obtained by issuing a
standard SCSI inquiry command. Remember that the information returned in a
z/OS environment is in EBCDIC format, while distributed environments return the
information in ASCII format.

Reconciling the information from both sources helps the peer programs ensure that
the correct device is being used.

Reconciling information from both sources to help the peer
programs ensure that the correct device is being used

Input to QUERY and ALLOCATE

The QUERY and ALLOCATE functions require the caller to pass the address of an
FBA device list, which is mapped by the FBADL (found in the IOSDFBA mapping
macro). The FBADL consists of two structures; the first can be referred as the
header (FBADL) and the second can be referred to as the device entry
(FBADL_DEVICE_ENTRY). The FBADL header indicates the length of each entry,
the total length (header and entries), and the number of device entries. For each
device to be queried or allocated, a device entry must exist.

Chapter 32. z/OS FBA services 841

Output from QUERY and ALLOCATE

The output from either the IOSFBA QUERY or IOSFBA ALLOCATE request is an
address of a storage area obtained by the IOSFBA service that maps the FBA
device descriptor list (FBADDL) and the FBA device descriptor entry (FBADDE).
The FBADDL and FBADDE provide detailed information about each FBA device
that was either queried or allocated. This information is required input for READ,
WRITE, and UNALLOCATE options. The caller or invoker is responsible for
releasing the storage through either a STORAGE RELEASE invocation for callers in
AMODE 31 or an IARST64 invocation for callers in AMODE 64.

Figure 90. FBADL with three device entries

842 z/OS V2R2 MVS Authorized Assembler Services Guide

The FBADDE structures is pointed to by the FBADIOE structures created to read
or write to the z/OS FBA devices.

Reading from and writing to z/OS FBA devices
To read from or write to an z/OS FBA device or set of z/OS FBA devices, a z/OS
FBA device I/O list (FBADIOL) entry for each device is created that contains,
among other things, a device descriptor (returned by the ALLOCATE function), an
I/O status block (mapped by the IOSDIOST), the storage buffers, and the blocks on
the device that are to be read from or written to. The IOSFBA API will build the
appropriate channel program and start the I/O. The read and write functions can
be synchronous or asynchronous.

For asynchronous reading and writing, an ECB is passed to the IOSFBA service
and control is returned to the invoking program once the I/O is started. The
invoking program must wait, at some point, for the ECB to be posted. The ECB is
posted once all I/Os are completed, either successfully or unsuccessfully, and the
status of the I/O for the device is stored in the corresponding status block.

Figure 91. Mapping of output area from IOSFBA QUERY and IOSFBA ALLOCATE

Chapter 32. z/OS FBA services 843

Input to IOSFBA READ and IOSFBA WRITE requests

When reading from or writing to an z/OS FBA device, a z/OS FBA device I/O list
(FBADIOL) specifies the I/O to be performed. The FBADIOL contains a count of
the devices that are involved with the READ or WRITE request and an address for
each I/O entry represented by the FBADIOE. An FBADIOE is the representation of
I/O to be performed to an FBA device (represented by the FBADDE). The
FBADIOE contains pointers to extent entries (FBAEE) that indicate the starting
location on the FBA device and length of data to be read or written. The data itself
is represented as buffer entries (FBAEE_BUFENT) that contain the location and
length of specific sections of data. For READ operations, it indicates the location
and length of where data will be read from. For WRITE operations, it indicates the
location and length of where data will be written to. These control blocks are
found in the IOSDFBA mapping macro.

There are two general rules regarding the storage buffer entries:
v Each buffer entry must be a multiple of the physical block size. Partial block

sizes cannot be read or written.
v The number of target blocks on the device must not be exceeded by the number

of blocks represented by the storage buffer entries.

The service also provides the capability of determining the completion status of
each of the I/Os (FBADIOEs) through the use of the status block address. For each
FBADIOE, IBM recommends that a status block be allocated and the address
stored in the FBADIOE. The status block is mapped by the IOSDIOST mapping
macro. It contains the I/O completion code, reason code detailing the completion
code value, device and subchannel status, and sense data (when device status
contains a unit check).

Figure 92. Visual representation of reading or writing to z/OS FBA devices

844 z/OS V2R2 MVS Authorized Assembler Services Guide

Erasing data on z/OS FBA devices
It is possible to use the z/OS FBA devices when using the devices as transfer
devices. IOSFBA READ/WRITE remembers the ranges of blocks used on the z/OS
FBA devices, allowing IOSFBA ERASE to construct a channel program to erase the
data. This channel program erases all data from the lowest to highest contiguous
blocks referred to in the IOSFBA READ/WRITE processing.

It may be more efficient for the calling program to zero the storage buffers used
and invoke the IOSFBA WRITE service to write zeros to the blocks used.

Caution should be used by the calling program to ensure that data is not
inadvertently erased.

Unallocating z/OS FBA devices
Once all processing of the z/OS FBA device, including reading, writing, and
erasing, is completed, it must be unallocated. Specifying the UNALLOCATE
function unallocates the specified z/OS FBA device as indicated by the FBADDL
that was created and returned when the z/OS FBA device was allocated.

Figure 93. Controls blocks needed for FBA I/O

Chapter 32. z/OS FBA services 845

The input for the IOSFBA UNALLOCATE request is an address of a storage area
returned by the IOSFBA ALLOCATE service. It maps the FBA Device Descriptor
List (FBADDL) and the FBA Device Descriptor Entry (FBADDE). The FBADDL and
FBADDE provide detailed information about each FBA device that was allocated.
The caller or invoker is responsible for releasing the storage through either a
STORAGE RELEASE invocation for callers in AMODE 31 or IARST64 invocation
for callers in AMODE 64. The length field in the FBADDL header is the total
length of storage, including storage for the FBADDE structures.

Improving performance when using IOSFBA services
It is possible to improve performance of the IOSFBA service by using the
IOTOKEN keyword. The IOTOKEN keyword allows the caller to supply the
address of a 32-byte area that will be used by the IOSFBA service to save
information between IOSFBA service calls.

Performance may also be improved if a channel program can be reused. This is
possible if all of the following conditions are true:
v The storage buffers and target blocks of the z/OS FBA devices are exactly the

same.
v The address space where the program is located is non-swappable across all

IOSFBA READ/WRITE requests.
v The storage buffers remain fixed pages across all IOSFBA READ/WRITE

requests.

When this is the case, the REUSECP keyword can also be used. REUSECP in
combination with the IOTOKEN keyword allows the IOSFBA READ/WRITE
service to simply start the channel program without a channel program build.

Figure 94. Visual representation of unallocating z/OS FBA devices

846 z/OS V2R2 MVS Authorized Assembler Services Guide

More than one IOTOKEN can be used by calling programs if parallel IOSFBA
invocations are used, if different channel programs must be built, or if different
storage buffers or z/OS FBA device target blocks are used.

If IOTOKEN is used, the IOSFBA CLEANUP service must also be used to ensure
that storage is properly released. The program must call IOSFBA CLEANUP for
each IOTOKEN that was used.

Using more that one device for each IOSFBA READ/WRITE operation also helps
to improve overall I/O throughput.

Providing a recovery or resource manager
A recovery or resource manager needs to be implemented by callers of the IOSFBA
service. This resource manager is responsible for unallocating allocated devices and
releasing storage when the application fails or abnormally terminates.

Devices that are allocated by an application remain allocated until a specific
unallocate request is made. If the caller of the IOSFBA service fails and does not
unallocate the devices, subsequent allocation attempts fail. This is especially true
when ACCESS=SINGLE, ACCESS=READ, or ACCESS=WRITE was specified when
initially allocating the device.

Chapter 32. z/OS FBA services 847

848 z/OS V2R2 MVS Authorized Assembler Services Guide

Appendix A. Using the unit verification service

The information in this topic describes using the unit verification service to obtain
information from the eligible device table. IBM recommends that you use the
EDTINFO macro instead; EDTINFO provides more services and is easier to use
than the unit verification service.

EDTINFO must be used to obtain information on units that are defined as:
v Dynamic,
v Have 4-digit device addresses, or
v Are described by unit control blocks (UCBs) that reside above the 16-megabyte

line.

The IEFEB4UV routine interface maybe used, only, to obtain information on units
that are static, have 3-digit device addresses and are described as UCBs residing
below the 16-megabyte line.

The unit verification service enables you to obtain information from the eligible
device table (EDT) and to check your device specification against the information
in the EDT. See z/OS HCD Planning for information on the EDT.

There are three versions of the unit verification service:
v IEFEB4UV, for problem programs or authorized callers.
v IEFGB4UV and IEFAB4UV, for authorized callers.

Note: IEFEB4UV is the preferred interface.

Functions
The unit verification service performs the following functions:
v Check groups
v Check units
v Return unit name
v Return unit control block (UCB) addresses
v Return group ID
v Indicate unit name is a look-up value
v Return look-up value
v Convert device type to look-up value
v Return attributes
v Check units with no validity bit
v Specify subpool for returned storage
v Return unit names for a device class

Check groups - Function code 0
This function determines whether the input device numbers make a valid
allocation group. To be valid, the device grouping must include either all the

© Copyright IBM Corp. 1988, 2016 849

device numbers being verified, or none of them. If this is not the case, the
allocation group is split, and the input device numbers do not make up a valid
allocation group.

Check units - Function code 1
This function determines whether the input device numbers correspond to the unit
name in the EDT. In addition to a return code in register 15, it sets to one the
high-order flag bit of any device numbers in the parameter list that are not valid.

Return unit name - Function code 2
This function returns the unit name associated with a look-up value provided as
input. The unit name is the EBCDIC representation of the IBM generic device type
(for example, 3390) or the esoteric group name (for example, TAPE) from the EDT.

A look-up value is an internal representation of the unit name, used as an index
into the EDT. Because teleprocessing devices do not have generic device names,
you cannot use this function to request information about teleprocessing devices.

Note: Do not use this function to determine whether a returned unit name is a
generic CTC device or an esoteric group name that contains CTC devices. Instead,
use the return attributes function (function code 8) for this purpose.

Return unit control block (UCB) addresses - Function code 3
This function returns the UCB pointer list associated with the unit name provided
as input.

Return group ID - Function code 4
This function returns the allocation group ID corresponding to each UCB address
specified in the input list.

Indicate unit name is a look-up value - Function code 5
The input to the check units and return UCB addresses functions can be specified
as a four-byte internal representation of the unit name rather than as the unit name
itself.

Return look-up value - Function code 6
This function returns the four-byte internal representation of the unit name that
serves as an index into the EDT. It is the converse of the return unit name function.

Convert device type to look-up value - Function code 7
This function will convert a four-byte UCB device type to an internal
representation of the unit name, to serve as an index into the EDT. The convert
device type to look-up value function allows programs that have only a four-byte
UCB device type to query the EDT. It may be used whenever a look-up value is
required as input to the unit verification service.

Return attributes - Function code 8
This function returns general information about the specified unit name.

850 z/OS V2R2 MVS Authorized Assembler Services Guide

Check units with no validity bit - Function code 9
This function causes the check units function to set only a return code in case of an
invalid device number. The no validity bit function saves processing in the case of
a check units request for a single unit: because the parameter list is not modified, it
need not be in key 1 storage. The function is available through IEFGB4UV or
IEFAB4UV only.

Specify subpool for returned storage - Function code 10
This function is used with the return UCB addresses function or with the return
unit names for a device class function. It allows you to specify a particular subpool
to return the requested information in. This function is available through
IEFEB4UV only.

Return unit names for a device class - Function code 11
This function returns a list of IBM generic device types (for example, 3390) and/or
esoteric group names (for example, TAPE) associated with the input device class.
This function is available through IEFEB4UV only.

Callers of IEFEB4UV
The unit verification routine, IEFEB4UV, is for both problem program callers and
for authorized callers. It runs in task mode in the caller's key.

To use IEFEB4UV, the calling program must do the following:
v Create the input data structures and parameter list
v Place the address of an 18-word save area in register 13
v Provide a recovery environment
v Pass control to IEFEB4UV using the LINK and LINKX macro.

On return, IEFEB4UV restores all registers except register 15, which contains a
return code.

Callers of IEFGB4UV or IEFAB4UV
The IEFGB4UV and IEFAB4UV routines are for authorized callers and run in task
mode in key 1. To use the IEFGB4UV or IEFAB4UV unit verification routine, the
calling program must do the following:
v Create the input data structures and parameter list in non-fetch protected key 1

storage
v Place the address of an 18-word save area in register 13
v Provide a recovery environment if authorized
v Pass control to IEFGB4UV or IEFAB4UV using the LINK macro

On return, the routine restores all registers except register 15, which contains a
return code.

IEFAB4UV is the 24-bit addressing mode interface that is provided for
compatibility with previous releases. It changes the environment to 31-bit
addressing mode and calls IEFGB4UV to perform the requested functions. On
return, it converts the environment back to 24-bit addressing mode before
returning to the caller.

Appendix A. Using the unit verification service 851

Input to and output from unit verification service routines
You must supply a two-word parameter list when invoking the unit verification
routine (IEFGB4UV, IEFAB4UV, or IEFEB4UV).

The first word contains the address of a unit table. The contents vary according to
the function(s) requested.

The second word contains the address of a 2 byte field (FLAGS), in which you
specify the function(s) requested.

The bits in the FLAGS parameter field have the following meanings:

Bit Function Requested

0 Check groups

1 Check units

2 Return unit name

3 Return UCB addresses

4 Return group ID

5 Indicate unit name is a look-up value

6 Return look-up value

7 Convert device name to a look-up value

8 Return attributes

9 Check units with no validity bit

10 Specify subpool for returned storage

11 Return unit names for a device class

12-15 Reserved for IBM use

Input parameter list
Figure 95 shows the input parameter list needed to invoke the unit verification
service routine.

Input and output data structures
The diagrams on the following pages show the input data structures and
parameters needed to invoke the unit verification service routine. The output data
structure returned by the routine is also shown.

Register 1

Parameter
list

FLAGS

0

4

8

Parameter list

Unit Table

Figure 95. Input Parameter List

852 z/OS V2R2 MVS Authorized Assembler Services Guide

You must declare the structures exactly as shown to get the response indicated by
the function(s) you request in FLAGS.

Because many of the input and output data structures are the same, you can
request many of the functions in combinations with other functions. The following
table lists the valid single functions and combinations of functions that you can
request in a single invocation of the unit verification service.

Code Verification Service

0

0,1

0,1,5

0,1,5,9 IEFGB4UV or IEFAB4UV only

1

1,5

1,9 IEFGB4UV or IEFAB4UV only

1,5,9 IEFGB4UV or IEFAB4UV only

2

2,7

2,8

2,7,8

3

3,5

3,8

3,10 IEFEB4UV only

3,5,7

3,5,10 IEFEB4UV only

3,8,10 IEFEB4UV only

3,5,7,10
IEFEB4UV only

4

6

6,8

7

8

10,11 IEFEB4UV only

11 IEFEB4UV only

Register 15 if request fails
On return, register 15 will contain a return code. If the invocation fails, it may be
for one of the following reasons:
1. If you request a function that is not valid or a combination of functions that are

not valid, register 15 contains a return code of 28 and the request fails.

Appendix A. Using the unit verification service 853

2. If the JES control table (JESCT) does not contain valid pointers, the
environment is incorrect. Register 15 contains a return code of 24. The request
fails.

Requesting function code 0 (check groups)

Input: Set bit 0 in FLAGS to 1.

The input unit table structure is shown below.

Output: None.

Register 15 contains one of the following return codes:

Code Meaning

0 The specified input is correct.

12 The device groupings are not valid.

28 The required input is not specified or is not valid.

Requesting function code 1 (check units)

Input: Set bit 1 in FLAGS to 1.

The input unit table structure is shown below.

Device Number List

Device Number

Device Number

Device Number

Device Number

.

.

.

4

8

8

12
Device Number
List

Number of
Device Numbers

Unit Table

Figure 96. Requesting Function Code 0 (Check Groups)

854 z/OS V2R2 MVS Authorized Assembler Services Guide

Output: If a device number is not valid, bit 0 of the FLAG byte is set to 1.

Register 15 contains one of the following return codes:

Code Meaning

0 The specified input is correct.

4 The specified unit name is not valid.

8 Unit name has incorrect units assigned.

20 One or more device numbers are not valid.

28 The required input is not specified or is not valid.

Requesting function code 2 (return unit name)

Input: Set bit 2 in FLAGS to 1.

The input unit table structure is shown below.

Output: The unit table contains the unit name as shown in the following figure.

Unit Table
0

Device Number List

.

.

.

12

4

8

8

Unit Name
(EBCDIC)

Number of
Device Numbers

Device Number
List Device Number

Device Number

Device Number

1

1

1

Figure 97. Requesting Function Code 1 (Check Units)

Unit Table
0

8
Look-Up Value

Figure 98. Requesting Function Code 2 (Return Unit Name)

Appendix A. Using the unit verification service 855

Register 15 contains one of the following return codes:

Code Meaning

0 The unit table contains the EBCDIC unit name.

4 The look-up value could not be found in the EDT.

28 The required input is not specified or is not valid.

Requesting function code 3 (return UCB addresses)

Input: Set bit 3 in FLAGS to 1.

The input unit table structure is shown below.

Output: The unit table contains a pointer to the UCB Pointer List as shown in the
following figure.

0
Unit Table

Unit Name
(EBCDIC)

8

Figure 99. Output from Function Code 2 (Return Unit Name)

0
Unit Table

Unit Name
(EBCDIC)

8

Figure 100. Requesting Function Code 3 (Return UCB Addresses)

Unit Table
0

Unit Name
(EBCDIC)

Returned UCB
Pointer List

UCB Pointer List

Sub
pool

Length

Number of entries

UCB

UCB

.

.

.

12

8

Figure 101. Output from Function Code 3 (Return UCB Addresses)

856 z/OS V2R2 MVS Authorized Assembler Services Guide

For authorized callers, the list is returned in the default subpool, 230. For
unauthorized callers, the subpool default is 0. See function code 10 for a
description of how to change the default subpool. The caller must free the number
of bytes in the length field from the subpool before exiting.

Register 15 contains one of the following return codes:

Code Meaning

0 The unit table contains the pointer to the UCB pointer list.

4 The unit name could not be found in the EDT.

16 Storage was not available for the UCB pointer list.

28 The required input is not specified or is not valid.

Requesting function code 4 (return group ID)

Input: Set bit 4 in FLAGS to 1.

The input unit table structure is shown below.

Note: One fullword is provided in the group id list for each UCB in the UCB list.
Initialize all entries to zero.

Output: The group id list contains the group id corresponding to each UCB in the
input UCB list.

Unit Table
0

4

0

4

Group ID List

UCB List

UCB List

Number of
entries

UCB

UCB

Group ID List

0

0

.

.

.

.

.

.

Figure 102. Requesting Function Code 4 (Return Group ID)

Appendix A. Using the unit verification service 857

Note: If the UCB is not in the EDT, the group id for that particular entry remains
zero.

Register 15 contains one of the following return codes:

Code Meaning

0 Processing is successful.

24 The JESCT does not contain valid pointers.

Requesting function code 5 (indicate unit name is a look-up
value)

Input: Set bit 5 in FLAGS to 1.

The input unit table structure is shown below.

This function is not valid by itself. It must be used in combination with other
functions that require a unit name as input. If you know the look-up value
corresponding to the unit name, you can substitute it for the unit name in the
input unit table. The following figure represents the first two fullwords of the unit
table when function code 5 is requested.

Output: None specifically associated with this function.

Register 15 contains one of the following return codes:

Code Meaning

0 Processing is successful.

4 The input look-up value could not be found in the EDT.

28 The required input is not specified or is not valid.

Group ID List

Group ID

Group ID

.

.

.

Figure 103. Output from Function Code 4 (Return Group ID)

Unit Table
0

4

Look-up Value

0

Figure 104. Requesting Function Code 5 (Indicate Unit Name is a Look-up Value)

858 z/OS V2R2 MVS Authorized Assembler Services Guide

Requesting function code 6 (return look-up value)

Input: Set bit 6 in FLAGS to 1.

The input unit table structure is shown below.

This function is the opposite of the return unit name function (Code 2). The
following figure represents the unit table structure when you request function code
6.

Output: The unit table contains the look-up value.

Register 15 contains one of the following return codes:

Code Meaning

0 Processing is successful.

4 The unit name could not be found; no look-up value is returned.

24 The JESCT does not contain valid pointers.

Requesting function code 7 (convert device type to look-up
value)

Input: Set bit 7 in FLAGS to 1.

The input unit table structure is shown below.

Unit Table
0

8

Unit Name
(EBCDIC)

Figure 105. Requesting Function Code 6 (Return Look-up Value)

Unit Table
0

8

Look-up Value

Figure 106. Output from Function Code 6 (Return Look-up Value)

Appendix A. Using the unit verification service 859

Note: The device type is in the format of the UCBTYP field of the UCB.

Output: The unit table contains the look-up value.

The conversion of the device type to a look-up value is done in place. There is no
error checking of the device type.

Register 15 contains one of the following return codes:

Code Meaning

0 Processing is successful.

4 The input device type is not valid; no look-up value is returned.

28 The required input is not specified or is not valid.

Requesting function code 8 (return attributes)

Input: Set bit 8 in FLAGS to 1.

The input unit table structure is shown below.

Unit Table

Device Type

8

Figure 107. Requesting Function Code 7 (Convert Device Type to Look-up Value)

Unit Table

Look-up Value

8

Figure 108. Output from Function Code 7 (Convert Device Type to Look-up Value)

860 z/OS V2R2 MVS Authorized Assembler Services Guide

Output: The attribute area contains the following:

Byte Contents

0 Length of the attribute area (X'0A') This must be filled in prior to calling
the unit verification service.

1-2 Flags describing the unit name:
v Bit 0 on — unit name is an esoteric group name
v Bit 1 on — unit name is VIO-eligible
v Bit 2 on — unit name contains 3330V units
v Bit 3 on — unit name contains TP class devices
v Bits 4-7 are not used.

3 Number of device classes in the unit name

4-7 Number of generic device types in the unit name

8-9 Reserved

Register 15 contains one of the following return codes:

Code Meaning

0 The unit name was found; the attributes are returned.

4 The unit name was not found; no attributes are returned.

28 The required input is not specified or is not valid.

Requesting function code 9 (check units with no validity bit)
The check unit with no validity bit function is available through IEFAB4UV and
IEFGB4UV only.

Input: Set bit 9 in FLAGS to 1.

There is no other input associated with this function except the input for the check
units function. This function must be used in combination with the check units
function (code 1).

Output: See the output from the check units function.

The FLAG byte of the device number list is not altered; only the return code from
the check units function (code 1) is available to determine if any device numbers in
the device numbers list are not valid.

Unit Table

Attribute
Area

0

12

Attribute Area

X '0A'

0

0

0

0

0

2

4

6

8

10

Unit Name
(EBCDIC)

8

Figure 109. Requesting Function Code 8 (Return Attributes)

Appendix A. Using the unit verification service 861

Requesting function code 10 (specify subpool for returned
storage)
The specify subpool for returned storage function is available only through
IEFEB4UV.

Input: Set bit 10 in FLAGS to 1. This function is not valid alone and must be used
with either the return UCB addresses function (code 3) or the return unit name
function for a device class (code 11). The input unit table structure is shown in the
following figure.

Output: See the output from the function that this is invoked in combination
with.

The subpool field of the returned list contains the input subpool, and the returned
list resides in that subpool. No error checking of the subpool is performed. If the
subpool is not valid, the unit verification routine fails.

Requesting function code 11 (return unit names for a device
class)
The return unit names for a device class function is available only through
IEFEB4UV.

Input: Set bit 11 in FLAGS to 1.

The following figure shows the input unit table structure.

Output: The unit table contains the pointer to the names list as shown in the
following figure.

Unit Table

Sub-
pool

16

Figure 110. Requesting Function Code 10 (Specify Subpool for Returned Storage)

Unit Table

Device
Class

16

Figure 111. Requesting Function Code 11 (Return Unit Names for a Device Class)

862 z/OS V2R2 MVS Authorized Assembler Services Guide

For authorized callers, the subpool that the names list is returned in is the default
subpool 230. For unauthorized callers, the default subpool is 0. To change this
default, see the description for function code 10 (specify subpool for returned
storage). The caller must free the number of bytes in the length field from the
subpool before exiting.

Register 15 contains one of the following return codes:

Code Meaning

0 The pointer to the names list is stored in the unit table.

16 Storage was not available for the names list.

28 The required input is not specified or is not valid.

Requesting multiple functions - Examples
The following examples show the input to and output from multiple functions.
v Example 1 shows the multiple functions of codes 0 and 1.
v Example 2 shows the multiple functions of codes 3 and 10.
v Example 3 shows the multiple functions of codes 1 and 5.

Example 1 - Function codes 0 and 1

Input:

UnitTable

NamesList

Device
Class

4

16

Names List

Subpool Length

Number ofEntries

UnitName

UnitName

.

.

.

4

8

16

Figure 112. Output from Function Code 11 (Return Unit Names for a Device Class)

Appendix A. Using the unit verification service 863

Output:

Note: All input device numbers make up a single allocation group and are
associated with the esoteric unit name DASD.

Example 2 - Function codes 3 and 10

Input:

FLAGS

X 'C000

Unit Table

C 'DASD'

3

Device Number
List

8

12
Device Number List

C '300'

C '301'

C '302'

0

0

0

Figure 113. Input for Function Codes 0 and 1

Device Number List

C '300'

C '301'

C '302'

0

0

0

Register 15

0

Figure 114. Output from Function Codes 0 and 1

864 z/OS V2R2 MVS Authorized Assembler Services Guide

Output:

Note: The caller must be authorized to request subpool 252. The unit verification
service invoked must be IEFEB4UV because function code 10 is requested. The
caller must free the UCB pointer list before exiting.

Example 3 - Function codes 1 and 5

Input:

Output:

FLAGS

X '1020'
0

16
252

C 'New tape'

Unit Table

Figure 115. Input for Function Codes 3 and 10

Unit Table

C 'New tape'

UCB Pointer List

252

0

8

16

UCB Pointer List

252 28

5

F52800

F528E0

F529C0

F52AA0

F52B80

Register 15

0

Figure 116. Output from Function Codes 3 and 10

FLAGS

X'4400'
UnitTable

0

8

12

X '00098000'

4

DeviceNumber
List

DeviceNumberList

C '510'

C '511'

C '512'

C '00E' 0

0

0

0

Figure 117. Input for Function Codes 1 and 5

Appendix A. Using the unit verification service 865

Note: Device 00E did not belong to the unit name that was associated with the
input look-up value.

Device Number List

C '510'

C '511'

C '512'

C '00E' X '80'

0

0

0

Figure 118. Output from Function Codes 1 and 5

866 z/OS V2R2 MVS Authorized Assembler Services Guide

Appendix B. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the "Contact us" web page for z/OS (http://www.ibm.com/
systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out

© Copyright IBM Corp. 1988, 2016 867

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html

punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

868 z/OS V2R2 MVS Authorized Assembler Services Guide

default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix B. Accessibility 869

870 z/OS V2R2 MVS Authorized Assembler Services Guide

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1988, 2016 871

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

872 z/OS V2R2 MVS Authorized Assembler Services Guide

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This information is intended to help the customer to code macros that are available
to authorized assembler language programs.

This information primarily documents intended programming interfaces that allow
the customer to write programs to obtain services of z/OS.

This book also documents information that is NOT intended to be used as
programming interfaces of z/OS. This information is identified where it occurs,
either by an introductory statement to a chapter or section, or by the following
marking:

NOT Programming Interface Information

End NOT Programming Interface Information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
Trademark information (http://www.ibm.com/legal/copytrade.shtml).

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 873

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

874 z/OS V2R2 MVS Authorized Assembler Services Guide

Index

Special characters
*interruption

type 422

Numerics
070 abend 64
070 system completion code 220
702 abend 58

A
ABEND dump

compared to a Transaction dump 445
compared to an SVC dump 426
requested by a recovery routine 426,

445
ABEND macro

choosing to issue 339
invoking RTM 402
STEP parameter 368

access environment element 461
access method

queued 50
accessibility 867

contact IBM 867
features 867

address space
dumping through the SDUMPX

macro 430
obtain dispatchability data 93
swapping out 311

AMASPZAP service aid
using to modify IEAVTRML 413

AMODE (addressing mode)
assembler definition 14
value 14

answer area
for EXTRACT macro 50

APF (authorized program facility)
authorization 454
description 454
restricting load module access 454,

457
SVC routine restriction 455

application
tracing through component trace 1,

95
application resource

releasing through recovery 337
application trace

using the component trace service to
write 95

ARR (associated recovery routine)
using 369

ASCBXTCB 232
ASID parameter

for component trace 103
assembler programming language

call syntax 79

assistive technologies 867
asynchronous

exit routine
characteristics 473
register contents 470, 472

asynchronous dump 428
asynchronous exit routine 469

characteristics
SCHEDIRB macro 470

controlling when it runs
SCHEDIRB macro 470

directed IRB 470
execution 469, 474
initialize

CIRB macro 471
initializing an IRB for 469

CIRB macro 469
SCHEDIRB macro 469

initializing and schedule
SCHEDIRB macro 470

schedule
SCHEDIRB macro 469, 470
SCHEDXIT macro 469, 473

scheduling 469
ATTACH and ATTACHX macros

ASYNCH parameter 368
defining a recovery routine 342
ECB parameter 403
ESTAI parameter 342, 357
ETXR parameter 403
PURGE parameter 367
STAI parameter 342
TERM parameter 368

ATTACH macro
authorization 459
creating a new task 7

ATTACHX macro
creating a new task 7

authorization
APF (authorized program

facility) 454
assigning 458
code 454

assigned through JCL 458
assigned through SETCODE

control statement 458
default 458

command authorization service 464
results under various conditions 458
rules 459
to obtain and release storage from

subpools 226
authorization checking 461
authorized

library 455
authorized system logger

services
overview 793

authorized system logger services
overview 793

auxiliary storage 309

auxiliary storage manager
function 309

availability
increasing through recovery 337

B
BDAM data set

reserving 50
BLDL macro 17
BRANCH=SPECIAL option of PGSER

macro 309
buffer

for internal START command 144

C
CALLDISP macro 63

function 63
issued by a type 1 SVC 63
issued by a type 6 SVC 63
option 63

CALLRTM macro
ASID parameter 401
choosing to issue 339
DUMP parameter 401
DUMPOPT and DUMPOPX

parameters 401
invoking RTM 400
RETRY parameter 401
STEP parameter 401
TYPE=ABTERM parameter 400
TYPE=MEMTERM parameter 401
TYPE=SRBTERM parameter 401

captured UCB 526
cell pool services 224

creating 224
deleting 224
freeing 224
obtaining 224

central storage
freeing 309
sharing through IARVSERV

macro 317
check groups function of unit verification

service 849
check units function of unit verification

service 850
checkpoint/restart

restrictions 16
using 16

CIB (command input buffer)
address exact 9
counter 9
free 9
freeing 9, 10

CIRB macro
initialize IRB for asynchronous

exit 469
schedule asynchronous exit 471

© Copyright IBM Corp. 1988, 2016 875

class
VLF 261

cleanup
pause element 71

clock
comparator 479
failure 478
functioning 479
resetting 479

CMDAUTH macro 464
CML lock 38, 40

considerations 40
CMS lock 39, 40, 494
COFCREAT macro 269

with REPLACE parameter 270
COFDEFIN macro 266
COFIDENT macro 267
COFNOTIF macro 271
COFPURGE macro 272
COFREMOV macro 272
COFRETRI macro 268
COFVLFxx parmlib member 266
COM data area 9
command

issuing from a program 145
MODIFY command 8
prefix 149
START command 1
STOP command 8

command flooding 149
command resource name syntax 465
common storage 225
communication

ENF (event notification facility) 167
in a recovery environment 356
provided by recovery 338
summary 1
with a problem-state program 8

communications ECB 9
compare

double and swap 329
complete exit

system logger
environment 795
information passed to 795
inputs 796
IXGCONN service 794
programming 796

completing
a process 8

component trace
anchor 102
change the trace options 105
connect the external writer 109
control information 102, 103
CTE

creating 133
fields 134

CTRACE macro with DEFINE 111
CTRACE macro with DELETE 120
CTRACECS macro 116
CTRACEWR macro 116
defining the application 111

with an external writer 116
deleting the application 120
disconnect the external writer 110

component trace (continued)
display trace exit routine

coding 129
communications 131
entry specifications 131
environment 130
processing 130
programming considerations 131
return specifications 132

external writer
connect 109
disconnect 110
managing 116
start 109
stop 110
using 116

externalize trace data
request a dump 107
with the component trace external

writer 108
head level 113
ITTCTE mapping macro 133, 134
ITTTBWC mapping macro 116
managing the trace buffers

with an external writer 116
Managing trace buffer status 116
minops 100
multiple traces 104, 113

head level 113
illustration 115
sublevel traces 113

parmlib member 105
on TRACE CT operator

command 106
parmlib member on CTRACE

DEFINE 112
sequence of events

illustration 123
start the external writer 109
start the trace 105
start/stop exit routine

coding 120
communications 125
conditions determining when the

routine runs 124
entry specifications 127
environment 120
processing 121
programming considerations 123
return specifications 128

stop the external writer 110
stop the trace 105
sublevel traces 104, 113
trace activities 97
trace buffers

determine location 102
determine size 102
managing 116

trace buffers for an application
trace 102

trace entries
what information to include 101

trace entry
organizing variable data 134

trace points
where to place 101

tracing status supported 100

component trace (continued)
user-defined options

setting up 104
using to trace applications 95
what to include in trace entries 101
where to place trace points 101
Writing to DASD or Tape 108

component trace service
to trace applications 95

concatenated group
dynamically deallocating 543

CONFCHG macro
CANCEL option 510
NOTIFY option 510

configuration change exit routine
coding 510, 513

connect
to a log stream 798

contact
z/OS 867

contention
timing 47

control limit 547
dynamic allocation 547
for an allocated data set 547
SVC 99 547

control program extension 453
convert device type to look-up value

function of unit verification
service 850

convertible attribute 548
for dynamic allocation 548
parameters that can change 548

converting central to virtual address 326
coupling facility

system logger data on 790
CPF macro 149
CPOOL macro

function 224
CPU lock 39, 494

lock 39
cross memory

local lock 38
mode for POST 58
post 53
POST 58
services lock

CMS lock 40
requesting 41

cross-system sharing
VLF 262

CSA (common service area)
subpool 225

CSECTs in DAT-OFF nucleus
obtaining information 331
retrieving address and addressing

mode 332
retrieving name and entry point

address 332
CSVD002W 24
CSVDLPAU utility 22

example 22
output 23
return codes 23

CSVDYNEX 24
CSVDYNEX macro

how to use 479

876 z/OS V2R2 MVS Authorized Assembler Services Guide

CSVDYNL macro
using 18

CSVFETCH 27
CTE (component trace entry)

creating 133
fields 134
organizing variable data 134

CTncccxx parmlib member
for installation-supplied component

traces 105
CTRACE macro

defining an application to component
trace 111

deleting an application from
component trace 120

with the DEFINE parameter 112
CTRACECS macro 116
CTRACEWR macro 116
CVT

using 496
CVT (communications vector table)

mapping macro 62, 65
restrictions on caller 474
using 472, 473, 477

CVT0EF00 field 473
CVTEXP1 496
CVTOVER 229
CVTQTD00 field 479
CVTQTE00 field 477
CVTTPC field 474

D
DAE (dump analysis and elimination)

providing information through
recovery 351

suppressing SVC dumps by an
installation-provided program 432

suppressing Transaction dumps by an
installation-provided program 446

DALACODE text unit 662
DALBFALN text unit 678
DALBFTEK text unit 678
DALBLKLN text unit 647
DALBLKSZ text unit 679
DALBSLM text unit 670
DALBUFIN text unit 679
DALBUFL text unit 679
DALBUFMX text unit 679
DALBUFNO text unit 679
DALBUFOF text unit 680
DALBUFOU text unit 680
DALBUFRQ text unit 680
DALBUFSZ text unit 680
DALBURST text unit 659
DALCDISP text unit 647
DALCHARS text unit 659
DALCLOSE text unit 652
DALCNTL text unit 663
DALCNVRT text unit 691
DALCODE text unit 680
DALCOPYG text unit 659
DALCOPYS text unit 652
DALCPRI text unit 681
DALCYL text unit 647
DALDCBDD text unit 656
DALDCBDS text unit 656

DALDCCS text unit 670
DALDDNAM text unit 645
DALDEFER text unit 660
DALDEN text unit 681
DALDIAGN text unit 687
DALDIR text unit 648
DALDSNAM text unit 645
DALDSNT text unit 665
DALDSORG text unit 681
DALDSSEQ text unit 653
DALDUMMY text unit 654
DALEATT text unit 673
DALEROPT text unit 682
DALEXPDL text unit 661
DALEXPDT text unit 654
DALFCBAV text unit 654
DALFCBIM text unit 654
DALFCNT text unit 660
DALFDAT text unit 670
DALFFORM text unit 659
DALFRID text unit 688
DALFUNC text unit 687
DALGDGO specification

Key = 802E 675
DALGNCP text unit 682
DALINCHG text unit 695
DALINOUT text unit 653
DALINTVL text unit 682
DALKYC1 text unit 672
DALKYC2 text unit 672
DALKYL1 text unit 671
DALKYL2 text unit 671
DALKYLEN text unit 683
DALLABEL text unit 652
DALLGST text unit 670
DALLIKE 665
DALLIMCT text unit 683
DALLRECK text unit 688
DALLRECL text unit 683
DALMAXG 675
DALMEMBR text unit 646
DALMMOD text unit 660
DALMODE text unit 683
DALMTRC text unit 660
DALNCP text unit 683
DALNDISP text unit 647
DALOPTCD text unit 684
DALOUTLM text unit 652
DALOUTPT text unit 662
DALOVAFF text unit 661
DALPARAL text unit 651
DALPASPR text unit 653
DALPASSW text unit 691
DALPATH text unit 666
DALPCDS text unit 669
DALPCIR text unit 684
DALPCIS text unit 685
DALPERMA text unit 691
DALPMDE text unit 668
DALPNDS text unit 669
DALPOPT text unit 667
DALPRIME text unit 648
DALPRIVT text unit 649
DALPROT text unit 658
DALPRTSP text unit 685
DALQNAME text unit 655
DALRECFM text unit 685

DALRETPD text unit 654
DALRLS text unit 669
DALRLSE text unit 648
DALROUND text unit 649
DALRSRVF text unit 686
DALRSRVS text unit 686
DALRTCTK text unit 661
DALRTDDN text unit 691
DALRTDSN text unit 692
DALRTORG text unit 692
DALRTVOL text unit 694
DALSECND text unit 648
DALSEGM text unit 666
DALSFMNO text unit 652
DALSHOLD text unit 657
DALSMSHR text unit 662
DALSOWA text unit 686
DALSPFRM text unit 649
DALSPGNM text unit 651
DALSPI2 interval for spinning a SYSOUT

data set 673
DALSPIN text unit 665
DALSSATT text unit 694
DALSSNM text unit 657
DALSSPRM text unit 658
DALSSREQ text unit 693
DALSTACK text unit 686
DALSTATS text unit 646
DALSUSER text unit 656
DALSYML 674
DALSYSOU text unit 651
DALTERM text unit 655
DALTHRSH text unit 686
DALTRK text unit 647
DALTRTCH text unit 687
DALUASSR text unit 700
DALUCS text unit 655
DALUFOLD text unit 655
DALUNCNT text unit 651
DALUNIT text unit 650
DALUNQDS text unit 701
DALUSRID text unit 658
DALUVRFY text unit 656
DALVLCNT text unit 650
DALVLRDS text unit 650
DALVLSEQ text unit 649
DALVLSER text unit 649
DASD (direct access storage device)

allocation and management 309
reserving 46
shared 44

macros used 45
mounting and demounting 45

DASD-only log stream
system logger data on 790

DAT (dynamic address translation)
turned off 327
turned on 327

DAT-OFF index 330
DAT-OFF routine 327

linking 327
restrictions 330
writing 330

DAT-ON nucleus
obtaining information 331

data
sharing 44

Index 877

data area
for asynchronous exit routine 471

data integrity
VLF 264

data object 261, 275
VLF 259

data security 459
data set

eligible for VLF 262
finding the UCB address 50
private

VLF 262
data sharing with IARVSERV macro 317
data space

alternative to using subpool
storage 226

containing DREF storage 224
dumping referenced storage 430
sharing with IARVSERV macro 317

data-in-virtual object 275
processing

example 295
DATOFF macro

function 328
DCB

address 50
content 50

DCB attribute text unit 677
DCBDEBA field 50
DCCDDNAM text unit 710
DCCPERMC text unit 710
DDCDDNAM text unit 711
ddname allocation 548, 632
ddname allocation text unit 712
DDNDDNAM text unit 712
DDNRTDUM text unit 713
deadlock

preventing 40
DEB (data extent block)

using 50
DEBUCBA field 50
deleting

from a log stream 804
DEQ macro 87

function 42
device

bringing online 550
releasing 47
reserving 46
sharing 44
verification 849

device class
unit name 851

DIE (disabled interrupt exit)
restrictions on execution 477

DIE routine
characteristics 476
executing 477
exiting 476
recovery 479
register contents on entry 476

DINDDNAM text unit 715
DINDSNAM text unit 715
DINPATH text unit 721
DINRCNTL text unit 721
DINRDSNT text unit 724
DINRDSNV text unit 730

DINRELNO text unit 720
DINRFDAT text unit 728
DINRLPOS text unit 720
DINRMAXG text unit 730
DINRPATH text unit 725
DINRPCDS text unit 728
DINRPMDE text unit 727
DINRPNDS text unit 727
DINRPOPT text unit 726
DINRSEGM text unit 725
DINRSPI2 text unit 729
DINRSPIN text unit 725
DINRTATT text unit 719
DINRTCDP text unit 717
DINRTDDN text unit 716
DINRTDDX text unit 720
DINRTDSN text unit 716
DINRTLIM text unit 718
DINRTLST text unit 719
DINRTMEM text unit 716
DINRTNDP text unit 717
DINRTORG text unit 717
DINRTSTA text unit 716
DINRTTYP text unit 719
DINRTVOL text unit 720
DINSYML text unit 730
direct access storage device 44
directed IRB

asynchronous exit routine 470
disabled

lock 40
page fault 494

disabled reference (DREF) storage
abend using 224
definition 223
obtaining by using DSPSERV

macro 224
obtaining by using GETMAIN 223
obtaining by using GETMAIN

macro 224
obtaining by using STORAGE

macro 224
subpool 230
using 223

disabled/enabled state
for obtain 41
for release 41

disablement
MVS-recognized 39
valid 39

disconnecting
from a log stream 798

dispatcher 474
dispatching priority

for SRBs scheduled through
IEAMSCHD macro

client 209
current 209
enclave 209
global 209
local 209
preemptable 209

display trace exit routine
for component trace 129

DIV (data-in-virtual) service
programming example 295

DIV (data-in-virtual) service (continued)
restrictions

when assigning ID ownership
(TTOKEN) 281

when using IARVSERV
macro 325

when using RESET 291
when using SAVE 289

retain mode 287, 292, 293
services 277

access 281
map 284
reset 291
savelist 291
unaccess 294
unidentify 294
unmap 293

usage discussion 275
when to use data-in-virtual 275

DIV macro
sharing data in a window among

tasks 294
DOM macro

function 143
DRICURNT text unit 712
DRITCBAD text unit 712
dsname allocation processing 534

changing the parameters of an
existing allocation 538

checking for environmental
conflicts 535

criteria for using an existing
allocation 536, 537

required of the existing
allocation 537

required of the request 536
using a new allocation 539

dsname allocation text unit 642
dsname dynamic allocation

considerations 539
allocating with MOD status 540
cataloging a data set 540
exceeding control limit 541
GDG data set 541
requesting an in-use data set 540
retrieving data set organization 540
retrieving name and volume

information 540
retrieving volume information 541
specifying password 540
system generation of ddname 539
unavailable access methods 541
unavailable data set 541

DSPSERV macro
and data spaces 288
and DREF storage 224
services

save 289
use 279

dump
data set

identifying a secure 429
identifying specifically 429
using the default 429

processing phase
capture 426
write 426

878 z/OS V2R2 MVS Authorized Assembler Services Guide

dump (continued)
requesting in recovery 352
requesting on other systems in a

sysplex 433, 447
requesting through IEATDUMP

macro 444
requesting through SDUMPX

macro 425
scheduled 428
summary 425, 431, 444, 446
SVC 425
synchronous 427
Transaction 444
virtual storage 425

dump option
overriding default 431, 446

dump processing
branch-entry 427
capture phase 429
SVC-entry 427
write phase 429

DUNDDNAM text unit 705
DUNDSNAM text unit 705
DUNMEMBR text unit 705
DUNOVCLS text unit 707
DUNOVDSP text unit 705
DUNOVPDS text unit 709
DUNOVSHQ text unit 707
DUNOVSNH text unit 706
DUNOVSUS text unit 707
DUNOVUID text unit 707
DUNPATH text unit 709
DUNREMOV text unit 706
DUNSPIN text unit 709
DUNUNALC text unit 706
duration of fix 310
DYNALLOC macro

and SVC 99 parameter list 553
dynamic output example using 749
mapping macro

IEFDOKEY mapping macro 750
IEFZB4D0 mapping macro 752
IEFZB4D2 mapping macro 752

text unit parameter list 636
dynamic

exits 433
dynamic allocation 529

and SJF 759
avoiding an 05C abend 532
changes to the TIOT by dynamic

allocation 532
in addition to JCL 535
installation options 550
insulated DD attribute 549
JCL not available through dynamic

allocation 535
processing details by dsname 534
programming considerations 531,

532
serialization of resources 531
summary 4

dynamic allocation error reason
code 601

dynamic allocation functions 553
requesting 553
validating input 551

dynamic allocation information reason
code 597

dynamic allocation parameter list 553
structure 555

dynamic allocation request block 557
dynamic allocation request block

pointer 557
dynamic allocation return code 596

information reason code 597
dynamic allocation text pointer 564
dynamic allocation text unit 563
dynamic allocation text unit pointer

list 564
dynamic concatenation 544

characteristics 544
permanently concatenated

attribute 544
dynamic concatenation text unit 709
dynamic deconcatenation 545
dynamic deconcatenation text unit 711
dynamic exits services

how to use 479
dynamic I/O configuration change

detecting 515
requesting notification 509

dynamic information retrieval 545
kinds of information retrieved 545

dynamic information retrieval text
unit 713

dynamic LPA processing
listing contents 22
monitoring use of 18

dynamic output
and SJF 759
DD JCL statement 735
introduction 735
JES 735
OUTPUT JCL statement 735
relationship to dynamic

allocation 735
dynamic unallocation 541

changing parameters 543
of concatenated groups 543
processing considerations 541
removing in-use bit based on task

ID 547
dynamic unallocation processing 541
dynamic unallocation text unit 704
dynamical allocation text unit 636

E
ECB (event control block)

extended 57
not posted 312
posting 9
supplied with a dump request 430
target for cross memory post 54
using with page fix 312
using with the SDUMPX macro 428

ECB extension
content 56

ECSA (extended common service area)
subpool 225

EDT (eligible device table)
unit verification service

IEFAB4UV routine 849

EDT (eligible device table) (continued)
unit verification service (continued)

IEFEB4UV routine 849
IEFGB4UV routine 849

ELSQA (extended local system queue
area)

subpool 225
emergency

signal 137
emergency signal function

invoking 137
enabled

lock 40
enclaves

ENQ macro 43
latch manager 75

ENF (event notification facility)
description 167
event code summary 176
example 176
listen request 167
QMASK parameter 167
QUAL example 168, 169
QUAL parameter 167
user exit 171

entry specifications 173
environment 172
installation 172
processing 173
programming considerations 173
recovery 172
register 173

ENF event code 48
listen exit

writing 804
system logger

connect service 800
system logger application 797

ENQ macro 87
function 42

entry point
to routines in DAT-OFF nucleus 327

ERRET routine 53
error

diagnosing through a dump 425, 444
exit routine 421
recovering from software 335
recovery

for DIE routine 479
error reason code for dynamic

allocation 601
ESPIE macro 421

AMODE of caller 421
ESQA (extended system queue area)

subpool 225
ESTAE

recovery for SVCs 496
ESTAE and ESTAEX macros

0 parameter 342, 366
ASYNCH parameter 368
CT parameter 342, 403
defining a recovery routine 342
OV parameter 366, 403
PARAM parameter 357
PURGE parameter 367
RECORD parameter 351
TERM parameter 368

Index 879

ESTAE and ESTAEX macros (continued)
TOKEN parameter 366
XCTL parameter 366

ESTAE and ESTAEX routine
definition 342

ESTAE-type recovery routine (extended
specify task abnormal exit)

choosing 341
ESTAI routine

definition 342
ETCRE macro

defining an ARR 342, 369
ETDEF macro

ARR parameter 342, 369
defining an ARR 342, 369

ETDES macro
ARR no longer defined 343

EUT (enabled unlocked task)
protecting with an ESTAE-type

recovery routine 341
protecting with an FRR 343

EUT FRRs
defining 343
description 343

event
completion 312
indicating completion 64
waiting for completion 55, 61

event control block 428
EVENTS macro 55
EVENTS table 55
exclusive OR 329
EXECUTE form of a macro 17
exit

for MVS router 460
exit routine 469

asynchronous 469
deleting 56
error 421
identifying 56
POST 55
POST interface 57
SPIE exit routine 421
SPIE/ESPIE exit routine 422
summary 3
timer disabled 474

exit routine, in dynamic exits services
associating with an exit 488
defining 482
definition 481
deleting 489

exit, in dynamic exits services
definition 480
recovery for FASTPATH

processing 488
removing definition 484

explicit
purging 312

extended MCS console
activating 153
attributes 153
deactivating 163
definition 151
issuing commands 158
receiving messages and command

responses 158
switching 163

external security product 462
checking authorization 461
defining a resource 461
identifying a user 461
requirements 462
return and reason codes 463

external writer
for component trace 103, 116
with component trace 108

EXTRACT macro
example 10
function 8, 46
using 46

F
fast path

fixing virtual storage 309
freeing virtual storage 309

FASTPATH processing
definition 483

FBA services 835
FESTAE macro

0,WRKREG parameter 343
defining a recovery routine 343
EXITADR parameter 343
PARAM parameter 357
PURGE parameter 367
RBFEPARM parameter area 400
RECORD parameter 351
TERM parameter 368
using 400

FESTAE routine
definition 343

fetch protection
of PSA 453

FIX option of PGSER macro 310
fixed frames

responsibility for freeing 312
for dsname allocation

convertible attribute -
DALCNVRT 691

non-JCL 691, 692, 693, 694, 700, 701
password specification -

DALPASSW 691
permanently allocated attribute -

DALPERMA 691
return ddname - DALRTDDN 691
return dsname - DALRTDSN 692
return DSORG - DALRTORG 692
return volume serial -

DALRTVOL 694
subsystem request - DALSSATT 694
subsystem request - DALSSREQ 693
subsystem request - DALUASSR 700
subsystem request -

DALUNQDS 701
FREE option of PGSER macro 310
FREEMAIN macro

BRANCH parameter 223
function 222

FREEVOL specification 673
FRR (functional recovery routine)

choosing 343
recovery for SVCs 496

G
GDGORDER specification

Return
Key = 802E 731

general cross memory services lock 40
GETDSAB macro

function 47
using 47

GETMAIN macro
BRANCH parameter 223
comparison with STORAGE 222
function 222

global
lock 38
resource serialization 47

global resource serialization 87
global resource serialization latch

manager
callable services

using 78
introduction 72
recovery 76

GQSCAN macro
function 87
GRS effects scope 92
result 90, 92
TOKEN parameter 88

GRS
affects scope on GQSCAN macro 92

H
hardcopy message set

receiving 161
hierarchy

of locks 40
high private storage 225
home address space

locking 38

I
I/O configuration change

detecting 515
requesting notification 509

IARQD (Page Status Interface Routine)
IARQDSPD 248
IARQDUMP 248

IARR2V macro
ASID parameter 326
converting a central storage address to

virtual 326
IARVSERV sharing effectiveness 326
NUMVALID parameter 326
NUMVIEW parameter 326
RSA parameter 326
STOKEN parameter 326
VSA parameter 326
WORKREG parameter 326

IARVSERV macro
CHANGEACCESS parameter 321
copy-on-write 323

CVT mapping macro hardware
check 323

data sharing 317
diagnostics 325

880 z/OS V2R2 MVS Authorized Assembler Services Guide

IARVSERV macro (continued)
example of use 323
IARVRL mapping macro

required fields 322
page limit for sharing 319
page-protect limitation 318
parameters description 322
PGSER protection 325
RANGLIST parameter 322
READONLY parameter 323
restrictions using DIV (data-in-virtual)

service 325
restrictions using DIV (data-in-virtual)

services 325
RETAIN parameter 323
SHARE parameter 321
SHAREDWRITE parameter 323
sharing effectiveness 326
SHRDATA IPCS subcommand 325
TARGET_VIEW parameter 323
types of views 320
UNIQUEWRITE parameter 323

ICHRFR00 module 462
IEAAPF00 member 455
IEAAPFxx parmlib member 456
IEAAPP00 parmlib member 457
IEALSQRY macro

tracking entries in the linkage
stack 396

IEAMRMF3 macro
obtain dispatchability data for an

address space 93
IEAMSCHD macro 204
IEANTCR callable service 301
IEANTDL callable service 301
IEANTRT callable service 301
IEANUC01 497
IEATDUMP macro 444

defining dump content 446
identifying a data set for the

dump 445
providing a symptom record 446
requesting a summary dump 444
requesting a Transaction dump 444
suppressing duplicate dumps 446
understanding the type of dump

produced 445
understanding the type of entry 445
using in a recovery environment 445

IEAV64U1 entry point 327
IEAV64U2 entry point 327
IEAV64U3 entry point 327
IEAV64U4 entry point 327
IEAVETEF module 781

system trace filter module 781
IEAVETFC formatter

module for USRn TTE formatter 781
IEAVETPB routine

print routine for the system trace
output buffer 783

IEAVEUR1 entry point 327
IEAVEUR2 entry point 327
IEAVEUR3 entry point 327
IEAVEUR4 entry point 327
IEAVTRML CSECT

list of resource managers 414
using to add a resource manager 413

IEAVVTPC mapping macro 474
IEECMDS macro 149
IEEMCF macro 518
IEEZB889 mapping macro 149
IEFAB4UV routine

addressing mode 851
authorized caller 851
caller's function 851
key 851
mode 851

IEFDDSRV macro 518
IEFEB4UV routine

authorized caller 851
caller's function 851
key 851
mode 851
problem program caller 851

IEFGB4UV routine 849
authorized caller 851
caller's function 851
key 851
mode 851

IEFQMREQ macro 253
IEFZB4D0 mapping macro 556
IEFZB4D2 mapping macro 556
IEZCOM mapping macro 9
IEZMGCR mapping macro 144
IGC0025E 498
IGC00nnn 494
IHADSD mapping macro 93
IHAPSA mapping macro 63, 65
IHATQE mapping macro 474
IHATROB mapping macro

formatting a USRn trace entry 781,
782

in-use attribute 546
INDCDS index 327

register contents 329
INDCDS64 index 327

register contents 329
index

used with DATOFF 327
INDMVCL0 index 327

register contents 328
INDMVCL64 index 327

register contents 328
INDMVCLK index 327

register contents 328
INDMVCLK64 index 327

register contents 328
INDUSR1 index 327
INDUSR2 index 327
INDUSR3 index 327
INDUSR4 index 327
INDUSR641 index 327
INDUSR642 index 327
INDUSR643 index 327
INDUSR644 index 327
INDXC0 index 327

register contents 329
INDXC64 index 327

register contents 329
information reason code for dynamic

allocation 597
input

to paging services 313
to set DIE 474

installation input validation routine for
SVC 99 551

installation integrity
responsibility 449

installation options for DYNALLOC 550
installation-written input validation

routine 551
mounting volumes and bringing

devices online 550
installation options for SVC 99

using default values 550
integrity

eliminating a potential exposure 449
exposure

control program extension 453
resource identification 451
sensitive system data 453
SVC routine calling another SVC

routine 452
user-supplied address 450

system 449
interlock 47

example 48
preventing 47
task 48

interprocessor communication
function 137

interrupt
synchronous 61

interruption
program 421

interval cancellation 478, 479
IOCINFO macro 515
IOS fixed block architecture services 835
IOSCAPF macro 527
IOSCAPU macro 527
IOSCDR macro 516
IOSCMXR macro 505
IOSFBA 835
IOSINFO macro 526
IOSPTHV macro 518
IOSUPFR macro 505
IPOSMPE 497
IQE (interrupt queue element)

function 473
in 24-bit storage 473
in 31-bit storage 473
initialization 473

IQEIRB field 471, 473
IQEPARAM field 471, 473
IQETCB field 471, 473
IRB (interrupt request block)

address 471
initialization 471

ISGENQ macro 87
function 42

ISGLCRT callable service
using 79

ISGLOBT callable service
using 82

ISGLPRG callable service
using 84

ISGLREL callable service
using 83

ISGQUERY macro 87
ITRFDEFU formatter 781

Index 881

ITRFDEFU formatter (continued)
default formatter of trace table

entries 781
ITTCTE mapping macro 133, 134
ITTTBWC mapping macro 116
IXGCONN service

complete exit 794
environment 795
information passed to 795
inputs 796
programming 796

connecting to and disconnection from
a log stream 798

ENF event code 48 and 800
resource manager

connecting as 799
using ENF event 48 with 800

resource manager exit 800
IXGDELET service

and resource manager exit
processing 804

deleting data from a log stream 804

J
JES consideration 530
JES3 560

class 2 reason code from SVC 99 601
notes on dynamic allocation 560

job entry subsystem
and dynamic allocation 531

JOBNAME parameter
for component trace 103

K
keyboard

navigation 867
PF keys 867
shortcut keys 867

L
label line

embedding in a message 139
latch

obtaining 82
purging 84
releasing 83

latch set
creating 79

Latch_Create service
using 79

Latch_Obtain service
using 82

Latch_Purge service
using 84

Latch_Release service
using 83

libraries
program 48

library
concatenation of authorized and

unauthorized 455
installation authorized 455
SYS1.LINKLIB 455

library (continued)
SYS1.LPALIB 455
SYS1.SVCLIB 455

linear data set
creating 276

link pack area 495
linkage stack

at time of retry 395
considerations for ESTAE-type

recovery routines 367
LIST form of a macro 17
LLA directory

refreshing 17
updating 17

LLACOPY macro 17
LNKLST concatenation

changing 18
LNKLST set

definition 18
LOAD macro

function 14
load module

restricting access 454, 457
LOADWAIT macro

used to issue a wait state
message 140

local
level lock

obtaining more than one 41
lock 38, 40, 474
lockword 39

LOCAL lock 40, 41
event completion 55

locating address with GETDSAB macro
example 51

lock 34
categories 38
characteristics 39
conditionally requested 40
CPU lock disablement 39
enabled 40
global 38
hierarchy 40
in MVS 40
local 38
locking technique 38
obtaining 41
obtaining more than one local 41
releasing 41
shared/exclusive 39
spin 39
summary 39
suspend 39, 477
suspend lock 41
testing 41
types 39
unconditionally requested 40

locking
conventions

for SVCs 494
lockword

CPU lockword 39
local 39

log data
on DASD log data sets 790

log data sets 790
allocation 790

log stream 788
connection to

IXGCONN service 798
definition 787
deleting data from

IXGDELET service 804
disconnection from

IXGCONN service 798
illustration 787

LONG=Y option
of fix function 310

look-up value for the EDT 849, 850
defined 850
obtaining 850

low private storage 225
LPA

how to list modules 22
LSQA (local system queue area)

subpool 225

M
macro

EXECUTE form 17
LIST form 17
used with shared DASD 45

mainline routine
definition in a recovery

environment 340
major name

VLF 261
mapping macro

CVT 62, 220
IEAVVTPC mapping macro 474
IEEZB889 149
IEZCOM mapping macro 9
IEZMGCR 144
IHAPSA mapping macro 63, 65
IHATQE mapping macro 474

MCS console
activating 153

MCSOPER macro 151
MCSOPMSG macro 157
MDB 158

contents 160
definition 159

message
deleting already written 143
identifying for deletion 143
identifying job 138
identifying system 138
issuing a wait state 140
multiple line

embedding label line 139
queuing 158
receiving 158
retrieving 158
routing 138
storing 157
writing 137

MGCR macro
difference from MGCRE macro 145
example 145
function 143
setting up a buffer 145
used to issue an internal START

command 143

882 z/OS V2R2 MVS Authorized Assembler Services Guide

MGCRE macro 145
difference from MGCR macro 145

MGCRPL data area 144
MIHQUERY macro

current MIH time interval 516
minor name

VLF 261
mode

addressing 13
for asynchronous exit 472
of set DIE caller 474
residency 13

MODESET macro 467
inline code 467
keys that you can set 467
SVC form 467

MODIFY command 8
modifying the SVC table at execution

time 498
module

re-entrant 17
modules

listing LPA 22
move

character long in user key 328
move character long instruction 328
movement of virtual storage page 309
multiple-event wait 495
must-complete function

characteristics 43
MVCL function 328
MVS I/O configuration token

description 515
detecting I/O configuration

changes 515
MVS router 460

exit 460

N
name/token callable service

primary level 303
sample use 306
system level 304

persist option 305
using to share application data 301

name/token pair
creating 301
deleting 301
determining which level to use 302
determining which to use 301
retrieving 301

naming conventions
for SVC routines 494

navigation
keyboard 867

non-JCL dynamic allocation
function 689

for dsname allocation
non-JCL 689

non-pageable storage 309
non-PDS class

VLF 261
non-preemptable SVC routines 492
non-swappable address space 41

not-in-use attribute
removing through dynamic

unallocation 547
SVC 99 547

Notices 871
nucleus 327

DAT-OFF 327
linking to routines in DAT-OFF 327
summary 3

NUCLKUP macro
function 331

NUCLSTxx 332

O
object

data-in-virtual 275
operator message

writing 137
operator parameters (OPERPARMs) 153
OUTADD macro

using 735
OUTDEL macro

DD JCL statement 736
key

definition 736
equivalent JCL 738
similarities in dynamic

allocation 748
mapping macro

IEFDOKEY mapping macro 738
IEFDOTUM mapping macro 737

OUTADD macro 735
output descriptor

creating 736
default 747
definition 736
deleting 746
omitting 747
size 746
system-generated name 736

OUTPUT JCL statement 736
programming example 749
relationship to dynamic

allocation 747
relationship to job step 736
text unit

field 736
use with checkpoint/restart 736
using 735

OUTDES statement
considerations for use 767
syntax 768

output descriptor
validating 759

ownership
pause element 71

P
page fault 422

avoiding 476
page fix

reversing 312
page free

using ECB 312

page services
branch entry

cross memory mode 314
non-cross memory mode 315

paging services
completion considerations 312
for storage 309
input 313

parameter list for dynamic
allocation 553

DSECT S99RB 557, 565
DSECT S99RBP 557
mapping macro 556
notes on structure 563
request block 557, 565
request block pointer 557
text pointer 564
text unit 563

parmlib member
on CTRACE macro 112

password
protection 449

pause
transfer service 66

pause element
work unit 66

pause, release, and transfer
synchronizing 65

PC instruction
activating recovery 342

PC routine
stacking

activating recovery 342
PCLINK macro

used in checkpoint/restart 16
PDS class

VLF 261, 262
percolate

definition in a recovery
environment 345

permanently allocated attribute 548
changing 548

permanently concatenated attribute 544
PGFIX macro

function 309
PGFIXA macro

function 309
PGFREE macro

function 309
PGFREEA macro

function 309
PGLOAD macro

function 309
PGOUT macro

function 309
PGRLSE macro

function 309
PGSER macro

BRANCH=SPECIAL option 311, 312
FIX option 310, 312
FREE option 310
function 309
page protection with IARVSERV

macro 325
pin token 506

Index 883

planning
system logger services

writing an ENF event 48 listen
exit 804

PLPA (pageable link pack area)
modules located 455

POST
702 abend 58
branch entry points and function 59
cross memory mode 58
entry point 58
exit function 55
exit routine 55
input for branch entry 59
interface with exit routine 57
output for branch entry 60
re-entry 58
save area recursion 58
service routine

branch entry 58
POST macro

bypassing 54
function 53

prefix
command 149

preparing for
system logger services

writing an ENF event 48 listen
exit 804

PRESET parameter
of CTncccxx parmlib member 106

primary address space
and CML lock 41

problem-state program 467
process

completion 8
processor

lock 40
protection key 467

processor storage
function 309

processor storage management 3
profile 462

in-storage 459
program

libraries 48
management 13

program availability
increasing through recovery 337

program interruption
processing 421

program interruptions
processing

summary 3
program management 1
programming considerations for SVC

routines 492
PROGxx parmlib member 456
PSA (prefixed save area)

fetch protection 453
PSAAOLD field

and locking 41
PSATOLD 232
PSL (page service list)

contents 313
PSW (program status word)

changing a field 467

PURGEDQ macro
function 211

Q
QEDIT macro

establishing addressability 9
example 10

queued access method
finding the UCB address 50

R
RACF (Resource Access Control Facility)

defining a resource 461
function 459
identifying a RACF user 461

RACROUTE macro 461
building in-storage profile 462
checking authorization 461
interface to router 460
REQUEST=AUDIT parameter 462
REQUEST=AUTH parameter 461
REQUEST=DEFINE parameter 461
REQUEST=DIRAUTH parameter 462
REQUEST=EXTRACT parameter 462
REQUEST=FASTAUTH

parameter 461
REQUEST=LIST parameter 462
REQUEST=VERIFY parameter 461
REQUEST=VERIFYX parameter 461

range list entry 322
RB (request block)

considerations for ESTAE-type
recovery routines 365

relationship to ESTAE-type recovery
routines 342

RBEP field 472
RBFEPARM parameter area 400
RBIQETP field 472
RBNEXAV field 472
RBOPSW field 472
RBPPSAV1 field 472
RBSIZE field 472
RBSTAB field 472
re-entrant module

using 17
receiving buffer count - DALBUFIN 670
recovery 335, 419

ABEND dump
requesting 352

ABEND macro
choosing to issue 339
invoking RTM 402
STEP parameter 368

activated
state of recovery routine 339

advanced topics 399
advantages of providing 337
AMODE

ESTAE-type recovery routine 383
FRR 390
retry from an ESTAE-type recovery

routine 386
retry from an FRR 395

recovery (continued)
ARR

activated 342, 343
choosing 342
deactivated 342, 343
defined 342, 343
no longer defined 342, 343
using 369

ASC mode
ESTAE-type recovery routine 383
FRR 391
retry from an ESTAE-type recovery

routine 386
retry from an FRR 395

ATTACH and ATTACHX macros
ASYNCH parameter 368
ECB parameter 403
ESTAI parameter 342, 357
ETXR parameter 403
PURGE parameter 367
STAI parameter 342
TERM parameter 368

attached task 342
authorization

ESTAE-type recovery routine 382
FRR 389
retry from an ESTAE-type recovery

routine 385
retry from an FRR 394

availability
increasing 337

AX
ESTAE-type recovery routine 383
FRR 391
retry from an ESTAE-type recovery

routine 387
retry from an FRR 395

CALLRTM macro
ASID parameter 401
choosing to issue 339
DUMP parameter 401
DUMPOPT and DUMPOPX

parameters 401
invoking RTM 400
RETRY parameter 401
STEP parameter 401
TYPE=ABTERM parameter 400
TYPE=MEMTERM parameter 401
TYPE=SRBTERM parameter 401

communication
between processes 338
means available to recovery

routines 356
parameter area 341, 356
registers 356
SDWA 348, 356
SETRP macro 348

concepts 336
condition of the linkage stack

ESTAE-type recovery routine 383
FRR 391
retry from an ESTAE-type recovery

routine 387
retry from an FRR 395

correcting errors 352
cross memory mode

ESTAE-type recovery routine 383

884 z/OS V2R2 MVS Authorized Assembler Services Guide

recovery (continued)
cross memory mode (continued)

FRR 390
retry from an ESTAE-type recovery

routine 386
retry from an FRR 394

DAE
providing information 351

deactivated
state of recovery routine 340

deciding whether to provide 337
defined

state of recovery routine 339
designing into your program 335
disabled program 343
dispatchable unit mode

ESTAE-type recovery routine 382
FRR 390
retry from an ESTAE-type recovery

routine 386
retry from an FRR 394

DU-AL
ESTAE-type recovery routine 383
FRR 391
retry from an ESTAE-type recovery

routine 387
retry from an FRR 395

dump
ABEND dump 352
checking for previous 352
requesting 352
SVC dump 352

EAX
ESTAE-type recovery routine 384
FRR 391
retry from an ESTAE-type recovery

routine 387
retry from an FRR 395

environment
ESTAE-type recovery routine 382
factors other than register

contents 381
FRR 389
register contents 373
retry from an ESTAE-type recovery

routine 384
retry from an FRR 393
STAE and STAI routines 416
summary for ESTAE-type recovery

routine and its retry routine 388
summary for FRR 391
understanding 373

errors 338
examples 338

ESTAE and ESTAEX macros
0 parameter 342, 366
ASYNCH parameter 368
CT parameter 342, 403
defining a recovery routine 342
OV parameter 366, 403
PARAM parameter 357
PURGE parameter 367
RECORD parameter 351
TERM parameter 368
TOKEN parameter 366
XCTL parameter 366

recovery (continued)
ESTAE and ESTAEX routine

activated 342
deactivated 342
defined 342
definition 342
no longer defined 342

ESTAE-type recovery routine
additional considerations 368
choosing 341
linkage stack considerations 367
outstanding I/Os 367
RB considerations 365
RB relationship 342
return codes 377
special considerations 365

ESTAI routine
activated 342
deactivated 342
defined 342
definition 342
no longer defined 342
rules for retry RB 366

ETCRE macro
defining an ARR 342, 369

ETDEF macro
ARR parameter 369
defining an ARR 342, 369

ETDES macro
ARR no longer defined 343

EUT
protecting with an ESTAE-type

recovery routine 341
protecting with an FRR 343

example
coded 397
mainline routine with one recovery

routine 345
mainline routine with several

recovery routines 347
routing control to recovery

routines 405
FESTAE macro

0,WRKREG parameter 343
defining a recovery routine 343
EXITADR parameter 343
PARAM parameter 357
PURGE parameter 367
RBFEPARM parameter area 400
RECORD parameter 351
TERM parameter 368
using 400

FESTAE routine
activated 343
deactivated 343
defined 343
definition 343
no longer defined 343

footprints 350, 357
from software errors 335
FRR

activated 343
choosing 343
deactivated 343
defined 343
defining from an ESTAE-type

recovery routine 409

recovery (continued)
FRR (continued)

lock status 371
no longer defined 343
protecting disabled, locked, or

SRB-mode programs 343
protecting EUTs 343
releasing locks 371
running in a restricted

environment 392
special considerations 371
stack 371
suspended 393

FRR stack 371
function at address space

termination 412
general concepts 336
IEALSQRY macro 396
in control

state of recovery routine 339
interrupt status

ESTAE-type recovery routine 383
FRR 391
retry from an ESTAE-type recovery

routine 387
retry from an FRR 395

lock status for FRRs 371
locked program 343
locks

ESTAE-type recovery routine 383
FRR 391
retry from an ESTAE-type recovery

routine 387
retry from an FRR 395

mainline routine
definition 340

minimal processor overhead 343, 400
minimizing errors 352
multiple recovery routines 403
MVS-provided 337
no longer defined

state of recovery routine 340
no longer in control

state of recovery routine 339
not providing 338
outstanding I/O

restoring quiesced restorable I/O
operations 367

outstanding I/Os
controlling 367

parameter area
accessing 356, 358
checking the contents 350
contents 356
footprints 350, 357
passing 341, 356, 357
RBFEPARM 400
setting up 356

PC instruction
activating recovery 342

PC routine
stacking 342

percolate
compared with retry 353
definition 345
ESTAE-type recovery routine 408
ESTAI routine 408

Index 885

recovery (continued)
percolate (continued)

FRR 407
same unit of work 407
SRB-to-task 408

program availability
increasing 337

program mask
ESTAE-type recovery routine 383
FRR 391
retry from an ESTAE-type recovery

routine 387
retry from an FRR 395

quiesced restorable I/O operation
restoring 367

recording in the logrec data set 351
recovery routine

choosing 341
definition 340
nested 409
objectives 348
options 344
order of control 345
percolating 355
providing 335
providing recovery for a recovery

routine 409
retrying 353
states 339
summary of states 344
types 341
writing 347

recursion
avoiding 350
definition 350

register contents 373
entry to a recovery routine 374
entry to a retry routine 377
resource manager 413
restoring 354
retry from an ESTAE-type recovery

routine 377
retry from an FRR 380
return from a recovery

routine 377
STAE or STAI retry routines 418
STAE routine 416
summary of where to find

information 374
releasing locks in FRRs 371
RESMGR macro

adding a resource manager at
IPL 413

adding or deleting a resource
manager dynamically 412

PARAM parameter 414
using 412

resource manager
adding 412
adding at IPL 413
adding or deleting

dynamically 412
AMASPZAP service aid 413
cleaning up resources 410
definition 341
function at task termination 412
IEAVTRML CSECT 413, 414

recovery (continued)
resource manager (continued)

installation-written 411
processing sequence 414
RMPL 413
using 410

restricted environment
requesting for FRRs 392

retry
compared with percolate 353
definition 345

retry point
definition 341

retry routine
definition 341
description 354

routines in a recovery environment
definition 340
interaction 345
mainline routine 340
recovery routine 340
resource manager 341
retry routine 341

RTM 335
invoking 400

SDWA
accessing 360
accessing the SDWARC1

DSECT 361
checking s 350
directly manipulating fields 351
freeing 354
IHASDWA mapping macro 360
recording in the logrec data

set 351, 360
relationship with ESTAE-type

recovery routines 348
relationship with FRRs 348
summary of important fields 361
updating 348, 360
updating through SETRP

macro 351
updating through VRADATA

macro 351
using 360

SDWA storage key
ESTAE-type recovery routine 382
FRR 390
retry from an ESTAE-type recovery

routine 386
retry from an FRR 394

serviceability data
providing 338
saving 351
updating the SDWA 351

SETFRR macro
defining an FRR 343
EUT=YES parameter 343
MODE parameter 391
MODE=FULLXM parameter 390
MODE=HOME parameter 390
MODE=LOCAL parameter 392
MODE=PRIMARY parameter 390
PARMAD parameter 358

SETRP macro
communicating recovery options to

the system 360

recovery (continued)
SETRP macro (continued)

COMPCOD parameter 361
DUMP parameter 352
FRELOCK parameter 372
FRESDWA parameter 354, 378
FRLKRTY parameter 372
indicating percolation 355
indicating retry 354
RC parameter 354, 355
REASON parameter 361
RECORD parameter 351
RECPARM parameter 351
REMREC parameter 355
RETADDR parameter 354
RETREGS parameter 354, 377
RETRY parameter 394
SERIAL parameter 408
supplying a retry address 354
updating the SDWA 348, 360

SRB-mode program 343
SRB-to-task percolation

definition 408
serialization 408

stacking PC routine 342
STAE macro

0 parameter 342
CT parameter 342
defining a recovery routine 342

STAE retry routine 417
STAE routine

return codes 416
using 415
work area 416

STAI retry routine 417
STAI routine

return codes 416
using 415
work area 416

state of recovery routine
activated 339
deactivated 340
defined 339
in control 339
no longer defined 340
no longer in control 339

summary of providing 3
SVC dump

requesting 352
SVC routine

types 2, 3, and 4 343
task 342
validity checking of user

parameters 338
VLF 264
VRADATA macro

updating the SDWA variable
recording area 351

writing recovery routines 347
checking for the SDWA 349
checking s in the SDWA 350
checking the parameter area 350
comparison of retry and

percolate 353
correcting or minimizing

errors 352

886 z/OS V2R2 MVS Authorized Assembler Services Guide

recovery (continued)
writing recovery routines (continued)

determining if the recovery routine
can retry 353

determining the first recovery
routine to get control 350

determining why the routine was
entered 350

establishing addressability to the
parameter area 349

locating the parameter area 350
providing information for

DAE 351
requesting a dump 352
saving serviceability data 351
saving the return address to the

system 349
XCTL and XCTLX macros

relationship with ESTAE-type
recovery routines 366

recursion
avoiding in recovery 350
definition in recovery 350

reenterable SVCs 493
refreshable SVCs 494
region

V=R 248
register

upon entry to DIE routine 476
register content

register content 523
registers

contents for SVC routines 495
saving and restoring 16

RELEASE option of fix function 310
RELEASE option of free function 310
request block

resumption 61
suspension 61

requesting
text unit for parameter list 636

RESERVE macro 87
finding the UCB address 48
function 46

reset must-complete 43
residency mode 13
RESMGR macro

adding a resource manager at
IPL 413

adding or deleting a resource manager
dynamically 412

PARAM parameter 414
using 412

resource
cleaning up 335
collecting information 87
profile 461, 462
releasing through recovery 337
scope 87

resource manager
and delete requests 804
compared with a recovery

routine 335
connecting as 799
exit

IXGCONN service 800
using with ENF event code 48 800

resource manager termination routine
SRB field containing the address 211

resource queue
extracting information 87

response time
transaction 93

restart
with RESERVE macro 46

restrictions
for DAT-OFF routine 330

RESUME macro
ASYNC option 64
caller in SRB mode 64
function 64
issued in cross memory mode 64
MODE option 64
serializing SRB processing 216

retry
definition in recovery

environment 345
retry point

definition 341
retry routine

definition 341
ensure correct level of the linkage

stack 395
return attributes function of unit

verification service 850
return code from dynamic allocation 596
return group ID function of unit

verification service 850
return look-up value function of unit

verification service 850
return UCB addresses function of unit

verification service 850
return unit name function of unit

verification service 850
returned storage

specify subpool 851
RIB (resource information block)

used with GQSCAN macro 88
RMF (Resource Measurement Facility)

transaction activity report 93
used to report SRM data 93
workload activity report 93

RMODE (residency mode) 13
assembler definition 14
value 14

RMPL (resource manager parameter list)
description 413

RMTR (resource manager termination
routine)

interface 213
specifying the address 212

router
MVS 460

router exit 460
RQE (reply queue element) 472
RTM (recovery termination manager)

MVS component that handles
recovery 335

S
S99ERSN reason code value 570
S99INFO field 626
SAF (system authorization facility) 459

SAF (system authorization facility)
(continued)

description 460
external security product 462

save area
POST routine 58

SCHEDIRB macro
asynchronous exit routine

characteristics 470
initialize and schedule asynchronous

exit
recommended interface 470

initialize IRB for asynchronous
exit 469

schedule asynchronous exit 469, 470
SCHEDULE macro

function 210
scheduled dump 427
scheduler JCL facility

environment
freeing 766

scheduler work area
access 253
description 253
summary 2

SCHEDXIT macro
function 473
restrictions on caller 474
schedule asynchronous exit 469, 473

scope
ALL parameter value on GQSCAN

macro 90
GLOBAL parameter value on

GQSCAN macro 92
LOCAL parameter value on GQSCAN

macro 92
on GQSCAN macro

as affected by GRS 92
STEP parameter value on GQSCAN

macro 87, 90
SYSTEM parameter value on

GQSCAN macro 87, 90
SYSTEMS parameter value on

GQSCAN macro 87, 90
SDUMP and SDUMPX macros

requesting an SVC dump in
recovery 352

SDUMP macro 425
SDUMPX macro 425

compared to SDUMP macro
access register mode 425
dump processing phase 426
dumping a data space 425
dumping XCF information 425

defining dump content 430
address space 430
cross-memory mode 430
referenced storage of a data

space 430
subpool storage 430

defining dump contents
list of address spaces 430

designing a program to handle a
scheduled dump 428

designing a program to handle a
synchronous dump 428

Index 887

SDUMPX macro (continued)
dump processing

capture phase 426
determining the type of entry 427
write phase 426

ECB parameter 428
identifying a data set for the

dump 429
providing a symptom record 432
requesting a summary dump 425
SRB parameter 428
suppressing duplicate dumps 432
understanding the type of dump

produced 427
understanding the type of entry 427
using in a recovery environment 426

SDWA (system diagnostic work area)
SDWAARER field 362
SDWAARSV field 363
SDWACID field 351, 364
SDWACLUP bit 353, 364, 393
SDWACMPC field 350, 362
SDWACOMU field 364, 409
SDWACRC field 350, 362
SDWAEAS bit 352, 364
SDWAEC1 field 362
SDWAEC2 field 362
SDWAG64 field 365
SDWAGRSV field 362
SDWAINTF bit 363
SDWALCL bit 365, 393
SDWALNTH field 364
SDWALSLV field 365, 396
SDWAMDAT field 365
SDWAMLVL field 351, 365
SDWAMVRS field 365
SDWAPARM field 350, 361
SDWAPERC bit 350, 364
SDWARPIV bit 362, 409
SDWARRL field 351, 365
SDWASC field 351, 364
SDWASPID field 364
SDWASR00 field 355
SDWASRSV field 363
SDWATEAR field 364
SDWATEAV bit 364
SDWATEIV bit 364
SDWATRAN field 364
SDWATXG64 field 365
SDWATXPSW16 field 365
SDWAXFLG field 363

search order
VLF 262

secondary address space
and CML lock 41

security
external product 462

security product router 462
sending comments to IBM xvii
serialization 1, 33

of SRB-to-task percolation 408
of task execution 42
of task use 64
services 33

serialization technique
for the same volume 48

serially reusable resource 38

service
command authorization 464

service request block 428
serviceability data

providing through recovery 338
saving in the SDWA 351

set DIE service routine
function 474
input 474
mode of caller 474
restrictions on caller 477
return code 474

set must-complete 43
with RESERVE macro 46

set up
system logger configuration 804

SETCODE control statement 458
SETFRR macro

defining an FRR 343
EUT=YES parameter 343
MODE parameter 391
MODE=FULLXM parameter 390
MODE=HOME parameter 390
MODE=LOCAL parameter 392
MODE=PRIMARY parameter 390
PARMAD parameter 358

SETLOCK macro
function 41

SETRP macro
COMPCOD parameter 361
DUMP parameter 352
FRELOCK parameter 372
FRESDWA parameter 354, 378
FRLKRTY parameter 372
RC parameter 354, 355
REASON parameter 361
RECORD parameter 351
RECPARM parameter 351
REMREC parameter 355
RETADDR parameter 354
RETREGS parameter 354, 377
RETRY parameter 394
SERIAL parameter 408
updating the SDWA 348

shared DASD
using 44

shared pages 317
shared storage 317

with IARVSERV macro 317
sharing data in virtual storage

summary 3
sharing data in virtual storage

(IARVS 317
shortcut keys 867
SIGP instruction

order code
emergency signal 137

single-event wait 495
SJF (scheduler JCL facility

SJFREQ macro
RETRIEVE service 755
SWBTU_MERGE service 755

SJF (scheduler JCL facility)
environment

reusing 757
recovery 757

SJF (scheduler JCL facility) (continued)
SJFREQ macro

TERMINATE service 755, 766
VERIFY service 755, 759

validating OUTDES statement 759
SJF RETRIEVE service

keyword list 758
SJFREQ macro

TERMINATE service
freeing SJF environment 766

VERIFY service
building text units 759
considerations for using

OUTDES 767
delimiters 760
examples 763, 766
last call 762
OUTDES syntax 768
prefixing 763
quotation marks 760
relationship to dynamic

allocation 759
relationship to dynamic

output 759
text unit output area 762
validating OUTDES

statement 759
SMPUCL 497
SMS reason code

from dynamic allocation 569
software error

recovering 335
specify subpool for returned storage 851
SPIE environment

canceling 421
SPIE macro

function 421
issued by problem-state program 422

SPIE/ESPIE environment 421
spin lock 39
SPOST macro

function 54
SQA (system queue area)

subpool 225
SRB (service request block)

benefits of using 203
characteristics 203
cleanup 220
definition 203
initializing 210
managing 204
preemptable 209
purging 211
scenario of suspending and

resuming 218
scheduling

comparison of IEAMSCHD and
SCHEDULE macros 208

through IEAMSCHD macro 204
through SCHEDULE macro 204

summary 2
supplied with a dump request 430
transferring control 220
using 203
using IEAMSCHD macro

dispatching priority 209
major scheduling priority 208

888 z/OS V2R2 MVS Authorized Assembler Services Guide

SRB (service request block) (continued)
using IEAMSCHD macro (continued)

minor scheduling priority 208
using with the SDUMPX macro 428

SRB routine
characteristics 206
environment at entry 208
register contents at entry 208
restrictions 206
specifying addressing environment

through ENV parameter of
IEAMSCHD macro 205

through MODE parameter of
SCHEDULE macro 205

SRBPASID field 408
SRBPTCB field 408
SRM (system resources manager)

reporting interface 93
SSL (short page service list)

contents 313
stacking PC routine

activating recovery 342
STAE macro

0 parameter 342
CT parameter 342
defining a recovery routine 342

STAE routine
using 415

STAI routine
using 415

START command
issuing an internal 143

start/stop exit routine
for component trace 120

started program 143
STATUS macro 8
STCK instruction 479
STOP command 8
storage

authorization to obtain and
release 226

auxiliary 309
dumping virtual 425
non-pageable 309
protection

types of data needing 452
real frame 221
shared 317
subpool 225
subpool returned storage 851
subsystem storage protection

override 229
virtual 309

above 16 megabytes 309
storage key

selecting for virtual storage
request 229

STORAGE macro
comparison with

GETMAIN/FREEMAIN 222
function 222

sublevel trace
of component trace 104

subpool
alternatives to using 226
authorization to obtain and

release 226

subpool (continued)
central storage backing 230, 234
common storage 227
definition 225
DREF 230
dumped by default 235
fetch protection 228
fixed 230
global storage 227
input TCB 231
local storage 227
managing private storage

allocation 227
pageable 230
private storage 227
selectable key 229
selecting 225
shared 235
shared between tasks 33
storage key 229
storage owner 231
storage persistence 231
swappable 227
table in numeric order 236
table organized by attribute 235
translation to different subpool

numbers 226
subsystem

identifier 93
subtask

creating additional 7
creating and controlling 1

summary dump
requesting through IEATDUMP

macro 444, 446
requesting through SDUMPX

macro 425, 431
type

disabled 431
enabled 431, 432
suspend 431

summary of changes xix
Summary of changes xx
supervisor state 467
suppression

of SVC dumps 432
of Transaction dumps 446

suspend
lock 39

suspend lock 477
SUSPEND macro

considerations for use 62
example 61
function 61
issued by a type 2, 3, or 4 SVC 62
issued by a type 6 SVC 63
issued by type 1 SVC 55
serializing SRB processing 216
used in cross memory mode 62
used with RESUME macro 62

SUSPEND RB=CURRENT scenario 62
SUSPEND RB=PREVIOUS scenario 61
SVC

ESTAE recovery for routines 496
FRR recovery for routines 496
locking conventions for routines 494
naming conventions for routines 494

SVC (continued)
reenterable 493
refreshable 494
register contents 495

SVC (supervisor call) 477
first-level interrupt handler 457
type 1

issuing CALLDISP macro 63
issuing SUSPEND macro 55

type 2
issuing SUSPEND macro 62

type 3
issuing SUSPEND macro 62

type 4
issuing SUSPEND macro 62

type 6
issuing CALLDISP macro 63
issuing SUSPEND macro 63

SVC 99
control limit 547
in-use attribute 546
permanently allocated attribute 548
processing control 546, 547, 548

SVC 99 error reason code 601
class 601
for an environmental error 601
for an invalid parameter list 601
for an unavailable system

resource 601
SVC 99 information reason code 597
SVC 99 innformation reason code 597
SVC 99 return code 596
SVC 99 text unit 636

access specification -
DALACODE 662

align form or verify FCB image -
DALFCBAV 654

allocated space format -
DALSPFRM 649

block length - DALBLKLN 647
blocksize - DALBLKSZ 679
buffer alignment - DALBFALN 678
buffer count per DCB -

DALBUFNO 679
buffer length - DALBUFL 679
buffer offset - DALBUFOF 680
buffer size per line group -

DALBUFSZ 680
buffering technique -

DALBFTEK 678
burst specification - DALBURST 659
card reader/punch mode -

DALMODE 683
character arrangement table

specification- DALCHARS 659
CNTL specification - DALCNTL 663
CNTL specification - DINRCNTL 721
conditional disposition -

DALCDISP 647
copy groups specification -

DALCOPYG 659
copy modification module

specification - DALMMOD 660
copy module table reference character

- DALMTRC 660
current task option - DRICURNT 712
cylinder space - DALCYL 647

Index 889

SVC 99 text unit (continued)
data set key length -

DALKYLEN 683
data set organization -

DALDSORG 681
data set sequence number -

DALDSSEQ 653
data set status - DALSTATS 646
data set type specification -

DALDSNT 665
DCB ddname reference -

DALDCBDD 656
DCB dsname reference -

DALDCBDS 656
ddname specification 715
ddname specification -

DALDDNAM 645
ddname specification -

DCCDDNAM 710
ddname specification -

DDCDDNAM 711
ddname specification -

DDNDDNAM 712
ddname unallocation -

DUNDDNAM 705
defer mounting - DALDEFER 660
device count - DALUNCNT 651
device specification - DALUNIT 650
DIAGNS=TRACE specification -

DALDIAGN 687
directory blocks - DALDIR 648
dsname specification -

DALDSNAM 645
dsname specification -

DINDSNAM 715
dsname unallocation -

DUNDSNAM 705
dummy data set - DALDUMMY 654
dynamic concatenation text unit 709,

710
dynamic deconcatenation text

unit 711
dynamic information retrieval 713,

715, 716, 717, 718, 719, 720, 721, 724,
725, 726, 727, 728, 729

error option - DALEROPT 682
expiration date - DALEXPDL 661
expiration date - DALEXPDT 654
FCB image identification -

DALDCBIM 654
first buffer reserve specification -

DALRSRVF 686
flash forms overlay count -

DALFCNT 660
flash forms overlay specification -

DALFFORM 659
fold mode - DALUFOLD 655
for ddname allocation 712, 713
for dsname allocation 642, 645, 646,

647, 648, 649, 650, 651, 652, 653, 654,
655, 656, 657, 658, 659, 660, 661, 662,
663, 665, 666, 667, 668, 669, 670, 677,
678, 679, 680, 681, 682, 683, 684, 685,
686, 687, 688

for dynamic unallocation 704, 705,
706, 707, 709

FRID= specification - DALFRID 688

SVC 99 text unit (continued)
FUNC= specification -

DALFUNC 687
GET macro buffer request -

DALBUFRQ 680
GNCP specification - DALGNCP 682
input or output only -

DALINOUT 653
label type - DALLABEL 652
logical record length -

DALLRECL 683
maximum buffer numbers per line -

DALBUFMX 679
member name specification 705
member name specification -

DALMEMBR 646
normal disposition - DALNDISP 647
OpenMVS file access attributes -

DALPMDE 668
OpenMVS file disposition attribute -

DALFDAT 670
OpenMVS file disposition attribute -

DALPCDS 669
OpenMVS file disposition attribute -

DALPNDS 669
OpenMVS file options -

DALPOPT 667
OpenMVS file path specification -

DALPATH 666
OpenMVS file path specification

unallocation - DUNPATH 709
OpenMVS file unallocation disposition

attribute - DUNOVPDS 709
optional CP services -

DALOPTCD 684
OUTPUT statement reference -

DALOUTPT 662
override affinity - DALOVAFF 661
override SYSOUT class -

DUNOVCLS 707
override SYSOUT hold -

DUNOVSHQ 707
override SYSOUT nohold -

DUNOVSNH 706
override SYSOUT remote workstation

- DUNOVSUS 707
overriding disposition -

DUNOVDSP 705
overriding spin data set specification -

DUNSPIN 709
overriding SYSOUT user ID -

DUNOVUID 707
parallel mount - DALPARAL 651
password protection -

DALPASPR 653
permanently concatenated attribute -

DCCPERMC 710
polling interval - DALINTVL 682
primary space quantity -

DALPRIME 648
printer line spacing - DALPRTSP 685
private volume - DALPRIVT 649
punch paper tape code -

DALCODE 680
QNAME specification -

DALQNAME 655
RACF protection - DALPROT 658

SVC 99 text unit (continued)
READ/WRITE maximum -

DALNCP 683
receiving buffer count -

DALBUFIN 679
receiving PCI specification -

DALPCIR 684
record format - DALRECFM 685
record length specification -

DALLRECK 688
record-level sharing - DALRLS 669
relative request number -

DINRELNO 720
release unused space -

DALRLSE 648
remove in-use option -

DUNREMOV 706
removing the in-use attribute 711,

712
retention period - DALRETPD 654
return conditional disposition -

DINRTCDP 717
return control limit - DINRTLIM 718
return data set type - DINRTTYP 719
return data set type specification -

DINRDSNT 724
return ddname - DINRLPOS 720
return ddname - DINRTDDN 716
return ddname - DINRTDDX 720
return dsname - DINDTDSN 716
return DSORG - DINRTORG 717
return DUMMY indication -

DDNRTDUM 713
return dynamic allocation attributes -

DINRTATT 719
return first volume serial specification

- DINRTVOL 720
return last relative entry –

DINRTLST 719
return member name -

DINRTMEM 716
return normal disposition -

DINRTNDP 717
return OpenMVS file Access

Attributes 727
return OpenMVS file disposition

attribute - DINRPCDS 728
return OpenMVS file disposition

attribute - DINRPNDS 727
return OpenMVS file options -

DINRPOPT 726
return OpenMVS file path

specification - DINRPATH 725
return OpenMVS organization of a

hierarchical file - DINRFDAT 728
return segment spin data set

specification - DINRSEGM 725
return spin data set specification -

DINRSPIN 725
return spin interval specification 729
return status - DINRTSTA 716
return symbol list on a DD

statement 730
return z/OS UNIX file path

specification - DINPATH 721
round 649
search limit - DALLIMCT 683

890 z/OS V2R2 MVS Authorized Assembler Services Guide

SVC 99 text unit (continued)
secondary buffer reserve specification

- DALRSRVS 686
secondary space quantity -

DALSECND 648
segment spin data set specification -

DALSEGM 666
sending buffer count -

DALBUFOU 680
sending PCI specification -

DALPCIS 685
sending/receiving priority -

DALCPRI 681
size-of-work-area specification -

DALSOWA 686
spin data set specification -

DALSPIN 665
STACK specification -

DALSTACK 686
subsystem name request -

DALSSNM 657
subsystem parameters -

DALSSPRM 658
SYSOUT copies - DALCOPYS 652
SYSOUT form number -

DALSFMNO 652
SYSOUT hold queue -

DALSHOLD 657
SYSOUT output limit -

DALOUTLM 652
SYSOUT program name -

DALSPGNM 651
SYSOUT remote user -

DALSUSER 656
SYSOUT specification -

DALSYSOU 651
SYSOUT user ID specification -

DALUSRID 658
tape density - DALDEN 681
TCB address specification -

DRITCBAD 712
terminal is an I/O device -

DALTERM 655
THRESH specification -

DALTHRSH 686
track space - DALTRK 647
TRTCH specification -

DALTRTCH 687
unalloc option - DUNUNALC 706
unallocate at CLOSE -

DALCLOSE 652
universal character set -

DALUCS 655
verify character set image -

DALUVFRY 656
volume count - DALVLCNT 650
volume reference - DALVLRDS 650
volume sequence number -

DALVLSEQ 649
volume serial numbers -

DALVLSER 649
SVC 99 text units for retrieving

information 713
SVC dump 425

compared to an ABEND dump 426
determining the type of entry 427

SVC dump (continued)
parameters that produce a scheduled

dump 428
parameters that produce a

synchronous dump 427
requested by a recovery routine 426
requesting through SDUMPX

macro 425
scheduled dump

asynchronous dump 428
designing a program to

handle 428
suppressing 432
synchronous dump

designing a program to
handle 428

when to request 426
SVC routine

protecting types 2, 3, and 4 343
restriction with APF 455

SVC routines
SVC types 1-5 491
SYS1.LPALIB 491
SYS1.NUCLEUS 491
SYS1.PARMLIB 491
user-written 491

SVC routines, user written
extended 499

SVC routines, user-written
exiting from 492
IEASVC data set member 496
IEASYS data set member 496
inserting into control program at IPL

time 496
non-preemptable 492
programming conventions 492
screening access to 499
standard 496
STAX macro 492
SVC= statement 497
SVCPARM statement 497
SVCUPDTE macro 498
SYS1.PARMLIB 496
T6EXIT macro 492
TCBACTIV flag 492
type 6 491
writing 491

SVC screening 491
SVC table

modifying at execution time 498
SVCTABLE macro 494
SVCUPDTE macro 457, 498
SVRB 495
SWA (scheduler work area)

example of IEFQMREQ 257
example of SWAREQ 255
IEFQMREQ macro 253, 256
JCL statements, and 253
SWAREQ macro 253, 254

swapped-out 309
SWAREQ macro 253
symptom

required for dump suppression 361
SYNCH macro

function 15
saving and restoring registers 16

synchronization loop 479

synchronous
exit 15

synchronous dump 427
SYS1.DUMPnn data set 429, 445
SYS1.LINKLIB 455

in dynamic allocation example 732
SYS1.LPALIB 455, 497
SYS1.MACLIB data set 9
SYS1.NUCLEUS 497
SYS1.SVCLIB 455
SYSEVENT macro 93
sysplex

routing commands 149
system

data
protecting 453

data set
protecting 449

integrity 449
protecting 449

summary 3
system authorization checking 461
system characteristics

reporting 1, 87
system log

writing message 143
system logger

complete exit 794
component 792
configuration 791

illustration 791, 792
DASD-only log stream 790
definition 787
delete data from a log stream

IXGDELET service 804
log data on the coupling facility 790
log data sets

allocation 790
log stream 787, 788

illustration 787
planning

writing an ENF event 48 listen
exit 804

resource manager exit 800
rm fails 813
status changes

ENF event code 48 797
things go wrong 813

system logger application
ENF event code 48 797
example 787

system logger configuration
set up 804

system logger services 787
IXGCONN service 798

ENF event code 48 and 800
resource manager connection 799
using ENF event 48 with 800

IXGDELET service 804
preparing to use

writing an ENF event 48 listen
exit 804

system logger applications 787
system resource

releasing through recovery 337
System REXX 815

description 815

Index 891

system status
changing 467

system symbol
disabling substitution 559
using in text units 638

system trace table
formatting a USRn entry 781

T
T6EXIT macro 63
task 7

advantage of creating 7
creating 7
job step 7
preventing termination 43
rules for creating 7
serializing the execution 42

tasks
(noun, gerund phrase)

steps 76
TCB

input TCB 231
owning a virtual storage area 232
TCBJSTCB 232

TCB (task control block)
information for RESERVE macro 49
providing information 11

TCTL macro
considerations for use 220
function 220

TESTAUTH macro
use in restricting an SVC routine 457

text unit
building 755

text unit for dynamic allocation 636
text unit key 636
time interval

setting 474
timer

disabled interrupt exit 474
interruption 477
supervision 474

TIOT (task input/output table)
address 49
obtaining the address 46, 47

token
for internal START command 143
for MGCR macro 143
issuing an internal 143
used with DOM macro 143
used with GQSCAN macro 89

TOKEN parameter
of DOM macro 143

TPCSDIE field 474
TQE (timer queue element)

address 477
controlling 478
freed when address space fails 478
freeing 478
obtaining 478
serialization 478

TQE DEQUEUE routine
function 478
input 479
return code 479

TQE ENQUEUE routine 477

TQE ENQUEUE routine (continued)
input environment 477

TQEASCB field 476
TQETCB field 476
TQEVAL field 477
trace buffer

for component trace 102
trace buffers

managing with a component trace
external writer 116

tracing
applications using the component

trace service 95
transaction

activity report 93
of an interactive system 93
response time 93

Transaction dump
compared to an ABEND dump 445
determining the type of entry 445
requested by a recovery routine 445
requesting through IEATDUMP

macro 444
suppressing 446
when to request 445

TROB (trace output buffer)
formatting a USRn trace entry 781,

782
TSO/E authorized command table

updating for VLF 260
type 6 SVC routines 491

U
UCB (unit control block)

accessing when defined above 16
megabytes 526

general methods of obtaining
information

description 519
determining if available 521

limited method of obtaining
information 522

locating address with GETDSAB
macro 49

obtaining address 519
obtaining subchannel number 526
pin token 506
pinning 506
scanning 520
summary 4
unpinning 506

UCB address
finding 48
finding through the DEB 50
of reserved device

finding 50
UCB scan service

description 522, 523
device classes 523
input 523

UCBLOOK macro 519
UCBPIN macro 506
UCBSCAN macro 520
unit name 850

device class 851

unit name (continued)
is a look-up value function of unit

verification service 850
unit verification service 849

check groups 849, 854
check units 850, 854
check units with no validity bit 851,

861
convert device type to look-up

value 850, 859
description 849
examples 863
FLAGS parameter field 852
functions 849, 850, 851, 854, 855, 856,

857, 858, 859, 860, 861, 862
IEFAB4UV routine 849, 851
IEFEB4UV routine 851
IEFGB4UV routine 851
indicate unit name is a look-up

value 850, 858
input and output 852

data structure 852
purpose 849
requesting multiple functions 863
return attributes 850, 860
return group ID 850, 857
return look-up value 850, 859
return unit control block (UCB)

address 850, 856
return unit name 855
return unit names for a device

class 851, 862
specify subpool for returned

storage 851, 862
user defined function 327
user interface

ISPF 867
TSO/E 867

user list 279, 289
services

identify 280
user-supplied address

for protected control block 450
for user storage area 450
validating 450

user-written SVC routine
summary 3

userid
defined to external security

product 461
using to control number of

messages 158
USRn system trace table entry 781

for the USRn formatting routine 782
formatting 781
handling an error 783
parameters passed 782
parameters passed to print

routine 783
printing the trace output buffer 783
return code 782
sample of code 784
writing your own routine 781

892 z/OS V2R2 MVS Authorized Assembler Services Guide

V
verification

device 849
VERIFY service 759
virtual

equal real regions 309
virtual page 309
virtual storage 309, 327

addressable 309
allocated 241
allocating 222
dumping 425

summary 3
fixing 310

fast path 309
free space information 246
freeing 310

fast path 309
loading 309
obtaining information 240
paging out 309
releasing 309, 310
sharing with IARVSERV macro 317
unallocated 247

virtual storage management
services 221
summary 2

virtual storage window 275, 278
VLF (virtual lookaside facility) 259, 260

creating an object 269
cross-system sharing 262
data integrity 264
data object 259, 261
defining a class 266
description 259
identifying an end user 267
macros 265, 272
modifying 272
notifying VLF of a change 271
private data set 262
purging a class 272
recovery 264
removing an end user 272
retrieving an object 268

volume
and device status 44
assignment 47
characteristics 44
handling

rules with shared DASD 45
mounting 550

VRADATA macro
using in a recovery environment 351

VSL (virtual subarea list)
contents 313

VSMLIST macro 221
using 240

VSMLIST work area
description 240
using 240

VSMLOC macro 221
VSMREGN macro 221

W
WAIT macro

entry point 60
function 53, 55, 60
service routine

branch entry 60
wait state 140

non-restartable 140
restartable 140

wildcards
using in IEATDUMP macro 447
using in SDUMPX macro 433

window 278
virtual storage 275

workload activity report 93
WTL macro

function 143
WTO macro

function 137
WTOR macro

function 137

X
XC function 329
XCF (cross-system coupling facility)

dumping information 425
XCTL and XCTLX macros

relationship with ESTAE-type
recovery routines 366

XCTL macro 48

Index 893

894 z/OS V2R2 MVS Authorized Assembler Services Guide

IBM®

Product Number: 5650-ZOS

Printed in USA

SA23-1371-05

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 2 (V2R2), as updated March, 2016
	Summary of changes for z/OS Version 2 Release 2 (V2R2), as updated December, 2015
	Summary of changes for z/OS Version 2 Release 2
	z/OS Version 2 Release 1 summary of changes

	Chapter 1. Introduction
	Chapter 2. Subtask creation and control
	Creating a new task (ATTACH or ATTACHX macro)
	Ensuring that a process completes (STATUS macro)
	Communicating with a program (EXTRACT, QEDIT)
	Providing an EXTRACT answer area

	Chapter 3. Program management
	Residency and addressing mode of programs
	Placement of modules in storage
	Addressing mode

	Specifying where the module is to be loaded (LOAD macro)
	Synchronous exits (SYNCH or SYNCHX macro)
	Using checkpoint/restart
	Using re-entrant modules
	Using LLACOPY to refresh LLA directories
	Changing the LNKLST concatenation
	Changing the current LNKLST set

	Monitoring dynamic LPA processing
	Listing contents of dynamic LPA with CSVDLPAU
	Invoking CSVDLPAU

	Monitoring dynamic exits processing
	Monitoring fetch and unfetch processing

	Chapter 4. Serialization
	Choosing a serialization service
	Providing ENQ resource information on DISPLAY GRS command
	Locking
	Categories of locks
	Types of locks
	Examples of lock types

	Locking hierarchy
	CML lock considerations
	Obtaining, releasing, and testing locks (SETLOCK)
	Disabled/enabled state for obtain
	Disabled/enabled state for release

	Suspend lock instrumentation data

	Using the must-complete function (ENQ/DEQ)
	Characteristics of the must-complete function
	Programming notes

	Shared direct access storage devices (shared DASD)
	Volume/device status
	Volume handling
	Macros used with shared DASD (RESERVE, EXTRACT, GETDSAB)
	Releasing devices
	Preventing interlocks
	Timing contention
	Volume assignment
	Program libraries
	Using different serialization techniques for the same volume
	Finding the UCB address for the RESERVE macro

	Serializing parallel tasks (WAIT and POST)
	Asynchronous cross memory POST
	When LINKAGE=SYSTEM is not specified
	When LINKAGE=SYSTEM is specified

	Synchronous cross memory post
	Bypassing the POST routine
	Waiting for event completion (EVENTS)

	Writing POST exit routines
	Identifying and deleting exit routines
	Initializing extended ECBs and ECB extensions
	POST interface with exit routines
	Re-entry to POST from a POST exit

	Branch entry to the POST service routine
	Branch entry to the WAIT service routine
	Serializing RB processing
	Suspending an RB until an event completes (SUSPEND)
	Scenario 1:
	Scenario 2:
	Considerations when suspending an RB

	Using the CALLDISP macro
	Resuming execution of a suspended RB

	Synchronizing unit of work (tasks or SRBs)
	Pause elements and pause element tokens
	Using the services
	PE ownership and cleanup

	Global resource serialization latch manager
	Overview
	How to use the callable services

	Planning to use the latch manager callable services
	Including a latch manager interface definition file (IDF)
	Loading the linkage assist routines
	Providing recovery for the latch manager
	Steps for providing recovery for the latch manager
	FRR tasks
	FRR example

	Guide to the latch manager callable services
	Creating a latch set (ISGLCRT and ISGLCR64 services)
	Specifying the number of latches in a latch set
	Identifying latch sets

	Specifying a latch's identity or usage
	Obtaining a latch (ISGLOBT and ISGLOB64 services)
	Specifying the number of a requested latch
	Specifying an obtain option
	Summary of results of calls to Latch_Obtain

	Releasing a latch (ISGLREL and ISGRE64 services)
	Specifying a release option
	Summary of results of calls to Latch_Release

	Purging one or more latches (ISGLPRG and ISGLPR64 services)
	Purging one or more latches in a group of latch sets for a group of requestors (ISGLPBA and ISGLPB64 services)
	Purging groups of latch sets

	Chapter 5. Reporting system characteristics
	Collecting information about resources and their requestors (ISGQUERY and GQSCAN macros)
	How GQSCAN returns resource information
	How area size determines the information GQSCAN returns
	How scope and token values determine the information GQSCAN returns

	How global resource serialization determines the scope of an ENQ or RESERVE request

	Using the SRM reporting interface to measure subsystem activity
	Obtaining dispatchability data about address spaces (IEAMRMF3 macro)

	Chapter 6. Tracing applications using component trace
	Planning an application trace
	Trace activities
	Executable macros for component tracing
	Operator commands for component tracing
	IPCS subcommands for component tracing
	Exit routines for component tracing
	Data areas and mapping macros for component tracing
	Parmlib members for component tracing
	When to trace
	Where and what to trace
	Creating trace buffers
	Using multiple traces
	Setting up user-defined options
	Starting, stopping and changing the trace
	Using parmlib members
	Externalizing trace data in a dump
	Externalizing trace data through the external writer

	Coding macros for application traces
	Using the CTRACE macro to define the application to component trace
	Using CTRACECS to manage trace buffer status
	Deleting the application from component trace

	Coding a start/stop exit routine
	Exit routine environment
	Exit routine processing
	Programming considerations
	Start/stop exit routine communications
	Entry specifications
	Return specifications

	Coding a display trace exit routine
	Exit routine environment
	Exit routine processing
	Programming considerations
	Exit routine communications
	Entry specifications
	Return code specifications

	Creating trace entries
	Understanding the fields in a CTE
	Organizing variable data in CTEs

	Chapter 7. Communication
	Interprocessor communication
	Writing and Deleting Messages (WTO, WTOR, and DOM Macros)
	Routing the Message
	Altering Message Text
	Writing a Multiple-Line Message
	Embedding Label Lines in a Multiple-Line Message
	Issuing a Message and Loading a Wait State (WTO and LOADWAIT Macros)
	Using the Wait State Macro (LOADWAIT)
	Non-restartable and Restartable Wait States
	Invoking the LOADWAIT Macro
	Example with All Wait State Information Known at Assembly Time
	Example with Wait State Information Not Known at Assembly Time

	Deleting Messages Already Written
	Writing to the System Log

	Issuing an internal START or REPLY command (MGCR)
	Issuing operator commands from a program (MGCRE macro)
	Issuing a command response message
	Rules for a command response WTO
	Old code conversion
	Where to get the information
	CIB control block (mapped by IEZCIB)
	CSCB control block (mapped by IEECHAIN)
	CMDX control block (mapped by IEZVX101)
	SSCM control block (mapped by IEFSSCM)

	Assembler example with CIB control block
	Assembler example with CMDX control block, multi-line WTO

	Controlling command flooding (IEECMDS macro)
	Routing commands in a sysplex (CPF macro)
	Assigning a prefix
	Persistence of the prefix

	What is an extended MCS console?
	Activating an extended MCS console
	Specifying console attributes
	Storing messages directed to an extended MCS console
	Controlling message traffic directed to an extended MCS console

	Receiving messages and command responses, and issuing commands
	Receiving messages and command responses
	Receiving the hardcopy message set
	Issuing commands
	What to do if message queuing stops

	Deactivating extended MCS consoles
	Switching to another console

	Removing extended MCS consoles
	Example of managing an extended MCS console session

	Chapter 8. Listening for system events
	Establishing a listen request
	Qualifying events
	QUAL example

	nn filtering events

	Coding the listener user exit routine
	Non-SRBEXIT routine
	SRBEXIT routine

	Passing parameters to a listener user exit routine
	Ending the listener user exit routine
	ENF event codes and meanings
	ENF sample programs
	SMFLSTEN - Sample ENF listener
	Issue listen request without qualifier
	Issue listen request with QUAL=ENF37Q00
	Sample ENFREQ DELETE request
	Module declarations
	SMFLSTAL - Sample ENF listener user exit routine
	Module declarations
	SMFLST00 - Sample ENF listener user exit routine

	Listening for global resource serialization-related system events
	Monitoring contention changes
	Listening for RNL change data
	Listening for other global resource serialization events

	Chapter 9. Using a service request block (SRB)
	What is an SRB?
	Why would you use an SRB?
	Scheduling and managing SRBs
	Specifying the addressing environment of the SRB routine
	Using the ENV parameter on IEAMSCHD
	Using the MODE parameter on SCHEDULE

	Characteristics and restrictions of SRB routines
	Implications of running in SRB mode
	Environment of the SRB routine at entry

	Scheduling an SRB (IEAMSCHD or SCHEDULE macro)
	Scheduling an SRB using IEAMSCHD
	Scheduling an SRB using SCHEDULE
	Initializing the SRB

	Purging an SRB (PURGEDQ macro)
	Identifying the SRB to be purged
	The resource manager termination routine (RMTR)
	Scenario of scheduling and purging an SRB
	Example 1
	Example 2

	Serializing SRB processing
	Suspending an SRB until an event completes (SUSPEND macro)
	Suspend exit routine

	Resuming or purging a suspended SRB (RESUME macro)
	Scenario of suspending and resuming an SRB
	Recovery responsibilities for a suspended SRB

	Terminating a preemptable SRB
	Calling an SRB to run synchronously
	Transferring control for SRB processing (TCTL macro)

	Chapter 10. Virtual storage management
	Allocating and freeing virtual storage (GETMAIN, FREEMAIN and STORAGE macros)
	Comparison of GETMAIN/FREEMAIN macros with the STORAGE macro
	Specifying branch entry to GETMAIN and FREEMAIN services
	Obtaining storage in another address space
	Obtaining and using disabled reference (DREF) storage

	Using cell pool services (CPOOL macro)
	Selecting the right subpool for your virtual storage request
	Program authorization
	Selecting private or common storage
	Managing private storage allocation
	Selecting fetch protected or non-fetch protected storage
	Selecting the storage key
	Selecting pageable, DREF, or fixed storage
	Selecting storage persistence

	Tracking virtual storage allocation (CPOOL BUILD, GETMAIN, and STORAGE OBTAIN macros)
	Obtaining information about the allocation of virtual storage (VSMLIST)
	Using the VSMLIST work area
	Allocated storage information
	Free space
	Unallocated storage information

	Using IARQD — The page status interface routine
	Decide which entry point you want to use
	Obtain storage and load register 1
	IARQDUMP
	IARQDSPD
	The delimiter page

	Use NUCLKUP to find the address of the entry point you want to use
	Example
	Input register information

	Invoke the entry point

	Chapter 11. Accessing the scheduler work area
	Using the IEFQMREQ and the SWAREQ macros
	The SWAREQ macro
	How to invoke SWAREQ
	SWAREQ summary
	Example of using SWAREQ
	Return codes and reason codes from SWAREQ

	The IEFQMREQ macro
	How to invoke IEFQMREQ
	Example of using IEFQMREQ
	Return codes and reason codes from IEFQMREQ

	Chapter 12. The virtual lookaside facility (VLF)
	Deciding when to use VLF
	Planning to use VLF
	Data objects and classes
	Private data sets
	Cross-system sharing
	When VLF notification is automatic
	When VLF notification is not automatic

	Data integrity
	Recovery

	Using the VLF macros
	Defining a class of VLF objects
	Identifying an end user to VLF
	Retrieving a VLF object
	Creating a VLF object
	Using REPLACE

	Notifying VLF of a change
	Removing a VLF end user
	Purging a VLF class
	Modifying VLF

	Chapter 13. Data-in-virtual
	When to use data-in-virtual
	Factors affecting performance
	Creating a linear data set

	Using the services of data-in-virtual
	Identify
	Access
	Map
	Save, Savelist, and Reset
	Unmap
	Unaccess
	Unidentify

	The IDENTIFY service
	The ACCESS service
	The MAP service
	The SAVE service
	The SAVELIST service
	The RESET service
	Effect of RETAIN mode on RESET

	The UNACCESS and UNIDENTIFY services
	Sharing data in an object
	DIV macro programming examples
	Executing an application
	Processing a data-in-virtual object

	Chapter 14. Sharing application data (name/token callable services)
	Levels for name/token pairs
	Determining what your program can do with name/token pairs

	Checking authorization when retrieving a token
	Deciding what name/token level you need
	Primary-level name/token pair
	System-level name/token pair

	Owning and deleting name/token pairs
	Example of using the name/token services

	Chapter 15. Processor storage management
	Fixing/freeing virtual storage contents
	Protecting a range of virtual storage pages
	PGFIX/PGFREE completion considerations
	Input to page services
	Virtual subarea list (VSL)
	Page service list (PSL)
	Short page service list (SSL)

	Branch entry to page services
	Cross memory mode
	Non-cross memory mode

	Chapter 16. Sharing data in virtual storage (IARVSERV macro)
	Understanding the concepts of sharing data with IARVSERV
	Storage you can use with IARVSERV
	Obtaining storage for the source and target
	Defining storage for sharing data and access
	Changing storage access
	How to share and unshare data
	Accessing data in a sharing group
	Example of sharing storage with IARVSERV
	Use with data-in-virtual (DIV macro)
	Use with page services (PGSER macro)
	Diagnosing problems with shared data
	Converting a central to virtual storage address (IARR2V macro)

	Chapter 17. The nucleus
	Linking to routines in the DAT-OFF nucleus (DATOFF)
	Using system provided DAT-OFF routines (DATOFF)
	INDMVCL0 and INDMVCL64 - Move character long
	INDMVCLK and INDMVCL64 - Move character long in user key
	INDXC0 and INDXC64 - Exclusive OR
	INDCDS and INDCDS64 - Compare double and swap

	Writing user DAT-OFF routines
	Placing user DAT-OFF routines in the DAT-OFF nucleus

	Obtaining information about CSECTs in the DAT-ON nucleus (NUCLKUP)
	Customizing the nucleus region
	The NMLDEF macro
	Removing existing routines from IEANUC0x

	Chapter 18. Providing recovery
	Understanding general recovery concepts
	Deciding whether to provide recovery
	Understanding errors in MVS
	Understanding recovery routine states
	Understanding the various routines in a recovery environment
	Mainline routine
	Recovery routine
	Retry routine
	Resource manager

	Choosing the appropriate recovery routine
	Choosing an ESTAE-type recovery routine
	Choosing an FRR
	Floating point implications
	Summary of recovery routine states

	Understanding recovery routine options
	Understanding how routines in a recovery environment interact

	Writing recovery routines
	Understanding what recovery routines do
	Saving the return address to the system
	Checking for the SDWA
	Establishing addressability to the parameter area
	Checking important fields in the SDWA
	Checking the contents of the parameter area
	Saving serviceability data
	Recording in the Logrec data set
	Requesting a dump
	Correcting or minimizing the error
	Deciding to retry or percolate

	Understanding the means of communication
	Setting up, passing, and accessing the parameter area
	Using the SDWA

	Special considerations for ESTAE-type recovery routines
	RB considerations
	Linkage stack considerations
	Outstanding I/Os at the time of failure
	Additional considerations specific to ESTAE-type recovery routines
	Using ARRs

	Special considerations for FRRs

	Understanding the recovery environment
	Register contents
	Register contents on entry to a recovery routine
	Register contents on return from a recovery routine
	Register contents on entry to a retry routine

	Other environmental factors in recovery
	Environment on entry to an ESTAE-type recovery routine
	Environment on entry to a retry routine from an ESTAE-type recovery routine
	Summary of environment on entry to an ESTAE-type recovery routine and its retry routine
	Environment on entry to an FRR
	Environment on entry to a retry routine from an FRR
	Linkage stack at time of retry

	Understanding recovery through a coded example
	Understanding advanced recovery topics
	Providing recovery with minimal processor overhead (FESTAE macro)
	Invoking RTM
	Using the CALLRTM macro
	Using the ABEND macro

	Providing multiple recovery routines
	Percolation for the same unit of work
	SRB-to-task percolation

	Providing recovery for recovery routines
	Providing recovery for multitasking programs
	Using resource managers
	Resource manager execution environment
	Installation-written resource managers
	Adding an installation-written resource manager
	The resource manager parameter list
	Register use
	Processing sequence

	Using STAE/STAI routines

	Chapter 19. Processing program interruptions (SPIE, ESPIE)
	Interruption types

	Chapter 20. Dumping virtual storage (SDUMPX, SDUMP, and IEATDUMP macros)
	SVC dumps
	Deciding when to request an SVC dump
	Understanding the type of SVC dump that MVS produces
	Coding parameters that produce a synchronous dump
	Designing a program to handle a synchronous dump
	Coding parameters that produce a scheduled dump
	Designing a program to handle a scheduled dump
	Synchronizing your program through an ECB or SRB
	Designing your program to run asynchronously with dump processing
	Identifying the data set to contain the dump
	Defining the contents of the dump
	Identifying the address spaces or data spaces to be dumped
	Customizing the contents of the SVC dump
	Requesting the summary dump
	Suppressing SVC dumps that duplicate previous SVC dumps
	Providing symptom information through the SDUMPX macro
	Requesting dumps on other systems in a sysplex
	Using dynamic exits to control dumps in a sysplex
	IEASDUMP.QUERY dynamic exit
	Installing IEASDUMP.QUERY
	IEASDUMP.QUERY dynamic exit environment
	IEASDUMP.QUERY dynamic exit recovery
	IEASDUMP.QUERY dynamic exit processing
	Registers at entry to IEASDUMP.QUERY dynamic exit
	Parameter area at entry to IEASDUMP.QUERY dynamic exit
	Registers at exit from IEASDUMP.QUERY dynamic exit
	Disassociating IEASDUMP.QUERY

	IEASDUMP.GLOBAL and IEASDUMP.LOCAL dynamic exits
	Installing IEASDUMP.GLOBAL and IEASDUMP.LOCAL
	IEASDUMP.GLOBAL and IEASDUMP.LOCAL dynamic exit environment
	IEASDUMP.GLOBAL and IEASDUMP.LOCAL dynamic exit
	IEASDUMP.GLOBAL and IEASDUMP.LOCAL dynamic exit processing
	Registers at entry to IEASDUMP.GLOBAL or IEASDUMP.LOCAL dynamic exit
	Parameter area at entry to IEASDUMP.GLOBAL or IEASDUMP.LOCAL dynamic exit
	Registers at exit from IEASDUMP.GLOBAL or IEASDUMP.LOCAL dynamic exit
	Disassociating IEASDUMP.GLOBAL and IEASDUMP.LOCAL

	IEASDUMP.SERVER dynamic exit
	Installing IEASDUMP.SERVER
	IEASDUMP.SERVER dynamic exit environment
	IEASDUMP.SERVER dynamic exit recovery
	IEASDUMP.SERVER dynamic exit processing
	Registers at entry to IEASDUMP.SERVER dynamic exit
	Parameter area at entry to IEASDUMP.SERVER dynamic exit
	Registers at exit from IEASDUMP.SERVER dynamic exit
	Disassociating IEASDUMP.SERVER

	Transaction dumps
	Deciding when to request a transaction dump
	Understanding the type of transaction dump that MVS produces
	Identifying the data set to contain the dump
	Defining the contents of the dump
	Customizing the contents of the transaction dump
	Requesting the summary dump
	Suppressing transaction dumps that duplicate previous transaction dumps
	Providing symptom information through the IEATDUMP macro
	Requesting dumps of other systems

	Chapter 21. Protecting the system
	System integrity
	Documentation on system integrity
	Installation responsibility
	Elimination of potential integrity exposures
	User-supplied addresses for user storage areas
	User-supplied addresses for protected control blocks
	Resource identification
	SVC routines calling SVC routines
	Control program and user data accessibility
	Fetch protection provided for the PSA
	Control program extensions

	Authorized programs
	Using APF to restrict access to system functions
	Guidelines for using APF
	APF-authorized libraries
	APF-authorized library list
	Requesting APF list services (CSVAPF macro)
	Restricting the use of SVC routines
	Restricting load module access
	Assigning APF authorization to a load module
	Overriding an authorization code - SETCODE statement
	Authorization results under various conditions

	Resource Access Control Facility (RACF)
	System Authorization Facility (SAF)
	MVS router
	MVS router exit

	Interface to the MVS router (RACROUTE)
	Defining a resource (RACROUTE REQUEST=DEFINE)
	Identifying a user (RACROUTE REQUEST=VERIFY and REQUEST=VERIFYX)
	Checking resource authorization (RACROUTE REQUEST=AUTH and REQUEST=FASTAUTH)
	Retrieving and encoding data (RACROUTE REQUEST=EXTRACT)
	Building in-storage profiles (RACROUTE REQUEST=LIST)
	Checking auditing options (RACROUTE REQUEST=AUDIT)
	Checking user authority (RACROUTE REQUEST=DIRAUTH)

	SAF interface to an external security product
	Requirements for the external security product router
	Input parameters to the external security product router
	Return and reason codes from the external security product router
	Programming considerations

	Using the command authorization service
	Command resource names
	Syntax
	Examples

	Changing system status (MODESET)
	Generating an SVC
	Generating inline code

	Chapter 22. Exit routines
	Using asynchronous exit routines
	Using the SCHEDIRB macro to initialize and schedule an IRB
	Using the SCHEDIRB macro to schedule an IRB
	Using the CIRB macro to initialize an IRB
	Using the SCHEDXIT macro to schedule an IRB
	System processing to run an asynchronous exit
	Linkage stack considerations for asynchronous exit routines

	Establishing a timer disabled interrupt exit
	DIE characteristics
	Exit from the DIE routine
	DIE execution

	Timer queue element control
	Obtaining and freeing the TQE
	Serializing the use of each TQE
	Clock failure
	Interval cancellation

	Using dynamic exits services
	CSVDYNEX terminology
	Defining an exit
	FASTPATH processing
	Removing the definition of an exit

	Calling an exit routine or routines
	Floating point protocol for user exits
	Ensuring that exit routines exist at the CALL
	Returning information from multiple exit routines
	Recovery for the CALL request

	Associating an exit routine with an exit
	Ensuring that exit routines exist at the time of the association
	Deleting an exit routine from an exit

	Chapter 23. User-written SVC routines
	Writing SVC routines
	Type 6 SVC routines
	Non-preemptable SVC routines
	Programming conventions for SVC routines

	Inserting SVC routines into the control program
	Standard SVC routines
	Example of adding user SVC routines to system libraries
	Modifying the SVC table at execution time (SVCUPDTE macro)
	Intercepting an SVC routine

	Extended SVC routines

	Subsystem SVC screening

	Chapter 24. Accessing unit control blocks (UCBs)
	Scanning for UCBs
	Obtaining UCB addresses
	UCB Common Segment
	UCB Common Extension
	UCB Prefix Extension
	UCB Prefix Area
	UCB details

	Ensuring that UCBs are not deleted
	Pinning and unpinning UCBs
	When pinning is required
	Example: Pinning an unallocated and offline device
	Example: Passing an UCB address between asynchronously running programs

	When pinning is not required
	Example: Allocating a device

	Requesting notification of I/O configuration changes
	Using the CONFCHG macro
	Coding a configuration change user exit routine
	Exit routine environment
	Programming considerations
	Entry specifications
	Return specifications
	Exit recovery
	Exit routine processing

	Coded example: CONFCHG macro invocation of configuration change user exit

	Detecting I/O configuration changes
	Retrieving the current MIH time interval
	Retrieving information about I/O hardware on an I/O path
	Length of the CDR area
	How IOSCDR retrieves the CDR
	Time that IOSCDR performs I/O

	Validating I/O paths
	Obtaining device information for an allocation request
	Configuring a channel path online or offline
	Obtaining UCB information (general methods)
	Obtaining UCB addresses for a specified device number
	Scanning UCBs
	Examples: Using the UCB macros
	Example 1
	Example 2

	Determining if the UCB macros (general methods) are available
	Procedure for pre-MVS/SP Version 4 libraries
	Procedure for MVS/SP Version 4 and above libraries

	Obtaining UCB information (limited method)
	The UCB scan service
	Invoking the UCB scan service
	Input to the UCB scan service
	Limiting the UCB scan
	Output from the UCB scan service
	Example: Using the UCB scan service

	Obtaining the subchannel number for a unit control block (UCB)

	Accessing above 16-megabyte UCBs

	Chapter 25. Dynamic allocation
	An allocation overview
	Choosing the type of allocation for your program
	Characteristics of job step allocation
	Characteristics of dynamic allocation

	When to avoid using dynamic allocation
	Programming considerations for using the DYNALLOC macro
	Selecting the type of allocation based on program requirements

	Dynamic allocation functions
	Using dynamic allocation functions in either a batch or interactive environment
	Using dsname or pathname allocation
	JCL DD statement facilities not supported by dynamic allocation
	Dynamic allocation facilities without JCL equivalents
	Checking for conflicts with your existing allocation environment
	Using an existing allocation to fulfill a dsname allocation request
	Changing the parameters of an existing allocation
	Using a new allocation to fulfill a dsname or pathname allocation request
	Considerations when requesting dsname or pathname allocation

	Deallocating resources
	Deallocating resources by dsname or pathname
	Deallocating resources by ddname
	Deallocating concatenated groups
	Changing parameters at dynamic unallocation

	Concatenating resources
	Requesting the permanently concatenated attribute

	Deconcatenating resources
	Obtaining allocation environment information
	Using dynamic allocation functions in an interactive environment
	In-use attribute
	Removing the in-use attribute by dsname or ddname
	Removing the in-use attribute by task ID

	Control limit
	Permanently allocated attribute
	Convertible attribute
	Using ddname allocation
	Insulated DD attribute

	Installation options for DYNALLOC macro functions
	Using default values
	Mounting volumes and bringing devices online
	Installation input validation routine for dynamic allocation

	Chapter 26. Requesting dynamic allocation functions
	Building the SVC 99 parameter list
	Coding a dynamic allocation request
	Obtaining storage for the parameter list
	Estimating the amount of storage for your request
	Characteristics of storage for parameter list
	Passing the address of the obtained storage to DYNALLOC

	Mapping storage for the parameter list
	Setting up the request block pointer
	Setting up the request block
	S99RB fields
	Relationships among selected fields

	Setting up the text units
	Key (S99TUKEY)
	Structure of the text units

	Setting up the text unit pointer list
	Establishing addressability to the text unit pointer list
	Filling in the text unit pointer list
	Setting the end of list indicator

	Processing messages and reason codes from dynamic allocation
	Setting up the request block extension
	S99RBX fields

	Processing messages from dynamic allocation
	Sending dynamic allocation messages to the end user
	Using the functions of the IEFDB476 program
	Linking to the IEFDB476 program
	Providing input to IEFDB476 through EMPARMS
	Using EMABUFFS to receive message information from the system
	Using EMBUFS to receive message information from the system
	Interpreting return codes from IEFDB476

	Interpreting DYNALLOC return codes
	Interpreting information reason codes from DYNALLOC
	Interpreting error reason codes from DYNALLOC

	SVC 99 parameter list verb codes and text units, by function
	Coding a dsname allocation text unit
	JCL DD statement parameters and equivalent text units
	Using system symbols in text units
	Dsname allocation text units
	Ddname specification - Key = '0001'
	Dsname specification - Key = '0002'
	Member name specification - Key = '0003'
	Data set status specification - Key = '0004'
	Data set normal disposition specification - Key = '0005'
	Data set conditional disposition specification - Key = '0006'
	Track space type (TRK) specification - Key = '0007'
	Cylinder space type (CYL) specification - Key = '0008'
	Block length specification - Key = '0009'
	Primary space quantity specification - Key = '000A'
	Secondary space quantity specification - Key = '000B'
	Directory block specification - Key = '000C'
	Unused space release (RLSE) specification - Key = '000D'
	Format of allocated space specification - Key = '000E'
	Whole cylinder allocation (ROUND) specification - Key = '000F'
	Volume serial specification - Key = '0010'
	Private volume specification - Key = '0011'
	Volume sequence number specification - Key = '0012'
	Volume count specification - Key = '0013'
	Volume reference to a dsname specification - Key = '0014'
	Device description specification - Key = '0015'
	Device count specification - Key = '0016'
	Parallel mount specification - Key = '0017'
	SYSOUT specification - Key = '0018'
	SYSOUT program name specification - Key = '0019'
	SYSOUT form number specification - Key = '001A'
	SYSOUT output limit specification - Key = '001B'
	Unallocation at CLOSE specification - Key = '001C'
	SYSOUT copies specification - Key = '001D'
	Label type specification - Key = '001E'
	Data set sequence number specification - Key = '001F'
	Password protection specification - Key = '0020'
	Input only or output only specification - Key = '0021'
	Expiration date specification (short form) - Key = '0022'
	Retention period specification - Key = '0023'
	Dummy data set specification - Key = '0024'
	Forms control buffer (FCB) image identification specification - Key = '0025'
	Form alignment and image verification specification - Key = '0026'
	QNAME specification - Key = '0027'
	Terminal specification - Key = '0028'
	Universal character set (UCS) specification - Key = '0029'
	Fold mode specification - Key = '002A'
	Character set image verification specification - Key = '002B'
	DCB reference to a dsname specification - Key = '002C'
	DCB reference to a ddname specification - Key = '002D'
	SYSOUT remote work station specification - Key = '0058'
	SYSOUT hold queue specification - Key = '0059'
	Subsystem name request specification - Key = '005F'
	Subsystem parameter specification - Key = '0060'
	PROTECT specification - Key = '0061'
	SYSOUT user ID specification - Key = '0063'
	Burst specification - Key = '0064'
	Character arrangement table specification - Key = '0065'
	Copy groups specification - Key = '0066'
	Flash forms overlay specification - Key = '0067'
	Flash forms overlay count specification - Key = '0068'
	Copy modification module specification - Key = '0069'
	Copy module table reference specification - Key = '006A'
	DEFER specification - Key = '006C'
	EXPIRATION DATE specification (long form) - Key = '006D'
	Override job affinity - Key = '0070'
	CTOKEN return specification - Key = '0071'
	SMSHONOR specification – Key = '0076'
	Access specification - Key = '8001'
	OUTPUT statement reference - Key = '8002'
	CNTL specification - Key = '8003'
	Storage class specification - Key = '8004'
	Management class specification - Key = '8005'
	Data class specification - Key = '8006'
	Record organization specification - Key = '800B'
	Key offset specification - Key = '800C'
	Copy DD specification - Key = '800D'
	Copy profile specification - Key = '800E'
	Copy model specification - Key = '800F'
	Average record specification - Key = '8010'
	Data set type specification - Key = '8012'
	Spin data set specification - Key = '8013'
	Segment spin data set specification - Key = '8014'
	z/OS UNIX file path specification - Key = '8017'
	z/OS UNIX file options - Key = '8018'
	z/OS UNIX file access attributes - Key = '8019'
	z/OS UNIX file normal disposition specification - Key = '801A'
	z/OS UNIX file abnormal disposition specification - Key = '801B'
	Record-level sharing specification - Key = '801C'
	Organization of a z/OS UNIX file - Key = '801D'
	VSAM RLS log stream specification - Key = '801F'
	CCSID specification - Key = '8020'
	Block size limit specification - Key = '8022'
	Key label 1 specification - Key = '8023'
	Key label 2 specification - Key = '8024'
	Key encode 1 specification - Key = '8025'
	Key encode 2 specification - Key = '8026'
	Extended attributes specification - Key = '8028'
	FREEVOL specification - Key = '8029'
	SPIN interval for the allocated SYSOUT data set - Key = '802A'
	SYMLIST on a DD statement - Key = '802B'
	DSNTYPE version - Key = '802C'
	Maximum PDSE Generation - Key = '802D'
	DALGDGO specification – Key = '802E'

	JCL DD statement DCB subparameters and equivalent text units
	DCB attribute text units
	BFALN specification - Key = '002E'
	BFTEK specification - Key = '002F'
	BLKSIZE specification - Key = '0030'
	BUFIN specification - Key = '0031'
	BUFL specification - Key = '0032'
	BUFMAX specification - Key = '0033'
	BUFNO specification - Key = '0034'
	BUFFOFF specification - Key = '0035'
	BUFOUT specification - Key = '0036'
	BUFRQ specification - Key = '0037'
	BUFSZ specification - Key = '0038'
	CODE specification - Key = '0039'
	CPRI specification - Key = '003A'
	DEN specification - Key = '003B'
	DSORG specifications - Key = '003C'
	EROPT specification - Key = '003D'
	GNCP specification - Key = '003E'
	INTVL specification - Key = '003F'
	KEYLEN specification - Key = '0040'
	LIMCT specification - Key = '0041'
	LRECL specification - Key = '0042'
	MODE specification - Key = '0043'
	NCP specification - Key = '0044'
	OPTCD specification - Key = '0045'
	Receiving PCI specification - Key = '0046'
	Sending PCI specification - Key = '0047'
	PRTSP specification - Key = '0048'
	RECFM specification - Key = '0049'
	First buffer reserve specification - Key = '004A'
	Secondary buffer reserve specification - Key = '004B'
	SOWA specification - Key = '004C'
	STACK specification - Key = '004D'
	THRESH specification - Key = '004E'
	TRTCH specification – Key = '004F'
	Diagnostic trace specification (DIAGNS=TRACE) - Key = '0054'
	FUNC= specification - Key = '005A'
	FRID= specification - Key = '005B'
	Record length specification - Key = '006B'
	Kilobyte BLKSIZE type specification - Key = '0072'
	Megabyte BLKSIZE type specification - Key = '0073'
	Gigabyte BLKSIZE type specification - Key = '0074'

	Non-JCL dynamic allocation functions
	Password specification - Key = '0050'
	Permanently allocated attribute specification - Key = '0052'
	Convertible attribute specification - Key = '0053'
	Ddname return specification - Key = '0055'
	Dsname return specification - Key = '0056'
	DSORG return specification - Key = '0057'
	Subsystem request specification - key = '005C'
	Volume serial return specification - Key = '005D'
	Subsystem request type specification - Key = '0062'
	Spool data set browse token specification - Key = '006E'
	Volume interchange specification - Key = '006F'
	Subsystem request specification - Key = '0075'
	Uniquely allocated temporary data set - Key = '0077'
	Request IEFOPZ processing - Key = '0078'
	Insulated DD request - Key = '0079'
	Bypass security processing - Key = '007A'
	Return allocation information - Key = '007B'
	Return IEFOPZ-New data set name - Key = '007C'
	Return IEFOPZ-New data set volume serial number - Key = '007D'

	Dynamic unallocation text units
	Ddname specification - Key = '0001'
	Dsname specification - Key = '0002'
	Member name specification - Key = '0003'
	Overriding disposition specification - Key = '0005'
	Unallocate option specification - Key = '0007'
	Remove in-use option specification - Key = '0008'
	Overriding SYSOUT nohold specification - Key = '000A'
	Overriding SYSOUT class specification - Key = '0018'
	Overriding SYSOUT remote workstation specification - Key = '0058'
	Overriding SYSOUT hold queue specification - Key = '0059'
	Overriding SYSOUT user ID specification - Key = '0063'
	Insulated DD request - Key = '0079'
	Bypass security processing - Key = '007A'
	Overriding spin data set specification - Key = '8013'
	z/OS UNIX file path specification - Key = '8017'
	z/OS UNIX overriding file disposition specification - Key = '801A'

	Dynamic concatenation text units
	Ddname specification - Key = '0001'
	Permanently concatenated attribute specification - Key = '0004'
	Insulated DD request - Key = '0079'

	Dynamic deconcatenation text units
	Ddname specification - Key = '0001'
	Insulated DD request - Key = '0079'

	Text units for removing the in-use attribute based on task ID
	TCB address specification - Key = '0001'
	Current task option specification - Key = '0002'

	Ddname allocation text units
	Ddname specification - Key = '0001'
	Return DUMMY indication specification - Key = '0002'

	Dynamic information retrieval text units
	Ddname specification - Key = '0001'
	Dsname specification - Key = '0002'
	Return ddname specification - Key = '0004'
	Return dsname specification - Key = '0005'
	Return member name specification - Key = '0006'
	Return status specification - Key = '0007'
	Return normal disposition specification - Key = '0008'
	Return conditional disposition specification - Key = '0009'
	Return data set organization specification key = '000A'
	Return limit specification - Key = '000B'
	Return dynamic allocation attribute specification - Key = '000C'
	Return last entry specification - Key = '000D'
	Return data set type specification - Key = '000E'
	Relative request number specification - Key = '000F'
	Return first volume serial specification - Key = '0010'
	Return ddname extended specification - Key = '0011'
	Return relative position specification - Key = '0012'
	z/OS UNIX file path specification - Key = '8017'
	CNTL specification - Key = 'C003'
	Return storage class specification - Key = 'C004'
	Return management class specification - Key = 'C005'
	Return data class specification - Key = 'C006'
	Return record organization specification - Key = 'C00B'
	Return key offset specification - Key = 'C00C'
	Return copy DD specification - Key = 'C00D'
	Return copy profile specification - Key = 'C00E'
	Return copy model specification - Key = 'C00F'
	Return average record specification - Key = 'C010'
	Return data set type specification - Key = 'C012'
	Return spin data set specification - Key = 'C013'
	Return segment spin data set specification - Key = 'C014'
	Return z/OS UNIX file path specification - Key = 'C017'
	Return z/OS UNIX file options - Key = 'C018'
	Return z/OS UNIX file access attributes - Key = 'C019'
	Return z/OS UNIX file normal disposition specification - Key = 'C01A'
	Return z/OS UNIX file abnormal disposition specification - Key = 'C01B'
	Return organization of a z/OS UNIX file - Key = 'C01D'
	Return spin of interval specification - Key = 'C02A'
	Return symbol list on a DD statement - Key = 'C02B'
	Return DSNTYPE version information - Key = 'C02C'
	Return MAXGENS generation information - Key = 'C02D'
	Return GDGORDER specification – Key = 'C02E'

	Example of a Dynamic Allocation Request

	Chapter 27. Dynamic output
	Creating and naming output descriptors
	System generated names
	Job step considerations
	Output descriptors and text units
	Table of dynamic output text units and JCL equivalents
	Relationship between text units and JCL equivalents

	Deleting output descriptors
	Specifying SYSOUT without an output descriptor
	Dynamic output programming example
	Dynamic output programming example (continued)
	Dynamic output programming example (continued)
	Dynamic output programming example (concluded)

	Chapter 28. Scheduler JCL facility (SJF)
	Understanding SJF terms
	The SJF environment
	Retrieving output descriptor information (SJFREQ macro with RETRIEVE)
	Initializing the keyword list
	Establishing a storage area
	Information returned from SJF RETRIEVE processing

	Merging SWBTUs (SJFREQ macro with SWBTU_MERGE)
	Validating and building text units (SJFREQ macro with VERIFY)
	SJFREQ VERIFY functions
	Preparing to use VERIFY for validating and building text units
	Examples of using SJFREQ VERIFY functions
	Validate a statement name
	Validate a keyword operand
	Validate and build a text unit for a keyword operand and subparameters
	Validate and build a text unit for a keyword operand with a sublist
	Requesting last call

	Freeing the SJF environment (SJFREQ macro with TERMINATE)

	Understanding the OUTDES statement
	Operand and keyword operand abbreviations
	Comments and line continuation
	Delimiters
	Rules for parsing data with and without quotation marks
	OUTDES statement syntax

	Chapter 29. Processing user trace entries in the system trace table
	Formatting a USRn trace table entry
	Replacing a USRn TTE formatting routine
	Parameters passed to the USRn formatter
	Return codes from the USRn formatter
	Printing the trace output buffer contents
	Handling errors during TTE formatting

	Chapter 30. Using system logger services
	What is system logger?
	The log stream
	Coupling facility log stream
	DASD-only log stream

	The system logger configuration
	The system logger component

	Overview of authorized system logger services
	Summary of system logger services
	Coding a system logger complete exit for IXGBRWSE, IXGWRITE, and IXGDELET
	Information passed to the complete exit
	Environment
	Input specifications
	Programming considerations

	Using ENF event code 48 in system logger applications

	IXGCONN: Connecting to and disconnecting from a log stream
	Connecting as a resource manager
	Using ENF event code 48 with a resource manager

	Using ENF event 48 when a connect request is rejected
	Coding a resource manager exit for IXGCONN
	Information passed to the resource manager exit
	Environment
	Input specifications
	Registers at entry
	Return specification
	Programming considerations
	Overriding delete requests
	When the resource manager exit hangs

	IXGDELET: Deleting log blocks from a log stream
	Delete requests and resource manager exit processing

	Setting up the system logger configuration
	Writing an ENF event 48 listen exit

	Logger server address space availability considerations
	ENF 48 and system logger initialization
	ENF 48 event code scenarios
	Considerations for logger resources temporarily unavailable
	Considerations for logger log stream disconnected

	When things go wrong: Recovery scenarios for system logger
	When a resource manager fails

	Chapter 31. System REXX
	Planning to use system REXX
	Security
	Argument and variable processing
	Input/output files
	Functions
	Time limits and canceling a request
	Error handling
	Examples

	Chapter 32. z/OS FBA services
	z/OS Distributed Data Backup (zDDB)
	z/OS FBA devices
	Controlling access to z/OS FBA devices

	z/OS FBA services
	Querying and allocating FBA devices
	Reading from and writing to z/OS FBA devices
	Erasing data on z/OS FBA devices
	Unallocating z/OS FBA devices
	Improving performance when using IOSFBA services
	Providing a recovery or resource manager

	Appendix A. Using the unit verification service
	Functions
	Check groups - Function code 0
	Check units - Function code 1
	Return unit name - Function code 2
	Return unit control block (UCB) addresses - Function code 3
	Return group ID - Function code 4
	Indicate unit name is a look-up value - Function code 5
	Return look-up value - Function code 6
	Convert device type to look-up value - Function code 7
	Return attributes - Function code 8
	Check units with no validity bit - Function code 9
	Specify subpool for returned storage - Function code 10
	Return unit names for a device class - Function code 11
	Callers of IEFEB4UV
	Callers of IEFGB4UV or IEFAB4UV
	Input to and output from unit verification service routines
	Input parameter list
	Input and output data structures
	Register 15 if request fails
	Requesting function code 0 (check groups)
	Requesting function code 1 (check units)
	Requesting function code 2 (return unit name)
	Requesting function code 3 (return UCB addresses)
	Requesting function code 4 (return group ID)
	Requesting function code 5 (indicate unit name is a look-up value)
	Requesting function code 6 (return look-up value)
	Requesting function code 7 (convert device type to look-up value)
	Requesting function code 8 (return attributes)
	Requesting function code 9 (check units with no validity bit)
	Requesting function code 10 (specify subpool for returned storage)
	Requesting function code 11 (return unit names for a device class)
	Requesting multiple functions - Examples
	Example 1 - Function codes 0 and 1
	Example 2 - Function codes 3 and 10
	Example 3 - Function codes 1 and 5

	Appendix B. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

